
Embedded X86 Programming: Protected Mode  

By Jean Gareau  
Intel has shipped millions of 80386, 80486, and Pentiums since 1986, and this figure is 
increasing rapidly. The x86 is expected to seriously affect the embedded systems market 
for the following reasons: applications can be developed on a PC (not necessarily on a 
target), both 16-bit and 32-bit programming are fully supported, a complete diversity of 
hardware is available, and GUI features—through Windows CE and 95—will become more 
accessible. 1  
Consequently, many existing RTOSs will likely be ported to this CPU—if not completely 
rewritten from scratch—to exploit the x86’s capabilities. This CPU and its successors are 
armed with a battery of features that enables the implementation of the most advanced 
concepts in operating system design. These features also allow the writing of simpler 
embedded applications by providing 32-bit operations and various memory models that 
give applications large address space. 
Development tools (compilers and linkers) also have some benefits, because popular 
memory models, such as the flat memory version, are simpler to support.  
This article initiates a series presenting in-depth technical coverage of the most 
important features: protected mode (the subject of this article), segmentation, and 
paging. Functional examples are provided with each article to illustrate the concepts. To 
understand segmentation and paging concepts and how they can simplify embedded 
application development, the protected mode must first be explained in detail.  
Complete examples that implement various kernel designs—fully documented and 
tested—can be downloaded from the ESP Web site at www.embedded.com/code . These 
examples demonstrate the concepts I’ll explain in this series, including a port of mC/OS 
to protected mode. 2 The source code is provided, as well as ready-to-run executables 
and additional tools. These various implementations will provide a start to help you 
improve your applications or even implement your own system.  
 
REVIEWING THE REAL MODE  
Protected mode has its roots in the 8086 processor, the ancestor of the 32-bit 80386. 
The 8086, although a 16-bit CPU, provides a clever mechanism to access up to 1MB of 
physical (real) memory: real mode. This addressing mode relies on a combination of 
segment and offset registers to address bytes in memory (instruction or data). Each 
instruction uses one of the four segment registers available, either implicitly or explicitly. 
Address calculation is done by shifting a segment register by four (multiplying by 16) and 
adding one of the nine general registers, typically the one specified in the instruction (see 
Figure 1).  

The result is a 20-bit address, 
providing 1MB of address space and 
using 16-bit registers. The carry bit 
(bit 20) is discarded.  
Since a single segment register 
allows accessing 64K, multiple 
segments are required to access 
more memory. Most developers 
involved in Intel application 
development have heard of the 

various memory models that were popular not so long ago: tiny, small, medium, 
compact, large, and huge. These models proposed various segment combinations in 
order to overcome the 16-bit limitation when accessing code and data beyond 64K.  
To push the 1MB limitation further, some complex schemes were introduced, such as the 
expanded and extended memory. These schemes helped, but they also increased 
memory management complexity and consequently, introduced overhead.  
Compilers, linkers, and operating system loaders had the responsibility of assigning 
proper values to segment registers, to free the application developers from doing so. 
System programmers, writing programs mainly in assembly, were not so lucky and had 



to cope with this complex scheme. The source of all this complexity was the infamous 
64K limitation due to the 16-bit nature of the CPU.  
 
INTRODUCING THE PROTECTED MODE  
In 1986, with the advent of the Intel 80386, things really started to change. For one, this 
processor is a real 32-bit processor. The main advantages of 32-bit programming over 
16-bit and 8-bit programming are speed and simplicity. Instructions themselves are 
usually faster and a single instruction (string and memory operations, arithmetic, and so 
forth) can work on 32 bits at the same speed as two 16-bit instructions or four 8-bit 
instructions. Reducing the number of instructions reduces program sizes and speeds up 
execution, because fewer instructions have to be fetched and decoded. Smaller size and 
faster execution are always welcome in embedded systems.  
Second, this CPU’s memory management unit (MMU) introduces a new addressing mode 
over real mode called protected mode. This mode offers a high degree of flexibility, 
making possible very large 4GB flat address space per task or per application (no 
segment) and up to 64 terabytes (that’s 64,000,000,000,000 bytes) of virtual memory! 
This mode also adds some protection in order to run the software that needs it, such as 
Unix-like systems have. Advanced memory concepts and protection will be covered in 
subsequent articles.  
In protected mode, the segment registers are indexes into special tables, all initialized 
and maintained by the operating system, but interpreted by the CPU.  
There are three types of tables, all located either in RAM or ROM:  
 

• The Global Descriptor Table, GDT:  unique, always accessible  
• The Local Descriptor Table, LDT: usually one per task. Zero, one, or many may be 

present in the system, but only one, if any, is active at all times  
• The Interrupt Descriptor Table, IDT: used when interrupts are raised Each table 

contains a variable number of descriptors and an 8-byte data structure that 
describes a memory region with the following attributes. See figure 2 

• The base address in memory (32-bit) 
• The limit (20-bit), expressed either in 4K or 1-byte units 
• Control bits: the granularity bit (limit’s unit), present bit (useful with swapping), 

and two protection bits  
• The descriptor type, one of the 16 supported, among them: executable, read-only 

code segment; data segment; stack segment; call, trap, or interrupt gate; task 
state segment, and others 

 Figure 2 
 
Segment registers are selectors (indexes) into either the GDT or the LDT (the IDT entries 
are only used when an interrupt is raised). A selector (such as a segment register) 
contains a 13-bit index, a 1-bit table identification (GDT/LDT), and a 2-bit protection 
level.  
See Figure 3.  

Figure 3 
A logical address, as used by a program, is still the combination of a segment and a 
general register, or more precisely, a 16-bit selector and a 16-bit or 32-bit offset. The 
selector identifies a descriptor, which in turn provides a 32-bit base address, to which the 



offset is added, forming a final linear 32-bit address as seen in Figure 4. This 32-bit 
addressing supports up to 4GB (2 32 ) of memory.  

Figure 4 
 
All memory accesses within the segment can be done with the offset only, simplifying 
program coding. This address calculation provides many advantages:  
 

• Because segment registers cover up to 4GB individually, they don’t have to be 
constantly reloaded, even with huge data structures, reducing complexity and 
increasing speed 

• Offsets always start at zero, independently of the segment’s location in physical 
memory, making it easier to debug—the addresses (offsets, for example) never 
change. Segments can be moved in physical memory without affecting the 
applications that use them  

• An offset must be within the segment's limit; if it isn’t, an exception is raised and 
the operating system, which typically catches it, may stop the faulty application. 
This feature prevents incorrect memory access, such as jumping outside the code 
segment or accessing out-of-segment data  

• Segments are protected against undesired access, thanks to their descriptors. For 
instance, an application cannot write into a code segment, which is read-only. 
Another similar example is to prevent executing from a data segment  

• This addressing mode provides a phenomenal virtual address space. Because a 
selector’s index is a 13-bit value, the GDT and LDT tables are limited to 8,192 
descriptors (2 13 ). One single descriptor can cover up to 4GB (with a base address 
of zero, a limit of 1MB (FFFFFh), and the granularity bit set, making the limit a 
4K-unit value (4K x 1MB = 4GB)). Considering that the GDT and the active LDT 
together have a maximum of 16,384 descriptors, the total virtual address space is 
64 terabytes (16K * 4GB). Although this is astronomical, one must realize that 
segmentation always produces a 32-bit linear address, limiting the physical 
address space to 4GB, still quite sufficient  

• One embedded operating system may use a few segments, whereas another may 
use hundreds of them, as illustrated in Figure 5. In (a), an embedded application 
can reside in the operating system with a single segment covering 4GB. In (b), 
the same application might own its proper segments, all distinct from the 
operating system segments. These various approaches can be justified depending 
on the system constraints.  

 



Figure 5 
 
MIXING 16-BIT AND 32-BIT CODE  
Protected mode is not synonymous with 32-bit. The Intel CPUs, in protected mode, 
support 16-bit and 32-bit segments. This makes them ideal CPUs to run legacy 16-bit 
applications as well as new 32-bit systems.  
Most x86 assemblers support some directives to indicate whether a specific segment of 
code will be executed in 16-bit mode (the USE16 directive) or in 32-bit (USE32). The 
assembler will generate the appropriate code, but it’s up to the operating system to load 
the task adequately—that is, to ensure the USE16 segments are run in 16-bit mode and 
USE32 segments are run in 32-bit mode.  
By comparing disassembled 16-bit with 32-bit code, one notices many similarities, as 
shown in listing 1. For instance, the 16-bit instruction xor ax,ax (line 2) and the 32-bit 
instruction xor eax,eax (line 7) produce identical opcodes (33h C0h). How does the CPU 
make the difference between the 16-bit AX and 32-bit EAX registers? This has to do with 
the current segment mode. Whenever the code segment—the CS segment register—is 
loaded with a selector, the CPU loads the descriptor into an internal, inaccessible register 
(reserved for the CPU only) and analyzes its type. One bit in the descriptor determines 
whether this is a 16-bit or 32-bit segment. If this is a 16-bit segment, the opcodes 33h 
C0h mean xor ax,ax; if this is a 32-bit segment, they mean xor eax,eax. In a 16-bit code 
segment, opcodes work with 16-bit operands and addresses; in a 32-bit code segment, 
opcodes work on 32-bit operands and addresses. Consequently, the CPU has only one 
instruction set and it works for both 16-bit and 32-bit modes.  
To provide maximum flexibility, the opcodes 66h and 67h respectively override the 
operand and address size. For example, in a 16-bit code segment, 66h 33h C0h (line 3) 
would work on 32-bit EAX whereas the same instruction, in a 32-bit code segment (line 
8), would affect only the lower 16-bit AX.  
This condition is made possible because the CPU really has one and only one bank of 32-
bit general registers. It’s the current CPU mode (either real mode, 16-bit protected 
mode, or 32-bit protected mode) that indicates whether 16-bit or 32-bit operands and 
addresses are used and how they are used. Typically, the size override opcodes are used 
in 16-bit code to access 32-bit values. They are rarely used in 32-bit application code.  
Serious incompatibilities between 16-bit and 32-bit code still exist, especially regarding 
the address mode encoding (the 32-bit mode supports more addressing modes) and the 
addresses themselves (encoded over 16 or 32 bits). The 16-bit instruction lea ax,MyVar 
(line 2) has no direct opcode equivalent in a 32-bit segment, even with size override 
opcodes (lines 6 and 7).  
Mixing 16-bit and 32-bit code is more than often an issue and should be avoided 
whenever possible. There is, however, one case in which this mix can’t be avoided: upon 
starting up, the CPU starts running in real mode. A 32-bit system will have to switch into 



