Laboratory work no. 6

Data transfer instructions

Object of laboratory:
Study of data transfer instructions for the I8086 microprocessor, including the input-output instructions.
Theoretical considerations:

Data transfer is one of the most common tasks when programming in an assembly language. Data can be transferred between registers or between registers and the memory. Immediate data can be loaded to registers or to the memory. The transfer can be done on an octet or word. The two operands must have the same size. Data transfer instructions don’t affect the condition indicators (excepting the ones that have this purpose). They are classified as follows:
· „classical” transfer instructions

· address transfer instructions
· condition indicator transfer instructions
· input/output instructions (peripheral register transfers)
„Classical” transfer instructions

Include the following instructions:
MOV
<d>, <s>

XCHG <d>, <s>

XLAT

PUSH
<s>

POP
<d>

Data copying is made with the MOV instruction. The syntax of this is instruction is the one below:

MOV {register | memory}, {register | memory | immediate data}

This instruction copies the source operand to the destination. Right after a MOV instruction is executed, the source operand and the destination have the same value. The old value of the destination operand is lost.
Example:

data

segment

mem

label byte
;octet and
memw
dw ?

;word
vct
db

100 dup (?)
;vector

data
ends

code
segment

assume cs:code, ds:data

… …

mov ax, 7

;immediate data to register

mov mem, 7

;immediate octet to directly addressed memory

mov memw, 7

;immediate word to directly addressed memory

mov vct[bx], 7

;immediate octet to indirectly addressed memory

mov memw, ds

;segment register to memory

mov memw, ax

;general register to directly addressed memory

mov vct[bx], al

;general register to indirectly addressed memory

mov ax, memw

;directly addressed memory to general register

mov al, vct[bx]

;indirectly addressed memory to general register

mov ds, memw

;directly addressed memory to segment register

mov ax, bx

;general register to general register

mov ds, ax

;general register to segment register

mov cx, es

;segment register to general register

… …

code
ends

The following copy instructions can’t be done directly: immediate data to segment register, memory location to memory location, segment register to segment register and copy to the CS segment register.

Copy instructions that require two instructions are presented below.
Example:

;immediate date to segment register copy

mov ax, 1000h

mov ds, ax

;memory location to memory location

mov ax, mem1

mov mem2, ax

;segment register to segment register

mov ax, ds

mov es, ax

Data, respectively source and destination operands interchange is done with the XCHG instruction. Its syntax is presented below:
XCHG {register | memory}, {register | memory}

Example:
xchg ax, bx

;interchanges ax with bx
xchg mem16, ax
;interchanges the memory word mem16

;with the ax register

xcgh dl, mem8
;interchanges the memory octet mem8

;with register dl

xcgh ah, cl
;interchanges ah with cl

The XLAT instruction coverts the content of register AL, using a table. Its beginning address is contained in register BX. The content of register AL is interpreted as a relative address in the table. The result of the conversion is given by the value of the octet that is placed at this address in the table. The syntax is as follows:

XLAT [segment register : offset]

Using a reference to an address in the XLAT instruction is neccessary when the table is not located in the data segment, which is the only implicit segment for this instruction. It allows the assembler to determine the segment register that has to be used for the execution of the instruction.
Here is an example that determines the ASCII code for a hexadecimal digit:

Example

;hexadecimal ASCII conversion

;input : al = hexadecimal digit

;output : al = the corresponding ASCII code
conv
proc near

mov bx, offset tabel

xlat cs:tabel

ret

conv
endp

tabel
db ‘0123456789ABCDEF’

;ASCII code table

The PUSH and POP instructions are used for data transfer to and from a stack.
The stack is a memory location used for temporary data storage. The work addresses for the stack are generated automatically, by hardware administration of the register that points to the top of the stack, namely SP, by the instructions that use the stack. This is why these instructions only allow access to the top of the stack. The data that is put on the stack can be accessed in the reverse order of them being put there (LIFO system- Last In First Out). Initially the stack contains no data. As data is being introduced, during the execution of the program, the stack grows in size, towards smaller addresses. As data is being extracted from the stack, its size is decreasing, by successively freeing the locations that have the smallest address.
The instructions for subroutine call, namely CALL, INT and return from subroutines, RET and IRET, automatically use the stack for saving and finding the return addresses.
The PUSH instruction is used for putting a 2 octet operand on the stack. The POP instruction is used to extract the last operand from the stack. The syntaxes for these instructions are:
PUSH {register | memory}

POP {register | memory}

In the case of putting an operand on the stack, the first thing that is done is decrementing
the stack pointer SP by 2, followed by the memorizing of the operand in accordance with this pointer. When extracting from the stack, the first operation that has to be done is reading the operand in accordance with the stack pointer, followed by the incrementation of the indicator by 2.

