
 1

Lab work no. 9

Programs with multiple segments

Object of laboratory

Procedure definition, procedure call from the same segment and from different

segments; working with programs written in more, separately assembled modules.

Theoretical considerations

Procedures may be defined as FAR or NEAR type. The procedure’s type

determines the way in which the call is made and the information that is saved on the

stack at calling.

When calling a NEAR type procedure, IP register is saved on the stack. CS

register remains unmodified and is not saved on the stack. This implies that the two

procedures, the called one and the one that makes the call, belong to the same code

segment. If the two procedures are defined in different program modules or files, the fact

that they belong to the same segment is defined in concordance with the names of code

segments in which the procedures were defined. The code segment needs to have the

same name. The link-editor knows to concatenate in a single segment code segments

with the same name from different modules.

The declaration of a procedure that is defined in another program module than the

one that makes the call (uses the procedure) is made through the EXTRN directive. The

called procedure has to be declared with the PUBLIC directive in the module in which it

is defined. EXTRN and PUBLIC declarations must be written inside the segment and not

outside for near procedure.

 When calling a FAR type procedure CS, IP are saved on the stack. In this case the

two procedures must belong to different segments. EXTRN declaration is made outside

the segment and the PUBLIC inside the segment. FAR type calling is used only when the

NEAR type calling is not possible, because this type of call is slower due to the more

references made to the stack both at calling time and return time. A FAR type call is

necessary when the length of the two procedures might exceed 64K, this being the

maximum admitted dimension for a segment.

 2

Procedure definition example: NEAR type procedures with procedures in different

modules/files:

The calling, main, procedure:

DATE SEGMENT PARA PUBLIC ‘DATA’ ; data segment definition

 ;…

DATE ENDS

STAC SEGMENT PARA STACK ‘stack’ ;stack segment definition

 db 64 dup (‘MY_STACK’)

STAC ENDS

COD1 SEGMENT PARA PUBLIC ‘CODE’ ; cod segment definition

EXTRN PROCED: NEAR

PRPRINC PROC FAR ; main procedure definition

ASSUME CS: COD1, DS: DATE, SS: STAC, ES: NOTHING

 PUSH ds ;prepare stack

 SUB ax, ax ;to return

 PUSH ax ; to DOS

 MOV AX, DATE ; load register

 MOV DS, AX ; DS with data segment

; The instructions of the main procedure

 CALL PROCED ; call procedure

; Other instructions

 RET ; coming back to DOS

PRPRINC ENDP ; end procedure

COD1 ENDS ; segment’s end

END PRPRINC ; end of the first module

--end of first file

The called procedure defined in another program module:

COD1 SEGMENT PARA ‘CODE’ ; segment code

definition

PUBLIC PROCED ; declare proced as

PUBLIC

ASSUME CS: COD1

PROCED PROC NEAR ; procedure definition

;The instructions of the called procedure

 RET ; coming back to the procedure,

which made the call

 3

PROCED ENDP ; end procedure

COD1 ENDS ; end segment

 END ; end of second module

-- end of second file

FAR type procedure call example, procedure in different segments with the

procedures in two different modules/files:

EXTRN PROCED2:FAR

STAC SEGMENT PARA STACK ‘stack’ ;stack segment

definition

 db 64 dup (‘MY_STACK’)

STAC ENDS

DATE SEGMENT PARA PUBLIC ‘DATA’ ; data segment

definition

 ;… data definition

DATE ENDS

COD2 SEGMENT PARA PUBLIC ‘CODE’ ; code segment

definition

ASSUME CS: COD2, DS: DATE, SS:STAC, ES:NOTHING

PRPRINC2 PROC FAR ; main procedure

definition

 PUSH DS ; prepare stack

 SUB AX, AX ; to return

 PUSH AX ; to DOS

 MOV AX, DATE ; load register

 MOV DS, AX ; DS with data segment

; The main procedure’s instructions

 CALL PROCED2 ; procedure call

; Other instructions

 RET ; coming back to DOS

PRPRINC2 ENDP ; end procedure

COD2 ENDS ; end segment

 END PRPRINC ; end of the first module

--- end of first file

The called procedure defined in another program module:

COD3 SEGMENT PARA ‘CODE’ ; code segment

definition

PUBLIC PROCED2 ; procedure declaration

as public

 4

ASSUME CS: COD3

PROCED2 PROC FAR ; procedure definition

; The instructions of the called procedure

RETF ; back

to the procedure which made the call

PROCED2 ENDP ; end procedure

COD3 ENDS ; end segment

 END ; end of second module

-- end of second file

Passing parameters to procedures

There are three known types of parameter transfers to procedures in assembly

language: through registers, through pointers and data structure and through the stack.

