

The 80386-80486
Microprocessor

Family

Introduction:
• The 80386 family of microprocessors of Intel Corporation is the

first 32 bit version of the 8086 family-a switch from 16 bit to 32
bit

• 80386 has upward compatibility with 8086,8088,80286 etc
• The 80386 was launched in October 1985, but full-function chips

were first delivered in the third quarter of 1986
• Although it had long been obsolete as a personal

computer CPU, Intel and others had continued making the chip
for embedded systems.

• Used in aerospace technology

Versions of 80386

80386DX – the full version
• The first member in 80386 family
• this CPU could work with 16-bit and 32-bit external buses.
• Comprises of both 32-bit internal registers and 32-bit external bus.

80386SX –the reduced bus version
• low cost version of the 80386.
• This processor had 16 bit external data bus,32-bit internal registers and 24-bit external

address bus.

80386SL –
• low-power microprocessor with power management features, with 16-bit external data

bus and 24-bit external address bus.
• The processor included ISA bus controller, memory controller and cache controller.

Embedded 80376 and 80386EX processors.- Still in use today.

Internal Architecture

• To enhance performance 80386 has 6
functional units, processing in parallel:
– The bus unit
– The prefetch unit
– The decode unit
– The execution unit
– The page unit
– The segment unit

The Bus Unit
• The bus unit is the interface to the external devices.
• The bus interface unit provides a 32-bit data bus, a 3-bit

address bus and the signals needed to control transfers
over the bus.

• In fact, 8-bit, 16-bit and 32-bit data transfers are
supported.

• 80386 has separate pins for its address and data bus lines.
• This processing unit contains the latches and drivers for

the address bus, transceivers for the data bus, and control
logic for signaling whether a memory input/output, or
interrupt-acknowledgement bus cycle is to be performed.

The Prefetch Unit
• The prefetch unit performs a mechanism known as an

instruction stream queue.
• This queue permits a prefetch upto 16 bytes of instruction

code.
• Whenever the queue is not full, and the execution unit is

not asking the bus unit to read or write data from the
memory, the prefetch queue supplies addresses to the bus
interface unit and signals it to look ahead in the program
by fetching the next sequential instructions.

• Prefetched instructions are held in the FIFO queue for use
by the instruction decoder.

• Whenever bytes are loaded into the input end of the
queue, they are automatically shifted up through the
FIFO to the empty location near the output

The Decode Unit
• The decode unit accesses the output end of the

prefetch unit’s instruction queue.
• It reads the machine-code instructions from the

output side of the prefetch queue and decodes
them into microcode instruction format used by
the execution unit, thus it off-loads the
responsibility for the instruction decoding from
the execution unit.

• The instruction queue, a part of the decode unit
permits three fully decoded instructions to be
held waiting for use by the execution unit.

• Thus it improves the performance of the CPU.

The Execution Unit
• The execution unit involves the arithmetic/logic unit-

ALU, registers, special multiply, divide, and shift
hardware, and a control ROM.

• The control ROM contains the microcode sequences that
define the operation performed by each of the machine
code instructions.

• The execution unit reads the decoded instructions from
the instruction queue and performs the operations that
are specified.

• During the execution of an instruction, it requests the
segment and page units to generate operand addresses
and the bus interface unit to perform read or write bus
cycles to access data in memory or I/O devices

The Page and Segment Unit
• The segment and the Page units provide the

memory management and protection services for
the 80386.

• They offload the responsibility for address
generation, address translation and segment
checking from the bus interface unit and thereby
further boosting the performance of the CPU.

• The segment unit implements the segmentation
model of the 386 memory management.

• i.e. It contains dedicated hardware for performing
high speed address calculations, logical to linear
address translation and protection checks.

• The page unit implements the protected mode paging
model of the 80386’s memory management.

• It contains the translation look aside buffer that stores
recently used page directory and page table entries.

• When paging is enabled, the linear address produced by
the segment unit is used as the input to the paging unit.

