SUBJECT PRESENTATION FORM

Subject name	NUMERICAL ANALYSIS	
Field of study	Civil Engineering	
Main field of study	Civil Engineering	
Subject code	41322008	
Subject main teacher	Prof. Adrian CHISĂLIȚĂ, Mac(Eng), BSc(Math), PhD	
Collaborators	Dragoş F. Lisman MSc(Eng)	
Department	Structural Mechanics	
Faculty	Civil Engineering (Construcții)	

Sem.	Type of subject	Course	Appl	licatio	ons	Course	Арј	olica	tions	Individual Study	CAL	dits	Type of examination
		[Classes/week]		[Classes/semester.]			LOI	Cre					
			S	L	Р		S	L	Р			•	
3	Fundamental	2	-	2	-	28	-	28	-	22	78	3	Exam

Prerequisites: Differential Calculus; Fortran 90/95 programming language.

Theoretical knowledge, (What the students must know)

Aim: An introduction to Scientific Computation:

Applied Numerical Analysis, with problems solved on computer. Achieved skills: (What they can do)

The student is supposed to be able to handle most of numerical methods for solving equations; and, be _ able to analyze the accuracy and the stability of a numerical method.

At the same time, the student has to manage the use of library routines for building a project in order to solve a computational problem.

Achieved abilities: (What types of equipments and instruments they know how to use)

- To use a PC with Windows OS;
- To use the development environment of MS Visual Studio and CVF (Compaq Visual Fortran). _

A. (Course (Lecture title +curriculum)
1	Object of Numerical Analysis:
_	Object. Problem conditioning, condition number; Examples.
	Algorithm stability. Conclusions regarding problem conditioning and algorithm stability.
	Computer representation of numbers:
	Integers.
2	Computer representation of numbers:
	Reals, floating-point representation: Representation models (scientific; binary computer).
	Format structure; IEEE Formats.
	Special values; Representation range.
3	Computer representation of numbers – Rounding error measure:
	ULP; machine-E; Unit rounding error.
	Errors, sources and propagation:
	Error; Relative error; Significant digits. Error sources. Rounding error. Truncation case. Examples for base
	$\beta = 2.$
4	Errors, sources and propagation – Error propagation:
	Propagated error. Multiplication; Division; Function evaluation. Loss of signification error. Addition and
	subtraction. Propagation of errors in a sum.
	Nonlinear equations:
	Method and method analysis; Order of convergence. Linear convergence.
5	Roots of an equation $f(x) = 0$:
	Bisection method. Secant method. Newton method; Error estimation; Comparison with Secant method.
6	Fixed-Point method:
	Method. Convergence (contractive mapping). Error evaluation. Geometrical interpretation. The stationary
	process.
7	Fixed-Point method:
	Explicit Fixed-point procedures. Higher order Fixed-point methods.
	Root of a polynomial:
	Polynomial evaluation; Newton method for polynomials.
8	Root of a polynomial:
ð	коот ој а рогупотиат.

	Strategies: Deflation; Direct Iteration.
	Complex roots (elements); Laguerre Method. Stability of the roots.
9	Multiple roots of equation $f(x) = 0$:
	Problems. Newton method and Modified Newton method.
	Systems of non-linear equations:
	Definitions. Norms. Fixed-Point Method.
10	Systems of non-linear equations:
	Explicit fixed-point procedure: Iteration with constant matrix A (updated).
	Newton method; Convergence; Practical iteration scheme. Newton-like methods.
	Linear systems of equations:
	General considerations. Gauss elimination.
11	Linear systems of equations:
	Pivoting. Number of operations. Matrix inversion.
	LU decomposition. Direct evaluation of LU factors, methods.
12	Linear systems of equations:
	Cholesky method.
	Iterative methods: Jacobi. Gauss-Seidel. SOR.
13	Linear systems of equations:
	Solution stability and error analysis: Condition number. Well- and ill-conditioned matrices.
	The Matrix Eigenvalue Problem:
	Eigenvalues & eigenvectors.
14	The Matrix Eigenvalue Problem:
	Characteristic polynomial. Properties of eigenvalues; Properties of eigenvectors. Hermitian matrices.

B1.	Applications – WORKS (list of works, seminar works, contents of the year end project)	
1	Developer Studio Recall; Project structure; Building a project. Use of ANA Library.	
	Algorithm stability (Bessel function: direct and recursion computation)	
2	Computer representation of numbers. Bitview utility: integers; reals. Special values.	
3	ULP; machine-&; Unit rounding error. Intrinsic Fortran functions returning representation parameters.	
4	Errors: loss of significance; Rump " polynomial". Summation: Harmonic series; SSH problem.	
5	Bisection method. Secant method.	
6	Newton method. Fixed-point method.	
7	Fixed-point method: Stationary process. Explicit procedures.	
8	Roots of polynomials; Stability of the roots.	
9	Non-linear systems: Fixed-point method: Iteration with constant matrix A. Newton method.	
10	Linear systems: Gauss; Pivoting. Matrix inversion.	
11	Linear systems: LU. Cholesky.	
12	Linear systems: Iterative methods.	
13	Linear systems: Condition number.	
14	Eigenvalues: Characteristic polynomial; Eigenvectors.	

