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LAB WORK NO. 11 
THE USAGE OF THE MATHEMATICAL 

COPROCESSOR 

 
 
 

1. Object of laboratory 
 
 The purpose of this lab is to familiarize the user with the 
mathematical coprocessor’s functions, its instructions for real numbers and 
other coprocessor operations. 

 

2. Theoretical considerations 
 
 Even tough the 8086,80286,80386 and 80486 SX processors have a 
series of powerful integer arithmetical they do not support floating point 
arithmetical operations or integer numbers represented on multiple bytes. 
   Because of these impediments INTEL developed the INTEL 8087 
(80287, 80387) arithmetic coprocessor. As its name says the co-processor is 
made up of several processors that cooperate with the computer’s main 
processor. The coprocessor can not extract by himself the instructions from 
the memory, this job that is done by the main processor. 
  
2.1. Working principle 

 
 The coprocessor is activated at the same time as the system’s general 
RESET signal. This signal brings the coprocessor in its initial state (with 
error masking, register erase, stack initialization, number rounding, etc.). 
After the main processor executes the first instruction the coprocessor can 
detect with which type of processor it has to work. Depending on the 
processor type the coprocessor will reconfigure itself accordingly. 
Obsoleted in more modern designs bye monolithic hardware structure of the 
two processors. 
 The coprocessor connects to the processors local bus through several 
lines: data/address, state, clock, ready, reset, test and request/grant. Being 
connected to the microprocessor’s local bus allows the coprocessor access to 
all memory resources through the request/grand buss request. 
 The two processors are working in parallel, which implies 
synchronization between the code running on them. 
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Usually the error and instruction synchronization is done by 
compilers and assemblers, while the data synchronization has to be done by 
the user of the assembling language. 
 The responsibility of controlling the program belongs to the main 
processor. Instructions for  the coprocessor  start with a special ESCAPE 
code. The coprocessor monitors the instruction flow of  the main processor. 
By decoding the escape code the coprocessor knows when the processor’s 
instruction queue is loaded with instructions for the coprocessor and stores 
these instructions in its own queue. The ESC instruction code is the 
following: 
 

1101 1xxx mod xxx r/m 
 
X meaning don care. Thus all instructions that have the operation code 
between D8 and DF will be considered as ESC instructions. Together with 
the three bits from the second byte there are a total of 64 allowed 
instructions for the coprocessor. 
 The microprocessor executes the ESC instruction by computing a 
memory address (from mod and r/m) and executes a bus cycle, reading the 
data from the computed address (if mod is 11 more bus cycles will be 
executed). The data is not really read from memory instead a bus cycle is 
generated (it shows a NOP instruction) the coprocessor being activated by 
the ESC instruction decodes the six bits from the ESC instruction and can 
capture the address and/or the data from the memory selected by the 
instruction. This mechanism allows the programmer to treat the ESC 
instruction (defined by the coprocessor) as a normal instruction with all the 
addressing methods. If the coprocessor requires more data from memory it 
can request he control from the microprocessor. The main processor’s 
registers are not accessible to the coprocessor. The coprocessor keeps the 
TEST line on high as long as he executes to tell the processor that he is 
busy. 
 Inside the coprocessor we have an 80 bytes memory organized as a 
stack of eight 10 byte elements. On these 10 bytes the floating point 
numbers are represented in IEEE temporary real format. The coprocessor 
can access the computer’s memory with any addressing mode and any legal 
format of data. The data brought from memory is converted into the 
coprocessor’s internal format and put on top of the stack. When writing to 
the main memory the internal format is converted into the format specified 
by the user. 
 The condition for executing floating point operations in the 
coprocessor is: the operand has to be at the top of the stack (for the 
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operations with two operands, at least one of them). So, with the aid of the 
coprocessor we can do the following operations: 

- load data into the coprocessor’s internal stack from the computer’s 
memory 
- execute the necessary arithmetical operations 
- store the results into the computer’s memory 

 
2.2. INTEL 8087 recognized data types 

 
 The great advantage of the coprocessor is that he works not only 
with floating point numbers but with integer numbers also and recognizes 
packed decimal data types. So if we have to execute a complicated integer 
operation and it has to be very fast it can be done with the help of the 
coprocessor, without having to do a time consuming conversion from 
integer to floating point and backwards just so that the coprocessor can 
work with them. 
 
