PAGE
38

[image: image64.png]
NELSAS
PROGRAM
Non-linear Static Analysis of Cable and Pin-Jointed Bar Structures
USER’S GUIDE
[image: image1.png]
ADRIAN CHISĂLIŢĂ

Universitatea Tehnică din Cluj-Napoca

Cluj-Napoca

2020

WARNING

The current edition is an update of the previous edition (2007).

Not all dialog panels presented in the manual are updated; thus, in execution, there may look slightly different with respect to those presented in the manual.

All data on the installation and running of the programs, as well as the structure of input data, are updated.

CONTENTS
11
PROGRAM SUMMARY

22
NELSAS PACKAGE STRUCTURE

22.1
STRUCTURE

32.2
FILES

32.3
FUNCTIONS

43
INPUT DATA

43.1
STRUCTURE MODELING

53.1.1
Nodes

53.1.2
Coordinate Axes

53.1.3
Elements

63.1.4
Materials

73.2
TOPOLOGY DESCRIPTION

73.2.1
Incident Elements in a Node

93.2.2
End Nodes of an Element

103.3
LOAD MODELING

113.4
CODES

113.4.1
Common Codes for All Loading Cases

123.4.2
Specific Codes for a Loading Case

133.5
UNITS

153.6
INPUT FILES

153.6.1
Files

153.6.2
General Structure

163.6.3
Numerical Data Format

163.6.4
The “Geometry File” (content)

213.6.5
Geometry Generation

223.6.6
The ”Loading File” (content)

244
NELSAS PROGRAM RUNNING

244.1
RUNNING VIA THE INTERFACE

244.1.1
Panel Description

264.1.2
Controls Description and Functions

284.1.3
Controls Use and Programs Running

314.2
DIRECTORIES STRUCTURE

314.3
DETAILS

314.3.1
Static Analysis Programs

324.3.2
Graph Processors

344.4
DIRECT RUNNING OF EXECUTABLES

344.4.1
Executables for Static Analysis

354.4.2
Graph Processors

364.4.3
Pre and Post-processors

364.5
OUTPUT FILES

364.5.1
The "Output File"

384.5.2
Stiffness Matrix File

385
COMPUTATION THEORY (Summary)

385.1
EQUILIBRIUM EQUATIONS

405.2
SOLVING PROCEDURE

425.3
SOLUTION of the LINEAR SYSTEM

436
CHECK EXAMPLE

436.1
STRUCTURE

446.2
INPUT FILES for the CHECK EXAMPLE

467
NELSAS PACKAGE INSTALLATION

467.1
DIRECTORES CREATED BY THE INSTALLATION PROCESS

488
APPENDICES

488.1
INPUT FILES CONTENT (resumé)

488.1.1
"Geometry File" (Geometrical and mechanical data)

498.1.2
"Loading File" (Loading data)

508.2
LIST OF FILES USED BY NELSAS PROGRAM

518.3
ERRORS in INPUT DATA REPORTED by ”Input” and ”Load”

538.4
MAIN PANEL of “Create_GeometryFile” PROGRAM

548.5
DIALOG PANELS of “Create_LoadingFile” PROGRAM

548.5.1
Panel no. 1 – Common Data for All Loading Cases

568.5.2
Panel no. 2 – Loading Cases

578.6
DIALOG PANEL of “Modular” PROGRAM

608.6.1
Examples of Structures Generated by “Modular” program

648.7
DIALOG PANEL of “MaxProcessor” PROGRAM

678.8
DIALOG PANEL of “Ngraf” PROGRAM

698.9
DIALOG PANEL of ”ModularPost” PROGRAM

708.10
DIALOG PANEL of ”Diagrams” PROGRAM

719
REFERENCES

7110
Figures Index

1 PROGRAM SUMMARY
Package Name:
NELSAS

Version:

2020 (13.0)
Auhtor:

Prof. dr.ing. mat. Adrian CHISĂLIŢĂ, Universitatea Tehnică din Cluj-Napoca.

Equipment:

PC

Operating System:
Windows

Programming Language:
Intel Visual Fortran 11.1

Development Platform: Win32

Object:

Non-linear static analysis, in finite deformation, of cable and pin-jointed bar structures.

· Any structure geometry is allowed. The supports are points, and are either fixed hinges, or simple support (without friction), or elastic supports.
· The buckling of compressed bars is not considered.
· The structure may include up to five material types.

· The characteristic curve (-(is modeled by two straight lines: linear elastic – plastic. The characteristic values are inputted for each material type.
· The loads are considered to be applied to nodes.

· The bare self-weight may not be included in node loading, but be added by the program to the vertical component of the load (code IM (0)

Maximum Structure Size:

The program allocates dynamically the needed memory. The structure size that can be analyzed is limited only by the available memory (RAM + swap file.)

Results (Outputs):

I) Structure geometry (echo of input data, and computed geometry data)

II) Loading cases: codes, and node loading – in loaded nodes.

III) For each loading case:

· Nodes displacements.

· Axial forces and stress (force/area) in elements.

· Reactions in support nodes.

Also, displacement corrections and the maximum right-hand side (in modulus), at the last iteration, are outputted.
Code KTIP (0 allows the printing of displacement corrections and right-hand sides for every iteration.
Note:

The displacements are referred to the initial configuration. If, in a loading case "i", one specifies the code ICOR (0, then the displacements for the next loading cases will be referred to the equilibrium configuration in case "i".

Program Running:

Running may be done either via the interface, or by direct running of executables.

The interface use is recommended as it allows an interactive run of NELSAS program, with control of input data, control of executables sequence, checking the results after a stage ending, pre and post-processing, input files creation, etc.

Re-run:
NELSAS consists of a suite of executable programs with distinct functions – See §2. Each program can be a re-run point. In particular, any loading case can be re-run.

Execution Time:

All programs that are allowed to write in the output file, write their execution time (along with start and ending time).
Example: The execution time for the Check Example (§ 6), was (seconds): Input: 0.01; Load: 0.02; Iter – cases 1 and 2: 2.49 (run on a Intel Core I5 processor).

2 NELSAS PACKAGE STRUCTURE

2.1 STRUCTURE
NELSAS package has the following components:

1. Programs for non-linear static analysis, consisting of the following executables:

· Input

· Load

· Iter

· (Coefb, Fact, FactPlastic, Solve, Exiter, React

Note: Programs in set (are launched by Iter as a “child process”.

