
125

LAB WORK NO. 11
THE USAGE OF THE MATHEMATICAL

COPROCESSOR

1. Object of laboratory

 The purpose of this lab is to familiarize the user with the
mathematical coprocessor’s functions, its instructions for real numbers and
other coprocessor operations.

2. Theoretical considerations

 Even tough the 8086,80286,80386 and 80486 SX processors have a
series of powerful integer arithmetical they do not support floating point
arithmetical operations or integer numbers represented on multiple bytes.
 Because of these impediments INTEL developed the INTEL 8087
(80287, 80387) arithmetic coprocessor. As its name says the co-processor is
made up of several processors that cooperate with the computer’s main
processor. The coprocessor can not extract by himself the instructions from
the memory, this job that is done by the main processor.

2.1. Working principle

 The coprocessor is activated at the same time as the system’s general
RESET signal. This signal brings the coprocessor in its initial state (with
error masking, register erase, stack initialization, number rounding, etc.).
After the main processor executes the first instruction the coprocessor can
detect with which type of processor it has to work. Depending on the
processor type the coprocessor will reconfigure itself accordingly.
Obsoleted in more modern designs bye monolithic hardware structure of the
two processors.
 The coprocessor connects to the processors local bus through several
lines: data/address, state, clock, ready, reset, test and request/grant. Being
connected to the microprocessor’s local bus allows the coprocessor access to
all memory resources through the request/grand buss request.
 The two processors are working in parallel, which implies
synchronization between the code running on them.

ASSEMBLY LANGUAGE PROGRAMMING

 126

Usually the error and instruction synchronization is done by
compilers and assemblers, while the data synchronization has to be done by
the user of the assembling language.
 The responsibility of controlling the program belongs to the main
processor. Instructions for the coprocessor start with a special ESCAPE
code. The coprocessor monitors the instruction flow of the main processor.
By decoding the escape code the coprocessor knows when the processor’s
instruction queue is loaded with instructions for the coprocessor and stores
these instructions in its own queue. The ESC instruction code is the
following:

1101 1xxx mod xxx r/m

X meaning don care. Thus all instructions that have the operation code
between D8 and DF will be considered as ESC instructions. Together with
the three bits from the second byte there are a total of 64 allowed
instructions for the coprocessor.
 The microprocessor executes the ESC instruction by computing a
memory address (from mod and r/m) and executes a bus cycle, reading the
data from the computed address (if mod is 11 more bus cycles will be
executed). The data is not really read from memory instead a bus cycle is
generated (it shows a NOP instruction) the coprocessor being activated by
the ESC instruction decodes the six bits from the ESC instruction and can
capture the address and/or the data from the memory selected by the
instruction. This mechanism allows the programmer to treat the ESC
instruction (defined by the coprocessor) as a normal instruction with all the
addressing methods. If the coprocessor requires more data from memory it
can request he control from the microprocessor. The main processor’s
registers are not accessible to the coprocessor. The coprocessor keeps the
TEST line on high as long as he executes to tell the processor that he is
busy.
 Inside the coprocessor we have an 80 bytes memory organized as a
stack of eight 10 byte elements. On these 10 bytes the floating point
numbers are represented in IEEE temporary real format. The coprocessor
can access the computer’s memory with any addressing mode and any legal
format of data. The data brought from memory is converted into the
coprocessor’s internal format and put on top of the stack. When writing to
the main memory the internal format is converted into the format specified
by the user.
 The condition for executing floating point operations in the
coprocessor is: the operand has to be at the top of the stack (for the

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 127

operations with two operands, at least one of them). So, with the aid of the
coprocessor we can do the following operations:

- load data into the coprocessor’s internal stack from the computer’s
memory
- execute the necessary arithmetical operations
- store the results into the computer’s memory

2.2. INTEL 8087 recognized data types

 The great advantage of the coprocessor is that he works not only
with floating point numbers but with integer numbers also and recognizes
packed decimal data types. So if we have to execute a complicated integer
operation and it has to be very fast it can be done with the help of the
coprocessor, without having to do a time consuming conversion from
integer to floating point and backwards just so that the coprocessor can
work with them.

