
81

LABORATORY WORK NO. 7
FLOW CONTROL INSTRUCTIONS

1. Object of laboratory

The x86 microprocessor family has a large variety of instructions

that allow instruction flow control. We have 4 categories: jump, loop,
calling and return instructions.

2. Theoretical considerations

2.1. Jump instructions.

Jumping is the most direct method of modifying the instruction flow.

The jump instructions change the value of the IP register and sometimes of
the CS register (for intersegment jump), so the IP and CS registers will be
loaded with the address of the target.

2.1.1. The unconditional jump.

The JMP instruction is used for making an unconditional jump to a

specified address. The jump in the same segment can be short/relative or
near, the destination address that can be between -126..129 bytes relative to
the jump instruction for short jump or in the same segment for near jump. A
far jump is a jump to a different segment.

From the destination address specification point of view there are
direct and indirect jumps. In the direct jumps, the destination address is
specified through a label. The syntax is:

JMP label

For the short jumps in the same segment, the addressing is IP

relative.
After the instruction code there is a displacement on a byte that

represent the distance from the current address to the destination.

ASSEMBLY LANGUAGE PROGRAMMING

 82

Example:
ALFA:
 …
 JMP ALFA
If the distance to the label is under 126 bytes and has been defined

before the jump instruction, than a short jump type is encoded.
If the label is defined after the jump instruction than a near jump

type is encoded, indifferent if the distance between the jump instruction and
label is lesser or not than 129 bytes. We can force a short jump by using the
SHORT operator.

Example:
JMP SHORT BETA
…

BETA:

Observation: Using the SHORT operator in an improper situation

will generate an assembly error.
For a near jump the target address is encoded in the instruction on 2

bytes.
In case of using the direct addressing for jumping between different

segments the instruction code is followed by a displacement of four bytes
that representing the destination address segment : offset.

If the destination label has been defined before, the encoding is
correct. If the label is defined afterwards, it is necessary to specify the FAR
type for this label.

Example:

JMP FAR PTR GAMA
…

GAMA:

In case of indirect jumping, the destination address is specified

through an operand, the syntax is:

JMP {register| memory}

Example:

JMP AX
 JMP [BX]
 JMP ALFA ; ALFA is a var. word or double word

FLOW control instructions

 83

If the variable is defined after the jump instruction in the case of far

jumps we must use DWORD PTR operator.

Example:

JMP DWORD PTR ALFA

Example:
CODE SEGMENT

JMP PROCES

CTL_TBL LABEL WORD

DW EXTENDED ; the key with extended
; code (2 car.)

DW CTRLA ; the key CTRL/A
DW CTRLB ; the key CTRL/B

PROCES:
 MOV AH, 8H ; reading the key in AL
 INT 21H

CBW
 MOV BX, AX

SHL BX, 1 ; the address calculation
in the table

JMP CTL_TBL [BX]
…

EXTENDED:
 MOV AH, 8H ; takes the second cod

INT 21H
…

CTRLA: ; routine for CTRL/A
 …

JMP NEXT
CTRLB: ; routine for CTRL/B
 …
 JMP NEXT
NEXT: ; continue
 …
CODE ENDS

ASSEMBLY LANGUAGE PROGRAMMING

 84

2.1.2. Conditional jumps

The conditional jump is the most frequent method of modifying the

instruction flow. It consists of a process in two steps. In the first step the
condition is tested and in the second the jump is done if the condition is true
or the next instruction in executed if the condition is false

The jump instruction syntax is:
Jcc label

The conditional jumps are short type, so that the distance at the

destination address must be in the -126..129 range. Otherwise an error is
signaled. The destination address is specified through a displacement on a
signed byte relative to the current address. The conditional jumps use as a
condition the flags or logical combination of the flags.

The flags can be set by any of the instructions that affect the flags.
The most frequent WAY IS TO use the CMP or TEST instructions.

The conditional jump is made using one of the 13 conditional jump
instructions.

If the target of the conditional jump is out of range, it must be
replaced through a conditional jump of reverse condition followed by an
unconditional jump.

Example:
 CMP AX, 7
 JE NEAR
 CMP AX, 6 ; if AX is 6 and the jump is greater

than 129 bytes
 ; the instruction of conditional jump is

replaced
 JNE NEAR
 JMP FAR

NEAR: ; less than 128 bytes

; from the jump instruction
 …
FAR: ; more than 128 bytes
 ; from the jump instruction

FLOW control instructions

 85

2.1.3. Compare and jump

The CMP instruction compares 2 operands by subtracting the source

operand from the destination operand without affecting the destination and
setting the flags. The syntax is:

CMP {register | memory}, {register | memory | immediate value}

The conditional jump instruction used after the compare instruction

has the flow chart accordance with the tested relation, generated form the
next letters:

 LETTER MEANING

 J Jump
 G Greater than (for signed value)
 L Less than (for signed value)
 A Above (for unsigned values)
 B Below (for unsigned values)
 E Equal
 N Not

In the next table there are represented the conditional jump

instruction according to each relation:

Jump
condition

Compare
with sign

Jump
condition

Compare
without sign

Jump
condition

Equal = JE ZF=1 JE ZF=1

Not equal
<>

JNE ZF=0 JNE ZF=0

Greater than
>

JG or JNLE ZF=0 and
SF=OF

JA or JNBE ZF=0 and
CF=0

Less than < JL or JNGE SF<>OF JB or JNAE CF=1

Greater than
or equal >=

JGE or JNL SF=OF JAE or JNB CF=0

Less than or
equal <=

JLE or JNG ZF=1 or
SF=OF

JBE or JNA CF=1 or
ZF=1

ASSEMBLY LANGUAGE PROGRAMMING

 86

Example
; IF (CX< -20) THEN DX=30 ELSE DX=20

 CMP CX, -20
JL LESS
MOV DX, 20
JMP CONT

 LESS:
 MOV DX, 30
 CONT:

Example:

; IF (CX>= -20) THEN DX=30 ELSE DX=20
 CMP CX, -20

JNL NOTLESS
MOV DX, 20
JMP CONT

 NOTLESS:
 MOV DX, 30
 CONT:
Jumps based on flag value are:

INSTRUCTIONS JUMP
CONDITIONS

JO
JNO
JC
JNC
JZ
JNZ
JS
JNS
JP
JNP
JPE
JPO
JCXZ

OF=1
OF=0
CF=1
CF=0
ZF=0
ZF=1
SF=1
SF=0
PF=1
PF=0
PF=1
PF=0
CX=0

As it can be observed JCXZ is the only conditional jump instruction

that does not test the flags but the content of the CX register.

FLOW control instructions

 87

Example:
 ADD AX, BX
 JO OVERFLOW
 …
OVERFLOW:

2.2. Loop instructions

The cycling instructions allow an easy programming of the control

structures of the final test cycle type.
The syntax of these instructions is:

LOOP label ; CX is decremented and if CX is not

; zero the loop is done.
LOOPE label ; CX is decremented and if CX is not

; zero and ZF=1 the loop is done.
LOOPZ label ; identical with LOOPE
LOOPNE label ; CX is decremented and if CX is not

; zero and ZF=0 the loop is done.
LOOPNZ label ; identical with LOOPNE

 The loop instructions decrement the content of the CX register and if
the jump condition is fulfilled the loop is done.

The distance between the looping instruction and the destination
address must be between the range -126..129 bytes

Example:
 MOV CX, 200 ; initialize counter
NEXT:
 …
 LOOP NEXT ; repeat if CX in not null
 ; continue after the cycle

This loop has the same effect as the one in the next example:
Example:
 MOV CX, 200
NEXT:
 …
 DEC CX
 CMP CX, 0
 JNE NEXT

ASSEMBLY LANGUAGE PROGRAMMING

 88

The first version is more efficient.

Using the JCXZ instruction allows us to avoid executing a loop for

CX=0.

Example:
NEXT:
 JCXZ CONT
 …
 LOOP NEXT
CONT:

2.3. Using procedures

 The procedures are code units that fulfill specific functions. They
represent a way of dividing the code in functional parts or blocks so that a
specific function can be executed from any other point in the program
without having to insert the same code again and again.

The procedures from the assembler language are comparable with
the C functions..

For defining and using procedures there are two pseudo-instructions
and two instructions. The PROC and ENDP directives mark the beginning
and the end of the procedure. The CALL instruction is used to call the
defined procedures, and the RET instruction is used for returning to the
calling point.

The CALL and RET instructions use the stack to store and restore
the return address. The CALL instruction pushes on stack the return address
(the address after the CALL instruction) and then a jump to the address at
the beginning of the procedure is done.

The RET instruction extracts from the stack the address introduced
by the CALL instruction and returns to the instruction after the call.

The procedures can be found or not in the same segment with the
calling instructions.

From this point of view there are NEAR and FAR type procedures.
When declaring the procedures their type is declared too. The NEAR type is
implicit.

FLOW control instructions

 89

The procedure definition syntax is:

Label PROC [NEAR | FAR]
 …

RET [constant]
Label ENDP

The RET instruction allows one constant operand that specify a

number of bytes that will be added to the content of the SP register after
returning from the procedure. This operand can be used for deleting from
the stack the arguments that were transmitted to the procedure through the
stack.

The call procedure syntax is:

CALL {register | memory}

3. Lab tasks

1. Study the instructions and the examples presented before.
2. Write a program sequence that transforms the ASCII code of a small

letter in the ASCII code of the capital letter. The code will be taken
from a memory location and saved in the same memory location.

3. Write a program that calculates the average of the numbers from an
array of unsigned values. Write the average obtained on the display
and the message “The average is: ”. The average will be calculated
as a integer number. Use DOS system function calls to print
messages.

4. Compute the average only for the number between [5..10]
5. Write a program that displays the content of AX register in decimal.

HINT: divide AX several times with 10, print the results in reverse
order

6. Write a program that reads an integer without sign from the
keyboard until the enter key is pressed. HINT: every digit you read
will be converted to its numeric value. Compute like this:
145=(((1*10)+4)*10)+5

7. Write a procedure that converts a hex digit (0 to F) in an ASCII
character. Send the hex digit to the procedure in the AL register, and
the procedure returns the ASCII character in the same register.

