Laboratory Work No. 8
Working with macros and libraries

Object of laboratory
Getting used to defining and using macros, procedure defining and using LIB library librarian.

Theoretical considerations
Working with macros
The macros, procedures and libraries are the programmer tools, which allow the call and the using of previously written and debugged code.

The macros are facilities for assembly language programmers. A macro is a pseudo-operation that allows repeated including of code in the program. The macro, once defined, his call by name allows his insertion any time is needed. When meeting a macro name, the assembler expands his name in corresponding code of the macro body. For this reason, it is said the macros are executed in-line because the sequential execution flow of the program in not interrupted.

Macros can be created as a part of user program or grouped into another file as a macro library. A macro library is a usual file, which contains a series of macros and which is referred during program assembly, at the first pass of the assembler over the source program. It has to be specified that a macro library contain unassembled source lines. Because of that, macro libraries have to be included in the user source program using the INCLUDE pseudo-instruction – see Annex 12 example. This is the major difference between the macros library and a procedure library in object code that contains assembled procedures as object code and which is referred to the link-edit.

Firms offer this kind of macro libraries, for example DOS.INC and BIOS.INC by IBM.

For defining a macro it is used the sequence beneath:
name
MACRO
{macro parameters}

LOCAL
local label list of the macro

these are expanded with different names at the repeated call of the macro
{macro body}

ENDM

Example:

intir
MACRO
timE

local

p1,p2

;p1 and p2 are local labels

push

dx

;saves the dx and cx registers

push

cx

;cx

mov

dx, timE

;loads a delay in dx
p1:
mov

cx, 0FF00H

;loads cx with 0FF00H

;counts

p2:
dec

cx

;delays decrementing cx

jnz

p2

;if cx!=0 continue

dec

dx

;if cx=0 decrements dx

jnz

p1

;if dx!=0 loads again cx

pop

cx

;if dx=0 remake cx

pop

dx

;and dx

ENDM

;end macrou

P1 and P2 are the local labels of the macro.
Pre-defined macros
TASM recognizes pre-defined macros. Those are IRP, IRPC and REPT. They are used for repeated defining.

Example:

IRP
VAL, <2,4,6,8,10>

DB
VAL

DB
VAL*2

ENDM

In some cases, the formal parameter substitution with actual parameters creates some problems. Let’s follow the macroinstruction, which suggests interchanging two 16 bites quantities.

trans macro X, Y

 push
ax

 push
bx

 mov
bx, X

 mov
ax, Y

 mov
X, ax

 mov
Y, bx

 pop
bx

 pop
ax

endm

Apparently, every thing is ok. However, unexpected situation can appear, like in following sequence:

trans
ax, SI

;interchange ax with SI

This referred macroinstruction will be expanded in:

push
ax

push
bx

mov
bx, ax

mov
ax, SI

mov
AX, ax

mov
SI, bx

pop
bx

pop
ax

and it is obviously the AX register is not modifying. Worst thing can happen, like beneath:

trans
SP, DI

;interchange SP with DI

which is expanded in:

push
ax

push
bx

mov
bx, SP

mov
ax, DI

mov
SP, ax

;SP is modified here

mov
DI, bx

;POPs are compromised

pop
bx

pop
ax

Danger appears, therefore, in situation in which actual parameters are conflicting with some variables or registers being used into the macroinstruction. Situations like this, must, obviously, avoid.

LIB program facilities
LIB program is a librarian program which:

· creates and modifies library files that are used by LINK program
· adds object modules into a library
· deletes object modules from a library
· extracts object modules from a library and inserts them into separate files.
LIB can create general or special libraries, for different programs or only for a specific program. With LIB it can be created a library only for a single program. The advantage consists in faster and more efficient linking for modules resulted after the compilation or for a single particular program.

Individual modules can be modified from inside the library by extracting the modules, making modifications, then adding back the modules to the library. An existing module can be replaced inside the library with a different module or with another version of the existing module.