The PUSH and POP instructions are usually used together. Normally, the number of insertions has to be equal to the number of extractions from the stack to bring the stack to its initial state. The words are extracted in the reverse order of them being inserted.
Example
int
proc far

push ds

push ax

push cx

push si

push bp

… …

pop bp

pop si

pop cx

pop ax

pop ds

iret

int
endp

There are cases when bringing the stack to its initial state has to be done by adding a number to the SP registers (unloading the stack).
Example:

push ax

push bx

push cx

… …

add sp, 6

The values that are not on the top of the stack can still be addressed indirectly, using the BP register as base register:

Example:

push ax

push cx

push dx

mov bp, sp

… …

mov ax, [bp+4]

mov cx, [bp+2]

mov dx, [bp+0]

… …

add sp, 6

Here is an example of a loop that is included in another loop, using the CX register as a meter in both situations.

Example:

mov cx, 10

;load meter exterior loop

et1:

… …

;beginning of exterior loop

… …

push cx

;saving meter exterior loop

mov cx, 20

;loading meter interior loop
et2:

… …

;beginning of interior loop

… …

loop et2

pop cx

;recovering meter exterior loop

… …

;continuing exterior loop

… …

loop et1

 Instructions for address transfer

They are used for loading effective addresses (16 bits) or physical ones (32 bits) into registers or register pairs. There are 3 such instructions:

LEA <d>, <s>

LDS <d>, <s>

LES <d>, <s>

The LEA instruction loads the effective address of the source operand, that has to be a memory location, to the general register that is specified as the destination. Its syntax is as follows:

LEA {register}, {memory}

The LDS and LES instructions load the physical address that is contained by the source operand, which has to be a double memory word, to the segment register that is specified by the instruction mnemonic, DS and ES, and to the general register that is specified as destination. The instruction mnemonic is:
LDS {register}, {memory}

LES {register}, {memory}

The LEA instruction can be used for loading the effective address of an operand that is placed in the memory, by direct or indirect addressing.

Example:

lea dx, alfa

lea dx, alfa[si]

The effect of the first instruction can be also obtained by using the next instruction:

mov dx, offset alfa

This option is quicker, but can only be obtained in the case of operands specified by direct addressing.
Example:

data
segment

string
db
“This IS A STRING”

fpstrin
gdd
string

pointers dd
100 dup (?)

data
ends

code
segment

… …

les di, fpstring

;the address contained in the source location is loaded to

; the pair es:di

lds si, pointers[bx]
;the address contained in the source location is loaded to

;the pair ds:si

… …

code
ends

 Transfer instructions for condition indicators

In the I8086 microprocessor’s set of instructions there are instructions for loading and memorizing the condition indicators. The syntax is the one below:

LAHF

SAHF

PUSHF

POPF

The least significant octet of the condition indicators’ register can be loaded to the AH register using the LAHF register, and also the content of the AH register can be written
into this octet with the SAHF instruction. The structure of the transfering octet is the one below:

The bit
7
6
5
4
3
2
1
0

SF
ZF
…
AF
…
PF
…
CF

If it desired to save or recover the whole condition indicators’ register, the instructions to be used are PUSHF and POPF. The transferring word’s structure is the one below:

The bit

15 14 13 12 11 10 9 8 7 6
5
4
3
2
1 0

. .
OF DF IF TF SF ZF . .

AF
. .
PF

. . CF

Example:

mov
al, 0

lahf

xchg
ah, al

or
ah, 100h
;the TF indicator is positioned

push
ax

popf

nop

What happens after positioning the TF indicator after the nop’s execution, is that a level 1 break will be generated. If one wants to work in a normal functioning system after exiting the break handling procedure, (without breaks after each instruction is executed) then during the break handling procedure the values saved on the stack must be modified.

The stack’s structure after entering the level 1 break handling procedure is:

Modifying the TF indicator’s value, that is saved on the stack, can be done with the instruction:

mov bp, sp

and word ptr [bp+4], 0FEFFH

When entering the break handling procedure, after the automatic saves that are done on the stack, the TF and IF indicators are reseted, to allow the normal execution of this sequence.
 Input/output instructions

Peripherical registers, also called ports, are constituent elements of interfaces. They make the connection between central units and peripherical devices.