2. Pre-processors for input files creation:

· Create_GeometryFile

· Create_LoadingFile

· Modular

3. Graphic Processors:

· Ngraf

· NgrafU

· Preview

4. Post-processor for maximum values:

· PostProcesor

5. Text processors:

· NotePad / WordPad

6. Print processor:

· WinPrint

7. The master program that creates the interface for running the above executables:

· NELSAS

Programs in set 1 are executed in the sequence: INPUT, LOAD, ITER, waiting for the termination of the preceding program. Any of these programs may constitute a re-run point. Iter can be re-run for any loading case.

Programs 2 – 6 may be launched in parallel execution, via NELSAS interface, and run as independent processes. See NELSAS program running (§ 4) for details.

Besides executables 1-7 the package contains also DDLs and UIRs.

2.2 FILES
NELSAS uses two input files and an output file. In this Guide and on interface they will be named as follows:

a) Geometry File: input, contains the structure data (geometrical and mechanical data).

b) Loading File: input, contains the loading cases data.

c) Output File: output, contains the run results.

The file specifiers, for the above files, are selected via the interface. At a direct running
 of executables 1, the specifiers are inputted as command line arguments.
The program uses also:

· Files to pass on data between programs;

· Work files.

See List of files used by NELSAS program (§ 8.2).

2.3 FUNCTIONS
For convenience, the name of an executable will be indicated by capitals.

INPUT:

Processes geometrical and mechanical data:

· Read input data from Geometry File.

· Checks input data by three pre-processor routines. If errors are found, produces error messages. Read data are written in the output file.

· Computes initial node – end node arrays, and for elements, lengths and direction cosines.

· Writes structure data (inputted and computed) in Output File.

· Creates the files needed to run LOAD and ITER programs.

LOAD:

Processes loading cases data:

· Reads input data from Loading File.

· Processes loading cases, namely:

· Checks specified loads and, for every loading case without errors in loads, creates the loading file containing case codes and node loading.

· These files are named I.UNF, where ‘I’ is loading case index. Example: 1.UNF - case 1; 2.UNF - case 2; etc.
· In case of errors in specifying loaded nodes, the loading file is not created, and the error messages are written in the output file.
· Writes loading cases in the output file: case codes and nodes loading.

ITER:

It is the central program, which processes the iterations in a loading case. It has the following functions:

· For every loading case, it launches in execution the following programs:

FACT – for generation and Cholesky factorization of the tangent stiffness matrix;

COEFB – for right-hand sides computation and for the maximum RHS (in modulus);

SOLVE – for solving the (linear) system of equations;

EXITER – for writing the results in Output File;

REACT – for reactions computation for the current loading case.

· After an iteration ending (computation of corrections for displacements, done by SOLVE), ITER checks if the termination test is satisfied:
· If the test is not satisfied, it checks if the next iteration index exceeds or not the limit number of iterations (prescribed).

· If not, the next iteration is launched. Otherwise, it goes out from the iteration.

Therefore, ITER goes out from the iteration either by the fulfillment of the termination test, or by exceeding the limit number of iterations.
· At iteration exit, EXITER writes in Output File, the iteration termination mode and the results from the last iteration.

· After EXITER execution, ITER launches the REACT program which calculates the reactions in the support nodes. REACT writes these data to Output File.

Remarks - I:

· The results (output data) can be written in the output file after each iteration, by specifying for that loading case, code KTIP (0.

· If it was specified a code ICP (0 – that is, pretensioning computation is done – ITER names this case “Loading case No. 0”.

· If it was specified ICP (0, or in a loading case if it was specified code ICOR (0, then: after the end of computation in this case, the equilibrium configuration in this case becomes the reference configuration for all cases run afterward. (In case ICP (0 – for all loading cases.)

Remarks - II:

At the first iteration, in each loading case, it is needed to generate and decompose the tangent stiffness matrix in the initial configuration.

To avoid retaking this process, one proceeds as follows:

· The first decomposition (iteration 1, first loading case) is done in the file aa0.unf;

· At the first iteration of every next loading case (and in case when code ICOR (0), ITER copies the file aa0.unf in the file aa.unf of current use in SOLVE;

· Also, the first file of elements status in the initial configuration is created as file el0.unf, that is copied, at the first iteration, in the current file el.unf ■
Every program that has rights to write in output file writes also a message containing the program name, the date and starting time of program run.

ITER program writes this message at the iteration exit, too. The message has the following format:

"*** NELSAS
Program-Name
Date
Time"

3 INPUT DATA
3.1 STRUCTURE MODELING
The structure is modeled by straight elements, connected in nodes. The structure may include up to five material types with defined characteristics. Each element belongs to a material type – this is done by element numbering – See Elements (§ 3.1.3).

3.1.1 Nodes
The nodes are the interconnecting points of bars and cables, and the points of tie of them with the ground (or, with a support structure supposed to be fixed).
If the structure includes cables, then a point on cables where a concentrated force is applied, will be a node, too.

Interconnecting nodes are considered spherical hinges.

Support nodes are the tie points of bars and cables with the ground. The support nodes may be fixed hinges, simple supports, or elastic supports. For support nodes, one specifies, in input data, the direction(s) 1–NGL for which the displacement is blocked, where NGL is the number of degree of freedom of nodes. For elastic supports one specifies the elastic constants along directions 1-NGL.
In what follows, the nodes will be named:

· Free: No displacement is blocked.

· Partial free: There are displacements blocked on a number of directions < NGL (simple supports or elastic supports).

· Total blocked: The fixed hinges (all displacements are blocked).

It will be denoted:

NN = the number of nodes.
NGL = maximum number of node degrees of freedom, namely:

NGL = 3 - for a space structure.

NGL = 2 - for a plane structure (all nodes in the same plane).

Data NN and NGL are input data – See Structure general data (§ 3.6.4).

Numbering:

Node numbering is not imposed in any way.
Recommendations:

· Free and partial free nodes will be denoted by the first indices;

· Support nodes that are total blocked, will be denoted by the last indices;

· Node numbering will pursue that, the maximum difference between the indices of two free or partial free nodes that are connected by an element be as small as possible.

