Lab Work no. 11

The usage of the mathematical coprocessor
Object of laboratory

The purpose of this paper is to familiarize the user with the mathematical coprocessor’s functions, its instructions for real numbers and other of the coprocessor’s functions.
Theoretical considerations

Even tough the 8086,80286,80386 and 80486 processors have a series of powerful arithmetical instructions (that exist in the second generation of microprocessors like division and binary division) they do not support floating point arithmetical operations or integer numbers represented on multiple bytes. If he wants to execute this type of operations, then they will have to be implemented using macro libraries or subroutines. An easier way is to utilize high level programming languages, in which these operations are specified in libraries.

 Because of these impediments INTEL developed the INTEL 8087 (80287, 80387) arithmetic coprocessor. As its name says the co-processor is made up of several processors that cooperate with the computer’s main processor. The coprocessor can not extract by himself the instructions from the memory, job that is done by the processor.
Working principle

The coprocessor is activated at the same time as the system’s general RESET signal. This signal brings the coprocessor in its initial state (with error shading, register erase, stack initialization, number rounding, etc.). After the processor’s first executed instruction the coprocessor can detect with which processor it has to work(it it’s 8086 pin nr 34 will be set on 0 – BHE signal – and if it’s 8088 it will be set on 1 – signal SS0). Depending on the processor the coprocessor will reconfigure itself accordingly.

The coprocessor connects to the processors local bus through several lines: data/address, state, clock, ready, reset, test and request/grant. Being connected to the microprocessors’ local bus allows the coprocessor access to all memory, input/output resources through the request/grand buss request.

The two processors working simultaneously imply synchronization between their common processes.
Usually the error and instruction synchronization is done by compilers and assemblers, while the data synchronization has to be done by the user of the assembling language.

The responsibility of controlling the program comes to the microprocessor. The work with the microprocessor is started with a special instruction ESCAPE, like this: the coprocessor monitors the instruction flow from the memory to the processor. By decoding the signals S0, S1, S2 the coprocessor knows when the processor’s instruction queue is loaded with instructions and stores these instructions in its own queue. From the processors QS0 and QS1 signals the coprocessor will now when the first instruction byte is popped from the queue. If the coprocessor detects based on his own information and its status signals that the processor will execute an ESC instruction (an instruction has to be popped from the queue) the coprocessor becomes active.

The ESC instruction code is the following:

	1101 1xxx
	mod xxx r/m

X meaning insignificant. Thus all instructions that have the operation code between D8 and DF will be considered as ESC instructions. Together with the three bits from the second byte there are a total of 64 allowed instructions for the coprocessor.

The microprocessor executes the ESC instruction by computing a memory address (from mod and r/m) and executes a bus cycle, reading the data from the determined address (if mod is 11 mo bus cycles will be executed). The data is not really read from memory instead a bus cycle is generated (it shows a NOP instruction) the coprocessor being activated by the ESC instruction decodes the six bits from the ESC instruction and can capture the address and/or the data from the memory selected by the instruction. This mechanism allows the programmer to treat the ESC instruction (defined by the coprocessor) as a normal instruction with all the addressing methods. The transfer of the address as a coprocessor parameter is allowed. If the coprocessor requires more data from memory it can request he control from the microprocessor. It should be noted that all the processor’s information is situated in memory; the microprocessor’s registers are not accessible. The coprocessor keeps the TEST line on high as long as he executes to tell the processor that he is busy.

Inside the coprocessor we have an 80 bytes memory organized as a stack of eight 10 bytes elements. On these 10 bytes the floating point numbers are represented in interior format with extended precision. The coprocessor can access the computer’s memory with any addressing mode known by 8086 and any legal format data. The data brought from memory are converted into the coprocessor’s internal format and put on top of the stack. When writing in the main memory the internal format is converted into the format specified by the user.

The condition for executing floating point operations in the coprocessor is: the operand has to be at the top of the stack (for the operations wit two operands, at least one of them). So, with the aid of the coprocessor we can do the following operations:

-reading data into the coprocessor’s internal memory (on the stack) from the computer’s memory

-executing the necessary arithmetical operations

-writing the results into the computer’s memory

INTEL 8087 recognized data types

The great advantage of the coprocessor is that he works not only with floating point numbers but with integer numbers also and recognizes packed decimal data types. So if we have to execute a complicated integer operation and it has to be very fast it can be done with the help of the coprocessor, without having to do a time consuming conversion from integer to floating point and backwards just so that the coprocessor can work with them.

Floating point data types
Short Real a 32 bit number represented in floating point. The number is decomposed in mantissa and characteristic. The characteristic is represented on 8 bits from which the most significant is the sign bit and it’s treated differently. The physical length of the mantissa is 23 bits. The sigh of the real number is given by the most significant bit:
31 30 23 22 0

	s
	Characteristic
	Mantissa (starts with 1)

|

1 bit considered as default

This floating point number representation always works with normalized numbers, meaning that the mantissa’s first bit is always 1, and thus this bit is never written being considered by default. Thus the mantissa’s real size is 24 bits.