  
 2.2.1. Floating point data types 

 
Short Real a 32 bit number represented in floating point. The 

number is decomposed in mantissa and characteristic. The characteristic is 
represented on 8 bits from which the most significant is the sign bit and it’s 
treated differently. The physical length of the mantissa is 23 bits. The sigh 
of the real number is given by the most significant bit: 

 
31       30                           23      22                              0         
s Characteristic Mantissa (starts with  1)  

   | 
   1 bit considered as default 

 This floating point number representation always works with 
normalized numbers, meaning that the mantissa’s first bit is always 1, and 
thus this bit is never written being considered by default. Thus the 
mantissa’s real size is 24 bits. 
 It is important for us to no the actual precision, The mantissa 
represents 6-7 digits, while the characteristic with its 8 bits raises their 
number to the order of  ~1038  (the exact number can not be determined 
because it depends on the mantissa). The highest number is approximately 
of 1.7 *1038 and the lowest positive real number in around 10-38. 
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 Long Real a 64 bit number represented in floating point. The number 
is decomposed in mantissa and characteristic. The characteristic is 
represented on 11 bits from which the most significant is the sign bit and it’s 
treated differently. The physical length of the mantissa is 52 bits. The sigh 
of the real number is given by the most significant bit: 

 
 

31       30                           23      22                              0         
s Characteristic Mantissa (starts with  1)  

   | 
   1 bit considered as default 

 As in the previous case here also he have a default bit, thus the 
actual length of the mantissa in 53 bits. And these 53 bits we can represent 
approximately 16-17 digits, the representation of the smallest number in 
very precise. 
 Temporary real numbers an 80 bit number represented in floating 
point. The number is decomposed in mantissa and characteristic. The 
characteristic is represented on 15 bits from which the most significant is 
the sign bit. The physical length of the mantissa is 64 bits. The sigh of the 
real number is given by the most significant bit: 
      79      78                               64 63                     0 

s Characteristic 1 Mantissa 
 

 The temporary floating point numbers are not always normalized. 
The mantissa does not have to start with 1. Thus, in this case the size of the 
mantissa in of only 64 bits. The high precision floating point number’s 64 
bits normalized mantissa represents approximately 19 decimal digits. The 
length of the characteristic is 15 bits. Because the number is not always 
normalized the lowest possible number that can be represented is much 
smaller than we would expect: cca.  10-4932.   
This representation method is highly sensitive to the possibility of the 
number being different or equal to 0. 
  
 
2.2.2.  Signed Integer in 2’s Complement 

 
 Word, double word and quad word representations are accepted. 
 DW, DD and DQ. 
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2.2.3. Signed Integer in Packed BCD representation 

  

 Signed integer values represented on ten bytes can be used. DT. 
Numbers up to 18 decimal digits can be represented. 

 
2.3. Operation errors (exceptions) 

 
When using floating point operations we can encounter countless 

errors, starting from trivial logarithmic errors, to errors caused by 
representation limitations. These we will call exceptions. We will study 
these types of errors and the ways in which we can manipulate them. 

When an error appears the coprocessor can manifest two behavior 
types. It signals the error using an interrupt if the user validates this. If not, 
the coprocessor will analyze the error internally and according to the 
signaled errors will do the following tasks. The coprocessor’s designers 
categorized all errors in the following 6 classes:    
  

2.3.1. Invalid operation 

 

 This can be: an upper or lower overflow of the coprocessor’s internal 
stack. The lower overflow can appear when we try to access an element that 
doesn’t exist on the stack. These are usually severe algorithmic errors; the 
coprocessor does not execute the operation. 
 We have an undefined result if we try to divide 0.0 by 0.0; the 
coprocessor is not prepared for this. Similar situations appear when we try 
to subtract infinite from infinite, etc. These errors (even tough they can be 
avoided by proper algorithms) are not as severe errors as stack overflows. 
 The same result will be obtained if a coprocessor function is called 
with wrong parameters. 
 If an undefined result appears the coprocessor puts into the 
characteristic a reserved value (bits of 0). 
 

 2.3.2. Overflow  

 The result is bigger than the largest number that can be represented. 
The coprocessor writes the infinite value instead of the result and moves on. 

 

2.3.3. Division by zero 

 The divider is zero while the number to be divided is different from 
0 or infinite. The coprocessor writes the infinite value instead of the result 
and moves on. 
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 2.3.4. Underflow 

 The value of the result is smaller then the smallest number that can 
be represented. The result will be 0 and the coprocessor will move on. 
 
 2.3.5. De-normalized Operand 

 Appears if one of the operands is not normalized or the result can not 
be normalized (for example if it’s so small that it normalization can not be 
done). The coprocessor moves on (the values that are not 0 will be lost, will 
be turned into 0). 
 