This will ensure, for the system of equilibrium equations, a half-bandwidth LIM as small as possible. Maximum value of LIM is limited only by the available memory.
3.1.2 Coordinate Axes
In the program, the coordinate axes are distinguished by their index, which ranges from 1 up to NGL.

Rule: The vertical axis is the axis with the index NGL.
Therefore, axes indices will be:

· Plane structure: X – index 1 axis, Y – index 2 axis.

· Space structure: X – 1, Y – 2, Z – 3.

3.1.3 Elements
An element is a bar or a cable segment having nodes as ends.

The number of elements will be denoted by NEL.

Element numbering has to comply with the following rules:

1 – The elements of the same type of material be denoted by consecutive indices.
2 – The elements of type 1 be denoted with the first indices, the elements of type 2 with the next indices, and so on.
Besides the restrictions 1 and 2, element numbering is arbitrary.

To facilitate the data input, it is recommended that:

3 – The elements of the same type, which have the same cross-sectional area and the same initial axial force, be denoted by consecutive indices.

Example (Rules 1 and 2):

For a structure containing three material types, element indices will be:
· Type 1: 1, 2, ..., ELMAX1;

· Type 2: ELMAX1+1, ... , ELMAX2;

· Type 3: ELMAX2+1, ... , ELMAX3.

It mast that ELMAX3 = NEL, where NEL = number of elements.

Data NEL and ELMAX1, ELMAX2, ELMAX3 represent input data. See ELMAX (§ 3.6.4).

3.1.4 Materials
The program accepts up to five types of materials. Each material type is defined by the following data:

· The values that define the idealized characteristic curve (Fig. 1): Y0, SIGMA1, SIGMA2, ELIM1, ELIM2.

· Mass density: R0.

At least one of the above data is different from one material type to another.

[image: image2.wmf]

e

ELIM2

e

s

0

e

0

YY

SIGMA2

SIGMA1

a

Y0

Y0

ELIM1

e

s

 (Tension)

s

 (Compression)

Figure 1 Characteristic curve modeling
The characteristic curve is idealized by a linear elastic – plastic model (Fig. 1). It is denoted:
· Y0 : the linear elasticity modulus.

· SIGMA1 and SIGMA2: the proportionality limit at tension and compression, respectively.

SIGMA2 is inputted in modulus. If the material does not take compression (cable elements) one puts SIGMA2 = 0.

· ELIM1, ELIM2 = the limit strain beyond that the element is considered broken. ELIM2 is inputted in modulus. For elastic domain calculation one will input ELIM1 = 0, ELIM2 = 0, the program puts: ELIM1 = SIGMA1/Y0, ELIM2 = SIGMA2/Y0. (In this case, the element is considered broken if (>SIGMA1 or | (| (SIGMA2.)

· For plastic domain calculation, one uses the secant elasticity modulus YY.

Remark:

The mass density R0 is used to compute the node load from the self-weight.

Data R0 has effect only if code IM (0; if IM = 0 it can be inputted R0 = 0.

For measure units - See Mass density R0 (§ 3.5).

3.2 TOPOLOGY DESCRIPTION
Structure topology can be described in two modes, differentiated via the code kodTopo:

1) kodTopo = 0 : by the incident elements in node (on oriented paths) – the list NEI.

2) kodTopo ≠ 0: by the end nodes of element (oriented) – NI, NF.

· In case 1, INPUT program calculates the lists NI, NF

· In case 2, INPUT calculates the list NEI.

kodTopo is input data - See Structure general data (§ 3.6.4)

3.2.1 Incident Elements in a Node
The topology is described by the elements incident in each node, according to the following rules:

1 – It is considered that in each node come elements on oriented paths.

The maximum number of incident elements in a node, constitutes the input data MAX. It must that MAX be even number (as MAX/2 defines the number if incident paths). If the actual MAX is odd, a fictional element “0” is added, so that MAX become even – See point 2 below.

2 – Element Orientation
The incident elements in a node are associated, arbitrarily, in pairs “backward element” – “forward element”, to form an oriented path incident in that node.
Once an element has been oriented – on a path incident in one of its end nodes – this orientation is kept on (for the path incident in the other end node of the element).

Any incident element may be associated with the fictional element “0”, to form an incident path in a node. In this case, the element with index “0” will be specified in the list of elements incident in node, on the respective path.

3 – The topology is described by specifying for each node K, the list of incident elements in node K, in the array NEI(J), J = 1, MAX. J stands for the ordinal number of the element, namely:

J = 1, 2 - incident elements “backward” – “forward” on path I ;

J = 3, 4 - idem, on path II;

J = 5, 6 - idem, on path III;

.

J = MAX -1, MAX – incident elements on path MAX/2.

One observes that:

J = odd, corresponds to “backward” elements.

J = even, corresponds to “forward” elements.

4 – The order in which the incident paths in node are specified is indifferent.

In each node, there must be specified exactly MAX elements. If in a node, concur less than MAX elements, the list of incident elements (array NEI) will be completed with fictional elements “0” up to number MAX.

Remark: To facilitate the orientation, it is recommended to pick in the structure, paths formed by adjacent elements. These paths once oriented, will confer orientation to the elements that compose them. See the next Example and Check Example (§ 6).

Example - 1:

Consider the structure in Figure 2.

Figure 2 Topology – Example 1

Node K is part of a spatial truss, composed of vertical panels.

Suppose MAX = 10.

The paths have been chosen as follows:
I - Vertical bars: oriented downward.

II - Horizontal bars: oriented counter clockwise.

III – Diagonals on side panels: oriented downward.

IV - Horizontal diagonal + panel diagonal: oriented downward.
The array NEI(J) will then be:
	PATH
	 I
	 II
	 III
	 IV
	 V*

	J
	1 2
	3 4
	5 6
	7 8
	9 10

	NEI(J)
	17 18
	24 25
	47 48
	55 50
	0 0

 () Path V does not actually exist in node K, but it must be specified as MAX = 10.

 Incident elements are fictional elements "0".

Example - 2:
Another paths choice is presented in Figure 3. It may be imposed, for instance, by the fact that bars 24 and 25 are already oriented such that both “enter” node K – and then, they can no more be grouped on a same path.

On paths II and III, fictional elements “0” have been added (“forward elements”).

