

21

LABORATORY WORK NO. 3
TURBO DEBUGGER ENVIRONMENT

1. Object of laboratory

 The object of this lab is to get used to debug programs written in

assembly language and general executables, using a debugging tool.

2. Theoretical considerations

2.1 Turbo Debugger Environment

 Turbo Debugger environment allows the testing and tracing of any

executable program (.exe or .com) and allows:

- displaying memory and register content;

- their modification;

- step by step program execution;

- program execution till encountering a breakpoint;

- instruction insert in assembly language;

- memory area disassembly.

To launch the Debugger type:

td [options] [program_name [arguments]]

 Parameters between square brackets are optional. “Program_name”

parameter represents the program to debug. If there is no extension we

suppose it is .exe. “Arguments” parameter represents the arguments (input

parameters) of the program to debug. Turbo Debugger options must be

placed in front of the name of the program to debug.

 If no option is given, program name or argument, Turbo Debugger

will load without any program and with default options.

 Examples:

 td –r prog1 a

will run the Debugger with –r option (remote debugging), will load “prog1”

program with parameter “a”.

 td prog2 –x

will start Turbo Debugger and will open “prog2” program with parameter “-

x”.

ASSEMBLY LANGUAGE PROGRAMMING

 22

 Some of the most important options are:

- the possibility of launching the environment with a configuration

file;

- different ways of display refresh;

- the possibility of process switching depending on “id”;

- recording the keys pressed;

- remote debugging;

- mouse using;

- program debugging in Windows.

To find more detailed information about the option for launching the

Turbo Debugger, use the “td /?” command, or consult the Help page from

Turbo Debugger which refers to the command line options.

2.2. Turbo Debugger windows

2.2.1 Code window

In the code windows you can see the disassembly instructions of the

program. The title shows the processor on which the program runs. Lines

source numbers and the labels appear in front of the one they will be used.

On the left side we can see the memory address of the instruction

(ex. CS:0100, meaning at the address resulted from the Code Segment (CS)

and the offset 0100h). It follows a hexadecimal code of variable length

(representing the machine code in hexadecimal) of the instruction of which

the mnemonic is on the next column.

A distinguished sigh (an arrow), placed between the instruction

address and its code (in case of an active CPU window, that line is colored),

symbolizes the current instruction.

2.2.2. Register window

This window shows the processor registers. Their content is

displayed in hexadecimal, in word size (2 bytes). The window local menu

contains the following commands:

• Increment – allows adding the value 1 to the marked register

content.

• Decrement – allows subtracting the value 1 from the marked

register content.

TURBO DEBUGGER ENVIRONMENT

 23

• Zero – to set the register value on 0.

• Change – modifying the value of selected register.

• Registers 32-bit – allows changing of displaying mode of

registers in 32 bits format (extended registers EAX, BAX,

inclusively segment registers FS and GS, etc.).

2.2.3. Flag window

This window shows the flag status (0 or 1). Every flag is indicated

by a significant letter (C – Carry, Z – Zero, S – Sign, O – Overflow, P-

Parity, A – BCD Carry (auxiliary carry), I – Interrupt, D - Direction).

 The local menu of this window has only one command: Toggle – it

switches the flags values 0 or 1 (to activate the command press “space” or

“enter”).

ASSEMBLY LANGUAGE PROGRAMMING

 24

2.2.4. Data window

This window shows, in hexadecimal, a part of the memory area from

the data segment. Window content displays the address (as

“segment:offset”) and the effective memory content.

Local menu of this window contains the following commands:

• GoTo – it sets the address on which the data display will begin in

the data window. This address may be given in different ways:

- offset (ex. 0100h), in this case current segment is taken by

default;

- segment:offset (ex. DS:0000h, or DS:0100h), and the positioning

is effected to the absolute address given by segment and offset;

- segment:offset with precise values (ex. 54F7:0008h), the

positioning will be effected to 54F7 segment and 8h offset;

- variable_name (ex. No1), in this case the compilation is done

with information including for debugging.

• Search – searches a byte sequence in the memory.

• Next – searches the next appearance of the byte sequence given

in Search command.

• Change – allows memory content modification from the current

location by introducing a sequence of bytes.

• Follow – allows the positioning in the data window to a new

address based on the number of bytes from the address specified

by the current position (ex. code Near, Far, data offset,

segment:offset).

