

63

LABORATORY WORK NO. 6
DATA TRANSFER INSTRUCTIONS

1. Object of laboratory

Study of data transfer instructions for the I8086 microprocessor,
including the input-output instructions.

2. Theoretical considerations

Data transfer is one of the most common tasks when programming in

an assembly language. Data can be transferred between registers or between
registers and the memory. Immediate data can be loaded to registers or to
memory. The transfer can be done on bye, word or double word size. The
two operands must have the same size. Data transfer instructions don’t
affect the flags (excepting the ones that have this purpose). They are
classified as follows:

- „classical” data transfer instructions
- address transfer instructions
- flag transfer instructions
- input/output instructions.

2.1. „Classical” transfer instructions

 Include the following instructions:

MOV <d>, <s>
XCHG <d>, <s>
XLAT
PUSH <s>
POP <d>

Data is copied from source to destination with the MOV instruction.
The syntax of this is instruction is:

MOV {register | memory}, {register | memory | immediate data}

ASSEMBLY LANGUAGE PROGRAMMING

 64

This instruction copies the source operand to the destination. Right
after a MOV instruction is executed, the source operand and the destination
have the same value. The old content of the destination is overwritten.

Example:

DATA SEGMENT
MEM LABEL BYTE ;byte and
MEMW DW ? ;word
VCT DB 100 DUP (?) ;vector
DATA ENDS
CODE SEGMENT

ASSUME CS:CODE, DS:DATA
 … …
 MOV AX, 7 ;immediate data to register
 MOV MEM, 7 ;immediate byte to directly

;addressed memory
 MOV MEMW, 7 ;immediate word to directly

;addressed memory
 MOV VCT[BX], 7 ;immediate byte to indirectly

;addressed memory
 MOV MEMW, DS ;segment register to memory
 MOV MEMW, AX ;general register to directly addressed memory
 MOV VCT[BX], AL ;general register to indirectly

;addressed memory
 MOV AX, MEMW ;directly addressed memory to general register
 MOV AL, VCT[BX] ;indirectly addressed memory to

;general register
 MOV DS, MEMW ;directly addressed memory to

;segment register
 MOV AX, BX ;general register to general register
 MOV DS, AX ;general register to segment register
 MOV CX, ES ;segment register to general register
 … …
CODE ENDS

The following MOV instructions are not permitted: immediate data
to segment register, memory location to memory location, segment register
to segment register and MOV to the CS segment register.
 MOV instructions that require two instructions are presented below.

DATA TRANSFER INSTRUCTIONS

 65

Example:
 ;immediate data to segment register
 MOV AX, 1000H
 MOV DS, AX
 ;memory location to memory location
 MOV AX, MEM1
 MOV MEM2, AX
 ;segment register to segment register
 MOV AX, DS
 MOV ES, AX

 Newer processors allow these instruction, however early versions of
assemblers will not recognize them as valid instructions.
 Data, respectively source and destination operands interchange is
done with the XCHG instruction. Its syntax is presented below:

XCHG {register | memory}, {register | memory}

 Example:

XCHG AX, BX ;interchanges ax with bx
XCHG MEM16, AX ;interchanges the memory

;word mem16 with the ax register
XCGH DL, MEM8 ;interchanges the memory byte mem8

;with register dl
XCGH AH, CL ;interchanges ah with cl

The XLAT instruction coverts the content of register AL, using a

translation table. A pointer to the start of the table should be in register BX.
The content of register AL is interpreted as an index in the table. The result
of the conversion is given by the value of the byte that is placed at this
address in the table. The syntax is as follows:

XLAT [segment register : offset]

Using a reference to an address in the XLAT instruction is necessary
when the table is not located in the data segment, which is the only implicit
segment for this instruction. It allows the assembler to determine the
segment register that has to be used for the execution of the instruction.

Here is an example that translates a Hexadecimal digit in a printable
ASCII code:

ASSEMBLY LANGUAGE PROGRAMMING

 66

Example
 ;hexadecimal to ASCII conversion
 ;input : al = hexadecimal digit
 ;output : al = the corresponding ASCII code
CONV PROC NEAR
 MOV BX, OFFSET TABEL
 XLAT CS:TABEL

RET
CONV ENDP
TABEL DB ‘0123456789ABCDEF’ ;ASCII code table

 The PUSH and POP instructions are used for data transfer to and
from a stack.