It is important for us to no the actual precision, The mantissa represents 6-7 digits, while the characteristic with its 8 bits raises their number to the order of ~1038 (the exact number can not be determined because it depends on the mantissa). The highest number is approximately of 1.7 *1038 and the lowest positive real number in around 10-38.

Long Real a 64 bit number represented in floating point. The number is decomposed in mantissa and characteristic. The characteristic is represented on 11 bits from which the most significant is the sign bit and it’s treated differently. The physical length of the mantissa is 52 bits. The sigh of the real number is given by the most significant bit:

31 30 23 22 0

	s
	Characteristic
	Mantissa (starts with 1)

|

1 bit considered as default

As in the previous case here also he have a default bit, thus the actual length of the mantissa in 53 bits. And these 53 bits we can represent approximately 16-17 digits, the representation of the smallest number in very precise.

High precision real numbers an 80 bit number represented in floating point. The number is decomposed in mantissa and characteristic. The characteristic is represented on 15 bits from which the most significant is the sign bit. The physical length of the mantissa is 64 bits. The sigh of the real number is given by the most significant bit:
 79 78 64 63 0

	s
	Characteristic
	1
	Mantissa

The high precision floating point numbers are not always normalized, due to which the do not necessarily start with a 1 bit. Thus, in this case the size of the mantissa in of only 64 bits. The high precision floating point number’s 64 bits normalized mantissa represents approximately 19 decimal digits. The length of the characteristic is 15 bits. Because the number is not always normalized the lowest possible number that can be represented is much smaller than we would expect: around 10-4932. This representation method is highly sensitive to the possibility of the number being different or equal to 0..

2’s Complement

The method’s principle is: we discard the most significant bit that will be used to represent the sign. The number zero is represented by a string of 0.Thus we obtain positive numbers by adding. Negative numbers are obtained by subtracting. For an eight bit number we have:

 Decimal
Binary

	0

1

2

122

127
	0000 0000

0000 0001

0000 0010

......

0111 1010

0111 1111

	-1

-2

...

-122

-128
	1111 1111

1111 1110

.... ...

1000 0110

1000 0000

Regardless of the number of bits the number’s sign is kept in the most significant bit. If this bit is 0 then the number is positive if not the number is negative. Let us remember the simplest conversion algorithm:

Negating al binary digits and adding 1 to the result. Let us not keep track of the overflow.

The first method is using the NEG instruction in which case the processor makes the conversion. Another method is using the NOT instruction (which returns the 1’s complement of that number) and INC. The two method’s collateral effects differ; there will be cases in which by computing with the two different methods the 2’s complement will result in different flags for each method. For converting longer integers we have only one method: we use the NOT instruction for each byte and them we add 1 to the least significant bit keeping theca of the possible carry.
VERYLONG
DQ
?

; Very large integer

NOT
WORD
PTR
VERYLONG

; we carefully

NOT
WORD
PTR
VERYLONG+2
; negate

NOT
WORD
PTR
VERYLONG+4
; all

NOT
WORD
PTR
VERYLONG+6
; bits

ADD
WORD
PTR
VERYLONG, 1
; we add

ADC
WORD
PTR
VERYLONG, 0
; one

ADC
WORD
PTR
VERYLONG, 0
; to the number

ADC
WORD
PTR
VERYLONG, 0
;

The next problem is the representation of the packed BCD numbers. AS we will se we will be able to use BCD numbers very easily not only with the help of the coprocessor but also the program’s. But signed BCD operations do raise some problems in which we will see the true advantages of working in 2’s complement.

As it has previously been stated a BCD number is represented on 10 bytes, has 18 digits and the most significant bit is the sign bit. Let us analyze a BCD number created by the assembler. We use a cone fragment as an example:

0000
56 34 12 00 00 00 00 00 00 BCD1 DT
123456

000A
56 34 12 00 00 00 00 00 80 BCD2 DT
-123456

This code fragment contains two DT operators, their initial values being opposites. It can be seen that the digits use 4 bits and that the most significant digit will be represented on the 4 least significant bits of the 10 byte area. The number’s sign is in the 4 most significant bits, and of these it is the most significant.

As you already know the additional set of operations (adding, incrementing, subtraction and decrementing) can easily be carried out using BCD numbers. Even tough multiplication and division using BCD are sustained by machine language; in assembling language these operations create difficulties. Let us think that one of the most complex algorithms of basic mathematics is the division algorithm. Binary division is much simpler than the decimal one, because we do not have problems guessing the remainder, but getting the carry for the division is very difficult in assembling language.