32-bit protected mode and will have to mix at some point or another some 16-bit code 
(system initialization) and 32-bit code (rest of the system).  
If both your assembler and linker accept 16-bit and 32-bit segments, you can simply put 
the real mode code into a USE16 segment and the 32-bit protected mode code into a 
USE32 segment. Once the 16-bit code is ready to go 32-bit, it simply jumps into the 
USE32 segment. The two segments don’t have to be part of the same program, although 
having two programs doesn’t always make things simpler. I prefer to keep the 
initialization in one single source file.  
Again, this solution only works if your tools fully support a 16-bit and 32-bit code mix. 
Unfortunately, some recent tools only support flat memory model and do not fully 
support 16-bit code. For instance, some linkers will not permit a jump from a 16-bit 
segment into a 32-bit one. However, switching into 32-bit protected mode requires 
exactly that. Thus, the issue becomes how to write 16-bit instructions with tools that only 
support 32-bit programming.  
The solution is to write the 16-bit code in 32-bit segments. Now this is not trivial, 
because mnemonics will be assembled as 32-bit instructions, and they will cause 
problems when they’re executed in real mode. Using size override opcodes may not 
entirely resolve the issue because some instructions are simply incompatible. Simply put, 
16-bit instructions cannot be written as such in a 32-bit segment. But there’s still a 
solution.  
By disassembling the real-mode instructions from a 16-bit, you can directly put the 
resulting opcodes in a 32-bit segment, using assembly directives such as DB, DW (which 
allow you to enter values in numerical form). This is really directly encoding 16-bit 
instructions. I agree that this isn’t a high-tech solution, although the use of macros can 
maintain the code’s readability. Also, the 16-bit portion typically consists of a few 
instructions and it affects little code overall. Furthermore, these few instructions are 
unlikely to change. This method is demonstrated a little bit further.  
There are other alternatives. If you are designing a 16-bit system, you are free to stay in 
16-bit as long as you want, by writing everything in a USE16 segment and either far 
jumping into a 16-bit segment or not jumping at all (since the CPU maintains a valid 
code segment after the protected mode is activated, as we will see later). This method 
obviously requires tools that support 16-bit programming.  
 
ACTIVATING THE PROTECTED MODE  
Now let’s take a look at an example that shows how to activate protected mode. This 
example starts in real mode and switches into protected mode in order to execute 32-bit 
code in a flat memory model. The purpose of this example is to demonstrate basic 
protected mode concepts; if you’re looking for ready-to-run examples, be sure to take a 
look at those at www.embedded.com/code .  
This example assumes that after the CPU has been reset, some system tests have 
successfully run, the interrupts have been disabled, and the CPU is still running in real 
mode. The BIOS, if any, is ignored because it works only in real mode and is irrelevant in 
protected mode. The code can be run anywhere in the first 1MB of memory.  
I used Microsoft’s Macro Assembler (MASM) v. 6.11, the latest revision. Also, instead of 
using the provided linker, I used Microsoft Visual C++ v. 5.0’s linker, which is the latest 
incremental linker from Microsoft. This linker generates COFF file executable, which is the 
standard under Windows NT‚ (MASM’s linker outputs less popular OMF files). The 
incremental linker has one drawback: it doesn’t fully support 16-bit segments. 
Consequent-ly, 16-bit instructions must be directly encoded, as I explained earlier.  
The shortest way to execute 32-bit code is to load the GDT, activate the protected mode, 
and jump into a 32-bit segment. This order is not strict, though. For instance, you may 
first activate the protected mode, load the GDT, and make the jump. Either way is the 
same.  
The GDT in Listing 3 is already constructed (lines 97 to 121). Even if you intend to 
dynamically add descriptors in it later, you can initially have it with a few static 
descriptors right from the start. In the example, the GDT occupies 24 bytes and contains 
three entries:  



• Entry 0 is null. This entry cannot be referred to; segment registers can be 
initialized to zero (thus pointing to it), but using them raises an exception. This 
feature is aimed at identifying NULL far pointer references. Nevertheless, it could 
contain some data because the descriptor is never used by the CPU. In the 
example, it simply contains zero  

 
• Entry 1 (Selector 08h) is used for kernel code, with a base of zero, a limit of 

FFFFFh, with the granularity bit set (making the limit 4GB), and the type set to 
executable, read-only code  

 
• Entry 2 (Selector 10h) is used for kernel data, also with a base of zero, a limit of 

FFFFFh, granularity bit set but with a type of writable segment. This data segment 
overlaps the code segment. Together, they provide a flat memory address space. 

  
The GDT is loaded by initializing the GDTR register with the GDT base address and size, 
both stored in a 6-byte data structure (line 61). The GDTR register is normally loaded by 
executing the 16-bit instruction lgdt fword ptr address. But this instruction cannot be 
written as such because the resulting 32-bit opcodes will not work in real mode (the 
address mode will be incorrect). To make things worse, addresses must be expressed as 
32-bit values (a linker constraint), whereas 16-bit values are normally expected in real 
mode. To overcome this problem I used the 16-bit instructions mov ebx,address and lgdt 
fword ptr [bx], encoded in the LGDT32 macro (lines 17 to 25), and called from line 47. 
The address is specified as a 32-bit value, although only the lowest 16-bit portion is 
used. But above all, it properly loads the GDT register while the CPU is running in real 
mode.  
With the GDT register set, protected mode is activated by setting bit #0 in the CR0 
register (lines 49 to 51). CR0 is a control register that controls segmentation and paging, 
among other things. CR0 can only be read from or written to by using register operands 
(no memory nor immediate operands). The example uses the AX register, although the 
opcodes will use EAX when executed in real mode. As soon as the bit is set in CR0, 
protected mode kicks in and the CPU starts executing 16-bit instructions, but in protected 
mode (segment registers become indexes into a table).  
The content of all segment registers is unknown at this point. However, it is guaranteed 
that they can still be used to access subsequent instructions or data. And immediately 
after the protected mode is activated, the CPU’s instruction queue must be flushed 
because it contains pre-fetched real mode instructions, no longer valid in protected 
mode. The queue can be flushed by executing a jump to the next instruction (line 52).  
The last thing to do in 16-bit is to switch to 32-bit. This step is achieved by loading the 
code segment register (CS) with a selector referring to a 32-bit executable code 
descriptor. The second entry in the GDT is such a descriptor. At line 57, the FJMP32 jump 
macro (lines 27 to 32) is executed with the selector 08h and the Start32 offset. Because 
the descriptor contains a base address of zero, the offset simply has to be the physical 
location of the first instruction to execute in 32-bit mode. In this case, this instruction is 
at Start32 (line 65). The entry into the 32-bit mode marks the end of the 16-bit code (as 
well as the tricky encoded instructions).  
Once in 32-bit mode, the best thing to do is initialize the data registers (DS, ES, FS, GS) 
and the stack register (SS) (lines 73 to 78). Note that there are 16-bit and 32-bit stack 
segments: the size determines how many bytes (two or four) a normal push saves on the 
stack (the push and pop opcodes are identical in 16-bit and 32-bit). The example uses 
the third GDT entry as a combined data and 32-bit stack segment (selector 10h). Finally, 
ESP (the stack pointer) is set to an arbitrary top of stack.  
And that’s it—the code is running in 32-bit protected mode, in a flat address space of 
4GB! A complete system would have to continue its initialization, such as loading and 
initializing the Interrupt Descriptor Table (IDT), set-up some hardware, and so on. These 
issues are beyond the scope of the article, although they are fully addressed in the 
examples that can be downloaded from the Web site. The next articles will explore 
segmentation (including protection) and paging in detail.  



Listings 
 
 
 
Listing 1 
Sixteen-bit and 32-bit code segments. Opcodes are shown on the left. 
 
1. _TEXT   SEGMENT PARA USE16 PUBLIC 'CODE' 
2. 33 C0  xor ax,ax 
3. 66 33 C0  xor eax,eax 
4. _TEXT  ENDS 
5.  
6. _TEXT  SEGMENT PARA USE32 PUBLIC 'CODE' 
7. 33 C0  xor eax,eax 
8. 66 33 C0  xor ax,ax 
9. _TEXT  ENDS 
 
 
 
 
Listing 2 
Although many instructions are identical in 16-bit and 32-bit, addressing 
modes and addresses always generate different opcodes, making the code 
incompatible. 
 