The stack is a memory location used for temporary data storage. The
top of the stack address is managed automatically, by hardware, through a
register that points to the top of the stack, namely SP register. This is why
these instructions, PUSH and POP, only allow access to the top of the stack.
The data that is placed on the stack can be accessed in reverse order of the
placement (LIFO system- Last In First Out). Initially the stack contains no
data. As data is being placed, during the execution of the program, the stack
grows in size, towards smaller addresses. As data is being extracted from
the stack, its size is decreasing, by successively freeing the locations that
have the smallest address.

The instructions for subroutine call, namely CALL, INT and return
from subroutines, RET and IRET, automatically use the stack for saving and
restoring the return addresses.

The PUSH instruction is used to put a 2 byte operand on the stack.
The POP instruction is used to extract the last value from the stack. The
syntaxes for these instructions are:

PUSH {register | memory}
POP {register | memory}

 When pushing an operand on the stack, the first thing that is done is
decrementing the stack pointer SP by 2 and copy the operand to this
memory location. When extracting from the stack, first the value on the top
of the stack is copied and the SP is incremented by 2.

 The PUSH and POP instructions are usually used in pairs. Normally,
the number of pushes has to be equal to the number of pops to/from the

DATA TRANSFER INSTRUCTIONS

 67

stack to bring the stack to its initial state. The words are popped in the
reverse order of the pushes.

Example
INT PROC FAR
 PUSH DS
 PUSH AX
 PUSH CX
 PUSH SI

PUSH BP
 … …

POP BP
POP SI
POP CX
POP AX
POP DS
IRET

INT ENDP

 If there is no need to restore the values pushed on the stack , e.g.
parameter transfer to a procedure, the stack can be freed by adding a
number to the SP registers (unloading the stack).

Example:
 PUSH AX
 PUSH BX
 PUSH CX
 … …
 ADD SP, 6

 The values that are not on the top of the stack can still be accessed
by indirect addressing, using the BP register as base register:

ASSEMBLY LANGUAGE PROGRAMMING

 68

Example:
 PUSH AX
 PUSH CX
 PUSH DX
 MOV BP, SP
 … …

MOV AX, [BP+4]
MOV CX, [BP+2]
MOV DX, [BP+0]
… …
ADD SP, 6

 Here is an example of a loop that is included in another loop, using
the CX register as a counter in for both loops.

 Example:
MOV CX, 10 ;init counter for outer loop
ET1: ;start of outer loop
 ;… …
 PUSH CX ;saving counter outer loop
 MOV CX, 20 ;init counter inner loop

ET2: ;start of inner loop
 ;… …
 LOOP ET2
 POP CX ;restore counter outer loop
 ;outer loop
 ;… …
LOOP ET1

2.2. Instructions for address transfer
 They are used for loading effective addresses (16 bits) or physical
ones (32 bits) into registers or register pairs. There are 3 such instructions:

LEA <d>, <s>
LDS <d>, <s>
LES <d>, <s>

 The LEA instruction loads the effective address of the source
operand, that has to be a memory location, to the general register that is
specified as the destination. Its syntax is as follows:
LEA {register}, {memory}

DATA TRANSFER INSTRUCTIONS

 69

 The LDS and LES instructions load the physical address that is
contained by the source operand, which has to be a double memory word, to
the segment register that is specified by the instruction mnemonic, DS and
ES, and to the general register that is specified as destination. The
instruction mnemonic is:

LDS {register}, {memory}
LES {register}, {memory}
LFS {register}, {memory}
LGS {register}, {memory}

 The LEA instruction can be used for loading the effective address of
an operand that is placed in the memory, by direct or indirect addressing.

 Example:
 LEA DX, ALFA
 LEA DX, ALFA[SI]

 The effect of the first instruction can be also obtained by using the
next instruction:
 MOV DX, OFFSET ALFA
 MOV DX, OFFSET ALFA[SI] is an incorrect instruction
 This option is quicker, but can only be obtained in the case of
operands specified by direct addressing.

