LABORATORY NO.5
ARITHMETICAL, LOGICAL,ROTATE AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

1. Object of laboratory

The purpose of this lab is to present the arithragtiogical, rotate
and shift instructions for x86 microprocessors.

2. Theor etical consider ations

The 16 bits microprocessors of the x86 family haaenputing
instructions to allow operations on 8 or 16 bitsl 4o implement routines
for multiple bytes or multiword operations. By coatipg we mean:

- arithmetical operations: add, subtract, multiplyyide, increment,
decrement, complement of 2 and compare;

- logical operations: and, or, xor, complement ohdl test;

- rotate and shift operations.

2.1. Arithmetical instructions

Arithmetical operations are using numbers in bytevord size, in
unsigned or C2 representation. Add and subtractatipas can also use
operands of type BCD unpacked (one decimal digit lpge) or packed
BCD (two decimal digits per byte). Multiply and die operations can be
used also for unpacked BCD. In the following tak$e and <d> represent
the ,source” operand and ,destination” operandthmietical instructions
generally affect the following flags: AF, CF, OFFDPF, ZF. These flags
are generally set according to the result of tiséruiction.

General form The effect Affected flags
ADD <d>, <s>|<d> ~ {<d>}+{<s>} AF,CF,OF,PF,SF,ZF
ADC <d>, <s>|<d> ~ {<d>}+{<s>}+{CF} AF,CF,OF,PF,SF,ZF
INC <d> <d> « {<d>}+1 AF,OF,PF,SF,ZF

47

ASSEMBLY LANGUAGE PROGRAMMING

AAA Decimal correction aft¢ AF,CF unmodified
addition in unpacked BCIOF,PF,SF,ZF undefine
(implicit AL)

DAA Decimal correction aft¢ AF,CF,PF,SF,ZF
addition in packed BCLmodified
(implicit AL) OF undefined

SUB <d>, <s>|<d> ~ {<d>}-{<s>} AF,CF,OF,PF,SF,ZF

SBB <d>, <s>|<d> ~ {<d>}-{<s>}-{CF} AF,CF,OF,PF,SF,ZF

CMP <d>, <s>|Only flags are set according |AF,CF,OF,PF,SF,ZF
d-s, result is not stored

DEC <d> <d> « {<d>}-1 AF,OF,PF,SF,ZF

NEG <d> <d> [0-{<d>}] AF,CF,OF ,PF,SF,ZF

AAS Decimal correction aft¢ AF,CF modified
subtraction in unpacked BCI OF,PF,SF,ZF undefine
(implicit AL)

DAS Decmal correction afte AF,CF,PF,ZF,SF
subtraction in packed BCLmodified
(implicit AL) OF undefined

CBW Conversion from byte stored
AL to word stored in AX (sig
extension)

CWD Conversion from byte stored
AX to double wad stored ir
DX, AX (sign extension)

MUL <s> if <s>is a byte: CF,OF modified
AX < (AL)*{<s>} AF,PF,SF,ZF undefine(
if <s>is a word: If CF and OF are 1 the
DX, AX « (AX)*{<s>} AH (resp. DX) stor¢
Operands are handled |values different from O
unsigned integer

IMUL <s> if <s>is a byte: CF,OF modified
AX — (AL)*{<s>} AF,PF,SF,ZF undefine
if <s> is a word: If CF and OF are 1 the
DX:AX « (AX)*{<s>} AH (resp. DX) storg
Operands are handled as sigp&dues different from 0
integer.

AAM Decimal orrection afte| SF,PF,ZF modified

48

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

multiplication in BCD|OF,AF,CF undefined
unpacked. MUL is used
multiply and then correction
set. AX stores the result.

DIV <s> if <s>is a byte: AF,CF,OF,PF,SF,ZF
AL « [(AX){<s>}] undefined

AH « (AX) mod {<s>}

if <s>is a word:

AX [(DX,AX)A<s>}]

DX < (DX,AX) mod {<s>}
Operands are handled
unsigned integer.

If the quotient exceec
destination’scapacity a level
interrupt will be generated.