• Here the linear address is translated into the physical
address of the memory or I/O location to be accessed.
Thus physical memory is the output to the bus interface
unit.

Real Address Mode Software
Model of the 80386DX

• Just like 80286, 80386DX comes up in the real address mode after it is
reset

• The CPU will remain in this mode unless it is switched to protected
mode by the software

• When in the real mode, the 80386DX can be used to execute the base
instruction set of the 8086/8088 architecture.

• Similar to 80286, object code for the base instructions of the 80386 is
identical to that of the 8086/8088. Thus code compatibility is
maintained between them.

• The real mode of the 386 generates the physical addresses in the
same way as in the 8086 or 80286.That is 16 bit segment register
contents and the 16 bit offset are used to generate the absolute 20 bit
physical address.

• Note: IP has 32 bits but in real mode only lower 16 bits are active.

REAL MODE SOFTWARE MODEL
OF 80386DX

• The register model of 80386dx is quite different from those of the
8088, 8086 and 80286.

• There are 17 internal registers that are used in the real mode
application programming.

• Nine of them –the data registers-(EAX, EBX, ECX and EDX), the
pointer registers (EBP and ESP), the index registers-(ESI and EDI)
and the flag register (EFLAG) - are identical to the corresponding
registers in the 8086’s software model except that they are now 32
bits in length.

• On the other hand the segment registers (CS, DS, ES and SS) and the
instruction pointers (IP) are both identical and still 16 bits in length.

• Several new registers are found in the real-mode 80386DX’s software
model.For instance, it has two more data segment registers, FS and
GS.

• Another new register is called the Control
Register Zero (CR0).

• The five least significant bits of this register are
called the machine status word-MSW and are
identical to the MSW of the 80286.

• The only bit in CR0 that is active in the real mode
is bit 0, which is the protection enable (PE) bit.

• PE is the bit used to switch the 80386dx from the
real mode to the protected mode.

• At reset, PE is set to Zero and thus Real mode is
selected at reset.

80386 Specific Instruction Set:
• The base instruction set was enhanced in the 80286

microprocessor with a group of instructions known as the
extended instruction set.

• All these instructions are also available in the 80386 real
mode.

• The enhancement to the 80386dx’s real mode instruction
set is the 80386 specific instruction set.

• It includes instructions to directly load a pointer into the
FS, GS and SS registers.

• A number of special purpose instructions have been
added in the instruction set of 386.

Protected Address mode Software
Architecture of 80386dx

• When configured for the protected mode operation, the
80386dx microprocessor provides an advanced software
architecture that supports memory management, virtual
addressing, paging and multitasking. There are four new
registers in the protected mode model:

• The Global Descriptor Table Register(GDTR)
• Interrupt Descriptor Table Register(IDTR),
• Local Descriptor Table Register(LDTR)
• Task Register (TR)

1.The Global Descriptor Table
Register-GDTR

• The contents of the GDTR define a table in the 80386dx’s physical
memory address space called the Global Descriptor Table, which is
one important element in the CPU’s memory management system.

• GDTR is a 48-bit register located inside the 80386DX to address GDT.
• The lower 2 bytes of the register, identified as the LIMIT, specify the

size in bytes of the GDT.
• The upper 4 bytes of the GDTR labeled as the BASE, locate the

beginning of the GDT in physical memory.
• This 32 bit address allows the table to be positioned anywhere in the

4 Gbyte linear address space.
• The GDT provides a mechanism for defining the characteristics of the

80386’s global memory address space. .
• i.e. Storage locations in the global memory is accessible by any task

that runs on the microprocessor.
• Only 1 GDT exists for all programs.

• This table contains what are called System segment Descriptors.
• These descriptors identify the characteristics of the segments of the

global memory.
• For instance, a segment descriptor provides information about the

size, starting point, and access rights of a global memory segment.
• Each descriptor is 8 bytes long. GDT can hold maximum up to 8192

descriptors.
• The value of BASE and LIMIT must be loaded into the GDTR before

the processor is switched from the real mode of operation to the
protected mode.