Figure 3 Topology – Example 2

The array NEI(J), corresponding to the choice in Figure 3, will be:

	PATH
	 I
	 II
	 III
	 IV
	 V

	J
	1 2
	3 4
	5 6
	7 8
	9 10

	NEI(J)
	17 18
	24 0
	25 0
	47 48
	55 50

Remark:

On the basis of arrays NEI(J), J = 1, MAX; K = 1, NN, INPUT program calculates the arrays NI(M) – initial node, and NF(M) – final node, for the oriented elements M = 1, NEL.

Arrays NI, NF constitute work data for the other programs, and output data in Output File.

3.2.2 End Nodes of an Element
Alternatively, the topology can be described by the end nodes of the elements, according to the rules:

1 – The element is considered oriented.

2 – The topology is described by the end nodes: Initial Node (NI), and Final Node (NF).

On the basis of arrays NI(M), NF(M), M = 1, NEL, INPUT program calculates the value of MAX and the array NEI(K, J), J = 1, MAX, K = 1, NN.

This alternative does not ensure the minimization of the number of incident paths in nodes, unless elements orientation is done according to rules in § 3.2.1.

3.3 LOAD MODELING
Loads are considered to be applied in nodes.

· Load P in node K, is defined by the projections P(L), L = 1, NGL, on the chosen coordinate axes: L = 1 – axis X, L = 2 – axis Y, and L = 3 – axis Z.

· In general, node loads will not include the self-weight of the elements incident in node. Instead, it will be specified in the input data:

R0 = mass density and, in each loading case, code IM (0.

In this case, LOAD program will add to the load projection on axis NGL, the self-weight pertaining to node K. The axis indexed NGL must be vertical: See codes G and IM (§ 2.4).

· Loads that are distributed linearly on elements, are transformed in equivalent node loads by the formula below:

[image: image3.wmf]å

Î

=

*

+

*

=

)

(

2

1

,

1

;

)

(

0

))

,

(

)

,

(

2

(

6

1

)

(

J

NEI

J

e

NGL

L

J

S

L

J

p

L

J

p

L

P

The sum is done with respect to the elements incident in node K (the list (NEI(J), J = 1, MAX).

S0(J) is the length of element with ordinal number "J", in the initial configuration.
p1(J) is the distribution density of loading in node K of element "J", and p2(J) – the same, in the opposite node of K. L is the index of axis on which the loading projection is considered.

Figure 4 Generic element “J” incident in node K

· If in node K, a concentrated load
[image: image4.wmf]c

P

 is applied too, then the total load in node K will be given by

.
Remark:
Other distribution than the linear one cannot be considered in the calculation adopted by the program. In every loading case, P will represent the total load in node K in that case (and not the supplement of loading with respect to a preceding case).

3.4 CODES
Codes are input data that command the different options offered by the program.
3.4.1 Common Codes for All Loading Cases
1) kodTopo – Topology description code (§ 3.2).

kodTopo = 0: The topology is described by the incident elements in node, on oriented paths – the list NEI. In this case, MAX is input data.

kodTopo ≠ 0: The topology is described by the end nodes of the oriented element – NI and NF. Data MAX is calculated by the program.

2) ICP - Indicator for pretensioning calculation.

ICP = 0: No pretensioning calculation.

ICP (0: Pretensioning calculation is done, that is, the initial configuration under zero loads in nodes is calculated.

Remark 1:

· If ICP ≠ 0, the pretensioning calculation is named by ITER the loading case number ”0”. The program puts codes KTIP, IM, LNIP equal to 0, and ICOR = 1 (§ 3.4.2).

Remark 2:

· The axial forces from pretensioning are specified as input data. In general, they are calculated approximately, and therefore, the initial configuration
[image: image5.wmf]0

G

 is not an equilibrium configuration.

Introducing ICP (0, an equilibrium configuration
[image: image6.wmf]*

0

G

 is calculated, which becomes the reference configuration for the loading cases.

With ICP = 0, the reference configuration remains
[image: image7.wmf]0

G

; this one plays only the role of the “reference frame”, with respect to which nodes displacement are measured, in the considered loading cases.
3) G = Gravity acceleration – projection on the NGL axis (the vertical axis – § 3.1.2)

If axis NGL is oriented:

· Downward:
[image: image8.wmf]g

G

r

=

· Upward:
[image: image9.wmf]g

G

r

-

=

.

Code G has effect only if it is specified code IM (0.

[image: image10.wmf]

ax

is

 NGL

ax

is

 1

g

r

g

Figure 5 Code “G”

4) LNIT = Limit number of iterations
5) EPS = Tolerance for the iteration termination test
6) KOD = Code to select the iteration termination test
Codes 4 – 6 are described in what follows.

· The iteration terminates when one of the two following conditions is fulfilled:

1. The test quantity UUTEST is less or equal to the tolerance:

[image: image11.wmf]EPS

UUTEST

£

2. The number of iterations NITER exceeds the limit number:

[image: image12.wmf]LNIT

NITER

>

· Code KOD commands the test quantity, namely:

KOD = 0 – Maximum correction to displacements, in modulus:

[image: image13.wmf])

,

(

max

,

L

K

UU

UUTEST

L

K

=

KOD (0 – Maximum right-hand side in modulus:

[image: image14.wmf])

(

max

I

B

UUTEST

I

=

(See Computation Theory - § 5).

· Tolerance EPS is given in the same units as test quantity, namely:

KOD = 0 - Length unit.

KOD (0 - Force unit.

For units - see § 3.5.

Remarks:

· Small corrections to displacements imply small right-hand sides in modulus, and vice-versa. (See, for exemplification, the output file of the Check Example.)

· Recommendation: LNIT = 10; EPS = 1E-4 ... 1E-6.

· At iterations exit, ITER program writes in the output file: the number of the current iteration, iterations ending mode (1 or 2 above), maximum displacements correction, and maximum right-hand side in modulus. The maximum right-hand side is calculated with node displacements determined after iterations ending.

3.4.2 Specific Codes for a Loading Case
1) KTIP = Iterations printing code
This one commands the results that are written to the output file, namely:

0. Iteration ending mode and the test quantity (maximum correction or maximum right-hand side, in modulus).

1. Node displacements.
2. Axial forces and stresses in elements, and maximum right-hand side in modulus.

3. Reactions.

4. Right-hand sides (with that, displacements corrections are calculated).

5. Displacements corrections.

KTIP = 0: Data 0 – 3.

KTIP < 0: Data 0 and 3.