• Previous – positions dada window to the initial address, before

modifying with GoTo or Follow.

• Display As – permits the choosing of the displaying mode of

data in data window and has the options: Byte (1 byte), Word (2

bytes), Long (4 bytes), Comp (8 bytes), Float (real number, 4

bytes), Real (real number, 6 bytes), Double (real number, 8

bytes), Extended (10 bytes).

• Block – allows operating with memory blocks.

2.2.5. Stack window

Stack window shows the current content of the top of stack (last few

elements) indicated by pair registers SS:SP.

TURBO DEBUGGER ENVIRONMENT

 25

Local menu of this window has the following commands:

• GoTo – allows the modification of the address from which the

display is made in the window.

• Origin – it effects the return to the base address (SS:SP).

• Follow – allows setting the address from which the display is

done as the value of the word selected from the stack. The

command is useful when it is needed the following of the stack

pointer content.

• Previous – positions the stack window to the initial address,

before the modification with GoTo or Follow.

• Change – allows the modification of the stack content from the

current location by inserting a new value (word).

2.3 Turbo Debugger Menus

 In this part it will be described the most common part of Turbo

Debugger menus.

• “File” menu

It has the following submenu:

• “Open” – opens a dialog box for loading an executable file for

debugging.

• “Change dir” – allows the changing of current working directory

(from where the file loading is made).

• “Get info” – offers information about the loaded program and

conventional memory status and EMS.

• “DOS shell” – restores the control to the operating system,

without closing Turbo Debugger (can go back using the

command “exit”).

• “Resident” – allows quitting Turbo Debugger, with the

possibility to have it resident in the memory (to activate it, use

the command Ctrl-Break).

• “Symbol load” – loads a symbol table specified by the user.

• “Table relocate”- allows the relocation of the symbol table.

• “Quit” – exits Turbo Debugger environment.

ASSEMBLY LANGUAGE PROGRAMMING

 26

• “View” menu

It has the following submenu:

• “Breakpoints” – allows the viewing of the breakpoints and their

characteristics from the active program being debugged.

• “Stack” – allows the viewing of stack window.

• “Log” – opens log window (which has also a submenu).

• “Watches” – opens a window for variable watch – the value of

the variables you want to follow. With the local submenu,

variables can be added, edited, deleted, as well as their content.

• “Variables” – opens the visualization window of the variables

defined in the program. The window contains a submenu to offer

more operations on the variables.

• “Module” – allows the selection for visualization of one of the

program modules loaded from a list.

• “File” – loads a file for visualization (the window can be used

for viewing the source file, being the initial file of the executable

file to debug).

• “CPU” – opens the CPU window, referred in “Turbo Debugger

Windows”.

• “Dump” – opens data window for displaying memory content

(see “Turbo Debugger Windows” chapter). The window contains

many commands in the local submenu.

• “Registers” – opens the window for displaying and modifying

register content (see “Turbo Debugger Windows” chapter). The

window contains many commands in the local submenu.

• “Numeric processor” – opens the math co-processor window,

displaying the internal stack, as well as the indicators. This

window is used for debugging the programs that are using co-

processor dedicated instructions.

• “Execution history window” – opens the window that shows the

last instructions executed by the central unit. Previous executed

instructions are stored only when running with Trace command

(from Run menu). If the tracing is made in a module

visualization window, option “Full history” must be set on “yes”.

Local submenu has the following commands:

• “Inspect” – opens a module visualization window in which it

can be seen the source code of the instruction selected from

those being executed.

• “Reverse executed” – executes backwards the instructions

from the current one to the selected one. Excepting the I/O

TURBO DEBUGGER ENVIRONMENT

 27

instructions, the status is the same as the one before the

execution of the instruction up to which the return is made.

• “Full history” – it is a switch that allows a slower and more

complete way, or faster and less complete way of reverse

execution.

• “Hierarchy” – opens a window useful for debugging C++ or

Pascal program that contain objects.

• “Windows messages” – opens a message window when

debugging programs under Windows.

• “Another” – allows opening of another module, memory or file

window (as described above).

• “Run” menu

It has the following submenu:

• “Run” (F9) – runs the program till meeting a breakpoint, till

breaking the program by the user with break keys, or till the end

of the program. If the program is stopped with break keys

(usually Ctrl-Break) there can be examined registers and

program status.