Still the binary division is simpler than in BCD because in BCD, algorithmically speaking the numbers is presented in decimal format and not in binary. If we admit the representation of decimal numbers in BCD we get a more exact representation: this representation does not make approximations and the number 58.3 can be represented precisely.

Let us see next the problem with representing floating point numbers. It is clear that the number 0. 0000 is represented only with 0 bits. 1. 0000 is represented like this (its label is FL1): the first bit of the mantissa is 1, and thus we have:

1. 0000x2

At value FL1 (reading downwards 3F 80 00 00). The value of the mantissa is a string of 0 because the first 1 is implied. The characteristic is FFH, but why? The answer is that the characteristic has to be represented by adding FFH so we will not have to use a representation in 2’s complement when operating with the characteristic. From here we deduce the representation of number 2.0
1. 00000x2

Where the mantissa is a string of 0 and the characteristic 80H (FFH+1)

This also stated in number FL2 represented as 40 00 00 00.

2’s higher powers are treated identically, but with modifications to the characteristic, while negative values are treated simply by setting the sign bit to 1.Thus the correct representation of number 2. 0000 is 0[sign bit], 80[characteristic] and 23 of 0 [mantissa].

For the nest example we will start from number 1. 00000, but this time we will not multiply it but divide treated identically tically ted ristic 80H()the characteristic has to be represented considered as ake

it with 2. Again we have no significant change in the number’s mantissa it will remain 23 times 0. Due to repeated divisions the characteristic starts to empty.

As we can se from the number FL05’s second byte 80 value is missing, so the characteristic drops from 7FH to 7EH and so on. For negative values the sign bit is set to the value 1.
Next we will use numbers that are not powers of 2. They are: 3. 00000 multiplied with powers of 2.
The first observation is that number 3. 00000 differs from number 2. 00000 by one bit only. This is the sixth bit of the second byte. This is actually the most significant bit of the mantissa. Adding the mantissa’s most significant bit we get the mantissa “1 100” where the point is considered between the 2 bits of 1. The value of the characteristic is obviously 1.

The negative values are obtained as in previous examples so they will not be discussed here.

The approximate value of 1/3 (it is an infinite function so it can only be represented truncated) is the following: 0[sign bit], 7D[characteristic], then the sequence 0101 on 23 bits. The value 7D of the characteristic equals -2, because the number is smaller then ½

 0064
AA
AA
AA
3E

FL03

DD

0. 333...

Finally numbers represented in double precision.
The characteristic of double precision numbers is represented on 12 bits and the complementary value is 3FFH. The representation of the number 1. 00000 in double precision is: 0[sign bit], 3FFH [characteristic with the sign bit 0] 52 tines the bit 0 (thus 53 bits by adding 1 implied).

For numbers represented in high precision the characteristic has 15 bits, the third byte’s most significant bit starting from the most significant bit is part of the mantissa/
Before ending the analysis of the numbers representation it must be noted the advantage of representing them with a shifted characteristic/ when comparing two numbers we start from the sign bit and the first different value will decide which one is the biggest. In 2’s complement comparing them would have been much harder.
In the coprocessor’s internal representation we have several special cases. The coprocessor recognizes negative 0 and can represent the signed and unsigned infinite.

The characteristic’s physical 0 is a special undefined value.

Operation errors (exceptions)

When using floating point operations we can encounter countless errors, starting from trivial logarithmic errors, to errors caused by representation limitations. These we will call exceptions. We will study these types of errors and the ways in which we can manipulate them.
When an error appears the coprocessor can manifest two behavior types. It signals the error using an interrupt if the user validates this. If not we validate the interrupt, the coprocessor will analyze the error internally and according to the signaled errors will do the following tasks. The coprocessor’s designers categorized all errors in the following 6 classes:

Invalid operation

This can be: an upper or lower overflow of the coprocessor’s internal stack. The lower overflow can appear when we try to access an element that doesn’t exist on the stack. These are usually severe algorithmic errors; the coprocessor does not execute the operation.

We have an undefined result if we try to divide 0.0 by 0.0; the coprocessor is not prepared for this. Similar situations appear when we try to subtract infinite from infinite, etc. These errors (even tough they can be avoided by proper algorithms) are not as severe errors as stack overflows.

The same result will be obtained if a coprocessor function is called with wrong parameters.

If an undefined result appears the coprocessor puts into the characteristic a reserved value (bits of 0).

Overflow

The result is bigger than the largest number that can be represented. The coprocessor writes the infinite value instead of the result and moves on.

Division by zero

The divider is zero while the number to be divided is different from 0 or infinite. The coprocessor writes the infinite value instead of the result and moves on.

Underflow

The value of the result is smaller then the smallest number that can be represented. The result will be 0 and the coprocessor will move on.

De-normalized Operand

Appears if one of the operands is not normalized or the result can not be normalized (for example if it’s so small that it normalization can not be done). The coprocessor moves on (the values that are not 0 will be lost, will be turned into 0).

