

Page 699

MS-DOS, PC-BIOS, and File I/O Chapter 13

A typical PC system consists of many component besides the 80x86 CPU and memory.
MS-DOS and the PC’s BIOS provide a software connection between your application pro-
gram and the underlying hardware. Although it is sometimes necessary to program the
hardware directly yourself, more often than not it’s best to let the system software
(MS-DOS and the BIOS) handle this for you. Furthermore, it’s much easier for you to sim-
ply call a routine built into your system than to write the routine yourself.

You can access the IBM PC system hardware at one of three general levels from
assembly language. You can program the hardware directly, you can use ROM BIOS rou-
tines to access the hardware for you, or you can make MS-DOS calls to access the hard-
ware. Each level of system access has its own set of advantages and disadvantages.

Programming the hardware directly offers two advantages over the other schemes:
control and efficiency. If you’re controlling the hardware modes, you can get that last drop
of performance out of the system by taking advantage of special hardware tricks or other
details which a general purpose routine cannot. For some programs, like screen editors
(which must have high speed access to the video display), accessing the hardware directly
is the only way to achieve reasonable performance levels.

On the other hand, programming the hardware directly has its drawbacks as well.
The screen editor which directly accesses video memory may not work if a new type of
video display card appears for the IBM PC. Multiple display drivers may be necessary for
such a program, increasing the amount of work to create and maintain the program. Fur-
thermore, had you written several programs which access the screen memory directly and
IBM produced a new, incompatible, display adapter, you’d have to rewrite all your pro-
grams to work with the new display card.

Your work load would be reduced tremendously if IBM supplied, in a fixed, known,
location, some routines which did all the screen I/O operations for you. Your programs
would all call these routines. When a manufacturer introduces a new display adapter, it
supplies a new set of video display routines with the adapter card. These new routines
would patch into the old ones (replacing or augmenting them) so that calls to the old rou-
tines would now call the new routines. If the program interface is the same between the
two set of routines, your programs will still work with the new routines.

IBM has implemented such a mechanism in the PC system firmware. Up at the high
end of the one megabyte memory space in the PC are some addresses dedicated to ROM
data storage. These ROM memory chips contain special software called the PC Basic Input
Output System, or BIOS. The BIOS routines provide a hardware-independent interface to
various devices in the IBM PC system. For example, one of the BIOS services is a video
display driver. By making various calls to the BIOS video routines, your software will be
able to write characters to the screen regardless of the actual display board installed.

At one level up is MS-DOS. While the BIOS allows you to manipulate devices in a
very low level fashion, MS-DOS provides a high-level interface to many devices. For
example, one of the BIOS routines allows you to access the floppy disk drive. With this
BIOS routine you may read or write blocks on the diskette. Unfortunately, the BIOS
doesn’t know about things like files and directories. It only knows about blocks. If you
want to access a file on the disk drive using a BIOS call, you’ll have to know exactly where
that file appears on the diskette surface. On the other hand, calls to MS-DOS allow you to
deal with filenames rather than file disk addresses. MS-DOS keeps track of where files are
on the disk surface and makes calls to the ROM BIOS to read the appropriate blocks for
you. This high-level interface greatly reduces the amount of effort your software need
expend in order to access data on the disk drive.

The purpose of this chapter is to provide a brief introduction to the various BIOS and
DOS services available to you. This chapter does not attempt to begin to describe all of the
routines or the options available to each routine. There are several other texts the size of
this one which attempt to discuss

just

 the BIOS or

just

 MS-DOS. Furthermore, any attempt

Thi d d i h F M k 4 0 2

Chapter 13

Page 700

to provide complete coverage of MS-DOS or the BIOS in a single text is doomed to failure
from the start– both are a moving target with specifications changing with each new ver-
sion. So rather than try to explain everything, this chapter will simply attempt to present
the flavor. Check in the bibliography for texts dealing directly with BIOS or MS -DOS.

13.0 Chapter Overview

This chapter presents material that is specific to the PC. This information on the PC’s
BIOS and MS-DOS is not necessary if you want to learn about assembly language pro-
gramming; however, this is important information for anyone wanting to write assembly
language programs that run under MS-DOS on a PC compatible machine. As a result,
most of the information in this chapter is optional for those wanting to learn generic 80x86
assembly language programming. On the other hand, this information is handy for those
who want to write applications in assembly language on a PC.

The sections below that have a “•” prefix are essential. Those sections with a “

❏

” dis-
cuss advanced topics that you may want to put off for a while.

• The IBM PC BIOS

 ❏

Print screen.
• Video services.

 ❏

Equipment installed.

 ❏

Memory available.

 ❏

Low level disk services
• Serial I/O.

 ❏

Miscellaneous services.
• Keyboard services.
• Printer services.

 ❏

Run BASIC.

 ❏

Reboot computer.

 ❏

Real time clock.
• MS-DOS calling sequence.
• MS-DOS character functions

 ❏

MS-DOS drive commands.

 ❏

MS-DOS date and time functions.

 ❏

MS-DOS memory management functions.

 ❏

MS-DOS process control functions.
• MS_DOS “new” filing calls.
• Open file.
• Create file.
• Close file.
• Read from a file.
• Write to a file.

 ❏

Seek.

 ❏

Set disk transfer address.

 ❏

Find first file.

 ❏

Find next file.
• Delete file.
• Rename file.

 ❏

Change/get file attributes.

 ❏

Get/set file date and time.

 ❏

Other DOS calls
• File I/O examples.
• Blocked file I/O.

 ❏

The program segment prefix.

 ❏

Accessing command line parameters.

 ❏

ARGC and ARGV.
• UCR Standard Library file I/O routines.

MS-DOS, PC BIOS, and File I/O

Page 701

• FOPEN.
• FCREATE.
• FCLOSE.
• FFLUSH.
• FGETC.
• FREAD.
• FPUTC
• FWRITE.

 ❏

Redirection I/O through the STDLIB file I/O routines.

13.1 The IBM PC BIOS

Rather than place the BIOS routines at fixed memory locations in ROM, IBM used a
much more flexible approach in the BIOS design. To call a BIOS routine, you use one of the
80x86’s

int

 software interrupt instructions. The

int

instruction uses the following syntax:

int

value

Value is some number in the range 0..255. Execution of the

int

instruction will cause the
80x86 to transfer control to one of 256 different interrupt handlers. The interrupt vector
table, starting at physical memory location 0:0, holds the addresses of these interrupt han-
dlers. Each address is a full segmented address, requiring four bytes, so there are 400h
bytes in the interrupt vector table -- one segmented address for each of the 256 possible
software interrupts. For example,

int 0

transfers control to the routine whose address is at
location 0:0,

int 1

transfers control to the routine whose address is at 0:4, int 2 via 0:8,

int 3

via 0:C, and

int 4

via 0:10.

When the PC resets, one of the first operations it does is initialize several of these
interrupt vectors so they point at BIOS service routines. Later, when you execute an
appropriate

int

instruction, control transfers to the appropriate BIOS code.

If all you’re doing is calling BIOS routines (as opposed to writing them), you can view
the

int

instruction as nothing more than a special

call

instruction.

13.2 An Introduction to the BIOS’ Services

The IBM PC BIOS uses software interrupts 5 and 10h..1Ah to accomplish various
operations. Therefore, the

int 5

, and

int 10h

..

int 1ah

instructions provide the interface to
BIOS. The following table summarizes the BIOS services:

INT Function

 5 Print Screen operation.
10h Video display services.
11h Equipment determination.
12h Memory size determination.
13h Diskette and hard disk services.
14h Serial I/O services.
15h Miscellaneous services.
16h Keyboard services.
17h Printer services.
18h BASIC.
19h Reboot.
1Ah Real time clock services.

Most of these routines require various parameters in the 80x86’s registers. Some
require additional parameters in certain memory locations. The following sections
describe the exact operation of many of the BIOS routine.

Chapter 13

Page 702

13.2.1 INT 5- Print Screen

Instruction:

int 5h

BIOS Operation: Print the current text screen.
Parameters: None

If you execute the

int 5h

instruction, the PC will send a copy of the screen image to the
printer exactly as though you’d pressed the PrtSc key on the keyboard. In fact, the BIOS
issues an

int 5

instruction when you press the PrtSc, so the two operations are absolutely
identical (other than one is under software control rather than manual control). Note that
the 80286 and later also uses

int 5

for the BOUNDS trap.

13.2.2 INT 10h - Video Services

Instruction:

int 10h

BIOS Operation: Video I/O Services
Parameters: Several, passed in

ax, bx, cx, dx,

and

es:bp

registers.

The

int 10h

instruction does several video display related functions. You can use it to
initialize the video display, set the cursor size and position, read the cursor position,
manipulate a light pen, read or write the current display page, scroll the data in the screen
up or down, read and write characters, read and write pixels in a graphics display mode,
and write strings to the display. You select the particular function to execute by passing a
value in the

ah

register.

The video services represent one of the largest set of BIOS calls available. There are
many different video display cards manufactured for PCs, each with minor variations and
often each having its own set of unique BIOS functions. The BIOS reference in the appen-
dices lists some of the more common functions available, but as pointed out earlier, this
list is quite incomplete and out of date given the rapid change in technology.

Probably the most commonly used video service call is the character output routine:

Name: Write char to screen in TTY mode
Parameters

ah

= 0Eh,

al

= ASCII code (In graphics mode,

bl

= Page number)

This routine writes a single character to the display. MS-DOS calls this routine to display
characters on the screen. The UCR Standard Library also provides a call which lets you
write characters directly to the display using BIOS calls.

Most BIOS video display routines are poorly written. There is not much else that can
be said about them. They are extremely slow and don’t provide much in the way of func-
tionality. For this reason, most programmers (who need a high-performance video display
driver) end up writing their own display code. This provides speed at the expense of port-
ability. Unfortunately, there is rarely any other choice. If you need functionality rather
than speed, you should consider using the ANSI.SYS screen driver provided with
MS-DOS. This display driver provides all kinds of useful services such as clear to end of
line, clear to end of screen, etc. For more information, consult your DOS manual.

Table 49: BIOS Video Functions (Partial List)

AH Input
Parameters

Output
Parameters

Description

0 al=mode Sets the video display mode.

1

ch

- Starting line.

cl

- ending line
Sets the shape of the cursor. Line values are in the
range 0..15. You can make the cursor disappear
by loading

ch

 with 20h.

MS-DOS, PC BIOS, and File I/O

Page 703

Note that there are many other BIOS 10h subfunctions. Mostly, these other functions
deal with graphics modes (the BIOS is too slow for manipulating graphics, so you
shouldn’t use those calls) and extended features for certain video display cards. For more
information on these calls, pick up a text on the PC’s BIOS.

2

bh

- page

dh

- y coordinate

dl

- x coordinate

Position cursor to location (x,y) on the screen.
Generally you would specify page zero. BIOS
maintains a separate cursor for each page.

3

bh

- page

ch

- starting line

cl

- ending line

dl

- x coordinate

dh

- y coordinate

Get cursor position and shape.

4

Obsolete (Get Light Pen Position).

5

al

- display page Set display page. Switches the text display page
to the specified page number. Page zero is the
standard text page. Most color adapters support
up to eight text pages (0..7).

6

al-

Number of lines to
scroll.

bh-

Screen attribute for
cleared area.

cl

- x coordinate UL

ch

- y coordinate UL

dl

- x coordinate LR

dh

- y coordinate LR

Clear or scroll up. If

al

 contains zero, this function
clears the rectangular portion of the screen speci-
fied by

cl/ch

 (the upper left hand corner) and

dl/dh

(the lower right hand corner). If

al

 contains any
other value, this service will scroll that rectangu-
lar window up the number of lines specified in

al

.

7

al-

Number of lines to
scroll.

bh-

Screen attribute for
cleared area.

cl

- x coordinate UL

ch

- y coordinate UL

dl

- x coordinate LR

dh

- y coordinate LR

Clear or scroll down. If

al

 contains zero, this func-
tion clears the rectangular portion of the screen
specified by

cl/ch

 (the upper left hand corner) and

dl/dh

 (the lower right hand corner). If

al

 contains
any other value, this service will scroll that rect-
angular window down the number of lines speci-
fied in

al

.

8

bh

- display page

al

- char read

ah

- char attribute
Read character’s ASCII code and attribute byte
from current screen position.

9

al-

character

bh

- page

bl

- attribute

cx

- # of times to repli-
cate character

This call writes cx copies of the character and
attribute in

al/bl

 starting at the current cursor
position on the screen. It does not change the cur-
sor’s position.

0Ah

al-

character

bh

- page
Writes character in al to the current screen posi-
tion using the existing attribute. Does not change
cursor position.

0Bh bh- 0
bl- color

Sets the border color for the text display.

0Eh al- character
bh- page

Write a character to the screen. Uses existing
attribute and repositions cursor after write.

0Fh ah- # columns
al- display mode
bh- page

Get video mode

Table 49: BIOS Video Functions (Partial List)

AH Input
Parameters

Output
Parameters

Description

Chapter 13

Page 704

13.2.3 INT 11h - Equipment Installed

Instruction: int 11h
BIOS Operation: Return an equipment list
Parameters: On entry: None, on exit: AX contains equipment list

On return from int 11h, the AX register contains a bit-encoded equipment list with the fol-
lowing values:

Bit 0 Floppy disk drive installed
Bit 1 Math coprocessor installed
Bits 2,3 System board RAM installed (obsolete)
Bits 4,5 Initial video mode
 00- none
 01- 40x25 color
 10- 80x25 color
 11- 80x25 b/w
Bits 6,7 Number of disk drives
Bit 8 DMA present
Bits 9,10,11 Number of RS-232 serial cards installed
Bit 12 Game I/O card installed
Bit 13 Serial printer attached
Bits 14,15 Number of printers attached.

Note that this BIOS service was designed around the original IBM PC with its very
limited hardware expansion capabilities. The bits returned by this call are almost mean-
ingless today.

13.2.4 INT 12h - Memory Available

Instruction: int 12h
 BIOS Operation: Determine memory size
Parameters: Memory size returned in AX

Back in the days when IBM PCs came with up to 64K memory installed on the moth-
erboard, this call had some meaning. However, PCs today can handle up to 64 megabytes
or more. Obviously this BIOS call is a little out of date. Some PCs use this call for different
purposes, but you cannot rely on such calls working on any machine.

13.2.5 INT 13h - Low Level Disk Services

Instruction: int 13h
BIOS Operation: Diskette Services
Parameters: ax, es:bx, cx, dx (see below)

The int 13h function provides several different low-level disk services to PC programs:
Reset the diskette system, get the diskette status, read diskette sectors, write diskette sec-
tors, verify diskette sectors, and format a diskette track and many more. This is another
example of a BIOS routine which has changed over the years. When this routine was first
developed, a 10 megabyte hard disk was considered large. Today, a typical high perfor-
mance game requires 20 to 30 megabytes of storage.

MS-DOS, PC BIOS, and File I/O

Page 705

Table 50: Some Common Disk Subsystem BIOS Calls

AH Input
Parameters

Output
Parameters

Description

0 dl- drive (0..7fh is
floppy, 80h..ffh is hard)

ah- status (0 and
carry clear if no
error, error code if
error).

Resets the specified disk drive. Resetting a hard
disk also resets the floppy drives.

1 dl- drive (as above) ah- 0
al- status of previous
disk operation.

This call returns the following status values in al:
0- no error
1- invalid command
2- address mark not found
3- disk write protected
4- couldn’t find sector
5- reset error
6- removed media
7- bad parameter table
8- DMA overrun
9- DMA operation crossed 64K boundary
10- illegal sector flag
11- illegal track flag
12- illegal media
13- invalid # of sectors
14- control data address mark encountered
15- DMA error
16- CRC data error
17- ECC corrected data error
32- disk controller failed
64- seek error
128- timeout error
170- drive not ready
187- undefined error
204- write error
224- status error
255- sense failure

2 al- # of sectors to read
es:bx- buffer address
cl- bits 0..5: sector #
cl- bits 6/7- track bits 8
& 9
ch- track bits 0..7.
dl- drive # (as above)
dh- bits 0..5: head #
dh- bits 6&7: track bits
10 & 11.

ah- return status
al- burst error length
carry- 0:success,
1:error

Reads the specified number of 512 byte sectors
from the disk. Data read must be 64 Kbytes or
less.

3 same as (2) above same as (2) above Writes the specified number of 512 byte sectors to
the disk. Data written must not exceed 64 Kbytes
in length.

4 Same as (2) above
except there is no need
for a buffer.

same as (2) above Verifies the data in the specified number of 512
byte sectors on the disk.

0Ch Same as (4) above
except there is no need
for a sector #

Same as (4) above Sends the disk head to the specified track on the
disk.

Chapter 13

Page 706

Note: see appropriate BIOS documentation for additional information about disk sub-
system BIOS support.

13.2.6 INT 14h - Serial I/O

Instruction: int 14h
BIOS Operation: Access the serial communications port
Parameters: ax, dx

The IBM BIOS supports up to four different serial communications ports (the hard-
ware supports up to eight). In general, most PCs have one or two serial ports (COM1: and
COM2:) installed. Int 14h supports four subfunctions- initialize, transmit a character,
receive a character, and status. For all four services, the serial port number (a value in the
range 0..3) is in the dx register (0=COM1:, 1=COM2:, etc.). Int 14h expects and returns other
data in the al or ax register.

13.2.6.1 AH=0: Serial Port Initialization

Subfunction zero initializes a serial port. This call lets you set the baud rate, select par-
ity modes, select the number of stop bits, and the number of bits transmitted over the
serial line. These parameters are all specified by the value in the al register using the fol-
lowing bit encodings:

Bits Function
5..7 Select baud rate

 000- 110 baud
001- 150
010- 300
011- 600
100- 1200
101- 2400
110- 4800
111- 9600

3..4 Select parity
00- No parity
01- Odd parity
10- No parity
11- Even parity

2 Stop bits
 0-One stop bit
 1-Two stop bits

0..1 Character Size
 10- 7 bits
 11- 8 bits

0Dh dl- drive # (80h or 81h) ah- return status
carry-0:no error
1:error

Reset the hard disk controller

Table 50: Some Common Disk Subsystem BIOS Calls

AH Input
Parameters

Output
Parameters

Description

MS-DOS, PC BIOS, and File I/O

Page 707

Although the standard PC serial port hardware supports 19,200 baud, some BIOSes
may not support this speed.

