
15 

LAB WORK NO 2 

THE INTERNAL DATA REPRESENTATION 

 

 

1. Object of lab work 
 

            The purpose of this work is to understand the internal representation 

of different types of data in the computer. We will study and illustrate 

different ways of representing integer numbers (in magnitude and sign 

(MS), in complement to 1 (C1), complement to 2 (C2), in binary, decimal, 

packed and unpacked (BCD)), and real numbers (the IEEE short, long and 

temporary format) 

 

 

2. Theoretical considerations 
 

2.1 The representation of the integers in magnitude and sign (MS) in 

Complement to 1 and 2 (C1, C2) 

 

    Integer numbers can be represented on byte, on word (2 bytes) 

double words (4 bytes) or quadwords (8 bytes). For all representations, the 

most significant bit represents the sign bit, and the rest of the representation 

(the other bits) are used for representing in binary the number (the negative 

numbers have a different representation in the 3 representation forms) 

 There are two parts in representing the whole numbers: the sign bit 

and the absolute value. In all the tree forms of representation if the sign bit 

is 0 it represents a positive numbers and 1 in the sign bit represents negative 

numbers. 

 The field for the absolute value is represented like this: 

 

• In the magnitude and sign (MS) representation, the module of the 

number is represented, so a number is represented putting 0 or 1 on the 

sign byte, according to the positive or negative value of the number and 

in the rest of the representation it is going to be used the value of the 

module in binary. 

• In the complement to 1 (C1) representation, if the number is positive, 

the representation is identical as in magnitude and sign, the module of 

the number is represented and the sign bit is implicit 0. If the number is 



ASSEMBLY LANGUAGE PROGRAMMING 

 

 16

negative then all the representation bits of the number in absolute value 

are complemented, the 1→0 and 0→1. The sign bit will be 1.  

• In C2 representation, if the number is positive the representation is 

identical as in magnitude and sign and in complement on 1. If the 

number is negative, then the representation of the number in absolute 

value is complemented to 2, namely the representation of the module is 

subtracted from the value 2n+1 (n represents the number of bits to be 

represented, the sign bit will become 1). Another way of obtaining the 

representation in C2 of a negative number is by adding 1 to the 

representation in C1. 

   

 

 

From the modes of representing the numbers in the three forms, 

results that the positive numbers have the same representation in magnitude 

and sign as in complement on 1 and complement on 2. 

A greater attention must be accorded to the minimum space (the 

minimum number of bytes) on witch a number can be represented in the 

three modes of representation. For example when we want to find the 

minimum number of bytes on which the number 155 can be represented, we 

must defer to the fact that for representing the module there is one bit less 

(the sign bit) from the representation space. In this case, even if the value of 

its module fits on a byte (155 = 9Bh), the number can not be represented on 

a byte in either of the three representation modes, because the sign bit must 

be represented also, so at the interpretation of the 9Bh representation, the 

first bit being 1, the representation will be of a negative number instead of 

the desired number. To represent the number 155 we will need minimum 2 

bytes (the representation is done on multiple of bytes), and the number will 

be represented like this: 009Bh, being positive in all the 3 representation 

modes. 

 

Examples: 

Represent on 4 bytes the following numbers: 157, 169, -157 and -169 

157(D) = 1001 1101(B) = 9D(H) 

So the representation in MS, C1 and C2 is 00 00 00 9D (H) 

169(D) = 1010 1001(B) = A9(H) 

So the representation in MS, C1 and C2 is: 00 00 00 A9 (H) 

For –157, the module is represented firs (it has been computed above) 

and the result is: 

MS: 1000 0000 0000 0000 0000 0000 1001 1101 (B) = 80 00 00 9D (H) 

C1:  1111 1111 1111 1111 1111 1111 0110 0010 (B) = FF FF FF 62 (H) 



THE INTERNAL DATA REPRESENTATION 

 17

C2:  1111 1111 1111 1111 1111 1111 0110 0011 (B) = FF FF FF 63 (H) 

For  –163 analogous: 

MS: 80 00 00 A9 (H) 

C1:  FF FF FF 56 (H) 

C2:  FF FF FF 57 (H) 

 

 

2.2. Representing the real numbers in the IEEE format 

 

 The IEEE standard of representing the real numbers proposes 3 

modes of representing for real numbers:  

• The short format on 4 bytes 

• The long format on 8 bytes 

• The temporary format on 10 bytes 

 

The real numbers are represented in the short an long formats in the 

computer’s memory, and the temporary format are found in loading the real 

numbers in the mathematic coprocessor. 

  

 All the three formats contain 3 parts:  

 

Sign Characteristic Mantissa  

 

• The sign bit  S  

• Characteristic  C (on 8, 11,  or 15 bits, for  short, long and temporary 

format) 

• Mantissa M (on 23, 52, or 64 bits) 

 

For each representation: 

S is 0 if the number is positive and 1 if the number is negative. 

