

47

LABORATORY NO. 5
ARITHMETICAL, LOGICAL, ROTATE AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

1. Object of laboratory

The purpose of this lab is to present the arithmetical, logical, rotate

and shift instructions for x86 microprocessors.

2. Theoretical considerations

 The 16 bits microprocessors of the x86 family have computing
instructions to allow operations on 8 or 16 bits and to implement routines
for multiple bytes or multiword operations. By computing we mean:

- arithmetical operations: add, subtract, multiply, divide, increment,
decrement, complement of 2 and compare;

- logical operations: and, or, xor, complement of 1 and test;
- rotate and shift operations.

2.1. Arithmetical instructions

 Arithmetical operations are using numbers in byte or word size, in
unsigned or C2 representation. Add and subtract operations can also use
operands of type BCD unpacked (one decimal digit per byte) or packed
BCD (two decimal digits per byte). Multiply and divide operations can be
used also for unpacked BCD. In the following table <s> and <d> represent
the „source” operand and „destination” operand. Arithmetical instructions
generally affect the following flags: AF, CF, OF, DF, PF, ZF. These flags
are generally set according to the result of the instruction.

General form The effect Affected flags

ADD <d>, <s> <d> ← {<d>}+{<s>} AF,CF,OF,PF,SF,ZF
ADC <d>, <s> <d> ← {<d>}+{<s>}+{CF} AF,CF,OF,PF,SF,ZF

INC <d> <d> ← {<d>}+1 AF,OF,PF,SF,ZF

ASSEMBLY LANGUAGE PROGRAMMING

 48

AAA Decimal correction after
addition in unpacked BCD
(implicit AL)

AF,CF unmodified
OF,PF,SF,ZF undefined

DAA Decimal correction after
addition in packed BCD
(implicit AL)

AF,CF,PF,SF,ZF
modified
OF undefined

SUB <d>, <s> <d> ← {<d>}-{<s>} AF,CF,OF,PF,SF,ZF

SBB <d>, <s> <d> ← {<d>}-{<s>}-{CF} AF,CF,OF,PF,SF,ZF

CMP <d>, <s> Only flags are set according to
d-s, result is not stored

AF,CF,OF,PF,SF,ZF

DEC <d> <d> ← {<d>}–1 AF,OF,PF,SF,ZF

NEG <d> <d> ← [0-{<d>}] AF,CF,OF,PF,SF,ZF

AAS Decimal correction after
subtraction in unpacked BCD
(implicit AL)

AF,CF modified
OF,PF,SF,ZF undefined

DAS Decimal correction after
subtraction in packed BCD
(implicit AL)

AF,CF,PF,ZF,SF
modified
OF undefined

CBW Conversion from byte stored in
AL to word stored in AX (sign
extension)

CWD Conversion from byte stored in
AX to double word stored in
DX, AX (sign extension)

MUL <s> if <s> is a byte:
AX ← (AL)*{<s>}
if <s> is a word:
DX, AX ← (AX)*{<s>}
Operands are handled as
unsigned integer

CF,OF modified
AF,PF,SF,ZF undefined
If CF and OF are 1 then
AH (resp. DX) store
values different from 0

IMUL <s> if <s> is a byte:
AX ← (AL)*{<s>}
if <s> is a word:
DX:AX ← (AX)*{<s>}
Operands are handled as signed
integer.

CF,OF modified
AF,PF,SF,ZF undefined
If CF and OF are 1 then
AH (resp. DX) store
values different from 0

AAM Decimal correction after SF,PF,ZF modified

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

 49

multiplication in BCD
unpacked. MUL is used to
multiply and then correction is
set. AX stores the result.

OF,AF,CF undefined

DIV <s> if <s> is a byte:
AL ← [(AX)/{<s>}]
AH ← (AX) mod {<s>}
if <s> is a word:
AX ← [(DX,AX)/{<s>}]
DX ← (DX,AX) mod {<s>}
Operands are handled as
unsigned integer.
If the quotient exceeds
destination’s capacity a level 0
interrupt will be generated.

AF,CF,OF,PF,SF,ZF
undefined

IDIV <s> if <s> is a byte:
AL ← [(AX)/{<s>}]
AH ← (AX) mod {<s>}
if <s> is a word:
AX ← [(DX,AX)/{<s>}]
DX ← (DX,AX) mod {<s>}
Operands are handled as signed
integer.
If the quotient exceeds
destination’s capacity a level 0
interrupt will be generated.