Example: Initialize COM1: to 2400 baud, no parity, eight bit data, and two stop bits-

mov ah, 0 ;Initialize opcode
mov al, 10100111b ;Parameter data.
mov dx, 0 ;COM1: port.
int 14h

After the call to the initialization code, the serial port status is returned in ax (see
Serial Port Status, ah=3, below).

13.2.6.2 AH=1: Transmit a Character to the Serial Port

This function transmits the character in the al register through the serial port specified
in the dx register. On return, if ah contains zero, then the character was transmitted prop-
erly. If bit 7 of ah contains one, upon return, then some sort of error occurred. The remain-
ing seven bits contain all the error statuses returned by the GetStatus call except time out
error (which is returned in bit seven). If an error is reported, you should use subfunction
three to get the actual error values from the serial port hardware.

Example: Transmit a character through the COM1: port

mov dx, 0 ;Select COM1:
mov al, ‘a’ ;Character to transmit
mov ah, 1 ;Transmit opcode
int 14h
test ah, 80h ;Check for error
jnz SerialError

This function will wait until the serial port finishes transmitting the last character (if
any) and then it will store the character into the transmit register.

13.2.6.3 AH=2: Receive a Character from the Serial Port

Subfunction two is used to read a character from the serial port. On entry, dx contains
the serial port number. On exit, al contains the character read from the serial port and bit
seven of ah contains the error status. When this routine is called, it does not return to the
caller until a character is received at the serial port.

Example: Reading a character from the COM1: port

mov dx, 0 ;Select COM1:
mov ah, 2 ;Receive opcode
int 14h
test ah, 80h ;Check for error
jnz SerialError

<Received character is now in AL>

13.2.6.4 AH=3: Serial Port Status

This call returns status information about the serial port including whether or not an
error has occurred, if a character has been received in the receive buffer, if the transmit
buffer is empty, and other pieces of useful information. On entry into this routine, the dx
register contains the serial port number. On exit, the ax register contains the following val-
ues:

Chapter 13

Page 708

AX: Bit Meaning
15 Time out error
14 Transmitter shift register empty
13 Transmitter holding register empty
12 Break detection error
11 Framing error
10 Parity error
9 Overrun error
8 Data available
7 Receive line signal detect
6 Ring indicator
5 Data set ready (DSR)
4 Clear to send (CTS)
3 Delta receive line signal detect
2 Trailing edge ring detector
1 Delta data set ready
0 Delta clear to send

There are a couple of useful bits, not pertaining to errors, returned in this status infor-
mation. If the data available bit is set (bit #8), then the serial port has received data and
you should read it from the serial port. The Transmitter holding register empty bit (bit
#13) tells you if the transmit operation will be delayed while waiting for the current char-
acter to be transmitted or if the next character will be immediately transmitted. By testing
these two bits, you can perform other operations while waiting for the transmit register to
become available or for the receive register to contain a character.

If you’re interested in serial communications, you should obtain a copy of Joe Camp-
bell’s C Programmer’s Guide to Serial Communications. Although written specifically for
C programmers, this book contains a lot of information useful to programmers working in
any programming language. See the bibliography for more details.

13.2.7 INT 15h - Miscellaneous Services

Originally, int 15h provided cassette tape read and write services1. Almost immedi-
ately, everyone realized that cassettes were history, so IBM began using int 15h for many
other services. Today, int 15h is used for a wide variety of function including accessing
expanded memory, reading the joystick/game adapter card, and many, many other oper-
ations. Except for the joystick calls, most of these services are beyond the scope of this text.
Check on the bibliography if you interested in obtaining information on this BIOS call.

13.2.8 INT 16h - Keyboard Services

Instruction: int 16h
BIOS Operation: Read a key, test for a key, or get keyboard status
Parameters: al

The IBM PC BIOS provides several function calls dealing with the keyboard. As with
many of the PC BIOS routines, the number of functions has increased over the years. This
section describes the three calls that were available on the original IBM PC.

1. For those who do not remember that far back, before there were hard disks people used to use only floppy
disks. And before there were floppy disks, people used to use cassette tapes to store programs and data. The orig-
inal IBM PC was introduced in late 1981 with a cassette port. By early 1982, no one was using cassette tape for
data storage.

MS-DOS, PC BIOS, and File I/O

Page 709

13.2.8.1 AH=0: Read a Key From the Keyboard

If int 16h is called with ah equal to zero, the BIOS will not return control to the caller
until a key is available in the system type ahead buffer. On return, al contains the ASCII
code for the key read from the buffer and ah contains the keyboard scan code. Keyboard
scan codes are described in the appendices.

Certain keys on the PC’s keyboard do not have any corresponding ASCII codes. The
function keys, Home, PgUp, End, PgDn, the arrow keys, and the Alt keys are all good
examples. When such a key is pressed, int 16h returns a zero in al and the keyboard scan
code in ah. Therefore, whenever an ASCII code of zero is returned, you must check the ah
register to determine which key was pressed.

Note that reading a key from the keyboard using the BIOS int 16h call does not echo
the key pressed to the display. You have to call putc or use int 10h to print the character
once you’ve read it if you want it echoed to the screen.

Example: Read a sequence of keystrokes from the keyboard until Enter is pressed.

ReadLoop: mov ah, 0 ;Read Key opcode
int 16h
cmp al, 0 ;Special function?
jz ReadLoop ;If so, don’t echo this keystroke
putc
cmp al, 0dh ;Carriage return (ENTER)?
jne ReadLoop

13.2.8.2 AH=1: See if a Key is Available at the Keyboard

This particular int 16h subfunction allows you to check to see if a key is available in the
system type ahead buffer. Even if a key is not available, control is returned (right away!) to
the caller. With this call you can occasionally poll the keyboard to see if a key is available
and continue processing if a key hasn’t been pressed (as opposed to freezing up the com-
puter until a key is pressed).

There are no input parameters to this function. On return, the zero flag will be clear if
a key is available, set if there aren’t any keys in the type ahead buffer. If a key is available,
then ax will contain the scan and ASCII codes for that key. However, this function will not
remove that keystroke from the typeahead buffer. Subfunction #0 must be used to remove
characters. The following example demonstrates how to build a random number genera-
tor using the test keyboard function:

Example: Generating a random number while waiting for a keystroke

; First, clear any characters out of the type ahead buffer

ClrBuffer: mov ah, 1 ;Is a key available?
int 16h
jz BufferIsClr ;If not, Discontinue flushing
mov ah, 0 ;Flush this character from the
int 16h ; buffer and try again.
jmp ClrBuffer

BufferIsClr: mov cx, 0 ;Initialize “random” number.
GenRandom: inc cx

mov ah, 1 ;See if a key is available yet.
int 16h
jz GenRandom
xor cl, ch ;Randomize even more.
mov ah, 0 ;Read character from buffer
int 16h

; Random number is now in CL, key pressed by user is in AX

Chapter 13

Page 710

While waiting for a key, this routine is constantly incrementing the cx register. Since
human beings cannot respond rapidly (at least in terms of microseconds) the cl register
will overflow many times, even for the fastest typist. As a result, cl will contain a random
value since the user will not be able to control (to better than about 2ms) when a key is
pressed.

13.2.8.3 AH=2: Return Keyboard Shift Key Status

This function returns the state of various keys on the PC keyboard in the al register.
The values returned are as follows:

Bit Meaning
7 Insert state (toggle by pressing INS key)
6 Caps lock (1=capslock on)
5 Num lock (1=numlock on)
4 Scroll lock (1=scroll lock on)
3 Alt (1=Alt key currently down)
2 Ctrl (1=Ctrl key currently down)
1 Left shift (1=left shift key down)
0 Right shift (1=right shift key down)

Due to a bug in the BIOS code, these bits only reflect the current status of these keys,
they do not necessarily reflect the status of these keys when the next key to be read from
the system type ahead buffer was depressed. In order to ensure that these status bits corre-
spond to the state of these keys when a scan code is read from the type ahead buffer,
you’ve got to flush the buffer, wait until a key is pressed, and then immediately check the
keyboard status.

13.2.9 INT 17h - Printer Services

Instruction: int 17h
BIOS Operation: Print data and test the printer status
Parameters: ax, dx

Int 17h controls the parallel printer interfaces on the IBM PC in much the same way the
int 14h controls the serial ports. Since programming a parallel port is considerably easier
than controlling a serial port, using the int 17h routine is somewhat easier than using the
int 14h routines.

Int 17h provides three subfunctions, specified by the value in the ah register. These sub-
functions are:

0-Print the character in the AL register.
1-Initialize the printer.
2-Return the printer status.

Each of these functions is described in the following sections.

Like the serial port services, the printer port services allow you to specify which of the
three printers installed in the system you wish to use (LPT1:, LPT2:, or LPT3:). The value
in the dx register (0..2) specifies which printer port is to be used.

One final note- under DOS it’s possible to redirect all printer output to a serial port.
This is quite useful if you’re using a serial printer. The BIOS printer services only talk to
parallel printer adapters. If you need to send data to a serial printer using BIOS, you’ll
have to use int 14h to transmit the data through a serial port.

MS-DOS, PC BIOS, and File I/O

Page 711

13.2.9.1 AH=0: Print a Character

If ah is zero when you call int 17h, then the BIOS will print the character in the al regis-
ter. Exactly how the character code in the al register is treated is entirely up to the printer
device you’re using. Most printers, however, respect the printable ASCII character set and
a few control characters as well. Many printers will also print all the symbols in the
IBM/ASCII character set (including European, line drawing, and other special symbols).
Most printers treat control characters (especially ESC sequences) in completely different
manners. Therefore, if you intend to print something other than standard ASCII charac-
ters, be forewarned that your software may not work on printers other than the brand
you’re developing your software on.

Upon return from the int 17h subfunction zero routine, the ah register contains the cur-
rent status. The values actually returned are described in the section on subfunction num-
ber two.

13.2.9.2 AH=1: Initialize Printer

Executing this call sends an electrical impulse to the printer telling it to initialize itself.
On return, the ah register contains the printer status as per function number two.

13.2.9.3 AH=2: Return Printer Status

This function call checks the printer status and returns it in the ah register. The values
returned are:

AH: Bit Meaning
7 1=Printer busy, 0=printer not busy
6 1=Acknowledge from printer
5 1=Out of paper signal
4 1=Printer selected
3 1=I/O error
2 Not used
1 Not used
0 Time out error

Acknowledge from printer is, essentially, a redundant signal (since printer busy/not
busy gives you the same information). As long as the printer is busy, it will not accept
additional data. Therefore, calling the print character function (ah=0) will result in a delay.

The out of paper signal is asserted whenever the printer detects that it is out of paper.
This signal is not implemented on many printer adapters. On such adapters it is always
programmed to a logic zero (even if the printer is out of paper). Therefore, seeing a zero in
this bit position doesn’t always guarantee that there is paper in the machine. Seeing a one
here, however, definitely means that your printer is out of paper.

The printer selected bit contains a one as long as the printer is on-line. If the user takes
the printer off-line, then this bit will be cleared.

The I/O error bit contains a one if some general I/O error has occurred.

The time out error bit contains a one if the BIOS routine waited for an extended period
of time for the printer to become “not busy” yet the printer remained busy.

Note that certain peripheral devices (other than printers) also interface to the parallel
port, often in addition to a parallel printer. Some of these devices use the error/status sig-
nal lines to return data to the PC. The software controlling such devices often takes over
the int 17h routine (via a technique we’ll talk about later on) and always returns a “no
error” status or “time out error” status if an error occurs on the printing device. Therefore,

Chapter 13

Page 712

you should take care not to depend too heavily on these signals changing when you make
the int 17h BIOS calls.

13.2.10 INT 18h - Run BASIC

Instruction: int 18h
BIOS Operation: Activate ROM BASIC
Parameters: None

Executing int 18h activates the ROM BASIC interpreter in an IBM PC. However, you
shouldn’t use this mechanism to run BASIC since many PC compatibles do not have
BASIC in ROM and the result of executing int 18h is undefined.

13.2.11 INT 19h - Reboot Computer

Instruction: int 19h
BIOS Operation: Restart the system
Parameters: None

Executing this interrupt has the same effect as pressing control-alt-del on the key-
board. For obvious reasons, this interrupt service should be handled carefully!

13.2.12 INT 1Ah - Real Time Clock

Instruction: int 1ah
BIOS Operation: Real time clock services
Parameters: ax, cx, dx

There are two services provided by this BIOS routine- read the clock and set the clock.
The PC’s real time clock maintains a counter that counts the number of 1/18ths of a sec-
ond that have transpired since midnight. When you read the clock, you get the number of
”ticks” which have occurred since then. When you set the clock, you specify the number
of “ticks” which have occurred since midnight. As usual, the particular service is selected
via the value in the ah register.

13.2.12.1 AH=0: Read the Real Time Clock

If ah = 0, then int 1ah returns a 33-bit value in al:cx:dx as follows:

Reg Value Returned
dx L.O. word of clock count
cx H.O. word of clock count
al Zero if timer has not run for more than 24 hours

Non-zero otherwise.

The 32-bit value in cx:dx represents the number of 55 millisecond periods which have
elapsed since midnight.

MS-DOS, PC BIOS, and File I/O

Page 713

13.2.12.2 AH=1: Setting the Real Time Clock

This call allows you to set the current system time value. cx:dx contains the current
count (in 55ms increments) since last midnight. Cx contains the H.O. word, dx contains the
L.O. word.

13.3 An Introduction to MS-DOS

MS-DOS provides all of the basic file manager and device manager functions required
by most application programs running on an IBM PC. MS-DOS handles file I/O, character
I/0, memory management, and other miscellaneous functions in a (relatively) consistent
manner. If you’re serious about writing software for the PC, you’ll have to get real friendly
with MS-DOS.

The title of this section is “An Introduction to MS-DOS”. And that’s exactly what it
means. There is no way MS-DOS can be completely covered in a single chapter. Given all
of the different books that already exist on the subject, it probably cannot even be covered
by a single book (it certainly hasn’t been yet. Microsoft wrote a 1,600 page book on the
subject and it didn’t even cover the subject fully). All this is leading up to a cop-out. There
is no way this subject can be treated in more than a superficial manner in a single chapter.
If you’re serious about writing programs in assembly language for the PC, you’ll need to
complement this text with several others. Additional books on MS-DOS include: MS-DOS
Programmer’s Reference (also called the MS-DOS Technical Reference Manual), Peter
Norton’s Programmer’s Guide to the IBM PC, The MS-DOS Encyclopedia, and the
MS-DOS Developer’s Guide. This, of course, is only a partial list of the books that are
available. See the bibliography in the appendices for more details. Without a doubt, the
MS-DOS Technical Reference Manual is the most important text to get your hands on.
This is the official description of MS-DOS calls and parameters.

MS-DOS has a long and colorful history2. Throughout its lifetime, it has undergone
several revisions, each purporting to be better than the last. MS-DOS’ origins go all the
way back to the CP/M-80 operating system written for the Intel 8080 microprocessor chip.
In fact, MS-DOS v1.0 was nothing much more than a clone of CP/M-80 for Intel’s 8088
microprocessor. Unfortunately, CP/M-80’s file handling capabilities were horrible, to say
the least. Therefore, DOS3 improved on CP/M. New file handling capabilities, compatible
with Xenix and Unix, were added to DOS, producing MS-DOS v2.0. Additional calls were
added to later versions of MS-DOS. Even with the introduction of OS/2 and Windows NT
(which, as this is being written, have yet to take the world by storm), Microsoft is still
working on enhancements to MS-DOS which may produce even later versions.

Each new feature added to DOS introduced new DOS functions while preserving all
of the functionality of the previous versions of DOS. When Microsoft rewrote the DOS file
handling routines in version two, they didn’t replace the old calls, they simply added new
ones. While this preserved software compatibility of programs that ran under the old ver-
sion of DOS, what it produced was a DOS with two sets of functionally identical, but oth-
erwise incompatible, file services.

We’re only going to concentrate on a small subset of the available DOS commands in
this chapter. We’re going to totally ignore those obsolete commands that have been aug-
mented by newer, better, commands in later versions of DOS. Furthermore, we’re going to
skip over a description of those calls that have very little use in day to day programming.
For a complete, detailed, look at the commands not covered in this chapter, you should
consider the acquisition of one of the aforementioned books.

2. The MS-DOS Encyclopedia gives Microsoft’s account of the history of MS-DOS. Of course, this is a one-sided
presentation, but it’s interesting nonetheless.
3. This text uses “DOS” to mean MS-DOS.

Chapter 13

Page 714

13.3.1 MS-DOS Calling Sequence

MS-DOS is called via the int 21h instruction. To select an appropriate DOS function,
you load the ah register with a function number before issuing the int 21h instruction. Most
DOS calls require other parameters as well. Generally, these other parameters are passed
in the CPU’s register set. The specific parameters will be discussed along with each call.
Unless MS-DOS returns some specific value in a register, all of the CPU’s registers are pre-
served across a call to DOS4.

13.3.2 MS-DOS Character Oriented Functions

DOS provides 12 character oriented I/O calls. Most of these deal with writing and
reading data to/from the keyboard, video display, serial port, and printer port. All of
these functions have corresponding BIOS services. In fact, DOS usually calls the appropri-
ate BIOS function to handle the I/O operation. However, due to DOS’ redirected I/O and
device driver facilities, these functions don’t always call the BIOS routines. Therefore, you
shouldn’t call the BIOS routines (rather than DOS) simply because DOS ends up calling
BIOS. Doing so may prevent your program from working with certain DOS-supported
devices.

Except for function code seven, all of the following character oriented calls check the
console input device (keyboard) for a control-C. If the user presses a control-C, DOS exe-
cutes an int 23h instruction. Usually, this instruction will cause the program to abort and
control will be returned to DOS. Keep this in mind when issuing these calls.

Microsoft considers these calls obsolete and does not guarantee they will be present in
future versions of DOS. So take these first 12 routines with a rather large grain of salt.
Note that the UCR Standard Library provides the functionality of many of these calls any-
way, and they make the proper DOS calls, not the obsolete ones.

4. So Microsoft claims. This may or may not be true across all versions of DOS.

Table 51: DOS Character Oriented Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

1 al- char read Console Input w/Echo: Reads a single character
from the keyboard and displays typed character
on screen.

2 dl- output char Console Output: Writes a single character to the
display.

3 al- char read Auxiliary Input: Reads a single character from
the serial port.