IDIV <s> if <s>is a byte: AF,CF,OF,PF,SF,ZF
AL < [(AX){<s>}] undefined

AH « (AX) mod {<s>}

if <s>is a word:

AX « [(DX,AX){<s>}]

DX < (DX,AX) mod {<s>}
Operands are handled agned
integer.

If the quotient exceec
destination’scapacity a level
interrupt will be generated.

AAD Decimal correction before |PF,SF,ZF modified
division in BCD unpacked. Th AF,CF,OF undefined
correction is maderal then DIV
is used for division.

The operands involved in addition or subtractiore @ansigned integers or
signed integers represented in C2. The developeth@fprogram must
choose how to represent the operands, how to dealha result properly
and take efficient actions in case of overflow.

49

ASSEMBLY LANGUAGE PROGRAMMING

An incorrect result, for unsigned operands, camhecked by testing
the value of the CF set by the operation. For signgerands the error can
be checked by examining the value in the OF.

Overflow can be tested through conditional jumptrnctions JC,
JNC, JO, JNO for handling errors.

Example:
DATA SEGMENT
MEM8 DB 39
DATA ENDS

CODE SEGMENT
e e unsigned signed

MOV AL, 26 :load al 26 26
INC AL :increment al 1 1
ADD AL, 76 :add immediate date 76 76
: 103 103
ADD AL, MEM8;add memory 39 39
: 142 -114+OF
MOV AH, AL ;copy to ah 142
ADD AL, AH ;add register 142
: 28+CF
CODE ENDS

For this example the add operation was on 8 bitseMthe sum is over 127
the OF is written, when over 255 the CF is written.

50

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

Example:
DATA SEGMENT
MEMS DB 122
DATA ENDS

CODE SEGMENT
; UNSIGNED SIGNED

MOV AL, 95 :load al 95 95

DEC AL :decrement -1 -1

SUB AL, 23 ;subtract immediate value -23 -23
71 71

SUB AL, MEMS8 ;subtract memory -122 -122
205+CF -51

MOV AH, 119;load ah

SUB AL,AH ;subtract register -119

86+0OF
CODE ENDS

The instructions ADC and SBB allow implementatfon multi-byte
or multi-word operations. They perform the actidn ADD and SUB and
also add or subtract the value of CF indicator.

Example:
DATA SEGMENT
MEM32 DD 316423
DATA ENDS

CODE SEGMENT

MOV AX, 43981

SUB DX, DX :load dx, ax 43981

ADD AX, WORD PTR MEM32[0] ;add inf. word

ADC DX, WORD PTR MEM32[2] ;add sup. word 3142
;result in dx:ax 360404

51

ASSEMBLY LANGUAGE PROGRAMMING

CODE ENDS
Example:

DATA SEGMENT
MEM32A DD 316423
MEM32B DD 156739
DATA ENDS

CODE SEGMENT

MOV AX, WORD PTR MEM32A[0] ;load inf. word

MOV DX, WORD PTR MEM32A[2] ; load sup. word

SUB AX, WORD PTR MEM32BJ0] ;subtract inf. word

SBB DX, WORD PTR MEMS32B|2] ; subtract sup. dor
CODE ENDS

MUL is used for multiplying unsigned numbers. IMU4 used for
multiplying signed numbers. The syntaxes are :

MUL {register | memory}
IMUL {register | memory}

For multiplication one of the operands must bedémh in the
accumulator register (AL for 8 bits operands and f8K16 bits operands).
This is an implicit register, it is not specified the instruction. The
information stored in this register will be destdyby the result. The
second operand must be specified as an operaegister or memory. This
operand will not be destroyed by the operation sslieis DX, AH or AL.
Multiplying two 8 bits numbers leads to a 16 biesult stored in AX.
Multiplying two 16 bits numbers leads to a 32 bésult stored in DX, AX.
For both cases if the high part of the result i§o® unsigned MUL) or it
coincides with the sign extension (for IMUL in sigapresentation), the
indicators CF and OF are set on O; otherwise ateosel. The other
indicators have undefined values.