Summary of operations of LIB program:

LIB performs five functions:
· deletes modules
· extracts a module and inserts it inside a separate file
· adds an object file as a module into a library
· replaces a module from a library with a new one
· creates a library file
During every working session, LIB deletes or extracts modules, then adds other new modules into the library file. LIB reads from the memory every module, verifies the consistency and then writes back the module into the file. If you delete a module, LIB will read that module in the memory, but does not write it back in the file.

When LIB writes the next module that it’s been kept, it places it at the end of the last written module.

When LIB writes a library, it adds any other module at the end of the library file. Eventually, LIB creates the index, which LINK uses to find the global modules and symbols in the library file. LIB would display a listing of the crossed references and PUBLIC symbols from the library, if you’ve asked for such a listing.

Example:

LIB PASCAL+HEAP-HEAP;

This command deletes firstly the HEAP module from the library, then adds HEAP.OBJ file as the last module to the library. The replacement function consists in the successive deleting and adding. Also, you can specify delete, add or extract functions, in any order. This execution order prevents confusions that could appear when a new version replaces an existing version in the library.

Using LIB program
LIB Launching

LIB execution needs two types of commands: one command for launching LIB and commands for answering LIB prompts, similar MASM and LINK programs. LIB has three call modes: by inserting commands into a single command line, as an answer to LIB prompts, or by file of answers.

METHOD 1: Console answers

After giving the command to the console: LIB, LIB program is loaded in the memory and it displays, successively a series of three prompts, at which asked answers have to be given:

Prompt

Answer

Library file:
The name of the library file which is been processed (it’s implicit extension is .LIB)

Operation:
Insert the command characters, followed by module names or object file names. Implicitly no changes are made. The implicit extension for object files is .OBJ

List file:
Insert the name of listing file to display the crossed references (implicitly it is NUL – no file)

 Note:

The difference between an object file and a module file (or object module) is that a file may have a disk unit name (no matter the disk in implicit) and an extension name. Object modules may have none of these specifications.
METHOD II: Command line
LIB <library> <operations> , <listing>

LIB inputs are answers to the command prompts. The fields <library> and <operations>, as well as all inserted operations must be separated by one of the command characters (+, -, *). If crossed references listing is needed, the file name have to be separated from the last given operation by a comma, where:

<library>

is the name of library file. LIB assumes the file extension is .LIB, which can be modified by specifying a different extension name. If inserted file for <library> does not exists, LIB will ask:

<Library file does not exist. Create ?>

Insert yes to create a new library file. Insert no to abort the session.

<operations>

is a command for module deleting, adding an object file as a module or for extracting from the library an object module. Use the three command characters, +, -, and * to specify the adding, deleting or extracting of the modules.

<listing>

is the name of listing file in which you want to generate the crossed references for PUBLIC symbols and for the names of the modules from the library. The listing is generated after the changes in the library are finished.

If you introduce a library name followed by “;”, LIB will read the library file and will check only the consistency. No changes are made into the library file.

If you give a library name followed by “;” and a listing file name, LIB will check the consistency of the library and will return the requested listing.

Example:

LIB PASCAL-HEAP+HEAP;

In this example, module HEAP is deleted from PASCAL.LIB library, and then the object file HEAP.OBJ is added as a last module in PASCAL.LIB (the name of the module will be HEAP). The command character “;” from the end of the command shows LIB must use implicit answers for the remaining prompts.

LIB PASCAL

This example makes the checking on PASCAL.LIB library consistency. No other actions would be performed.

LIB PASCAL, PASCROSS.PUB

This example makes the checking on PASCAL.LIB library consistency and then and the generation of crossed references listing in PASCROSS.PUB file.

If you have to perform more operations during an edit session, use special command character & to continue the line, so that you could insert all file names and modules.

Make sure you have inserted one of the operation characters (+, -, *) before the name of every module or object file name.

METHOD III: Automatic answers

LIB 3<file-name>

where <file-name> is the name of the answers file.

Before using this option, you have to create the automatic answers file. This contains the most test lines, every of it being an answer to a prompt of LIB program. These answers have to be in the same order as the prompts we talked about previously in this chapter. Command characters can be used in the answers file, similar to the keyboard typing of them.

When the session starts with LIB, every prompt is displayed with the answer read from the file. If the answers file does not contain answers for all prompts, LIB will use implicit values.