1. _TEXT     SEGMENT PARA USE16 PUBLIC 'CODE' 
2. 8D 06 0024   lea ax,MyVar 
3. _TEXT    ENDS 
4. 
5. _TEXT     SEGMENT PARA USE32 PUBLIC 'CODE' 
6. 66 8D 05 00000024 lea ax,MyVar 
7. 8D 05 00000024  lea eax,MyVar 
8. _TEXT    ENDS 



 
Listing 3 
Switching from 16-bit real mode to 32-bit protected mode. 
1. ; ProtMode.asm 
2. ; Copyright (C) 1998, Jean L. Gareau 
3. ; 
4. ; This program demonstrates how to switch from 16-bit real mode into 
5. ; 32-bit protected mode. Some real mode instructions are implemented  
6. ; with macros in order for them to use 32-bit operands. 
7. ; 
8. ; This program has been assembled with MASM 6.11: 
9. ; C:\>ML ProtMode32.asm 
10. 
11.   .386P   ; Use 386+ privileged instructions 
12. 
13. ;---------------------------------------------------------------------; 
14. ; Macros (to use 32-bit instructions while in real mode)      
15. ;---------------------------------------------------------------------; 
16. 
17. LGDT32 MACRO Addr   ; 32-bit LGDT Macro in 16-bit 
18.  DB  66h  ; 32-bit operand override 
19.  DB  8Dh  ; lea (e)bx,Addr 
20.  DB  1Eh 
21.  DD  Addr 
22.  DB  0Fh  ; lgdt fword ptr [bx] 
23.  DB  01h 
24.  DB  17h 
25. ENDM 
26. 
27. FJMP32 MACRO Selector,Offset   ; 32-bit Far Jump Macro in 16-bit 
 
28.   DB  66h  ; 32-bit operand override 
29.   DB  0EAh  ; far jump 
30.   DD  Offset  ; 32-bit offset 
31.   DW  Selector ; 16-bit selector 
32. ENDM 
33. 
34.   PUBLIC _EntryPoint  ; The linker needs it. 
35. 
36. _TEXT SEGMENT PARA USE32 PUBLIC 'CODE' 
37.   ASSUME CS:_TEXT 
38. 
39.   ORG  5000h ; => Depends on code location.  
40. 
41. ;--------------------------------------------------------------------; 
42. ; Entry Point. The CPU is executing in 16-bit real mode.      
43. ;--------------------------------------------------------------------; 
44. 
45. _EntryPoint: 
46. 
47.  LGDT32 fword ptr GdtDesc ; Load GDT descriptor 
48. 
49.  mov  eax,cr0     ; Get control register 0 
50.  or  ax,1     ; Set PE bit (bit #0) in (e)ax 
51.  mov  cr0,eax     ; Activate protected mode! 
52.  jmp  $+2     ; To flush the instruction queue. 
53. 
54. ; The CPU is now executing in 16-bit protected mode. Make a far jump in          
54b. ; order to 
55. ; load CS with a selector to a 32-bit executable code descriptor. 
56. 



57.  FJMP32 08h,Start32  ; Jump to Start32 (below) 
58. 
59. ; This point is never reached. Data follow. 
60. 
61. GdtDesc:     ; GDT descriptor 
62.   dw  GDT_SIZE - 1 ; GDT limit 
63.  dd  Gdt  ; GDT base address (below) 
64. 
65. Start32: 
66. 
67. ;---------------------------------------------------------------------; 
68. ; The CPU is now executing in 32-bit protected mode.    
69. ;---------------------------------------------------------------------; 
70. 
71. ; Initialize all segment registers to 10h (entry #2 in the GDT) 
72. 
73.  mov  ax,10h   ; entry #2 in GDT 
74.  mov  ds,ax   ; ds = 10h 
75.  mov  es,ax   ; es = 10h 
76.  mov  fs,ax   ; fs = 10h 
77.  mov  gs,ax   ; gs = 10h 
78.  mov  ss,ax   ; ss = 10h 
79.    
80. ; Set the top of stack to allow stack operations. 
81.   
82.    mov  esp,8000h ; arbitrary top of stack 
8 
84. ; Other initialization instructions come here. 
85. ;  ... 
86. 
87. ; This point is never reached. Data follow. 
88. 
89. ;---------------------------------------------------------------------; 
90. ; GDT           
91. ;---------------------------------------------------------------------; 
92. 
93. ; Global Descriptor Table (GDT) (faster accessed if aligned on 4). 
94. 
95.   ALIGN 4 
96. 
97. Gdt: 
98. 
99. ; GDT[0]: Null entry, never used. 
100.     
101.     dd  0 
102.   dd  0 
103.    
104.;GDT[1]:Executable, read-only code, base address of 0, limit of FFFFFh,  
105. ; granularity bit (G) set (making the limit 4GB) 
106.   
107.  dw  0FFFFh   ; Limit[15..0] 
108.  dw  0000h   ; Base[15..0] 
109.  db  00h   ; Base[23..16] 
110.  db  10011010b ;P(1) DPL(00) S(1) 1 C(0) R(1) A(0) 
111.  db  11001111b ; G(1) D(1) 0 0 Limit[19..16] 
112.    db  00h   ; Base[31..24] 
113.     
114. ; GDT[2]: Writable data segment, covering the save address space than 
GDT[1]. 
115.   
116.    dw  0FFFFh   ; Limit[15..0] 



117.  dw  0000h   ; Base[15..0] 
118.  db  00h   ; Base[23..16] 
119.  db  10010010b ;P(1) DPL(00) S(1) 0 E(0) W(1) A(0) 
120.  db  11001111b ; G(1) B(1) 0 0 Limit[19..16] 
121.  db  00h   ; Base[31..24] 
122.   
123. GDT_SIZE EQU      $ - offset Gdt  ; Size, in bytes 
124. 
125. _TEXT ENDS 
126.   END 
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Advanced Embedded X86 Programming: Protection and 
Segmentation  

In this part of the tutorial the author explains how protection and segmentation are 
implemented in protected mode.  

This article is the second in a series of three describing protected mode features of the 386 up 
to the Pentium. Because this family of CPUs is extremely popular and is affecting the 
embedded industry, RTOSes and embedded applications can be updated to take advantage of 
its 32-bit programming capabilities and larger, simpler memory models. Development tools 
also obtain some benefits because popular memory models, such as the flat memory model, 
are simpler to support. The previous article introduced the 32-bit protected mode, in which 
each segment register is an index to a table of descriptors, each descriptor describing a 
memory segment by its base address, limit, type, and protection fields. A 32-bit linear address 
is produced from a segment/offset logical address by adding the offset to the base address 
found in the descriptor that’s pointed to by the segment. That article also demonstrated how to 
switch from real mode to protected mode.  

This article explains how protection and segmentation are implemented in protected 
mode to design robust and reliable systems. These qualities are becoming more 
important as some embedded systems now include multiple tasks that run concurrently, 
such as an embedded Java Virtual Machine that supports concurrent Java applets. 
Whereas the lack of protection allows tasks to access, corrupt, and destroy anything from 
other tasks’ data to the operating system (OS) internal structures, protection permits the 
building of robust and powerful applications by restricting them to their own code and 
data. Another advantage offered by protection is the ability for the OS to remove a faulty 
task (such as copying memory outside its address space—a typical problem with 
memcpy() in C). For example, when a task commits a fault, the CPU can notify the OS, 
which can then halt the task before any damage is done; the other tasks continue 
undisturbed. Protection also simplifies task development—when an error is detected, 
protection helps to pinpoint the exact problem where it happened, so developers don’t 
have to search for it. In other words, protection simplifies building and deploying safe 
and secure embedded tasks that can work together but not harm each other.  
Complete examples, fully documented and tested, that implement various kernel designs 
can be downloaded from www.embedded.com/code . These examples demonstrate the 
concepts I’ve explained in this series, including a port of mC/OS to the protected mode. 1 

The source code is provided as ready-to-run executables and additional tools. These 
examples provide an excellent start to help you improve your applications or even 
implement your own system.  
 
