PROBLEM No. 1 / II

Given a real number x > 0, let y(x) be the smallest (positive) number, that added to x gives a result which does not round to x (is greater than x).

Write a program which determine y(x) for x = 2, 3, ..., 18 (step 1), and verify that

x + y(x) > x.

PROBLEM No. 2 / II

Calculate the values of the following functions, at values $x = 10^i$, i = 1, 2, ..., 7.

 $f(x) = x(\sqrt{x^2 + 4} - \sqrt{x^2 - 3})$ - In single precision;

 $f^2(x) = x(\sqrt{x^2 + 4} - \sqrt{x^2 - 3})$ - In double precision;

- $g(x) = \frac{7x}{\sqrt{x^2 + 1} + \sqrt{x^2 3}}$ In single precision.
- Tabulate computed values ($f_2(x)$ with 15 significant digits), and explain the results.
- Find out the number of correct significant digits of f(x) value for $x = 10^3$.

PROBLEM No. 3 / II

Equation $f(x) = e^x - x^4 = 0$ has two roots.

- Find intervals of length 1, containing the roots.
- Find the roots by BISECTION method, with tolerance $EPS = 10^{-6}$.
- Find again the roots, by SECANT method, with the same tolerance, and compare the number of iterations.

PROBLEM No. 4 / II

Given the equation f(x) = 0, where:

- $f(x) = 0.9\cos(x) x + 1.6$
- 1) Solve the equation by NEWTON method, taking $x_0 = 1.5$ and tolerance

 $EPS = 10^{-6}$.

2) Solve the equation by SECANT method, with $x_0 = 1.5$, $x_1 = 1.6$, and

 $EPS = 10^{-6}$.

3) Compare the number of iterations in the two methods.

PROBLEM No. 5 / II

Given the equation:

$$tg(x) = \frac{1.82 - x}{x - 0.2}$$

Solve the equation for a root near $x_0 = 0.8$ with tolerance $EPS = 10^{-6}$, by:

- 1) NEWTON method;
- 2) SECANT method;
- 3) Compare the number of iterations in the two methods.

PROBLEM No. 6 / II

Consider the function

$$f(x) = -x + e^{-px^3} \cos(x),$$

where p is a parameter.

The equation f(x) = 0 has a unique root in the interval (0, 1).

- 1) Find the roots, with a tolerance $EPS = 10^{-6}$, for the following *p* values: p = 1; 5; and 25.
- 2) Solve by Newton method the case p = 25, with $EPS = 10^{-6}$ and $x_0 = 0$.
- 3) Comment the result.

PROBLEM No. 7 / II

Given the annuity equation

$$P_1[(1+r)^{N_1}-1] = P_2[1-(1+r)^{-N_2}];$$

Find *r* for values: $N_1 = 35$, $N_2 = 25$, $P_1 = 5000$, and $P_2 = 10000$, by:

- 1) Newton method;
- 2) Secant method.

(Meaning: r = yearly nominal interest rate; $P_1 =$ amount of deposit at the

beginning of years 1, 2, ..., N_1 ; P_2 = amount of the payment at the beginning of years $N_1 + 1$, $N_2 + 1$, ..., $N_1 + N_2$. After the last payment, the account balance is zero.)

PROBLEM No. 8 / II

Consider the equation x = g(x), where

$$g(x) = \frac{1.15 - 0.69tg(x)}{1 + tg(x)}$$

- 1) Iterate in single precision with $x_0 = 0.6$, tolerance $EPS = 10^{-6}$, and limited number of iterations $NLIM \ge 2000$.
- 2) Repeat the iteration in double precision, and find the root with tolerance $EPS = 10^{-9}$ (Allow a sufficient number of iterations!).
- Explain why a very large number of iteration is needed, before meeting a stopping criterion of the iteration.

PROBLEM No. 9 / II

Given the CHEBISHEV polynomial of 2nd kind, of order 6:

$$T_6(x) = 64x^6 - 80x^4 + 24x^2 - 1.$$

- Find initial approximations of the roots (by algebraic methods, function graph, etc.)
- 2) Calculate the roots, with tolerance 10^{-6} .
- 3) *Note*: All roots are of modulus < 1.

