PROBLEM No. 1 / I

Define the following numbers:

 $ULP = 2^{-23}$; $EM = 2^{-24}$; and EPS = EPSILON(real*4),

where EPSILON(x) is the intrinsic Fortran function.

Write a program which computes in *single precision*, and displays the values:

1) *ULP*; *EM*; *EPS*

2) u = 1.0 + ULP; u1 = 1.0 + EM; u2 = 1.0 + EPS

Check (in the program) if u, u1, and u2 are greater than or equal to 1.0.

Explain the results.

PROBLEM No. 2 / I

Calculate the values of functions f, f2, and g, at the following x values:

- $x = 10^{i}, \quad i = 1, 2, ..., 7.$ $f(x) = x(\sqrt{x+2} - \sqrt{x-1}) \qquad \dots \text{ In single precision;}$ $f 2(x) = x(\sqrt{x+2} - \sqrt{x-1}) \qquad \dots \text{ In double precision;}$ $g(x) = \frac{3x}{\sqrt{x+2} + \sqrt{x+1}} \qquad \dots \text{ In single precision.}$
- Tabulate computed values (f 2(x) with 15 significant digits), and explain the results.
- Find out the number of correct significant digits of f(x) value, for $x = 10^6$.

PROBLEM No. 3 / I

Equation $f(x) = e^x - 4x^2 = 0$ has three roots.

Find the roots, with tolerance $EPS = 10^{-6}$, by:

- BISECTION Method
- NEWTON Method

PROBLEM No. 4 / I

Consider the equation f(x) = 0, where:

- $f(x) = 0.98\cos(x) x + 1.58$
- 1) Solve the equation by NEWTON method, picking $x_0 = 1.5$ and tolerance

 $EPS = 10^{-6}$.

- 2) Solve again by SECANT method, with $x_0 = 1.5$, $x_1 = 1.6$, and $EPS = 10^{-6}$.
- 3) Compare the number of iterations in the two methods.

PROBLEM No. 5 / I

Given the equation

$$tg(x) = \frac{1.78 - x}{x + 0.2}.$$

1) Solve the equation by NEWTON method, choosing $x_0 = 0.8$ and tolerance

 $EPS = 10^{-6}$.

2) Solve the equation by SECANT method, with $x_0 = 0.7$, $x_1 = 0.9$, and

 $EPS = 10^{-6}$.

3) Compare the number of iterations in the two methods.

PROBLEM No. 6 / I

Consider the function

$$f(x) = x + e^{-px^2} \cos(x),$$

where *p* is a parameter.

Equation f(x) = 0 has a unique root in the interval (-1, 0).

1) Find the roots for the following p values: p = 1; 5; and 25, with a tolerance

 $EPS = 10^{-6}$.

- 2) Solve by Newton method the case p = 25, with $EPS = 10^{-6}$, and $x_0 = 0$.
- 3) Comment the result.

PROBLEM No. 7 / I

Let f be the friction factor for the flow of a suspension, R the Reynolds number, and k a constant depending of the suspension concentration. These quantities are related by the empirical relation (Lee & Duffy, 1976):

$$\frac{1}{\sqrt{f}} = \frac{1}{k} \ln(R\sqrt{f}) + 14 - \frac{5.6}{k}$$

Determine f for the values: k = 0.28 and R = 3750.

PROBLEM No. 8 / I

For a solar-energy collector (with plane mirrors focused on a central collector), L.L.Van-Hull (1976) establishes the following equation for the geometrical concentration factor C:

 $C = \frac{\pi (h/\cos A)^2 F}{0.5\pi D^2 (1 + \sin A - 0.5\cos A)}$

In which: A = rim angle of the field; F = fractional coverage of the field withmirrors; D and h = the collector diameter and height, respectively.Find A, for the values: C = 1200, D = 14, h = 300, and F = 0.8.

PROBLEM No. 9 / I

Determine t, with a tolerance of 10^{-5} , from the equation

 $e^{-t/2} \cosh^{-1}(e^{t/2}) = \sqrt{0.5L_{cr}},$

for $L_{cr} = 0.088$. (*t* is the temperature in the interior of a material with imbedded heat sources; Frank-Kamenetski, 1955).

PROBLEM No. 10 / I

Given the LEGENDRE polynomial of order 6

$$P_6(x) = \frac{1}{16} (231x^6 - 315x^4 + 105x^2 - 5),$$

- Find initial approximations of the roots (by algebraic methods, function graph, etc.)
- 2) Calculate the roots, with tolerance 10^{-6} .