4 dl- output char Auxiliary Output: Writes a single character to the
output port

5 dl- output char Printer Output: Writes a single character to the
printer

MS-DOS, PC BIOS, and File I/O

Page 715

Functions 1, 2, 3, 4, 5, 9, and 0Ah are obsolete and you should not use them. Use the
DOS file I/O calls instead (opcodes 3Fh and 40h).

6 dl- output char
(if not 0FFh)

al- char read (if
input dl = 0FFh)

Direct Console I/O: On input, if dl contains 0FFh,
this function attempts to read a character from
the keyboard. If a character is available, it returns
the zero flag clear and the character in al. If no
character is available, it returns the zero flag set.
On input, if dl contains a value other than 0FFh,
this routine sends the character to the display.
This routine does not do ctrl-C checking.

7 al- char read Direct Console Input: Reads a character from the
keyboard. Does not echo the character to the dis-
play. This call does not check for ctrl-C

8 al- char read Read Keyboard w/o Echo: Just like function 7
above, except this call checks for ctrl-C.

9 ds:dx- pointer to
string termi-
nated with “$”.

Display String: This function displays the charac-
ters from location ds:dx up to (but not including)
a terminating “$” character.

0Ah ds:dx- pointer to
input buffer.

Buffered Keyboard Input: This function reads a
line of text from the keyboard and stores it into
the input buffer pointed at by ds:dx. The first byte
of the buffer must contain a count between one
and 255 that contains the maximum number of
allowable characters in the input buffer. This rou-
tine stores the actual number of characters read in
the second byte. The actual input characters
begin at the third byte of the buffer.

0Bh al- status (0=not
ready,
0FFh=ready)

Check Keyboard Status: Determines whether a
character is available from the keyboard.

0Ch al- DOS opcode 0,
1, 6, 7, or 8

al- input charac-
ter if opcode 1, 6,
7, or 8.

Flush Buffer: This call empties the system type
ahead buffer and then executes the DOS com-
mand specified in the al register (if al=0, no fur-
ther action).

Table 51: DOS Character Oriented Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

Chapter 13

Page 716

13.3.3 MS-DOS Drive Commands

MS-DOS provides several commands that let you set the default drive, determine
which drive is the default, and perform some other operations. The following table lists
those functions.

Table 52: DOS Disk Drive Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

0Dh Reset Drive: Flushes all file buffers to disk. Gen-
erally called by ctrl-C handlers or sections of code
that need to guaranteed file consistency because
an error may occur.

0Eh dl- drive number al- number of
logical drives

Set Default Drive: sets the DOS default drive to
the specified value (0=A, 1=B, 2=C, etc.). Returns
the number of logical drives in the system,
although they may not be contiguous from 0-al.

19H al- default drive
number

Get Default Drive: Returns the current system
default drive number (0=A, 1=B, 2=C, etc.).

1Ah ds:dx- Disk
Transfer Area
address.

Set Disk Transfer Area Address: Sets the address
that MS-DOS uses for obsolete file I/O and Find
First/Find Next commands.

1Bh al- sectors/clus-
ter
cx- bytes/sector
dx- # of clusters
ds:bx - points at
media descriptor
byte

Get Default Drive Data: Returns information
about the disk in the default drive. Also see func-
tion 36h. Typical values for the media descriptor
byte include:
0F0h- 3.5”
0F8h- Hard disk
0F9h- 720K 3.5” or 1.2M 5.25”
0FAh- 320K 5.25”
0FBh- 640K 3.5”
0FCh- 180K 5.25”
0FDh- 360K 5.25:
0FEh- 160K 5.25”
0FFh- 320K 5.25”

1Ch dl- drive number See above Get Drive Data: same as above except you can
specify the drive number in the dl register
(0=default, 1=A, 2=B, 3=C, etc.).

MS-DOS, PC BIOS, and File I/O

Page 717

13.3.4 MS-DOS “Obsolete” Filing Calls

DOS functions 0Fh - 18h, 1Eh, 20h-24h, and 26h - 29h are the functions left over from
the days of CP/M-80. In general, you shouldn’t bother at all with these calls since

1Fh al- contains 0FFh
if error, 0 if no
error.
ds:bx- ptr to DPB

Get Default Disk Parameter Block (DPB): If suc-
cessful, this function returns a pointer to the fol-
lowing structure:
Drive (byte) - Drive number (0-A, 1=B, etc.).
Unit (byte) - Unit number for driver.
SectorSize (word) - # bytes/sector.
ClusterMask (byte) - sectors/cluster minus one.
Cluster2 (byte) - 2clusters/sector

FirstFAT (word) - Address of sector where FAT
starts.
FATCount (byte) - # of FATs.
RootEntries (word) - # of entries in root directory.
FirstSector (word) - first sector of first cluster.
MaxCluster (word) - # of clusters on drive, plus
one.
FATsize (word) - # of sectors for FAT.
DirSector (word) - first sector containing direc-
tory.
DriverAdrs (dword) - address of device driver.
Media (byte) - media descriptor byte.
FirstAccess (byte) - set if there has been an access
to drive.
NextDPB (dword) - link to next DPB in list.
NextFree (word) - last allocated cluster.
FreeCnt (word) - number of free clusters.

2Eh al- verify flag
(0=no verify,
1=verify on).

Set/Reset Verify Flag: Turns on and off write ver-
ification. Usually off since this is a slow opera-
tion, but you can turn it on when performing
critical I/O.

2Fh es:bx- pointer to
DTA

Get Disk Transfer Area Address: Returns a
pointer to the current DTA in es:bx..

32h dl- drive number. Same as 1Fh Get DPB: Same as function 1Fh except you get to
specify the driver number (0=default, 1=A, 2=B,
3=C, etc.).

33h al- 05 (subfunc-
tion code)

dl- startup drive
#.

Get Startup Drive: Returns the number of the
drive used to boot DOS (1=A, 2=B, 3=C, etc.).

36h dl- drive number. ax- sectors/clus-
ter
bx- available clus-
ters
cx- bytes/sector
dx- total clusters

Get Disk Free Space: Reports the amount of free
space. This call supersedes calls 1Bh and 1Ch that
only support drives up to 32Mbytes. This call
handles larger drives. You can compute the
amount of free space (in bytes) by bx*ax*cx. If an
error occurs, this call returns 0FFFFh in ax.

54h al- verify state. Get Verify State: Returns the current state of the
write verify flag (al=0 if off, al=1 if on).

Table 52: DOS Disk Drive Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

Chapter 13

Page 718

MS-DOS v2.0 and later provides a much better way to accomplish the operations per-
formed by these calls.

13.3.5 MS-DOS Date and Time Functions

The MS-DOS date and time functions return the current date and time based on inter-
nal values maintained by the real time clock (RTC). Functions provided by DOS include
reading and setting the date and time. These date and time values are used to perform
date and time stamping of files when files are created on the disk. Therefore, if you change
the date or time, keep in mind that it will have an effect on the files you create thereafter.
Note that the UCR Standard Library also provides a set of date and time functions which,
in many cases, are somewhat easier to use than these DOS calls.

13.3.6 MS-DOS Memory Management Functions

MS-DOS provides three memory management functions- allocate, deallocate, and
resize (modify). For most programs, these three memory allocation calls are not used.
When DOS executes a program, it gives all of the available memory, from the start of that
program to the end of RAM, to the executing process. Any attempt to allocate memory
without first giving unused memory back to the system will produce an “insufficient
memory” error.

Sophisticated programs which terminate and remain resident, run other programs, or
perform complex memory management tasks, may require the use of these memory man-
agement functions. Generally these types of programs immediately deallocate all of the
memory that they don’t use and then begin allocating and deallocating storage as they see
fit.

Table 53: Date and Time Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

2Ah al- day (0=Sun,
1=Mon, etc.).
cx- year
dh- month
(1=Jan, 2=Feb,
etc.).
dl- Day of month
(1-31).

Get Date: returns the current MS-DOS date.

2Bh cx- year (1980 -
2099)
dh- month (1-12)
dl- day (1-31)

Set Date: sets the current MS-DOS date.

2CH ch- hour (24hr
fmt)
cl- minutes
dh- seconds
dl- hundredths

Get Time: reads the current MS-DOS time. Note
that the hundredths of a second field has a reso-
lution of 1/18 second.

2Dh ch- hour
cl- minutes
dh- seconds
dl- hundredths

Set Time: sets the current MS-DOS time.

MS-DOS, PC BIOS, and File I/O

Page 719

Since these are complex functions, they shouldn’t be used unless you have a very spe-
cific purpose for them. Misusing these commands may result in loss of system memory
that can be reclaimed only by rebooting the system. Each of the following calls returns the
error status in the carry flag. If the carry is clear on return, then the operation was com-
pleted successfully. If the carry flag is set when DOS returns, then the ax register contains
one of the following error codes:

7- Memory control blocks destroyed
8- Insufficient memory
9- Invalid memory block address

Additional notes about these errors will be discussed as appropriate.

13.3.6.1 Allocate Memory

Function (ah): 48h
Entry parameters: bx- Requested block size (in paragraphs)
Exit parameters: If no error (carry clear):

ax:0 points at allocated memory block

If an error (carry set):
bx- maximum possible allocation size
ax- error code (7 or 8)

This call is used to allocate a block of memory. On entry into DOS, bx contains the size
of the requested block in paragraphs (groups of 16 bytes). On exit, assuming no error, the
ax register contains the segment address of the start of the allocated block. If an error
occurs, the block is not allocated and the ax register is returned containing the error code.
If the allocation request failed due to insufficient memory, the bx register is returned con-
taining the maximum number of paragraphs actually available.

13.3.6.2 Deallocate Memory

Function (ah): 49h
Entry parameters: es:0- Segment address of block to be deallocated
Exit parameters: If the carry is set, ax contains the error code (7,9)

This call is used to deallocate memory allocated via function 48h above. The es regis-
ter cannot contain an arbitrary memory address. It must contain a value returned by the
allocate memory function. You cannot use this call to deallocate a portion of an allocated
block. The modify allocation function is used for that operation.

13.3.6.3 Modify Memory Allocation

Function (ah): 4Ah
Entry parameters: es:0- address of block to modify allocation size

bx- size of new block
Exit parameters: If the carry is set, then

ax contains the error code 7, 8, or 9
bx contains the maximum size possible (if error 8)

This call is used to change the size of an allocated block. On entry, es must contain the
segment address of the allocated block returned by the memory allocation function. Bx
must contain the new size of this block in paragraphs. While you can almost always
reduce the size of a block, you cannot normally increase the size of a block if other blocks
have been allocated after the block being modified. Keep this in mind when using this
function.

Chapter 13

Page 720

13.3.6.4 Advanced Memory Management Functions

The MS-DOS 58h opcode lets programmers adjust MS-DOS’ memory allocation strat-
egy and control the use of upper memory blocks (UMBs). There are four subfunctions to
this call, with the subfunction value appearing in the al register. The following table
describes these calls:

Table 54: Advanced Memory Management Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

58h al-0 ax- strategy Get Allocation Strategy: Returns the current allo-
cation strategy in ax (see table below for details).

58h al-1
bx- strategy

Set Allocation Strategy: Sets the MS-DOS alloca-
tion strategy to the value specified in bx (see the
table below for details).

58H al- 2 al- link flag Get Upper Memory Link: Returns true/false
(1/0) in al to determine whether a program can
allocate memory in the upper memory blocks.

58h al- 3
bx- link flag
(0=no link,
1=link okay).

Set Upper Memory Link: Links or unlinks the
upper memory area. When linked, an application
can allocate memory from the UMB (using the
normal DOS allocate call).

Table 55: Memory Allocation Strategies

Value Name Description

0 First Fit Low Search conventional memory for the first free block of
memory large enough to satisfy the allocation request.
This is the default case.

1 Best Fit Low Search conventional memory for the smallest block
large enough to satisfy the request.

2 Last Fit Low Search conventional memory from the highest address
downward for the first block large enough to satisfy
the request.

80h First Fit High Search high memory, then conventional memory, for
the first available block that can satisfy the allocation
request.

81h Best Fit High Search high memory, then conventional memory for
the smallest block large enough to satisfy the alloca-
tion request.

82h Last Fit High Search high memory from high addresses to low, then
conventional memory from high addresses to low, for
the first block large enough to satisfy the request.

40h First Fit Highonly Search high memory only for the first block large
enough to satisfy the request.

41h Best Fit Highonly Search high memory only for the smallest block large
enough to satisfy the request.

MS-DOS, PC BIOS, and File I/O

Page 721

These different allocation strategies can have an impact on system performance. For
an analysis of different memory management strategies, please consult a good operating
systems theory text.

13.3.7 MS-DOS Process Control Functions

DOS provides several services dealing with loading, executing, and terminating pro-
grams. Many of these functions have been rendered obsolete by later versions of DOS.
There are three5 functions of general interest- program termination, terminate and stay
resident, and execute a program. These three functions will be discussed in the following
sections.

13.3.7.1 Terminate Program Execution

Function (ah): 4Ch
Entry parameters: al- return code
Exit parameters: Does not return to your program

This is the function call normally used to terminate your program. It returns control to
the calling process (normally, but not necessarily, DOS). A return code can be passed to the
calling process in the al register. Exactly what meaning this return code has is entirely up
to you. This return code can be tested with the DOS “IF ERRORLEVEL return code” com-
mand in a DOS batch file. All files opened by the current process will be automatically
closed upon program termination.

Note that the UCR Standard Library function “ExitPgm” is simply a macro which
makes this particular DOS call. This is the normal way of returning control back to
MS-DOS or some other program which ran the currently active application.

13.3.7.2 Terminate, but Stay Resident

Function (ah): 31h
Entry parameters: al- return code

dx- memory size, in paragraphs
Exit parameters: does not return to your program

This function also terminates program execution, but upon returning to DOS, the
memory in use by the process is not returned to the DOS free memory pool. Essentially,
the program remains in memory. Programs which remain resident in memory after
returning to DOS are often called TSRs (terminate and stay resident programs).

When this command is executed, the dx register contains the number of memory para-
graphs to leave around in memory. This value is measured from the beginning of the
“program segment prefix”, a segment marking the start of your file in memory. The
address of the PSP (program segment prefix) is passed to your program in the ds register

5. Actually, there are others. See the DOS technical reference manual for more details. We will only consider these
three here.

42h Last Fit Highonly Search high memory only, from the end of memory
downward, for the first block large enough to satisfy
the request.

Table 55: Memory Allocation Strategies

Value Name Description

Chapter 13

Page 722

when your program is first executed. You’ll have to save this value if your program is a
TSR6.

Programs that terminate and stay resident need to provide some mechanism for
restarting. Once they return to DOS they cannot normally be restarted. Most TSRs patch
into one of the interrupt vectors (such as a keyboard, printer, or serial interrupt vector) in
order to restart whenever some hardware related event occurs (such as when a key is
pressed). This is how “pop-up” programs like SmartKey work.

Generally, TSR programs are pop-ups or special device drivers. The TSR mechanism
provides a convenient way for you to load your own routines to replace or augment BIOS’
routines. Your program loads into memory, patches the appropriate interrupt vector so
that it points at an interrupt handler internal to your code, and then terminates and stays
resident. Now, when the appropriate interrupt instruction is executed, your code will be
called rather than BIOS’.

There are far too many details concerning TSRs including compatibility issues, DOS
re-entrancy issues, and how interrupts are processed, to be considered here. Additional
details will appear in a later chapter.

13.3.7.3 Execute a Program

Function (ah): 40h
Entry parameters: ds:dx- pointer to pathname of program to execute
 es:bx- Pointer to parameter block
 al- 0=load and execute, 1=load only, 3=load overlay.
Exit parameters: If carry is set, ax contains one of the following error codes:

 1- invalid function
 2- file not found

 5- access denied
 8- not enough memory

 10- bad environment
11- bad format

The execute (exec) function is an extremely complex, but at the same time, very useful
operation. This command allows you to load or load and execute a program off of the disk
drive. On entry into the exec function, the ds:dx registers contain a pointer to a zero termi-
nated string containing the name of the file to be loaded or executed, es:bx points at a
parameter block, and al contains zero or one depending upon whether you want to load
and execute a program or simply load it into memory. On return, if the carry is clear, then
DOS properly executed the command. If the carry flag is set, then DOS encountered an
error while executing the command.

The filename parameter can be a full pathname including drive and subdirectory
information. “B:\DIR1\DIR2\MYPGM.EXE” is a perfectly valid filename (remember,
however, it must be zero terminated). The segmented address of this pathname is passed
in the ds:dx registers.

The es:bx registers point at a parameter block for the exec call. This parameter block
takes on three different forms depending upon whether a program is being loaded and
executed (al=0), just loaded into memory (al=1), or loaded as an overlay (al=3).

If al=0, the exec call loads and executes a program. In this case the es:bx registers point
at a parameter block containing the following values:

 Offset Description
0 A word value containing the segment address of the default environment (usually this

is set to zero which implies the use of the standard DOS environment).
2 Double word pointer containing the segment address of a command line string.

6. DOS also provides a call which will return the PSP for your program.

MS-DOS, PC BIOS, and File I/O

Page 723

6 Double word pointer to default FCB at address 5Ch
0Ah Double word pointer to default FCB at address 6Ch

The environment area is a set of strings containing default pathnames and other infor-
mation (this information is provided by DOS using the PATH, SET, and other DOS com-
mands). If this parameter entry contains zero, then exec will pass the standard DOS
environment on to the new procedure. If non-zero, then this parameter contains the seg-
ment address of the environment block that your process is passing on to the program
about to be executed. Generally, you should store a zero at this address.

The pointer to the command string should contain the segmented address of a length
prefixed string which is also terminated by a carriage return character (the carriage return
character is not figured into the length of the string). This string corresponds to the data
that is normally typed after the program name on the DOS command line. For example, if
you’re executing the linker automatically, you might pass a command string of the follow-
ing form:

CmdStr byte 16,”MyPgm+Routines /m”,0dh

The second item in the parameter block must contain the segmented address of this
string.

The third and fourth items in the parameter block point at the default FCBs. FCBs are
used by the obsolete DOS filing commands, so they are rarely used in modern application
programs. Since the data structures these two pointers point at are rarely used, you can
point them at a group of 20 zeros.

 Example: Format a floppy disk in drive A: using the FORMAT.EXE command

mov ah, 4Bh
mov al, 0
mov dx, seg PathName
mov ds, dx
lea dx, PathName
mov bx, seg ParmBlock
mov es, bx
lea bx, ParmBlock
int 21h
 .
 .
 .