 2.3.6. Inexact result 

 The result of the operation is inaccurate due to necessary or 
prescribed rounding. This kind of results cad be obtained when dividing 2.0 
by 3.0 and the result can be represented only as an infinite fraction. The 
coprocessor does the rounding and moves on. 
  
 The above were described in order of their severity. If a stack 
overflow appears the program is flawed and it will not be continued. 
 
 At the same time a rounding error needs not to be treated. Not even 
on paper can we use infinite fractions or irrational numbers as we would 
like. Practically speaking it is of no importance to us if we lose or not the 
20th decimal of the fraction, because this is not the element that caries the 
important information. To solve this problem a thorough analysis of the 
situation and results that can appear, the representation’s precision, running 
time, and memory size must be done. As we have seen when representing 
numbers, the precision from representing short real numbers is not enough 
for many practical applications. The precision of long real numbers is more 
than sufficient but occupies double memory space. 
  
2.4. The coprocessors internal architecture   

 The coprocessor has two distinct components: 
• Numerical execution unit: does the arithmetical and transfer 

instructions common to the coprocessor, and has an internal 
execution unit and a block of registers; 

• Control unit: extracts from memory the instructions and operands 
and executes the control instructions, has a logical block, pointer and 
control registers; 
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2.4.1. The numerical execution unit 

 From the user’s point of view the most important component are the 
general block registers that are organized as an internal stack. All the 
registers (stack elements) have 80 bits. Each operation is addressed to the 
element that is on top of the stack. That’s why the stack’s elements are 
named ST (0), ST (1)… etc., where ST (0) is the top of the stack, ST (1) the 
next element, and so on. It represents an inconvenient in assembling 
language programming as we have to save the stack position for each value, 
and when inserting a new element all previous elements’ stack position is 
incremented. 
 
 2.4.2. Control unit 

  
 2.4.2.1. Control Word 
 The control register is a 16 bit register. The user can set the value of 
the register and thus access a series of the coprocessors “finer” mechanisms 
like the rounding method, etc. 
 As we can se the register is divided in two, that’s because the first 8 
most significant bits control the processor’s working strategy the other 8 bits 
control the interrupts when an error occurs. 
 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
X X X ip rc rc pc pc X X pm um om zm dm im 
 
X marks an unused bit 
The others are: 
 
 IC – Infinite control- the way in which infinite numbers are treated 
 When division by 0 occurs the coprocessor puts infinite in the result. 
Mathematically speaking we have to ways of ending the number’s axis: 
projective and affine. The difference between the two is that the latter 
knows two types of infinite (positive and negative). None of the two 
methods is better than the other. Bit coding: 

0- projective 
1- affine 
RC- Rounding control 

00-round to the closest element that can be represented 
01-round downwards 
10-round upwards 
11-trunkation 
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 PC- Precision Control 
 In some cases we do not want to work with the result in the internal 
precision even tough it is always represented as such. If we use previously 
written procedures designed for IEEE short format, error propagation with 
other precision is unpredictable. So we can force results to a given precision. 

Values of the PC pair of bits 
00 -24 bit-short real 
01 -NA 
10 -53 bit-long real precision 
11 -63 bit-high precision 
 M. Mask – validates or invalidates the coprocessors interrupt. When 
an error occurs during a floating point operation, the coprocessor sends an 
interrupt to the processor. On IBM-PC the interrupt created is NMI, an 
unmasked processor interrupt 
 Values on MASK 
0– validates an interrupt request 
1- Invalidates an interrupt request 
 With the following bits we specify which exception (error) really 
calls the interrupt. This can be useful when we are not interested in a 
particular exception, or if we want to control the problem by reading the 
coprocessors state from the program. The following bits validate the 
interrupt on 0 and invalidate it on 1. 
PM Precision Mask  -signals rounding interrupt 
UM Underflow Mask  - signals underflow interrupt  
OM Overflow Mask  - signals overflow interrupt 
ZM Zero Divide Mask - signals divide by zero interrupt 
DM De-normalized OM - signals de-normalizing interrupt  
IM Invalid Operation Mask - signals invalid operation interrupt 
 