WHAT PROTECTION?  
The protection we’re talking about here is three-fold: 1) to prevent a task from executing 
privileged instructions, such as setting or clearing the interrupt flag; 2) to prevent a task 
from accessing another task’s code and data; and 3) to prevent tasks from calling 
privileged kernel code in an unordered fashion or corrupting privileged kernel data. This 
protection doesn’t deal with user authentication, since this concept is implemented in the 
OS itself, not in the CPU. All protection features are implemented in the CPU and 
activated by the OS, freeing application developers from having to worry about 
protection.  
In the x86, protection is a feature associated with segments, and automatically kicks in 
when the CPU executes in protected mode.  
Whenever a segment register is referred to, the CPU accesses the related descriptor and 
analyzes its control bits. If the operation doesn’t concur with these bits, the processor 
raises an exception, which is typically caught by the OS—resulting in the application 



being shut down. Examples of this would be to write in a code segment (code segments 
cannot normally be altered), jump into a data segment (data isn’t executable), and so 
on.  
Another protection check involves checking the offset used in the address calculation 
against the segment’s limit. If an operation tries to address beyond the limit, an 
exception is raised. The most common example is the use of an incorrect pointer or an 
invalid jump. This limit check feature is useful because it constrains a task to its own 
segments. Many tasks might be in memory at once, but if they all have their own 
separate segments, they can’t see each other, and therefore can’t alter one another.  
Each task typically requires at least two descriptors, one for code access and one for data 
access. Code segments are read-only and can’t be used to modify data—hence the need 
for a second segment for data access. The descriptors normally don’t cover the same 
address space (i.e., they don’t overlap), in order to maintain the initial protection (not to 
overwrite code, and so forth). Through its own descriptors, a task is restricted to its code 
and data. The flat memory model’s segments do overlap, but this model is normally used 
in conjunction with paging, the subject of part three of this series of articles.  
The previous article explained that descriptors were kept in either the global descriptor 
table (GDT) or local descriptor table (LDT). Let’s forget for a moment about the LDT and 
suppose that all the code and data descriptors of all tasks are kept in the GDT. One 
problem that arises at this point is that any task can load another task’s data descriptor 
from the GDT and alter this other task’s data segment. The problem exists because the 
GDT is unique and a task can theoretically access any descriptors in it. Providing distinct 
address space per task isn’t sufficient in itself; the solution comes through the use of the 
LDTs, task state segments (TSSes), privilege levels, and gate descriptors, all explained in 
the following sections.  
LDTs, like the GDT and the interrupt descriptor table (IDT), are built by the OS, not by 
the task. A given LDT usually contains a task’s code and data descriptors, and is built 
when the task is loaded in memory. If the task is going to be in ROM, the LDT can be 
hard-coded and ROMable. Although a system may have more than one LDT, only one is 
active at a time (see Figure 6), pointed to by the LDTR register. Note that no LDTs might 
be active at all, if none are referred to.  

Figure 6 
 
An LDT is described by a descriptor whose base address is the LDT address in memory. 
The limit is the LDT size, as it’s useful to limit the number of entries in it,  
In a system where each task has its own LDT, you can keep the LDT selector in the task 
control block (or a similar structure) to identify this LDT as the current one when the task 
is selected to run. Such a system also provides a good deal of protection, because each 
task sees either the GDT or its LDT, but not the other tasks’ LDTs. Consequently, a task 
can’t alter or even look at another task’s code and data—a must with segmentation.  
If a system is designed to provide such isolation among the tasks, the OS must provide 
primitives to transfer information among tasks (to send and receive messages, for 



instance); this is something tasks can’t do by themselves because they’re restricted to 
their own address space.  
 
PRIVILEGE LEVELS  
Despite the LDTs, a task can still refer to any GDT descriptor and alter some data. To 
prevent this from happening, privilege levels are introduced. The Intel CPUs support four 
levels: 0 (most privileged) to 3 (least privileged). Level 0 allows the execution of 
privileged instructions (such as set or clear interrupts, accessing I/O ports, loading the 
GDT, LDT, or IDT, and the like), whereas this is strictly forbidden in any other level. 
Operating systems must run at level 0 to have no restriction at all, whereas you must 
decide whether device drivers, OS extensions, and application tasks run at either 0, 1, 2, 
or 3. Using level 0 for all system software and 3 for application software is very common, 
while simply ignoring levels 1 and 2. Such tasks can neither execute privilege instructions 
nor alter the state of the system.  
A privilege level is always associated with current executing code. When entering the 
protected mode, the current privilege level (CPL) is 0 (the highest) because OS code is 
expected to be running. All descriptors contain a descriptor privilege level (DPL), which is 
a two-bit value (zero to three) identifying the privilege of the related segment. The DPL 
has a different meaning depending on the segment type (code or data).  
When the code segment register—the CS register—is loaded with a valid code selector 
(via a jump, a call, or returning from a function or an interrupt), the CPU examines the 
descriptor and the DPL becomes the CPL, as seen in Figure 7.  

 Figure 7 
 
For instance, once the OS initialization (running at CPL 0) is completed, the first task is 
executed by loading CS with a selector referring to the tasks’ code descriptor with a DPL 
of 3; consequently, the task starts running at CPL 3. But there is a trick: when loading 
CS, the CPL can never become more privileged; it has to stay at the same or a lesser 
privilege. Thus, a CPL 3 task cannot load CS with a selector referring to a descriptor with 
a DPL of 0, 1, or 2—doing so will raise an exception. The OS would typically catch that 
exception, analyze it, delete the faulty task, and reschedule another one.  
When a data segment register is referred to, the DPL of the related descriptor indicates 
the minimum CPL required to access it—the CPL must have the same or a higher 
privilege than the DPL. Thus, a CPL 2 task cannot refer to a data descriptor carrying a 
DPL of 0 or 1; it can only access data descriptors with a DPL of 2 or 3.  
The OS, by carefully setting the DPL of all GDT and LDT descriptors, prevents 
nonauthorized tasks from accessing sensitive or protected code and data. For instance, 
all OS descriptors are set with a DPL of 0, whereas all task descriptors are marked with a 
DPL of 3. Consequently, tasks cannot directly access OS code and data. As far as the 
applications are concerned, they only see their code and data, nothing else.  
 
 
 
 
 
 
 



TASK STATE SEGMENTS  
Before we explore privilege levels in detail, we must introduce task state segments 
(TSS). A TSS is a placeholder for all the registers of a task when that task doesn’t run. 
Like LDTs, only one TSS is active at all times and it is interpreted at some point by the 
CPU. It is also described by a descriptor that indicates the base address, the size (which 
may vary because extra data can be stored in each of them), the protection, and the 
type, which in this case is a TSS. The TR register contains the selector of the active TSS.  
Having one TSS per task in a segmented system is common. In this case, TSS 
descriptors are usually kept in the GDT, with a DPL of 0 to prevent a task (with a CPL of 
1, 2, or 3) from accessing them. A task’s TSS selector can also be stored in a task control 
block for quick reference. The operating system can indicate which TSS is active by 
executing the ltr instruction (load task register).  
TSSes are special: a far jump to a TSS selector (the offset is ignored) makes a complete 
context switch from the current task to the task referred to by the selected TSS. That 
switch not only saves and reloads the task registers, but it manages the segment 
registers, the current LDT selector, the current TSS selector, and so on, all with a single 
instruction. Keeping all LDT and TSS descriptors in the GDT is best, to ensure their 
accessibility during the switch.  
 
MIXING PRIVILEGE LEVELS  
Maximum protection is achieved by mixing privilege levels: the OS is given full privileges, 
while the tasks receive no special privileges. Luckily, the x86 has much to offer in order 
to mix privileges.  
If you want to execute higher-privileged code, such as directly calling an OS function at 
CPL 0 from a CPL 3 task, you can use call gates (see Figure 8). 

 Figure 8 
 
Call gates are a special type of descriptor and can reside in the GDT (making them 
sharable among all tasks) or a task’s LDT (making them private to that task). A call gate 
is no more than an indirect, controlled call to a more privileged function, typically an OS 
service. The call gate contains a code selector and the address of the function to call 
within that selector. The code selector usually has a higher privilege, allowing the system 
service to run with adequate privileges. Call gates are initialized and maintained by the 
OSes, but used by the tasks.  
Call gates are accessed via a far call (a selector/offset combination), though only the 
selector is meaningful (the offset is discarded). Call gates can be hidden in a normal 
function (such as open()), making them “invisible” to the application programmers.  
The CPU ensures that the current task has enough privilege to use the call gate. For 
instance, if the call gate has a DPL of 2, only tasks executing at CPL 0, 1, or 2 can use it; 



tasks running at CPL 3 are excluded. But it is common to set all call gates’ DPL to 3, to 
make them available to all tasks. Also, the target code segment’s DPL must have the 
same or a higher privilege than the CPL. For example, if a task running at CPL 2 uses a 
call gate that refers to a segment at CPL 3, a fault is triggered. Call gates are only used 
to increase privilege levels, not to decrease them; otherwise, upon returning, there 
would be an uncontrolled privilege increase (which would be disastrous if the return 
address would have been altered by the task). For that same reason, when the system 
service terminates, various checks are performed to ensure that the control is returned 
to a code segment of the same or lesser privilege. Note that executing a far call to a less-
privileged segment is possible, as long as it is a conforming segment. A segment is 
conforming when a special control bit is set in its descriptor. Such a segment conforms to 
its caller in that it executes under the caller’s CPL. For instance, if the current task runs 
at a CPL of 2, and calls a function in a conforming segment of DPL 3, that function will 
also run at CPL 2. Thus, calling a conforming segment doesn’t alter the calling task’s CPL. 
Conforming segments are a useful way to implement system libraries callable by any 
task, regardless of its privilege. In fact, there is no other way to call less-privileged 
segments. However, conforming segements are still quite rare, since libraries (such as 
the C library) are usually bound to applications at link time, not run time.  
But a call gate isn’t enough to ensure a successful execution—enough stack space must 
be provided for the OS service to run. Because the calling task may have very little stack 
space, the call gate will perform a stack switch if the privilege level is increased. The TSS 
is important here because, in addition to the task’s registers, it holds stack pointers for 
privilege levels 0, 1, and 2, all initialized by the OS. Here’s an example of how it works: a 
CPL 3 task uses a call gate to execute a system service at DPL 0; the task’s TSS (the 
current TSS) is looked up to get the privilege 0 stack pointer (selector/offset), and this 
value becomes the effective stack. The original task’s stack pointer (selector/offset) is 
pushed on the new stack to have a link back to it, as shown in Figure 9.  

