LABORATORY WORK NO. 6
DATA TRANSFER INSTRUCTIONS

1. Object of laboratory

Study of data transfer instructions for the 1808&roprocessor,
including the input-output instructions.

2. Theoretical considerations

Data transfer is one of the most common tasks vphegramming in
an assembly language. Data can be transferred &etvggisters or between
registers and the memory. Immediate data can letbéo registers or to
memory. The transfer can be done on bye, word abléoword size. The
two operands must have the same size. Data tramsuctions don’t
affect the flags (excepting the ones that have thigpose). They are
classified as follows:

- ,classical” data transfer instructions

- address transfer instructions

- flag transfer instructions

- input/output instructions.

2.1. ,Classical” transfer instructions
Include the following instructions:

MOV <d>, <s>

XCHG <d>, <s>

XLAT

PUSH <s>

POP <d>

Data is copied from source to destination with M@V instruction.
The syntax of this is instruction is:

MOV {register | memory}, {register | memory | immatk data}

63

ASSEMBLY LANGUAGE PROGRAMMING

This instruction copies the source operand to gmiiation. Right
after a MOV instruction is executed, the sourcerape and the destination
have the same value. The old content of the de&tmes overwritten.

Example:
DATA SEGMENT
MEM LABEL BYTE ;byte and
MEMW DW ? ;word
VCT DB 100 DUP (?) ;vector
DATA ENDS

CODE SEGMENT
ASSUME CS:CODE, DS:DATA
MOV AX, 7 ;immediate data to register
MOV MEM, 7 ;immediate byte to directly
;addressed memory
MOV MEMW, 7 ;immediate word to directly
;addressed memory
MOV VCT[BX], 7 ;immediate byte to indirectly
;addressed memory
MOV MEMW, DS ;segment register to memory
MOV MEMW, AX ;general register to directly addressmemory
MOV VCT[BX], AL ;general register to indirectly
;addressed memory
MOV AX, MEMW ;directly addressed memory to genenagister
MOV AL, VCT[BX] ;indirectly addressed memory to
;general register
MOV DS, MEMW ;directly addressed memory to
;segment register

MOV AX, BX ;general register to general register

MOV DS, AX ;general register to segment register

MOV CX, ES ;segment register to general register
CODE ENDS

The following MOV instructions are not permittedamediate data
to segment register, memory location to memorytlonasegment register
to segment register and MOV to the CS segmenttegis

MOV instructions that require two instructiong @resented below.

64

DATA TRANSFER INSTRUCTIONS

Example:

;immediate data to segment register
MOV AX, 1000H
MOV DS, AX

;memory location to memory location
MOV AX, MEM1
MOV MEM2, AX

;segment register to segment register
MOV AX, DS
MOV ES, AX

Newer processors allow these instruction, howewaely versions of
assemblers will not recognize them as valid insions.

Data, respectively source and destination operam@schange is
done with the XCHG instruction. Its syntax is prasel below:

XCHG {register | memory}, {register | memory}

Example:
XCHG AX, BX ;interchanges ax with bx
XCHG MEM16, AX ;interchanges the memory
;word mem16 with the ax register
XCGH DL, MEM8 ;interchanges the memory byte mem8
;with register dl
XCGH AH, CL ;interchanges ah with cl

The XLAT instruction coverts the content of regisfd., using a
translation table. A pointer to the start of tablé should be in register BX.
The content of register AL is interpreted as arexth the table. The result
of the conversion is given by the value of the biytat is placed at this
address in the table. The syntax is as follows:

XLAT [segment register : offset]

Using a reference to an address in the XLAT ingitpnds necessary
when the table is not located in the data segmdmth is the only implicit
segment for this instruction. It allows the assemiio determine the
segment register that has to be used for the eracnitthe instruction.