 2.2.1. Floating point data types

Short Real a 32 bit number represented in floating point. The

number is decomposed in mantissa and characteristic. The characteristic is
represented on 8 bits from which the most significant is the sign bit and it’s
treated differently. The physical length of the mantissa is 23 bits. The sigh
of the real number is given by the most significant bit:

31 30 23 22 0
s Characteristic Mantissa (starts with 1)

 |
 1 bit considered as default

 This floating point number representation always works with
normalized numbers, meaning that the mantissa’s first bit is always 1, and
thus this bit is never written being considered by default. Thus the
mantissa’s real size is 24 bits.
 It is important for us to no the actual precision, The mantissa
represents 6-7 digits, while the characteristic with its 8 bits raises their
number to the order of ~1038 (the exact number can not be determined
because it depends on the mantissa). The highest number is approximately
of 1.7 *1038 and the lowest positive real number in around 10-38.

ASSEMBLY LANGUAGE PROGRAMMING

 128

 Long Real a 64 bit number represented in floating point. The number
is decomposed in mantissa and characteristic. The characteristic is
represented on 11 bits from which the most significant is the sign bit and it’s
treated differently. The physical length of the mantissa is 52 bits. The sigh
of the real number is given by the most significant bit:

31 30 23 22 0
s Characteristic Mantissa (starts with 1)

 |
 1 bit considered as default

 As in the previous case here also he have a default bit, thus the
actual length of the mantissa in 53 bits. And these 53 bits we can represent
approximately 16-17 digits, the representation of the smallest number in
very precise.
 Temporary real numbers an 80 bit number represented in floating
point. The number is decomposed in mantissa and characteristic. The
characteristic is represented on 15 bits from which the most significant is
the sign bit. The physical length of the mantissa is 64 bits. The sigh of the
real number is given by the most significant bit:
 79 78 64 63 0

s Characteristic 1 Mantissa

 The temporary floating point numbers are not always normalized.
The mantissa does not have to start with 1. Thus, in this case the size of the
mantissa in of only 64 bits. The high precision floating point number’s 64
bits normalized mantissa represents approximately 19 decimal digits. The
length of the characteristic is 15 bits. Because the number is not always
normalized the lowest possible number that can be represented is much
smaller than we would expect: cca. 10-4932.
This representation method is highly sensitive to the possibility of the
number being different or equal to 0.

2.2.2. Signed Integer in 2’s Complement

 Word, double word and quad word representations are accepted.
 DW, DD and DQ.

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 129

2.2.3. Signed Integer in Packed BCD representation

 Signed integer values represented on ten bytes can be used. DT.
Numbers up to 18 decimal digits can be represented.

2.3. Operation errors (exceptions)

When using floating point operations we can encounter countless

errors, starting from trivial logarithmic errors, to errors caused by
representation limitations. These we will call exceptions. We will study
these types of errors and the ways in which we can manipulate them.

When an error appears the coprocessor can manifest two behavior
types. It signals the error using an interrupt if the user validates this. If not,
the coprocessor will analyze the error internally and according to the
signaled errors will do the following tasks. The coprocessor’s designers
categorized all errors in the following 6 classes:

2.3.1. Invalid operation

 This can be: an upper or lower overflow of the coprocessor’s internal
stack. The lower overflow can appear when we try to access an element that
doesn’t exist on the stack. These are usually severe algorithmic errors; the
coprocessor does not execute the operation.
 We have an undefined result if we try to divide 0.0 by 0.0; the
coprocessor is not prepared for this. Similar situations appear when we try
to subtract infinite from infinite, etc. These errors (even tough they can be
avoided by proper algorithms) are not as severe errors as stack overflows.
 The same result will be obtained if a coprocessor function is called
with wrong parameters.
 If an undefined result appears the coprocessor puts into the
characteristic a reserved value (bits of 0).

 2.3.2. Overflow

 The result is bigger than the largest number that can be represented.
The coprocessor writes the infinite value instead of the result and moves on.

2.3.3. Division by zero

 The divider is zero while the number to be divided is different from
0 or infinite. The coprocessor writes the infinite value instead of the result
and moves on.

ASSEMBLY LANGUAGE PROGRAMMING

 130

 2.3.4. Underflow

 The value of the result is smaller then the smallest number that can
be represented. The result will be 0 and the coprocessor will move on.