Each peripherical device has its own address through which it can be selected by the central unit. From the central unit’s point of view, the peripherical registers can be either input registers or output ones. For transfers of data to the registers, one uses the OUT instruction, and for assuming data there is the IN instruction. Their syntaxes are presented here:
IN
{AX | AL}, {peripheric immediate address | DX}

OUT
{peripheric immediate address | DX }, {AX | AL}

The peripherical register’s address can be specified by an immediate 8 bit data or by the DX register. Using DX allows use of a larger address than 255.

Data transfer is made between the central unit’s accumulator and the peripherical registers. This transfer can be of 8 or 16 bits, depending on the register one uses, either AL or AX.

Example 1:

 Data Bus

 Data bus

 Port selection

IOW/

 x

porto
equ
60h

…

mov
al, 50

out
porto, al

Example 2:

Data bus

 Data bus

Port selection

IOR/

x

porti
equ
80h

…

in
al, porti

The IN and OUT instructions are the only actual instructions that can make the interaction between the processor and other devices. Some computer architectures have their memory organized in such a way that the zones from the addressable space are dedicated to some peripherical equipments and not to actual memory zones. Access to these memory zones will actually mean access to a peripherical equipment. Such input/output systems are called „memory-mapped” (inputs/outputs organized as memory zones).
Let’s consider that a peripherical equipment requires a state port and a data port, both of 8 bits. In a regular input/output system, there are two input ports, for instance 0F8H and 0F9H, dedicated to that equipment. In a memory-mapped system there are two addresses, usually adjacent, for instance C800:0000 and C800:0001, corresponding to the state and data ports. The state-read and data-read sequences, in the two input/output types are:

in
al, 0F8H

;read state

in
al, 0F9H

;read data

mov
es, 0C800H

mov
al, es:[0]

;read state

mov
al, es:[1]

;read data
Example: in a PC-AT system, the first serial port uses other ports, starting with 3F8H, but at the same time, the access to the part can be done through the memory, at the address 40:0000. For COM2: ports starting with 2F8H or through the memory, at 40:0002.
Lab tasks
1. Study of the shown examples.
2. The students will write a program, which copies a string of values from consecutive memory locations to another location, placed in a different data segment.
3. The students will write a program that duplicates the last two elements of a stack without using push or pop instructions. They will only access the stack using the BP and SP registers.
4. The PC speaker is programmed as follows:

a) the frequency of the sound is programmed in the next sequence:
mov
al, 36H

;the 8253’s circuit mode word
out
43H, al

mov
ax, frecventa
;the frequency is loaded to ax
out
42H, al

;the least significant octet is sent
mov
al, ah

out
42h, al

; the most significant octet is sent
b) the sound is being validated:

in
al, 61h

or
al, 3

;logical or between al and immediate data

;the validation bits are positioned
out
61h, al

c) the sound is invalidated:

in
al, 61h

and
al, 0fcH
;logical and between al and immediate data

;the validation bits are erased
out
61h, al

The students have to program sounds of different frequencies.

5. The students will write a program that fills a 5 octet memory space, located at consecutive addresses with a value that is loaded by direct addressing to al. They will write more programs, using different addressing modes. Which program is the most efficient?
6. The students will write a program which transfers two memory words that are placed at successive addresses to another address, using the stack instructions.
7. The students have to write the shortest program that duplicates the last 10 words that were put on the stack, to the stack.
Solved problems:
The students will modify the content of two words from the memory, using their far addresses (32 bit address). Hint: use the LDS and LES instructions.
Solution:

_data segment public 'DATA'

 x
dw 10

 y
dw 15

 adr_x
dd x

 adr_y dd y

_data ends

_code segment para public 'code'

 assume cs:_code

 start :

mov
ax, _data

;initializing the segment register

mov
ds, ax

lds
si, adr_x
;load address of x to DS:SI -> far address
; 32 bits

les
di, adr_y
;load address of y to ES:DI -> far address

;32 bits
mov
word ptr [si], 20
;the x variable is modified, by indexed addressing
mov
word ptr es:[di], 30
;the y variable is modified, by indexed addressing

mov
ah, 4ch

;exiting to DOS

int
21h

_code ends

end start

The program reads all the keys from the keyboard, until 0 is pressed. It has to post the ASCII codes of these keys. Use the XLAT instruction.