• Once in protected mode, the location of the table is not changed.

2.Interrupt Descriptor Table
Register

• Just like GDTR, the IDTR defines a table in the physical memory.
• The contents of the table are Interrupt Descriptors, not segment

descriptors.
• This register and table provide the mechanism by which the

microprocessor passes the program control to the interrupt and the
exception service routines.

• IDTR also is of 48 bits in length.
• Again, the lower two bytes define the size, and it also can be up to

65,536 bytes long.
• But 386 supports up to 256 interrupts and exceptions.
• The upper 4 bytes identify the starting address of the IDT in physical

memory.
• IDTR needs to be loaded prior to switching to the protected mode.

3.Local Descriptor Table Register

• LDTR is also a part of the memory management support
mechanism.

• Each task can have access to its own private descriptor
table in addition to the GDT.

• The private descriptor table is called LDT and defines a
local memory address space for use by the task.

• The LDT holds segment descriptors that provide access to
the codes and the data in segments of memory that are
reserved for the current task.

• Since each task can have its own segment of local
memory, the protected mode can contain many LDT.

• LDTR is of 16 bit.

• The contents of the 16 bit LDTR do not directly
define the local descriptor table.

• Instead it holds a selector that points to an LDT
descriptor in the GDT.

• Whenever a selector is loaded into the LDTR, the
corresponding descriptor is apparently read from
the global memory and loaded into the LDT
cache within the processor.

• Every time the selector is loaded into the LDTR,
a local descriptor is cached and a new LDT is
activated.

• In selector format, the two least significant bits
are RPL- Requested privilege level, which assigns
a privilege level to the selector.

• The next bit is identified as task indicator-TI,
which selects the table to be used when accessing
a segment descriptor.

• If TI is 0, the selector corresponds to a descriptor
in the GDT else LDT.

• The 13 most significant bits contain an index that
is used as a pointer to a specific descriptor entry
in the table selected by the TI bit.

4. Control Registers
• The protected mode includes the 4 system control

registers, identified as CR0 to CR3.
• These are 32 bit registers.
• The lower 5 bits of the CR0 are system control flags.
• These bits make up what is known as the machine status

word-MSW.
• The most significant bit of the CR0 and registers CR2 and

CR3 are used by the 80386’s paging mechanism
• MSW bits of the CR0 contain PE, MP, EM, and R control

bits which define the protected mode system
configuration and status.

• The fifth bit TS, is a status bit.

Paging
• The Protected mode also supports the paged memory operation.
• Switching the PG bit in the CR0 to 1 turns on the paging.
• Now addressing of physical memory is implemented with an address

translation mechanism that consists of a page directory and page
table, which are both held in the physical memory.

• Control Register CR3 contains the page directory base register –
PDBR.

• This register holds a 20 bit page directory base address which points
to the beginning of the page directory.

• A page fault error occurs in the page translation process if page is not
present in the memory.

• In this case, the 80386dx saves the address at which the page fault
occurred in register CR2.

• This address is denoted as page fault linear address.

The Task Register
• It is the key element in the protected mode task switching mechanism of the

80386dx microprocessor.
• This register holds a 16 bit index value called a selector.
• The initial selector must be loaded into TR under software control. This starts

the initial task.
• After this is done, the selector is changed automatically whenever the

processor executes an instruction that performs a task switch.
• The selector in TR is used to locate a descriptor in the GDT.
• When a selector is loaded into the TR, the corresponding Task State Segment

(TSS) descriptor automatically gets read from the memory and loaded into
the on-chip Task Descriptor Cache.

• This descriptor defines a block of memory called the Task state segment.
• It does this by providing the starting address (BASE) and the size-LIMIT of

the segment.
• Every task has its own TSS.
• The TSS holds the information needed to initiate a task, such as initial values

for the user accessible registers.

 Registers with changed
functionality

• Register whose function changes when the 80386DX is switched to
protected mode is the flag register.

• The flag register is now identified as the EFLAGS and expands to 32
bits in length.