Inexact result

The result of the operation is inaccurate due to necessary or prescribed rounding. This kind of results cad be obtained when dividing 2.0 by 3.0 and the result can be represented only am an infinite function. The coprocessor does the rounding and moves on.

The above were described in order of their severity. If a stack overflow appears the program is flawed and if will not be continued.

At the same time a rounding error needs not to be treated. Not even on paper can we use infinite fractions or irrational numbers as we would like. Practically speaking it is of no importance to us if we lose or not the 20th decimal of the fraction, because this is not the element that caries the important information. To solve this problem a thorough analysis of the situation and results that can appear the representation’s precision, running time, and memory size must be done. As we have seen when representing numbers, the precision from representing short real numbers is not enough for any practical application. The precision of long real numbers is more than sufficient but occupies double memory space.
The coprocessors internal architecture

The coprocessor has two distinct components:
· Numerical execution unit: does the arithmetical and transfer instructions common to the coprocessor, and has an internal execution unit and a block of registers;

· Control unit: extracts from memory the instructions and operands and executes the control instructions, has a logical block and pointer and control registers;

The numerical execution unit

From the user’s point of view the most important component are the general block registers that are organized as an internal stack. All the registers (stack elements) have 80 bits. Each operation is addressed to the element that is on top of the stack. That’s why the stack’s elements are named ST (0), ST (1)… etc., where ST (0) is the top of the stack, ST (1) the next element, and so on. It represents an inconvenient in assembling language programming as we have to save the stack position for each value, and when inserting a new element all previous elements’ stack position is incremented.

Control unit

Control Word

The control register is a 16 bit register. The user can set the value of the register and thus access a series of the coprocessors “finer” mechanisms like the rounding method, etc.

As we can se the register is divided in two, that’s because the first 8 most significant bits control the processor’s working strategy the other 8 bits control the interrupts when an error occurs.

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	x
	X
	X
	ip
	rc
	rc
	pc
	pc
	x
	x
	pm
	um
	om
	zm
	dm
	im

X marks an unused bit

The others are:

IC – Infinite control- the way in which infinite numbers are treated

When division by 0 occurs the coprocessor puts infinite in the result. Mathematically speaking we have to ways of ending the number’s axis: projective and affine. The difference between the two is that the latter knows two types of infinite (positive and negative). None of the two methods is better than the other. Bit coding:

0- projective

1- affine
RC- Rounding control

00-round to the closest element that can be represented

01-round downwards

10-round upwards

11-trunchiation

PC- Precision Control

In some cases we do not want to work with the result in the internal precision even tough it is always represented as such. If we use previously writer procedures that use the rounded errors of 4 byte represented numbers then high precision can cause difficulties.
Values of the P.C pair of bits

00-24 bit-short real

01-busy

10-53 bit-long real precision

11-63 bit-high precision

M. Mask – validates or invalidates the coprocessors interrupt. When an error occurs during a floating point operation, the coprocessor sends an interrupt to the processor. On IBM-PC the interrupt created is NMI, an unmasked processor interrupt

Values on MASK
0– validates an interrupt request

1- Invalidates an interrupt request

With the following bits we specify which exception (error) really calls the interrupt. This can be useful when we are not interested in a particular exception, or if we want to control the problem by reading the coprocessors state from the program. The following bits validate the interrupt on 0 and invalidate it on 1.

PM Precision Mask

-signals rounding interrupt

UM Underflow Mask

- signals underflow interrupt

OM Overflow Mask

- signals overflow interrupt

ZM Zero Divide Mask
- signals divide by zero interrupt

DM De-normalized OM
- signals de-normalizing interrupt

IM Invalid Operation Mask
- signals invalid operation interrupt

Status Word

It’s a 16 bit register. Its content is set according to the last executed operation. We can obtain form it vital information for the user. Two of the first most significant bits correspond with the zero carry bits from the I8086 processor. Because we can load any value on the last 8 STATUS bits using the instruction SAHF, after a coprocessor’s operation we can read and use these bits with simple control instructions.
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	B
	C3
	St
	St
	St
	St
	C2
	C1
	C0
	Es
	X
	Pe
	Ue
	Ze
	De
	Ie

In this case we have a 16 bit register split in two. The first 8 bits tell us if the operation done by the coprocessor generates an interrupt, if it does then we are told what exception generated the interrupt. The first 8 most significant bits represent the coprocessors arithmetical status.

IR Interrupt request- If its value is one then it means that the coprocessor requests an interrupt. In this case one of the following six bits will also be 1, and will show what class the error belongs to.