Characteristic = Exponent + 7Fh (or 3FFh for long IEEE and 3FFFh for 

temporary format) 

In order to compute mantissa, first the number is represented in binary.  This 

representation is normalized and written in the following format:  

NO = 1.<binary digits> * 2exponent. 

 For the IEEE short and long format, the mantissa is formed by the 

digits after the decimal point, so the first 1 before the decimal point  is not 

represented in the mantissa. For the temporary format all the digits of the 

mantissa are represented (including the leading 1).  

  



ASSEMBLY LANGUAGE PROGRAMMING 

 

 18

Examples: 

Represent in the IEEE short and long format the number 17,6(D). 

 

The integer and the fractional part are converted separately, the 

results are:  

The integer part: 17(D) = 11(H) = 1 0001(B) 

The fractional part: 0,6(D) = 0,(1001)(B) (to be observed that the number is 

periodic), has infinite number of bits. 

So 17,6(D) = 10001,(1001)(B) 

The number is normalized: 17,6(D) = 10001,(1001)(B) = 

1,0001(1001) * 24 (instead of 24 it would be more correct to have 10100(B) 

because the notation was in binary, the fact that the characteristic is easer to 

calculate in hex then in binary can be a motivated excuse. 

From this representation we can deduce the mantissa (the part after 

the decimal point, without that 1 before the point which is not represented 

by convention): 

M = 0001(1001)(B). 

After that the characteristic is calculated: C = exponent + 7F(H) = 

4+7F(H) = 83(H) = 1000 0011(B) 

The bit  0 for the sign will be written and we can write the 

representation: 

 

0 1000 0011 00011001100110011001100  

  sign    charact.   mantissa 

 

In order to write the representation in hex we will group 4 binary 

digits. Attention to the fact that grouping 4 digits will not correspond to the 

characteristic because of the sign bit that shifts a position. So the hex digits 

of the characteristic will not be found in the representation written in hex.   

The result of the representation is: 41 8C CC CC(H). 

In practice, a rounding will appear at the last bit, and the 

representation is: 

41 8C CC CD(H). 

 

Similarly we will represent –23,5(D): 

23(D) = 17(H) = 1 0111(B) 

0,5(D) = 0,1(B) 

So 23,5(D) = 10111,1 = 1,01111 * 2 4  it results that M = 

0111100000000000… (23 bits) 

Characteristic = 7F(H) + 4(H) = 83(H) 



THE INTERNAL DATA REPRESENTATION 

 19

The sign bit becomes 1. 

The representation directly in hex is C1 BC 00 00(H). 

 

 In the following t you have the representation of a number in IEEE 

short format and you have to find the real number that is represented. 

  

Example: 

Given the representation 43 04 33 33 (H), you have to calculate the 

decimal value of the number represented 

The representation in binary:  

0100 0011 0000 0100 0011 0011 0011 0011 

From here we deduce that: 

The sign is  0  

The characteristic is C = 1000 0110 (B) = 86(H) 

The exponent is 86(H) – 7F(H) = 7 (H) 

Mantissa M = 0000 1000 0110 0110… 

The number is No=1,mantissa * 2 exponent = 1,0000 1000 0110…*2 7= 

= 1000 0100,00110011…= 128 + 4 +  0.125 + 0.0625 + … ≈  

≈ 132,1875 which approximates 132,2. 

 

2.3. The representation of the numbers in packed BCD and unpacked 

BCD ( Binary Coded Decimal) 

 

 Beside the modes of representation of the integers in MS, C1 and 

C2, there is the representation in Packed BCD and unpacked BCD. 

 In the Packed BCD representation one decimal digit is represented 

on 4 bits, so there are 2 decimal digits in a byte. 

 In the Unpacked BCD representation unpacked one decimal digit is 

represented on one byte (so we put 0 on the first 4 bits). 

 This  representation modes are used for a better readability of the 

numbers from the programmers point of view, even if this is done by losing  

part of the available memory space (for packed BCD, only values 0-9 are 

used on 4 bits, and for unpacked BCD 4 more bits are left unused). 

 In order to compute operations with numbers represented in BCD, 

there are additional instructions for correcting the result after addition, 

multiplication, that will be studied in labs regarding instructions for 

arithmetic operations.  

Example: 

The number 3912(D) is going to be represented in BCD  

• packed: 39 12(H)  on  2 bytes; 



ASSEMBLY LANGUAGE PROGRAMMING 

 

 20

• unpacked: 03 09 01 02(H)  on 4 bytes. 

 

3. Lab tasks 
 

• Represent in MS, C1 and C2 the +35, -127 and  0. 

• Represent in IEEE short format two real numbers. 

• Given a representation in IEEE short format, find the 

represented number. 

 

 

 