PathName byte ‘C:\DOS\FORMAT.EXE’,0
ParmBlock word 0 ;Default environment

dword CmdLine ;Command line string
dword Dummy,Dummy ;Dummy FCBs

CmdLine byte 3,’ A:’,0dh
Dummy byte 20 dup (?)

MS-DOS versions earlier than 3.0 do not preserve any registers except cs:ip when you
execute the exec call. In particular, ss:sp is not preserved. If you’re using DOS v2.x or ear-
lier, you’ll need to use the following code:

;Example: Format a floppy disk in drive A: using the FORMAT.EXE command

<push any registers you need preserved>

mov cs:SS_Save, ss ;Save SS:SP to a location
mov cs:SP_Save, sp ; we have access to later.
mov ah, 4Bh ;EXEC DOS opcode.
mov al, 0 ;Load and execute.
mov dx, seg PathName ;Get filename into DS:DX.
mov ds, dx
lea dx, PathName
mov bx, seg ParmBlock ;Point ES:BX at parameter
mov es, bx ; block.
lea bx, ParmBlock
int 21h
mov ss, cs:SS_Save ;Restore SS:SP from saved
mov sp, cs:SP_Save ; locations.

Chapter 13

Page 724

<Restore registers pushed onto the stack>
 .
 .
 .

SS_Save word ?
SP_Save word ?

 .
 .
 .

PathName byte ‘C:\DOS\FORMAT.EXE’,0
ParmBlock word 0 ;Default environment

dword CmdLine ;Command line string
dword Dummy,Dummy;Dummy ;FCBs

CmdLine byte 3,’ A:’,0dh
Dummy byte 20 dup (?)

SS_Save and SP_Save must be declared inside your code segment. The other variables can
be declared anywhere.

The exec command automatically allocates memory for the program being executed.
If you haven’t freed up unused memory before executing this command, you may get an
insufficient memory error. Therefore, you should use the DOS deallocate memory com-
mand to free up unused memory before attempting to use the exec command.

If al=1 when the exec function executes, DOS will load the specified file but will not
execute it. This function is generally used to load a program to execute into memory but
give the caller control and let the caller start that code. When this function call is made,
es:bx points at the following parameter block:

Offset Description
0 Word value containing the segment address of the environment block for the new pro-

cess. If you want to use the parent process’ environment block set this word to zero.
2 Dword pointer to the command tail for this operation. The command tail is the com-

mand line string which will appear at location PSP:80 (See “The Program Segment Pre-
fix (PSP)” on page 739 and “Accessing Command Line Parameters” on page 742).

6 Address of default FCB #1. For most programs, this should point at a block of 20 zeros
(unless, of course, you’re running a program which uses FCBs.).

0Ah Address of default FCB #2. Should also point at a block of 20 zeros.
0Eh SS:SP value. You must load these four bytes into SS and SP before starting the applica-

tion.
12h CS:IP value. These four bytes contain the starting address of the program.

The SSSP and CSIP fields are output values. DOS fills in the fields and returns them in the
load structure. The other fields are all inputs which you must fill in before calling the exec
function with al=1.

When you execute the exec command with al=-3, DOS simply loads an overlay into
memory. Overlays generally consist of a single code segment which contains some func-
tions you want to execute. Since you are not creating a new process, the parameter block
for this type of load is much simpler than for the other two types of load operations. On
entry, es:bx must point at the following parameter block in memory:

Offset Description
0 Word value containing the segment address of where this file is going to be loaded into

memory. The file will be loaded at offset zero within this segment.
2 Word value containing a relocation factor for this file.

Unlike the load and execute functions, the overlay function does not automatically
allocate storage for the file being loaded. Your program has to allocate sufficient storage
and then pass the address of this storage block to the exec command (though the parame-
ter block above). Only the segment address of this block is passed to the exec command,
the offset is always assumed to be zero. The relocation factor should also contain the seg-
ment address for “.EXE” files. For “.COM” files, the relocation factor parameter should be
zero.

MS-DOS, PC BIOS, and File I/O

Page 725

The overlay command is quite useful for loading overlays from disk into memory. An
overlay is a segment of code which resides on the disk drive until the program actually
needs to execute its code. Then the code is loaded into memory and executed. Overlays
can reduce the amount of memory your program takes up by allowing you to reuse the
same portion of memory for different overlay procedures (clearly, only one such proce-
dure can be active at any one time). By placing seldom-used code and initialization code
into overlay files, you can help reduce the amount of memory used by your program file.
One word of caution, however, managing overlays is a very complex task. This is not
something a beginning assembly language programmer would want to tackle right away.
When loading a file into memory (as opposed to loading and executing a file), DOS does
not scramble all of the registers, so you needn’t take the extra care necessary to preserve
the ss:sp and other registers.

The MS-DOS Encyclopedia contains an excellent description of the use of the exec
function.

13.3.8 MS-DOS “New” Filing Calls

Starting with DOS v2.0, Microsoft introduced a set of file handling procedures which
(finally) made disk file access bearable under MS-DOS. Not only bearable, but actually
easy to use! The following sections describe the use of these commands to access files on a
disk drive.

File commands which deal with filenames (Create, Open, Delete, Rename, and others)
are passed the address of a zero-terminated pathname. Those that actually open a file
(Create and Open) return a file handle as the result (assuming, of course, that there wasn’t
an error). This file handle is used with other calls (read, write, seek, close, etc.) to gain
access to the file you’ve opened. In this respect, a file handle is not unlike a file variable in
Pascal. Consider the following Microsoft/Turbo Pascal code:

program DemoFiles; var F:TEXT;
begin

assign(f,’FileName.TXT’);
rewrite(f);
writeln(f,’Hello there’);
close(f);

end.

The file variable “f” is used in this Pascal example in much the same way that a file
handle is used in an assembly language program – to gain access to the file that was cre-
ated in the program.

All the following DOS filing commands return an error status in the carry flag. If the
carry flag is clear when DOS returns to your program, then the operation was completed
successfully. If the carry flag is set upon return, then some sort of error has occurred and
the AX register contains the error number. The actual error return values will be discussed
along with each function in the following sections.

13.3.8.1 Open File

Function (ah): 3Dh
Entry parameters:

al- file access value
 0- File opened for reading

 1- File opened for writing
2- File opened for reading and writing

ds:dx- Point at a zero terminated string containing the filename.
Exit parameters: If the carry is set, ax contains one of the following error codes:

 2- File not found

Chapter 13

Page 726

 4- Too many open files
 5- Access denied

 12- Invalid access
If the carry is clear, ax contains the file handle value assigned by DOS.

A file must be opened before you can access it. The open command opens a file that
already exists. This makes it quite similar to Pascal’s Reset procedure. Attempting to open
a file that doesn’t exist produces an error. Example:

lea dx, Filename ;Assume DS points at segment
mov ah, 3dh ; of filename
mov al, 0 ;Open for reading.
int 21h
jc OpenError
mov FileHandle, ax

If an error occurs while opening a file, the file will not be opened. You should always
check for an error after executing a DOS open command, since continuing to operate on
the file which hasn’t been properly opened will produce disastrous consequences. Exactly
how you handle an open error is up to you, but at the very least you should print an error
message and give the user the opportunity to specify a different filename.

If the open command completes without generating an error, DOS returns a file han-
dle for that file in the ax register. Typically, you should save this value away somewhere so
you can use it when accessing the file later on.

13.3.8.2 Create File

Function (ah): 3Ch
Entry parameters: ds:dx- Address of zero terminated pathname

cx- File attribute
Exit parameters: If the carry is set, ax contains one of the following error codes:

 3- Path not found
 4- Too many open files

 5- Access denied
If the carry is clear, ax is returned containing the file handle

Create opens a new file for output. As with the OPEN command, ds:dx points at a zero
terminated string containing the filename. Since this call creates a new file, DOS assumes
that you’re opening the file for writing only. Another parameter, passed in cx, is the initial
file attribute settings. The L.O. six bits of cx contain the following values:

Bit Meaning if equal to one
0 File is a Read-Only file
1 File is a hidden file
2 File is a system file
3 File is a volume label name
4 File is a subdirectory
5 File has been archived

In general, you shouldn’t set any of these bits. Most normal files should be created
with a file attribute of zero. Therefore, the cx register should be loaded with zero before
calling the create function.

Upon exit, the carry flag is set if an error occurs. The “Path not found” error requires
some additional explanation. This error is generated, not if the file isn’t found (which
would be most of the time since this command is typically used to create a new file), but if
a subdirectory in the pathname cannot be found.

If the carry flag is clear when DOS returns to your program, then the file has been
properly opened for output and the ax register contains the file handle for this file.

MS-DOS, PC BIOS, and File I/O

Page 727

13.3.8.3 Close File

Function (ah): 3Eh
Entry parameters: bx- File Handle
Exit parameters: If the carry flag is set, ax contains 6, the only possible error, which is an invalid handle

error.

This call is used to close a file opened with the Open or Create commands above. It is
passed the file handle in the bx register and, assuming the file handle is valid, closes the
specified file.

You should close all files your program uses as soon as you’re through with them to
avoid disk file corruption in the event the user powers the system down or resets the
machine while your files are left open.

Note that quitting to DOS (or aborting to DOS by pressing control-C or control-break)
automatically closes all open files. However, you should never rely on this feature since
doing so is an extremely poor programming practice.

13.3.8.4 Read From a File

Function (ah): 3Fh
Entry parameters: bx- File handle

cx- Number of bytes to read
 ds:dx- Array large enough to hold bytes read
Exit parameters: If the carry flag is set, ax contains one of the following error codes

 5- Access denied
 6- Invalid handle

If the carry flag is clear, ax contains the number of bytes actually read from the file.

The read function is used to read some number of bytes from a file. The actual number
of bytes is specified by the cx register upon entry into DOS. The file handle, which speci-
fies the file from which the bytes are to be read, is passed in the bx register. The ds:dx regis-
ter contains the address of a buffer into which the bytes read from the file are to be stored.

On return, if there wasn’t an error, the ax register contains the number of bytes actu-
ally read. Unless the end of file (EOF) was reached, this number will match the value
passed to DOS in the cx register. If the end of file has been reached, the value return in ax
will be somewhere between zero and the value passed to DOS in the cx register. This is the
only test for the EOF condition.

Example: This example opens a file and reads it to the EOF

mov ah, 3dh ;Open the file
mov al, 0 ;Open for reading
lea dx, Filename ;Presume DS points at filename
int 21h ; segment.
jc BadOpen
mov FHndl, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 1 ;Read one byte
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx ;EOF reached?
jne EOF
mov al, Buffer ;Get character read
putc ;Print it
jmp LP ;Read next byte

EOF: mov bx, FHndl
mov ah, 3eh ;Close file

Chapter 13

Page 728

int 21h
jc CloseError

This code segment will read the entire file whose (zero-terminated) filename is found
at address “Filename” in the current data segment and write each character in the file to
the standard output device using the UCR StdLib putc routine. Be forewarned that
one-character-at-a-time I/O such as this is extremely slow. We’ll discuss better ways to
quickly read a file a little later in this chapter.

13.3.8.5 Write to a File

Function (ah): 40h
Entry parameters: bx- File handle

cx- Number of bytes to write
ds:dx- Address of buffer containing data to write

Exit parameters: If the carry is set, ax contains one of the following error codes
 5- Accessed denied
 6- Invalid handle

If the carry is clear on return, ax contains the number of bytes actually written to the
file.

This call is almost the converse of the read command presented earlier. It writes the
specified number of bytes at ds:dx to the file rather than reading them. On return, if the
number of bytes written to the file is not equal to the number originally specified in the cx
register, the disk is full and this should be treated as an error.

If cx contains zero when this function is called, DOS will truncate the file to the cur-
rent file position (i.e., all data following the current position in the file will be deleted).

13.3.8.6 Seek (Move File Pointer)

Function (ah): 42h Entry parameters:
al- Method of moving
 0- Offset specified is from the beginning of the file.

 1- Offset specified is distance from the current file pointer.
 2- The pointer is moved to the end of the file minus the specified offset.

bx- File handle.
cx:dx- Distance to move, in bytes.

Exit parameters: If the carry is set, ax contains one of the following error codes
 1- Invalid function
 6- Invalid handle

If the carry is clear, dx:ax contains the new file position

This command is used to move the file pointer around in a random access file. There
are three methods of moving the file pointer, an absolute distance within the file (if al=0),
some positive distance from the current file position (if al=1), or some distance from the
end of the file (if al=2). If AL doesn’t contain 0, 1, or 2, DOS will return an invalid function
error. If this call is successfully completed, the next byte read or written will occur at the
specified location.

Note that DOS treats cx:dx as an unsigned integer. Therefore, a single seek command
cannot be used to move backwards in the file. Instead, method #0 must be used to posi-
tion the file pointer at some absolute position in the file. If you don’t know where you cur-
rently are and you want to move back 256 bytes, you can use the following code:

mov ah, 42h ;Seek command
mov al, 1 ;Move from current location
xor cx, cx ;Zero out CX and DX so we
xor dx, dx ; stay right here

MS-DOS, PC BIOS, and File I/O

Page 729

mov bx, FileHandle
int 21h
jc SeekError
sub ax, 256 ;DX:AX now contains the
sbb dx, 0 ; current file position, so
mov cx, dx ; compute a location 256
mov dx, ax ; bytes back.
mov ah, 42h
mov al, 0 ;Absolute file position
int 21h ;BX still contains handle.

13.3.8.7 Set Disk Transfer Address (DTA)

Function (ah): 1Ah Entry parameters:
ds:dx- Pointer to DTA

Exit parameters: None

This command is called “Set Disk Transfer Address” because it was (is) used with the
original DOS v1.0 file functions. We wouldn’t normally consider this function except for
the fact that it is also used by functions 4Eh and 4Fh (described next) to set up a pointer to
a 43-byte buffer area. If this function isn’t executed before executing functions 4Eh or 4Fh,
DOS will use the default buffer space at PSP:80h.

13.3.8.8 Find First File

Function (ah): 4Eh
Entry parameters: cx- Attributes

ds:dx- Pointer to filename
Exit parameters: If carry is set, ax contains one of the following error codes

 2- File not found
 18- No more files

The Find First File and Find Next File (described next) functions are used to search for
files specified using ambiguous file references. An ambiguous file reference is any file-
name containing the “*” and “?” wildcard characters. The Find First File function is used
to locate the first such filename within a specified directory, the Find Next File function is
used to find successive entries in the directory.

Generally, when an ambiguous file reference is provided, the Find First File command
is issued to locate the first occurrence of the file, and then a loop is used, calling Find Next
File, to locate all other occurrences of the file within that loop until there are no more files
(error #18). Whenever Find First File is called, it sets up the following information at the
DTA:

Offset Description
0 Reserved for use by Find Next File
21 Attribute of file found
22 Time stamp of file
24 Date stamp of file
26 File size in bytes
30 Filename and extension (zero terminated)

 (The offsets are decimal)

Assuming Find First File doesn’t return some sort of error, the name of the first file
matching the ambiguous file description will appear at offset 30 in the DTA.

Note: if the specified pathname doesn’t contain any wildcard characters, then Find
First File will return the exact filename specified, if it exists. Any subsequent call to Find
Next File will return an error.

Chapter 13

Page 730

The cx register contains the search attributes for the file. Normally, cx should contain
zero. If non-zero, Find First File (and Find Next File) will include file names which have
the specified attributes as well as all normal file names.

13.3.8.9 Find Next File

Function (ah): 4Fh
Entry parameters: none
Exit parameters: If the carry is set, then there aren’t any more files and ax will be returned containing 18.

The Find Next File function is used to search for additional file names matching an
ambiguous file reference after a call to Find First File. The DTA must point at a data record
set up by the Find First File function.

Example: The following code lists the names of all the files in the current directory
that end with “.EXE”. Presumably, the variable “DTA” is in the current data segment:

mov ah, 1Ah ;Set DTA
lea dx, DTA
int 21h
xor cx, cx ;No attributes.
lea dx, FileName
mov ah, 4Eh ;Find First File
int 21h
jc NoMoreFiles ;If error, we’re done

DirLoop: lea si, DTA+30 ;Address of filename
cld

PrtName: lodsb
test al, al ;Zero byte?
jz NextEntry
putc ;Print this character
jmp PrtName

NextEntry: mov ah, 4Fh ;Find Next File
int 21h
jnc DirLoop ;Print this name

13.3.8.10 Delete File

Function (ah): 41h
Entry parameters: ds:dx- Address of pathname to delete
Exit parameters: If carry set, ax contains one of the following error codes

 2- File not found
 5- Access denied

This function will delete the specified file from the directory. The filename must be an
unambiguous filename (i.e., it cannot contain any wildcard characters).

13.3.8.11 Rename File

Function (ah): 56h Entry parameters:
ds:dx- Pointer to pathname of existing file
es:di- Pointer to new pathname

Exit parameters: If carry set, ax contains one of the following error codes
 2- File not found
 5- Access denied
 17- Not the same device

MS-DOS, PC BIOS, and File I/O

Page 731

This command serves two purposes: it allows you to rename one file to another and it
allows you to move a file from one directory to another (as long as the two subdirectories
are on the same disk).

Example: Rename “MYPGM.EXE” to “YOURPGM.EXE”

; Assume ES and DS both point at the current data segment
; containing the filenames.

lea dx, OldName
lea di, NewName
mov ah, 56h
int 21h
jc BadRename

 .
 .
 .

OldName byte “MYPGM.EXE”,0
NewName byte “YOURPGM.EXE”,0

Example #2: Move a filename from one directory to another:
; Assume ES and DS both point at the current data segment
; containing the filenames.

lea dx, OldName
lea di, NewName
mov ah, 56h
int 21h
jc BadRename

 .
 .
 .

OldName byte “\DIR1\MYPGM.EXE”,0
NewName byte “\DIR2\MYPGM.EXE”,0

13.3.8.12 Change/Get File Attributes

Function (ah): 43h
Entry parameters: al- Subfunction code

 0- Return file attributes in cx
 1- Set file attributes to those in cx

 cx- Attribute to be set if AL=01
 ds:dx- address of pathname

Exit parameters: If carry set, ax contains one of the following error codes:
 1- Invalid function
3- Pathname not found
5- Access denied

If the carry is clear and the subfunction was zero cx will contain the file’s attributes.