Here is an example that translates a Hexadecirgdlidia printable

ASCII code:

65

ASSEMBLY LANGUAGE PROGRAMMING

Example
;hexadecimal to ASCII conversion
;input : al = hexadecimal digit
;output : al = the corresponding ASCII code
CONV PROC NEAR
MOV BX, OFFSET TABEL
XLAT CS:TABEL
RET
CONV ENDP
TABEL DB ‘0123456789ABCDEF’ ;ASCII code table

The PUSH and POP instructions are used for datssfer to and
from a stack.

The stack is a memory location used for temporatg dtorage. The
top of the stack address is managed automatidafiynardware, through a
register that points to the top of the stack, ngn$# register. This is why
these instructions, PUSH and POP, only allow acte#se top of the stack.
The data that is placed on the stack can be aat@sseverse order of the
placement (LIFO system- Last In First Out). Inifathe stack contains no
data. As data is being placed, during the execuifahe program, the stack
grows in size, towards smaller addresses. As dat®ing extracted from
the stack, its size is decreasing, by successiveing the locations that
have the smallest address.

The instructions for subroutine call, namely CALNT and return
from subroutines, RET and IRET, automatically usegtack for saving and
restoring the return addresses.

The PUSH instruction is used to put a 2 byte opk@m the stack.
The POP instruction is used to extract the lastievdiom the stack. The
syntaxes for these instructions are:

PUSH {register | memory}
POP {register | memory}

When pushing an operand on the stack, the finsgttinat is done is
decrementing the stack pointer SP by 2 and copyoterand to this
memory location. When extracting from the stacistfihe value on the top
of the stack is copied and the SP is incremente?l by

The PUSH and POP instructions are usually usgains. Normally,
the number of pushes has to be equal to the nuofbpops to/from the

66

DATA TRANSFER INSTRUCTIONS

stack to bring the stack to its initial state. TWerds are popped in the
reverse order of the pushes.

Example
INT PROC FAR
PUSH DS
PUSH AX
PUSH CX
PUSH SI
PUSH BP

INT ENDP

If there is no need to restore the values pushethe stack , e.g.
parameter transfer to a procedure, the stack eafrded by adding a
number to the SP registers (unloading the stack).

Example:
PUSH AX
PUSH BX
PUSH CX

ADD SP, 6

The values that are not on the top of the stackstil be accessed
by indirect addressing, using the BP register a& begister:

67

ASSEMBLY LANGUAGE PROGRAMMING

Example:

PUSH AX

PUSH CX
PUSH DX

MOV BP, SP
MOV AX, [BP+4]
MOV CX, [BP+2]
MOV DX, [BP+0]

ADD SP, 6

Here is an example of a loop that is includedriatler loop, using
the CX register as a counter in for both loops.

Example:
MOV CX, 10 ;init counter for outer loop
ET1: ;start of outer loop
PUSH CX ;saving counter outer loop
MOV CX, 20 ;init counter inner loop
ET2: ;start of inner loop
LOOP ET2
POP CX ;restore counter outer loop
;outer loop
LOOP ET1

2.2. Instructions for address transfer
They are used for loading effective addressesb{ts) or physical
ones (32 hits) into registers or register pairerérare 3 such instructions:

LEA <d>, <s>
LDS <d>, <s>
LES <d>, <s>

The LEA instruction loads the effective addresstloé source
operand, that has to be a memory location, to #reei@l register that is
specified as the destination. Its syntax is a9zt
LEA {register}, {memory}

68

DATA TRANSFER INSTRUCTIONS

The LDS and LES instructions load the physicalradsl that is
contained by the source operand, which has todmible memory word, to
the segment register that is specified by the weisn mnemonic, DS and
ES, and to the general register that is specifieddastination. The
instruction mnemonic is:

LDS {register}, {memory}
LES {register}, {memory}
LFS {register}, {memory}
LGS {regqister}, {memory}

The LEA instruction can be used for loading thie@fve address of
an operand that is placed in the memory, by doeatdirect addressing.

Example:
LEA DX, ALFA
LEA DX, ALFA[SI]

The effect of the first instruction can be alsdaifred by using the
next instruction:
MOV DX, OFFSET ALFA

This option is quicker, but can only be obtainedtlhe case of
operands specified by direct addressing.