Example:
DATA SEGMENT
STRING DB “THIS IS A STRING”
FPSTRING DD STRING ; FAR POINTER TO STRING
POINTERS DD 100 DUP (?)
DATA ENDS
CODE SEGMENT
 … …
LES DI, FPSTRING ;the address contained in the source location is

;loaded to
 ; the pair es:di
LDS SI, POINTERS[BX] ;the address contained in the source location is

;loaded to
 ;the pair ds:si
 … …
CODE ENDS

ASSEMBLY LANGUAGE PROGRAMMING

 70

2.3. Flag Transfer instructions

 In the I8086 microprocessor’s set of instructions there are
instructions for loading and storing the flags. The syntax is:

LAHF
SAHF
PUSHF
POPF

 The least significant byte of the flag register can be loaded to the AH
register using the LAHF register, and also the content of the AH register can
be stored to the low byte with the SAHF instruction. The structure of the
low byte is:

 bit 7 6 5 4 3 2 1 0
 SF ZF x AF x PF x CF

 The whole flag register can be pushed and restored only to the stack
register, the instructions to are PUSHF and POPF. The flag register’s
structure is:

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 x x x x OF DF IF TF SF ZF x AF x PF x CF

2.4. Input/output instructions

 I/O ports, are constituent elements of interfaces. They connect
central units with peripheral devices.
 Each peripheral device has its own address through which it can be
selected by the central unit. From the central unit’s point of view, the
peripheral registers can be either input registers or output ones. For transfers
of data to these registers, we use the OUT instruction, and for getting,
reading data we use the IN instruction. Their syntaxes are:

IN {AX | AL}, {peripheral immediate address | DX}
OUT {peripheral immediate address | DX }, {AX | AL}

DATA TRANSFER INSTRUCTIONS

 71

 The peripheral register’s address can be specified by an immediate 8
bit data or by previously storing the I/O address in the DX register. Using
DX allows the usage of a larger address than 255.
 Data transfer is made between the central unit’s accumulator and the
peripheral registers. This transfer can be of 8, 16 ore 32 bits, depending on
the register one uses, either AL, AX or EAX.

 Example 1:

 Data Bus

 Data bus

 Port selection

 IOW/

PORTO EQU 60H x
 …
 MOV AL, 50
 OUT PORTO, AL

Example 2:

 Data bus

 Data bus

 Port selection

Address
decoder

OR

CLK DI0-DI7
- - I8282
OE D00-D07

Address
decoder

OR

OE/ D00-D07
 I8282
CLK DI0-DI7

ASSEMBLY LANGUAGE PROGRAMMING

 72

 IOR/

PORTI EQU 80H x
 …
 IN AL, PORTI

The IN and OUT instructions are the only instructions that allow
interaction between the processor and other devices. Some computer
architectures have their memory organized in such a way that the areas from
the memory space are dedicated to some peripheral equipments and not to
data space e.g. Video RAM memory. Access to these memory areas will
actually mean access to a peripheral equipment. Such input/output systems
are called „memory-mapped” (inputs/outputs organized as memory areas).

Let’s consider that a peripheral equipment requires a state port and a
data port, both on 8 bits. In a regular input/output system, there are two
input ports, for instance 0F8H and 0F9H, dedicated to that equipment. In a
memory-mapped system there are two addresses, usually adjacent, for
instance C800:0000 and C800:0001, corresponding to the state and data
ports. The state-read and data-read sequences, in the two input/output types
are:
 IN AL, 0F8H ;read state
 IN AL, 0F9H ;read data
 MOV ES, 0C800H
 MOV AL, ES:[0] ;read state
 MOV AL, ES:[1] ;read data

Example: in a PC-AT system, the first serial port uses other ports,
starting with 3F8H, but at the same time, the access to the port can be done
through the memory, at the address 40:0000. For COM2: ports starting with
2F8H or through the memory, at 40:0002.

3. Lab tasks

1. Study of the shown examples.
2. The students will write a program, which copies a string of values

from consecutive memory locations to another location, placed in a
different data segment.

