SUBJECT PRESENTATION FORM

Subject name	NUMERICAL ANALYSIS
Field of study	Civil Engineering
Main field of study	Civil Engineering
Subject code	41322008
Subject main teacher	Prof. Adrian CHISALITA, MSc(Eng), BSc(Math), PhD
Collaborators	
Department	Structural Mechanics
Faculty	Civil Engineering (Construcții)

Sem.	Type of subject	Course	Appl	licati	ons	Course	Ap	plica	tions	Individual Study	S I		Type of examination
		[Classes/week]			[Classes/semester.]			LOJ	Cre				
			S	L	Р		S	L	Р			•	
3	Fundamental	1	-	1	•	14	-	14	-	50	78	3	Exam

Prerequisites: Differential Calculus; Fortran 90/95 programming language.

Theoretical knowledge, (What the students must know)

Aim: An introduction to Scientific Computation:

Applied Numerical Analysis, with problems solved on computer. Achieved skills: (What they can do)

The student is supposed to be able to handle most of numerical methods for solving equations; and, be _ able to analyze the accuracy and the stability of a numerical method.

At the same time, the student has to manage the use of library routines for building a project in order to solve a computational problem.

Achieved abilities: (What types of equipments and instruments they know how to use)

- To use a PC with Windows OS;
- To use the development environment of MS Visual Studio and CVF (Compaq Visual Fortran). _

A.	Course (course titles +curriculum)
1	Object of Numerical Analysis:
	Object. Problem conditioning, condition number. Algorithm stability. Conclusions regarding problem
	conditioning and algorithm stability.
	Computer representation of numbers:
	Integers. Reals, floating-point representation: Representation models (scientific; binary computer). Format
	structure; IEEE Formats.
2	Computer representation of numbers –IEEE Formats:
	Special values; Representation range.
	Computer representation of numbers – Rounding error measure:
	ULP; machine-ɛ; Unit rounding error.
	Errors, sources and propagation:
	Error; Relative error; Significant digits. Error sources. Rounding error. Truncation case. Examples for base
	$\beta = 2.$
3	Errors, sources and propagation – Error propagation:
	Propagated error. Multiplication; Division; Function evaluation. Loss of signification error. Addition and
	subtraction. Propagation of errors in a sum.
	Nonlinear equations:
	Method and method analysis; Order of convergence. Linear convergence.
4	Roots of an equation $f(x) = 0$:
	Bisection method. Secant method. Newton method; Error estimation; Comparison with Secant method.
	Fixed-Point method:
	Method. Convergence (contractive mapping). Geometrical interpretation.
5	Fixed-Point method:
	Method. Convergence (contractive mapping). Geometrical interpretation. Higher order Fixed-point methods.
	Error evaluation. Explicit Fixed-point procedures. The stationary process.
	Multiple roots of equation $f(x) = 0$:
	Problems. Newton method and Modified Newton method.
	Root of a polynomial:
	Polynomial evaluation; Deflation; Newton method for polynomials. Algorithm. Stability of the roots.
	Complex roots (elements).

6	Systems of non-linear equations:
	Definitions. Vector & Matrix norm.
	Fixed-point method. Convergence. Second order convergence. Practical iteration scheme. Explicit fixed-
	point procedure: Iteration with constant matrix A (updated).
	Newton method; Convergence; Practical iteration scheme. Newton-like methods.
7	Linear systems of equations:
	General considerations.
	Gauss elimination. Pivoting. Number of operations. Matrix inversion.
	LU decomposition. Direct evaluation of LU factors, methods.
	Cholesky method.
	Solution stability and error analysis: Condition number. Well- and ill-conditioned matrices

B1.	B1. Applications – WORKS (list of works, seminar works, contents of the year end project)				
1	Developer Studio Recall; Project structure; Building a project. Use of ANA Library.				
	Algorithm stability (Bessel function direct and recursion computation)				
2	Computer representation of numbers. Bitview utility. Special values. ULP; machine-&; Unit rounding error.				
3	Errors. Bisection method. Secant method.				
4	Newton method. Fixed-point method; Stationary process.				
5	Roots of polynomials; Stability of the roots. Non-linear systems: Fixed-point method.				
6	Non-linear systems: Newton method. Linear systems: Gauss.				
7	Linear systems: Matrix inversion; LU; Cholesky. Condition number.				