PROBLEM No. 10 / II

The polynomial

$$p(x) = x^5 - 18x^4 + 118x^3 - 348x^2 + 457x - 210$$

Has the roots: $x_1 = 1$; $x_2 = 2$; $x_3 = 3$; $x_4 = 5$; $x_5 = 7$.

Let $\tilde{p}(x)$ be the polynomial obtained form p(x) by replacing the coefficient

 $a_3 = 118$ of x^3 , with $\tilde{a}_3 = 118.02$.

- Calculate the roots of $\tilde{p}(x)$.
- Calculate the ratio: maximum relative perturbation in the roots (in modulus) / the relative perturbation (in modulus) in coefficient a₃. Comment the result.
 (If a perturbed becomes ã, the relative perturbation is: (ã a)/a.)

PROBLEM No. 11 / II

In the problem of missile interception, the following system is obtained:

 $\begin{cases} t\cos(\alpha) + t - 1 = 0\\ t\sin(\alpha) - 0.1t^2 + e^{-t} - 1 = 0 \end{cases}$

(*t* is the time, and α is the firing angle of the interceptor.)

Solve the system, with tolerance $EPS = 10^{-6}$ and initial approximation

 $w_0 = (0.5, 1)$, by:

- 1) Iteration with constant matrix A (with updating after 3 steps)
- 2) NEWTON method.

PROBLEM No. 12 / II

Consider the system:

- $\begin{cases} \sin(x+y) = x + 0.1\\ \cos(x-y) = y + 0.5 \end{cases}$
- Solve the system by NEWTON method, with tolerance $EPS = 10^{-6}$: Find the root near $w_0 = (1, 0)$
- Solve again, by iteration with constant matrix A (with updating after 3 steps).

Consider the system:

$$\begin{cases} f_1(x, y) = x^2 + 4y^2 - 16 = 0\\ f_2(x, y) = -x^2 + y + 3 = 0 \end{cases}$$

Solve by NEWTON method, with tolerance $EPS = 10^{-6}$. Find the initial

approximations x_0, y_0 , from the intersection of the curves $f_1(x, y) = 0$ and

 $f_2(x, y) = 0.$

PROBLEM No. 14 / II

Consider the system:

$$\begin{cases} x + y + z^{2} = 3.8\\ xyz = -1.9\\ \sqrt{x} + \sqrt{y} - z^{2} = 1.3 \end{cases}$$

Find the root near $w_0 = (1.5, 1, -1)$, with a tolerance $EPS = 10^{-6}$.

Use either iteration with constant matrix *A* (updated after 3 steps), or Newton method.

PROBLEM No. 15 / II

Consider the system:

$$\begin{cases} (x - y)(x + y)^{1/2} = 3\\ x - \log(x - y) = 1 \end{cases}$$

Solve the system, with:

- Tolerance $EPS = 10^{-6}$.
- Initial approximation $w_0 = (2, -0.5)$.

Use either iteration with constant matrix *A* (updated after 3 steps), or Newton method.

PROBLEM No. 16 / II

Consider the system:

$$\begin{cases} x^{2} + 2\sin(y) + z = -0.1\\ \cos(y) - z = 2.1\\ x^{2} + y^{2} + z^{2} = 2 \end{cases}$$

Find the solution near $w_0 = (1, 0, -1)$, with tolerance $EPS = 10^{-6}$, either by Newton method, or by iteration with constant matrix A (with updating after 3 steps).

PROBLEM No. 17 / II

Consider the linear system Ax = b, where:

$$A = \begin{bmatrix} 16 & 4 & 8 \\ 4 & 5 & -4 \\ 8 & -4 & 22 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 1 & 2 & 28 \\ 1 & 1 & 5 \\ 1 & -1 & 26 \end{bmatrix}.$$

- 1) Solve the system by LU method.
- 2) Compute the determinant of A.