2.4.2.2. Status Word 
 It’s a 16 bit register. Its content is set according to the last executed 
operation. We can obtain form it vital information for the user. Two of the 
first most significant bits correspond with the zero carry bits from the I8086 
processor. Because we can load any value on the last 8 STATUS bits using 
the instruction SAHF, after a coprocessor’s operation we can read and use 
these bits with simple control instructions. 
 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
B C3 St St St St C2 C1 C0 Es X Pe Ue Ze De Ie 
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In this case we have a 16 bit register split in two. The first 8 bits tell us if the 
operation done by the coprocessor generates an interrupt, if it does then we 
are told what exception generated the interrupt. The first 8 most significant 
bits represent the coprocessors arithmetical status. 
IR Interrupt request- If its value is one then it means that the coprocessor 
requests an interrupt. In this case one of the following six bits will also be 1, 
and will show what class the error belongs to. 
IE Invalid Operation Error-invalid operation 
DE Not normalized Operand Error – error caused by an operand that was 
not normalized or the result can not be normalized 
ZE Zero Divide Error – division by zero caused error 
OE Overflow Error - overflow caused error 
UE Underflow Error - underflow caused error 
PE Precision Error – precision error, the result was rounded 
C0 (conditional bit 0)  
C1 (1st conditional bit)  
C2 (2nd conditional 2)  
C3 (3rd conditional 3)  
SP – the three bits point to the top of the stack. The value 000 signals an 
empty stack and the first element to be loaded will be the element 0 from the 
stack, while the value 111 signals that the stack is full. 
B Busy – tells us if the coprocessor is working or not. It is active on 1, so in 
this case we are not allowed to send other instructions to the coprocessor. 
This bit allows us to synchronize our program with the coprocessor. 
 The meaning of C0, C1, C2, and C3 is displayed in the following 
table. As we can see these bits are not easy to define. Practically we only 
need to check one or two bits, which is fairly simple if we rely on the 
remarks made at the start of this chapter: we can use the fact that the zero 
STATUS and Carry flags have the same meaning. 
 
C3 C2 C1 C0 Sign Meaning 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
1 
1 

0 
1 
0 
1 

+ 
+ 
- 
- 

Not normalized 
Not a number 
Not normalized 
Not a number 
 

0 
0 
0 
0 

1 
1 
1 
1 

0 
0 
1 
1 

0 
1 
0 
1 

+ 
+ 
- 
- 

Normalized positive 
Positive infinite 
normalized 
Negative infinite 
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1 
1 
1 
1 

0 
0 
0 
0 

0 
0 
1 
1 

0 
1 
0 
1 

+ 
empty 
- 
empty 

Zero ( positive)  
............  
zero ( negative)  
............  

1 
1 
1 
1 

1 
1 
1 
1 

0 
0 
1 
1 

0 
1 
0 
1 

+ 
empty 
- 
empty 

Invalid, Not normalized 
.............  
Invalid, Not normalized 
.............  

 
 The value of C3 is 0 if the result of the operation (normalized of not 
normalized) is not 0. If the bit’s value is 1 then the result is either 0 or 
invalid or the corresponding stack element is empty. It can be said that C3 
greatly resembles the zero STATUS bit. The value of C2 depends on C3. If 
the value of C3 in 0, C2 points out the normalized result on 1, and a non-
normalized result on 0. If the value of C33 is 1 (the result is 0 or the element 
is empty) then it’s the opposite, C2 set on 1 points to a invalid number, 
while 0 points to zero. 
 As we have seen in the previous table C1 points to the number’s 
sign. If the result is negative then C1 is 1 if not C1 is 0. C0 tells us if the 
result is valid or not. If C) is 0 then there are no severe errors, but if C0 is 1 
the result is invalid (the result is infinite or other special value). 
 If other types of operations are being done, like comparisons then 
their meaning changes: 
       
C3 C2 C1 C1 Meaning 
0 
0 
1 
1 

0 
0 
0 
0 

X 
X 
X 
X 

0 
1 
0 
1 

ST (0) >”op” 
ST (0) <”op” 
ST (0) =”op” 
ST (0)  and “op” can not be 
compared 

   
 If C3 is 0 then the result of the comparison will be read from C0. If 
C3 is 1 then C2 will point out if the numbers are equal or not. Or ST (0) can 
not be compared (void or infinite). 
 After the partial remainder operation these bits have other meaning. 
In this case C0, C1, C2 (from top to bottom in this order) will keep the one, 
two or three bits of the result when the division has a remainder. The value 
of C2 is 0 after the creation of a partial remainder and 1 in case of error. The 
meaning is (about the creation of a partial remainder will discus at the 
instruction description): 
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Divider/Divided C3 C1 C0 
Divide>Divided /2 
Divider>Divided /4 
Divider<=Divided /4 

X 
X 
Bit 2 

X 
Bit 1 
Bit 1 

Bit 0 
Bit 0 
Bit 0 

  
X signifies that in that case the bits keep their previous value. For example, 
if the number to be divided is smaller than the number to be divided by then 
the remainder is equal to the divider and the result is 0. In this case C3 and 
C1 keep their value, and C0 will be 0 to signal that the result will be zero. 
And if the divider is smaller than half the number to be divided, but larger 
then the quarter of the number to be divided then the result will be 2 or 3; 
we have this number in C1, C0 and C3 keeps his previous value. 
 