• 5 additional bits have been included here.
• 2 I/O privilege level-IOPL, the nested task flag-NF, The resume flag-

RF, the virtual 8086 mode flag-VM

VM - Virtual Mode Flag:
• If this flag is set, the 80386 enters the virtual 8086 mode within the

protection mode.
• This is to be set only when the 80386 is in protected mode.
• In this mode, if any privileged instruction is executed an exception 13

is generated.
• This bit can be set using IRET instruction or any task switch

operation only in the protected mode.
RF- Resume Flag:
• This flag is used with the debug register breakpoints.
• It is checked at the starting of every instruction cycle and if it is set,

any debug fault is ignored during the instruction cycle.
• The RF is automatically reset after successful execution of every

instruction, except for IRET and POPF instructions.
• Also, it is not automatically cleared after the successful execution of

JMP, CALL and INT instruction causing a task switch.
• These instructions are used to set the RF to the value specified by the

memory data available at the stack.

Test and Debug Registers
• Intel has provided a set of 8 debug registers for

hardware debugging.
• Out of these eight registers DR0 to DR7, two

registers DR4 and DR5 are Intel reserved.
• The initial four registers DR0 to DR3 store four

program controllable breakpoint addresses, while
DR6 and DR7 respectively hold breakpoint status
and breakpoint control information.

• Two more test register are provided by 80386 for
page caching namely test control and test status
register.

Multitasking and Protection

• It contains on-chip hardware that permits multiple tasks
to exist in a software system and allows them to be
scheduled for execution in a time-shared manner.

• Safeguards can be built into the protected mode software
system to deny the unauthorized access of a task’s
memory resource. This concept is called protection.

• The processor includes an on-chip hardware that
implements a protection mechanism.

• The mechanism is designed to put restrictions on the
access of local and system resources by a task and to
isolate tasks from each other in a multitasking
environment.

Physical Address Space and
Virtual to physical Address

Translation:
• As a part of the translation process, the memory management unit

determines whether or not the corresponding segment or page
already resides in the memory, the operation is performed on the
information.

• However if the segment or page is not present, it signals this
condition as an error.

• Once this condition is identified, the memory manager software
initiates loading of the segment or page from the external storage
device to the physical memory. This operation is called SWAP.

• That is an old segment or page gets swapped out of the memory and
then a new segment is swapped in the freed space in the physical
memory.

Summary
• The Instruction unit decodes the opcode bytes received from the 16-byte instruction code queue and arranges

them in a 3- instruction decoded instruction queue.
•After decoding them pass it to the control section for deriving the necessary control signals. The barrel shifter

increases the speed of all shift and rotate operations.
• The multiply / divide logic implements the bit-shift-rotate algorithms to complete the operations in minimum time.
•Even 32- bit multiplications can be executed within one microsecond by the multiply / divide logic.
•The Memory management unit consists of a Segmentation unit and a Paging unit.
•Segmentation unit allows the use of two address components, viz. segment and offset for relocability and sharing of

code and data.
•Segmentation unit allows segments of size 4Gbytes at max.
•The Paging unit organizes the physical memory in terms of pages of 4kbytes size each.
•Paging unit works under the control of the segmentation unit, i.e. each segment is further divided into pages. The

virtual memory is also organizes in terms of segments and pages by the memory management unit.
•The Segmentation unit provides a 4 level protection mechanism for protecting and isolating the system code and data

from those of the application program.
•Paging unit converts linear addresses into physical addresses.
•The control and attribute PLA checks the privileges at the page level. Each of the pages maintains the paging

information of the task. The limit and attribute PLA checks segment limits and attributes at segment level to avoid
invalid accesses to code and data in the

memory segments.
•The Bus control unit has a prioritizer to resolve the priority of the various bus requests. This controls the access of the

bus. The address driver drives the bus enable and address signal A0 – A31. The pipeline and dynamic bus sizing
unit handle the related control signals.

•The data buffers interface the internal data bus with the system bus.

Thank you