 2.3.5. De-normalized Operand

 Appears if one of the operands is not normalized or the result can not
be normalized (for example if it’s so small that it normalization can not be
done). The coprocessor moves on (the values that are not 0 will be lost, will
be turned into 0).

 2.3.6. Inexact result

 The result of the operation is inaccurate due to necessary or
prescribed rounding. This kind of results cad be obtained when dividing 2.0
by 3.0 and the result can be represented only as an infinite fraction. The
coprocessor does the rounding and moves on.

 The above were described in order of their severity. If a stack
overflow appears the program is flawed and it will not be continued.

 At the same time a rounding error needs not to be treated. Not even
on paper can we use infinite fractions or irrational numbers as we would
like. Practically speaking it is of no importance to us if we lose or not the
20th decimal of the fraction, because this is not the element that caries the
important information. To solve this problem a thorough analysis of the
situation and results that can appear, the representation’s precision, running
time, and memory size must be done. As we have seen when representing
numbers, the precision from representing short real numbers is not enough
for many practical applications. The precision of long real numbers is more
than sufficient but occupies double memory space.

2.4. The coprocessors internal architecture

 The coprocessor has two distinct components:
• Numerical execution unit: does the arithmetical and transfer

instructions common to the coprocessor, and has an internal
execution unit and a block of registers;

• Control unit: extracts from memory the instructions and operands
and executes the control instructions, has a logical block, pointer and
control registers;

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 131

2.4.1. The numerical execution unit

 From the user’s point of view the most important component are the
general block registers that are organized as an internal stack. All the
registers (stack elements) have 80 bits. Each operation is addressed to the
element that is on top of the stack. That’s why the stack’s elements are
named ST (0), ST (1)… etc., where ST (0) is the top of the stack, ST (1) the
next element, and so on. It represents an inconvenient in assembling
language programming as we have to save the stack position for each value,
and when inserting a new element all previous elements’ stack position is
incremented.

 2.4.2. Control unit

 2.4.2.1. Control Word
 The control register is a 16 bit register. The user can set the value of
the register and thus access a series of the coprocessors “finer” mechanisms
like the rounding method, etc.
 As we can se the register is divided in two, that’s because the first 8
most significant bits control the processor’s working strategy the other 8 bits
control the interrupts when an error occurs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X X X ip rc rc pc pc X X pm um om zm dm im

X marks an unused bit
The others are:

 IC – Infinite control- the way in which infinite numbers are treated
 When division by 0 occurs the coprocessor puts infinite in the result.
Mathematically speaking we have to ways of ending the number’s axis:
projective and affine. The difference between the two is that the latter
knows two types of infinite (positive and negative). None of the two
methods is better than the other. Bit coding:

0- projective
1- affine
RC- Rounding control

00-round to the closest element that can be represented
01-round downwards
10-round upwards
11-trunkation

ASSEMBLY LANGUAGE PROGRAMMING

 132

 PC- Precision Control
 In some cases we do not want to work with the result in the internal
precision even tough it is always represented as such. If we use previously
written procedures designed for IEEE short format, error propagation with
other precision is unpredictable. So we can force results to a given precision.

Values of the PC pair of bits
00 -24 bit-short real
01 -NA
10 -53 bit-long real precision
11 -63 bit-high precision
 M. Mask – validates or invalidates the coprocessors interrupt. When
an error occurs during a floating point operation, the coprocessor sends an
interrupt to the processor. On IBM-PC the interrupt created is NMI, an
unmasked processor interrupt
 Values on MASK
0– validates an interrupt request
1- Invalidates an interrupt request
 With the following bits we specify which exception (error) really
calls the interrupt. This can be useful when we are not interested in a
particular exception, or if we want to control the problem by reading the
coprocessors state from the program. The following bits validate the
interrupt on 0 and invalidate it on 1.
PM Precision Mask -signals rounding interrupt
UM Underflow Mask - signals underflow interrupt
OM Overflow Mask - signals overflow interrupt
ZM Zero Divide Mask - signals divide by zero interrupt
DM De-normalized OM - signals de-normalizing interrupt
IM Invalid Operation Mask - signals invalid operation interrupt

