
33

LABORATORY NO. 4
THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND

THE FORMAT OF THE EXECUTABLE PROGRAMS

1. Objective of laboratory

 The purpose of this lab is the presentation of the instruction format
in assembly language, of the most important pseudo-instructions and the
structure of the executable programs: .COM and .EXE.

2. Theoretical considerations

2.1. The elements of the assembly language TASM

2.1.1. The format of the instructions

 An instruction may be represented on a line of maximum 128
characters, the general form being:
[<label>:] [<opcod>[<operatives>][;<comments>]]
where:
<label> is a name, maximum 31 characters (letters, numbers or special
characters _,?,@,..), the first character being a letter or one of the special
characters. Each label has a value attached and also a relative address in the
segment where it belongs to.
<opcod> the mnemonic of the instruction.
<operatives> the operative (or operatives) associated with the instruction
concordant to the syntax required for the instruction. It may be a constant, a
symbol or expressions containing these.
<comments> a certain text forego of the character “;” .

 The insertion of blank lines and of certain number of spaces is
allowed. These facilities are used for assuring the legibility of the program.

ASSEMBLY LANGUAGE PROGRAMMING

 34

2.1.2 The specification of constants

Numerical constants – are presented through a row of numbers, the first
being between 0 and 9 (if for example the number is in hexadecimal and
starts with a character, a 0 will be put in front of its). The basis of the
number is specified through a letter at the end of the number (B for binary,
Q for octal, D for decimal, H for hexadecimal; without an explicit
specification, the number is considered decimal).
 Examples: 010010100B, 26157Q (octal), 7362D (or 7362), 0AB3H.
Character constants or rows of characters are specified between
quotation (“ “) or apostrophes (‘ ‘).
 Examples: “row of characters”, ‘row of characters’

2.1.3. Symbols

 The symbols represent memory locations. These can be: labels or
variables. Any symbol has the following attributes:

- the segment where it is defined
- the offset (the relative address in the segment)
- the type of the symbol (belongs to definition)

2.1.4. Labels

 The labels may be defined only in the code part of the program and
then can be used as arguments of CALL or JMP instructions.
 The attributes of labels are:

- the segment (generally stored in CS) is the start address the segment.
When a reference is made to the label, the value is found in CS (the
effective value is known only during runtime)

- the offset is the distance in btes of the label beside the start of the
segment where it has been defined

- the type determines the reference manner of the label; there are two
types: NEAR and FAR. The NEAR type reference is offset ONLY,
the FAR type reference specifies also the segment and offset
(segment: offset).
The labels are defined at the beginning of the source line. If a label
is followed by “:” character then the label is of NEAR type.

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

 35

2.1.5. Variables

 The definition of variables (data labels) may be made with space
booking instructions.
 The attributes of variables are:
- segment and offset – similarly to labels with the distinction that there may
be other ledger segments
- the type – is a constant, which shows the length (in octets) of the booked
zone:
BYTE (1), WORD (2), DWORD (4), QWORD (8), TWORD (10), STRUC
(defined by the user), RECORD (2).
Examples:
DAT DB 0FH, 07H ; occupies one octet each, totally 2
DATW LABEL WORD ; label for type conversion

MOV AL,DAT ; AL<-0FH
MOV AX,DATW ; AL<-0FH, AH<-07H
MOV AX,DAT ; type error

2.1.6. Expressions

The expressions are defined through constants, symbols, pseudo-
operatives and operatives (for variables are considered only the address and
not the content, because when compiling, only the address is known).