Transfer through registers

The advantage of this solution is that that in the procedure, the actual parameters

are immediately available. For register conservation, these are saved on the stack before

calling the procedure and are restored after returning from the procedure. There are 2

disadvantages of this:

- the limited number of available registers

- non-uniformity of the method – there is no ordered modality of

transferring, each procedure having it’s own rules for transfer

Another advantage is speed, many operations with the memory (stack) not

needed.

Transfer through memory

In this transfer type a data zone is prepared previously and the address of this data

zone is transmitted to the procedure.

 To ease access to the parameters it is recommended to define a structure, which

describes the structure of the parameters:

 _ZONA STRUC

 VAL1 DD ?

 VAL2 DD ?

 RETURN DD ?

 _ZONA ENDS

 DAT SEGMENT PARA PUBLIC 'data'

 ZONE _ZONA <10, 20, ?>

 dat ends

 COD SEGMENT PARA PUBLIC 'code'

 Assume cs:cod, ds:dat

 5

 extrn proce:near

 LEA BX, ZONE

 CALL PROCe

 cod ends

 end

Parameter transfer through stack

 Transferring parameters through the stack is the most uniform transfer modality.

The transfer through stack is compulsory if the applications contain both ASM modules

and modules in high level languages. The standard access technique to the parameters

procedure is based on based addressing using BP register, which uses by default SS

register as segment register to access the data. The access is achieved through the

following operations, executed when entering the procedure:

- BP register is saved on the stack

- SP is copied to BP

- the registers used by the procedure are saved on the stack

- the parameters are accessed through indirect addressing using BP

When ending the procedure, the following operations are executed:

- the saved registers are restored

- BP is restored

- Return to the program which made the call through RET

Lab tasks

1. Study the given examples, noticing the differences between the two procedure call

types: FAR and NEAR.

2. Write a program which calculates the sum of a string of numbers using a NEAR

and then a FAR type procedure, written in another code segment, first both

segments being written in the same file and then in different files. The procedure

will be called sum and it will get as input parameters: the address and length of

the string from DS: BX and CX registers. The procedure will return the sum in

AX register.

Observations:

- The procedures which are to be included in a library will be defined of the

same type, FAR or NEAR, in segments with the same name (if possible), in

order not to complicate any more the call and the link edition.

- It is also recommended to group procedures of the same type (mathematical,

display, etc) in different libraries having suggestive names.

 6

Solved problem: Write a recursive procedure to display a number stored in AX

Solution:

TIP STRUC ; pattern for parameters

 _BP DW ?

 _CS DW ?

 _IP DW ?

 N DW ?

TIP ENDS

MYSTACK SEGMENT STACK 'stack'

 DB 4096 DUP (?) ; stack segment declaration

MYSTACK ENDS

COD SEGMENT PARA PUBLIC 'CODE'

 ASSUME CS:COD, SS:MYSTACK

 DISPL PROC FAR

 PUSH BP ; standard access

 MOV BP, SP ; sequence

 PUSH DX

 PUSH AX ; we will work with these

registers in the

 ; procedure, so we save them

 PUSH BX

 MOV AX,[BP].N

 CMP AX, 10 ; if n<10, dl=n

 MOV DL, AL

 JB DISPLAY_1 ; jump to display (we have

only one number)

 MOV BX, 10 ; general case

 MOV DX, 0 ; calculates n/10 and n mod

10

 DIV BX ; AX=n/10;

 ; dl=n mod 10

 PUSH AX ; recursive call with n/10

parameter

 CALL FAR PTR DISPL

DISPLAY_1:

 ADD DL, '0' ; +’0’

 MOV AH, 02H ; Dos function for display

 7

 INT 21H ; display

 POP BX ; restore

 POP AX ; registers

 POP DX

 POP BP

 RETF 2 ; FAR type return

 DISPL ENDP

 START:

 MOV AX, 65535 ; prepare register with number to

display

 PUSH AX ; we put it on the stack as

parameter

 CALL FAR PTR DISPL ; procedure call

 MOV AX, 4C00H ; return to

 INT 21H ; DOS

COD ENDS

 END START

