II Civil Engineering NUMERICAL ANALYSIS Academic year 2010-2011

Exam Questions – January 2011

Item No.	Chapter [— Sub-Chapter]: Topic [†]
1	Object of Numerical Analysis: Object. Problem conditioning; condition number; examples. Algorithm stability. Conclusions on problem conditioning and algorithm stability.
2	Computer representation of numbers: Integers. Reals, floating-point representation: Representation models (scientific; binary computer).
3	Computer representation of numbers: Reals, floating-point representation: Format structure; IEEE Formats.
4	Computer representation of numbers: Intrinsic Fortran functions returning format parameters (CVF).
5	Computer representation of numbers –IEEE Formats: Special values. Representation range (reals).
6	Computer representation of numbers – Rounding error measure: ULP; Machine- ε , Unit rounding error.
7	Errors, sources and propagation: Error; Relative error. Significant digits.
8	Errors, sources and propagation: Error sources. Rounding error; Truncation case. Examples for base $\beta = 2$.
9	Errors, sources and propagation – Error propagation: Propagated error. Multiplication; Division; Function evaluation.
10	Errors, sources and propagation – Error propagation: Loss of signification error. Addition and subtraction. Propagation of errors in a sum.
11	Nonlinear equations: Method and method analysis. Order of convergence; Linear convergence.
12	Roots of an equation $f(x) = 0$: Bisection method. Secant method. Remarks on secant method.
13	Roots of an equation $f(x) = 0$ – Newton method: Method; Convergence. Error estimation. Comparison with Secant method.
14	Root of a polynomial: Polynomial evaluation; Deflation; Newton method for polynomials.
15	Root of a polynomial: Method algorithms: Deflation. Direct iteration in the original polynomial.
16	Systems of non-linear equations: Definitions. Vector norm. Matrix norm; Matrix norm induced by vector norm; spectral radius.
17	Systems of non-linear equations: Fixed-point method. Convergence. Second order convergence. Explicit fixed-point procedure; Iteration with constant matrix A (updated). Practical iteration scheme.

Item	Chapter [— Sub-Chapter]:
No.	Topic [†]
18	Systems of non-linear equations:
	Newton Method; Convergence; Practical iteration scheme.
19	Linear systems of equations:
	General considerations. Gauss elimination. Triangular factorization of system matrix;
	Pivoting in Gauss elimination.
20	Linear systems of equations – Gauss elimination:
	Number of operations in Gauss elimination. Matrix inversion, number of operations.
21	Linear systems of equations:
	LU decomposition; Solution steps; Number of operations. Direct evaluation of LU
	factors.

[†] Chapter/Sub-chapter and Topic refer to course lectures.

January 13, 2011

Adrian Chisăliță