B2. Laboratory room (Room/surface, address) 304/58m ² , street Daicoviciu no.15, Tower Building, 3 rd floor.					
Equipment	Equipment description	Year of purchase			
Computers Room 304: 14 pcs.	Computer: PC- Processor Pentium IV/3GHz/Mem.1024MB/ HDD 200GB/DVD-RW/Monitor TFT 19"/Keyboard & Mouse;	2006			
Software	MS Windows XP Professional, SP2 MS Office 2003 Compaq Visual Fortran 6.6C	2005 2003 2001			

C. Individual study (topics of the bibliographical studies, summarized materials, projects, applications etc.)

- 1. Fortran 90/95 programming.
- 2. ANA sources & Examples.
- 3. Computer representation of numbers.
- 4. Exam Problem.

Structure of	Course	Solving	Training,	Time	Bibliographical	Total number of classes
the	study	homework,	applications	allotted for	supplementary	for individual study
Individual		labs,		examinations	study	
study		projects				
No. of	21	21	0	1	7	50
classes						

D. Teaching methods and strategies

1. Course: Lectures.

2. Laboratory: Computer work, problem solving. Based on ANA Library & ANA User's Guide.

3. Exam Problem: One problem (randomly chosen) is given to each student at Lab #6, to be solved and be presented at the end-of-semester exam. The list of Problems is posted on ftp.utcluj.ro.

Bibliography

- 1. Chisalita A., "Numerical Analysis", UTC-N, 2002.
- 2. Chisalita A., "ANA Numerical Analysis Library (source code)", UTC-N, 1991-2009.
- 3. Chisalita A., "ANA User's Guide", UTC-N, 2008.
- 4. Atkinson K.E., "An Introduction to Numerical Analysis", John Wiley & Sons, N.Y., 1978
- 5. Atkinson K.E., "Elementary Numerical Analysis", 2nd edition, John Wiley & Sons, N.Y., 1993
- 6. Curtis F.G., "Applied Numerical Analysis", Addison-Wesley Publishing Company, Inc., 1978
- 7. Isaacson E., and Keller H.B., "Analysis of Numerical Methods", John Wiley & Sons, N.Y., 1966
- 8. Kincaid D., and Cheney W., "Numerical Analysis", 2nd edition, Brooks/Cole Publ. Co., 1996
- 9. Ralston A., and Rabinowitz Ph., " A First Course in Numerical Analysis", McGraw-Hill, Inc., 1978

SUBJECT PRESENTATION FORM

- 10. "Compaq Visual Fortran Language Reference Manual", 2001
- 11. "Compaq Visual Fortran Programmer's Guide", 2001
- "Intel Fortran Compiler 11.1 User and Reference Guide", 2009-2010
 "IMSL Mathematical and Statistical Libraries", Compaq Visual Fortran 6.6, IMSL Help, 1999.
- 14. "High-Precision Software Directory", 2010, http://crd.lbl.gov/~dhbailey/mpdist/

Examination and grading procedure					
Examination procedure	Oral Examination.				
	1. One Theoretical Question: picked by the student from a lot of questions.				
	The list of Theoretical Questions is posted on <u>ftp.utcuj.ro</u> , the last day of the				
	semester.				
	2. One Problem: pre-solved and presented (on computer).				
Components of the grade	1. Theory Mark; 2. Problem mark; 3. Up to 1 point Bonus, for Lab attendance				
	(Bonus = Lab attendance/7).				
Formula for calculating	Final mark = $(\text{Theory mark} + \text{Problem mark})/2 + \text{Bonus} - \text{if applicable}.$				
the grade	Condition for passing: Each of Theory mark and Problem mark be ≥ 5 .				
	The bonus is granted at the 1 st attendance to the exam, and only if the passing condition is				
	fulfilled.				

Subject coordinator, Prof. Adrian CHISALITA