Figure 9 
 
In addition to the stack switch, up to 32 double-word parameters can be copied from the 
task’s stack to the new stack, which is a convenient feature. The number of parameters 
per call gate is fixed—call gates do not support a variable number of parameters.  
The alternative to using call gates is to use a trap interface, which consists of calling OS 
functions by raising software interrupts. A trap interface involves the interrupt table 
(IDT), which can contain three types of descriptors:  

• Interrupt gate, which refers to a specific function, usually in the kernel  
• Trap gate, which is similar to an interrupt gate  
• Task gate, which points to a TSS descriptor  
 

Like call gates, invoking a method through the IDT is a way to increase the CPL. Each 
IDT descriptor, like any other descriptor, contains a DPL, usually set to 0 by the OS. Such 
a DPL prevents unprivileged tasks from directly triggering the interrupt (via the int 
instruction). Note that some IDT descriptors may have a lower DPL, making them 
callable by the tasks, to implement system calls. These software interrupts or traps may 
also be hidden in a library function (such as close()), to hide them from the application 
programmers.  



Whenever a hardware interrupt is raised or a valid software interrupt is encountered, the 
related descriptor of the IDT is analyzed and the CPL set to the descriptor’s DPL (as seen 
in Figure 10).  

Figure 10 
 
For an interrupt gate, execution starts in the address found in the descriptor (typically an 
interrupt handler in the OS) with the interrupts disabled; when the handler terminates, 
extra protection checks occur to ensure a proper return to the caller. Trap gates are 
almost identical—the same processing happens, but with the interrupts enabled. With a 
task gate, a context switch occurs (as described earlier with the TSS). Note that task 
gates in the IDT are not a convenient way to implement multitask, because context 
switches normally occur under OS conditions (time slice expired, system calls that makes 
a higher-privileged task ready, and the like), rather than raised interrupts. Nevertheless, 
they can be a useful way to invoke special tasks, such as a debugger.  
The CPU invokes the handlers described by the interrupt or trap gates in a way similar to 
call gates: if the privilege is increased, a stack switch occurs using the TSS to get the 
new stack pointer. As opposed to a call gate, though, no parameter can be copied. If 
parameters are needed, they can be passed via the registers or they may be traced back 
via the task’s stack pointer, which is on the new stack.  
Choosing between call gates vs. interrupt/trap gates to execute an OS service depends 
on how many system calls you have and whether they require some arguments or not.  
If you have many system calls, an interrupt/trap gate is better because it offers a single 
entry point in the kernel; however, a register must be set to identify the service called. 
On the other hand, because a call gate refers to one function, having many system calls 
implies many call gates. Since high-end systems might have hundreds of calls, call gates 
might be tough to maintain. Moreover, if they are placed in the LDT (to prevent some 
specific tasks from using it), things can get very complicated.  
If the task passes parameters, call gates allow you to transfer them into the more 
privileged stack, from where the system call can access them as local parameters (easy). 
Via the interrupt/trap interface, you might have to trace back the calling stack (which is 
just annoying).  
If you prefer call gates (because of the fixed parameter transfer facility) and you have 
hundreds of system calls, only a few gates with specific numbers of parameters (one, 
two, four, and so forth) may be all it takes. All system calls that have one parameter go 
through the call gate with one parameter, and so on. Each call requires a 



register/parameter to identify the service because many services converge toward the 
same call gates.  
As I mentioned earlier, call gates can only transfer a fixed number of parameters. If 
some services have a variable number of parameters, an argument count and an 
argument pointer must be passed instead.  
Call gates require far pointers, whereas traps or interrupts are simply triggered via one 
instruction (no pointer nor segment register at all), which is faster.  
A word of caution: whenever privilege checks are involved by the CPU, execution cycles 
dramatically increase. Here are some examples on a 386 (for reference, the fastest 
instruction, excluding lock, requires two cycles):  

• Operations on descriptors, such as lsl (load segment limit), lar (load access right 
byte), and the like usually take more than 10 cycles. Directly accessing the tables 
where they reside might be a faster way to get the information  

• Loading a segment register in itself takes at least 18 cycles, compared to two with 
general registers. (This extra time has to do with the internal validation of the 
descriptor.) Remember that within a task, you should load a segment register 
only if the new value is different (the comparison instruction itself only takes two 
cycles)  

• Loading the current LDT—the lldt instruction—takes 20 cycles  
• Loading the task register (setting the current TSS)—the ltr instruction—takes at 

least 23 cycles  
• A call/interrupt/trap gate to a higher-privilege descriptor takes a minimum of 90 

cycles (and it increases with the number of parameters for a call gate)  
• And the worst case: a task switch through a TSS takes more than 300 cycles! TSS 

task switches are only useful if all registers—especially the segment registers—
must be reloaded with new values  

 
IMPLEMENTATION EXAMPLES  
These four features (LDT, TSS, privilege levels, and the variety of gates) can be used in a 
multiple of ways to satisfy specific needs. 2 Following are some examples of implementing 
protection in an OS, from the easiest to the hardest.  
Case 1. The OS and a single task run at privilege 0 (see Figure 11).  

Figure 11 
 
This is ideal for a simple, real-time dedicated 32-bit controller and is easy to achieve, 
such as with a fuel-air mixture analyzer that needs 32-bit registers to perform 
calculations with a certain precision.  

• The OS and the task form one combined image  
• Two entries are required in the GDT (in addition to the first entry): one code 

descriptor (zero to 4GB, DPL 0), one data descriptor (zero to 4GB, DPL 0). 
Segment registers always refer to these code and data descriptors  

• Hardware interrupts are implemented via interrupt gates, all DPL 0, which call 
interrupt handlers  



• No call gate nor task gate is used; the system services can be called directly  
• A TSS isn’t required because there is only one task and no privilege transition 

Case 2. The OS and many tasks run at level 0. This model would be best for a 
multitask, real-time kernel, such as mC/OS. This case is ideal for a breaking 
system that needs multiple tasks to simultaneously control hydraulic systems, 
breaking force, collect statistical data, and the like. Such a system has a similar 
architecture to the previous case.  

• Because all tasks have the highest privilege, they can share one single segment, 
so there is no need to use LDTs. Thus, only one code and one data descriptor (CPL 
0, zero to 4GB) are required in the GDT  

• Interrupts are implemented via interrupt gates (DPL 0)  
• TSSes aren’t required because no privilege transition exists and segment registers 

don’t change. Task switches are done by saving application registers on the stack, 
switching stack, and restoring registers from the new stack                           
Case 3. The OS runs at level 0 and many tasks run at level 3 (see Figure 12). This 

Figure 12        
model would be best for a simple system running untrusted tasks, such as an 
embedded Java Virtual Machine that supports unknown Java applets.  

• All descriptors in the GDT have a DPL of 0 to prevent tasks from using them 
directly  

• The GDT has one code and data descriptor (CPL 0, zero to 4GB) for kernel use 
only  

• Each task runs in its own address space, and needs its private LDT with two 
entries: one for the code and one for the data. For a flat memory model, the code 
and data segment of a given task may overlap; for better protection, they may be 
distinct. In the latter case, each task must be built apart (not linked with the 
kernel) using a small memory model, and loaded in order to be run (a loader is 
required). Tasks run at privilege 3 (which prevents accessing kernel code and data 
directly). LDTs prevents tasks from seeing each other. LDT descriptors reside in 
the GDT  

• The IDT contains descriptors referring to interrupt handlers (to maintain interrupts 
disabled when the handler is called) in the kernel, at DPL 0, to ensure that kernel 
code always runs at 0  

• TSSes can’t be avoided because protection transition requires a stack switch, 
which is done from the current TSS. TSS descriptors reside in the GDT If a flat 
memory model is retained, system services may be callable through interrupts (to 
avoid the far system calls required with call gates)  

• Message-based systems usually have few system calls (send, receive), which may 
equally be called via interrupts or call gates, passing parameters via registers           



Case 4. The OS runs at level 0, system libraries at level 1, device drivers at level 
2, and many tasks at level 3, each of them with multiple segments. This case is a 
complicated variant of Case 3 (more descriptors, more privilege levels) and it 
requires more effort to implement it. This case would be best for a high-end 
system rather than an embedded one. Compared to Case 3:  

• System libraries are accessed through call gates that reside in the GDT, making 
them available to all tasks. Application libraries may hide these call gates from the 
tasks  

• Devices drivers have their code, and data segments too, at DPL 2 in the GDT (if 
they are public) or in their own LDT (if they are accessible by the kernel only)  

• Each task has its own TSS, and for this case, switching via task state segments 
might be justifiable, since all registers must be changed  

