Laboratory work no. 2

The internal data representation
Introduction
            The purpose of this work is to understand the internal representation of different types of data in the computer. There is going to be studied and illustrated the modes of representing the integer numbers (in magnitude and sign, in complement on 1 (C1), complement on 2 (C2), in binary, decimal, packed and unpacked (BCD)), and the floating point numbers (the IEEE short, long and temporary format)
The representation of the integers in magnitude and sign (MS) in Complement on 1 and 2 (C1, C2)

   
In general the constants and the variables are represented in an octet, in a word (2 octets) two words (double word) or four octets. At all the representations, the most significant byte represents the sign, and the rest of the representation (the other bytes) are used for representing in binary the number (the negative numbers have a different representation in the 3 representation forms)

There are two fields in representing the whole numbers: the sign and the module. In all the tree forms of representing the sign is 0 for positive numbers and 1 for the negative numbers.

The field for the module is represented like this:

· In the magnitude and sign (MS) representation, the module of the number is represented, so a number is represented putting 0 or 1 on the sign byte, according to the positive or negative value of the number and in the rest of the representation it is going to be used the value of the module in binary number system.
· In the complement on 1 (C1) representation, if the number is positive, the representation is identical as in magnitude and sign, the module of the number is represented and the sign byte is implicit 0. If the number is negative then all the representation bytes of the number in module are going to be completed, the bytes 1 become 0 and the ones with 0 value become 1 so the byte sign will be 1. It is to be remembered that the completion of the number is done in the module, scilicet the positive number is going to be represented first and then all the bytes are going to be completed.
· In the complement on 2 representation, if the number is positive the representation is identical as in magnitude and sign and in complement on 1, scilicet the number in module is represented and the sign byte is 0. If the number is negative, then the representation of the number in module is completed in complement on 2, namely the representation of the module is decreased from the value 2n+1 (n represents the number of bytes whereon the representation is done, the sign byte becoming automatically 1). Another way of obtaining the representation in complement on 2 of the negative numbers is by adding in complement on1 the value 1 at the positive number representation.
From the modes of representing the numbers in the three forms, results that the positive numbers have the same representation in magnitude and sign as in complement on 1 and complement on 2.

A greater attention must be accorded to the minimum space (the minimum number of octets) on witch a number can be represented in the three modes of representation. For example when we want to find the minimum number of octets on witch the number 155 can be represented we must defer to the fact that for representing the module there is one byte less (the sign byte) from the representation space. In this case, even if the value of its module fits on an octet (155 = 9Bh), the number can not be represented on an octet in either of the three representation modes, because the sign byte must be represented separately, so at the interpolation of the 9Bh representation, the first byte being 1, the representation will be of a negative number in stud of the desired number. Conclusively for representing the number 155 there is going to be needed minimum 2 octets (the representation is done on multiple of octets), and the number will be represented like this: 009Bh, being positive in all the 3 representation modes.
Examples:

Represent on 4 octets the following numbers: 157, 169, -157, -169

157(D) = 1001 1101(B) = 9D(H)

So the representation in MS. C1 and C2 is 00 00 00 9D (H)

169(D) = 1010 1001(B) = A9(H)

So the representation in MS, C1 and C2 is: 00 00 00 A9 (H)

For –157, the module is represented firs (it is upper calculated) and resuls:

MS: 1000 0000 0000 0000 0000 0000 1001 1101 (B) = 80 00 00 9D (H)

C1:  1111 1111 1111 1111 1111 1111 0110 0010 (B) = FF FF FF 62 (H)

C2:  1111 1111 1111 1111 1111 1111 0110 0011 (B) = FF FF FF 63 (H)

For  –163 analogous:

MS: 80 00 00 A9 (H)

C1:  FF FF FF 56 (H)

C2:  FF FF FF 57 (H)

Representing the real numbers in the IEEE format

The IEEE standard of representing the real numbers propose 3 modes of representing for real numbers:

· The short format on 4 bytes
· The long format on 8 bytes
· The temporary format on 10 bytes
The real numbers are represented in the short an long formats in the computer’s memory, and the temporary format is found in loading the real numbers in the mathematic coprocessor.

All the three formats contain 3 parts: 

	Sign
	Characteristic
	Mantissa
	


· The sign byte – S 

· Characteristic – C (on 8, 11,  or 15 bytes, at the short, long, temporary format)

· Mantissa – M (on 23, 52, or 64 bytes)

For each representation:

S is 0 if the number is positive and 0 if the number is negative.
Characteristic = Exponent + 7Fh (or 3FFh at long IEEE and 3FFFh at the temporary format)

For calculating the mantissa, firs the number in the binary system of numbering is being normalized and it is written in the form: 
NO = 1.<other binary digit> * 2exponent.