AF,CF,OF,PF,SF,ZF
undefined

AAD Decimal correction before a
division in BCD unpacked. The
correction is made and then DIV
is used for division.

PF,SF,ZF modified
AF,CF,OF undefined

The operands involved in addition or subtraction are unsigned integers or
signed integers represented in C2. The developer of the program must
choose how to represent the operands, how to evaluate the result properly
and take efficient actions in case of overflow.

ASSEMBLY LANGUAGE PROGRAMMING

 50

 An incorrect result, for unsigned operands, can be checked by testing
the value of the CF set by the operation. For signed operands the error can
be checked by examining the value in the OF.
 Overflow can be tested through conditional jump instructions JC,
JNC, JO, JNO for handling errors.

 Example:

DATA SEGMENT
MEM8 DB 39
DATA ENDS

CODE SEGMENT
;... ... unsigned signed
 MOV AL, 26 ;load al 26 26
 INC AL ;increment al 1 1
 ADD AL, 76 ;add immediate date 76 76
 ; ---- ----
 ; 103 103
 ADD AL, MEM8;add memory 39 39
 ; ---- ----
 ; 142 -114+OF
 MOV AH, AL ;copy to ah 142
 ADD AL, AH ;add register 142
 ; ----
 ; 28+CF
;... ...
CODE ENDS

For this example the add operation was on 8 bits. When the sum is over 127
the OF is written, when over 255 the CF is written.

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

 51

 Example:
DATA SEGMENT
MEM8 DB 122
DATA ENDS

CODE SEGMENT
; UNSIGNED SIGNED
;… …
 MOV AL, 95 ;load a l 95 95
 DEC AL ;decrement -1 -1
 SUB AL, 23 ;subtract immediate value -23 -23
 ---- ----
 71 71
 SUB AL, MEM8 ;subtract memory -122 -122
 ---- ----
 205+CF -51
 MOV AH, 119;load ah
 SUB AL,AH ;subtract register -119

 86+OF
;… …
CODE ENDS

 The instructions ADC and SBB allow implementation for multi-byte
or multi-word operations. They perform the action of ADD and SUB and
also add or subtract the value of CF indicator.
 Example:

DATA SEGMENT
MEM32 DD 316423
DATA ENDS

CODE SEGMENT
… …
 MOV AX, 43981
 SUB DX, DX ;load dx, ax 43981
 ADD AX, WORD PTR MEM32[0] ;add inf. word
 ADC DX, WORD PTR MEM32[2] ;add sup. word 316423
 ; --------
 ;result in dx:ax 360404
… …

ASSEMBLY LANGUAGE PROGRAMMING

 52

CODE ENDS
 Example:

DATA SEGMENT
MEM32A DD 316423
MEM32B DD 156739
DATA ENDS

CODE SEGMENT
… …
 MOV AX, WORD PTR MEM32A[0] ;load inf. word
 MOV DX, WORD PTR MEM32A[2] ; load sup. word
 SUB AX, WORD PTR MEM32B[0] ;subtract inf. word
 SBB DX, WORD PTR MEM32B[2] ; subtract sup. word
… …
CODE ENDS

 MUL is used for multiplying unsigned numbers. IMUL is used for
multiplying signed numbers. The syntaxes are :

MUL {register | memory}
IMUL {register | memory}

 For multiplication one of the operands must be loaded in the
accumulator register (AL for 8 bits operands and AX for 16 bits operands).
This is an implicit register, it is not specified in the instruction. The
information stored in this register will be destroyed by the result. The
second operand must be specified as an operand in register or memory. This
operand will not be destroyed by the operation unless it is DX, AH or AL.
Multiplying two 8 bits numbers leads to a 16 bits result stored in AX.
Multiplying two 16 bits numbers leads to a 32 bits result stored in DX, AX.
For both cases if the high part of the result is 0 (for unsigned MUL) or it
coincides with the sign extension (for IMUL in sign representation), the
indicators CF and OF are set on 0; otherwise are set on 1. The other
indicators have undefined values.