• “Goto cursor” (F4) – runs the program till reaching the selected

line from the source code (CPU window or module visualization

window).

• “Trace into” (F7) – executes one instruction or code line (it is

used the most in program debugging).

• “Step over” (F8) – executes one instruction or code line as

“Trace into” command, with the specification that procedure

calls are being executed in one step, so it is not entering in

procedures with the debugging.

• “Execute to” (Alt-F9) – runs the program and is stopping to a

specified location within the program. The user will be asked to

insert an address to which the program to stop.

• “Until Return” (Alt-F8) – runs the program being debugged till

the current procedure or function is finished (to the first

“return”). The command is used when accidentally “Trace into”

is used instead of “Step over” and it is entered by mistake into a

procedure, or in case of a procedure debugging and it is wanted

the execution of the rest of it without stopping.

• “Animate” – similar to “Trace into”, being repeated. Instructions

are executed continuous till key pressing. The debugger changes

ASSEMBLY LANGUAGE PROGRAMMING

 28

his status to notice the execution changes. The user is being

asked for the instruction execution rate.

• “Back trace” – remakes the status by backwards execution of the

last executed instruction (undo).

• “Instruction trace” – executes one machine instruction. The

command is used to trace a break call in CPU window, for

tracing a function into a module, which does not contain

debugging information.

• “Run Arguments” – allows arguments changing from the

command line of the program being debugged. The command is

used when a program is debugged and it needs one or more input

parameters, not given (or wrong given).

• “Program reset” (Ctrl-F2) – reloads the current program. The

command is used when re-running of a program is wanted.

• “Breakpoints” menu

It has the following submenu:

• “Toggle” (F2) – marks (on/off) a breakpoint on current

instruction; in this point the program will stop at every run.

• “At…” (Alt-F2) – marks a breakpoint to a specified address.

• “Change Memory Global” – sets a breakpoint, which will change

the value of a memory area.

• “Expression True Global” – sets a breakpoint that will take

action when an inserted expression becomes true.

• “Hardware breakpoint” – sets a hardware breakpoint by his

detailed specification in the afferent dialog box.

• “Delete all” – deletes all declared breakpoints.

• “Data” menu

It has the following submenu:

• “Inspect” – allows the inspection of some variable or references

inserted in memory at request in the dialog box.

• “Evaluate/Modify” – evaluates an arbitrary expression, allows

variable names as well as formulas, and displays the result in

decimal and hexadecimal.

• “Add Watch” – adds an expression or a variable in the variable

watch window.

• “Function return” – allows the inspection of the value that will

be returned by the current function.

TURBO DEBUGGER ENVIRONMENT

 29

• “Options” menu

It has the following submenu:

• “Language” – allows the specification of the way Turbo

Debugger interprets the expressions user inserted.

• “Macros” – creates, modifies and deletes macros assigned to

certain keys (ex. command sequences mostly used).

• “Display Options” – opens a dialog box for setting the display

mode on the display, how to display numbers, as well as the way

in which the display refresh is made.

• “Path for Source” – allows setting of the way where Turbo

Debugger searches the source files that compose the program.

• “Save Options” – opens a dialog box for selecting the

configuration part to be saved, as well as the configuration file.

• “Restore Options” – allows configuration loading from a

configuration file previously saved with “Save Options”

command.

• “Window” and “Help” menus are similar to any other application, so

they won’t be described in this laboratory.

3. Lab tasks

 It will be written, assembled, link-edited and debugged a short

program, using the most used commands and functions from Turbo

Debugger menu.

 For the beginning, it will be written, using an editor, the following

program, which only declares some variables in data segment, and in the

code segment it contains only activation instructions of data segment. The

program will be used especially for exemplifying the visualization mode of

data in the memory. The name of the program will be “test.asm”.