B2. Laboratory room (Room/surface,	, address) 306/58 m ² and 505/58m2; Daicoviciu Street No.15, Towe	er
Building, 3 rd & 5 th floor.		

Building, 3 rd & 5 ^{ar} floor.		
Equipment	Equipment description	Year of
		purchase
Computers	PC- Processor Pentium IV/3GHz/Memory 512MB/ HDD	2005
Room 306: 8 pcs.	80GB/DVD-RW/Monitor CRT 17"/Keyboard & Mouse;	
	PC- Procesor Pentium III/600-700MHz/Memory 64MB/ HDD	2000
Room 505: 8 pcs.	20GB/Monitor CRT 15"-17" "/Keyboard & Mouse.	
Software	MS Windows XP Professional, SP2	2005
Room 306	MS Office 2003 (room 306); MS Office 2000 (room 505).	2003
	Compaq Visual Fortran 6.6C; Array Visualizer 1.5	2001
D 505		2000
Room 505	MS Windows 2000 + SP4	2000
	MS Office 2000	2000
	Compaq Visual Fortran 6.6C; Array Visualizer 1.5	2001

C. Individual study (topics of the bibliographical studies, summarized materials, projects, applications etc.)

Fortran 90/95 programming. ANA sources & Examples. 1. 2.

SUBJECT PRESENTATION FORM

3. Comput	3. Computer representation of numbers.					
4. Exam P	4. Exam Problem.					
Structure of the	Course study	Solving homework,	Training, applications	Time allotted for	Bibliographical supplementary	Total number of classes for individual study
Individual study		labs, projects		examinations	study	
No. of classes	14	2	0	1	5	22

D. Teaching methods and strategies

1. Course: Lectures.

- 2. Laboratory: Computer work, problem solving. Based on ANA Library & ANA User's Guide.
- 3. Exam Problem: Two problems (randomly chosen) are given to each student at Lab #13, to be solved and be presented at the end-of-semester exam. The list of Problems is posted on ftp.utcluj.ro.

Bibliography

- Chisalita A., "Numerical Analysis", UTC-N, 2002. 1.
- Chisalita A., "ANA Numerical Analysis Library (source code)", UTC-N, 1991-2011. 2.
- Chisalita A., "ANA User's Guide", UTC-N, 2011. 3.
- Atkinson K.E., "An Introduction to Numerical Analysis", John Wiley & Sons, N.Y., 1978 4.
- Atkinson K.E., "Elementary Numerical Analysis", 2nd edition, John Wiley & Sons, N.Y., 1993 5.
- 6.
- Curtis F.G., "Applied Numerical Analysis", Addison-Wesley Publishing Company, Inc., 1978 Isaacson E., and Keller H.B., "Analysis of Numerical Methods", John Wiley & Sons, N.Y., 1966 Kincaid D., and Cheney W., "Numerical Analysis", 2nd edition, Brooks/Cole Publ. Co., 1996 7.
- 8.
- Ralston A., and Rabinowitz Ph., "A First Course in Numerical Analysis", McGraw-Hill, Inc., 1978 9.
- 10. "Compaq Visual Fortran Language Reference Manual", 200111. "Compaq Visual Fortran Programmer's Guide", 2001
- 12. "Intel Fortran Compiler 11.1 User and Reference Guide", 2011
- 13. "IMSL Mathematical and Statistical Libraries", Compaq Visual Fortran 6.6, IMSL Help, 1999.
- 14. "High-Precision Software Directory", 2010, http://crd.lbl.gov/~dhbailey/mpdist/

Examination and grading procedure				
Examination procedure	Oral Examination.			
	1. One Theoretical Question: picked by the student from a lot of questions.			
	The list of Theoretical Questions is posted on <u>ftp.utcluj.ro</u> , the last day of the			
	semester.			
	2. Two Problem: pre-solved and presented (on computer).			
Components of the grade	1. Theory Mark; 2. Problem marks; 3. Up to 1 point Bonus, for Lab attendance			
	(Bonus = Lab attendance/No_of_Labs).			
Formula for calculating	Final mark = (Theory mark + Problem marks)/3 + Bonus – if applicable.			
the grade	Condition for passing: Each of Theory and Problem marks be ≥ 5 .			
	The bonus is granted at the 1 st attendance to the exam, and only if the passing condition is			
	fulfilled.			

Subject coordinator, Prof. Adrian CHISALITA