 
A system such as the one in Case 4 is hardly justifiable, since it can be simplified and 
rendered more powerful by using paging—which is the subject of the next article.  
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Advanced Embedded x86 Programming: Paging  

by JEAN GAREAU  
This article is the third and final in a series describing protected-mode features of the 
Intel x86 family, from the 80386 through the Pentium. RTOSes, embedded applications, 
and development tools can be updated to take advantage of the x86's 32-bit 
programming capabilities and larger, simpler memory models.  
The first two articles in this series introduced 32-bit programming on the 80386 and its 
successors, switching into protected mode, and implementing protection and 
segmentation in protected mode. Let's quickly review these features.  
Each segment register is an index to a table of descriptors, each of which describes a 
segment of memory by a base address, a limit, a type, and some protection fields. A 
linear address is produced from a segment/offset register combination by adding the 
offset to the base address found in the descriptor (which is pointed to by a segment 
register). Among the descriptor's protection fields is the descriptor privilege level (DPL), 
which sets the current task's current privilege level (CPL). Only a CPL of 0 (the highest 
level) gives full privileges to execute protected instructions (set or clear the interrupts, 
and so forth). Applications usually have a CPL of 3 (the lowest level), which gives them 
no privilege.  
Segmentation offers flexibility and protection but it presents various constraints: it can 
seriously increase the complexity when many memory segments are used; switching 
segment registers increases execution time; each segment has a limited, static address 
space; and development tools must also support segmented memory models. An 
alternative is to preserve the segmentation's main advantages (virtual memory and 
protection), but replace all segments by a per-task flat and flexible address space. 
Paging, the feature that allows just that, is the subject of this article.  
Paging is ideal for a multitasking embedded application whose tasks may require a very 
large address space or share a lot of data. It better fits systems with a few megabytes of 
ROM and RAM. Some recent high-end embedded devices fall into that category; for 
instance, a Web appliance (such as a TV Web device) may run many instances of the 
same browser. Paging allows the code of all these browsers to be shared instead of being 
uselessly duplicated, freeing precious memory. These browsers may temporarily need 
large address space to load pages with a lot of text, images, and sound. Paging allows 
you to store and access these megabytes of data easily through a flat address space.  
You can download examples that implement various kernel designs from 
www.embedded.com/code.htm. These examples demonstrate the concepts explained in 
this series, including a port of mC/OS to protected mode. The source code is provided as 
well as ready-to-run executables and additional tools.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A QUICK TOUR OF PAGING  
A system that implements paging breaks a task into a multitude of small pages, as 
illustrated in Figure 13. The size of a page typically ranges from 512 bytes to 8K, and is 
CPU-dependent. Each task is under the illusion that it has a huge flat address space, 
composed of hundreds of thousands of pages; however, only the pages in use have to be 
in physical memory. The other pages reside on disks or can even remain compressed 
elsewhere-in flash memory, for instance. As an application requires more stack or data 
memory, physical pages are dynamically and transparently allocated in RAM by the 
operating system (OS).  

 Figure 13 
 
Paging offers many advantages, the first of which is a simple memory model. Each task 
has a large and uniform address space (no more segmented memory model, such as 
small, large, and so on). Segmentation can be ignored, simplifying application 
development. Development tools are also simplified because a flat memory model is 
much easier to handle than a segmented one.  
Paging also offers a smaller task footprint. The physical space that must be committed 
for a task is directly proportional to the number of pages it needs, unlike segments that 
require a fixed amount of memory. Pages can reside anywhere in memory and do not 
need to be contiguous, optimizing the use of the physical memory and rendering the 
tasks' physical location irrelevant. Only the OS has to keep an eye on their physical 
location.  
Another advantage offered by paging is efficient memory allocation. Pages can be 
allocated and deallocated on the fly, quickly expanding or shrinking task stacks or heaps. 
Pages can also be shared among tasks, and then can be replaced on the fly. For instance, 
a task in ROM can be partially or totally updated by adding new pages in flash memory 
and reorganizing the task's address space to use the new pages.  
To summarize, paging is ideal to support large applications with multiple tasks. On the 
other hand, it imposes significant memory overhead on small systems and isn't trivial to 
implement. 
  
 
 
 
 
 
 



 
A CLOSER LOOK  
Under paging, each task is broken up into a series of fixed-size pages (See Figure 13). 
These pages can reside anywhere in memory and do not have to be contiguous.1 Only 
the pages that are accessed have to be in memory. For instance, if an application 
executes just a few functions, only the pages containing these functions need to be 
loaded in memory; the other pages may stay on a disk.  
In a simple paging system, an address is broken in two: the left portion is a number that 
indicates a page in memory, whereas the right portion is considered an offset within the 
page (see Figure 14a).  

Figure 14 
 
The OS uses internal tables to map the page number to its physical location. Under that 
scheme, pages may reside anywhere in memory. A simple paging system such as the 
one I just described requires a huge page table for a 32-bit system, since the page table 
has to cover the entire address space of 4GB for each task. Such a huge page table 
would span many contiguous pages itself. To prevent this situation, this huge page table 
is fragmented in smaller page tables, resulting in a three-level page table hierarchy, as 
seen in Figure 14b. Large systems typically use a three- or four-level hierarchy, and 
accordingly split any address into three or four indexes. These systems are more 
complex, but they allow anything to be split into fixed-size pages.  
Pages and page tables are constructed by the OS as applications are loaded in memory. 
The code and data are loaded into pages called page frames, whose addresses are stored 
into page tables by the OS. Because a task sees the page frames through its page tables, 
it cannot see (or alter) another task's page frames. As a task requires memory, more 
pages are transparently allocated by the system; at the end, a task only uses the pages 
it needs, and no more. Tasks are never involved in page management; it's the operating 
system's business.  
Paging can be implemented only if the underlying CPU supports it. Alternatively, a CPU 
may rely on an external memory management unit (MMU) instead. The hardware is 
involved because each address must be translated into a page whenever code or data is 
accessed. Needless to say, the translation logic must be optimized, given all the 
translations that occur when tasks run. Caching is extremely important at that level for 
performance considerations. 
 
 
 
 
 
 
 
  



PAGING ON THE x86  
The x86 uses a three-level hierarchy, as shown in Figure 14b. As I've explained, any 
logical address (segment/offset pair used in the task) is translated into a 32-bit linear 
address through segmentation. When paging is enabled, the linear address is broken up 
into three components: a 10-bit directory index, a 10-bit page index and a 12-bit offset 
(see Figure 15). 

Figure 15 
  
The OS must create and initialize, for each task, a page directory (PD) and at least one 
page table (PT). Only one page directory may be active at a time, indicated by the CR3 
register. The 4K page directory contains 1,024 (210) four-byte entries, called page 
directory entries (PDEs). The linear address' 10-bit directory index is an index to this 
table, to a specific PDE. This PDE in turn contains the address of a page table, which is 
very similar to a page directory: it contains 1,024 four-byte entries, called page table 
entries (PTEs). The linear address' 10-bit page index is an index into this page table, to a 
specific PTE. This PTE points to a page frame (PF), also 4K, which contains task code or 
data. The linear address' 12-bit offset is an offset into this page. At the end, a 32-bit 
address points to a byte in a specific page.  
Note that a page size on an x86 is always 4K and a page entry is always 32 bits wide (20 
for the page address and 12 control bits). A page address is obtained by taking the 20 
address bits in the page entry and adding 12 zero bits. Consequently, the pages are 
always aligned on a 4K (212) boundary.  
Let's see how a hypothetical OS could create and manage those pages on an x86. We'll 
start with an over-simplified example: a paged system with one task. This example isn't 
realistic because paging would add more memory overhead than if we didn't use it, but 
explaining paging concepts will be easier.  
Let's assume the OS is running and that a 32K task is ready to be loaded and executed. 
The OS starts by creating the page directory. Even if in this case one entry will be used, 
an entire page (4K) must be allocated. The address of that page is stored in the CR3 
register. Then the OS identifies the first page of code that will be executed, based on the 
task's entry point (usually written somewhere in the executable image-the .EXE). The OS 
also creates a page table that points to that page of code, and stores the address of that 
page table in the proper page directory entry (see Figure 16). 

Figure 16  
 



Then control is given to the task, which sends the address of the first instruction to 
execute on the address bus. The CPU translates this address by splitting it into the page 
directory index, page table index, and page frame offset. Because the OS carefully 
prepared the page directory and the proper page table, the instruction is located, 
fetched, and executed. The execution continues with the next instruction and so on. Not 
that magic, huh?  
You may wonder what happens when execution goes beyond that unique page of code in 
memory. After all, the task has a size of 32K, so it has more code than a single page. 
Each entry in the page directory and page tables contains a present bit, managed by the 
OS, initially set to zero. The bit is set to one if the entry contains a valid address of a 
page in memory; it contains zero if the entry hasn't been initialized or is no longer valid. 
Let's say the task jumps 8K ahead (for example, two pages ahead). The target 
instruction's address is decoded by the CPU, but this time either the page directory entry 
or the page table entry will have its present bit set to zero, since the target code is not 
already loaded. That condition automatically raises a page fault exception. The OS reacts 
by analyzing the address, only to realize that it's valid but the page isn't in memory. Fair 
enough, the proper code page is loaded in memory, the page table and page directory 
are updated, and the instruction is restarted; this time, it succeeds. The same scenario is 
repeated for other pages of code or data access. This method is called demand paging, 
because pages are loaded as the task requires it-on demand.  
Now let's execute another task. Again the OS prepares a page directory and a page 
table, different from those allocated for the first task. A page of code is loaded in 
memory and the second task starts executing its own code. The OS here makes sure that 
the page directory and page tables of that second task only point to code and data pages 
of that task. By doing so, the second task only sees its own code and data, and never 
sees (or alters) the first task's code and data.  
As tasks' pages are allocated, the OS eventually runs out of physical memory. What 
happens when a page fault is triggered because a task wants to execute unloaded code? 
The OS needs to discard unused pages. As a task executes, some of the executed code 
will in fact never be executed again. The OS can't predict if some pages of code will ever 
be used again or not, but it can guess which pages are least likely to be required again. 
These pages are deallocated-the present bit of the page table entries pointing to them is 
reset to zero. The locations of these pages become available in order to load other pages 
that are in demand. The OS tries to reduce page faults, which can incur a significant 
source of overhead. Imagine if an interrupt is triggered and the handler isn't already 
paged in memory-the delay for loading the page could simply be unacceptable. A solution 
in this case is to make sure that interrupt handlers are always in memory and never 
deallocated. But invariably, numerous page faults are to be expected, as execution is 
unpredictable.  
By carefully allocating and deallocating pages, the OS can keep in memory the pages 
required by the tasks. By keeping a few pages of each task, the OS is able to run many 
tasks, even if the total size of these tasks far exceeds the available physical memory. 
Paging gives each task 4GB of private virtual memory, although only a fraction of that 
address space is resident in memory at any moment. But from each task's standpoint, 
there is 4GB of memory to play with (although I've yet to see any embedded task taking 
advantage of all that virtual space).  
Quite interestingly, for a given task, only one register is involved in the address 
translation: CR3, which points to the page directory. When a task switch occurs, only 
CR3 needs to be reloaded with the next task's page directory address, and here it goes in 
its own, private address space. Segmentation isn't disabled under paging, but by always 
using descriptors with a base address of zero and a limit of 4GB, one can safely forget 
about it, as segments never have to be changed.  
Another plus for paging is the possibility of easily sharing pages. Let's say the same task 
is run twice (two instances). A good example is a task that monitors an analog device; in 
a system with two analog devices, two tasks may be required (one per device). Since the 
code is the same, the two tasks may share the code. This sharing is simply achieved by 
loading the code once in memory, and having both tasks' page tables pointing to the 