PROBLEM No. 18 / II

Given the linear system Ax = b, where:

$$A = \begin{bmatrix} 6 & -36 & 12 \\ -36 & 218 & -74 \\ 12 & -74 & 64 \end{bmatrix}; \qquad b = \begin{bmatrix} 1 & -1.8 \\ 1 & 10.8 \\ 1 & 0.2 \end{bmatrix};$$

Matrix *A* is positive definite.

- 3) Solve the system by CHOLESKY Method.
- 4) Print the matrix *L*, and calculate the determinant of matrix *A*.

PROBLEM No. 19 / II

Consider the linear system Ax = b, where:

	2	3	4	5.01		[b_1
<i>A</i> =	3	4	5	6	; <i>b</i> =	h	b_2
	4	5	6	7		v =	b_3
	5.01	6	7	8			b_4

1) Calculate the solution for the right-hand sides $b = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T$, and

$$\widetilde{b} = \begin{bmatrix} 1 & 2 & 3 & 4.01 \end{bmatrix}^T$$

Calculate the ratio: maximum relative perturbation (in modulus) in solution / relative perturbation in the right-hand side b₄. Comment the result.

(If a perturbed becomes \tilde{a} , the relative perturbation is: $(\tilde{a} - a)/a$.)

PROBLEM No. 20 / II

Given the matrix:

$$A = \begin{bmatrix} 2 & 3 & 4 & 5.01 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5.01 & 6 & 7 & 8 \end{bmatrix}$$

- 1) Calculate the inverse A^{-1} of A.
- 2) Calculate the condition number: $cond(A)_{\infty}$.

Given the matrix

$$A = \begin{bmatrix} 5 & 6 & 7 & 8.01 \\ 6 & 7 & 8 & 9 \\ 7 & 8 & 9 & 10 \\ 8.01 & 9 & 10 & 11 \end{bmatrix}$$

- 1) Calculate the inverse A^{-1} of A.
- 2) Calculate the condition number: $cond(A)_1$.

PROBLEM No. 22 / II

Given the HILBERT matrix of order 4:

$$H_4 = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{bmatrix}$$

1) Solve the linear system $H_4 x = b$, for:

$$b = \begin{bmatrix} 1 & 0.2 & 0.3 & 0.4 \end{bmatrix}^T$$
, and $b = \begin{bmatrix} 1.02 & 0.2 & 0.3 & 0.4 \end{bmatrix}^T$.

2) Calculate the ratio: the maximum relative perturbation (in modulus) in solution / the relative perturbation in the right-hand side b₁ (in modulus).
Comment the result.

(If a perturbed becomes \tilde{a} , the relative perturbation is: $(\tilde{a} - a)/a$.)

PROBLEM No. 23 / II

Given the following matrix of order 5:

$$A_{5} = \begin{bmatrix} 1./2 & 1./2 & 1./2 & 1./2 \\ 1./2 & 1./3 & 1./4 & 1./5 & 1./6 \\ 1./3 & 1./4 & 1./5 & 1./6 & 1./7 \\ 1./4 & 1./5 & 1./6 & 1./7 & 1./8 \\ 1./5 & 1./6 & 1./7 & 1./8 & 1./9 \end{bmatrix}$$

(Matrix elements are: $a_{1j} = 1./2$; $a_{ij} = 1./(i+j-1)...i > 1$; $j = \overline{1,5}$.)

- 1) Compute A_5^{-1} in single precision, inputting *A* elements in rows 2...5, in two modes:
 - a) Computed values, with 7 correct significant digits;
 - b) The inverse of the denominators, computed by the program (via the code).
- Explain why differences occur, between the elements of the inverses in part a) and b).

PROBLEM No. 24 / II

Given the following matrix of order 5:

	1./2	1./2	1./2	1./2	1./2	
	1./2	1./3	1./4	1./5	1./6	
$A_{5} =$	1./3	1./4	1./5	1./6	1./7	;
	1./4	1./2 1./3 1./4 1./5 1./6	1./6	1./7	1./8	
	1./5	1./6	1./7	1./8	1./9	

(Matrix elements are: $a_{1j} = 1./2$; $a_{ij} = 1./(i+j-1)...i > 1$; $j = \overline{1,5}$.)