This call is useful for setting/resetting and reading a file’s attribute bits. It can be used
to set a file to read-only, set/clear the archive bit, or otherwise mess around with the file
attributes.

13.3.8.13 Get/Set File Date and Time

Function (ah): 57h
Entry parameters: al- Subfunction code

 0- Get date and time
 1- Set date and time

 bx- File handle
 cx- Time to be set (if AL=01)
 dx- Date to be set (if AL=01)

Chapter 13

Page 732

Exit parameters: If carry set, ax contains one of the following error codes
 1- Invalid subfunction
 6- Invalid handle

If the carry is clear, cx/dx is set to the time/date if al=00

This call sets the “last-write” date/time for the specified file. The file must be open
(using open or create) before using this function. The date will not be recorded until the
file is closed.

13.3.8.14 Other DOS Calls

The following tables briefly list many of the other DOS calls. For more information on
the use of these DOS functions consult the Microsoft MS-DOS Programmer’s Reference or
the MS-DOS Technical Reference.

Table 56: Miscellaneous DOS File Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

39h ds:dx- pointer to
zero terminated
pathname.

Create Directory: Creates a new directory with
the specified name.

3Ah ds:dx- pointer to
zero terminated
pathname.

Remove Directory: Deletes the directory with the
specified pathname. Error if directory is not
empty or the specified directory is the current
directory.

3Bh ds:dx- pointer to
zero terminated
pathname.

Change Directory: Changes the default directory
to the specified pathname.

45h bx- file handle ax- new handle Duplicate File Handle: creates a copy of a file
handle so a program can access a file using two
separate file variables. This allows the program
to close the file with one handle and continue
accessing it with the other.

46h bx- file handle
cx- duplicate
handle

Force Duplicate File Handle: Like function 45h
above, except you specify which handle (in cx)
you want to refer to the existing file (specified by
bx).

47h ds:si- pointer to
buffer
dl- drive

Get Current Directory: Stores a string containing
the current pathname (terminated with a zero)
starting at location ds:si. These registers must
point at a buffer containing at least 64 bytes. The
dl register specifies the drive number (0=default,
1=A, 2=B, 3=C, etc.).

5Ah cx- attributes
ds:dx- pointer to
temporary path.

ax- handle Create Temporary File: Creates a file with a
unique name in the directory specified by the
zero terminated string at which ds:dx points.
There must be at least 13 zero bytes beyond the
end of the pathname because this function will
store the generated filename at the end of the
pathname. The attributes are the same as for the
Create call.

MS-DOS, PC BIOS, and File I/O

Page 733

5Bh cx- attributes
ds:dx- pointer to
zero terminated
pathname.

ax- handle Create New File: Like the create call, but this call
insists that the file not exist. It returns an error if
the file exists (rather than deleting the old file).

67h bx- handles Set Maximum Handle Count: This function sets
the maximum number of handles a program can
use at any one given time.

68h bx- handle Commit File: Flushes all data to a file without
closing it, ensuring that the file’s data is current
and consistent.

Table 57: Miscellaneous DOS Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

25h al- interrupt #
ds:dx- pointer to
interrupt service
routine.

Set Interrupt Vector: Stores the specified address
in ds:dx into the interrupt vector table at the
entry specified by the al register.

30h al- major version
ah- minor version
bh- Version flag
bl:cx- 24 bit serial
number

Get Version Number: Returns the current version
number of DOS (or value set by SETVER).

33h al- 0 dl- break flag
(0=off, 1=on)

Get Break Flag: Returns the status of the DOS
break flag. If on, MS-DOS checks for ctrl-C when
processing any DOS command; if off, MS-DOS
only checks on functions 1-0Ch.

33h al- 1
dl- break flag.

Set Break Flag: Sets the MS-DOS break flag
according to the value in dl (see function above
for details).

33h al- 6 bl- major version
bh- minor version
dl- revision
dh- version flags

Get MS-DOS Version: Returns the “real” version
number, not the one set by the SETVER com-
mand. Bits three and four of the version flags are
one if DOS is in ROM or DOS is in high memory,
respectively.

34h es:bx- pointer to
InDOS flag.

Get InDOS Flag Address: Returns the address of
the InDOS flag. This flag helps prevent reen-
trancy in TSR applications

35h al- interrupt # es:bx- pointer to
interrupt service
routine.

Get Interrupt Vector: Returns a pointer to the
interrupt service routine for the specified inter-
rupt number. See function 25h above for more
details.

44h al- subcode
Other parame-
ters!

Device Control: This is a whole family of addi-
tional DOS commands to control various devices.
See the DOS programmer’s reference manual for
more details.

Table 56: Miscellaneous DOS File Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

Chapter 13

Page 734

In addition to the above commands, there are several additional DOS calls that deal
with networks and international character sets. See the MS-DOS reference for more
details.

13.3.9 File I/O Examples

Of course, one of the main reasons for making calls to DOS is to manipulate files on a
mass storage device. The following examples demonstrate some uses of character I/O
using DOS.

13.3.9.1 Example #1: A Hex Dump Utility

This program dumps a file in hexadecimal format. The filename must be hard coded
into the file (see “Accessing Command Line Parameters” later in this chapter).

include stdlib.a
includelib stdlib.lib

cseg segment byte public ‘CODE’
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

MainPgm proc far

; Properly set up the segment registers:

mov ax, seg dseg
mov ds, ax
mov es, ax
mov ah, 3dh
mov al, 0 ;Open file for reading
lea dx, Filename ;File to open
int 21h
jnc GoodOpen

4Dh al- return value
ah- termination
method

Get Child Program Return Value: Returns the last
result code from a child program in al. The ah
register contains the termination method, which
is one of the following values: 0-normal, 1-ctrl-C,
2-critical device error, 3-terminate and stay resi-
dent.

50h bx- PSP address Set PSP Address: Set DOS’ current PSP address to
the value specified in the bx register.

51h bx- PSP address Get PSP Address: Returns a pointer to the current
PSP in the bx register.

59h ax- extended
error
bh- error class
bl- error action
ch- error location

Get Extended Error: Returns additional informa-
tion when an error occurs on a DOS call. See the
DOS programmer’s guide for more details on
these errors and how to handle them.

5Dh al- 0Ah
ds:si- pointer to
extended error
structure.

Set Extended Error: copies the data from the
extended error structure to DOS’ internal record.

Table 57: Miscellaneous DOS Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

MS-DOS, PC BIOS, and File I/O

Page 735

print
byte ‘Cannot open file, aborting program...’,cr,0
jmp PgmExit

GoodOpen: mov FileHandle, ax ;Save file handle
mov Position, 0 ;Initialize file pos counter

ReadFileLp: mov al, byte ptr Position
and al, 0Fh ;Compute (Position MOD 16)
jnz NotNewLn ;Start new line each 16 bytes
putcr
mov ax, Position ;Print offset into file
xchg al, ah
puth
xchg al, ah
puth
print
byte ‘: ‘,0

NotNewLn: inc Position ;Increment character count
mov bx, FileHandle
mov cx, 1 ;Read one byte
lea dx, buffer ;Place to store that byte
mov ah, 3Fh ;Read operation
int 21h
jc BadRead
cmp ax, 1 ;Reached EOF?
jnz AtEOF
mov al, Buffer ;Get the character read and
puth ; print it in hex
mov al, ‘ ‘ ;Print a space between values
putc
jmp ReadFileLp

BadRead: print
byte cr, lf
byte ‘Error reading data from file, aborting’
byte cr,lf,0

AtEOF: mov bx, FileHandle ;Close the file
mov ah, 3Eh
int 21h

PgmExit: ExitPgm
MainPgm endp

cseg ends
dseg segment byte public ‘data’

Filename byte ‘hexdump.asm’,0 ;Filename to dump
FileHandle word ?
Buffer byte ?
Position word 0

dseg ends

sseg segment byte stack ‘stack’
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end MainPgm

13.3.9.2 Example #2: Upper Case Conversion

The following program reads one file, converts all the lower case characters to upper
case, and writes the data to a second output file.

include stdlib.a
includelib stdlib.lib

Chapter 13

Page 736

cseg segment byte public ‘CODE’
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

MainPgm proc far

; Properly set up the segment registers:

mov ax, seg dseg
mov ds, ax
mov es, ax

;--
;
; Convert UCCONVRT.ASM to uppercase
;
; Open input file:

mov ah, 3dh
mov al, 0 ;Open file for reading
lea dx, Filename ;File to open
int 21h
jnc GoodOpen
print
byte ‘Cannot open file, aborting program...’,cr,lf,0
jmp PgmExit

GoodOpen: mov FileHandle1, ax ;Save input file handle

; Open output file:

mov ah, 3Ch ;Create file call
mov cx, 0 ;Normal file attributes
lea dx, OutFileName ;File to open
int 21h
jnc GoodOpen2
print
byte ‘Cannot open output file, aborting program...’
byte cr,lf,0
mov ah, 3eh ;Close input file
mov bx, FileHandle1
int 21h
jmp PgmExit ;Ignore any error.

GoodOpen2: mov FileHandle2, ax ;Save output file handle

ReadFileLp: mov bx, FileHandle1
mov cx, 1 ;Read one byte
lea dx, buffer ;Place to store that byte
mov ah, 3Fh ;Read operation
int 21h
jc BadRead
cmp ax, 1 ;Reached EOF?
jz ReadOK
jmp AtEOF

ReadOK: mov al, Buffer ;Get the character read and
cmp al, ‘a’ ; convert it to upper case
jb NotLower
cmp al, ‘z’
ja NotLower
and al, 5fh ;Set Bit #5 to zero.

NotLower: mov Buffer, al

; Now write the data to the output file

mov bx, FileHandle2
mov cx, 1 ;Read one byte
lea dx, buffer ;Place to store that byte
mov ah, 40h ;Write operation
int 21h
jc BadWrite
cmp ax, 1 ;Make sure disk isn’t full
jz ReadFileLp

BadWrite: print

MS-DOS, PC BIOS, and File I/O

Page 737

byte cr, lf
byte ‘Error writing data to file, aborting operation’
byte cr,lf,0
jmp short AtEOF

BadRead: print
byte cr, lf
byte ‘Error reading data from file, aborting ‘
byte ‘operation’,cr,lf,0

AtEOF: mov bx, FileHandle1 ;Close the file
mov ah, 3Eh
int 21h
mov bx, FileHandle2
mov ah, 3eh
int 21h

;--

PgmExit: ExitPgm
MainPgm endp
cseg ends

dseg segment byte public ‘data’

Filename byte ‘ucconvrt.asm’,0 ;Filename to convert
OutFileName byte ‘output.txt’,0 ;Output filename
FileHandle1 word ?
FileHandle2 word ?
Buffer byte ?
Position word 0

dseg ends

sseg segment byte stack ‘stack’
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end MainPgm

13.3.10 Blocked File I/O

The examples in the previous section suffer from a major drawback, they are
extremely slow. The performance problems with the code above are entirely due to DOS.
Making a DOS call is not, shall we say, the fastest operation in the world. Calling DOS
every time we want to read or write a single character from/to a file will bring the system
to its knees. As it turns out, it doesn’t take (practically) any more time to have DOS read or
write two characters than it does to read or write one character. Since the amount of time
we (usually) spend processing the data is negligible compared to the amount of time DOS
takes to return or write the data, reading two characters at a time will essentially double
the speed of the program. If reading two characters doubles the processing speed, how
about reading four characters? Sure enough, it almost quadruples the processing speed.
Likewise processing ten characters at a time almost increases the processing speed by an
order of magnitude. Alas, this progression doesn’t continue forever. There comes a point
of diminishing returns- when it takes far too much memory to justify a (very) small
improvement in performance (keeping in mind that reading 64K in a single operation
requires a 64K memory buffer to hold the data). A good compromise is 256 or 512 bytes.
Reading more data doesn’t really improve the performance much, yet a 256 or 512 byte
buffer is easier to deal with than larger buffers.

Reading data in groups or blocks is called blocked I/O. Blocked I/O is often one to two
orders of magnitude faster than single character I/O, so obviously you should use
blocked I/O whenever possible.

Chapter 13

Page 738

There is one minor drawback to blocked I/O-- it’s a little more complex to program
than single character I/O. Consider the example presented in the section on the DOS read
command:

Example: This example opens a file and reads it to the EOF

mov ah, 3dh ;Open the file
mov al, 0 ;Open for reading
lea dx, Filename ;Presume DS points at

filename
int 21h ; segment
jc BadOpen
mov FHndl, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 1 ;Read one byte
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx ;EOF reached?
jne EOF
mov al, Buffer ;Get character read
putc ;Print it (IOSHELL call)
jmp LP ;Read next byte

EOF: mov bx, FHndl
mov ah, 3eh ;Close file
int 21h
jc CloseError

There isn’t much to this program at all. Now consider the same example rewritten to use
blocked I/O:

Example: This example opens a file and reads it to the EOF using blocked I/O

mov ah, 3dh ;Open the file
mov al, 0 ;Open for reading
lea dx, Filename ;Presume DS points at

filename
int 21h ; segment
jc BadOpen
mov FHndl, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 256 ;Read 256 bytes
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx;EOF reached?
jne EOF
mov si, 0 ;Note: CX=256 at this point.

PrtLp: mov al, Buffer[si] ;Get character read
putc ;Print it
inc si
loop PrtLp
jmp LP ;Read next block

; Note, just because the number of bytes read doesn’t equal 256,
; don’t get the idea we’re through, there could be up to 255 bytes
; in the buffer still waiting to be processed.

EOF: mov cx, ax
jcxz EOF2 ;If CX is zero, we’re really done.
mov si, 0 ;Process the last block of data read

Finis: mov al, Buffer[si]; from the file which contains
putc ; 1..255 bytes of valid data.
inc si
loop Finis

EOF2: mov bx, FHndl
mov ah, 3eh ;Close file

MS-DOS, PC BIOS, and File I/O

Page 739

int 21h
jc CloseError

This example demonstrates one major hassle with blocked I/O – when you reach the
end of file, you haven’t necessarily processed all of the data in the file. If the block size is
256 and there are 255 bytes left in the file, DOS will return an EOF condition (the number
of bytes read don’t match the request). In this case, we’ve still got to process the characters
that were read. The code above does this in a rather straight-forward manner, using a sec-
ond loop to finish up when the EOF is reached. You’ve probably noticed that the two print
loops are virtually identical. This program can be reduced in size somewhat using the fol-
lowing code which is only a little more complex:

Example: This example opens a file and reads it to the EOF using blocked I/O

mov ah, 3dh ;Open the file
mov al, 0 ;Open for reading
lea dx, Filename ;Presume DS points at

filename
int 21h ; segment.
jc BadOpen
mov FHndl, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 256 ;Read 256 bytes
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
mov bx, ax ;Save for later
mov cx, ax
jcxz EOF
mov si, 0 ;Note: CX=256 at this point.

PrtLp: mov al, Buffer[si] ;Get character read
putc ;Print it
inc si
loop PrtLp
cmp bx, 256 ;Reach EOF yet?
je LP

EOF: mov bx, FHndl
mov ah, 3eh ;Close file
int 21h
jc CloseError

 Blocked I/O works best on sequential files. That is, those files opened only for read-
ing or writing (no seeking). When dealing with random access files, you should read or
write whole records at one time using the DOS read/write commands to process the
whole record. This is still considerably faster than manipulating the data one byte at a
time.

13.3.11 The Program Segment Prefix (PSP)

When a program is loaded into memory for execution, DOS first builds up a program
segment prefix immediately before the program is loaded into memory. This PSP contains
lots of information, some of it useful, some of it obsolete. Understanding the layout of the
PSP is essential for programmers designing assembly language programs.

The PSP is 256 bytes long and contains the following information:

Offset Length Description
0 2 An INT 20h instruction is stored here
2 2 Program ending address
4 1 Unused, reserved by DOS
5 5 Call to DOS function dispatcher
0Ah 4 Address of program termination code

Chapter 13

Page 740

0Eh 4 Address of break handler routine
12h 4 Address of critical error handler routine
16h 22 Reserved for use by DOS
2Ch 2 Segment address of environment area
2Eh 34 Reserved by DOS
50h 3 INT 21h, RETF instructions
53h 9 Reserved by DOS
5Ch 16 Default FCB #1
6Ch 20 Default FCB #2
80h 1 Length of command line string
81h 127 Command line string

Note: locations 80h..FFh are used for the default DTA.

Most of the information in the PSP is of little use to a modern MS-DOS assembly lan-
guage program. Buried in the PSP, however, are a couple of gems that are worth knowing
about. Just for completeness, however, we’ll take a look at all of the fields in the PSP.

The first field in the PSP contains an int 20h instruction. Int 20h is an obsolete mecha-
nism used to terminate program execution. Back in the early days of DOS v1.0, your pro-
gram would execute a jmp to this location in order to terminate. Nowadays, of course, we
have DOS function 4Ch which is much easier (and safer) than jumping to location zero in
the PSP. Therefore, this field is obsolete.

Field number two contains a value which points at the last paragraph allocated to
your program By subtracting the address of the PSP from this value, you can determine
the amount of memory allocated to your program (and quit if there is insufficient memory
available).

The third field is the first of many “holes” left in the PSP by Microsoft. Why they’re
here is anyone’s guess.

The fourth field is a call to the DOS function dispatcher. The purpose of this (now
obsolete) DOS calling mechanism was to allow some additional compatibility with
CP/M-80 programs. For modern DOS programs, there is absolutely no need to worry
about this field.

The next three fields are used to store special addresses during the execution of a pro-
gram. These fields contain the default terminate vector, break vector, and critical error
handler vectors. These are the values normally stored in the interrupt vectors for int 22h,
int 23h, and int 24h. By storing a copy of the values in the vectors for these interrupts, you
can change these vectors so that they point into your own code. When your program ter-
minates, DOS restores those three vectors from these three fields in the PSP. For more
details on these interrupt vectors, please consult the DOS technical reference manual.

The eighth field in the PSP record is another reserved field, currently unavailable for
use by your programs.