IE Invalid Operation Error-invalid operation
DE Not normalized Operand Error – error caused by an operand that was not normalized or the result can not be normalized
ZE Zero Divide Error – division by zero caused error
OE Overflow Error - overflow caused error
UE Underflow Error - underflow caused error
PE Precision Error – precision error, the result was rounded
C0 (conditional bit 0)

C1 (1st conditional bit)

C2 (2nd conditional 2)

C3 (3rd conditional 3)

SP – the three bits point to the top of the stack. The value 000 signals an empty stack and the first element to be loaded will be the element 0 from the stack, while the value 111 signals that the stack is full.
B Busy – tells us if the coprocessor is working or not. It is active on 1, so in this case we are not allowed to send other instructions to the coprocessor. This bit allows us to synchronize our program with the coprocessor.

The meaning of C0, C1, C2, and C3 is displayed in the following table. As we can see these bits are not easy to define. Practically we only need to check one or two bits, which is fairly simple if we rely on the remarks made at the start of this chapter: we can use the fact that the zero STATUS and Carry flags have the same meaning.
	C3
	C2
	C1
	C0
	Sign
	Meaning

	0

0

0

0
	0

0

0

0
	0

0

1

1
	0

1

0

1
	+

+

-

-
	Not normalized

Not a number

Not normalized

Not a number

	0

0

0

0
	1

1

1

1
	0

0

1

1
	0

1

0

1
	+

+

-

-
	Normalized positive
Positive infinite
normalized
Negative infinite

	1

1

1

1
	0

0

0

0
	0

0

1

1
	0

1

0

1
	+

empty

-

empty
	Zero (positive)

............

zero (negative)

............

	1

1

1

1
	1

1

1

1
	0

0

1

1
	0

1

0

1
	+

empty

-

empty
	Invalid, Not normalized
.............

Invalid, Not normalized
.............

The value of C3 is 0 if the result of the operation (normalized of not normalized) is not 0. If the bit’s value is 1 then the result is either 0 or invalid or the corresponding stack element is empty. It can be said that C3 greatly resembles the zero STATUS bit. The value of C2 depends on C3. If the value of C3 in 0, C2 points out the normalized result on 1, and a non-normalized result on 0. If the value of C33 is 1 (the result is 0 or the element is empty) then it’s the opposite, C2 set on 1 points to a invalid number, while 0 points to zero.

As we have seen in the previous table C1 points to the number’s sign. If the result is negative then C1 is 1 if not C1 is 0. C0 tells us if the result is valid or not. If C) is 0 then there are no severe errors, but if C0 is 1 the result is invalid (the result is infinite or other special value).

If other types of operations are being done, like comparisons then their meaning changes:

	C3
	C2
	C1
	C1
	Meaning

	0

0

1

1
	0

0

0

0
	X

X

X

X
	0

1

0

1
	ST (0) >”op”

ST (0) <”op”

ST (0) =”op”

ST (0) and “op” can not be compared

If C3 is 0 then the result of the comparison will be read from C0. If C3 is 1 then C2 will point out if the numbers are equal or not. Or ST (0) can not be compared (void or infinite).

After the partial remainder operation these bits have other meaning. In this case C0, C1, C2 (from top to bottom in this order) will keep the one, two or three bits of the result when the division has a remainder. The value of C2 is 0 after the creation of a partial remainder and 1 in case of error. The meaning is (about the creation of a partial remainder will discus at the instruction description):
	Divider/Divided
	C3
	C1
	C0

	Divide>Divided /2

Divider>Divided /4

Divider<=Divided /4
	X

X

Bit 2
	X

Bit 1

Bit 1
	Bit 0

Bit 0

Bit 0

X signifies that in that case the bits keep their previous value. For example, if the number to be divided is smaller than the number to be divided by then the remainder is equal to the divider and the result is 0. In this case C3 and C1 keep their value, and C0 will be 0 to signal that the result will be zero. And if the divider is smaller than half the number to be divided, but larger then the quarter of the number to be divided then the result will be 2 or 3; we have this number in C1, C0 and C3 keeps his previous value.
Tag Word

	15 14
	13 12
	11 10
	9 8
	7 6
	5 4
	3 2
	0 1

	 R7
	R6
	R5
	R4
	R3
	R2
	R1
	R0

The bit pairings describe from top to bottom the stack registers 0, 1... Etc.
A bit pairing can have the following meanings:
	Value
	Stack registers bits meaning

	00
	The corresponding element contains a valid data

	01
	The corresponding element contains zero

	10
	The corresponding element contains a special value

	11
	The corresponding element is empty

The term special value means that the stack element contains infinite of for some reason the result of an operation is invalid.
Instruction Pointer

The instruction pointer contains the physical address and the coprocessor’s last operation code.

This register helps us when we are writing interrupt routines for catching errors that appear during coprocessor operations. In these cases it is useful to know the operation’s code and the physical address (the internal memory location where it can be found). We can easily see its importance when we realize that the program does not have to wait for the coprocessor, while this is working the processor can execute other tasks. We must consider the coprocessor only when its result is needed or when we need to do another operation.
Now, (because our program has passed the instruction that caused an error) we can’t find out which was the last instruction sent to the coprocessor. The space reserved for the instruction code is larger then the true size of the code so the code appears as aligned to the right.