Example:

DATA SEGMENT

STRING DB “THIS IS A STRING”

FPSTRING DD STRING ; FAR POINTER TO STRING

POINTERS DD 100 DUP (?)

DATA ENDS

CODE SEGMENT

LES DI, FPSTRING ;the address contained in the@olocation is
;loaded to
; the pair es:di

LDS SI, POINTERS[BX] ;the address contained ingbarce location is
;loaded to
;the pair ds:si

CODE ENDS

69

ASSEMBLY LANGUAGE PROGRAMMING

2.3. Flag Transfer instructions

In the 18086 microprocessor's set of instructiotisere are
instructions for loading and storing the flags. Byatax is:

LAHF
SAHF
PUSHF
POPF

The least significant byte of the flag registen b& loaded to the AH
register using the LAHF register, and also the eohof the AH register can
be stored to the low byte with the SAHF instructidime structure of the
low byte is:

bit 7 6 5 4 3 2 1 0
SF ZF X AF X PF x CF

The whole flag register can be pushed and restordy to the stack
register, the instructions to are PUSHF and POR#e flag register’s
structure is:

bit 1514 13 121110 9 8 7 65 4 3 2 1 0
X X X x OFDF IFTF SF ZF x AFPF x CF

2.4. Input/output instructions

I/O ports, are constituent elements of interfacBsey connect
central units with peripheral devices.

Each peripheral device has its own address thredgbh it can be
selected by the central unit. From the central’sinbint of view, the
peripheral registers can be either input registesutput ones. For transfers
of data to these registers, we use the OUT instructand for getting,
reading data we use the IN instruction. Their syesaare:

IN {AX | AL}, {peripheral immediate address | DX}
OUT {peripheral immediate address | DX }, {AX | AL}

70

DATA TRANSFER INSTRUCTIONS

The peripheral register’'s address can be spedifyeah immediate 8
bit data or by previously storing the I/O addresshe DX register. Using
DX allows the usage of a larger address than 255.

Data transfer is made between the central unitsi@ulator and the
peripheral registers. This transfer can be of 8p632 bits, depending on
the register one uses, either AL, AX or EAX.

Example 1:
Data Bus
l l Data bus
Address
decoder
l v Yy
— ¥ CLK DIO-DI7
Port selection - - 18282
— » OR OE D00-D0O7
IOW/ l
PORTO EQU 60H L l
MOV AL, 50
OUT PORTO, AL
Example 2:
Data bus
l l Data bus
Address
decoder
' OE/ DO00-DO7
Port selection 18282
OR CLK DIO-DI7
71

ASSEMBLY LANGUAGE PROGRAMMING

e

IOR/
PORTIEQU 80H i T T

IN AL, PORTI

The IN and OUT instructions are the only instrusticthat allow
interaction between the processor and other devi€esne computer
architectures have their memory organized in suslaythat the areas from
the memory space are dedicated to some periphgugireents and not to
data space e.g. Video RAM memory. Access to thesmary areas will
actually mean access to a peripheral equipment: Byut/output systems
are called ,memory-mapped” (inputs/outputs orgashiae memory areas).

Let’'s consider that a peripheral equipment requiretate port and a
data port, both on 8 bits. In a regular input/otitpystem, there are two
input ports, for instance OF8H and OF9H, dedicatethat equipment. In a
memory-mapped system there are two addresses,lyusagjhcent, for
instance C800:0000 and C800:0001, correspondinthdostate and data
ports. The state-read and data-read sequencds two input/output types
are:

IN AL, OF8H ;read state
IN AL, OF9H ;read data
MOV ES, 0C800H

MOV AL, ES:[0] ;read state
MOV AL, ES:[1] ;read data

Example: in a PC-AT system, the first serial paéesi other ports,
starting with 3F8H, but at the same time, the a&tethe port can be done
through the memory, at the address 40:0000. For 2Qidrts starting with
2F8H or through the memory, at 40:0002.