_data segment

tab_conv db 0123456789ABCDEF'

;conversion table

mesaj
 db
'-has the ascii code'

tasta
 db
2 dup (?) , 0dh, 0ah, '$'

_data
ends

_cod segment para public 'code'

 assume cs:_cod, ds:_data

 start :

mov
ax, _data

;initializing the data segment register

mov
ds, ax

 iar:

mov
ah, 1

;echo reading of a key

int
21h

cmp
al, ’0’

jz
FINISHED

mov
ah al

;saving key code

lea
bx, tab_conv
;the conversion tabel’s offset to bx

and
al, 0fh

;only the first 4 bits are taken

xlat
tab_conv
;converting the second tetrade (cmps 4 bits)

mov
tasta+1, al
;it is the code’s second digit

mov
al, ah

;the initial code of the key

mov
cl, 4

;we shift to the right with 4 positions

shr
al, cl

;shift

xlat
tab_conv

;converting the first tetrade

mov
tasta, al

;the ASCII code of the first tetrade (cms 4 bits)

lea
dx, mesaj

mov
ah, 9h

;printing the key’s code

int
21h

jmp iar

FINISHED :

mov
ah, 4ch

;exit to DOS

int
21h

 _cod ends

end start

Here is a program that writes and reads data from the serial port, using port instructions. It is recommended to use TechHelp for the detailed understanding of the way the program was made. In the program given as example below, detailed debug instructions are included. Possible errors that can appear are tested and their corresponding messages are shown on the screen. The program presents work with serial ports(initializing, reading and writing).
Listing of TESTSERIAL. ASM

include port. h

. stack 1024

_data segment public

ms1 db 00000010b

ms2 db 11111011b

ms3 db 11110111b

ms4 db 11101111b

ms5 db 11111110b

ms6 db 11011111b

m1 db 'Error speed exceeded. $'

m2 db 'parity error. $'

m3 db 'frame error. $'

m4 db 'break detection error. $'

m db 'enter loop. $'

mes2 db 'data isn’t received for reading. $'

mes3 db 'transmission buffer empty. sending character. $'

mes4 db 'character sent and returning loop. $'

mes5 db 'data received for reading. have read the next valid character:$, CR, LF'

mes6 db 'will end program execution. $'

_data ends

_cod segment para public 'code'

assume cs:_cod, ds:_data

start:

mov ax, _data ;initializing data register
mov ds , ax

mov es, ax

trim 80h, 2fbh

trim 60h, 2f8h

trim 00h, 2f9h

trim 0ah, 2fbh ;initializing UART (transfer rate, deactivating breaks)

trim 13h, 2fch

trim 0h, 2f9h

READ_POST:

;loop
mov ah, 09h

lea dx, m

int 21h

citi 2fdh ;reading line state register
mov bl, al

and bl, ms1

cmp bl, ms1

jz lin_er1

mov bl , al

not ms2

and bl ms2

cmp bl, ms2

jz lin_er2

mov bl, al

not ms3

and bl, ms3

cmp bl, ms3

jz lin_er3

;jump to error
mov bl, al

not ms4

and bl, ms4

cmp bl, ms4

jz lin_er4

;jump to error handling
mov bl, al

not ms5

and bl, ms5

cmp bl, ms5

jz READ_POST_CHAR
;memorized, posted
lea dx, mes2

mov ah, 09h

int 21h

mov bl, al

not ms6

and bl, ms6

cmp bl, ms6

jnz READ_POST ;if not, continue cycle
lea dx, mes3

mov ah, 09h

int 21h

mov al, 'D' ;if yes, send character to port
mov dx, 2f8h

out dx, al

afis mes4

jmp READ_POST ;continue loop
lin_er1:
;speed exceed error treating code
mov ah, 09h

lea dx, m1

int 21h

jmp lin_er

lin_er2:
;parity error code
mov ah, 09h

lea dx, m2

int 21h

jmp lin_er

lin_er3:

mov ah, 09h

lea dx, m3

int 21h

jmp lin_er

lin_er4:
;break detection error code
mov ah, 09h

lea dx, m4

int 21h

jmp lin_er

lin_er:

;error treating on line state register
citi 2f8h

;if errors were found, reading
mov ah, 02h
;erroneus characters, that means posting to terminal '?'

mov dl, '?'

int 21h

jmp FINISHED

;continue loop until value from cx is reached
READ_POST_CHAR:

;posting character that was read
afis mes5

citi 2f8h

mov ah, 02h

mov dl, al

int 21h

jmp FINISHED

FINISHED:

mov ah, 4ch

;exit to DOS

int 21h

_cod ends

end start

Listing of PORT. H:

. xlist

trim macro reg_al, reg_dx

mov al, reg_al

mov dx, reg_dx

out dx, al

endm

citi macro regdx

mov dx, regdx

in al, dx

endm

afis macro mes

lea dx, mes

mov ah, 09h

int 21h

endm

. sall

. list

SP

Condition indicators

CS

IP

Address

decoder

CLK	DI0-DI7

- -		 I8282

OE	D00-D07

OR

Address

decoder

OE/	D00-D07		 	 I8282

CLK	DI0-DI7

OR

PAGE
12