2.4.2.2. Status Word
 It’s a 16 bit register. Its content is set according to the last executed
operation. We can obtain form it vital information for the user. Two of the
first most significant bits correspond with the zero carry bits from the I8086
processor. Because we can load any value on the last 8 STATUS bits using
the instruction SAHF, after a coprocessor’s operation we can read and use
these bits with simple control instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
B C3 St St St St C2 C1 C0 Es X Pe Ue Ze De Ie

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 133

In this case we have a 16 bit register split in two. The first 8 bits tell us if the
operation done by the coprocessor generates an interrupt, if it does then we
are told what exception generated the interrupt. The first 8 most significant
bits represent the coprocessors arithmetical status.
IR Interrupt request- If its value is one then it means that the coprocessor
requests an interrupt. In this case one of the following six bits will also be 1,
and will show what class the error belongs to.
IE Invalid Operation Error-invalid operation
DE Not normalized Operand Error – error caused by an operand that was
not normalized or the result can not be normalized
ZE Zero Divide Error – division by zero caused error
OE Overflow Error - overflow caused error
UE Underflow Error - underflow caused error
PE Precision Error – precision error, the result was rounded
C0 (conditional bit 0)
C1 (1st conditional bit)
C2 (2nd conditional 2)
C3 (3rd conditional 3)
SP – the three bits point to the top of the stack. The value 000 signals an
empty stack and the first element to be loaded will be the element 0 from the
stack, while the value 111 signals that the stack is full.
B Busy – tells us if the coprocessor is working or not. It is active on 1, so in
this case we are not allowed to send other instructions to the coprocessor.
This bit allows us to synchronize our program with the coprocessor.
 The meaning of C0, C1, C2, and C3 is displayed in the following
table. As we can see these bits are not easy to define. Practically we only
need to check one or two bits, which is fairly simple if we rely on the
remarks made at the start of this chapter: we can use the fact that the zero
STATUS and Carry flags have the same meaning.

C3 C2 C1 C0 Sign Meaning

0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

+
+
-
-

Not normalized
Not a number
Not normalized
Not a number

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

+
+
-
-

Normalized positive
Positive infinite
normalized
Negative infinite

ASSEMBLY LANGUAGE PROGRAMMING

 134

1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

+
empty
-
empty

Zero (positive)
............
zero (negative)
............

1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

+
empty
-
empty

Invalid, Not normalized
.............
Invalid, Not normalized
.............

 The value of C3 is 0 if the result of the operation (normalized of not
normalized) is not 0. If the bit’s value is 1 then the result is either 0 or
invalid or the corresponding stack element is empty. It can be said that C3
greatly resembles the zero STATUS bit. The value of C2 depends on C3. If
the value of C3 in 0, C2 points out the normalized result on 1, and a non-
normalized result on 0. If the value of C33 is 1 (the result is 0 or the element
is empty) then it’s the opposite, C2 set on 1 points to a invalid number,
while 0 points to zero.
 As we have seen in the previous table C1 points to the number’s
sign. If the result is negative then C1 is 1 if not C1 is 0. C0 tells us if the
result is valid or not. If C) is 0 then there are no severe errors, but if C0 is 1
the result is invalid (the result is infinite or other special value).
 If other types of operations are being done, like comparisons then
their meaning changes:

C3 C2 C1 C1 Meaning
0
0
1
1

0
0
0
0

X
X
X
X

0
1
0
1

ST (0) >”op”
ST (0) <”op”
ST (0) =”op”
ST (0) and “op” can not be
compared

 If C3 is 0 then the result of the comparison will be read from C0. If
C3 is 1 then C2 will point out if the numbers are equal or not. Or ST (0) can
not be compared (void or infinite).
 After the partial remainder operation these bits have other meaning.
In this case C0, C1, C2 (from top to bottom in this order) will keep the one,
two or three bits of the result when the division has a remainder. The value
of C2 is 0 after the creation of a partial remainder and 1 in case of error. The
meaning is (about the creation of a partial remainder will discus at the
instruction description):

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 135

Divider/Divided C3 C1 C0
Divide>Divided /2
Divider>Divided /4
Divider<=Divided /4

X
X
Bit 2

X
Bit 1
Bit 1

Bit 0
Bit 0
Bit 0

X signifies that in that case the bits keep their previous value. For example,
if the number to be divided is smaller than the number to be divided by then
the remainder is equal to the divider and the result is 0. In this case C3 and
C1 keep their value, and C0 will be 0 to signal that the result will be zero.
And if the divider is smaller than half the number to be divided, but larger
then the quarter of the number to be divided then the result will be 2 or 3;
we have this number in C1, C0 and C3 keeps his previous value.

