II Civil Engineering NUMERICAL ANALYSIS Academic year 2011-2012

Exam Questions – February 2012

Item	Chapter [- Sub-Chapter]:
No.	Topic
1	<i>Object of Numerical Analysis:</i> Object. Problem conditioning; condition number; examples. Algorithm stability. Conclusions on problem conditioning and algorithm stability.
2	Computer representation of numbers:
	Integers.
	- Reals, floating-point representation:
	Representation models (scientific; binary computer).
3	Computer representation of number - Reals, floating-point representation:
	Format structure; IEEE Formats.
4	Computer representation of numbers:
	Intrinsic Fortran functions returning format parameters (CVF).
5	Computer representation of numbers – IEEE Formats:
	Special values. Representation range (reals).
6	Computer representation of numbers – Rounding error measure:
_	ULP; Machine- ε ; Unit rounding error.
1	Errors, sources and propagation:
0	Error; Relative error. Significant digits.
8	Errors, sources and propagation:
	Error sources. Rounding error; Truncation case. whikinson form of the error.
0	Examples for base $p = 2$.
9	Propagated error Multiplication: Division: Function evaluation
10	From sources and propagation – Error propagation:
10	Loss of signification error Addition and subtraction Propagation of errors in a sum
11	Nonlinear equations:
	Method and method analysis. Order of convergence: Linear convergence.
12	<i>Roots of an equation</i> $f(x) = 0$:
	Bisection method. Secant method. Remarks on secant method.
13	<i>Roots of an equation</i> $f(x) = 0$ – <i>Newton method:</i>
	Method; Convergence. Error estimation. Comparison with Secant method.
14	Fixed-Point method:
	Method. Convergence: contractive mapping; Theorems. Error evaluation.
15	Fixed-Point method:
	Explicit Fixed-point procedures. Higher order Fixed-point methods.
16	Fixed-Point method:
	Geometrical interpretation. The stationary process.
17	Fixed-Point method:
	Multiple roots: Definition; Computing problems; Newton method; Modified Newton
	method. Determination of the multiplicity order.

Item	Chapter [– Sub-Chapter]:
No.	Topic [†]
18	Root of a polynomial:
	Polynomial evaluation; Deflation; Newton method for polynomials.
19	Root of a polynomial:
	Method algorithms: Deflation. Direct iteration in the original polynomial.
	Complex roots (elements); Laguerre Method. Stability of the roots.
20	Systems of non-linear equations:
	Definitions. Vector norm. Matrix norm; Matrix norm induced by vector norm;
	spectral radius.
21	Systems of non-linear equations:
	Fixed-point method. Convergence. Second order convergence.
22	Systems of non-linear equations:
	Explicit fixed-point procedure; Iteration with constant matrix A (updated).
	Practical iteration scheme.
23	Systems of non-linear equations:
	Newton Method; Convergence; Practical iteration scheme.
24	Linear systems of equations:
	Gauss elimination. Triangular factorization of system matrix; Pivoting in Gauss
	elimination.
25	Linear systems of equations – Gauss elimination:
	Number of operations in Gauss elimination. Matrix inversion, number of operations.
26	Linear systems of equations:
	LU decomposition; Solution steps; Number of operations. Direct evaluation of LU
	factors.
27	Linear systems of equations – Cholesky method:
	Symmetric and positive definite matrices: definition, properties. Cholesky method,
÷	number of operations.

[†] *Chapter/Sub-chapter* and Topic refer to the content taught in Course lectures & Lab classes.

January 14, 2012

Adrian Chisăliță