2.4.2.3. Tag Word 

 
15      14 13      12 11      10 9          8 7          6 5          4 3         2 0          1 
  R7 R6 R5 R4 R3 R2 R1 R0 
 
The bit pairings describe from top to bottom the stack registers 0, 1... Etc. 
A bit pairing can have the following meanings: 
Value Stack registers bits meaning 

00 The corresponding element contains a valid data 
01 The corresponding element contains zero 
10 The corresponding element contains a special value 
11 The corresponding element is empty 
 The term special value means that the stack element contains infinite 
of for some reason the result of an operation is invalid. 
 

2.4.2.4. Instruction Pointer 

The instruction pointer contains the physical address and the 
coprocessor’s last operation code. 

This register helps us when we are writing interrupt routines for 
catching errors that appear during coprocessor operations. In these cases it is 
useful to know the operation’s code and the physical address (the internal 
memory location where it can be found). We can easily see its importance 
when we realize that the program does not have to wait for the coprocessor, 
while this is working the processor can execute other tasks. We must 
consider the coprocessor only when its result is needed or when we need to 
do another operation. 
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Now, (because our program has passed the instruction that caused an 
error) we can’t find out which was the last instruction sent to the 
coprocessor. The space reserved for the instruction code is larger then the 
true size of the code so the code appears as aligned to the right. 

 
2.4.2.5. Data Pointer 

The data pointer contains the physical address of the last external 
data utilized in the last floating point operation. 

Like the previous this register uses interrupts for catching errors that 
may appear during the execution of coprocessor instructions. In this case we 
must know the data’s physical address (external for the coprocessor) used 
by the last instruction that caused the error. 

For the user that that write programs in assembling language it is 
important to know the coprocessor’s condition, more exactly the 
coprocessor’s environment that defines the working conditions at a 
particular time. This environment is defined by known elements. 

 
2.5. Coprocessor’s environment  

The internal registers that the user can be access. The mathematical 
coprocessor has a set of registers of 14 bits organized like this: 
 
                                          COMAND REGISTER 
                                          STATUS REGISTER 
                                          STACK REGISTER 
                                          INSTRUCTIONS REGISTER (A15-0)  
          A19-16                    |  0  |   OPERATION CODE    ( bits 10-0)  
                                          DATA REGISTER   (A15-0)  
         A19-16                     | 0.  . .. . .   . . . . . . . . . .. . . . . ... . . . . . . . .. . .  0 

 
2.6. Coprocessor’s instruction set 

The coprocessor can be programmed in assembly language using the 
ESC instruction. This instruction sends a 6 bit operation code on the data 
bus and if necessary also sends on the data bus a memory address. The 
coprocessor sees and takes the instruction sent to him and executes it. There 
are two ways of a new synchronization between the coprocessor and the 
processor, both attributed to the processor: 

- the processor tests the coprocessor’s status    
- the processor calls a WAIT instruction 
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2.6.1. Data transfer instructions 

 Data transfer instructions ensure the exchange of data between the 
computers memory and the coprocessor’s stack. They can be classified like 
this:  
 
 2.6.1.1. LOAD Instructions  

 

FILD adr - Loads on the stack the integer variable located at address 
„adr”. The variable stored in memory of type (DB, DW, and 
DD) is converted to the coprocessors internal format at load. 

FLD adr - Loads on the stack the real variable (long or short) located 
at address „adr”. The variable stored in memory of type (DD, 
DQ, and DT) is converted to the coprocessors internal format 
at load  

FBLD adr - Loads on the stack the packed decimal variable located at 
address „adr”. The variable stored in memory of type (DT) is 
converted to the coprocessors internal format at load.  

            

           2.6.1.2. STORE Instructions 
 
FIST adr -Stores at the address „adr” the value located on the stack 

(ST (0)) as a number. The stored value can be only an integer 
represented on one byte or a short integer, corresponding to 
the data stored at address „adr” (DW or DD). The stack 
pointer remains unchanged after the data is stored. The 
conversion is done during the store process.  