2.4.2.3. Tag Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1
 R7 R6 R5 R4 R3 R2 R1 R0

The bit pairings describe from top to bottom the stack registers 0, 1... Etc.
A bit pairing can have the following meanings:
Value Stack registers bits meaning

00 The corresponding element contains a valid data
01 The corresponding element contains zero
10 The corresponding element contains a special value
11 The corresponding element is empty
 The term special value means that the stack element contains infinite
of for some reason the result of an operation is invalid.

2.4.2.4. Instruction Pointer

The instruction pointer contains the physical address and the
coprocessor’s last operation code.

This register helps us when we are writing interrupt routines for
catching errors that appear during coprocessor operations. In these cases it is
useful to know the operation’s code and the physical address (the internal
memory location where it can be found). We can easily see its importance
when we realize that the program does not have to wait for the coprocessor,
while this is working the processor can execute other tasks. We must
consider the coprocessor only when its result is needed or when we need to
do another operation.

ASSEMBLY LANGUAGE PROGRAMMING

 136

Now, (because our program has passed the instruction that caused an
error) we can’t find out which was the last instruction sent to the
coprocessor. The space reserved for the instruction code is larger then the
true size of the code so the code appears as aligned to the right.

2.4.2.5. Data Pointer

The data pointer contains the physical address of the last external
data utilized in the last floating point operation.

Like the previous this register uses interrupts for catching errors that
may appear during the execution of coprocessor instructions. In this case we
must know the data’s physical address (external for the coprocessor) used
by the last instruction that caused the error.

For the user that that write programs in assembling language it is
important to know the coprocessor’s condition, more exactly the
coprocessor’s environment that defines the working conditions at a
particular time. This environment is defined by known elements.

2.5. Coprocessor’s environment

The internal registers that the user can be access. The mathematical
coprocessor has a set of registers of 14 bits organized like this:

 COMAND REGISTER
 STATUS REGISTER
 STACK REGISTER
 INSTRUCTIONS REGISTER (A15-0)
 A19-16 | 0 | OPERATION CODE (bits 10-0)
 DATA REGISTER (A15-0)
 A19-16 | 0. 0

2.6. Coprocessor’s instruction set

The coprocessor can be programmed in assembly language using the
ESC instruction. This instruction sends a 6 bit operation code on the data
bus and if necessary also sends on the data bus a memory address. The
coprocessor sees and takes the instruction sent to him and executes it. There
are two ways of a new synchronization between the coprocessor and the
processor, both attributed to the processor:

- the processor tests the coprocessor’s status
- the processor calls a WAIT instruction

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 137

2.6.1. Data transfer instructions

 Data transfer instructions ensure the exchange of data between the
computers memory and the coprocessor’s stack. They can be classified like
this:

 2.6.1.1. LOAD Instructions

FILD adr - Loads on the stack the integer variable located at address
„adr”. The variable stored in memory of type (DB, DW, and
DD) is converted to the coprocessors internal format at load.

FLD adr - Loads on the stack the real variable (long or short) located
at address „adr”. The variable stored in memory of type (DD,
DQ, and DT) is converted to the coprocessors internal format
at load

FBLD adr - Loads on the stack the packed decimal variable located at
address „adr”. The variable stored in memory of type (DT) is
converted to the coprocessors internal format at load.

 2.6.1.2. STORE Instructions

FIST adr -Stores at the address „adr” the value located on the stack

(ST (0)) as a number. The stored value can be only an integer
represented on one byte or a short integer, corresponding to
the data stored at address „adr” (DW or DD). The stack
pointer remains unchanged after the data is stored. The
conversion is done during the store process.