2.1.7. Operators (in the order of priorities)

1. Brackets () []
 . (dot) - structure_name.variable – serves for binding the name of a
structure with its elements
 LENGTH – number of elements in memory
 SIZE – the memory length in bytes
 WIDTH – a field’s width from a RECORD
Example:
EXP DW 100 DUP (1)
Then:
LENGTH EXP has the value 100
TYPE EXP has the value 2
SIZE EXP has the value 200

ASSEMBLY LANGUAGE PROGRAMMING

 36

2. segment name: - explicit segment reference
Example:
MOV AX, ES:[BX]

3. PTR – redefinition of variable type
Example:
DAT DB 03
MOV AX, WORD PTR DAT
 OFFSET – furnishes the offset of a symbol
 SEG – furnishes the segment of a symbol
 TYPE – a variable type
 THIS – creation of an attributed operative (segment, offset, type)
date
Example:
SIRC DW 100 DUP(?)
SIRO EQU THIS BYTE

 SIRC is a defined of 100 WORDS (200 byte in length); the variable
SIRO has the same segment and offset as SIRC but it is of BYTE type.

4. HIGH – addresses the high part of a word
 LOW – addresses the low part of a word
Example:
DAT DW 2345H
MOV AH, HIGH DAT ; AH<-23

5. * / MOD
Example:
MOV CX, (TYPE EXP)*(LENGTH EXP)

6. + -
7. EQ, NE, LE, LT, GE, GT
8. NOT –logic operative
9. AND
10. or, xor
11. SHORT – forces the short appeal
Example:
JMP label ; direct jump
JMP SHORT label ; IP is relative

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

 37

2.1.8. Pseudo instructions
 Pseudo-instructions are commands (orders, instructions) for
assembler, necessary for the proper translations of the program and for the
facility of the computer programmer’s activity.
 Only the pseudo-instructions indispensable in writing the first
programs are shown.

2.1.9. Pseudo-instructions work with segments
 Any segment is identified with a name and class, both specified by
the user. When defined, the segments receive a series of attributes, which
specifies for the assembler and for the link-editor the relations between
segments.
 The segments definition are made through:
segment_name SEGMENT [align_type] [combine type] [‘class’]
... ...
segment_name ENDS
where:
segment_name – is the segment’s name chosen by the user (the name is
associated with a value, corresponding to the segment’s position in the
memory).
align_type – is the segment’s alignment type (in memory). The values,
which it may take, are:
 PARA (paragraph alignment, 16 octets multiple)
 BYTE (octet alignment)
 WORD (word alignment)
 PAGE (page alignment – 256 octets multiple)
combine_type – is actually the segment’s type and represents an
information for the link-editor specifying the connection of segments with
the same type. It may be:

PUBLIC – specifies the concatenation
 COMMON – specifies the overlap
 AT expression – specifies the segment’s load having the address
expression *16
 STACK – shows that the current segment makes part of pile
segment
 MEMORY – specifies the segment’s location as the last segment
from the program
‘class’ – is the segment’s class; the link-editor continually arranges the
segments having the same class in order of its appearance. It is

ASSEMBLY LANGUAGE PROGRAMMING

 38

recommended to use the ‘code’, ‘data’, ‘constant’, ‘memory’, ‘stack’
classes.

2.1.10. The designation of the active segment
 In a program may be defined more segments (code and date). The
assembler verifies whether the dates or the instructions addressed may be
reached with the segment register having a certain content. For a realization
in proper conditions, the assembler of the active segment must be
communicated, meaning that the segment register must contain the address
of the loaded segment.
ASSUME <reg-seg>:<name-seg>, <reg-seg>:<name-seg> ...
reg-seg – the register segment
name-seg – the segment which will be active with the proper register
segment
Example:
ASSUME CS:prg, DS:date1, ES:date2
Observations:
- the pseudo-instruction does not prepare the register segment but
communicates to the assembler where the symbols must be looked for
- DS is recommended to be shown at the beginning of the assembler with a
typical sequence:
 ASSUME DS:name_seg_date
 MOV AX, name_seg_date
 MOV DS, AX
- CS must not be initialized but must be activated with ASSUME before the
first label
- instead of name-seg from ASSUME the NOTHING identifier may be used
if we don’t want to associate a segment to the register.

