LABORATORY NO. 4
THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND
THE FORMAT OF THE EXECUTABLE PROGRAMS

1. Objective of laboratory

The purpose of this lab is the presentation ofitls&ruction format
in assembly language, of the most important pseuostodctions and the
structure of the executable programs: .COM and .EXE

2. Theoretical considerations
2.1. The elements of the assembly language TASM
2.1.1. The format of the instructions

An instruction may be represented on a line of imaxm 128
characters, the general form being:
[<label>:] [<opcod>[<operatives>][;<comments>]]
where:
<label> is a name, maximum 31 characters (letters, numberspecial
characters _,?,@,..), the first character beingtt@rl or one of the special
characters. Each label has a value attached anc aidative address in the
segment where it belongs to.
<opcod>the mnemonic of the instruction.
<operatives>the operative (or operatives) associated withitis¢ruction
concordant to the syntax required for the instarctit may be a constant, a
symbol or expressions containing these.
<comments> a certain text forego of the character “;” .

The insertion of blank lines and of certain numbérspaces is
allowed. These facilities are used for assuringeeility of the program.

33

ASSEMBLY LANGUAGE PROGRAMMING

2.1.2 The specification of constants

Numerical constants —are presented through a row of numbers, the first
being between 0 and 9 (if for example the numben ieexadecimal and
starts with a character, a 0 will be put in frofitits). The basis of the
number is specified through a letter at the enthefnumber (B for binary,

Q for octal, D for decimal, H for hexadecimal; vatit an explicit
specification, the number is considered decimal).

Examples: 010010100B, 26157Q (octal), 7362D (&2J30AB3H.
Character constants or rows of charactersare specified between
guotation (* “) or apostrophes (‘).

Examples: “row of characters”, ‘row of characters’

2.1.3. Symbols

The symbols represent memory locations. Thesebearabels or
variables. Any symbol has the following attributes:
- the segment where it is defined
- the offset (the relative address in the segment)
- the type of the symbol (belongs to definition)

2.1.4. Labels

The labels may be defined only in the code pathefprogram and
then can be used as arguments of CALL or JMPuastms.
The attributes of labels are:

- the segment (generally stored in CS) is the stiitess the segment.
When a reference is made to the label, the valéeuisd in CS (the
effective value is known only during runtime)

- the offset is the distance in btes of the labeldmethe start of the
segment where it has been defined

- the type determines the reference manner of thed;ldere are two
types: NEAR and FAR. The NEAR type reference isetffONLY,
the FAR type reference specifies also the segmendt @ffset
(segment: offset).

The labels are defined at the beginning of thea®line. If a label
is followed by “:” character then the label is 0EAR type.

34

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

2.1.5. Variables

The definition of variables (data labels) may bade with space
booking instructions.

The attributes of variables are:
- segment and offset — similarly to labels with th&tinction that there may
be other ledger segments
- the type - is a constant, which shows the lefigtioctets) of the booked
zone:
BYTE (1), WORD (2), DWORD (4), QWORD (8), TWORD (LGTRUC
(defined by the user), RECORD (2).

Examples:

DAT DB OFH, O7H ; occupies one octet each, totally
DATW LABEL WORD ; label for type conversion

MOV AL,DAT : AL<-OFH

MOV AX,DATW ; AL<-OFH, AH<-07H

MOV AX,DAT ; type error

2.1.6. Expressions

The expressions are defined through constants, agmpseudo-
operatives and operatives (for variables are censtlonly the address and
not the content, because when compiling, only tldress is known).

2.1.7. Operators(in the order of priorities)

1. Brackets () []

. (dot) - structure_name.variable — serves fadinig the name of a
structure with its elements

LENGTH — number of elements in memory

SIZE — the memory length in bytes
WIDTH - a field’s width from a RECORD
Example:
EXP DW 100 DUP (1)

Then:

LENGTH EXP has the value 100
TYPE EXP has the value 2

SIZE EXP has the value 200

35

ASSEMBLY LANGUAGE PROGRAMMING

2. segment name: - explicit segment reference
Example:
MOV AX, ES:[BX]

3. PTR - redefinition of variable type
Example:
DAT DB 03
MOV AX, WORD PTR DAT
OFFSET - furnishes the offset of a symbol
SEG - furnishes the segment of a symbol
TYPE - a variable type
THIS — creation of an attributed operative (segimeffset, type)
date
Example:
SIRC DW 100 DUP(?)
SIRO EQU THISBYTE

SIRC is a defined of 100 WORDS (200 byte in lejgthe variable
SIRO has the same segment and offset as SIRCibuifiBYTE type.

4, HIGH — addresses the high part of a word
LOW - addresses the low part of a word

Example:

DAT DW 2345H

MOV AH, HIGH DAT : AH<-23

5. * [MOD
Example:
MOV CX, (TYPE EXP)*(LENGTH EXP)

+ -

EQ, NE, LE, LT, GE, GT

NOT —logic operative

. AND

10. or, xor

11. SHORT - forces the short appeal
Example:

JMP label ; direct jump

JMP SHORT label ; IP is relative

© 00N

36

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

2.1.8. Pseudo instructions

Pseudo-instructions are commands (orders, ingingt for
assembler, necessary for the proper translationiseoprogram and for the
facility of the computer programmer’s activity.