 FISTP adr - Stores at the address „adr” the value located on the stack
(ST (0)) as an integer number. The stored value can be any
integer (byte integer, short integer, long integer,
corresponding to the data stored at address „adr” (DW, DD
or DQ). The conversion is done during the store process. The
instruction changes the stack: ST (0) is deleted by
decrementing the stack pointer.

FST adr - Stores at the address „adr” the value located on the stack
(ST (0)) as an integer number. The stored value can be an
integer short integer or in double precision, corresponding to
the data stored at address „adr” (DD or DQ). The stack
pointer and the data on the stack remain unchanged after the
data is stored. The conversion is done during the store
process.

ASSEMBLY LANGUAGE PROGRAMMING

 138

FSTP adr - Stores at the address „adr” the value located on the stack
(ST (0)) as a floating point number. The value can be a short
real with double or extended precision, corresponding to the
data stored at address „adr” (DD, DQ or DT). The conversion
is done during the store process from the internal format. The
instruction changes the stack: ST (0) is deleted by
decrementing the stack pointer.

FBSTP adr - Stores at the address „adr” the value located on the stack
(ST (0)) as a packed decimal number (defined at “adr” with
DT). The stack pointer is decremented. The conversion is
done during the store process from the internal format.

NOTE: You must remember that any type of data can be loaded.

When we try to store we have two possibilities: If the data
from the stack is to be eliminated we can use the 7 data
types. But if we want to keep the stored value on the stack
only the 4 basic typed are allowed.

2.6.2. Internal data transfer instructions

FLD ST (i) Put value from ST (i) on the stack. Thus the value from ST

(i) will be found twice: in ST (0) and ST (i+1).

FST ST (i) The value from ST (0) is copied in the stack’s “i” element.

The old ST (i) is lost.

FSTP ST (i) The value from ST (0) is copied in the stack’s “i” element.

The old ST (i) is lost. ST (0) is eliminated by decrementing the stack
pointer.

FXCH ST (i) swap between ST (0) and ST (i).

 2.6.3. Constants loading instruction

FLDZ Loads 0 at the top of the stack

FLD1 Loads 1.0 at the top of the stack

FLDPI Loads”pi” at the top of the stack

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 139

FLDL2T Loads log (10) at the top of the stack

FLDL2E Loads log (e) at the top of the stack

FLDLG2 Loads log (2) at the top of the stack

FLDLN2 Loads ln (2) at the top of the stack

2.7. Arithmetical and comparison instructions

 Arithmetical instructions usually have 2 operands. One of them is
always at the top of the stack, and usually this is also the place where the
result is be generated. Basic operations can be executed without restrictions
with the following methods
-the instruction’s mnemonic is being written without an operand. In this
case the operands are ST (0) and ST (1).
-the instruction’s mnemonic and the operand. The operand can be a memory
address or a stack element (ST (1) is also usable but it’s not very use full)
-the instruction’s mnemonic is written and 2 operands: the first is a stack
element (not ST (0)) and the second is ST (0). In this case the result will be
put in the place of the first operand and ST (0) will be deleted from the
stack. (In the instruction’s mnemonic the letter P appears).

 2.7.1. Arithmetical instructions

FADD ST (0) ST (0) +ST (1) FADD op ST (0)
ST (0) +”op” from memory or stack.
Floating point operation.
FADD op ST (0) ST (0) +”op” from memory or stack.
Integer operation.
FADD ST (i), ST (0) ST (i) ST (i) +ST (0); ST (0) eliminated
FSUB ST (0) ST (0) -ST (1) FSUB op ST (0)
ST (0) –„op” from memory or stack.
Floating point operation.
FISUB op ST (0) ST (0) -“op” from memory or stack.
Integer operation.
FSUB ST (i), ST (0) ST (i) ST (i) -ST (0); ST (0) eliminated
FSUBR ST (i) ST (i) ST (i) -ST (0) ; FSUB ST (i) opposite
instruction
FMUL ST (0) ST (0) XST (1)
FMUL op ST (0) ST (0) x ”op” from memory or stack.