The ninth field is another real gem. It’s the address of the environment strings area.
This is a two-byte pointer which contains the segment address of the environment storage
area. The environment strings always begin with an offset zero within this segment. The
environment string area consists of a sequence of zero-terminated strings. It uses the fol-
lowing format:

string1 0 string2 0 string3 0 ... 0 stringn 0 0

That is, the environment area consists of a list of zero terminated strings, the list itself
being terminated by a string of length zero (i.e., a zero all by itself, or two zeros in a row,
however you want to look at it). Strings are (usually) placed in the environment area via
DOS commands like PATH, SET, etc. Generally, a string in the environment area takes the
form

 name = parameters

MS-DOS, PC BIOS, and File I/O

Page 741

For example, the “SET IPATH=C:\ASSEMBLY\INCLUDE” command copies the string
“IPATH=C:\ASSEMBLY\INCLUDE” into the environment string storage area.

Many languages scan the environment storage area to find default filename paths and
other pieces of default information set up by DOS. Your programs can take advantage of
this as well.

The next field in the PSP is another block of reserved storage, currently undefined by
DOS.

The 11th field in the PSP is another call to the DOS function dispatcher. Why this call
exists (when the one at location 5 in the PSP already exists and nobody really uses either
mechanism to call DOS) is an interesting question. In general, this field should be ignored
by your programs.

The 12th field is another block of unused bytes in the PSP which should be ignored.

The 13th and 14th fields in the PSP are the default FCBs (File Control Blocks). File con-
trol blocks are another archaic data structure carried over from CP/M-80. FCBs are used
only with the obsolete DOS v1.0 file handling routines, so they are of little interest to us.
We’ll ignore these FCBs in the PSP.

Locations 80h through the end of the PSP contain a very important piece of informa-
tion- the command line parameters typed on the DOS command line along with your pro-
gram’s name. If the following is typed on the DOS command line:

MYPGM parameter1, parameter2

the following is stored into the command line parameter field:

23, “ parameter1, parameter2”, 0Dh

Location 80h contains 2310, the length of the parameters following the program name.
Locations 81h through 97h contain the characters making up the parameter string. Loca-
tion 98h contains a carriage return. Notice that the carriage return character is not figured
into the length of the command line string.

Processing the command line string is such an important facet of assembly language
programming that this process will be discussed in detail in the next section.

Locations 80h..FFh in the PSP also comprise the default DTA. Therefore, if you don’t
use DOS function 1Ah to change the DTA and you execute a FIND FIRST FILE, the file-
name information will be stored starting at location 80h in the PSP.

One important detail we’ve omitted until now is exactly how you access data in the
PSP. Although the PSP is loaded into memory immediately before your program, that
doesn’t necessarily mean that it appears 100h bytes before your code. Your data segments
may have been loaded into memory before your code segments, thereby invalidating this
method of locating the PSP. The segment address of the PSP is passed to your program in
the ds register. To store the PSP address away in your data segment, your programs
should begin with the following code:

push ds ;Save PSP value
mov ax, seg DSEG ;Point DS and ES at our data
mov ds, ax ; segment.
mov es, ax
pop PSP ;Store PSP value into “PSP”

; variable.
 .
 .
 .

Another way to obtain the PSP address, in DOS 5.0 and later, is to make a DOS call. If
you load ah with 51h and execute an int 21h instruction, MS-DOS will return the segment
address of the current PSP in the bx register.

There are lots of tricky things you can do with the data in the PSP. Peter Norton’s Pro-
grammer’s Guide to the IBM PC lists all kinds of tricks. Such operations won’t be dis-
cussed here because they’re a little beyond the scope of this manual.

Chapter 13

Page 742

13.3.12 Accessing Command Line Parameters

Most programs like MASM and LINK allow you to specify command line parameters
when the program is executed. For example, by typing

ML MYPGM.ASM

you can instruct MASM to assemble MYPGM without any further intervention from the
keyboard. “MYPGM.ASM;” is a good example of a command line parameter.

When DOS’ COMMAND.COM command interpreter parses your command line, it
copies most of the text following the program name to location 80h in the PSP as
described in the previous section. For example, the command line above will store the fol-
lowing at PSP:80h

11, “ MYPGM.ASM”, 0Dh

The text stored in the command line tail storage area in the PSP is usually an exact
copy of the data appearing on the command line. There are, however, a couple of excep-
tions. First of all, I/O redirection parameters are not stored in the input buffer. Neither are
command tails following the pipe operator (“|”). The other thing appearing on the com-
mand line which is absent from the data at PSP:80h is the program name. This is rather
unfortunate, since having the program name available would allow you to determine the
directory containing the program. Nevertheless, there is lots of useful information present
on the command line.

The information on the command line can be used for almost any purpose you see fit.
However, most programs expect two types of parameters in the command line parameter
buffer-- filenames and switches. The purpose of a filename is rather obvious, it allows a
program to access a file without having to prompt the user for the filename. Switches, on
the other hand, are arbitrary parameters to the program. By convention, switches are pre-
ceded by a slash or hyphen on the command line.

Figuring out what to do with the information on the command line is called parsing
the command line. Clearly, if your programs are to manipulate data on the command line,
you’ve got to parse the command line within your code.

Before a command line can be parsed, each item on the command line has to be sepa-
rated out apart from the others. That is, each word (or more properly, lexeme7) has to be
identified in the command line. Separation of lexemes on a command line is relatively
easy, all you’ve got to do is look for sequences of delimiters on the command line. Delim-
iters are special symbols used to separate tokens on the command line. DOS supports six
different delimiter characters: space, comma, semicolon, equal sign, tab, or carriage
return.

Generally, any number of delimiter characters may appear between two tokens on a
command line. Therefore, all such occurrences must be skipped when scanning the com-
mand line. The following assembly language code scans the entire command line and
prints all of the tokens that appear thereon:

include stdlib.a
includelib stdlib.lib

cseg segment byte public ‘CODE’
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

; Equates into command line-

CmdLnLen equ byte ptr es:[80h] ;Command line length
CmdLn equ byte ptr es:[81h] ;Command line data

tab equ 09h

MainPgm proc far

; Properly set up the segment registers:

7. Many programmers use the term “token” rather than lexeme. Technically, a token is a different entity.

MS-DOS, PC BIOS, and File I/O

Page 743

push ds ;Save PSP
mov ax, seg dseg
mov ds, ax
pop PSP

;---

print
byte cr,lf
byte ‘Items on this line:’,cr,lf,lf,0

mov es, PSP ;Point ES at PSP
lea bx, CmdLn ;Point at command line

PrintLoop: print
byte cr,lf,’Item: ‘,0
call SkipDelimiters ;Skip over leading delimiters

PrtLoop2: mov al, es:[bx] ;Get next character
call TestDelimiter ;Is it a delimiter?
jz EndOfToken ;Quit this loop if it is
putc ;Print char if not.
inc bx ;Move on to next character
jmp PrtLoop2

EndOfToken: cmp al, cr ;Carriage return?
jne PrintLoop ;Repeat if not end of line

print
byte cr,lf,lf
byte ‘End of command line’,cr,lf,lf,0
ExitPgm

MainPgm endp

; The following subroutine sets the zero flag if the character in
; the AL register is one of DOS’ six delimiter characters,
; otherwise the zero flag is returned clear. This allows us to use
; the JE/JNE instructions afterwards to test for a delimiter.

TestDelimiter proc near
cmp al, ‘ ‘
jz ItsOne
cmp al,’,’
jz ItsOne
cmp al,Tab
jz ItsOne
cmp al,’;’
jz ItsOne
cmp al,’=’
jz ItsOne
cmp al, cr

ItsOne: ret
TestDelimiter endp

; SkipDelimiters skips over leading delimiters on the command
; line. It does not, however, skip the carriage return at the end
; of a line since this character is used as the terminator in the
; main program.

SkipDelimiters proc near
dec bx ;To offset INC BX below

SDLoop: inc bx ;Move on to next character.
mov al, es:[bx] ;Get next character
cmp al, 0dh ;Don’t skip if CR.
jz QuitSD
call TestDelimiter ;See if it’s some other
jz SDLoop ; delimiter and repeat.

QuitSD: ret
SkipDelimiters endp

cseg ends

dseg segment byte public ‘data’

PSP word ? ;Program segment prefix
dseg ends

Chapter 13

Page 744

sseg segment byte stack ‘stack’
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end MainPgm

Once you can scan the command line (that is, separate out the lexemes), the next step
is to parse it. For most programs, parsing the command line is an extremely trivial pro-
cess. If the program accepts only a single filename, all you’ve got to do is grab the first lex-
eme on the command line, slap a zero byte onto the end of it (perhaps moving it into your
data segment), and use it as a filename. The following assembly language example modi-
fies the hex dump routine presented earlier so that it gets its filename from the command
line rather than hard-coding the filename into the program:

include stdlib.a
includelib stdlib.lib

cseg segment byte public 'CODE'
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

; Note CR and LF are already defined in STDLIB.A

tab equ 09h

MainPgm proc far

; Properly set up the segment registers:

mov ax, seg dseg
mov es, ax ;Leave DS pointing at PSP

;---
;
; First, parse the command line to get the filename:

mov si, 81h ;Pointer to command line
lea di, FileName ;Pointer to FileName buffer

SkipDelimiters:
lodsb ;Get next character
call TestDelimiter
je SkipDelimiters

; Assume that what follows is an actual filename

dec si ;Point at 1st char of name
GetFName: lodsb

cmp al, 0dh
je GotName
call TestDelimiter
je GotName
stosb ;Save character in file name
jmp GetFName

; We're at the end of the filename, so zero-terminate it as
; required by DOS.

GotName: mov byte ptr es:[di], 0
mov ax, es ;Point DS at DSEG
mov ds, ax

; Now process the file

mov ah, 3dh
mov al, 0 ;Open file for reading
lea dx, Filename ;File to open
int 21h
jnc GoodOpen
print
byte 'Cannot open file, aborting program...',cr,0
jmp PgmExit

GoodOpen: mov FileHandle, ax ;Save file handle

MS-DOS, PC BIOS, and File I/O

Page 745

mov Position, 0 ;Initialize file position
ReadFileLp: mov al, byte ptr Position

and al, 0Fh ;Compute (Position MOD 16)
jnz NotNewLn ;Every 16 bytes start a line
putcr
mov ax, Position ;Print offset into file
xchg al, ah
puth
xchg al, ah
puth
print
byte ': ',0

NotNewLn: inc Position ;Increment character count
mov bx, FileHandle
mov cx, 1 ;Read one byte
lea dx, buffer ;Place to store that byte
mov ah, 3Fh ;Read operation
int 21h
jc BadRead
cmp ax, 1 ;Reached EOF?
jnz AtEOF
mov al, Buffer ;Get the character read and
puth ; print it in hex
mov al, ' ' ;Print a space between values
putc
jmp ReadFileLp

BadRead: print
byte cr, lf
byte 'Error reading data from file, aborting.'
byte cr,lf,0

AtEOF: mov bx, FileHandle ;Close the file
mov ah, 3Eh
int 21h

;---

PgmExit: ExitPgm
MainPgm endp

TestDelimiter proc near
cmp al, ' '
je xit
cmp al, ','
je xit
cmp al, Tab
je xit
cmp al, ';'
je xit
cmp al, '='

xit: ret
TestDelimiter endp
cseg ends

dseg segment byte public 'data'

PSP word ?
Filename byte 64 dup (0) ;Filename to dump
FileHandle word ?
Buffer byte ?
Position word 0

dseg ends

sseg segment byte stack 'stack'
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

Chapter 13

Page 746

end MainPgm

The following example demonstrates several concepts dealing with command line
parameters. This program copies one file to another. If the “/U” switch is supplied (some-
where) on the command line, all of the lower case characters in the file are converted to
upper case before being written to the destination file. Another feature of this code is that
it will prompt the user for any missing filenames, much like the MASM and LINK pro-
grams will prompt you for filename if you haven’t supplied any.

include stdlib.a
includelib stdlib.lib

cseg segment byte public 'CODE'
assume cs:cseg, ds:nothing, es:dseg, ss:sseg

; Note: The constants CR (0dh) and LF (0ah) appear within the
; stdlib.a include file.

tab equ 09h

MainPgm proc far

; Properly set up the segment registers:

mov ax, seg dseg
mov es, ax ;Leave DS pointing at PSP

;---

; First, parse the command line to get the filename:

mov es:GotName1, 0 ;Init flags that tell us if
mov es:GotName2, 0 ; we’ve parsed the filenames
mov es:ConvertLC,0 ; and the “/U" switch.

; Okay, begin scanning and parsing the command line

mov si, 81h ;Pointer to command line
SkipDelimiters:

lodsb ;Get next character
call TestDelimiter
je SkipDelimiters

; Determine if this is a filename or the /U switch

cmp al, '/'
jnz MustBeFN

; See if it's "/U" here-

lodsb
and al, 5fh ;Convert "u" to "U"
cmp al, 'U'
jnz NotGoodSwitch
lodsb ;Make sure next char is
cmp al, cr ; a delimiter of some sort
jz GoodSwitch
call TestDelimiter
jne NotGoodSwitch

; Okay, it's "/U" here.

GoodSwitch: mov es:ConvertLC, 1 ;Convert LC to UC
dec si ;Back up in case it's CR
jmp SkipDelimiters ;Move on to next item.

; If a bad switch was found on the command line, print an error
; message and abort-

NotGoodSwitch:
print
byte cr,lf
byte 'Illegal switch, only "/U" is allowed!',cr,lf
byte 'Aborting program execution.',cr,lf,0
jmp PgmExit

; If it's not a switch, assume that it's a valid filename and
; handle it down here-

MS-DOS, PC BIOS, and File I/O

Page 747

MustBeFN: cmp al, cr ;See if at end of cmd line
je EndOfCmdLn

; See if it's filename one, two, or if too many filenames have been
; specified-

cmp es:GotName1, 0
jz Is1stName
cmp es:GotName2, 0
jz Is2ndName

; More than two filenames have been entered, print an error message
; and abort.

print
byte cr,lf
byte 'Too many filenames specified.',cr,lf
byte 'Program aborting...',cr,lf,lf,0
jmp PgmExit

; Jump down here if this is the first filename to be processed-

Is1stName: lea di, FileName1
mov es:GotName1, 1
jmp ProcessName

Is2ndName: lea di, FileName2
mov es:GotName2, 1

ProcessName:
stosb ;Store away character in name
lodsb ;Get next char from cmd line
cmp al, cr
je NameIsDone
call TestDelimiter
jne ProcessName

NameIsDone: mov al, 0 ;Zero terminate filename
stosb
dec si ;Point back at previous char
jmp SkipDelimiters ;Try again.

; When the end of the command line is reached, come down here and
; see if both filenames were specified.

assume ds:dseg

EndOfCmdLn: mov ax, es ;Point DS at DSEG
mov ds, ax

; We're at the end of the filename, so zero-terminate it as
; required by DOS.

GotName: mov ax, es ;Point DS at DSEG
mov ds, ax

; See if the names were supplied on the command line.
; If not, prompt the user and read them from the keyboard

cmp GotName1, 0 ;Was filename #1 supplied?
jnz HasName1
mov al, '1' ;Filename #1
lea si, Filename1
call GetName ;Get filename #1

HasName1: cmp GotName2, 0 ;Was filename #2 supplied?
jnz HasName2
mov al, '2' ;If not, read it from kbd.
lea si, FileName2
call GetName

; Okay, we've got the filenames, now open the files and copy the
; source file to the destination file.

HasName2 mov ah, 3dh
mov al, 0 ;Open file for reading
lea dx, Filename1 ;File to open

Chapter 13

Page 748

int 21h
jnc GoodOpen1

print
byte 'Cannot open file, aborting program...',cr,lf,0
jmp PgmExit

; If the source file was opened successfully, save the file handle.

GoodOpen1: mov FileHandle1, ax ;Save file handle

; Open (CREATE, actually) the second file here.

mov ah, 3ch ;Create file
mov cx, 0 ;Standard attributes
lea dx, Filename2 ;File to open
int 21h
jnc GoodCreate

; Note: the following error code relies on the fact that DOS
; automatically closes any open source files when the program
; terminates.

print
byte cr,lf
byte 'Cannot create new file, aborting operation'
byte cr,lf,lf,0
jmp PgmExit

GoodCreate: mov FileHandle2, ax ;Save file handle

; Now process the files

CopyLoop: mov ah, 3Fh ;DOS read opcode
mov bx, FileHandle1 ;Read from file #1
mov cx, 512 ;Read 512 bytes
lea dx, buffer ;Buffer for storage
int 21h
jc BadRead
mov bp, ax ;Save # of bytes read

cmp ConvertLC,0 ;Conversion option active?
jz NoConversion

; Convert all LC in buffer to UC-

mov cx, 512
lea si, Buffer
mov di, si

ConvertLC2UC:
lodsb
cmp al, 'a'
jb NoConv
cmp al, 'z'
ja NoConv
and al, 5fh

NoConv: stosb
loop ConvertLC2UC

NoConversion:
mov ah, 40h ;DOS write opcode
mov bx, FileHandle2 ;Write to file #2
mov cx, bp ;Write however many bytes
lea dx, buffer ;Buffer for storage
int 21h
jc BadWrite
cmp ax, bp ;Did we write all of the
jnz jDiskFull ; bytes?
cmp bp, 512 ;Were there 512 bytes read?
jz CopyLoop
jmp AtEOF

jDiskFull: jmp DiskFull

; Various error messages:

BadRead: print

MS-DOS, PC BIOS, and File I/O

Page 749

byte cr,lf
byte 'Error while reading source file, aborting '
byte 'operation.',cr,lf,0
jmp AtEOF

BadWrite: print
byte cr,lf
byte 'Error while writing destination file, aborting’
byte ' operation.',cr,lf,0
jmp AtEOF

DiskFull: print
byte cr,lf
byte 'Error, disk full. Aborting operation.',cr,lf,0

AtEOF: mov bx, FileHandle1 ;Close the first file
mov ah, 3Eh
int 21h
mov bx, FileHandle2 ;Close the second file
mov ah, 3Eh
int 21h

PgmExit: ExitPgm
MainPgm endp

TestDelimiter proc near
cmp al, ' '
je xit
cmp al, ','
je xit
cmp al, Tab
je xit
cmp al, ';'
je xit
cmp al, '='

xit: ret
TestDelimiter endp

; GetName- Reads a filename from the keyboard. On entry, AL
; contains the filename number and DI points at the buffer in ES
; where the zero-terminated filename must be stored.