 Example:
DATA SEGMENT
MEM16 DW –30000
DATA ENDS

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

 53

CODE SEGMENT
 ;unsigned multiply on 8 bits
 MOV AL, 23 ;load al 23
 MOV BL, 24 ;load bl 24
 MUL BL ;multiply with bl
 ; ----
 ;result in ax 552
 ; CF and OF are set
 ;multiply with sign on 16 bits
 MOV AX, 50 ;load ax 50
 IMUL MEM16 ;multiply with mem. -30000
 ; --------
 ;result in dx,ax -1500000
 ; CF and OF are set
… …
CODE ENDS

 DIV instruction is used for dividing unsigned numbers; IDIV is
used for signed values. The syntaxes are:

DIV {register | memory}
IDIV {register | memory}

 In order to divide a 16 bits number by an 8 bits number the first
operand is loaded in AX. The result overwrites the content of AX. If the
divider is on 8 bits, register or memory location, after the division AL holds
the quotient and AH the rest.
 In order to divide a 32 bit number by a 16 bit number the first
operand is loaded in the pair DX: AX. The information stored in DX and
AX will be lost after the operation. After the division AX stores the quotient
and DX the rest.
 For dividing 2 numbers of equal length (8 or 16 bits) the first action
is to convert to a double length (16 or 32 bits) the first operand. For
unsigned numbers the conversion consists in deleting the upper byte of the
first operand, register AH, and respectively the most significant word,
register DX. For sign numbers conversion consists in sign extension and is
obtained through CWB and CWD instructions.
 If the divider is 0 or the quotient exceeds it’s assigned register (AL or
AX) then the processor generates a level 0 interruption. If this interruption is
not handled by the developer the operating system will abandon the
program. There are two methods for dealing with the situation: testing the

ASSEMBLY LANGUAGE PROGRAMMING

 54

divider before the operation takes place and calling, when needed, a routine
for handling errors; writing your own routine for handling errors to replace
the routine for level 0 interruption.

 Example:

DATA SEGMENT
MEM16 DW –2000
MEM32 DD 500000
DATA ENDS

CODE SEGMENT
 ; unsigned division of a 16 bits operand
 ;by an 8 bits operand
 MOV AX, 700 ;load operand 700
 MOV BL, 36 ;load divider 36
 DIV BL ;unsigned division
 ;quotient is in al 19
 ;rest is in ah 16
 ;
 ;signed division of a 32 bits operand
 ;by a 16 bits operand
 MOV AX, WORD PTR MEM32[0] ;load ax
 MOV DX, WORD PTR MEM32[2] ; load dx 500000
 IDIV MEM16 ; signed division
 ; quotient is in ax -250
 ; rest is in dx 0
 ; signed division of a 16 bit operand
 ; by a 16 bit operand

 MOV AX, WORD PTR MEM16 ; load operand -2000
 CWD ;convert to double word
 MOV BX, -421 ; load divider -421
 IDIV BX ; signed division
 ; quotient is in ax 4
 ; rest is in dx -316
CODE ENDS

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

 55

2.2. Operations in unpacked BCD:

 The instruction set has 4 instructions for unpacked BCD or ASCII
correction: AAA (ASCII Adjust after Addition), AAS (ASCII Adjust after
Subtraction), AAM (Ascii Adjust after Multiplication) and AAD (ASCII
Adjust before Division), these instruction will correct the result to unpacked
BCD format.. Arithmetical operations are computed on byte size operands
only. The result must be in AL register implicitly used by the adjust
instructions. If an operation implies 2 one digit operands with a result of two
digits, the adjust instruction for correction will place the least significant
digit in AL, and the most significant in AH. If the result stored in AL
generates carry to AH or needs to borrow from AH the flags CF and AF are
set.