Example:

PASCAL

+CURSOR+HEAP-HEAP*FOIBLES

CROSSLIST

The result of this answers file execution is the delete of HEAP module from PASCAL.LIB library, the extract of FOIBLES module and his insert in FOIBLES.LIB file, then adds object files CURSOR.OBJ and HEAP.OBJ as the last two modules from the library. Then LIB will create the crossed references file, named CROSSLIST.

For calling a procedure written in another module, with near type call, next steps are required:

· called procedure declaration as EXTERN in the main procedure

· procedure declaration as PUBLIC into the called procedure

· the definition of the two procedures in segments with the same name

Working with TLIB librarian
TLIB is a tool similar to LIB librarian. The syntax for launching for execution TLIB librarian is:

TLIB library_name [/C] [/E] [/P] [/O] command, listing_file_name
where:

· library_name represents the path and the library file name
· command represents commands sequence that will be executed on the library
· listing_file_name represents the path and the name of the file in which you want the crossed references to be generated for PUBLIC symbols and for the library modules names. The listing is generated after the processing in the library is finished.
A command is like:

<symbol> module_name

where <symbol> represents:

+
:
adds module_name to the library

 -
:
deletes module_name from the library

*
:
extracts module_name from the library without deleting it

-+ sau +-:
replaces module_name in the library

-* sau *- :
extracts module_name from the library and deletes

module_name from the library

carrying on:

/C
:
case-senzitive library

/E
:
creates extended dictionary

/P size :
sets library page dimension to size

For moving to the next line, use ‘&’ character.

Examples of programs that are using macros and libraries

Program EXEMMAC.ASM

;PROGRAM EXAMPLE FOR USING A SIMPLE MACRO
title
Program with macro call
staCK
segment
para stack

db

64 dup ('staCK')

staCK
ends

datA
segment
para 'data'

tamp
db

2000 dup (' ')

datA
ends

intir
macro
timE

local
p1, p2
;;p1 and p2 are local labels

push
dx

;;saves dx and cx registers

push
cx

mov
dx, time

;; loads a delay in dx
p1:
mov
cx, 0FF00h
;;loads cx with 0FF00h

;;counts

p2:
dec
cx

;;delays by decrementing cx

jnz
p2

;;if cx!=0 continue

dec
dx

;;if cx=0 decrements dx

jnz
p1

;;if dx!=0 loads again cx

pop
cx

;;if dx=0 remake cx and dx

pop
dx

;;

endm

;;end macro

codmeu segment
para 'code'
;defines code segment
proced
proc

far

;procedure with proced name

assume

cs:codmeu, es:datA, ds:datA, ss:staCK

mov
ax, datA

;puts data segment in ax

mov
es, ax

;loads es with data segment

;program will clear the display writing 25*80 spaces on the screen

;writing those with different values in bl the screen color will change

;intir macro will maintain this color for a time

mov
cx, 08h

;loops 8 times

mov
bl, 00h

;sets background color

LOOP1: lea
bp, tamp

;writes black string

mov
dx, 0000h

;sets the cursor to the upper

:left

mov
ah, 19

;writes attribute string

mov
al, 1

;writes a character and moves

;the cursor

push cx

;saves cx

mov
cx, 07D0h

;writes 2000 spaces

int
10h

;call 10h

intir 10000

;delays 10 units

add
bl, 10h

;changes background color

pop
cx

;restores cx

loop
LOOP1

;loops 8 times

ret

;hands over the control to

;dos

proced
endp

;end procedure

codmeu ends

;end code segment

end
proced

;end program

Program EXBIMAC.ASM

title
Example of macro library using

if1

 ;includes a previously created

include d:\llab\mlab.mac
; macro library
endif

staCK segment para stack ;defines a stack segment

db 64, dup ('staCK')

staCK ends

segdatA segment para 'data' ;data segment definition
messaGE db
'I am a simple counting program$'
segdatA ends

cod1
segment para 'code'