Data Pointer

The data pointer contains the physical address of the last external data utilized in the last floating point operation.
Like the previous this register uses interrupts for catching errors that may appear during the execution of coprocessor instructions. In this case we must know the data’s physical address (external for the coprocessor) used by the last instruction that caused the error.

For the user that that write programs in assembling language it is important to know the coprocessor’s condition, more exactly the coprocessor’s environment that defines the working conditions at a particular time. This environment is defined by known elements.

Coprocessor’s environment
The internal registers that the user can be access. The mathematical coprocessor has a set of registers of 14 bits organized like this:

	 COMAND REGISTER

	 STATUS REGISTER

	 STACK REGISTER

	 INSTRUCTIONS REGISTER (A15-0)

 A19-16 | 0 | OPERATION CODE (bits 10-0)

	 DATA REGISTER (A15-0)

 A19-16 | 0. 0

Coprocessor’s instruction set

The coprocessor can be programmed in assembly language using the ESC instruction. This instruction sends a 6 bit operation code on the data bus and if necessary also sends on the data bus a memory address. The coprocessor sees and takes the instruction sent to him and executes it. There are two ways of a new synchronization between the coprocessor and the processor, both attributed to the processor:

· the processor tests the coprocessor’s status
· the processor calls a WAIT instruction

Data transfer instructions

Data transfer instructions ensure the exchange of data between the computers memory and the coprocessor’s stack. They can be classified like this:

LOAD Instructions
FILD adr
- Loads on the stack the integer variable located at address „adr”. The variable stored in memory of type (DB, DW, and DD) is converted to the coprocessors internal format at load.

FLD adr
- Loads on the stack the real variable (long or short) located at address „adr”. The variable stored in memory of type (DD, DQ, and DT) is converted to the coprocessors internal format at load

FBLD adr
- Loads on the stack the packed decimal variable located at address „adr”. The variable stored in memory of type (DT) is converted to the coprocessors internal format at load.

 STORE Instructions
FIST adr
-Stores at the address „adr” the value located on the stack (ST (0)) as a number. The stored value can be only an integer represented on one byte or a short integer, corresponding to the data stored at address „adr” (DW or DD). The stack pointer remains unchanged after the data is stored. The conversion is done during the store process.

 FISTP adr
- Stores at the address „adr” the value located on the stack (ST (0)) as an integer number. The stored value can be any integer (byte integer, short integer, long integer, corresponding to the data stored at address „adr” (DW, DD or DQ). The conversion is done during the store process. The instruction changes the stack: ST (0) is deleted by decrementing the stack pointer.
FST adr
- Stores at the address „adr” the value located on the stack (ST (0)) as an integer number. The stored value can be an integer short integer or in double precision, corresponding to the data stored at address „adr” (DD or DQ). The stack pointer and the data on the stack remain unchanged after the data is stored. The conversion is done during the store process.

FSTP adr
- Stores at the address „adr” the value located on the stack (ST (0)) as a floating point number. The value can be a short real with double or extended precision, corresponding to the data stored at address „adr” (DD, DQ or DT). The conversion is done during the store process from the internal format. The instruction changes the stack: ST (0) is deleted by decrementing the stack pointer.

FBSTP adr
- Stores at the address „adr” the value located on the stack (ST (0)) as a packed decimal number (defined at “adr” with DT). The stack pointer is decremented. The conversion is done during the store process from the internal format.

NOTE: You must remember that any type of data can be loaded. When we try to store we have two possibilities: If the data from the stack is to be eliminated we can use the 7 data types. But if we want to keep the stored value on the stack only the 4 basic typed are allowed.

 Internal data transfer instructions
FLD ST (i)
Put value from ST (i) on the stack. Thus the value from ST (i) will be found twice: in ST (0) and ST (i+1).

FST ST (i)
The value from ST (0) is copied in the stack’s “i” element. The old ST (i) is lost.

FSTP ST (i)
The value from ST (0) is copied in the stack’s “i” element. The old ST (i) is lost. ST (0) is eliminated by decrementing the stack pointer.
FXCH ST (i)
swap between ST (0) and ST (i).

Constants loading instruction
FLDZ

Loads 0 at the top of the stack

FLD1

Loads 1.0 at the top of the stack

FLDPI
Loads”pi” at the top of the stack

FLDL2T
Loads log (10) at the top of the stack

FLDL2E
Loads log (e) at the top of the stack

FLDLG2
Loads log (2) at the top of the stack

FLDLN2
Loads ln (2) at the top of the stack

Arithmetical and comparison instructions

Arithmetical instructions usually have 2 operands. One of them is always at the top of the stack, and usually this is also the place where the result is be generated. Basic operations can be executed without restrictions with the following methods

-the instruction’s mnemonic is being written without an operand. In this case the operands are ST (0) and ST (1).

