
93

LABORATORY WORK NO. 8
WORKING WITH MACROS AND LIBRARIES

1. Object of laboratory

Getting used to defining and using macros, procedure defining and

using LIB library librarian.

2. Theoretical considerations

2.1. Working with macros

The macros, procedures and libraries are the programmer tools,

which allow the call and the using of previously written and debugged code.
The macros are facilities for assembly language programmers. A

macro is a pseudo-operation that allows repeated including of code in the
program. The macro, once defined, his call by name allows his insertion any
time is needed. When meeting a macro name, the assembler expands his
name in corresponding code of the macro body. For this reason, it is said the
macros are executed in-line because the sequential execution flow of the
program in not interrupted.

Macros can be created as a part of user program or grouped into
another file as a macro library. A macro library is a usual file, which
contains a series of macros and which is referred during program assembly,
at the first pass of the assembler over the source program. It has to be
specified that a macro library contain unassembled source lines. Because of
that, macro libraries have to be included in the user source program using
the INCLUDE pseudo-instruction – see Annex 12 example. This is the
major difference between the macros library and a procedure library in
object code that contains assembled procedures as object code and which is
referred to the link-edit.

Firms offer this kind of macro libraries, for example DOS.INC and
BIOS.INC by IBM.

ASSEMBLY LANGUAGE PROGRAMMING

 94

For defining a macro it is used the sequence beneath:
name MACRO {macro parameters}

LOCAL local label list of the macro
these are expanded with different names at the
repeated call of the macro
{macro body}

ENDM

Example:

INTIR MACRO TIME
 LOCAL P1,P2 ;p1 and p2 are local labels
 PUSH DX ;saves the dx and cx registers
 PUSH CX ;cx
 MOV DX, TIME ;loads a delay in dx
P1: MOV CX, 0FF00H ;loads cx with 0FF00H
 ;counts
P2: DEC CX ;delays decrementing cx
 JNZ P2 ;if cx!=0 continue
 DEC DX ;if cx=0 decrements dx
 JNZ P1 ;if dx!=0 loads again cx
 POP CX ;if dx=0 remake cx
 POP DX ;and dx
 ENDM ;end macrou

P1 and P2 are the local labels of the macro.

2.2. Pre-defined macros

TASM recognizes pre-defined macros. Those are IRP, IRPC and

REPT. They are used for repeated defining.

Example:
 IRP VAL, <2,4,6,8,10>
 DB VAL
 DB VAL*2
 ENDM

In some cases, the formal parameter substitution with actual
parameters creates some problems. Let’s follow the macroinstruction, which
suggests interchanging two 16 bites quantities.

WORKING WITH MACROS AND LIBRARIES

 95

 TRANS MACRO X, Y
 PUSH AX
 PUSH BX
 MOV BX, X
 MOV AX, Y
 MOV X, AX
 MOV Y, BX
 POP BX
 POP AX
 ENDM

 Apparently, every thing is ok. However, unexpected situation can
appear, like in following sequence:
 TRANS AX, SI ;interchange ax with SI

 This referred macroinstruction will be expanded in:

 PUSH AX
 PUSH BX
 MOV BX, AX
 MOV AX, SI
 MOV AX, AX
 MOV SI, BX

POP BX
POP AX

and it is obviously the AX register is not modifying. Worst thing can
happen, like beneath:

 TRANS SP, DI ;interchange SP with DI

which is expanded in:
 PUSH AX
 PUSH BX
 MOV BX, SP
 MOV AX, DI
 MOV SP, AX ;SP is modified here
 MOV DI, BX ;POPs are compromised
 POP BX
 POP AX

ASSEMBLY LANGUAGE PROGRAMMING

 96

 Danger appears, therefore, in situation in which actual parameters
are conflicting with some variables or registers being used in the
macroinstruction. Situations like this must be avoided.

2.3. UsingTLIB librarian

The syntax for launching TLIB librarian is:

 TLIB library_name [/C] [/E] [/P] [/O] command,
listing_file_name

where:

- library_name represents the path and the library file name
- command represents commands sequence that will be executed

on the library
- listing_file_name represents the path and the name of the file in

which you want the crossed references to be generated for
PUBLIC symbols and for the library modules names. The listing
is generated after the processing in the library is finished.

