Lab work no. 9
Programs with more segments
Object of laboratory
The user’s familiarization with the definition of procedures, their call in the frame of the same segment and from different segments, and also the work with programs written in more separately assembled module.
Theoretical considerations

Procedures may be defined as the FAR and NEAR type. The procedure’s type determines the way in which is made it’s call and the information which is saved in the stack calling.
When calling a NEAR type procedure, IP register is saved on the stack and also the state register (condition indicators). CS register remains unmodified and is not saved on the stack. This implies the belonging of the two procedures, the appealed and the one which appeals, at the same code segment. If the two procedures are defined in module programs, in different files, the belonging to the same segment is defined though the concordance of code segment numbers in which the procedures have been defined. The code segment needs to have the same name. The link-editor knows to concatenate in a segment, code segments with the same name from different modules.

The declaration of a procedure as belonging to another program’s module than the one working is made through EXTRN directive in stack and its use from another module through PUBLIC directive in the module in which it is defined. EXTRN and PUBLIC declarations must be done inside the segment and not outside.

When appealing a FAR type procedure, CS, IP and state registers are saved in the appellant module (condition indicators). In this case the two procedures may belong to different segments. EXTRN declaration is made outside of the segment and the PUBLIC one inside the segment. FAR type appealing will be used only when the NEAR type appealing is not possible, because this type of appeal is slower, because of the many references to the stack both at appealing and going back from the procedure. A FAR type appeal is necessary when the length of the two procedures would overpass 64K this being the maximum dimensions for a segment.

Defining example: NEAR type procedures with different procedures in modules, files:

The appealing procedure:

DATE SEGMENT PARA PUBLIC ‘DATA’
; date segment definition

…

 ; date definition
DATE ENDS
COD1
SEGMENT
PARA PUBLIC ‘CODE’
; cod segment definition

EXTRN PROCED: NEAR

PRPRINC
PROC
FAR

; main procedure definition

ASSUME CS: COD1, DS: DATE, SS: STACK; ES: NOTHING

MOV
AX, DATE

 ; adding register

MOV
DS, AX

; DS with date segment
; The instructions of the main procedure with date segment

CALL
PROCEDURE

; procedure appeal
; Other instructions

RET

; coming back to DOS
PRPRINC
ENDP

; procedure’s end
COD1
ENDS

; segment’s end

END PRPRINC

; end of the first module
The appealed procedure defined in another program module:
COD1
SEGMENT
 PARA ‘CODE’

; segment code definition
PUBLIC
PROCED

; procedure declaration as PUBLIC SYMBOL

ASSUME
 CS: COD1
PROCED
PROC

NEAR

; procedure definition
;The instructions of the appealed procedure

RET

; coming back to the procedure with appeals
PROCED
ENDP

; procedure’s end
COD1
ENDS

; segment’s end

ENDS

 ; end of module two
FAR type procedure definition example with the procedures in different module and files:

EXTRN PROCED2 FAR

DATE SEGMENT
PARA PUBLIC ‘DATA’
; date segment definition

…

 ; date definition
DATE ENDS
COD2
SEGMENT
PARA PUBLIC ‘CODE’
; code segment definition
PRPRINC2 PROC

FAR

 ; main procedure definition

ASSUME CS: COD1, DS: DATE, SS:STACK, ES:NOTHING

PUSH
DS

; stack preparing

SUB
AX, AX

; for return

PUSH
AX

; in DOS

MOV
AX, DATE

; loading register

MOV
DS, AX

; DS with date segment
; The main procedure instructions

CALL
PROCED2

; procedure appeal
; Other instructions

RET

; coming back to DOS
PRPRINC2 ENDP

; procedure’s end
COD2
ENDS

; segment’s end

END PRPRINC

; end of the first module
The appealed procedure defined in another program module:

COD3
SEGMENT
 PARA ‘CODE’

; code segment definition
PUBLIC
PROCED2

; procedure declaration as public SYMBOL

ASSUME
CS: COD3

PROCED
PROC FAR

; procedure definition
; The instructions of the appealed procedure
RETF ; back to the procedure which makes