same pages (see Figure 17). The larger the shared code, the bigger the gain. Shared 
libraries are also good candidates for code sharing. Writable data is not sharable 
(although it can be shared until it is modified).  
All in all, despite the features directly implemented in the CPU, the challenge is in 
designing how the system will manage pages, which pages should be deallocated, how 
many pages a single task could be allowed in memory at once, which pages could be 
anticipated and pre-allocated to speed task execution, and so forth. The CPU gives you 
the tools, but you really have to prepare a good system design beforehand.  

Figure 17 
 
TASK ADDRESS SPACE LAYOUT  
Although each task has a virtual address space of 4GB, partitioning this memory for 
various uses is important. The OS must reserve some of that space for itself-we'll see 
why in a moment-and 2GB (the upper portion of each address space) is commonly 
reserved for the system, leaving 2GB for the task. The task's code usually starts at the 
bottom of the address space, followed by the data. The stack usually starts at the end of 
the 2GB (below the space reserved by the OS) and grows downward. The heap (for 
dynamically allocated data) sits between the data and the stack. Other combinations are 
acceptable, depending on the system's needs. The important concept is that all that 
space is virtual; when the task starts to execute or access data, physical pages are 
allocated one by one, as required. Address space layout is a concern for OSes, compilers, 
and linkers, but not for application developers.  
Because each application only sees its own 4GB, kernel services (invoked by the 
application or an interrupt) must be mapped within that range as well. In fact, the kernel 
must be mapped in all tasks to be equally accessible. System calls can be implemented 
as call or interrupt gates, as long as they point to the proper handler in the address 
space of each task.  
When a system call is invoked, the kernel begins executing within the context of the task 
being interrupted or making the call. If some arguments are passed in the call (even 
pointers), they can be used as is to access task's data.  
 
 
 
 



MAPPING THE OPERATING SYSTEM  
Upon initialization, the OS must build an initial page directory and page table to activate 
the paging. These could actually belong to a permanent monitor, debugger, or simply the 
idle loop. The operating system's code and data are the page frames (if the OS is entirely 
loaded). The OS can map itself from linear address 0, but also from, say, address 
F0000000h (see Figure 18).  

Figure 18 
 
All call gates and interrupt handlers are set to addresses above F0000000h, which lead to 
their real locations in physical memory.  
When the first task is built, the upper part of its page directory is mapped to all system 
page tables, mapping the OS into its address space, as shown in Figure 18. When that 
task executes, an interrupt or a call gate will jump somewhere into the OS.  
There is no rule regarding whether the OS should be mapped in the bottom or the top of 
the task address space. However, many OSes map themselves at the high end of all 
address spaces, leaving the application at the bottom (smaller addresses are more 
human-readable). But you may well implement an alternate design, depending on your 
needs. Following are certain issues to consider.  
Use flat segments (base address of zero, limit of 4GB). Unless you have extraordinary 
constraints, you can forget about segmentation by keeping it that way.  
The OS must be able to access all physical memory while paging is enabled. Because the 
kernel executes in the context of the interrupted task (whichever it is), the entire 
physical memory must be mapped in all tasks. In the previous example, mapping the 
kernel from F0000000h gives access up to 256MB of RAM. In order to support, say 
512MB of RAM, the OS would have to be mapped at E0000000h.  
Shared libraries, if you intend to support them, can be mapped in the kernel. Since the 
kernel is mapped into all tasks, the shared libraries will be too. Dynamic linking is easier 
if each library resides at the same address in each task. In the previous example, the 
space between C0000000h and F0000000 (768MB) is a good placeholder.  
Reserving address space for system usage reduces the address space of all tasks. Some 
systems keep 2GB of address space (the upper half) for themselves, no matter what, to 
give OS designers ample room to implement features in future releases without changing 
the architecture.  
 
PROTECTION REVISITED  
Protection also exists at the paging level, in addition to the protection already present in 
the segmentation (which is always enabled). Page directory and page table entries have 
two protection bits: read-only, and privilege required to access the page; either CPL 0 
(supervisor mode) or above zero (user mode). The operating system's page entries are 
always marked supervisor mode, whereas task's page entries are marked user mode. If a 
task with a CPL of one, two, or three tries to access any pages marked supervisor, even 
to read only, an exception will be raised (and the OS may destroy that task).  
The CPL of each task is still dictated by the code segment's DPL. A simple yet efficient 
design involves using a DPL of three with task's descriptors and zero with the OS. Thus, 
combining protection features from segmentation and paging provides an effective shield 
over the system resources.  
 
 
 
 



ACTIVATING PAGING  
Let's review a code example that demonstrates how to activate paging on an x86. Paging 
is activated once the CPU executes in protected mode with full privileges (CPL 0). If the 
protected mode is turned off, so will be the paging. The next example starts in real 
mode, with the interrupts disabled. It then enables protected mode and switches into 32-
bit (as presented in the first article of this series). It then activates paging and maps the 
kernel at the end of its address space (F000xxxx).  
The example starts its execution at a low physical address (0000xxxx) and will end up 
somewhere above F000xxxx. An address issue exists here, regarding a single application 
running at 0000xxxx and F000xxxx: if a directive such as ORG F000xxxx appears in the 
program, most linkers will try to fill the gap between the instruction before the directive 
and the instruction that follows (in this case, almost 4GB). Such a directive can obviously 
not be used. The only way to resolve the problem is to set the application base address 
to F0000000h using a linker option (most recent linkers have such an option), and to 
bring all "pre-paging" instructions into low addresses by subtracting F0000000h from 
them, or using relative addressing. This action affects only a few instructions.  
One page directory and one page table are required before activating paging. Both are 
pre-allocated in the example (the page directory is at line 49 and the page table at line 
51); they could have been allocated dynamically if dynamic location were available. The 
only requirement is that the pages must be aligned on a 4K boundary; their physical 
location isn't important.  
The example is loaded at physical address 0, so the page table is initialized to cover the 
physical page frames from physical address 0. The entire page table is initialized, 
covering up to 4MB of physical memory (lines 108-116), although only a few entries will 
be required in the example. The page table address is stored in the first page directory 
entry (lines 101-103), making virtual address equal to physical address when paging is 
enabled.4  
Addresses that start with F000 result in a page directory index of 960. In order to map 
the code at address F0000000h, the page table address is also stored in page directory 
entry 960 (lines 105-106). The page directory has two entries referring to the same page 
table, as shown in Figure 17. Finally, the CR3 register is set to the address of the page 
directory (lines 121-122). The kernel could be mapped at another location simply by 
properly initializing the page directory. For instance, if the kernel is to be mapped at 
E0000000h, PDE 896 instead of 960 must point to the first page table. The program 
would also have to be linked with a base address of E0000000h.  
Paging is then enabled by setting bit 31 in CR0 (lines 126-128). From that point, all 
instructions are decoded using the paging translation. The translation then maps virtual 
addresses to physical addresses. The instruction queue must be flushed in order to 
prevent any problems with the pre-fetched, pre-paging instructions (line 129).  
The next step is to switch into the high end of the address space. A jump is simulated by 
PUSHing the address (as is) of the next instruction and RETurning to it (lines 133 to 
134). A relative jump cannot be used because the assembler doesn't know that half of 
this code is running at 0000xxxx and the other half at F000xxxx.  
From that point, the rest of the OS is initialized. All trap, interrupt, and call gates must 
point to functions in the high address space (F000xxxx). Finally, if a task was created, its 
page directory's entry 960 would have to be mapped to the system page table. Thus, any 
reference by any gates to the addresses in that range would properly end up in the OS.  
 
