II Civil Engineering NUMERICAL ANALYSIS Academic year 2013-2014

Exam Questions – February 2014

Item	Chapter [– Sub-Chapter]:
No.	Topic'
1	Object of Numerical Analysis:
	Object. Problem conditioning, condition number. Example (Hilbert matrix).
	Algorithm stability. Conclusions on problem conditioning and algorithm stability.
	Three-term recurrence formula.
2	Computer representation of numbers – Floating-point representation:
	Representation in the Model; Representation in a Binary Format. Normal & subnormal
	numbers; Overflow & underflow.
3	Reals, floating-point representation:
4	IEEE Formats (Standard 754-2008 & 754-1985): Format structure; Format parameters.
4	Computer representation of numbers:
	Format encoding: Floating-Point data; Exponent encoding; maximum and minimum
5	exponent. Significand encoding.
5	Computer representation of numbers – IEEE Formats:
6	Computer representation of numbers IEEE Formate
0	Computer representation of numbers – IEEE Formals:
	Representation range (reals).
7	Computer representation of numbers – Rounding arror magsure:
/	Computer representation of numbers – Rounding error measure.
8	Friends sources and propagation:
0	Error: Relative error Significant digits: Correct representation with <i>m</i> significant digits:
	Relation with the relative error.
9	Errors, sources and propagation:
	Error sources. Rounding error; Truncation case. Wilkinson form of the error. Examples
	for base $\beta = 2$.
10	Errors, sources and propagation – Error propagation:
	Propagated error. Multiplication; Division; Function evaluation.
11	Errors, sources and propagation – Error propagation:
	Loss of signification error. Addition and subtraction. Propagation of errors in a sum.
12	Errors, sources and propagation – Error propagation:
	Summation (in Scientific computation); Examples. Conclusions regarding the numbers
	used in computation: the format needed for their representation.
13	Nonlinear equations:
	Method and method analysis.
	Order of convergence. Relation between absolute errors \boldsymbol{e}_n and \boldsymbol{e}_0 : case $p > 1$.
14	Nonlinear equations – Order of convergence:
	Relation between absolute errors \boldsymbol{e}_n and \boldsymbol{e}_0 : case $p = 1$. Linear convergence.
	Variant to convergence order; Asymptotic error constant.

Item	Chapter [– Sub-Chapter]:
No.	Topic [†]
15	<i>Roots of an equation</i> $f(x) = 0$:
	General considerations. Bisection method. Secant method; Remarks on secant
	method.
16	<i>Roots of an equation</i> $f(x) = 0$ – <i>Newton method:</i>
	Method; Convergence. Error estimation. Numerical evaluation of the derivative.
	Comparison with Secant method.
17	Fixed-Point method:
	Method. Convergence: contracting mapping; Theorems 1 & 2; Case g = differentiable;
	case $ g'(x) > 1$.
18	Fixed-Point method - Error propagation:
	Isaacson & Keller Theorem (without proof); Evaluation of error $\delta/(1-\lambda)$; Conclusions;
	rational number of iterations.
19	Fixed-Point method:
	Higher order Fixed-point methods. Example: Newton method.
20	Fixed-Point method – Implementation:
	Error evaluation: Relation between $ lpha - x_{n+1} $ and $ x_{n+1} - x_n $. XTOL-minimum
	evaluation. Algorithm: the divergence test.
21	Fixed-Point method:
	Geometrical interpretation. The stationary process (graphical interpretation).
22	Fixed-Point method:
	The stationary process of period 2; stationary process in general.
23	Fixed-Point method:
24	Explicit Fixed-point procedures. Examples: $\Psi(x) = m = \text{constant}$; Newton method.
24	Multiple roots:
	Definition; Computing problems; Newton method; Modified Newton method.
25	Post of a polynomial:
23	Robi of a polynomial. Polynomial evaluation: Deflation: Newton method for polynomials
26	Root of a polynomial:
20	Strategies & Algorithms: Direct iteration (Pol. Direct-q & Pol. Direct-deriv) Deflation
	(Pol).
27	Root of a polynomial:
	Complex roots (elements): Laguerre Method: IMSL implementation.
	Stability of the roots.
28	Systems of non-linear equations:
	Definitions. Vector norm. Matrix norm; Matrix norm induced by vector norm; spectral
	radius.
29	Systems of non-linear equations:
	Fixed-point method. Convergence: main theorem (Theorem 2); jacobian. Second order
	convergence.
30	Systems of non-linear equations:
	Explicit fixed-point procedure; Iteration with constant matrix A (updated).
	Practical iteration scheme; iteration stopping tests.

No. Topic [†]		
31 Systems of non-linear equations:		
Newton Method; Convergence; Practical iteration scheme; iteration stopping tests.		
Newton-like methods.		
32 <i>Linear systems of equations:</i>		
General considerations. Gauss elimination: method; pivoting (concept). Triangular		
factorization of system matrix; determinant computation.		
33 <i>Linear systems of equations – Gauss elimination:</i>		
Number of operations; Comparison with other processes.		
Matrix inversion, number of operations.		
34 <i>Linear systems of equations – Gauss elimination:</i>		
Pivoting in Gauss elimination: partial & complete pivoting.		
Solution steps by LU decomposition; Number of operations.		
35 <i>Linear systems of equations:</i>		
Direct evaluation of LU factors; methods. Possibility of LU factorization; pivoting.		
36 <i>Linear systems of equations – Cholesky method:</i>		
Symmetric and positive definite matrices: definition, properties.		
Cholesky method; solution steps; number of operations; Factorization without squa	re	
roots computation.		
37 Error analysis & Solution stability:		
Perturbation in the RHS b . Condition number; properties; matrix conditioning.		
Condition number $Cond(\mathbf{A})_{*}$; Computation formula. Example of ill-conditioned matrix	ix.	
[†] Chapter/Sub-chapter and Topic refer to the content taught in Course lectures & Lab classes.		

January 17, 2014

Adrian Chisăliță