KTIP > 0: Data 4 and 5, after each iteration. Data 0 – 3, at iteration ending.

Remarks:

· The usual value is KTIP = 0.

· If one puts KTIP < 0, output data 1 – 3 may be retrieved by means of PostProcessor program (See 4.3.3).

· KTIP > 0 will be used in studies regarding iterations development and convergence. In particular, the results after the first iteration constitute the results of the linear analysis of the structure.
2) ICOR = Code for correcting the initial geometry, after the respective loading case

ICOR = 0: No geometry correction. This is the usual case.

ICOR (0: The equilibrium configuration in the respective loading case becomes the reference configuration for all subsequent loading cases.

3) IM = Mass indicator.

IM (0: The self-weight of incident elements in node is added, by the program, to the NGL projection of node load, according to formula:

[image: image15.wmf]å

=

*

*

*

*

=

MAX

J

J

R

J

A

J

S

G

NGL

P

1

)

(

0

)

(

0

)

(

0

5

.

0

)

(

where: S0(J) and A0(J) are the length and the cross-sectional area of element "J" in the initial configuration, respectively. The sum is extended to all elements incident in node K. R0(J) is the mass density of the material type the element belongs to.

IM = 0: The program does not add the self-weight of incident elements in node, to node load.

Remark:

The common case is IM (0, since, to calculate the self-weight of incident elements, the user needs the bar lengths, and these ones are calculated by the program. In case IM (0, it is compulsory that the axis with index NGL be the vertical: axis 2 for plane structures, and axis 3 for space structures. See also code G.

4) LNIP = Limit number of iterations in the plastic domain.

LNIP = 0: The calculation is done in the elastic domain (it was specified: ELIM1 = 0, ELIM2 = 0 – See Figure 1.). This is the usual case.

LNIP (0: If | > ELIM, at every iteration the calculation is retaken LNIP times, with the secant elasticity modulus (calculated for each element, with respect to element).

Recommendation: LNIP < 10.

3.5 UNITS
It may be chosen arbitrarily, the following basic units:

- Length unit: L

- Area unit: A

- Force unit: F
The basic units are input data – See Basic Units (§ 2.6.4).

Input and output data will be expressed in the basic units (L, A, F), and in derived units.

a) Input data will be introduced as follows:

1. Nodes coordinates X0, in:

L
[length unit]

2. Elements area A0, in:

A
[area unit]
3. Initial axial forces T0 and node loads P(L), in:

F
[force unit]

4. Elasticity modulus Y0 and stresses SIGMA1, SIGMA2, in:

F/A
[force unit / area unit]

Therefore, A0(Y0 and A0(SIGMA will result in force unit F.

5. Limit strains ELIM1, ELIM2: are given in absolute values (not in percent).

Are dimensionless.

6. Gravity acceleration G, în:

L/s2
[length unit / second2]

7. Mass density R0 is given in:

M/(A(L)
 [mass unit / (area unit (length unit)]

where, the mass unit M is:

M = F/(L/s2)
[force unit / acceleration unit]

Therefore, the weight of an element W = A0(S0(R0(G, will result in the force unit. (S0 is element length).

Two variants of units are presented in the table below:

MEASURE UNITS
	No.
	Quantity
	Symbol
	UNITS

Variant 1
	UNITS
SI System

	 1
	Length
	S0
	m
	m

	 2
	Area
	A0
	cm2
	m2

	 3
	Force
	P
	kN
	N

	 4
	Elasticity modulus; Stress

	Y0;

SIGMA
	kN/cm2
	N/m2

	 5
	Limit strain
	ELIM
	0.025†
	0.025†

	 6
	Gravity acceleration

	G
	m/s2
	m/s2

	 7
	Mass density
	R0
	103kg/(cm2(m)‡
	kg/m3

 †) Value corresponding to EPSILON = 2.5 %.

 ‡) The mass unit is: kN/(m/s2) = 103 kg

 Example: R0 = 7.85 kg/dm3 = 7.85(10-4 (103 kg)/(cm2(m)

 One inputs the value: R0 = 7.85(10-4 (A0(S0(R0(G - results in kN) .

b) Output data are expressed as follows:

1. Element lengths (S0), node displacements (U), and displacement corrections (UU), in:

L
 [length unit]

2. Axial forces in elements (T) and right-hand sides (B), in:

F
 [force unit]

3. Stress in elements, in:

F/A
[force unit / area unit]

Note: In the output file, the program indicates the units for the output data, too.

3.6 INPUT FILES
3.6.1 Files
Input data are read form the following files:

I. Geometry File - Geometrical and mechanical data.

II. Loading File - Data regarding loads.

These files are created by the user, in the format described below. They may be created by:

· Direct edit: using a text editor that does not use formatting (example: Notepad).

· By the program: by running the pre-processors Create_GeometryFile and Create_LoadingFile – See Creating Input Files (§ 4.1.3-5).

3.6.2 General Structure
In general, the input files contain groups of numerical data, terminated by a non-numerical arbitrary data, which constitutes the group terminator.

Numerical data in the group can be written on a single line or on successive lines, using as separators between data values any of the following characters:

· One or more spaces.

· One or more tabs.

· Comma (braced or not by spaces or tabs).

· One or more <CR> (Carriage return).

Numerical data are read by the program with list-directed format ((), up to encountering the terminator.

The terminator is an arbitrary data of maximum 80 characters, subjected to the following conditions:

· The first character if alphabetic (more general: non-numerical), and other than the characters “T, t, F, f “;

· The terminator does not contain any of the value separators described above;

· The terminator may be preceded by one or more spaces or tabs.
The terminator does not constitute input data – it serves only to mark the end of numerical data in the group.

For easy reading, it is proposed that the group terminator constitute the heading of the next numerical data group.

The files contain also “text-lines” – that are ignored by the program. The content of a “text-line” is an arbitrary text of maximum 80 characters.

3.6.3 Numerical Data Format

Numerical data are constants of the type:

· Integer.

· Real in single precision (REAL(4)).

Since they are read in the program with list-directed format ((), the length of the field that contains the data is not imposed.

· Integer data are written as integers. (Format Iw).

· Real data are written with decimal point, with or without exponent. (Format Fw.d or Ew.d, where w = the length needed to contain data.)

A data value cannot contain any of the value separators indicated at point 3.6.2.