Example:
DATA SEGMENT
MEM16 DW -30000
DATA ENDS

52

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

CODE SEGMENT
;unsigned multiply on 8 bits

MOV AL, 23 :load al 23
MOV BL, 24 :load bl 24
MUL BL :multiply with bl

result in ax 552

; CF and OF are set
;multiply with sign on 16 bits

MOV AX, 50 :load ax 50
IMUL MEM16 ;multiply with mem. -30000
result in dx,ax -1500000

: CF and OF are set

CODE ENDS

DIV instruction is used for dividingnsigned numbers; IDIV is
used for signed values. The syntaxes are:

DIV {register | memory}
IDIV {register | memory}

In order to divide a 16 bits number by an 8 bitsnber the first
operand is loaded in AX. The result overwrites toatent of AX. If the
divider is on 8 bits, register or memory locatiafter the division AL holds
the quotient and AH the rest.

In order to divide a 32 bit number by a 16 bit toemthe first
operand is loaded in the pair DX: AX. The infornoatistored in DX and
AX will be lost after the operation. After the dsidn AX stores the quotient
and DX the rest.

For dividing 2 numbers of equal len{fhor 16 bits) the first action
is to convert to a double length (16 or 32 bitsg fivst operand. For
unsigned numbers the conversion consists in dglétie upper byte of the
first operand, register AH, and respectively thesmsignificant word,
register DX. For sign numbers conversion consistEgn extension and is
obtained through CWB and CWD instructions.

If the divider is O or the quotient egds it's assigned register (AL or
AX) then the processor generates a level O intéionplf this interruption is
not handled by the developer the operating systeth abandon the
program. There are two methods for dealing with giteation: testing the

53

ASSEMBLY LANGUAGE PROGRAMMING

divider before the operation takes place and aalivhen needed, a routine
for handling errors; writing your own routine foatdling errors to replace
the routine for level O interruption.

Example:

DATA SEGMENT
MEM16 DW -2000
MEM32 DD 500000
DATA ENDS

CODE SEGMENT

; unsigned division of a 16 bits operand
;by an 8 bits operand

MOV AX, 700 ;load operand 070
MOV BL, 36 ;load divider 36
DIV BL ;unsigned division

;quotient is in al 19

rrestis in ah 16

;signed division of a 32 bits operand
;by a 16 bits operand
MOV AX, WORD PTR MEM32[0] ;load ax

MOV DX, WORD PTR MEM32[2] ; load dx 500000
IDIV MEM16 ; signed division

; quotient is in ax -250

; restis in dx 0

; signed division of a 16 bit operand
; by a 16 bit operand

MOV AX, WORD PTR MEM16 ; load operand -2000

CwD :convert to double word
MOV BX, -421 ; load divider -421
IDIV BX ; signed division
; quotient is in ax 4
; restis in dx -316
CODE ENDS

54

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

2.2. Operationsin unpacked BCD:

The instruction set has 4 instructions for unpdcB€D or ASCII
correction: AAA (ASCII Adjust after Addition), AARASCII Adjust after
Subtraction), AAM (Ascii Adjust after Multiplicativ) and AAD (ASCII
Adjust befor e Division), these instruction will correct the résio unpacked
BCD format.. Arithmetical operations are computed byte size operands
only. The result must be in AL register implicitlysed by the adjust
instructions. If an operation implies 2 one digieoands with a result of two
digits, the adjust instruction for correction wilace the least significant
digit in AL, and the most significant in AH. If theesult stored in AL
generates carry to AH or needs to borrow from Ag&lftags CF and AF are
set.