2.1.11. The Memory reservation
 Usually the data is defined in a data segment. The instruction
definition has the syntax:
<name> <type> [expression list] [<factor> DUP (<expression list>)]
where:
name – is the symbol’s name
type - is the symbol’s type:
 DB – for byte reservation
 DW – for word reservation (2 octets)
 DD – for double word reservation (4 octets)
 DQ – for quadruple word reservation (8 octets)
 DT – for 10 byte reservation

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

 39

expressions list – list of expressions, that can be evaluated, replaced by a
constant at assembly time. Memory locations will be initialized with these
constants. The “?” can be use as placeholder, no initial value
factor – a constant, which shows how many times the expression, is
repeated after DUP:
Examples:
DAT db 45
dat1 db 45h, ‘a’, ‘A”, 85h
dat2 db ‘abcdefghi’ ; the text is generated
lg_dat2 db $-dat2 ; the length of the given row dat2 ($ is the
local current
 counter)
aa db 100 dup(56h) ; 100 octets having the value 56h
bb db 20 dup (?) ; 20 not initialized octets
ad dw dat1 ; contains the address (offset) of the given
variable dat1
adr dd dat1 ; contains the address (offset + segment) of
given
 variable dat1

2.1.12. Other possibilities for defining symbols
- the definition of constants:
<name> EQU <expression>
 The symbol “name” will be replaced with the value’s expression.
- labels declaration:
<name> LABEL <type>
 <name> label will have the value of the segment where it is defined,
the offset equal to the offset of the first instruction or memory location
which follows and the type defined by the <type> which may be: BYTE,
WORD, DWORD, QWORD, TBYTE, the name of a structure, NEAR or
FAR.

Example: if we have the definitions
ENTRY LABEL FAR
ENTRY1:
then:
JMP ENTRY ; is FAR type jump
JMP ENTRY1 ; is NEAR type jump

2.1.13. Current Location Counter managment

ASSEMBLY LANGUAGE PROGRAMMING

 40

ORG <expression> ; the CLC will be changed to the expression’s value
Example:
ORG 100h ; counter at 100h
ORG $+2 ; skip 2 octets ($ is the current value of the CLC)

2.1.14. The definition of the procedure
 A procedure may be defined as a sequence of instructions which
ends with RET instructions and is reached with CALL. The definition is
made with the sequence:
<procedure_name> PROC <[NEAR], FAR>
... the procedure’s instructions
< procedure_name > ENDP
Example:
; DBADD procedure, which at (DX:AX) adds (CX:BX) with the result in
(DX:AX)
DBADD PROC NEAR
 ADD AX,BX ; add word LOW
 ADC DX,CX ; add word HIGH with CARRY
 RET
DBADD ENDP
 The call is made with CALL DBADD from the same segment. From
other segments the procedure is invisible.
 Observations:

- no procedure may be called both with FAR and NEAR CALL. This
function is established very carefully when projecting the programs
(the solution for declaring all procedures as FAR is apparently
simple but totally non-economic).

- It is possible to declare imbricated and overlapping procedure

2.2. The program’s structure in assembly language

2.2.1. .COM programs

• The program contains only one segment, so the code and date may
have, on the whole, maximum 64Ko; because of this the references
are relatively made at the address from the beginning of the segment.

• The source program must begin with ORG 100H pseudo-instruction
to keep space for PSP Program Segment Prfefix).

• Data may be put anywhere in the program, but it is recommended to
be put at the beginning (great care must be paid not to execute by
mistake the data,

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

 41

• It is not necessary to initialize of segment registers, all are loaded
with the common value from CS.

• Return to OS is done by calling system function INT 21H having the
parameter in AX 4C00H.