 FISTP adr - Stores at the address „adr” the value located on the stack 
(ST (0)) as an integer number. The stored value can be any 
integer (byte integer, short integer, long integer, 
corresponding to the data stored at address   „adr” (DW, DD 
or DQ). The conversion is done during the store process. The 
instruction changes the stack: ST (0) is deleted by 
decrementing the stack pointer. 

FST adr - Stores at the address „adr” the value located on the stack 
(ST (0)) as an integer number. The stored value can be an 
integer short integer or in double precision, corresponding to 
the data stored at address „adr” (DD or DQ). The stack 
pointer and the data on the stack remain unchanged after the 
data is stored. The conversion is done during the store 
process.  
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FSTP adr - Stores at the address „adr” the value located on the stack 
(ST (0)) as a floating point number. The value can be a short 
real with double or extended precision, corresponding to the 
data stored at address „adr” (DD, DQ or DT). The conversion 
is done during the store process from the internal format. The 
instruction changes the stack: ST (0) is deleted by 
decrementing the stack pointer. 

FBSTP adr - Stores at the address „adr” the value located on the stack 
(ST (0)) as a packed decimal number (defined at “adr” with 
DT). The stack pointer is decremented. The conversion is 
done during the store process from the internal format. 

 
NOTE: You must remember that any type of data can be loaded. 

When we try to store we have two possibilities: If the data 
from the stack is to be eliminated we can use the 7 data 
types. But if we want to keep the stored value on the stack 
only the 4 basic typed are allowed.  

 
2.6.2. Internal data transfer instructions 

 
FLD ST (i)  Put value from ST (i) on the stack. Thus the value from ST 

(i) will be found twice: in ST (0) and ST (i+1).  
 
FST ST (i)  The value from ST (0) is copied in the stack’s “i” element. 

The old ST (i) is lost.  
 
FSTP ST (i)  The value from ST (0) is copied in the stack’s “i” element. 

The old ST (i) is lost. ST (0) is eliminated by decrementing the stack 
pointer. 

 
FXCH ST (i)  swap between ST (0) and ST (i).  
 
 2.6.3. Constants loading instruction  

 
FLDZ  Loads 0 at the top of the stack  
 
FLD1  Loads 1.0 at the top of the stack  
 
FLDPI Loads”pi” at the top of the stack  
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FLDL2T Loads log (10) at the top of the stack  
 
FLDL2E Loads log (e) at the top of the stack  
 
FLDLG2 Loads log (2) at the top of the stack  
 
FLDLN2 Loads ln (2) at the top of the stack  
 
2.7. Arithmetical and comparison instructions 
 
 Arithmetical instructions usually have 2 operands. One of them is 
always at the top of the stack, and usually this is also the place where the 
result is be generated. Basic operations can be executed without restrictions 
with the following methods 
-the instruction’s mnemonic is being written without an operand. In this 
case the operands are ST (0) and ST (1). 
-the instruction’s mnemonic and the operand. The operand can be a memory 
address or a stack element (ST (1) is also usable but it’s not very use full) 
-the instruction’s mnemonic is written and 2 operands: the first is a stack 
element (not ST (0)) and the second is ST (0). In this case the result will be 
put in the place of the first operand and ST (0) will be deleted from the 
stack. (In the instruction’s mnemonic the letter P appears). 
 
 2.7.1. Arithmetical instructions 

 
FADD   ST (0) ST (0) +ST (1) FADD op ST (0) 
ST (0) +”op” from memory or stack.  
Floating point operation. 
FADD op ST (0) ST (0) +”op” from memory or stack.  
Integer operation. 
FADD ST (i), ST (0)  ST (i) ST (i) +ST (0); ST (0) eliminated 
FSUB   ST (0) ST (0) -ST (1) FSUB op ST (0) 
ST (0) –„op” from memory or stack.  
Floating point operation. 
FISUB op  ST (0) ST (0) -“op” from memory or stack.  
Integer operation. 
FSUB ST (i), ST (0)  ST (i) ST (i) -ST (0); ST (0) eliminated 
FSUBR ST (i)   ST (i) ST (i) -ST (0) ; FSUB ST (i) opposite 
instruction  
FMUL   ST (0) ST (0) XST (1)  
FMUL op ST (0) ST (0) x ”op” from memory or stack. 
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Floating point operation. 
FIMUL op ST (0) ST (0) x ”op” from memory or stack.  
Integer operation. 
FMULP ST (i), ST (0)  ST (i) ST (i) x ST (0); ST (0) eliminated 
FDIV  ST (0) ST (0): ST (1) FDIV op ST (0) ST (0):”op” 
from memory or stack.  
Floating point operation. 
FDIV op ST (0) ST (0):”op” from memory or stack.  
Integer operation. 
FDIVP ST (i), ST (0)  ST (i) ST (i): ST (0); ST (0) eliminated 

  FDIVR ST (i)   ST (i) ST (i): ST (0); FDIV ST (i) opposite 
instruction.  
 