;code segment definition
MYproc proc
far

;procedure with myproc name

assume
cs:cod1, ds:segdatA, ss:staCK

push
ds

 ;saves ds

sub
ax, ax

 ;0 in ax

push
ax

 ;0 on the stack

mov
ax, segdatA
 ;adr segdata in ax

mov
ds, ax

 ;adr segdata in ds

DELETE

 ;clear screen macro call

cursor 0019h

 ;pos cursor macro call

tYpEcar
messaGE
 ;message type macro call

mov
ax, 00h

 ;0 in ax for counting

repeat:
cursor
0C28h ;in middle of the screen

tYpEnum

 ;number type macro call

intir
10

 ;delay macro call

add
al, 01h

 ;increment al

daa

 ;decimal adjustment

cmp
al, 50h

 ;test final

je
sfir

 ;after 9 executions

jmp
repeAt

 ;else repeat

sfir:
DELETE

 ;clear screen macro call

ret

 ;back to dos

MYproc endp

 ;end procedură

cod1
ends

;end segment

end
MYproc

;end program

Call program
Main program:

;Program example for procedure use
title
Program with procedure call
extern
intirp:near ;extern declaration for INTIRP

 ;procedure

staCK
segment
para stack

db
64 dup ('staCK')

staCK
ends

datA
segment para 'data'

tamp
db
2000 dup (' ')

datA
ends

cod1
segment para 'code'

;code segment definition
proced
proc
far

;procedure with proced name

assume
cs:codmeu, es: datA, ds:datA, ss:staCK

push
ds

;saves ds

sub
ax, ax

;0 in ax

push
ax

;puts 0 on the stack

mov
ax, datA

;puts seg data in ax

;main program

mov
ax, 10

;parameter in ax

call intirp

;intirp procedure call

;main program body

ret

;gives the control to dos

proced
endp

;procedure end

cod1
ends

;code segment end

end
proced

;end program

;called procedure

cod1
segment para 'code'
 ;defines code segment

 public intirp ;public declaration for INTIRP

 ;procedure

assume
 cs:cod1

intirp
proc
near

 ;intirp procedure name

push
dx

;saves dx şi cx registers

push cx

;

mov
dx, cx

;loads a delay in dx

p1:
mov
cx, 0FF00h
;loads 0FF00h in cx

;counts

p1:
dec
cx

;delays decrementing cx

jnz
p2

;if cx!=0 continue

dec
dx

;if cx=0 decrements dx

jnz
p1

;if dx!=0 loads again cx

pop
cx

;if dx=0 restore cx and

pop
dx

;dx

ret

;return to the main procedure

intirp endp

;procedure end

cod1
ends

Laboratory tasks
1. Study the given example and exemmac.asm program.
2. Assemble this program with TASM and create EXEMMAC.LST file, study the way INITR macro has been expanded.
3. Edit the links with LINK and execute exemmac.exe generated program.
4. Modify INITIR macro TIME parameter with different values with an edit program and repeat the steps from 1 to 3.
5. Write the macro as a separate program (procedure) for separate compilation, and from resulted object file create a module library (in this case, only one module, the one with delay procedure); this library will be included, during link-edit, in the main program.
6. Study the case in which the macro is written into a separate file and it is included with INCLUDE directive (see previously example); notice the difference from a module included before compilation (with INCLUDE), a macro (which is similar) and a library (which contains compiled modules) – point out the similarity with .h files from C which are being compiled in the same time with the program, respectively .tpu files from PASCAL that are already compiled libraries and are attached to the program only during link-edit.
7. Study the example of using a macro library MLIB.MAC into exbimac.asm program.
8. Study the expand mode of PUSHALL and POPALL macros in MASM created listing of the program from the step 5.
9. Edit the links with TLINK program and execute EXBIMAC.EXE program.
10. Write a procedure with the same function as INTIR macro with INTIRP name. Include this procedure into a library with BIBLIO.LIB name. TIME parameter will be given within a register (AX).
11. Copy exmmac.asm in axmlib.asm so that to call a INTIRP procedure, which initially has been included in BIBLIO.LIB.
12. Trace the program from steps 3 and 8 and follow the differences of generated code and the changing of instruction flow.
13. (Optional) Write a program that uses the facilities offered by macro-definitions libraries DOS.INC and BIOS.INC.
PAGE
1