In particular, if in a group "n" data that are read successively have the same value "c", data values may be introduced in the form n(c, too.

Example:

Data are: node index K and the list (NEI(J), J = 1,MAX), having the values:

17 24 25 45 0 0 0 0 0 0 0

They may be inputted also in the form:

17 24 25 45 7*0

3.6.4 The “Geometry File” (content)

The file Geometry File will contain the below data, in the order and of the types specified. For convenience, data are indicated by bolds.

(X(L), L = 1,N) represents the list X(1), …, X(N).

Data type will be indicated in that follows by:

I = integer;
R = real;
C = character.

<n>I, <n>R, and <n>C = suite of "n" integers, “n” reals, and “n” characters, respectively.

0) Commentaries:

These precede the first data used by the program (Data 1 – see below).

A commentary line, to be recognized as it, must contain the character / (slash) in columns 1 and 2. In columns 3-80, the line may contain an arbitrary text that is ignored by the program.

Any number of commentary lines may be inserting.

· Example:

// Test structure.

// Spatial truss.

//

1) Application title
· Type: Character

· Value: Text of maximum 80 characters (read in the program with format a80)

· Writing: It is written in the first line following the commentary lines (if these exist).

· Example:
PRETENSIONED SPATIAL TRUSS FSP – 17

2) NN, NEL, NGL, kodTopo, MAX
General data of the structure:

· NN = Number of nodes
· NEL = Number of elements
· NGL = Number of degrees of freedom
· kodTopo = Code for topology introduction type
· MAX = Maximum number if incident elements in node
· Type: <5>I

· Values:

kodTopo = 0: The topology is described by the elements incident in node;

kodTopo ≠ 0: The topology is described by the end nodes of the element.

 kodTopo = 0:

· MAX must be an even number. If one introduces MAX = odd number, the program puts MAX = MAX+1, and gives a warning message. However, an error will occur at the reading of data 6.

· Example:

29 46 3 0 10

kodTopo ≠ 0:

· Inputted MAX may be any number: for instance 0. The value MAX is calculated by INPUT.

· Example:

29 46 3 1 0
3) K1, K2, (bloc(L), L = 1, NGL)

Node restraints:

· K1, K2 = nodes with identical restrains from K1 to K2 (K1 (K2).

· bloc(L) = 0 : free displacement along the axis of index “L”

 bloc(L) (0 : blocked displacement along the axis of index “L”

· Type: <2>I, <ngl>I
· Example: Nodes 13, 15, 16 are fixed hinges, and 14 – a simple support with free displacement along axis Y:

13
 13
 1
 1 1

14
 14
 1
 0 1

15
 16
 1
 1 1

4) Terminator – Group 3

· Type : C

· Value: Text (80 characters; first character non-numerical and different from T, t, F, f. Does not contain spaces, tabs, comma, or <CR>.

· Example:

Elastic_Supports:
5) K1, (el_const(L), L = 1, NGL)

Elastic Support:

· K1 = Elastic support node

· el_const(L) : Elastic constant along direction L.

If along direction L there is not an elastic support: input el_const(L) = 0.

· Type: I, <ngl>R
· Example: Node 14 is elastic support on direction Y.
 14
 0.
 -500. 0.

If there are not elastic supports, NO data 5 are inputed – but only the terminator 6.

6) Terminator – Group 5

See data 4.

· Type: C

· Example:

Basic_Units:

7) Basic units
Length unit, area unit, and force unit

· Type : C

· Value: Text (20 characters.

· Writing: on separate lines
· Example:

m

cm2

kN

For the choice of the basic units see Measure Units - § 3.5.

8) K, (X0(L), L = 1, NGL)

Node, and node coordinates:

· K = node index;

· X0(L) = "L" coordinate of node K (L = 1 X; L = 2 ... Y; L = 3 ... Z)

· Type: I, <ngl>R
· Writing: A group "node + coordinate" for each structure node.

Each group is written on a line (or, group data may be written on several lines). It is not allowed to write two groups on the same line. Groups order is indifferent.

· Example:

 1 0.0 12.3257 -0.0130

or,

 1 0.0 1.23257E1 -1.3E-2
Remark: It must be inputted NN groups 8. If the number of groups is different from NN, INPUT program will signal an error.

9) Terminator – Group 8
· Type: C

· Example:

NODE&TOPOLOGIY:K_NEI(J)

10) Topology:
According to code kodTopo value, one introduces either data 10-a, or data 10-b.
10-a) kodTopo = 0:

 K, NEI(J), J = 1,MAX)

Node, and incident elements in node:

· K = Node index;

· NEI(J) = Index of incident element in node K, with ordinal number "J".

 See Incident Elements in Node (§ 3.2).

· Type: I, <max> I

· Writing: A group 10-a for each node, written on a line (or, group data on several lines). It is not allowed to write two groups on the same line. Groups order is indifferent.
· Example: See § 2.2.1 - Example - 1. Consider K = 17:

17 17 18 24 0 25 0 47 48 55 50

Remark: It must be inputted exactly NN groups 10-a. On the contrary, INPUT program will signal an error.

10-b) kodTopo ≠ 0:

 M, NI(M), NF(M)

 Element, Initial Node, and Final Node:

· M = Element index
· NI(M), NF(M) = Initial node and final node, of element M.

· Type: <3>I

· Writing: A group 10-b for each node, written on a line (or, group data on several lines). No writing of two groups on the same line is allowed. Groups order is indifferent.
· Example:

 13 13 25

Remark: It must be inputted NN groups 10-b. On the contrary, INPUT program will signal an error.

11) Terminator - Group 10
· Type: C

· Example:

ELEMENT_CHARACTERISTICS_M1_M2_A0_T0
12) M1, M2, A0, T0

Element characteristics: index1, index 2, cross-sectional area, and initial axial force:

· M1, M2 = indices of elements with the same characteristics A0 and T0, from M1 to M2, namely:

· If elements M1, M1+1, M1+2, ... , M2 have the same characteristics, then M1 < M2;

· Characteristics A0, T0 may be defined also for a single element M1 (element M1 has A0 and T0 distinct from that of elements M1-1 and M1+1). One puts then:

 M2 = M1 or M2 = 0 (If M2 = 0, the program puts M2 = M1.)

· A0 = cross-sectional area of the element.

· T0 = initial axial force of the element, in the initial configuration.