Note: All roots are of modulus < 1.

PROBLEM No. 11 / I

The polynomial

$$p(x) = x^5 - 15x^4 + 85x^3 - 225x^2 + 274x - 120$$

has the roots: $x_1 = 1; x_2 = 2; ...; x_5 = 5$.

Let $\tilde{p}(x)$ be the polynomial obtained form p(x) by replacing the coefficient

- $a_4 = -15$ of x^4 , with $\tilde{a}_4 = -15.003$.
- Calculate the roots of $\tilde{p}(x)$.
- Calculate the modulus of the ratio: relative perturbation in the root x_5 / relative perturbation in the coefficient a_4 . Comment the result.

(If a perturbed becomes \tilde{a} , the relative perturbation is: $(\tilde{a} - a)/a$.)

PROBLEM No. 12 / I

Consider the system:

$$\begin{cases} xy - z^{2} = 2 \\ -xyz - x^{2} + y^{2} = 4 \\ e^{x} - e^{y} - z = 7 \end{cases}$$

Solve by NEWTON method, with tolerance $EPS = 10^{-6}$.

- 1) With initial approximation $w_0 = (1, 1, 1)$
- 2) With initial approximation $w_0 = (2, 2, -1)$

Compare the number of iterations and explain.

PROBLEM No. 13 / I

Consider the system:

$$\begin{cases} x - y + \sqrt{x + y} = 1\\ x + y - e^{x - y} = 3 \end{cases}$$

Solve the system, by iteration with constant matrix A (updated after 3 steps), with tolerance $EPS = 10^{-6}$ and initial approximation $w_0 = (1, 2)$.

PROBLEM No. 14 / I

Consider the system:

$$\begin{cases} x^2 + x - y^2 = 1\\ y - \sin(x)^2 = 0 \end{cases}$$

Solve the system, with tolerance $EPS = 10^{-6}$, and initial approximations:

$$w_0^{(1)} = (0.7, 0.5); w_0^{(2)} = (-1.5, 0.4):$$

- 1) by NEWTON method;
- 2) by iteration with constant matrix A (with updating after 3 steps).

PROBLEM No. 15 / I

Consider the system:

$$\begin{cases} x^3 + 3y^2 = 21\\ x^2 + 2y = -2 \end{cases}$$

- Find the initial approximations x_0, y_0 , from the intersection of the two graphs.
- Solve by NEWTON method, with tolerance $EPS = 10^{-6}$.

PROBLEM No. 16 / II

Consider the system:

 $\begin{cases} \sin(xy) = 0.5\\ \cos(x) = e^{y} \end{cases}$

- Solve by NEWTON method, with tolerance $EPS = 10^{-6}$: Find the roots near $w_0 = (-1, -0.5)$, and $w_0 = (5, -1)$, respectively
- Solve again, by iteration with constant matrix A (with updating after 3 steps).

PROBLEM No. 17 / I

Consider the system:

$$\begin{cases} f_1(x, y) = x^2 + 4y^2 - 9 = 0\\ f_2(x, y) = -14x^2 + 18y + 45 = 0 \end{cases}$$

- Determine the initial approximations x_0, y_0 , from the intersection of curves

 $f_1(x, y) = 0$ and $f_2(x, y) = 0$.

- Solve by NEWTON method, with tolerance $EPS = 10^{-6}$.

PROBLEM No. 18 / I

Consider the system:

$$\begin{cases} x^{2} + y^{2} + z^{2} = 6.4 \\ xyz = -2.2 \\ x + y - z^{2} = 2.4 \end{cases}$$

Solve by NEWTON method, with tolerance $EPS = 10^{-6}$ and initial approximation $w_0 = (2., 1, -1)$.

PROBLEM No. 19 / II

Consider the system:

$$\begin{cases} x^{2} + 2\sin(y) + z = -0.1\\ \cos(y) - z = 2.1\\ x^{2} + y^{2} + z^{2} = 2 \end{cases}$$

Find the solution near $w_0 = (1, 0, -1)$, with tolerance $EPS = 10^{-6}$, either by Newton method, or by iteration with constant matrix A (with updating after 3 steps).