DATA SEGMENT PARA PUBLIC 'DATA'

NO1 DD 17.6

NO2 DD -23.5

NO3 DW 100

NO4 DW -100

DATA ENDS

CODE SEGMENT PARA PUBLIC 'CODE'

ASSEMBLY LANGUAGE PROGRAMMING

 30

ASSUME CS:CODE, DS:DATA

START PROC FAR

PUSH DS

XOR AX,AX

PUSH AX

MOV AX,DATA

MOV DS,AX

;OTHER PROGRAM INSTRUCTIONS

RET

START ENDP

CODE ENDS

END START

 The program will be assembled with the command:

 Tasm /zi test.asm

 This command will generate object module test.obj (in case of

successful compiling). If option /la (expanded listing) is being used, while

assembling it will be obtained a .lst file which will contain information

about line numbers, relative address on which the instructions are

assembled, machine code resulted after the assembly, as well as the initial

form instructions. Carrying on, the symbol table will be listed in detailed

mode.

 For additional details referring Turbo Assembler parameters run

“tasm /?” command, or simpler, without parameters, only “tasm”.

 Next is the link-edit of the .obj module (or of many modules) for

obtaining the executable file, with the instruction:

 Tlink /v test.obj

 As a result of this command, if no errors occur, the file test.exe will

be generated. Option /v is used for easier debugging of the program and

signifies the including of the information from the symbol table so that

Turbo Debugger to list variable and label names instead of code addresses.

This option cannot be used in .com program case. If obtaining a .com

program would be wanted, in link-edit option /t should have been used (and

the code must have been written to follow a .com program conditions,

meaning to have one segment, to be loaded at address 100h, etc.).

TURBO DEBUGGER ENVIRONMENT

 31

 For additional details referring Turbo Link parameters, use “tlink /?”

or “tlink” command.

 For testing and debugging the program it will be used:

 Td test.exe

 This will launch the Turbo Debugger and the program test.exe will

be automatically loaded (if the program wouldn’t be given as a parameter,

this could have been loaded from File - Open).

 If the program has been compiled and link-edited with the options of

debugging information inclusion, it would appear only the initial written

text which can be debugged and ran by Turbo Debugger commands. For a

better understanding of what is happening in the computer memory it is

recommended the CPU window to be opened (View - CPU); it contains

CPU windows, the registers, the flags, the stack and data segment. The

instructions modification can also be made (or new instruction insertion),

but it is not recommended, because there cannot be made a saving in .asm

file, Turbo Debugger working on .exe file.

 Now, tracing the program can begin. The most used commands will

be: step by step run: Run – Trace (F7) which executes one instruction at

every step, or establishing breakpoints: Breakpoints – Toggle and then

running with Run – Run, or positioning the cursor on a specified instruction

and using Run – Go to cursor. For the returning to the beginning of the

program, it is used Run – Program reset.

 While tracing the program, at every step the registers, flags, stack,

and data area values can be inspected or even modify them as needed.

 For data visualization directly in data segment, it is switched to data

window and it positions on the beginning address of the data segment – Go

to (DS:0000h) command, the address can be also written directly using ds

value (ex. 551A:0000h). Another way to position is the direct writing of the

variable name (only in case in which options for debugging information

have been included at compilation). The variable values can be also seen in

Data menu: Data – Inspect or Data – Evaluate/Modify (function that can be

used later as a simple decimal – hexadecimal conversion tool).

 Another possibility is the window Data – Add watch, which

monitors the specified variable values.

 Usual, data window is positioned on Byte status, meaning data is

displayed byte by byte, and to the right it is given their ASCII

representation. In tested program case, data segment starts with no1 = 17.6

value (in short IEEE format, so on 4 bytes), no2=-23.5 (same as no1) and it

is continued with no3=100 (on 2 bytes in C2) and no4=-100 (2 bytes in C2).

ASSEMBLY LANGUAGE PROGRAMMING

 32

 To view no1 and no2 values, it will be used the setting Display as –

Float, and for viewing their internal representation it will be used Display as

– Long, for viewing the memory content (17.6 is represented as

418CCCCD, and –23.5 is represented as C1BC0000). To view no3 and no4

it must be seen the memory content from address ds:0008h (so, offset 2*4

bytes as much as those 2 values in short IEEE format represent); the

visualization is made with Display as Word and it can be noticed that 100 is

represented in the memory as 0064h, and –100 as FF9Ch.

 Carrying on, the program can be traced till end (here it must be taken

good care, because most of the programs that “block” actually are not

ending as programmer would like to, thing that can be easily seen in Turbo

Debugger, meaning that instructions being ran are no longer part of the

written code).