A command is like:

 <symbol> module_name

where <symbol> represents:
 + : adds module_name to the library
 - : deletes module_name from the library
 * : extracts module_name from the library
without deleting it
 -+ or +-: replaces module_name in the library
 -* or *- : extracts module_name from the library and
deletes

module_name from the library

/C : case-senzitive library
 /E : creates extended dictionary
 /P size : sets library page dimension to size

For moving to the next line, use ‘&’ character.

WORKING WITH MACROS AND LIBRARIES

 97

2.4. Examples of programs that are using macros and libraries

2.4.1. Program EXEMMAC.ASM

;PROGRAM EXAMPLE FOR USING A SIMPLE MACRO

TITLE Program with macro call

STACK SEGMENT PARA 'STACK'
 DB 64 DUP ('STACK')
STACK ENDS

DATA SEGMENT PARA 'DATA'
TAMP DB 2000 DUP (' ')
DATA ENDS

INTIR MACRO TIME
 LOCAL P1, P2 ;;p1 and p2 are local labels

PUSH DX ;;saves dx and cx registers
 PUSH CX
 MOV DX, TIME ;; loads a delay in dx
P1: MOV CX, 0FF00H ;;loads cx with 0FF00h
 ;;counts
P2: DEC CX ;;delays by decrementing cx
 JNZ P2 ;;if cx!=0 continue
 DEC DX ;;if cx=0 decrements dx
 JNZ P1 ;;if dx!=0 loads again cx
 POP CX ;;if dx=0 remake cx and dx
 POP DX ;;
 ENDM ;;end macro

MYCOD SEGMENT PARA 'CODE' ;defines code segment
PROCED PROC FAR ;procedure with proced name
 ASSUME CS:MYCOD, ES:DATA, DS:DATA, SS:STACK
 PUSH DS
 XOR AX,AX
 PUSH AX
 MOV AX, DATA ;puts data segment in ax
 MOV ES, AX

ASSEMBLY LANGUAGE PROGRAMMING

 98

 MOV DS,AX ;loads es with data segment
;program will clear the display writing 25*80 spaces on the screen
;writing those with different values in bl the screen color will change
;intir macro will maintain this color for a time
 MOV CX, 08H ;loops 8 times
 MOV BL, 00H ;sets background color
LOOP1: LEA BP, TAMP ;writes black string
 MOV DX, 0000H ;sets the cursor to the upper

:left
 MOV AH, 19 ;writes attribute string
 MOV AL, 1 ;writes a character and moves

;the cursor
 PUSH CX ;saves cx
 MOV CX, 07D0H ;writes 2000 spaces
 INT 10H ;call 10h
 INTIR 10000 ;delays 10 units
 ADD BL, 10H ;changes background color
 POP CX ;restores cx
 LOOP LOOP1 ;loops 8 times
 RET ;hands over the control to

;dos
PROCED ENDP ;end procedure
MYCOD ENDS ;end code segment
 END PROCED ;end program

2.4.2. Program EXBIMAC.ASM

TITLE Example of macro library using
IF1 ;includes a previously created
 INCLUDE C:\TASM\MLAB.MAC ; macro library
; available on ftp.utcluj.ro/pub/users/cemil/asm/labs
ENDIF

STACK SEGMENT PARA 'STACK' ;defines a stack segment
 DB 64 DUP ('STACK')
STACK ENDS

SEGDATA SEGMENT PARA 'DATA' ;data segment definition
MESSAGE DB 'I am a simple counting program$'
TAMP DB 2000 DUP (‘ ‘)
SEGDATA ENDS

WORKING WITH MACROS AND LIBRARIES

 99

COD1 SEGMENT PARA 'CODE' ;code segment definition
MYPROC PROC FAR ;procedure with myproc name
ASSUME CS:COD1, DS:SEGDATA, SS:STACK