 
 
 
 
 
 
 
 
 



AN IMPLEMENTATION EXAMPLE  
The real issue that arises when implementing paging has to do with the task address 
space layout, and finding the proper balance between system space and task space, 
where the various components (task, system services, shared libraries, and the like) will 
be mapped, what kind of protection is required, and so forth. If swapping is supported, 
you'll have to identify the task working set (how many pages at once in memory), the 
page replacement strategy (what page to remove if there is some memory contingency), 
and so on.  
Here is an implementation of a multithreaded, multitasking OS (such as an embedded 
Java Virtual Machine running large applets, an embedded Web server, or a TV Web 
device), illustrated in Figure 19. Some tasks are considered untrusted and use their own 
flat address space. All threads of a task share the same address space.  
Segmentation:  

Figure 19 

• The GDT contains one code and data descriptor for the OS (DPL 0, 0GB to 4GB) 
and one code and data descriptor for the tasks (DPL 3, 0GB to 4GB). Without 
privileges, tasks cannot execute privileged instructions  

• System calls are provided by either call or trap gates, both of them using the 
kernel code selector and relevant service addresses. Interrupt descriptors also use 
the kernel code selector. The kernel selector allows them to run at CPL 0  

• No LDT is required because isolation is obtained through paging  
• One TSS is required because of the privilege transition. Task switches can be done 

by saving registers on the stack and switching the stack, instead of using the TSS, 
because segment registers never change. The TSS descriptor is in the GDT  

 
 
 
 
 
 
 



Paging:  

• Each task has its own page directory, which is shared among all its threads 
(hence all threads of a task share the very same address space)  

• Code and data use different page tables, to potentially share code page tables 
with other instances; the stack pointer is set at 80000000h and grows downward  

• The task's upper-half page directory entries are all marked "supervisor." The tasks 
cannot access any operating system's code or data. This 2GB area is reserved for 
the OS, the shared libraries, and hardware maps (the video buffer, for instance)  

This series of articles has demonstrated the multiple features of the x86: native 32-bit 
programming, virtual memory with segmentation and paging, multitask support, and 
protection. These features exist to provide maximum flexibility to embedded developers, 
allowing them to design and implement a myriad of OS types, ranging from a simple 
segmented kernel with no overhead to an advanced page-demand, multitasking, and 
multithreaded system with full-task protection and shared-memory capabilities.  
If you intend to develop your own OS, I would recommend as the most important step 
getting the proper documentation (such as the x86 programming manuals) for your 
processor. A few books about OS implementation on the x86 are also available. You'll be 
able to find enough examples and ideas to start building your customized embedded OS.  



Listing: Paging 

1. ; Paging.asm 
2. ; Copyright (C) 1997, Jean L. Gareau 
3. ; 
4. ; This program demonstrates how to enable paging in protected mode. 
5. ; A flat memory model and a simplified segment definition are used. 
6. ; 
7. ; This program has been assembled with MASM 6.11: 
8. ; C:\>ML ProtMode32.asm 
9. ; 
10.; When linked, it must have a base address of BASE (F0000000h in this 
10b; example),  
11.; which is where this code is to be mapped in its address space. 
12. 
13. BASE EQU 0F0000000h  ; Base address (virtual) 
14. 
15.  .386P  ; Use 386+ privileged instructions 
16. 
17. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
18. ; Macros (to use 32-bit instructions while in real mode) ; 
19. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
20. 
21. LGDT32 MACRO Addr  ; 32-bit LGDT Macro in 16-bit 
22.  DB 66h ; 32-bit operand override 
23.  DB 8Dh ; lea (e)bx,Addr 
24.  DB 1Eh 
25.  DD Addr 
26.  DB 0Fh ; lgdt fword ptr [bx] 
27.  DB 01h 
28.  DB 17h 
29. ENDM 
30. 
31. FJMP32 MACRO Selector,Offset ; 32-bit Far Jump Macro in 16-
bit 
32.  DB 66h ; 32-bit operand override 
33.  DB 0EAh ; far jump 
34.  DD Offset ; 32-bit offset 
35.  DW Selector ; 16-bit selector 
36. ENDM 
37. 
38.  PUBLIC _EntryPoint ;The linker needs it. 
39. 
 
40. _TEXT SEGMENT PARA USE32 PUBLIC ŒCODE' 
41.  ASSUME CS:_TEXT 
42. 
43. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
44. ; Page Directory and Page Table. ; 
45. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
46. 
47.   ORG 3000h ; => Depends on code location.<= 
48. 
49. PD:   
50. dd 1024 DUP(0)  ; Page Directory: all entries at 0. 
51. PT:   
52. dd 1024 DUP (0) ; Page Table  : all entries at 0. 
53. 
 



54. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
55. ; Entry Point. The CPU is executing in 16-bit real mode. ; 
56. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
57. 
58. ORG 5000h ; => Depends on code location. <= 
59. 
60. _EntryPoint: 
61. 
62. LGDT32 GdtDesc - BASE ; Load GDT descriptor 
63. 
64. mov eax,cr0  ; Get control register 0 
65. or ax,1  ; Set PE bit (bit #0) in (e)ax 
66. mov cr0,eax  ; Activate protected mode! 
67. jmp $+2  ; Flush the instruction queue. 
68. 
69. ; The CPU is now executing in 16-bit protected mode. Make a far jump in 
69b ; order to 
70. ; load CS with a selector to a 32-bit executable code descriptor. 
71. 
72. FJMP32 08h,Start32 - BASE ; Jump to Start32 (below) 
73.  
74. ; This point is never reached. Data follow. 
75. 
76. GdtDesc:   ; GDT descriptor 
77. dw GDT_SIZE - 1 ; GDT limit 
78. dd Gdt  ; GDT base address (below) 
79.  
80. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
81. ; The CPU is now executing in 32-bit protected mode ; 
82. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
83. 
84. Start32: 
85. 
86. ; Initialize all segment registers to 10h (entry #2 in the GDT) 
87. 
88. mov ax,10h  ; entry #2 in GDT 
89.  mov ds,ax  ; ds = 10h 
90.  mov es,ax  ; es = 10h 
91. mov fs,ax  ; fs = 10h 
92. mov gs,ax  ; gs = 10h 
93. mov ss,ax  ; ss = 10h 
94.  
95. ; Set the top of stack to allow stack operations. 
96. 
97. mov esp,8000h  ; arbitrary top of stack 
98. 
99. ; Store the PT address into PDE 0 and 960. 
100. 
101. mov eax,offset Pd - BASE  ; eax  = &PD 
102. mov ebx,offset Pt - BASE + 3 ; ebx  = &PT | 3 
103. mov [eax],ebx  ; PD[0] = &PT 
104. 
105. mov eax,offset Pd - BASE + 960 * 4 ; eax = &PDE[960] 
106. mov [eax],ebx  ; PD[960] = &PT 
107.  
108. ; Initialize the PT to cover the first 4 MB of physical memory. 
109. 
110.  mov edi,offset Pt - BASE ; edi = &PT 
111. mov eax,3  ; Address 0, bit p & r/w set 
112. mov ecx,1024  ; 1024 entries 
113. InitPt: 



114. stosd   ; Write one entry 
115. add eax,1000h  ; Next page address 
116. loop InitPt  ; Loop 
117.  
118. ; Turn on paging by: 
119. ;  1) setting the PD address into CR3 and 
120. 
121. mov eax,offset Pd - BASE ; eax = &PD 
122.  mov cr3,eax  ; cr3 = &PD 
123.  
124. ; 2) setting CR0's PG bit. 
125. 
126. mov eax,cr0 
127. or eax,80000000h ; Set PG bit 
128. mov cr0,eax  ; Paging is on! 
129. jmp $+2  ; Flush the instruction queue. 
130. 
131. ; Let's now jump to F000xxxx. 
132. 
133. push offset PagingMode ; Keep full address (F000xxxxh) 
134. ret   ; Jump at Paging Mode (below) 
135. 
136. PagingMode: 
137. 
138. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
139. ; -> Paging is now enabled, executing code at F000xxxxh <- ; 
140. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
141.  
142. ; Other initialization instructions come here. 
143. ;  ... 
144.  
145. ; This point is never reached. Data follow. 
146. 
147. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
148. ; GDT               ;  
149. ;‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹-; 
150.  
151. ; Global Descriptor Table (GDT) (faster accessed if aligned on 4). 
152. 
153. ALIGN 4 
154.  
155. Gdt:  
156. 
157. ; GDT[0]: Null entry, never used. 
158.    
159.  dd 0 
160.  dd 0 
161.  
162. ; GDT[1]: Executable, read-only code, base address of 0, limit of  
163. ; FFFFFh, granularity bit (G) set (making the limit 4GB) 
164.  
165.  dw 0FFFFh  ; Limit[15..0] 
166. dw 0000h  ; Base[15..0] 
167.  db 00h  ; Base[23..16] 
168.  db 10011010b ; P(1) DPL(00) S(1) 1 C(0) R(1) A(0) 
169.  db 11001111b  ; G(1) D(1) 0 0 Limit[19..16] 
170.  db 00h  ; Base[31..24] 
171.    
172. ; GDT[2]: Writable data segment, covering the save address space than  
173. ; GDT[1]. 
174.  dw 0FFFFh  ; Limit[15..0] 



175.  dw 0000h  ; Base[15..0] 
176.  db 00h  ; Base[23..16] 
177.  db 10010010b ; P(1) DPL(00) S(1) 0 E(0) W(1) A(0) 
178.  db 11001111b  ; G(1) B(1) 0 0 Limit[19..16] 
179.  db 00h  ; Base[31..24] 
180.  
181. GDT_SIZE EQU $ - offset Gdt ; Size, in bytes 
182.  
183. _TEXT  ENDS 
184.  END 
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