At the representation in the IEEE short and long format, the mantissa is formed by the digits after the point, so the first 1 before the point it is not represented in the mantissa, and at the temporary format all the digits of the number are being represented. 

Examples:

Represent in the IEEE short and long format the number 17,6(D).

The whole and the fractional part are going to be converted separately and it results: 

The integer part: 17(D) = 11(H) = 0001 0001(B)

The fractional part: 0,6(D) = 0,(1001)(B) (it is to be observed that the number is periodic)

So 17,6(D) = 10001,(1001)(B)

The number is being normalized: 17,6(D) = 10001,(1001)(B) = 1,0001(1001) * 24 (even if in stud of 24 it would be more correct to have 10100(B) because the notation was in binary system of numeration, the fact that the characteristic is easer to calculate in hexa then in binary can be a motivated excuse.

From this representation we can deduce the mantissa(what is after the point, without that 1 before the point that is not represented thru convention):
M = 0001(1001)(B).

After that the characteristic is calculated: C = exponent + 7F(H) = 4+7F(H) = 83(H) = 1000 0011(B)
The byte with the 0 sign will be written and we can write the representation:
	0
	1000 0011
	00011001100110011001100
	


  sign    charact.  
mantissa
For writing the representation in hexa we will group 4 binary digits. Attention at the fact that grouping 4 digits will not correspond to the characteristic because of the byte sign that shifts a position. So the hexa digits of the characteristic will not be found in the written representation in hexa.  

The result of the representation is: 41 8C CC CC(H).
In practical case, in the computers memory because of  an rounding that is done  at the last byte, we can observe that in mantissa there would be an 1 after the 23 bytes, and the computer would round superior, that’s why on the last byte(the less significant) will appear 1, and the representation will be:
41 8C CC CD(H).

Analogous there will be represented –23,5(D):

23(D) = 17(H) = 1 0111(B)

0,5(D) = 0,1(B)

So 23,5(D) = 10111,1 = 1,01111 * 2 4  it results that M = 0111100000000000… (23 bytes)

Characteristic = 7F(H) + 4(H) = 83(H)

The sign byte becomes 1.

The representation directly in hexa is C1 BC 00 00(H).


In the following the problem is the reverse of the representation: you have the representation on a number in IEEE short format and you have to find the real number that is being represented.
Example:

There is the representation 43 04 33 33 (H) and you have to calculate the decimal value of the number represented
The representation is written in binary: 0100 0011 0000 0100 0011 0011 0011 0011

From here we deduce that:

The sign is  0 

The characteristic is C = 1000 0110 (B) = 86(H)

It results that the exponent is 86(H) – 7F(H) = 7 (H)

Mantissa M = 0000 1000 0110 0110…

The number is No = 1,mantissa * 2 exponent = 1,0000 1000 0110…*2 7  = 

= 1000 0100,00110011…= 128 + 4 +  0.125 + 0.0625 + … ( 

( 132,1875 whose exact value was 132,2.

The representation of the numbers in BCD packed and unpacked

Beside the modes of representation of the integers in magnitude and sign, complement on 1 and 2, there is the representation in BCD packed and unpacked


In the BCD representation packed one digit is represented on 4 bytes, so there are 2 decimal digits on an octet.

In the BCD representation unpacked one decimal digit is represented on an octet( so we put 0 on the first 4 bytes)

Those modes of representation are used for a better legibility of the numbers from the programmers point of view, even if this is done by loosing a good part from the space of representation (at BCD packed, there are no more codes used on 4 bytes that overpass 9 as a value, and at BCD unpacked there is one more half of an octet lost)


In order to realize operations with numbers represented in BCD there are additional instructions for correcting the result after addition, multiplication, that are going to be studied in the work with instructions for arithmetic operations. 
Example:

The number 3912(D) is going to be represented in BCD 

· packed: 39 12(H) so on  2 bytes;

· unpacked 03 09 01 02(H) so on 4 octets.

Lab tasks

· The are going to be represented in MS, C1 and C2 the integers represented in the upper examples
· There are going to be represented in IEEE short format the real numbers.
· There are going to be studied two examples on finding the real number when having the representation value.




PAGE  
4