 Example:

 ; unpacked BCD addition
 MOV AX, 9 ;load ax 0009h
 MOV BX,3 ; load bx 0003h
 ADD AL, BL ;addition 000ch
 AAA ;adjust after addition ax=0102h
 ; AF and CF are set
 ;unpacked BCD subtraction
 MOV AX, 0103H ;load ax 0103h
 MOV BX, 4 ; load bx 0004h
 SUB AL, BL ;subtract 01feh
 AAS ; adjust after
 ;subtraction ax=0009h
 ;AF and CF are positioned

 ;unpacked BCD multiplication
 MOV AX, 0903H ; load ax 0903h
 MUL AH ;unsigned multiplication 001bh
 AAM ; adjust after MUL ax=0207h

 ;unpacked BCD division
 MOV AX, 0205H ; load ax with dividend 25 unpBCD
 MOV BL, 02 ; load bl with divisor 2 unpBCD
 AAD ; adjust before
 ;division AX=0019H
 DIV BL ;unsigned division result is 010CH

ASSEMBLY LANGUAGE PROGRAMMING

 56

 ;quotient in al 0CH
 ;rest in ah 01H
 AAM ;adjust after
 ;division the quotient ax=0102H 12unpBCD
 ;the rest is lost

 The rest will be lost. If needed, it must be saved in a different
register before adjusting the quotient. The rest can also be corrected. For this
it should be moved in AL.

2.3. Operations in packed BCD

 The instruction set has two instructions for decimal correction DAA
(decimal adjust after addition) and DAS (decimal adjust after subtraction)
which allow adding and subtracting in packed BCD. ADD and SUB
instructions are used to add and subtract followed by appropriate
instructions to adjust the result.
 Arithmetical operations must be on byte size in order to store the
result in AL.
 Instructions for decimal corrections in packed BCD never affect AH
register. AF indicator is positioned in case of carry or borrow from the least
significant digit to the most significant one. CF indicator is positioned in
case of carry or borrow to exterior.

Example:
 ;Adding in packed BCD
 MOV AX, 8833H ;load ax 8833H
 ADD AL, AH ;add to al al=0BBH
 DAA ;decimal adjust
 ;after adding al=021H
 ; CF is set
 ;the result is 121H = 121 pBCD
 ;Subtracting in packed BCD
 MOV AX, 3883H ;load ax 3883H
 SUB AL, AH ;subtract al=04BH
 DAS ;decimal adjust
 ;after subtraction al=045H
 ; CF is 0

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

 57

2.4. Logical instructions

General form Effect Affected conditioning

indicators
AND <d>, <s> <d> ← {<d>} and {<s>} CF,OF,PF,SF,ZF set

AF undefined
TEST <d>,
<s>

The indicators are set as for
AND but {<d>} does not change

CF,OF,PF,SF,ZF set
AF unmodified

OR <d>, <s> <d> ← {<d>} or {<s>} CF,OF,PF,SF,ZF set
AF undefined

XOR <d>, <s> <d> ← {<d>} xor {<s>} CF,OF,PF,SF,ZF set
AF undefined

NOT <s> <s> ← not <s>
(complemental to 1)

 Logical instructions operate on bits, over bits of same rank of two
operands. There are 5 logic instructions: AND, TEST, OR, XOR and NOT.

The syntax:
AND {register | memory}, { register | memory | immediate date}
TEST { register | memory }, { register | memory | immediate date }
OR { register | memory }, { register | memory | immediate date }
XOR { register | memory }, { register | memory | immediate date }
NOT { register | memory }

 Example:
 ;example for AND
 MOV AL, 35H ;load al 00110101
 AND AL, 0FBH ;and with immediate value 11111011
 ; ------------
 ; 00110001
 AND AL, 0F8H ; 11111000
 ; ------------
 ; 00110000

ASSEMBLY LANGUAGE PROGRAMMING

 58

 ;example for OR
MOV AL, 35H ;load al 00110101
OR AL, 08H ;or with immediate value 00001000

 ; ------------
 OR AL, 07H ; or with immediate value 00000111
 ; ------------
 ; 00111111

 ;example for XOR
MOV AL, 35H ;load al 00110101
XOR AL, 08H ;xor with immediate value 00001000

 ; ------------
 ; 00111101

XOR AL, 07H ; xor with immediate value 00000111

 ; ------------
 ; 00111010

 Logical instructions can be used to compare an operand with 0 (OR
BX, BX instead of CMP BX, 00) or to initialize with 0 (XOR CX, CX; SUB
CX, CX instead of MOV CX, 00) having a more compact form.

2.5. Shift and rotation instructions:

General form Effect Affected conditioning
indicators

SHL <s>, 1
SAL <s>, 1

Logic shift to left
CF will store the most significant bit
that was shifted. If <CF> <> the
initial sign OF becomes 1.