DATA TRANSFER INSTRUCTIONS

 73

3. The students will write a program that duplicates the last two
elements of a stack without using push or pop instructions. They will
only access the stack using the BP and SP registers.

4. The PC speaker is programmed as follows:
a) the frequency of the sound is programmed in the next

sequence:

MOV AL, 36H ;the 8253’s circuit mode word
OUT 43H, AL
MOV AX, FRECVENTA ;the frequency is loaded to ax
OUT 42H, AL ;the least significant byte is sent
MOV AL, AH
OUT 42H, AL ; the most significant byte is sent
b) the sound is being validated:
IN AL, 61H
OR AL, 3 ;logical or between al and immediate data

 ;the validation bits are positioned
OUT 61H, AL
c) the sound is invalidated:
IN AL, 61H
AND AL, 0FCH ;logical and between al and

;immediate data
 ;the validation bits are erased

OUT 61H, AL
N.B. Previous example may not work on arbitrary PC configuration. In time
I/O port addresses may change.

5. Write a program that fills a 5 byte memory area, located at
consecutive addresses with a value that is loaded by direct
addressing to al. They will write more programs, using different
addressing modes. Which program is the most efficient?

6. Write a program that transfers two memory words that are placed at
successive addresses to another address, using the stack instructions.

7. The students have to write the shortest program that duplicates the
last 10 words that were put on the stack, to the stack.

ASSEMBLY LANGUAGE PROGRAMMING

 74

Solved problems:
Modify the content of two words from the memory, using their far addresses
(32 bit address). Hint: use the LDS and LES instructions.

Solution:

_DATA SEGMENT PUBLIC 'DATA'
 X DW 10
 Y DW 15
 ADR_X DD X
 ADR_Y DD Y
_DATA ENDS
_CODE SEGMENT PARA PUBLIC 'CODE'
 ASSUME CS:_CODE
 START PROC FAR
 PUSH DS
 XOR AX,AX
 PUSH AX
 MOV AX, _DATA ;initializing the segment register
 MOV DS, AX

LDS SI, ADR_X ;load address of x to DS:SI -> far address
; 32 bits

LES DI, ADR_Y ;load address of y to ES:DI -> far address
;32 bits

MOV WORD PTR [SI], 20 ;the x variable is modified, by indexed
;addressing

MOV WORD PTR ES:[DI], 30 ;the y variable is modified, by
;indexed addressing

 RET ;exiting to DOS
START ENDP
_CODE ENDS

END START

 The program reads all the keys from the keyboard, until 0 is pressed.
It will display the ASCII codes of these keys. Use the XLAT instruction.

_DATA SEGMENT
 TAB_CONV DB '0123456789ABCDEF' ;conversion table
 MESAJ DB '-HAS THE ASCII CODE'
 TASTA DB 2 DUP (?) , 0DH, 0AH, '$'
_DATA ENDS

DATA TRANSFER INSTRUCTIONS

 75

_COD SEGMENT PARA PUBLIC 'CODE'

 ASSUME CS:_COD, DS:_DATA
 START PROC FAR
 PUSH DS
 XOR AX,AX
 PUSH AX
 MOV AX, _DATA ;initializing the data segment register
 MOV DS, AX

 AGAIN:
 MOV AH, 1 ;echo reading of a key
 INT 21H
 CMP AL, '0'
 JZ FINISHED
 MOV AH,AL ;saving key code
 LEA BX, TAB_CONV ;the conversion table’s offset to BX
 AND AL, 0FH ;only the first 4 bits (nibble) are taken
 XLAT TAB_CONV ;convert the second nibble
 MOV TASTA+1, AL ;it is the code’s second digit
 MOV AL, AH ;the initial code of the key
 MOV CL, 4 ;we shift to the right with 4 positions
 SHR AL, CL ;shift
 XLAT TAB_CONV ;converting the first nibble

MOV TASTA, AL ;the ASCII code of the first nibble
;

 LEA DX, MESAJ
 MOV AH, 9H ;display the key’s code
 INT 21H
 JMP AGAIN

FINISHED :
 RET
START ENDP
 _COD ENDS

END START