2.2.2. Model for .COM programs

COMMENT *
 the presentation of the program
*

CODE SEGMENET PARA PUBLIC ‘CODE’

ASSUME CS:CODE, DS:CODE, ES:CODE
 ORG 100H
START:
 JMP ENTRY
;************** define your data here
ENTRY:
;************** program’s instructions
 MOV AH,4CH
 INT 21H ; exit to operating system
CODE ENDS
 END START

2.2.3. .EXE programs

• The programs may have several segments.
• For the correct execution, the user must explicitly initialize DS, ES

and SS registers.
• It is recommended that the .EXE programs be conceived as a FAR

type procedure (in order to be able to return to OS ore other
application) Because of this, at the beginning of the program,
through the sequence:

PUSH DS
XOR AX,AX
PUSH AX

ASSEMBLY LANGUAGE PROGRAMMING

 42

 The stack is prepared to return to OS through a far RET at the end of
the program

2.2.4. Model for .EXE program

COMMENT * identification information for the program, author, data,
program’s function, utilization *
;---
; EXTERN section
; the declaration of extern variables
;---

;---
; PUBLIC section
; the list of GLOBALE’S variables defined in this file
--

;---
; CONSTANTE’S section
; The definitions of constants, including INCLUDE instructions, which read
; constant definitions
;---

;---
; MACRO section
; Macro definitions, structures, recordings and/or INCLUDE instructions
which
; read such definitions
;---

;---
; DATA section
; data definitions
;---

DATA SEGMENT PARA PUBLIC ‘DATA’
;... ... define your data here
DATA ENDS

; more... ... other data segments if needed

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

 43

;---
; STACK section
;---

STACK SEGMENT PARA STACK ‘STACK’
 DW STACK_SIZE DUP (?) ; the pile will have 256 words
 STACK_START LABEL WORD ; the top of the pile
STACK ENDS

;---
; CODE section
;---
CODE SEGMENT PARA PUBLIC ‘CODE’
START PROC FAR
 ASSUME CS:CODE, DS:DATA
 PUSH DS
 XOR AX,AX
 PUSH AX ; the initialization for the returning
 MOV AX,DATA
 MOV DS, AX ; the initialization of DS date segment
;---
;... ... the main program’s instructions your code
;---
 RET ; return to OS
START ENDP
;---
; PROCEDURES
; other procedures from the main program
;---

CODE ENDS

;... ... other code segment if needed

;---
; the memory’s segment section
;---

MEMORY SEGMENT PARA MEMORY ‘MEMORY’
;... ... programs at high addresses
;... ... the definition of the memory’s margins of the program

ASSEMBLY LANGUAGE PROGRAMMING

 44

MEMORY ENDS

 END START

2.3. Example of program in assembly language

The program calculates the sum of a row of numbers at SIR address
and length specified in LGSIR variable; the result will be put in SUM
location.
 The first source program will be in the .COM type

CODE SEGMENT PARA PUBLIC ‘CODE’
 ASSUME CS:CODE, DS:CODE
 ORG 100H

START: JMP ENTRY

SIR DB 1,2,3,4
LGSIR DB $-SIR
SUM DB 0

ENTRY:
 MOV CH,0
 MOV CL,LGSIR ; in CX is the length’s row
 MOV AL,0 ; the initialization of the register where the sum is
 ; calculated
 MOV SI,0 ; the index’s initialization
NEXT:
 ADD AL,SIR[SI] ; the add of the current element
 INC SI ; passing at the next element in the row
 LOOP NEXT ; CX decrementing and jump to next

; element if CX differs from 0
 MOV SUM,AL
; end of program
 MOV AX,4C00h
 INT 21H
CODE ENDS
END START

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

 45

3. Lab tasks

• Study the presented example.
• Assemble, link and trace the given example
• Use Turbo Debugger to inspect content of registers and memory

(SUM location).
• Rewrite the example in .EXE
• Make symbolic trace and debug
• Modify the code to add an array of words not bytes
• Modify the code to keep the sum in a double size location than the

added values

ASSEMBLY LANGUAGE PROGRAMMING

 46