ASSEMBLY LANGUAGE PROGRAMMING

 140

Floating point operation.
FIMUL op ST (0) ST (0) x ”op” from memory or stack.
Integer operation.
FMULP ST (i), ST (0) ST (i) ST (i) x ST (0); ST (0) eliminated
FDIV ST (0) ST (0): ST (1) FDIV op ST (0) ST (0):”op”
from memory or stack.
Floating point operation.
FDIV op ST (0) ST (0):”op” from memory or stack.
Integer operation.
FDIVP ST (i), ST (0) ST (i) ST (i): ST (0); ST (0) eliminated

 FDIVR ST (i) ST (i) ST (i): ST (0); FDIV ST (i) opposite
instruction.

2.8.2. Number comparison instructions

FCOM The values from ST (0) and ST (1) are compared and
C3, C2 and C0 indictors are set

FCOM op The values ST from (0) and memory or stack
(floating point variable) are compared and C3, C2 and
C0 indictors are set

FICOM op The values ST from (0) and memory or stack
(floating point variable) are compared and C3, C2 and
C0 indictors are set.

FCOMP The values from ST (0) and ST (1) are compared and
C3, C2 and C0 indictors are set. ST (0) is deleted
from the stack

FICOMP op The values ST from (0) and memory or stack
(floating point variable) are compared and C3, C2 and
C0 indictors are set ST (0) is deleted from the stack.

FCOMPP The values from ST (0) and ST (1) are compared and
C3, C2 and C0 indictors are set. ST (0) and ST (1) are
deleted from the stack.

FTST C3, C2 and C0 indicators are set according to the
result of the comparison between the values ST (0)
with 0.

FXAM The condition bits are set according to the value of
ST (0).No comparison is being done.

Remarks:

- FCOMP and FCOMPP allow us the easiest ways of eliminating one
or two elements from the stack

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 141

- FXAM is used for analyzing the special conditions that result where
computing errors occur.

2.8. Floating point functions

FSQRT Square root – ST (0) ‘s square root is put in ST (0). The

number has to be positive, or the result will not make sense.
FSCALE 2’s power. Puts in ST (0) the ST (0)’ s value multiplied with

2ST (1):
 ST (0) ST (0) *2**ST (1) ST (1) has to be an integer, and

ST (0)‘s absolute value ha to be smaller then 2**15.
FPREM Partial remainder. ST (0) is divided by ST (1) and stored in

ST () ST (0) -ST (1) * (the biggest lower integer for ST (0)
/ST (1)).

FRMDINT Round. ST (0) is replaced with ST (0) rounded. The rounding
method is set in the command line.

FXTRACT The value stored in ST (0) is split into Characteristic (in ST
(0)) and mantissa (in ST (1)).

FABS ST (0) is replaced with its absolute value.
FCHS ST (0) sign is changed.
FPTAN Partial tangent. The tangent of the angle contained in ST (0)

is determined as a ST (1) /ST (0) fraction. The initial value of
the angle contained in ST (0) must be between 0 and “pi”/4.

FPATAN Partial Arctangent. The arctangent of the value contained in
ST (0) is determined as a ST (1) /ST (0) fraction. The initial
value contained in ST (0) must be positive, while ST (1)
must be larger ST (0).

F2XM1 2’s power. ST (0) will be replaced by 2**ST (0) -1. Initially
ST (0) must be between 0 and 0.5.

FYL2X Logarithm. ST (0) ST (1) *LOG2 (ST (0)). ST (0) has to
be a positive number, while ST (1) has to be a finite number.

FYL2XP1 Logarithm. ST (0) ST (1) *LOG2 (ST (0) +1). ST (0) has
to be a positive number lower then 0.3, while ST (1) has to
be a finite number.

Remarks:

- Sin and Cosine can be determined by using the tangent
- Any exponent can be computed using F2XM1
- For determining the exponent ST (0) ST (1) it is recommended to use the

functions FYL2X and then F2XM1!

ASSEMBLY LANGUAGE PROGRAMMING

 142

2.9. Control Instructions

Control instructions have the task of coordinating the microprocessors
actions. Usually they have no arithmetic meaning, but some of them do
influence drastically the actions of the coprocessor because they save or
load the coprocessor’s state, more exactly all of its work registers. Among
these registers is the stack thus, these can be regarded as gigantic load and
save instructions.

FINIT Initialization- the coprocessor is brought in an initial status

known as software reset”. After the FINIT instruction all of
the coprocessors registers will be in their initial status and the
stack will be empty.