CF,OF,SF,ZF,PF
AF undefined

SHL <s>, CL
SAL <s>, CL

Logic shift to left with a number of
positions indicated by CL.
CF will store the last shifted bit.

CF,OF,SF,ZF,PF
AF undefined

SHR <s>, 1 Logic shift to right. Zeroes are
inserted. CF will store the most
significant bit. If the most significant
bits of the result are different OF
becomes 1.

CF,OF,SF,ZF,PF
AF undefined

SHR <s>, CL Logic shift to right with a number of
positions indicated by CL.
CF will store the last shifted bit.

CF,OF,SF,ZF,PF
AF undefined

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

 59

SAR <s>, 1 Arithmetic shift to right. Sign
extension. The least significant bit
will be stored by CF. If the most
significant bits of the result are
different OF becomes 1.

CF,OF,SF,ZF,PF
AF undefined

SAR <s>, CL Arithmetic shift to right with a
number of positions indicated by
CL. CF will store the last shifted bit.

CF,OF,SF,ZF,PF
AF undefined

ROL <s>, 1 Rotate left by carry. If CF <> sign
then OF becomes 1

CF, OF

ROL <s>, CL Rotate left by carry with a number
of positions indicated by CL.

CF, OF

ROR <s>,1 Rotate right by carry. If (CF) <>
sign OF becomes 1.

CF, OF

ROR <s>, CL Rotate right by carry with a number
of positions indicated by CL.

CF, OF

RCL <s>, 1 Rotate left with carry. If (CF) <>
sign OF becomes 1.

CF, OF

RCL <s>, CL Rotate left with carry with a number
of positions indicated by CL.

CF, OF

RCR <s>, 1 Rotate right with carry. If (CF) <>
sign OF becomes 1.

CF, OF

RCR <s>, CL Rotate right with carry with a
number of positions indicated by
CL.

CF, OF

 The format for all shift and rotate instructions is identical:

OPCODE {register | memory}, {CL | 1|nr}

 The result overwrites the source operand. The number of shift/rotate
positions can be, number stored previously in register CL or nr for later
processors.

 The following figures show the result of these instructions on a byte
operand for one position shifting/rotation.

ASSEMBLY LANGUAGE PROGRAMMING

 60

 SHL, SAL
 Carry 7 6 5 4 3 2 1 0

 SHR
 Carry 7 6 5 4 3 2 1 0

 SAR
 Carry 7 6 5 4 3 2 1 0

s ROL
 Carry 7 6 5 4 3 2 1 0

 ROR
 Carry 7 6 5 4 3 2 1 0

 RCL
 Carry 7 6 5 4 3 2 1 0

 RCR

0

0

ARITHMETICAL, LOGICAL, ROTATION AND SHIFT
INSTRUCTIONS FOR 80X86 MICROPROCESSOR

 61

Carry 7 6 5 4 3 2 1 0

 Example:
 ;a number stored in ax
 ;is multiplied by 10
 SHL AX, 1 ;*2
 MOV BX, AX ;
 SHL AX, 1 ;*4
 SHL AX, 1 ;*8
 ADD AX, BX ;*10

 ;an unsigned number stored in ax

;is divided by 512
 SHR AX, 1 ;/2
 XCHG AH, AL ;
 XOR AH,AH ;/512

 ;a number stored in ax represented in C2 with sign
 ;is divided by 2
 MOV AX, -16 ;
 SAR AX, 1 ;/2

 ;a 32 bits unsigned number
 ;is divided by 2

DATA SEGMENT
 MEM32 DD 500000
DATA ENDS
CODE SEGMENT
… …

SHR WORD PTR MEM32[2], 1 ;shifting in CF
RCR WORD PTR MEM32[0], 1 ;rotation with CF

… …
CODE ENDS

ASSEMBLY LANGUAGE PROGRAMMING

 62

3. Lab tasks

1. Study the examples.
2. Trace the examples with Turbo Debugger.
3. Write a program that generates an integer in byte representation and

stores it to a REZ location after the formula:
 REZ = AL*NUM1+(NUM2*AL+BL)
 All parameters are byte size.
4. Implement the following operations using arithmetic and shift

instructions:
 AX = 7*AX–2*BX–BX/8
Parameters are byte size.

5. (complementary) Design an algorithm to multiply two 4 bytes numbers
in C2 representation.