Only the pseudo-instructions indispensable in imgitthe first
programs are shown.

2.1.9. Pseudo-instructions work with segments

Any segment is identified with a name and clasgh Ispecified by
the user. When defined, the segments receive assefiattributes, which
specifies for the assembler and for the link-editoe relations between
segments.

The segments definition are made through:
segment_name SEGMENT [align_type] [combine type] §lass’]
segment_name ENDS
where:
segment_name- is the segment’s name chosen by the user (the ns
associated with a value, corresponding to the segs@osition in the
memory).
align_type — is the segment’s alignment type (in memory). Tadues,
which it may take, are:

PARA (paragraph alignment, 16 octets multiple)

BYTE (octet alignment)

WORD (word alignment)

PAGE (page alignment — 256 octets multiple)
combine_type — is actually the segment's type and represents an
information for the link-editor specifying the cagation of segments with
the same type. It may be:

PUBLIC - specifies the concatenation

COMMON - specifies the overlap

AT expression— specifies the segment’s load having the address
expression *16

STACK - shows that the current segment makes part of pile
segment

MEMORY - specifies the segment’s location as the lasineay
from the program
‘class’ — is the segment’s class; the link-editor contilyuarranges the
segments having the same class in order of its amppee. It is

37

ASSEMBLY LANGUAGE PROGRAMMING

recommended to use the ‘code’, ‘data’, ‘constantiemory’, ‘stack’
classes.

2.1.10. The designation of the active segment

In a program may be defined more segments (codedate). The
assembler verifies whether the dates or the insbng addressed may be
reached with the segment register having a cectaitent. For a realization
in proper conditions, the assembler of the actiegngent must be
communicated, meaning that the segment registet caungain the address
of the loaded segment.
ASSUME <reg-seg>:<name-seg>, <reg-seg>:<name-seg> .
reg-seg — the register segment
name-seg — the segment which will be active with proper register
segment
Example:
ASSUME CS:prg, DS:datel, ES:date2
Observations:
- the pseudo-instruction does not prepare the texgisegment but
communicates to the assembler where the symbolsbeusoked for
- DS is recommended to be shown at the beginnirteohissembler with a
typical sequence:

ASSUME DS:name_seg_date

MOV AX, name_seg_date

MOV DS, AX
- CS must not be initialized but must be activataith ASSUME before the
first label
- instead of name-seg from ASSUME the NOTHING idemtmay be used
if we don’t want to associate a segment to thestegi

2.1.11. The Memory reservation

Usually the data is defined in a data segment. iAs¢ruction
definition has the syntax:
<name> <type> [expression list] [<factor> DUP (<exgssion list>)]
where:
name- is the symbol’s name
type - is the symbol’s type:

DB — for byte reservation

DW - for word reservation (2 octets)

DD - for double word reservation (4 octets)

DQ - for quadruple word reservation (8 octets)

DT — for 10 byte reservation

38

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

expressions list— list of expressions, that can be evaluatedaocegl by a
constant at assembly time. Memory locations willitngalized with these
constants. The “?” can be use as placeholder,inal wmalue
factor — a constant, which shows how many times the sspB, is
repeated after DUP:
Examples:
DAT db 45
datl db 45h, ‘a’, ‘A”, 85h
dat2 db ‘abcdefghi’ ; the text is generated
lg_dat2db $-dat2 ; the length of the given row2dé is the
local current

ounter)
aa db 100 dup(56h) ; 100 octets having the valle 56
bb db 20 dup (?) ; 20 not initialized octets

ad dw datl ; contains the address (offset) of ghen
variable datl
adr dd datl ; contains the address (offset + sagnof
given

ariable datl

2.1.12. Other possibilities for defining symbols
- the definition of constants:
<name> EQU <expression>

The symbol “name” will be replaced with the valiexpression.
- labels declaration:
<name> LABEL <type>

<name> label will have the value of the segmenrgneht is defined,
the offset equal to the offset of the first instrom or memory location
which follows and the type defined by the <type>ichhmay be: BYTE,
WORD, DWORD, QWORD, TBYTE, the name of a structusAR or
FAR.

Example: if we have the definitions
ENTRY LABEL FAR
ENTRY1:

then:

JMP ENTRY ;is FAR type jump
JMP ENTRY1; is NEAR type jump

2.1.13. Current Location Counter managment

39

ASSEMBLY LANGUAGE PROGRAMMING

ORG <expression> ; the CLC will be changed to the expression’sigal
Example:

ORG 100h ; counter at 100h

ORG $+2 ; skip 2 octets ($ is the current valuthefCLC)

2.1.14. The definition of the procedure

A procedure may be defined as a sequence of at&tng which
ends with RET instructions and is reached with CAldlhe definition is
made with the sequence:

<procedure_name> PROC <[NEAR], FAR>

... the procedure’s instructions

< procedure_name > ENDP

Example:

; DBADD procedure, which at (DX:AX) adds (CX:BX) thi the result in
(DX:AX)

DBADD PROC NEAR
ADD AX,BX ; add word LOW
ADC DX,CX ; add word HIGH with CARRY
RET
DBADD ENDP
The call is made with CALL DBADD from the same sent. From
other segments the procedure is invisible.
Observations:
- no procedure may be called both with FAR and NE&RLL. This
function is established very carefully when prajegtthe programs
(the solution for declaring all procedures as FARapparently
simple but totally non-economic).
- Itis possible to declare imbricated and overlaggirocedure

2.2. The program’s structure in assembly language

2.2.1. .COM programs

* The program contains only one segment, so the andedate may
have, on the whole, maximum 64Ko; because of tiesréferences
are relatively made at the address from the beggnaf the segment.

* The source program must begin with ORG 100H pseuostodction
to keep space for PSP Program Segment Prfefix).

» Data may be put anywhere in the program, butiét®@mmended to
be put at the beginning (great care must be paidaexecute by
mistake the data,

40

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

* It is not necessary to initialize of segment regist all are loaded
with the common value from CS.

* Return to OS is done by calling system function IN[H having the
parameter in AX 4CO0H.

2.2.2. Model for .COM programs

COMMENT *
the presentation of the program

*

CODE SEGMENET PARA PUBLIC ‘CODFE’
ASSUME CS:CODE, DS:CODE, ES:CODE
ORG 100H
START:
JMP ENTRY
Jrekkekekekkx define your data here
ENTRY:
Jrekkkekkkekkkx program’s instructions
MOV AH,4CH
INT 21H ; exit to operating system
CODE ENDS
END START

2.2.3. .EXE programs

* The programs may have several segments.

» For the correct execution, the user must expligiilfialize DS, ES
and SS registers.

* It is recommended that the .EXE programs be coedeas a FAR
type procedure (in order to be able to return to @8 other
application) Because of this, at the beginning loé torogram,
through the sequence:

PUSH DS
XOR AX,AX
PUSH AX

41

ASSEMBLY LANGUAGE PROGRAMMING

The stack is prepared to return to OS through Rl at the end of
the program

2.2.4. Model for .EXE program

COMMENT *identification information for the progna author, data,
program’s function, utilization *

: EXTERN section
: the declaration of extern variables

: PUBLIC section
: the list of GLOBALE'S variables defined in tHige

; CONSTANTE'’S section
; The definitions of constants, including INCLUD#Structions, which read
; constant definitions

; MACRO section

; Macro definitions, structures, recordings andidCLUDE instructions
which

; read such definitions

: DATA section
: data definitions

DATA SEGMENT PARA PUBLIC ‘DATA’
e e define your data here
DATA ENDS

; more... ... other data segments if needed

42

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

STACK SEGMENT PARA STACK ‘STACK’
DW STACK_SIZE DUP (?) ; the pile will have 256 wis
STACK_START LABEL WORD ; the top of the pile
STACK ENDS

CODE SEGMENT PARA PUBLIC ‘CODE’

START PROC FAR
ASSUME CS:CODE, DS:DATA
PUSH DS
XOR AX,AX
PUSH AX ; the initialization for the returning
MOV AX,DATA

MOV DS, AX; the initialization of DS date segmen

RET : return to OS
START ENDP
PROCEDURES

; other procedures from the main program

CODE ENDS

e other code segment if needed

MEMORY SEGMENT PARA MEMORY ‘MEMORY’
e e programs at high addresses
Teee ee the definition of the memory’s marginstioé program

43

ASSEMBLY LANGUAGE PROGRAMMING

MEMORY ENDS

END START
2.3. Example of program in assembly language

The program calculates the sum of a row of numaegiR address
and length specified in LGSIR variable; the result be put in SUM
location.

The first source program will be in the .COM type
CODE SEGMENT PARA PUBLIC ‘CODFE’

ASSUME CS:CODE, DS:CODE

ORG 100H

START: JMP ENTRY

SIR DB 1,2,3,4
LGSIR DB $-SIR
SUM DB O
ENTRY:
MOV CH,0
MOV CL,LGSIR ; in CXis the length’s row
MOV AL,0 ; the initialization of the register wheethe sum is
alaulated
MOV SI,0 ; the index’s initialization
NEXT:
ADD AL,SIR[SI] ; the add of the current element
INC Sl ; passing at the next element in the row
LOOP NEXT ; CX decrementing and jump to next
; element if CX differs from O
MOV SUM,AL
; end of program
MOV AX,4C00h
INT 21H
CODE ENDS
END START

44

THE ELEMENTS OF THE ASSEMBLY LANGUAGE AND THE
FORMAT OF THE EXECUTABLE PROGRAMS

. Lab tasks

e Study the presented example.

* Assemble, link and trace the given example

* Use Turbo Debugger to inspect content of registacsmemory
(SUM location).

* Rewrite the example in .EXE

* Make symbolic trace and debug

* Modify the code to add an array of words not bytes

* Modify the code to keep the sum in a double sization than the
added values

45

ASSEMBLY LANGUAGE PROGRAMMING

46