FENI Interrupt accept- if the coprocessor needs to generate an
interrupt when an error is detected, besides the correct
positioning of the command register it needs to explicitly
accept the interrupt.

FDISI Interrupt ignores- this instruction ignores all interrupts
regardless of the command register’s bits; to accept a new
interrupt the instruction FENI must be called.

FLDCW adr The command register is loaded from the memory location
indicated by adr

FSTCW adr The command register is saved in a word located at the
memory location indicated by adr

FSTSW adr The status register is saved in a word located at the memory
location indicated by adr.

FCLEX The bits that define the exceptions are erased- the instruction
erases the corresponding bits regardless of the status of the
error bits

FSTENV adr Environment save- the coprocessor’s internal registers are
saved in a memory location starting at adr that has a size of
14 bytes.

FLDENV adr Environment load- the coprocessor’s internal registers are
loaded from a memory location starting at adr that has a size
of 14 bytes.

FSAVE adr Status save- the coprocessor’s internal registers and its stack
are saved in a memory location starting at adr that has a size
of 94 bytes.

THE USAGE OF THE MATHEMATICAL COPROCESSOR

 143

FRSTOR adr Status load- the coprocessor’s internal registers and its stack
are loaded from a memory location starting at adr that has a
size of 94 bytes.

FINCSTP Stack indicators increment- after the instruction’s action it is
incremented with a stack indicator; thus the element that
became ST (0) remains unchanged (fact pointed out by the
stack description register’s bits).

FDECSTP Stack indicators decrement- after the stack indicator is
decremented by one; thus the stack’s elements remain
unchanged (fact pointed out by the stack description
register’s bits).

FFREE ST (i) the “i” ranked element from the stack is eliminated. The
operation does not influence the stack pointer.

FNOP No operation executed.
FWAIT Waits for the current action to finish (similar to the 8086

WAIT instruction)

 A simple program that uses the mathematical coprocessor
; Program that determines the area of a circle with the radius R
; And volume of a sphere with radius R

DATE SEGMENT PARA `DATA` ;SEGMENT

RAZA DQ 8.567

ARIE DQ ? ; RESERVE SPACE

VOLUM DQ ? ; RESULTS

PATRU DD 4.0

TREI DD 3.0

DATE ENDS

COD SEGMENT PARA `CODE`

.8087

CALCUL PROC FAR ;

 ASSUME CS:COD, DS: DATE

 PUSH DS ; PREPARE

 XOR AX, AX ; STACK FOR

 PUSH AX ; DOS RETURN

 MOV AX, DATE ; LOADING DS

 MOV DS, AX ; WITH DATA SEGMENT

ASSEMBLY LANGUAGE PROGRAMMING

 144

 FINIT ;COPROCESOR INITIALIZATION

 FLD RAZA ;LOAD RAZA ON COPROC STACK

 FMUL RAZA ;COMPUTE R x R

 FLDPI ;LOAD PI TO COPROC STACK

 FMUL ;COMPUTE R x R x PI

 FSTP ARIE ;SAVING RESULT

 FWAIT ;SYNCHRONIZATION

 LEA SI, VOLUM ; VOLUM ADDRSS IN SI

 FINIT ;COPROCESOR INITIALIZATION

 FLD RAZA ; COMPUTATION

 FMUL RAZA ; R x R

 FMUL RAZA ; R x R x R

 FLDPI ; LOAD PI

 FMUL ; MULTYPLY WITH PI

 FMUL PATRU ; MULTIPLY WITH FOUR

 FDIV TREI ; DIVISION BY 3

 FSTP QWORD PTR [SI] ; SAVING RESULT

 FWAIT ; SYNCHRONIZATION

 RET

CALCUL ENDP ; END PROCEDURE

COD ENDS ; END CODE SEGMENT

 END CALCUL ; PROGRAM END

3. Lab tasks

1. Run the given example
2. Write a program that computes the solution of the following

equation: aX2+bX+c=0 if the solutions are real numbers
a, b and c are real numbers
∆ = (b2 - 4ac) x1,2= (b ± sqrt(∆))/2a if ∆>0

3. Write a program that determines 3 2 . Hint: Use the instructions
F2XM1 and FYL2X.