- 1) Compute the condition numbers $cond(A_5)_{\infty}$ and $cond(A_5)_1$, in single precision, working with A_5 elements computed in two modes:
 - a) Element values, rounded to 7 significant digits;
 - b) Inverting the denominators by the program (via the code).
- 2) Compare the results in part a) and b). Explain why they are different.

PROBLEM No. 25 / II

Given the following matrix of order 5 (Moler2):

	- 9.0000	0 11.00000	- 21.0000	63.00000	- 252.0000
	70.0000	- 69.00000	141.0000	- 421.0000	1684.000
$A_5 =$	- 575.000	575.000	-1149.000	3451.000	-13801.00
	3891.000	- 3891.000	7782.000	- 23345.000	93365.00
	1024.000	-1024.000	2048.000	- 6144.000	24572.00

- 1) Solve the system $A_5 x = b$, choosing the RHS *b* at will.
- 2) Let \tilde{A}_5 be the matrix obtained from A_5 , replacing element $a_{22} = -69.00$, with $\tilde{a}_{22} = -69.02$ (All other elements remain unchanged). Solve the system $\tilde{A}_5 x = b$.
- 1) Compare the solutions. Is the matrix A_5 well- or ill-conditioned?
- 3) <u>Note:</u> Modify the threshold (datum prag) in Main-Elim (or LU-Decomp) to 1E-8!

PROBLEM No. 26 / II

Given the following matrix of order 5 (Moler):

	1.000000	3.000000	3.000000	3.000000	3.000000
	3.000000	10.000000	12.000000	12.000000	12.000000
$A_5 =$	3.000000	12.000000	19.000000	21.000000	21.000000
	3.000000	12.000000	21.000000	28.000000	30.000000
	3.000000	12.000000	21.000000	30.000000	37.000000

- 1) Calculate the inverse A_5^{-1} .
- 2) Is the matrix A_5 well- or ill-conditioned?
- 3) Compute also, the determinant of the matrix.

Note: Modify the threshold (datum prag) in Main-Elim (or LU-Decomp) to 1E-8 !

Given the CAUCHY matrix of order 5:

	0.333333	0.200000	0.142857	0.090909	0.100000]
	0.200000	0.142857	0.111111	0.076923	0.083333
$A_{5} =$	0.142857	0.111111	0.090909	0.066667	0.071429
	0.100000	0.083333	0.071429	0.055556	0.058824
	0.111111	0.090909	0.076923	0.058824	0.062500

1) Calculate the inverse A_5^{-1} .

2) Is the matrix A_5 well- or ill-conditioned?

3) Compute also, the determinant of the matrix.

Note: Modify the threshold (datum prag) in Main-Elim (or LU-Decomp) to 1E-8 !

PROBLEM No. 28 / II

Given the matrix *A* of order 5 with the entries (Wilkinson 5 - modified):

 $a_{ij} = 3.6288/(i+j+1), \quad i, j = \overline{1,5}$

Working in single precision, it is required:

- 1) Print matrix *A*;
- 2) Calculate the inverse A^{-1} ;
- 3) Is the matrix well- or ill-conditioned?

Note: Modify the threshold (datum prag) in Main-Elim (or LU-Decomp) to 1E-8!

Given the matrix:

$$A = \begin{bmatrix} 0.205 & 0.310 & 0.410 \\ 0.310 & 0.405 & 0.510 \\ 0.410 & 0.510 & 0.605 \end{bmatrix}$$

- Calculate the condition number $cond(A)_*$.
- Is A well- or ill-conditioned?

PROBLEM No. 30 / II

Consider the following matrix:

 $A = \begin{bmatrix} 5 & 6 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ 2 & 2 & 1 & 6 \\ 4 & 2 & 3 & 4.02 \end{bmatrix}$

- Calculate the condition number $cond(A)_1$.
- Is A well- or ill-conditioned?