Example:

; unpacked BCD addition

MOV AX, 9 ;load ax 000%9h
MOV BX,3 ; load bx 0003h
ADD AL, BL ;addition 000ch
AAA ;adjust after addition ax=0102h

; AF and CF are set
;unpacked BCD subtraction

MOV AX, 0103H :load ax 0103h
MOV BX, 4 : load bx 0004h
SUB AL, BL :Subtract Olfeh
AAS ; adjust after

:subtraction ax=0009h

;AF and CF are positioned

;unpacked BCD multiplication

MOV AX, 0903H ; load ax 0903h
MUL AH ;unsigned multiplication 0bh
AAM ; adjust after MUL ax=02h
;unpacked BCD division

MOV AX, 0205H ; load ax with dividend 25 un@B
MOV BL, 02 ; load bl with divisor WpBCD
AAD ; adjustefore

;division AX=0019H
DIV BL ;unsigned division résis 010CH

55

ASSEMBLY LANGUAGE PROGRAMMING

;quotient in al OCH
;rest in ah 01H
AAM ;adjust after

;division the quotient ax=0102H 12unpBCD
;the rest is lost

The rest will be lost. If needed, it must be saweda different
register before adjusting the quotient. The restaiao be corrected. For this
it should be moved in AL.

2.3. Operationsin packed BCD

The instruction set has two instructions for dedicorrection DAA
(decimal adjust after addition) and DAS (decimgjuat after subtraction)
which allow adding and subtracting in packed BCDDDA and SUB
instructions are used to add and subtract followsd appropriate
instructions to adjust the result.

Arithmetical operations must be on byte size Iideo to store the
result in AL.

Instructions for decimal corrections in packed Ba&ver affect AH
register. AF indicator is positioned in case ofrgar borrow from the least
significant digit to the most significant one. Qfdicator is positioned in
case of carry or borrow to exterior.

Example:
;Adding in packed BCD
MOV AX, 8833H ;load ax 8833H
ADD AL, AH ;add to al al=0BBH
DAA ;decimal adjust
;after adding al=021H
; CF is set
itheresultis 121H =121 pBCD
;Subtracting in packed BCD
MOV AX, 3883H ;load ax 3883H
SUB AL, AH ;subtract al=04BH
DAS ;decimal adjust
;after subtraction al=045H
;CFisO

56

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

2.4. Logical instructions

General form Effect Affected conditioning
indicators

AND <d>, <s>| <d> {<d>} and {<s>} CF,OF,PF,SF,ZF set
AF undefined

TEST <d>,| The indicators are set as fo€CF,OF PF,SF,ZF set

<s> AND but {<d>} does not change AF unmodified

OR <d>, <s> | <d> ~ {<d>} or {<s>} CF,OF,PF,SF,ZF set
AF undefined

XOR <d>, <s>| <d> ~ {<d>} xor {<s>} CF,OF,PF,SF,ZF set
AF undefined

NOT <s> <S> . not <s> -—--

(complemental to 1)

Logical instructions operate on bits, over bitssafme rank of two
operands. There are 5 logic instructions: AND, TEGR, XOR and NOT.

The syntax:

AND {register | memory}, { register | memory | imdiate date}

TEST {register | memory }, { register | memorynmediate date }
OR {register | memory }, { register | memory | irediate date }
XOR {register | memory }, { register | memory |mmadiate date }
NOT {register | memory }

Example:
;example for AND
MOV AL, 35H ;load al 00110101
AND AL, OFBH ;and with immediate value11111011
; 00110001
AND AL, OF8H ; 11111000
; 00110000

57

ASSEMBLY LANGUAGE PROGRAMMING

;example for OR

MOV AL, 35H :load al 00110101
OR AL, 08H :or with immediate value 0000
OR AL, O7H ; or with immediate value 00000111
X 00111111
;example for XOR
MOV AL, 35H :load al 00110101
XOR AL, 0O8H :xor with immediate value 00@@D
; 00111101
XOR AL, O7H : xor with immediate value00000111

00111010

Logical instructions can be used to compare amampewith 0 (OR
BX, BX instead of CMP BX, 00) or to initialize with (XOR CX, CX; SUB
CX, CX instead of MOV CX, 00) having a more compacm.

2.5. Shift and rotation instructions;

General form

Effect

Affected conditioning
indicators

J

SHL <s>, 1 | Logic shift to left CF,OF,SF,ZF,PF

SAL <s>,1 | CF will store the most significant bitAF undefined
that was shifted. If <CF> <> the
initial sign OF becomes 1.