 ; the appeal
PROCED2
ENDP

; procedure’s end
COD3

ENDS

; segment’s end

END

; end of module two
The parameters transfer towards procedures
There are three known types of parameters transmission towards procedures in assembly language: registers, date zone and stack transfer.
The transfer through registers
The advantage of this solution is that in the procedure, the actual parameters are immediately available. For registers conservation, these are saved in the stack before the procedure’s appeal and are remade after getting out of the procedure. There are 2 disadvantages of this type:
· the limited number of car’s registers

· no uniformity of the method – there is no ordered modality of transferring, each procedure having it’s own rules for transfer
An advantage is also the working speed, so many operations with the memory not being necessary.
The transfer through zone date
In this send manner of parameters, a zone date is previously prepared and the address of this date zone is transmitted to the procedure.

For an easy access to the parameters zone is recommended the definition of a structure which decides the organization of the date zone:

_ZONA STRUCT

VAL1
DD
?

VAL2
DD
?

RETURN
DD
?

_ZONA ENDS

.DATA

ZONE
ZONE_TYPE <10,20,?>

.CODE

LEA
BX,ZONE

CALL
PROCEDURE_NAME
The transfer through stack

The parameters transfer through the stack is the most equable transfer modality. The transfer through stack is compulsory if the applications contain both ASM modules and modules in high level language. The standard access technique to the parameters procedure is based on based addressing (eventually indexed) through BP register, which supposes SS register as being a segment’s register. The access is made through the next procedures, realized when entering the procedure:
· BP register is saved in the stack
· SP is copied in BP
· the registers which the procedure used are saved in the stack (eventually)
· the parameters are accessed through indirect addressing with BP
When ending the procedure, the following operations are executed:
· the saved registers are remade
· BP is remade
· come back to the program which makes the appeal through RET
Lab tasks
1. The given examples will be studied noticing the differences between the two of appealing types: FAR and NEAR procedure.
2. A program which calculates the sum of a row of numbers will be written using a NEAR and then a FAR type procedure, written in another code segment, first both segment being written in the same file, then in different files. The procedure will be called sum and will get the row’s parameters: the address and length in DS: BX and CX registers. The procedure will return the value of sum in AX register.
Solved problem: Write a recursive procedure for displaying a number.
Observations:
· The procedures which are to be included in a library will be defined of the same type, FAR or NEAR and as much as possible, in segments with the same name, for not complicate more the appeal and the connection edit.
· It is also recommended to group procedures of the same type, mathematics, display etc, in different libraries having suggestive names.
Solve:

TIP
STRUCT

; pattern for parameters

_BP
DW ?

_SC_IP DW ?

N
DW ?

TIP
ENDS
_DATE SEGMENT

; date segment declaration – here is empty
_DATE ENDS
_STACK SEGMENT
DB 4096 DUP (?)

; stack segment declaration
 _STACK ENDS
_CODE SEGMENT PARA ‘CODE’

ASSUME CS:-CODE: DS:-DATA; SS:-STACK

DISPL PROC FAR

PUSH BP

; sequence

MOV BP, SP

; standard access

PUSH DX
PUSH AX

; we will work with these registers so that

; we will save them into procedure

PUSH BX

MOV AX,[BP].N

CMP AX, 10

; if n<10, dl=n

MOV DL, AL

JB DISPLAY_1

; jump to display (we have one number)

MOV BX, 10

; general case

MOV DX, 0

; calculates n/10 and n mod 10

DIV BX

; AX=n/10;

; dl=n mod 10

PUSH AX

; recursive appeal with n/10 with parameter

CALL FAR FOR DISPL

DISPLAY_1:

ADD DL, ‘0’

; +’0’

MOV AH, 02H

; Dos function code for display

INT
21H

; display

POP
BX

; remaking

POP
AX
; registers

POP DX

POP
BP

RETF
2

; the stack overloading; FAR type return

DISPL
ENDP

START:

MOV
AX, _DATA

; register initialization segment

MOV DX, AX

MOV
AX, 1234

; register preparing

PUSH
AX

; we put them into the stack

CALL FAR PTR AFIS
; procedure appeal

MOV
AH, 4CH

; exit into

INT
21H

; DOS

_CODE
ENDS
END START
PAGE
6