3. Lab tasks

1. Study of the shown examples.

2. The students will write a program, which copiestring of values
from consecutive memory locations to another locatplaced in a
different data segment.

12

DATA TRANSFER INSTRUCTIONS

3. The students will write a program that duplicatée tast two
elements of a stack without using push or pop uctisns. They will
only access the stack using the BP and SP registers

4. The PC speaker is programmed as follows:

a) the frequency of the sound is programmed in the nex
sequence:

MOV AL, 36H ;the 8253’s circuit mode word
OUT 43H, AL

MOV AX, FRECVENTA ;the frequency is loaded to ax
OUT 42H, AL ;the least significant byte is sent

MOV AL, AH

OUT 42H, AL ; the most significant byte is sent
b) the sound is being validated:

IN AL, 61H

OR AL, 3 ;logical or between al and immediate data
;the validation bits are positioned
OUT 61H, AL
c) the sound is invalidated:
IN AL, 61H
AND AL, OFCH ;logical and between al and
;immediate data
;the validation bits are erased
OUT 61H, AL
N.B. Previous example may not work on arbitraryd@@figuration. In time
I/O port addresses may change.

5. Write a program that fills a 5 byte memory areacated at
consecutive addresses with a value that is loadgddipbect
addressing to al. They will write more programsingsdifferent
addressing modes. Which program is the most efffieie

6. Write a program that transfers two memory words éna placed at
successive addresses to another address, usistathenstructions.

7. The students have to write the shortest programdbplicates the
last 10 words that were put on the stack, to thekst

73

ASSEMBLY LANGUAGE PROGRAMMING

Solved problems:
Modify the content of two words from the memoryingstheir far addresses
(32 bit address). Hint: use the LDS and LES insinns.

Solution:

_DATA SEGMENT PUBLIC 'DATA'
X DW 10
Y DW 15
ADR X DDX
ADR_Y DD Y
_DATA ENDS
_CODE SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:_CODE
START PROC FAR

PUSH DS

XOR AX,AX

PUSH AX

MOV AX, DATA ;initializing the segment register

MOV DS, AX

LDS SI, ADR_X ;load address of x to DS:SI -> fadegks
; 32 bits

LES DI, ADR_Y ;load address of y to ES:DI -> fardaelss
;32 bits

MOV WORD PTR [S]], 20 ;the x variable is modifidaly indexed
;addressing

MOV WORD PTR ES:[DI], 30 ;the y variable is modifieby
;indexed addressing
RET ;exiting to DOS
START ENDP
_CODE ENDS
END START

The program reads all the keys from the keybaamtl| O is pressed.
It will display the ASCII codes of these keys. Wke XLAT instruction.

_DATA SEGMENT
TAB_CONV DB '0123456789ABCDEF" ;conversion table
MESAJ DB '-HAS THE ASCII CODE'
TASTA DB 2 DUP (?), ODH, OAH, '$'

_DATA ENDS

74

DATA TRANSFER INSTRUCTIONS

_COD SEGMENT PARA PUBLIC 'CODE'

ASSUME CS:_COD, DS:_DATA

START PROC FAR
PUSH DS
XOR AX,AX
PUSH AX
MOV AX, _DATA
MOV DS, AX

AGAIN:

;initializing the data segment resger

MOV AH, 1 ;echo reading of a key

INT 21H

CMP AL, 'O

JZ FINISHED
MOV AH,AL

LEA BX, TAB_CONV
AND AL, OFH
XLAT TAB_CONV
MOV TASTA+1, AL
MOV AL, AH

MOV CL, 4

SHR AL, CL
XLAT TAB_CONV
MOV TASTA, AL

LEA DX, MESAJ
MOV AH, 9H
INT 21H

JMP AGAIN

FINISHED :

RET
START ENDP
_COD ENDS

END START

;saving key code

;the conversion table’s offset BX
;only the first 4 bits (nibble) araken
;convert the second nibble

;itis the code’s second digit

;the initial code of the key

;we shift to the right with 4 positien
;shift

;converting the first nibble

;the ASCII code of the first nibble

;display the key’s code

75