-the instruction’s mnemonic and the operand. The operand can be a memory address or a stack element (ST (1) is also usable but it’s not very use full)

-the instruction’s mnemonic is written and 2 operands: the first is a stack element (not ST (0)) and the second is ST (0). In this case the result will be put in the place of the first operand and ST (0) will be deleted from the stack. (In the instruction’s mnemonic the letter P appears).

Arithmetical instructions

FADD

ST (0) (ST (0) +ST (1) FADD op
ST (0) (ST (0) +”op” from memory or stack.

Floating point operation.

FADD op
ST (0) (ST (0) +”op” from memory or stack.

Integer operation.

FADD ST (i), ST (0)
ST (i) (ST (i) +ST (0); ST (0) eliminated
FSUB

ST (0) (ST (0) -ST (1) FSUB op
ST (0) (ST (0) –„op” from memory or stack.

Floating point operation.

FISUB op

ST (0) (ST (0) -“op” from memory or stack.

Integer operation.

FSUB ST (i), ST (0)
ST (i) (ST (i) -ST (0); ST (0) eliminated
FSUBR ST (i)

ST (i) (ST (i) -ST (0) ; FSUB ST (i) opposite instruction

FMUL

ST (0) (ST (0) XST (1)

FMUL op
ST (0) (ST (0) x ”op” from memory or stack.

Floating point operation.

FIMUL op
ST (0) (ST (0) x ”op” from memory or stack.

Integer operation.

FMULP ST (i), ST (0)
ST (i) (ST (i) x ST (0); ST (0) eliminated
FDIV

ST (0) (ST (0): ST (1) FDIV op
ST (0) (ST (0):”op” from memory or stack.

Floating point operation.
FDIV op
ST (0) (ST (0):”op” from memory or stack.

Integer operation.

FDIVP ST (i), ST (0)
ST (i) (ST (i): ST (0); ST (0) eliminated
 FDIVR ST (i)

ST (i) (ST (i): ST (0); FDIV ST (i) opposite instruction.

Number comparison instructions
FCOM
The values from ST (0) and ST (1) are compared and C3, C2 and C0 indictors are set
FCOM op
The values ST from (0) and memory or stack (floating point variable) are compared and C3, C2 and C0 indictors are set
FICOM op
The values ST from (0) and memory or stack (floating point variable) are compared and C3, C2 and C0 indictors are set.

FCOMP
The values from ST (0) and ST (1) are compared and C3, C2 and C0 indictors are set. ST (0) is deleted from the stack
FICOMP op
The values ST from (0) and memory or stack (floating point variable) are compared and C3, C2 and C0 indictors are set ST (0) is deleted from the stack.

FCOMPP
The values from ST (0) and ST (1) are compared and C3, C2 and C0 indictors are set. ST (0) and ST (1) are deleted from the stack.

FTST
C3, C2 and C0 indicators are set according to the result of the comparison between the values ST (0) with 0.

FXAM
The condition bits are set according to the value of ST (0).No comparison is being done.

Remarks:

· FCOMP and FCOMPP allow us the easiest ways of eliminating one or two elements from the stack

· FXAM is used for analyzing the special conditions that result where computing errors occur.

Floating point functions
FSQRT
Square root – ST (0) ‘s square root is put in ST (0). The number has to be positive, or the result will not make sense.
FSCALE
2’s power. Puts in ST (0) the ST (0)’ s value multiplied with 2ST (1):

ST (0) (ST (0) *2**ST (1) ST (1) has to be an integer, and ST (0)‘s absolute value ha to be smaller then 2**15.

FPREM
Partial remainder. ST (0) is divided by ST (1) and stored in ST () (ST (0) -ST (1) * (the biggest lower integer for ST (0) /ST (1)).

FRMDINT
Round. ST (0) is replaced with ST (0) rounded. The rounding method is set in the command line.
FXTRACT
The value stored in ST (0) is split into Characteristic (in ST (0)) and mantissa (in ST (1)).

FABS
ST (0) is replaced with its absolute value.
FCHS
ST (0) sign is changed.

FPTAN
Partial tangent. The tangent of the angle contained in ST (0) is determined as a ST (1) /ST (0) fraction. The initial value of the angle contained in ST (0) must be between 0 and “pi”/4.

FPATAN
Partial Arctangent. The arctangent of the value contained in ST (0) is determined as a ST (1) /ST (0) fraction. The initial value contained in ST (0) must be positive, while ST (1) must be larger ST (0).

F2XM1
2’s power. ST (0) will be replaced by 2**ST (0) -1. Initially ST (0) must be between 0 and 0.5.

FYL2X
Logarithm. ST (0) (ST (1) *LOG2 (ST (0)). ST (0) has to be a positive number, while ST (1) has to be a finite number.