GetName proc near
print
byte 'Enter filename #',0
putc
mov al, ':'
putc
gets
ret

GetName endp
cseg ends

dseg segment byte public 'data'

PSP word ?
Filename1 byte 128 dup (?);Source filename
Filename2 byte 128 dup (?);Destination filename
FileHandle1 word ?
FileHandle2 word ?
GotName1 byte ?
GotName2 byte ?
ConvertLC byte ?
Buffer byte 512 dup (?)

dseg ends

sseg segment byte stack 'stack'
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end MainPgm

Chapter 13

Page 750

As you can see, there is more effort expended processing the command line parame-
ters than actually copying the files!

13.3.13 ARGC and ARGV

The UCR Standard Library provides two routines, argc and argv, which provide easy
access to command line parameters. Argc (argument count) returns the number of items on
the command line. Argv (argument vector) returns a pointer to a specific item in the com-
mand line.

These routines break up the command line into lexemes using the standard delimit-
ers. As per MS-DOS convention, argc and argv treat any string surrounded by quotation
marks on the command line as a single command line item.

Argc will return in cx the number of command line items. Since MS-DOS does not
include the program name on the command line, this count does not include the program
name either. Furthermore, redirection operands (“>filename” and “<filename”) and items
to the right of a pipe (“| command”) do not appear on the command line either. As such,
argc does not count these, either.

Argv returns a pointer to a string (allocated on the heap) of a specified command line
item. To use argv you simply load ax with a value between one and the number returned
by argc and execute the argv routine. On return, es:di points at a string containing the spec-
ified command line option. If the number in ax is greater than the number of command
line arguments, then argv returns a pointer to an empty string (i.e., a zero byte). Since argv
calls malloc to allocate storage on the heap, there is the possibility that a memory allocation
error will occur. Argv returns the carry set if a memory allocation error occurs. Remember
to free the storage allocated to a command line parameter after you are through with it.

Example: The following code echoes the command line parameters to the screen.

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

ArgCnt word 0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Must call the memory manager initialization routine if you use
; any routine which calls malloc! ARGV is a good example of a
; routine which calls malloc.

meminit

argc ;Get the command line arg count.
jcxz Quit ;Quit if no cmd ln args.
mov ArgCnt, 1 ;Init Cmd Ln count.

PrintCmds: printf ;Print the item.
byte "\n%2d: ",0
dword ArgCnt

mov ax, ArgCnt ;Get the next command line guy.
argv
puts
inc ArgCnt ;Move on to next arg.
loop PrintCmds ;Repeat for each arg.
putcr

Quit: ExitPgm ;DOS macro to quit program.

MS-DOS, PC BIOS, and File I/O

Page 751

Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

;zzzzzzseg is required by the standard library routines.

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

13.4 UCR Standard Library File I/O Routines

Although MS-DOS’ file I/O facilities are not too bad, the UCR Standard Library pro-
vides a file I/O package which makes blocked sequential I/O as easy as character at a
time file I/O. Furthermore, with a tiny amount of effort, you can use all the StdLib rou-
tines like printf, print, puti, puth, putc, getc, gets, etc., when performing file I/O. This greatly
simplifies text file operations in assembly language.

Note that record oriented, or binary I/O, is probably best left to pure DOS. any time
you want to do random access within a file. The Standard Library routines really only
support sequential text I/O. Nevertheless, this is the most common form of file I/O
around, so the Standard Library routines are quite useful indeed.

The UCR Standard Library provides eight file I/O routines: fopen, fcreate, fclose, fgetc,
fread, fputc, and fwrite. Fgetc and fputc perform character at a time I/O, fread and fwrite let
you read and write blocks of data, the other four functions perform the obvious DOS
operations.

The UCR Standard Library uses a special file variable to keep track of file operations.
There is a special record type, FileVar, declared in stdlib.a8. When using the StdLib file I/O
routines you must create a variable of type FileVar for every file you need open at the same
time. This is very easy, just use a definition of the form:

MyFileVar FileVar {}

Please note that a Standard Library file variable is not the same thing as a DOS file
handle. It is a structure which contains the DOS file handle, a buffer (for blocked I/O), and
various index and status variables. The internal structure of this type is of no interest
(remember data encapsulation!) except to the implementor of the file routines. You will
pass the address of this file variable to the various Standard Library file I/O routines.

13.4.1 Fopen

Entry parameters: ax- File open mode
 0- File opened for reading
 1- File opened for writing

dx:si- Points at a zero terminated string containing the filename.
es:di- Points at a StdLib file variable.

Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fopen opens a sequential text file for reading or writing. Unlike DOS, you cannot open
a file for reading and writing. Furthermore, this is a sequential text file which does not
support random access. Note that the file must exist or fopen will return an error. This is
even true when you open the file for writing.

8. Actually, it’s declared in file.a. Stdlib.a includes file.a so this definition appears inside stdlib.a as well.

Chapter 13

Page 752

Note that if you open a file for writing and that file already exists, any data written to
the file will overwrite the existing data. When you close the file, any data appearing in the
file after the data you wrote will still be there. If you want to erase the existing file before
writing data to it, use the fcreate function.

13.4.2 Fcreate

Entry parameters: dx:si- Points at a zero terminated string containing the filename.
es:di- Points at a StdLib file variable.

Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fcreate creates a new file and opens it for writing. If the file already exists, fcreate
deletes the existing file and creates a new one. It initializes the file variable for output but
is otherwise identical to the fopen call.

13.4.3 Fclose

Entry parameters: es:di- Points at a StdLib file variable.
Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fclose closes a file and updates any internal housekeeping information. It is very
important that you close all files opened with fopen or fcreate using this call. When making DOS
file calls, if you forget to close a file DOS will automatically do that for you when your
program terminates. However, the StdLib routines cache up data in internal buffers. the
fclose call automatically flushes these buffers to disk. If you exit your program without
calling fclose, you may lose some data written to the file but not yet transferred from the
internal buffer to the disk.

If you are in an environment where it is possible for someone to abort the program
without giving you a chance to close the file, you should call the fflush routines (see the
next section) on a regular basis to avoid losing too much data.

13.4.4 Fflush

Entry parameters: es:di- Points at a StdLib file variable.
Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

This routine immediately writes any data in the internal file buffer to disk. Note that
you should only use this routine in conjunction with files opened for writing (or opened
by fcreate). If you write data to a file and then need to leave the file open, but inactive, for
some time period, you should perform a flush operation in case the program terminates
abnormally.

13.4.5 Fgetc

Entry parameters: es:di- Points at a StdLib file variable.
Exit parameters: If the carry flag is clear, al contains the character read from the file.

If the carry is set, ax contains the returned DOS error code (see DOS open function).
ax will contain zero if you attempt to read beyond the end of file.

Fgetc reads a single character from the file and returns this character in the al register.
Unlike calls to DOS, single character I/O using fgetc is relatively fast since the StdLib rou-
tines use blocked I/O. Of course, multiple calls to fgetc will never be faster than a call to
fread (see the next section), but the performance is not too bad.

MS-DOS, PC BIOS, and File I/O

Page 753

Fgetc is very flexible. As you will see in a little bit, you may redirect the StdLib input
routines to read their data from a file using fgetc. This lets you use the higher level rou-
tines like gets and getsm when reading data from a file.

13.4.6 Fread

Entry parameters: es:di- Points at a StdLib file variable.
dx:si- Points at an input data buffer.
cx- Contains a byte count.

Exit parameters: If the carry flag is clear, ax contains the actual number of bytes read from the file.
If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fread is very similar to the DOS read command. It lets you read a block of bytes, rather
than just one byte, from a file. Note that if all you are doing is reading a block of bytes
from a file, the DOS call is slightly more efficient than fread. However, if you have a mix-
ture of single byte reads and multi-byte reads, the combination of fread and fgetc work
very well.

As with the DOS read operation, if the byte count returned in ax does not match the
value passed in the cx register, then you’ve read the remaining bytes in the file. When this
occurs, the next call to fread or fgetc will return an EOF error (carry will be set and ax will
contain zero). Note that fread does not return EOF unless there were zero bytes read from
the file.

13.4.7 Fputc

Entry parameters: es:di- Points at a StdLib file variable.
al- Contains the character to write to the file.

Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fputc writes a single character (in al) to the file specified by the file variable whose
address is in es:di. This call simply adds the character in al to an internal buffer (part of the
file variable) until the buffer is full. Whenever the buffer is filled or you call fflush (or close
the file with fclose), the file I/O routines write the data to disk.

13.4.8 Fwrite

Entry parameters: es:di- Points at a StdLib file variable.
dx:si- Points at an output data buffer.
cx- Contains a byte count.

Exit parameters: If the carry flag is clear, ax contains the actual number of bytes written to the file.
If the carry is set, ax contains the returned DOS error code (see DOS open function).

Like fread, fwrite works on blocks of bytes. It lets you write a block of bytes to a file
opened for writing with fopen or fcreate.

13.4.9 Redirecting I/O Through the StdLib File I/O Routines

The Standard Library provides very few file I/O routines. Fputc and fwrite are the only
two output routines, for example. The “C” programming language standard library (on
which the UCR Standard Library is based) provides many routines like fprintf, fputs, fscanf,
etc. None of these are necessary in the UCR Standard Library because the UCR library
provides an I/O redirection mechanism that lets you reuse all existing I/O routines to
perform file I/O.

Chapter 13

Page 754

The UCR Standard Library putc routine consists of a single jmp instruction. This
instruction transfers control to some actual output routine via an indirect address internal
to the putc code. Normally, this pointer variable points at a piece of code which writes the
character in the al register to the DOS standard output device. However, the Standard
Library also provides four routines which let you manipulate this indirect pointer. By
changing this pointer you can redirect the output from its current routine to a routine of
your choosing. All Standard Library output routines (e.g., printf, puti, puth, puts) call putc to
output individual characters. Therefore, redirecting the putc routine affects all the output
routines.

Likewise, the getc routine is nothing more than an indirect jmp whose pointer variable
normally points at a piece of code which reads data from the DOS standard input. Since
all Standard Library input routines call the getc function to read each character you can
redirect file input in a manner identical to file output.

The Standard Library GetOutAdrs, SetOutAdrs, PushOutAdrs, and PopOutAdrs are the
four main routines which manipulate the output redirection pointer. GetOutAdrs returns
the address of the current output routine in the es:di registers. Conversely, SetOutAdrs
expects you to pass the address of a new output routine in the es:di registers and it stores
this address into the output pointer. PushOutAdrs and PopOutAdrs push and pop the
pointer on an internal stack. These do not use the 80x86’s hardware stack. You are limited
to a small number of pushes and pops. Generally, you shouldn’t count on being able to
push more than four of these addresses onto the internal stack without overflowing it.

GetInAdrs, SetInAdrs, PushInAdrs, and PopInAdrs are the complementary routines for the
input vector. They let you manipulate the input routine pointer. Note that the stack for
PushInAdrs/PopInAdrs is not the same as the stack for PushOutAdrs/PopOutAdrs. Pushes and
pops to these two stacks are independent of one another.

Normally, the output pointer (which we will henceforth refer to as the output hook)
points at the Standard Library routine PutcStdOut9. Therefore, you can return the output
hook to its normal initialization state at any time by executing the statements10:

mov di, seg SL_PutcStdOut
mov es, di
mov di, offset SL_PutcStdOut
SetOutAdrs

The PutcStdOut routine writes the character in the al register to the DOS standard out-
put, which itself might be redirected to some file or device (using the “>” DOS redirection
operator). If you want to make sure your output is going to the video display, you can
always call the PutcBIOS routine which calls the BIOS directly to output a character11. You
can force all Standard Library output to the standard error device using a code sequence
like:

mov di, seg SL_PutcBIOS
mov es, di
mov di, offset SL_PutcBIOS
SetOutAdrs

Generally, you would not simply blast the output hook by storing a pointer to your
routine over the top of whatever pointer was there and then restoring the hook to PutcStd-
Out upon completion. Who knows if the hook was pointing at PutcStdOut in the first place?
The best solution is to use the Standard Library PushOutAdrs and PopOutAdrs routines to
preserve and restore the previous hook. The following code demonstrates a gentler way of
modifying the output hook:

9. Actually, the routine is SL_PutcStdOut. The Standard Library macro by which you would normally call this rou-
tine is PutcStdOut.
10. If you do not have any calls to PutcStdOut in your program, you will also need to add the statement “extern-
def SL_PutcStdOut:far” to your program.
11. It is possible to redirect even the BIOS output, but this is rarely done and not easy to do from DOS.

MS-DOS, PC BIOS, and File I/O

Page 755

PushOutAdrs ;Save current output routine.
mov di, seg Output_Routine
mov es, di
mov di, offset Output_Routine
SetOutAdrs

<Do all output to Output_Routine here>

PopOutAdrs ;Restore previous output routine.

Handle input in a similar fashion using the corresponding input hook access routines and
the SL_GetcStdOut and SL_GetcBIOS routines. Always keep in mind that there are a limited
number of entries on the input and output hook stacks so what how many items you push
onto these stacks without popping anything off.

To redirect output to a file (or redirect input from a file) you must first write a short
routine which writes (reads) a single character from (to) a file. This is very easy. The code
for a subroutine to output data to a file described by file variable OutputFile is

ToOutput proc far
push es
push di

; Load ES:DI with the address of the OutputFile variable. This
; code assumes OutputFile is of type FileVar, not a pointer to
; a variable of type FileVar.

mov di, seg OutputFile
mov es, di
mov di, offset OutputFile

; Output the character in AL to the file described by “OutputFile”

fputc

pop di
pop es
ret

ToOutput endp

Now with only one additional piece of code, you can begin writing data to an output
file using all the Standard Library output routines. That is a short piece of code which
redirects the output hook to the “ToOutput” routine above:

SetOutFile proc
push es
push di

PushOutAdrs ;Save current output hook.
mov di, seg ToOutput
mov es, di
mov di, offset ToOutput
SetOutAdrs

pop di
pop es
ret

SetOutFile endp

There is no need for a separate routine to restore the output hook to its previous value;
PopOutAdrs will handle that task by itself.

13.4.10 A File I/O Example

The following piece of code puts everything together from the last several sections.
This is a short program which adds line numbers to a text file. This program expects two
command line parameters: an input file and an output file. It copies the input file to the
output file while appending line numbers to the beginning of each line in the output file.
This code demonstrates the use of argc, argv, the Standard Library file I/O routines, and
I/O redirection.

Chapter 13

Page 756

; This program copies the input file to the output file and adds
; line numbers while it is copying the file.

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

ArgCnt word 0
LineNumber word 0
DOSErrorCode word 0
InFile dword ? ;Ptr to Input file name.
OutFile dword ? ;Ptr to Output file name
InputLine byte 1024 dup (0) ;Input/Output data buffer.
OutputFile FileVar {}
InputFile FileVar {}

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; ReadLn- Reads a line of text from the input file and stores the
; data into the InputLine buffer:

ReadLn proc
push ds
push es
push di
push si
push ax

mov si, dseg
mov ds, si
mov si, offset InputLine
lesi InputFile

GetLnLp:
fgetc
jc RdLnDone ;If some bizzarre error.
cmp ah, 0 ;Check for EOF.
je RdLnDone ;Note:carry is set.
mov ds:[si], al
inc si
cmp al, lf ;At EOLN?
jne GetLnLp
dec si ;Back up before LF.
cmp byte ptr ds:[si-1], cr ;CR before LF?
jne RdLnDone
dec si ;If so, skip it too.

RdLnDone: mov byte ptr ds:[si], 0 ;Zero terminate.
pop ax
pop si
pop di
pop es
pop ds
ret

ReadLn endp

; MyOutput- Writes the single character in AL to the output file.

MyOutput proc far
push es
push di
lesi OutputFile
fputc
pop di
pop es
ret

MyOutput endp

; The main program which does all the work:

Main proc

MS-DOS, PC BIOS, and File I/O

Page 757

mov ax, dseg
mov ds, ax
mov es, ax

; Must call the memory manager initialization routine if you use
; any routine which calls malloc! ARGV is a good example of a
; routine calls malloc.

meminit

; We expect this program to be called as follows:
; fileio file1, file2
; anything else is an error.

argc
cmp cx, 2 ;Must have two parameters.
je Got2Parms

BadParms: print
byte "Usage: FILEIO infile, outfile",cr,lf,0
jmp Quit

; Okay, we've got two parameters, hopefully they're valid names.
; Get copies of the filenames and store away the pointers to them.

Got2Parms: mov ax, 1 ;Get the input filename
argv
mov word ptr InFile, di
mov word ptr InFile+2, es

mov ax, 2 ;Get the output filename
argv
mov word ptr OutFile, di
mov word ptr OutFile+2, es

; Output the filenames to the standard output device

printf
byte "Input file: %^s\n"
byte "Output file: %^s\n",0
dword InFile, OutFile

; Open the input file:

lesi InputFile
mov dx, word ptr InFile+2
mov si, word ptr InFile
mov ax, 0
fopen
jnc GoodOpen
mov DOSErrorCode, ax
printf
byte "Could not open input file, DOS: %d\n",0
dword DOSErrorCode
jmp Quit

; Create a new file for output:

GoodOpen: lesi OutputFile
mov dx, word ptr OutFile+2
mov si, word ptr OutFile
fcreate
jnc GoodCreate
mov DOSErrorCode, AX
printf
byte "Could not open output file, DOS: %d\n",0
dword DOSErrorCode
jmp Quit

; Okay, save the output hook and redirect the output.

GoodCreate: PushOutAdrs
lesi MyOutput
SetOutAdrs

WhlNotEOF: inc LineNumber

; Okay, read the input line from the user:

Chapter 13

Page 758

call ReadLn
jc BadInput

; Okay, redirect the output to our output file and write the last
; line read prefixed with a line number:

printf
byte "%4d: %s\n",0
dword LineNumber, InputLine
jmp WhlNotEOF

BadInput: push ax ;Save error code.
PopOutAdrs ;Restore output hook.
pop ax ;Retrieve error code.
test ax, ax ;EOF error? (AX = 0)
jz CloseFiles
mov DOSErrorCode, ax
printf
byte "Input error, DOS: %d\n",0
dword LineNumber

; Okay, close the files and quit:

CloseFiles: lesi OutputFile
fclose
lesi InputFile
fclose

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

13.5 Sample Program

If you want to use the Standard Library’s output routines (putc, print, printf, etc.) to
output data to a file, you can do so by manually redirecting the output before and after
each call to these routines. Unfortunately, this can be a lot of work if you mix interactive
I/O with file I/O. The following program presents several macros that simplify this task
for you.