 

2.8.2. Number comparison instructions 

 

FCOM The values from ST (0) and ST (1) are compared and 
C3, C2 and C0 indictors are set 

FCOM op The values ST from (0) and memory or stack 
(floating point variable) are compared and C3, C2 and 
C0 indictors are set 

FICOM op The values ST from (0) and memory or stack 
(floating point variable) are compared and C3, C2 and 
C0 indictors are set.  

FCOMP The values from ST (0) and ST (1) are compared and 
C3, C2 and C0 indictors are set. ST (0) is deleted 
from the stack 

FICOMP op The values ST from (0) and memory or stack 
(floating point variable) are compared and C3, C2 and 
C0 indictors are set ST (0) is deleted from the stack. 

FCOMPP The values from ST (0) and ST (1) are compared and 
C3, C2 and C0 indictors are set. ST (0) and ST (1) are 
deleted from the stack.  

FTST C3, C2 and C0 indicators are set according to the 
result of the comparison between the values ST (0) 
with 0. 

FXAM The condition bits are set according to the value of 
ST (0).No comparison is being done. 

Remarks:  

- FCOMP and FCOMPP allow us the easiest ways of eliminating one 
or two elements from the stack  
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- FXAM is used for analyzing the special conditions that result where 
computing errors occur.  

 
2.8. Floating point functions 

 
FSQRT Square root – ST (0) ‘s square root is put in ST (0). The 

number has to be positive, or the result will not make sense. 
FSCALE 2’s power. Puts in ST (0) the ST (0)’ s value multiplied with 

2ST (1):  
 ST (0) ST (0) *2**ST (1)   ST (1) has to be an integer, and 

ST (0)‘s absolute value ha to be smaller then 2**15.  
FPREM Partial remainder. ST (0) is divided by ST (1) and stored in 

ST () ST (0) -ST (1) * (the biggest lower integer for ST (0) 
/ST (1)).  

FRMDINT Round. ST (0) is replaced with ST (0) rounded. The rounding 
method is set in the command line. 

FXTRACT The value stored in ST (0) is split into Characteristic (in ST 
(0)) and mantissa (in ST (1)). 

FABS ST (0) is replaced with its absolute value. 
FCHS ST (0) sign is changed.  
FPTAN Partial tangent. The tangent of the angle contained in ST (0) 

is determined as a ST (1) /ST (0) fraction. The initial value of 
the angle contained in ST (0) must be between 0 and “pi”/4.   

FPATAN Partial Arctangent. The arctangent of the value contained in 
ST (0) is determined as a ST (1) /ST (0) fraction. The initial 
value contained in ST (0) must be positive, while ST (1) 
must be larger ST (0).  

F2XM1 2’s power. ST (0) will be replaced by 2**ST (0) -1. Initially 
ST (0) must be between 0 and 0.5. 

FYL2X Logarithm. ST (0) ST (1) *LOG2 (ST (0)). ST (0) has to 
be a positive number, while ST (1) has to be a finite number.  

FYL2XP1 Logarithm. ST (0) ST (1) *LOG2 (ST (0) +1). ST (0) has 
to be a positive number lower then 0.3, while ST (1) has to 
be a finite number.  

Remarks:  

- Sin and Cosine can be determined by using the tangent 
- Any exponent can be computed using F2XM1  
- For determining the exponent ST (0) ST (1) it is recommended to use the 

functions FYL2X and then F2XM1! 
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2.9. Control Instructions 
 

Control instructions have the task of coordinating the microprocessors 
actions. Usually they have no arithmetic meaning, but some of them do 
influence drastically the actions of the coprocessor because they save or 
load the coprocessor’s state, more exactly all of its work registers. Among 
these registers is the stack thus, these can be regarded as gigantic load and 
save instructions.  
  
 
FINIT Initialization- the coprocessor is brought in an initial status 

known as software reset”. After the FINIT instruction all of 
the coprocessors registers will be in their initial status and the 
stack will be empty. 