PROBLEM No. 20 / II

Consider the system:

$$\begin{cases} (x - y)(x + y)^{1/2} = 3\\ x - \log(x - y) = 1 \end{cases}$$

Solve the system, with:

- Tolerance $EPS = 10^{-6}$.
- Initial approximation $w_0 = (2, -0.5)$.

Use either iteration with constant matrix *A* (updated after 3 steps), or Newton method.

PROBLEM No. 21 / I

Given the linear system with matrix:

$$A = \begin{bmatrix} 3.01 & 6.03 & 1.99 \\ 1.27 & 4.16 & -1.23 \\ .987 & -4.81 & 9.34 \end{bmatrix}$$

1) Calculate the solution for the right-hand side $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

2) Repeat part (1), with matrix A' obtained from A, by the replacements:

 $3.01 \rightarrow 3.00$ (element a_{11}) and $.987 \rightarrow .990$ (element a_{31}). Compare the

results and conclude about the conditioning of the problem.

PROBLEM No. 22 / I

Given the matrix:

$$A = \begin{bmatrix} 3.01 & 6.03 & 1.99 \\ 1.27 & 4.16 & -1.23 \\ .987 & -4.81 & 9.34 \end{bmatrix}.$$

- 1) Calculate the inverse A^{-1} of A.
- 2) Calculate the following number: $cond(A)_{\infty} = ||\mathbf{A}||_{\infty} \cdot ||\mathbf{A}^{-1}||_{\infty}$.

(*cond*(*A*) is called number of condition)

PROBLEM No. 23 / I

Given the matrix

$$A = \begin{bmatrix} 0.2 & 0.3 & 0.4 & 0.501 \\ 0.3 & 0.4 & 0.5 & 0.6 \\ 0.4 & 0.5 & 0.6 & 0.7 \\ 0.501 & 0.6 & 0.7 & 0.8 \end{bmatrix}$$

- 1) Calculate the inverse A^{-1} of A.
- 2) Calculate the following number: $cond(A)_1 = ||\mathbf{A}||_1 \cdot ||\mathbf{A}^{-1}||_1$.

(*cond*(*A*) is called number of condition)

PROBLEM No. 24 / I

Consider the HILBERT matrix of order 5:

$$H_{5} = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 & 1/5 \\ 1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1/5 & 1/6 & 1/7 & 1/8 & 1/9 \end{bmatrix};$$

1) Solve the linear system $H_5 x = b$, for:

 $b = \begin{bmatrix} 1.0 & 0.6 & 0.4 & 0.3 & 0.3 \end{bmatrix}^T$, and $\tilde{b} = \begin{bmatrix} 1.02 & 0.6 & 0.4 & 0.3 & 0.3 \end{bmatrix}^T$.

2) Compute the ratio: maximum relative perturbation in solution (in modulus) / relative perturbation in right-hand side b₁ (in modulus). Comment the result. (If a perturbed becomes ã, the relative perturbation is: (ã – a)/a.)

PROBLEM No. 25 / I

Consider the linear system Ax = b, where:

$$A = \begin{bmatrix} 4 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & -1 & 4 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 1 & 1 \\ -2 & 0 \\ -2 & 1 \\ -2 & 0 \\ 1 & 1 \end{bmatrix}.$$

- 1) Solve the system by LU method.
- 2) How can be computed the determinant of A?

PROBLEM No. 26 / I

Consider the linear system Ax = b, where:

$$A = \begin{bmatrix} 16 & 4 & 8 \\ 4 & 5 & -4 \\ 8 & -4 & 22 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 1 & 2 & 28 \\ 1 & 1 & 5 \\ 1 & -1 & 26 \end{bmatrix}.$$

- 1) Solve the system by LU method.
- 2) How can be computed the determinant of A?

Consider the HILBERT matrix of order 3:

$$H_{3} = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix};$$

Matrix entries are: $h_{ij} = 1./(i + j - 1)$.

- 1) Calculate H_3^{-1} in single precision.
- 2) Calculate H_3^{-1} in double precision.
- 3) Calculate in single precision the *analytical* inverse $(H_3^{-1})_T = [\alpha_{ij}]$, where:

$$\alpha_{ij} = (-1)^{i+j} \frac{(n+i-1)!(n+j-1)!}{(i+j-1)[(i-1)(j-1)]^2(n-i)!(n-j)!}$$

Compare the elements of the inverses in part (1) and (2), with those of the inverse in part (3). Comment the comparison results.