FYL2XP1
Logarithm. ST (0) (ST (1) *LOG2 (ST (0) +1). ST (0) has to be a positive number lower then 0.3, while ST (1) has to be a finite number.

Remarks:

· Sin and Cosine can be determined by using the tangent
· Any exponent can be computed using F2XM1

· For determining the exponent ST (0) ST (1) it is recommended to use the functions FYL2X and then F2XM1!

Command Instructions
Command instructions have the task of coordinating the microprocessors actions. Usually they have no arithmetic meaning, but some of them do influence drastically the actions of the coprocessor because they save or load the coprocessor’s state, more exactly all of its work registers. Among these registers is the stack thus, these can be regarded as gigantic load and save instructions.

FINIT
Initialization- the coprocessor is brought in an initial status known as software reset”. After the FINIT instruction all of the coprocessors registers will be in their initial status and the stack will be empty.

FENI
Interrupt accept- if the coprocessor needs to generate an interrupt when an error is detected, besides the correct positioning of the command register it needs to explicitly accept the interrupt.
FDISI
Interrupt ignores- this instruction ignores all interrupts regardless of the command register’s bits; to accept a new interrupt the instruction FENI must be called.
FLDCW adr
The command register is loaded from the memory location indicated by adr
FSTCW adr
The command register is saved in a word located at the memory location indicated by adr

FSTSW adr
The status register is saved in a word located at the memory location indicated by adr.

FCLEX
The bits that define the exceptions are erased- the instruction erases the corresponding bits regardless of the status of the error bits

FSTENV adr
Environment save- the coprocessor’s internal registers are saved in a memory location starting at adr that has a size of 14 bytes.

FLDENV adr
Environment load- the coprocessor’s internal registers are loaded from a memory location starting at adr that has a size of 14 bytes.

FSAVE adr
Status save- the coprocessor’s internal registers and its stack are saved in a memory location starting at adr that has a size of 94 bytes.

FRSTOR adr
Status load- the coprocessor’s internal registers and its stack are loaded from a memory location starting at adr that has a size of 94 bytes.

FINCSTP
Stack indicators increment- after the instruction’s action it is incremented with a stack indicator; thus the element that became ST (0) remains unchanged (fact pointed out by the stack description register’s bits).

FDECSTP
Stack indicators decrement- after the stack indicator is decremented by one; thus the stack’s elements remain unchanged (fact pointed out by the stack description register’s bits).

FFREE ST (i) the “i” ranked element from the stack is eliminated. The operation does not influence the stack pointer.
FNOP
No operation executed.

FWAIT
Waits for the current action to finish (similar to the 8086 WAIT instruction)

A simple program that uses the mathematical coprocessor
; Program that determines the Surface of a circle with the radius of R
; And a sphere with radius R
DATE

SEGMENT
PARA
‘DATA’
; SEGMENT DECLARATION DATE

RAZA

DQ

8. 567

ARIE

DQ

?

; RESERVE SPACE
VOLUM
DQ

?

; RESULTS
PATRU
DD

4. 0

TREI

DD

3. 0

DATE

ENDS

COD

SEGMENT
PARA
‘CODE’
SEGMENT DECLARATION

COD

CALCUL
PROC
FAR

; DECLARATION OF FAR PROCEDURE

ASSUME CS COD, DS: DATE

PUSH
DS

; PREPARE

XOR
AX, AX

; STACK FOR

PUSH
AX

; DOS RETURN

MOV
AX, DATE

; LOADING DS

MOV
DS, AX

; WITH DATA SEGMANT

FINIT

 ; COPROCESOR INITIALIZATION

FLD
RAZA

; LOAD RAZA ON COPROC STACK

FMUL
RAZA

; CALCULATING R x R

FLDPI

; LOAD PI TO COPROC STACK

FMUL

; CALCULATING R x R x PI

FSTP
ARIE

; SAVING RESULT

FWAIT

; SYNCHRONIZATION

LEA
SI, VOLUM

; VOLUM ADDRSS IN SI

FINIT

 ; COPROCESOR INITIALIZATION

FLD
RAZA

; COMPUTATION

FMUL
RAZA

; R x R

FMUL
RAZA

; R x R x R

FLDPI

; LOAD PI

FMUL

; MULTYPLY WITH PI

FMUL
PATRU

; MULTIPLY WITH FOUR

FDIV
TREI

; DIVISION BY 3

FSTP QWORD PTR [SI]

; SAVING RESULT

FWAIT

; SYNCHRONIZATION

RET

CALCUL
ENDP

; END PROCEDURE
COD

ENDS

; END CODE SEGMENT

END
CALCUL

; PROGRAM END
Lab tasks:
1. Run the given example
2. Write a program that determines
[image: image1.wmf]3

2

. Hint: Use the instructions F2XM1 and FYL2X.

PAGE
19

_1174830543.unknown