FENI Interrupt  accept- if the coprocessor needs to generate an 
interrupt when an error is detected, besides the correct 
positioning of the command register it needs to explicitly 
accept the interrupt. 

FDISI Interrupt ignores- this instruction ignores all interrupts 
regardless of the command register’s bits; to accept a new 
interrupt the instruction FENI must be called. 

FLDCW adr The command register is loaded from the memory location 
indicated by adr 

FSTCW adr The command register is saved in a word located at the 
memory location indicated by adr  

FSTSW adr The status register is saved in a word located at the memory 
location indicated by adr.  

FCLEX The bits that define the exceptions are erased- the instruction 
erases the corresponding bits regardless of the status of the 
error bits  

FSTENV adr Environment save- the coprocessor’s internal registers are 
saved in a memory location starting at adr that has a size of 
14 bytes. 

FLDENV adr Environment load- the coprocessor’s internal registers are 
loaded from a memory location starting at adr that has a size 
of 14 bytes. 

FSAVE adr Status save- the coprocessor’s internal registers and its stack 
are saved in a memory location starting at adr that has a size 
of 94 bytes. 
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FRSTOR adr Status load- the coprocessor’s internal registers and its stack 
are loaded from a memory location starting at adr that has a 
size of 94 bytes. 

FINCSTP Stack indicators increment- after the instruction’s action it is 
incremented with a stack indicator; thus the element that 
became ST (0) remains unchanged (fact pointed out by the 
stack description register’s bits). 

FDECSTP Stack indicators decrement- after the stack indicator is 
decremented by one; thus the stack’s elements remain 
unchanged (fact pointed out by the stack description 
register’s bits). 

FFREE ST (i) the “i” ranked element from the stack is eliminated. The 
operation does not influence the stack pointer. 

FNOP No operation executed.  
FWAIT Waits for the current action to finish (similar to the 8086 

WAIT instruction) 
 

 A simple program that uses the mathematical coprocessor 
; Program that determines the area of a circle with the radius R 
; And volume of a sphere with radius R 
 
DATE  SEGMENT PARA `DATA` ;SEGMENT   

      

RAZA  DQ  8.567    

ARIE  DQ  ?   ; RESERVE SPACE 

VOLUM DQ  ?   ; RESULTS 

PATRU DD  4.0  

TREI  DD  3.0 

DATE  ENDS 

 

COD  SEGMENT PARA `CODE`  

.8087 

CALCUL PROC FAR ;  

  ASSUME CS:COD, DS: DATE 

 

  PUSH DS   ; PREPARE 

  XOR AX, AX  ; STACK FOR 

  PUSH  AX  ; DOS RETURN 

  MOV AX, DATE  ; LOADING DS 

  MOV  DS, AX  ; WITH DATA SEGMENT 
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  FINIT  ;COPROCESOR INITIALIZATION 

  FLD RAZA  ;LOAD RAZA ON COPROC STACK  

  FMUL RAZA  ;COMPUTE R x R 

  FLDPI  ;LOAD PI TO COPROC STACK 

  FMUL   ;COMPUTE R x R x PI 

  FSTP ARIE  ;SAVING RESULT 

  FWAIT  ;SYNCHRONIZATION 

 

 

  LEA SI, VOLUM ; VOLUM ADDRSS IN SI 

  FINIT  ;COPROCESOR INITIALIZATION 

  FLD RAZA   ; COMPUTATION 

  FMUL RAZA   ; R x R 

  FMUL RAZA   ; R x R x R 

  FLDPI    ; LOAD PI 

  FMUL    ; MULTYPLY WITH PI 

  FMUL PATRU  ; MULTIPLY WITH FOUR 

  FDIV TREI    ; DIVISION BY 3 

  FSTP QWORD PTR [SI]  ; SAVING RESULT 

  FWAIT   ; SYNCHRONIZATION 

 

  RET 

CALCUL ENDP     ; END PROCEDURE 

COD  ENDS    ; END CODE SEGMENT 

 

  END CALCUL   ; PROGRAM END 

 

3. Lab tasks 
 

1. Run the given example 
2. Write a program that computes the solution of the following 

equation: aX2+bX+c=0 if the solutions are real numbers 
a, b and c are real numbers 
∆ = (b2 - 4ac)   x1,2= (b ± sqrt(∆))/2a if ∆>0 

3. Write a program that determines 3 2 . Hint: Use the instructions 
F2XM1 and FYL2X. 

  
 