 PUSH DS ;saves ds
 SUB AX, AX ;0 in ax
 PUSH AX ;0 on the stack
 MOV AX, SEGDATA ;adr segdata in ax
 MOV DS, AX ;adr segdata in ds
 DELETE ;clear screen macro call
 CURSOR 0019H ;pos cursor macro call
 TYPECAR MESSAGE ;message type macro call
 MOV AX, 00H ;0 in ax for counting
REPEAT: CURSOR 0C28H ;in middle of the screen
 TYPENUM ;number type macro call
 INTIR 1000 ;delay macro call
 ADD AL, 01H ;increment al
 DAA ;decimal adjustment
 CMP AL, 50H ;test final
 JE SFIR ;after 9 executions
 JMP REPEAT ;else repeat
SFIR: DELETE ;clear screen macro call
 RET ;back to dos
MYPROC ENDP ;end procedure
COD1 ENDS ;end segment
 END MYPROC ;end program

2.4.3 Calling a procedure defined in a different source file
Main program:

;Program example for procedure use procedure defined in a different source
;file
TITLE Program with procedure call

STACK SEGMENT PARA 'STACK'
 DB 64 DUP ('STACK')
STACK ENDS

DATA SEGMENT PARA `DATA`
TAMP DB 2000 DUP (' ')
DATA ENDS

ASSEMBLY LANGUAGE PROGRAMMING

 100

COD1 SEGMENT PARA 'CODE' ;code segment definition
PROCED PROC FAR ;procedure with proced name
 ASSUME CS:COD1, ES: DATA, DS:DATA, SS:STACK

EXTRN INTIRP:NEAR ;extern declaration for INTIRP
 ;procedure

 PUSH DS ;saves ds
 SUB AX, AX ;0 in ax
 PUSH AX ;puts 0 on the stack
 MOV AX, DATA ;puts seg data in ax
 MOV DS,AX
;main program
 MOV AX, 10 0 ;parameter in ax
 CALL INTIRP ;intirp procedure call
 RET ;gives the control to dos
PROCED ENDP ;procedure end
COD1 ENDS ;code segment end
 END PROCED ;end program
;End of first source file ___________ _____ ______

;Start of second sourse file______________________________
;called procedure
COD1 SEGMENT PARA 'CODE' ;defines code segment
 PUBLIC INTIRP ;public declaration for INTIRP

 ;procedure
 ASSUME CS:COD1
INTIRP PROC NEAR ;intirp procedure name
 PUSH DX ;saves dx şi cx registers

PUSH CX ;
MOV DX, AX ;loads a delay in dx

P1: MOV CX, 0FF00H ;loads 0FF00h in cx
 ;counts
P1: DEC CX ;delays decrementing cx
 JNZ P2 ;if cx!=0 continue
 DEC DX ;if cx=0 decrements dx
 JNZ P1 ;if dx!=0 loads again cx
 POP CX ;if dx=0 restore cx and
 POP DX ;dx
 RET ;return to the main procedure

WORKING WITH MACROS AND LIBRARIES

 101

INTIRP ENDP ;procedure end
COD1 ENDS
END

3. Lab tasks

1. Study the given example and exemmac.asm program.
2. Assemble this program with TASM and create EXEMMAC.LST

file, study the way INTIR macro has been expanded.
3. Edit the links with LINK and execute exemmac.exe generated

program.
4. Modify INTIR macro TIME parameter with different values with an

edit program and repeat the steps from 1 to 3.
5. Study the case in which the macro is written into a separate file and

it is included with INCLUDE directive (see previously example);
notice the difference from a module included before compilation
(with INCLUDE), a macro (which is similar) and a library (which
contains compiled modules) – point out the similarity with .h files
from C which are being compiled in the same time with the program.

6. Study the example of using a macro library MLIB.MAC in the
exbimac.asm program.

7. Study the expand mode of PUSHALL and POPALL macros in
TASM created listing of the program from the step 5.

8. Edit the links with TLINK program and execute EXBIMAC.EXE
program.

9. Write a procedure with the same function as INTIR macro with
INTIRP name. Include this procedure into a library with
BIBLIO.LIB name. TIME parameter will be passed to the procedure
in AX register.

10. Modify exmmac.asm to axmlib.asm and replace macros with
procedure calls to INTIRP procedure, which initially has been
included in BIBLIO.LIB.

11. Trace the program from steps 3 and 10 and follow the differences of
generated code and change in instruction flow.