· Type: <2>I, <2>R

· Example: Each of elements 24-34 have: area A0 = 10.25 and initial axial force T0 = 495.3558; element 25 has A0 = 12.0 and T0 = 501.75. One introduces the values:

24
34
1.025E1
4.953558E2

25
 0
1.2 E1
5.0175E2

 or,

25 25 12.0 501.75

Remark: If it is specified a total number of elements different from NEL, INPUT program will signal an error.

13) Terminator - Group 12
· Type: C

· Example:

MATERIALS_ITM__ELMAX_R0_Y0_S1_S2_E1_E2

14) ITM, ELMAX, R0, YO, SIGMA1, SIGMA2, ELIM1, ELIM2

Materials characteristics:

· Type: <2>I, <6>R

· Meaning and values:

· ITM = Indicator of material type:

1 (ITM (5

If ITM is not between these limits, INPUT program signals error, and does not read the remaining data 12, for this type.

· Y0 = linear elasticity modulus.

· SIGMA1, SIGMA2 = proportionality limits at tension and compression, respectively, in modulus. If the material does not take compression (cable elements), one puts: SIGMA2 = 0.

See, for units, § 2.5-4.

· ELIM1, ELIM2 = limit strain at tension and compression, respectively, in modulus. If the actual strain exceeds these values, the element is considered broken. See § 3.1.4.

For elastic domain calculation, it may be introduced:

 ELIM1 = 0, ELIM2 = 0.

In this case, the program puts ELIM1 = SIGMA1 / Y0 and ELIM2 = SIGMA2 / Y0.

· R0 = mass density of the material (see for units, § 2.5-7).

· ELMAX = maximum index of element of ITM type (§ 3.1.3).

15) Terminator - group 14
· Type: C

· Value: arbitrary text ≤ 80 characters, the first one non-numerical and different from T, t, F, f.

· Example - Data 12 and 13:

1
46
7.85E-4
210000
100
0
0
0

end_data!

Remark: Data 15 is the last data from the file Geometry File.

3.6.5 Geometry Generation
The user may write a program to generate the input data for NELSAS program, i.e. data in Geometry File. Such a generation is useful for modular structures.

The user’s program will be called GEOM in that follows. GEOM program has to create the following categories of data:
1. Structure topology: nodes and elements numbering, the list of incident elements in each node, or the list of end nodes of elements – see Topology description (§ 3.2).

2. Nodes coordinates.

3. General data:

- Number of nodes (NN) and node restraints.

- Number of elements (NEL).

- Number of node degrees of freedom (NGL).

- Maximum number of incident elements in node (MAX).

Remark: Data 3 may be calculated initially, or they can result after the generation of data 1 for a prescribed number of structure modules.

4. Elements characteristics: cross-sectional area, and if the structure is pretensioned, the initial axial forces, too.

5. Materials characteristics: according to the model adopted for the characteristic curve – see Materials (§ 3.1.4).

Input data for GEOM:

These ones are specific to the type of the structure, for which the geometry is generated. If the structure is composed of N1 modules of type 1, N2 modules of type 2, etc., then numbers N1, N2, … and the geometry characteristics of modules of type 1, 2… will be input data.

Materials characteristics (5) will be input data.

Initial axial forces (4) will be either calculated by the program, or input data.

GEOM program structure
GEOM program might have the following structure scheme:
1. Main program:

· Reads input data.
· Calls: TGEN, XGEN, AGEN, T0GEN, WRITE_OUTFILE.
2. Subroutine TGEN

· Generates the topology.
· Calls TGEN1, TGEN2, ... which generate the local topology for modules.
3. Subroutine XGEN:

· Generates nodes coordinates.
· Calls XGEN1, XGEN2, ... which generate the local coordinates in the modules of type 1, 2, ...

4. Subroutine T0GEN:

· Generates the initial axial forces in elements.
5. Subroutine AGEN:

· Assigns areas to elements – calls AGEN1, AGEN2, ...
· Writes elements areas in the file ‘A0.UNF’.
6. Subroutine WRITE_OUTFILE:

· Writes the file Geometry File – in the format required by NELSAS.

Note: An example of GEOM program, which generates the geometry for modular structures, is the program MODULAR from NELSAS package (§ 8.6). Another example, for the generation of the geometry of cable truss with vertical hangers is given in the directory TRUSSGEOM. For another example – see [6].

3.6.6 The ”Loading File” (content)

Loading File will contain the data specified in that follows.

Text-lines are ignored as input data, they serve only as mnemonics for numerical data.

0) Commentaries:

These precede the first data used by the program (Data 1 – see below).

A commentary line, to be recognized as it, must contain the character / (slash) in columns 1 and 2. In columns 3-80, the line may contain an arbitrary text that is ignored by the program.

Any number of commentary lines may be inserting.

· Example:

// Test structure.

// Uniform loading in upper nodes.

//

//

1) Text-line - I

· Type: C

· Value: Arbitrary text ((80 characters)

2) NC, ICP, G

 General codes:

· NC = Number of loading cases
· ICP = Indicator of pretensioning calculation
· G = Gravity acceleration – projection on NGL axis
· Type: <2>I, R

· Values:

NC = 1 ... 100; or, 0 … 99 – when pretensioning calculation is done (see ICP).

ICP = 0, or integer (0.

G = according to chosen units (§ 2.5-6)

· Writing: Each data on a separate line!
 In the line, data value may be preceded or followed by with spaces or tabs.

· Example - Data 1 and 2 :

FILE NELSAS.INC - Codes: NC, ICP, G

2

0

9.8

3) Text-line - II

· Type: C

· Value: arbitrary; (80 characters.

4) LNIT, EPS, KOD
 Codes that are common to all loading cases:

· LNIT = Limit number of iterations.

· EPS = Tolerance for the iterations ending test.

· KOD = Test code.

· Tip: I, R, I

· Values: see § 3.4.1
· Example - Data 3 and 4 :

CODES: LNIT, EPS, KOD

10 1E-4 0

5) Text-line - III

 See data 1, 3.

6) KTIP, ICOR, IM, LNIP

 Codes specific to the loading case:

· KTIP = Iterations printing code.

· ICOR = Indicator to correct the initial geometry, after the loading case.

· IM = Mass indicator.

· LNIP = Limit number of iterations in the plastic domain.