SHL <s>, CL | Logic shift to left with a number gf CF,OF,SF,ZF,PF

SAL <s>, CL | positions indicated by CL. AF undefined
CF will store the last shifted bit.

SHR <s>,1 Logic shift to right. Zeroes ar€F,OF,SF,ZF,PF
inserted. CF will store the mosAF undefined
significant bit. If the most significant
bits of the result are different QF
becomes 1.

SHR <s>, CL| Logic shift to right with a number o€F,OF,SF,ZF,PF

positions indicated by CL.

AF undefined

CF will store the last shifted bit.

58

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

SAR <s>, 1 Arithmetic shift to right. SignCF,OF,SF,ZF,PF
extension. The least significant biAF undefined

will be stored by CF. If the most
significant bits of the result are
different OF becomes 1.

SAR <s>, CL| Arithmetic shift to right with g CF,OF,SF,ZF,PF
number of positions indicated byAF undefined
CL. CF will store the last shifted bit.

ROL <s>, 1 Rotate left by carry. If CF <> sig&F, OF
then OF becomes 1

ROL <s>, CL| Rotate left by carry with a numbecCF, OF
of positions indicated by CL.

ROR <s>,1 Rotate right by carry. If (CF) <€F, OF
sign OF becomes 1.

ROR <s>, CL| Rotate right by carry with a numbeCF, OF
of positions indicated by CL.

RCL<s>,1 Rotate left with carry. If (CF) <>CF, OF
sign OF becomes 1.

RCL <s>, CL| Rotate left with carry with a numheCF, OF
of positions indicated by CL.

RCR <s>,1 Rotate right with carry. If (CF) <XF, OF
sign OF becomes 1.

RCR <s>, CL| Rotate right with carry with aCF, OF
number of positions indicated by
CL.

The format for all shift and rotate instructiossdentical:
OPCODE {register | memory}, {CL | 1|nr}

The result overwrites the source operand. The rumbshift/rotate
positions can be, number stored previously in tegi€L or nr for later

processors.

The following figures show the result of theseruastions on a byte
operand for one position shifting/rotation.

59

ASSEMBLY LANGUAGE PROGRAMMING

SHL, SAL
Carry 7 6 5 4 3

N

“— | — | — | — | — | — | «—

SHR
Carry 7 6 5 4 3 2
> — | —> | — | —> | — | —>
A
— 0
SAR
Carry 7 6 5 4 3 2
> — | —> | — | —> | —> | —>
A
ROL
Carry 7 6 5 4 3 2

ROR
Carry I 6 5 4 3 2
| | | | > | —>
A A
RCL
Carry 7 6 5 4 3 2

RCR

60

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

Carry 7 6 5 4 3 2 1 0

Example:
:a number stored in ax
;is multiplied by 10

SHL AX, 1 ;*2
MOV BX, AX ;

SHL AX, 1 x4
SHL AX, 1 ;%8
ADD AX, BX ;*10

;an unsigned number stored in ax
;is divided by 512

SHR AX, 1 12

XCHG AH, AL ;

XOR AH,AH /512

;a number stored in ax represented in C2 with sig
;is divided by 2

MOV AX, -16 ;

SAR AX, 1 2

;a 32 bits unsigned number
;is divided by 2

DATA SEGMENT
MEM32 DD 500000
DATA ENDS
CODE SEGMENT
SHR WORD PTR MEM32[2], 1 ;shifting in CF
RCR WORD PTR MEM32[0], 1 :rotation with CF

CODE ENDS

61

ASSEMBLY LANGUAGE PROGRAMMING

3. Lab tasks

1. Study the examples.
2.
3. Write a program that generates an integer in bgpresentation and

Trace the examples with Turbo Debugger.

stores it to a REZ location after the formula:
REZ = AL*NUM1+(NUM2*AL+BL)
All parameters are byte size.
Implement the following operations using arithmetand shift
instructions:
AX = T*AX-2*BX-BX/8
Parameters are byte size.
(complementary) Design an algorithm to multiplyot# bytes numbers
in C2 representation.

62