; FileMacs.asm
;
; This program presents a set of macros that make file I/O with the
; Standard Library even easier to do.
;
; The main program writes a multiplication table to the file "MyFile.txt".

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

CurOutput dword ?

Filename byte "MyFile.txt",0

i word ?
j word ?

MS-DOS, PC BIOS, and File I/O

Page 759

TheFile filevar {}

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; For-Next macros from Chapter Eight.
; See Chapter Eight for details on how this works.

ForLp macro LCV, Start, Stop
local ForLoop

ifndef $$For&LCV&
$$For&LCV&= 0

else
$$For&LCV&= $$For&LCV& + 1

endif

mov ax, Start
mov LCV, ax

ForLoop textequ @catstr($$For&LCV&, %$$For&LCV&)
&ForLoop&:

mov ax, LCV
cmp ax, Stop
jg @catstr($$Next&LCV&, %$$For&LCV&)
endm

Next macro LCV
local NextLbl
inc LCV
jmp @catstr($$For&LCV&, %$$For&LCV&)

NextLbl textequ @catstr($$Next&LCV&, %$$For&LCV&)
&NextLbl&:

endm

; File I/O macros:
;
;
; SetPtr sets up the CurOutput pointer variable. This macro is called
; by the other macros, it's not something you would normally call directly.
; Its whole purpose in life is to shorten the other macros and save a little
; typing.

SetPtr macro fvar
push es
push di

mov di, offset fvar
mov word ptr CurOutput, di
mov di, seg fvar
mov word ptr CurOutput+2, di

PushOutAdrs
lesi FileOutput
SetOutAdrs
pop di
pop es
endm

;
;
;
; fprint- Prints a string to the display.

Chapter 13

Page 760

;
; Usage:
; fprint filevar,"String or bytes to print"
;
; Note: you can supply optional byte or string data after the string above by
; enclosing the data in angle brackets, e.g.,
;
; fprint filevar,<"string to print",cr,lf>
;
; Do *NOT* put a zero terminating byte at the end of the string, the fprint
; macro will do that for you automatically.

fprint macro fvar:req, string:req
SetPtr fvar

print
byte string
byte 0

PopOutAdrs
endm

; fprintf- Prints a formatted string to the display.
; fprintff- Like fprintf, but handles floats as well as other items.
;
; Usage:
; fprintf filevar,"format string", optional data values
; fprintff filevar,"format string", optional data values
; Examples:
;
; fprintf FileVariable,"i=%d, j=%d\n", i, j
; fprintff FileVariable,"f=%8.2f, i=%d\n", f, i
;
; Note: if you want to specify a list of strings and bytes for the format
; string, just surround the items with an angle bracket, e.g.,
;
; fprintf FileVariable, <"i=%d, j=%d",cr,lf>, i, j
;
;

fprintf macro fvar:req, FmtStr:req, Operands:vararg
setptr fvar

printf
byte FmtStr
byte 0

for ThisVal, <Operands>
dword ThisVal
endm

PopOutAdrs
endm

fprintff macro fvar:req, FmtStr:req, Operands:vararg
setptr fvar

printff
byte FmtStr
byte 0

for ThisVal, <Operands>
dword ThisVal
endm

PopOutAdrs
endm

; F- This is a generic macro that converts stand-alone (no code stream parms)

MS-DOS, PC BIOS, and File I/O

Page 761

; stdlib functions into file output routines. Use it with putc, puts,
; puti, putu, putl, putisize, putusize, putlsize, putcr, etc.
;
; Usage:
;
; F StdLibFunction, FileVariable
;
; Examples:
;
; mov al, 'A'
; F putc, TheFile
; mov ax, I
; mov cx, 4
; F putisize, TheFile

F macro func:req, fvar:req
setptr fvar
func
PopOutAdrs
endm

; WriteLn- Quick macro to handle the putcr operation (since this code calls
; putcr so often).

WriteLn macro fvar:req
F putcr, fvar
endm

; FileOutput- Writes the single character in AL to an output file.
; The macros above redirect the standard output to this routine
; to print data to a file.

FileOutput proc far
push es
push di
push ds
mov di, dseg
mov ds, di

les di, CurOutput
fputc

pop ds
pop di
pop es
ret

FileOutput endp

; A simple main program that tests the code above.
; This program writes a multiplication table to the file "MyFile.txt"

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Rewrite(TheFile, FileName);

ldxi FileName
lesi TheFile
fcreate

; writeln(TheFile);
; writeln(TheFile,' ');
; for i := 0 to 5 do write(TheFile,'|',i:4,' ');
; writeln(TheFile);

Chapter 13

Page 762

WriteLn TheFile
fprint TheFile," "

forlp i,0,5
fprintf TheFile, "|%4d ", i
next i
WriteLn TheFile

; for j := -5 to 5 do begin
;
; write(TheFile,'----');
; for i := 0 to 5 do write(TheFile, '+-----');
; writeln(TheFile);
;
; write(j:3, ' |');
; for i := 0 to 5 do write(i*j:4, ' |);
; writeln(TheFile);
;
; end;

forlp j,-5,5

fprint TheFile,"----"
forlp i,0,5
fprintf TheFile,"+-----"
next i
fprint TheFile,<"+",cr,lf>

fprintf TheFile, "%3d |", j

forlp i,0,5

mov ax, i
imul j
mov cx, 4
F putisize, TheFile
fprint TheFile, " |"

next i
Writeln TheFile

next j
WriteLn TheFile

; Close(TheFile);

lesi TheFile
fclose

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

MS-DOS, PC BIOS, and File I/O

Page 763

13.6 Laboratory Exercises

The following three programs all do the same thing: they copy the file ”ex13_1.in” to
the file “ex13_1.out”. The difference is the way they copy the files. The first program,
ex13_1a, copies the data from the input file to the output file using character at a time I/O
under DOS. The second program, ex13_1b, uses blocked I/O under DOS. The third pro-
gram, ex13_1c, uses the Standard Library’s file I/O routines to copy the data.

Run these three programs and measure the amount of time they take to run12. For
your lab report: report the running times and comment on the relative efficiencies of these
data transfer methods. Is the loss of performance of the Standard Library routines (com-
pared to block I/O) justified in terms of the ease of use of these routines? Explain.

; EX13_1a.asm
;
; This program copies one file to another using character at a time I/O.
; It is easy to write, read, and understand, but character at a time I/O
; is quite slow. Run this program and time its execution. Then run the
; corresponding blocked I/O exercise and compare the execution times of
; the two programs.

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

FHndl word ?
FHndl2 word ?
Buffer byte ?

FName equ this word
FNamePtr dword FileName

Filename byte "Ex13_1.in",0
Filename2 byte "Ex13_1.out",0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

mov ah, 3dh ;Open the input file
mov al, 0 ; for reading
lea dx, Filename ;DS points at filename’s
int 21h ; segment
jc BadOpen
mov FHndl, ax ;Save file handle

mov FName, offset Filename2 ;Set this up in case there
mov FName+2, seg FileName2 ; is an error during open.

mov ah, 3ch ;Open the output file for writing
mov cx, 0 ; with normal file attributes

12. If you have a really fast machine you may want to make the ex13_1.in file larger (by copying and pasting data
in the file) to make it larger.

Chapter 13

Page 764

lea dx, Filename2 ;Presume DS points at filename
int 21h ; segment
jc BadOpen
mov FHndl2, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 1 ;Read one byte
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx ;EOF reached?
jne EOF

mov ah,40h ;Write data to the file
lea dx, Buffer ;Address of data buffer
mov cx, 1 ;Write one byte
mov bx, FHndl2 ;Get file handle value
int 21h
jc WriteError
jmp LP ;Read next byte

EOF: mov bx, FHndl
mov ah, 3eh ;Close file
int 21h
jmp Quit

ReadError: printf
byte "Error while reading data from file '%s'.",cr,lf,0
dword FileName
jmp Quit

WriteError: printf
byte "Error while writing data to file '%s'.",cr,lf,0
dword FileName2
jmp Quit

BadOpen: printf
byte "Could not open '%^s'. Make sure this file is “
byte “in the ",cr,lf
byte "current directory before attempting to run “
byte this program again.", cr,lf,0
dword FName

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

; EX13_1b.asm
;
; This program copies one file to another using blocked I/O.
; Run this program and time its execution. Compare the execution time of
; this program against that of the character at a time I/O and the
; Standard Library File I/O example (ex13_1a and ex13_1c).

include stdlib.a

MS-DOS, PC BIOS, and File I/O

Page 765

includelib stdlib.lib

dseg segment para public 'data'

; File handles for the files we will open.

FHndl word ? ;Input file handle
FHndl2 word ? ;Output file handle

Buffer byte 256 dup (?) ;File buffer area

FName equ this word ;Ptr to current file name
FNamePtr dword FileName

Filename byte "Ex13_1.in",0 ;Input file name
Filename2 byte "Ex13_1.out",0 ;Output file name

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

mov ah, 3dh ;Open the input file
mov al, 0 ; for reading
lea dx, Filename ;Presume DS points at
int 21h ; filename’s segment
jc BadOpen
mov FHndl, ax ;Save file handle

mov FName, offset Filename2 ;Set this up in case there
mov FName+2, seg FileName2 ; is an error during open.

mov ah, 3ch ;Open the output file for writing
mov cx, 0 ; with normal file attributes
lea dx, Filename2 ;Presume DS points at filename
int 21h ; segment
jc BadOpen
mov FHndl2, ax ;Save file handle

; The following loop reads 256 bytes at a time from the file and then
; writes those 256 bytes to the output file.

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 256 ;Read 256 bytes
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx ;EOF reached?
jne EOF

mov ah, 40h ;Write data to file
lea dx, Buffer ;Address of output buffer
mov cx, 256 ;Write 256 bytes
mov bx, FHndl2 ;Output handle
int 21h
jc WriteError
jmp LP ;Read next block

; Note, just because the number of bytes read does not equal 256,

Chapter 13

Page 766

; don't get the idea we're through, there could be up to 255 bytes
; in the buffer still waiting to be processed.

EOF: mov cx, ax ;Put # of bytes to write in CX.
jcxz EOF2 ;If CX is zero, we're really done.
mov ah, 40h ;Write data to file
lea dx, Buffer ;Address of output buffer
mov bx, FHndl2 ;Output handle
int 21h
jc WriteError

EOF2: mov bx, FHndl
mov ah, 3eh ;Close file
int 21h
jmp Quit

ReadError: printf
byte "Error while reading data from file '%s'.",cr,lf,0
dword FileName
jmp Quit

WriteError: printf
byte "Error while writing data to file '%s'.",cr,lf,0
dword FileName2
jmp Quit

BadOpen: printf
byte "Could not open '%^s'. Make sure this file is in “
byte “the ",cr,lf
byte "current directory before attempting to run “
byte “this program again.", cr,lf,0
dword FName

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

; EX13_1c.asm
;
; This program copies one file to another using the standard library
; file I/O routines. The Standard Library file I/O routines let you do
; character at a time I/O, but they block up the data to transfer to improve
; system performance. You should find that the execution time of this
; code is somewhere between blocked I/O (ex13_1b) and character at a time
; I/O (EX13_1a); it will, however, be much closer to the block I/O time
; (probably about twice as long as block I/O).

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

InFile filevar {}
OutFile filevar {}

Filename byte "Ex13_1.in",0;Input file name

MS-DOS, PC BIOS, and File I/O

Page 767

Filename2 byte "Ex13_1.out",0;Output file name

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Open the input file:

mov ax, 0 ;Open for reading
ldxi Filename
lesi InFile
fopen
jc BadOpen

; Open the output file:

mov ax, 1 ;Open for output
ldxi Filename2
lesi OutFile
fcreate
jc BadCreate

; Copy the input file to the output file:

CopyLp: lesi InFile
fgetc
jc GetDone

lesi OutFile
fputc
jmp CopyLp

BadOpen: printf
byte "Error opening '%s'",cr,lf,0
dword Filename
jmp Quit

BadCreate: printf
byte "Error creating '%s'",cr,lf,0
dword Filename2
jmp CloseIn

GetDone: cmp ax, 0 ;Check for EOF
je AtEOF

print
byte "Error copying files (read error)",cr,lf,0

AtEOF: lesi OutFile
fclose

CloseIn: lesi InFile
fclose

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

Chapter 13

Page 768

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

13.7 Programming Projects

1) The sample program in Section 13.5 reroutes the standard output through the Standard
Library’s file I/O routines allowing you to use any of the output routines to write data to
a file. Write a similar set of routines and macros that let you read data from a file using the
Standard Library’s input routines (getc, gets, getsm scanf, etc.). Redirect the input through
the Standard Library’s file input functions.

2) The last sample program in section 13.3.12 (copyuc.asm on the companion CD-ROM) cop-
ies one file to another, possibly converting lower case characters to upper case. This pro-
gram currently parses the command line directly and uses blocked I/O to copy the data in
the file. Rewrite this program using argv/argc to process the command line parameters
and use the Standard Library file I/O routines to process each character in the file.

3) Write a “word count” program that counts the number of characters, words, and lines
within a file. Assume that a word is any sequence of characters between spaces, tabs, car-
riage returns, line feeds, the beginning of a file, and the end of a file (if you want to save
some effort, you can assume a “whitespace” symbol is any ASCII code less than or equal
to a space).

4) Write a program that prints an ASCII text file to the printer. Use the BIOS int 17h services
to print the characters in the file.

5) Write two programs, “xmit” and “rcv”. The xmit program should fetch a command line
filename and transmit this file across the serial port. It should transmit the filename and
the number of bytes in the file (hint: use the DOS seek command to determine the length
of the file). The rcv program should read the filename and file length from the serial port,
create the file by the specified name, read the specified number of bytes from the serial
port, and then close the file.

13.8 Summary

MS-DOS and BIOS provide many system services which control the hardware on a
PC. They provide a machine independent and flexible interface. Unfortunately, the PC has
grown up quite a bit since the days of the original 5 Mhz 8088 IBM PC. Many BIOS and
DOS calls are now obsolete, having been superseded by newer calls. To ensure backwards
compatibility, MS-DOS and BIOS generally support all of the older obsolete calls as well
as the newer calls. However, your programs should not use the obsolete calls, they are
there for backwards compatibility only.

The BIOS provides many services related to the control of devices such as the video
display, the printer port, the keyboard, the serial port, the real time clock, etc. Descriptions
of the BIOS services for these devices appear in the following sections:

• “INT 5- Print Screen” on page 702
• “INT 10h - Video Services” on page 702
• “INT 11h - Equipment Installed” on page 704
• “INT 12h - Memory Available” on page 704
• “INT 13h - Low Level Disk Services” on page 704
• “INT 14h - Serial I/O” on page 706
• “INT 15h - Miscellaneous Services” on page 708
• “INT 16h - Keyboard Services” on page 708
• “INT 17h - Printer Services” on page 710
• “INT 18h - Run BASIC” on page 712
• “INT 19h - Reboot Computer” on page 712

MS-DOS, PC BIOS, and File I/O

Page 769

• “INT 1Ah - Real Time Clock” on page 712

MS-DOS provides several different types of services. This chapter concentrated on the
file I/O services provided by MS-DOS. In particular, this chapter dealt with implementing
efficient file I/O operations using blocked I/O. To learn how to perform file I/O and per-
form other MS-DOS operations, check out the following sections:

• “MS-DOS Calling Sequence” on page 714
• “MS-DOS Character Oriented Functions” on page 714
• “MS-DOS “Obsolete” Filing Calls” on page 717
• “MS-DOS Date and Time Functions” on page 718
• “MS-DOS Memory Management Functions” on page 718
• “MS-DOS Process Control Functions” on page 721
• “MS-DOS “New” Filing Calls” on page 725
• “File I/O Examples” on page 734
• “Blocked File I/O” on page 737

Accessing command line parameters is an important operation within MS-DOS appli-
cations. DOS’ PSP (Program Segment Prefix) contains the command line and several other
pieces of important information. To learn about the various fields in the PSP and see how
to access command line parameters, check out the following sections in this chapter:

• “The Program Segment Prefix (PSP)” on page 739
• “Accessing Command Line Parameters” on page 742
• “ARGC and ARGV” on page 750

Of course, the UCR Standard Library provides some file I/O routines as well. This
chapter closes up by describing some of the StdLib file I/O routines along with their
advantages and disadvantages. See

• “Fopen” on page 751
• “Fcreate” on page 752
• “Fclose” on page 752
• “Fflush” on page 752
• “Fgetc” on page 752\
• “Fread” on page 753
• “Fputc” on page 753
• “Fwrite” on page 753
• “Redirecting I/O Through the StdLib File I/O Routines” on page 753
• “A File I/O Example” on page 755

Chapter 13

Page 770

13.9 Questions

1) How are BIOS routines called?

2) Which BIOS routine is used to write a character to the:

a) video display b) serial port c) printer port

3) When the serial transmit or receive services return to the caller, the error status is returned
in the AH register. However, there is a problem with the value returned. What is this prob-
lem?

4) Explain how you could test the keyboard to see if a key is available. 5)What is wrong
with the keyboard shift status function?

6) How are special key codes (those keystrokes not returning ASCII codes) returned by the
read keyboard call?

7) How would you send a character to the printer?

8) How do you read the real time clock?

9) Given that the RTC increments a 32-bit counter every 55ms, how long will the system run
before overflow of this counter occurs?

10) Why should you reset the clock if, when reading the clock, you’ve determined that the
counter has overflowed?

11) How do assembly language programs call MS-DOS?

12) Where are parameters generally passed to MS-DOS?

13) Why are there two sets of filing functions in MS-DOS?

14) Where can the DOS command line be found?

15) What is the purpose of the environment string area?

16) How can you determine the amount of memory available for use by your program?

17) Which is more efficient: character I/O or blocked I/O? Why?

18) What is a good blocksize for blocked I/O?

19) What can’t you use blocked I/O on random access files?

20) Explain how to use the seek command to move the file pointer 128 bytes backwards in the
file from the current file position.

21) Where is the error status normally returned after a call to DOS?

22) Why is it difficult to use blocked I/O on a random access file? Which would be easier, ran-
dom access on a blocked I/O file opened for input or random access on a blocked I/O file
opened for reading and writing?

23) Describe how you might implement blocked I/O on files opened for random access read-
ing and writing.

24) What are two ways you can obtain the address of the PSP?

25) How do you determine that you’ve reached the end of file when using MS-DOS file I/O
calls? When using UCR Standard Library file I/O calls?