· Type: <4>I

· Values: See § 3.4.2
7) K1, K2, (P(L), L = 1, NGL)

 Loaded nodes and node load:

· Type: <2>I, <ngl>R

· Meaning and values:

· K1, K2 = Indices of nodes with the property that for nodes K = K1, K1 + 1, K1 + 2, ... , K2, the load is the same.

· If there exist such nodes, then K1 < K2.

· If there is a single node K1, with loading distinct from that in nodes K1(1, one puts: K2 = K1, or K2 = 0 (for K2 = 0, the program puts K2 = K1).

· P(L) = Loading in node K, projection on axis "L":

L = 1 ... axis X; L = 2 ... axis Y; L = 3 … axis Z.

Important: Only the nodes for which at least one of the projections P(L) is not null, are entered.

8) Terminator - group 7

· Type: C

· Value: arbitrary text ≤ 80 characters. First character non-numerical, and different from T, t, F, f. Does not contain comma, spaces, tabs, or <CR>.

· Example - Data 6, 7, 8 (for NGL = 3) :

0 0 1 1

12 14 12.7385 0.0 0.0

19 21 15.0003 0.0 0.0

End_case_1

Remark:
· If the structure has a single loading case (NC = 1), the file Loading File ends with data 8 (like in the above example).

· If the structure has NC > 1 loading cases, then data 6, 7, 8 will be repeated – with the new values – for each of next cases 2, 3, ... NC.

4 NELSAS PROGRAM RUNNING
NELSAS program execution can be done:

1. By the means of the interface.

2. By direct running of executables.

It is recommended the running via the interface, which offers many execution control features: execution control for each program – with the possibility to correct input data, and to consult the results after each ended loading case, pre- and post-processing, etc.

4.1 RUNNING VIA THE INTERFACE
The interface is realized by the program NELSAS.exe.

At execution launching, the interface displays the dialog panel presented below. Panel description, control functions, and running mode are described in that follows. Conventions:

· The name or title of a control will be indicated by the font Courier New (Bold).

· The name of a key will be indicated by < >. Example: <ESC>.

· Program names will be indicated by capitals.

· The text displayed by a control will be indicated by the font Courier New (Regular).

4.1.1 Panel Description
The panel contains seven groups of controls, and the controls Sound, Program Status, Help, About and Exit.

· INPUT group:
controls for INPUT program running;
· LOAD group:
controls for LOAD program running;

· ITER group:
controls for ITER program running;

· CREATE group:
controls for creating input files;

· GRAPH group:
controls for graph processors running;

· POST Processors group:
controls for post-processing;

· TEXT Processors group:
controls for text processors running;

· Sound control:
voice messages validation;

· Program Status control:
list of programs launched in execution.

· Help button:
information on NELSAS interface controls.

· About button:
information on program and version.

· EXIT button:
exit control.

Each interface button, except buttons Select, Recent and EXIT, launch in execution an executable program.

[image: image16.png]
Figure 6 Dialog Panel of NELSAS program

4.1.2 Controls Description and Functions
1. INPUT Group
· Select Button: opens the dialog window to select Geometry File (the input file for INPUT);

· Recent Button: allows to select the input file from the last five files used in previous runs;

· Preview Button: launches PREVIEW (simplified version of NGRAF), which displays the graph of the structure defined by Geometry File.

· Geometry File Edit Box: sets the specifier of the selected input file; allows to entry directly or to edit the input file specifier;

· Output File Edit Box: sets the specifier of Output File; allows to entry or to edit the output file specifier;

· List Type List Box: allows to select the type of the output list; if no selection is done, INPUT program takes by default the type Short; at the selection Complete, in the output file are written the topology, and direction cosines of elements, too (these data are not written for Short).

· Output File Language List Box: allows to select the language for the output file, and for the User’s Guide. At launching, by default, the language used in the last run example is set. At the first running, the language defaults to Romanian.

· INPUT Program Button: launches in execution INPUT program.

2. LOAD Group
· Select Button and Loading File Edit Box: they have the same functions as have the similar controls from the group INPUT – point 1: select / set Loading File (the input file for LOAD).

· LOAD Program Button: launches in execution LOAD program.

3. ITER Group
· Select Cases List Box: allows selecting / unselecting of loading cases. (At a selection, the control title changes in My Case(s)).

· ITER Program Button: launches in execution ITER program.

4. CREATE Group
· Geometry File Button: launches in execution CREATE_GEOMETRYFILE program, for creating the input file for INPUT program.

· Loading File Button: launches in execution CREATE_LOADINGFILE program, for creating the input file for LOAD program.

· Modular Structure Button: launches in execution MODULAR program, for generating a modular structure, defined by the base module, expansion direction, and the number of modules. The program creates the input file for INPUT.

· See Creating Input Files (§ 4.1.3-5).
5. GRAPH Group
· Structure Graph Button: launches in execution NGRAF program, for representing the structure graph.

6. Post Processors Group
· Max Processor Button: launches in execution MaxProcessor program.

· Displaced Structure Graph Button: launches in execution NGRAFU program, for representing the structure graph in the displaced position, in the considered loading case specified by the selection of the working directory.

· Modular Processor Button: Button: launches in execution ModularPost program to processs a modular structure. This one has to be a modular structure (preferably, created by MODULAR program), or a “nearly modular” structure.

· Butonul Diagrams launches in execution DIAGRAMS program to draw axial force diagrams. The input files are created by ModularPost program.

Remark: For axes orientation choosing and details for running the programs NGRAF and NGRAFU - see Graphic Processors (§ 4.3.2).

7. TEXT Processors Group
· File List: a click selects the file that is going to be opened, namely: Geometry File: the input file for INPUT; Loading File: the input file for LOAD; Output File: the output file; New: A new file.

· View / Edit Button: Launches NOTEPAD program, which opens the selected file.
For a file of longer length, WORDPAD program is launched.

Note 1: A double-click on one of the files in the list opens the file.

Note 2: To open a new text file (other than Geometry/Loading/Output File) one selects New; and then, selects the desired file form the menu File (Open, of the text processor.

· Print Button:
It is enabled by a selection in the list File. It launches in execution the program WINPRINT for printing the file selected in the list; at the New selection, NELSAS displays a dialog window for selecting the file to be printed. WINPRINT displays a dialog window that allows selecting the font and the “point size”, margin settings, etc.; after that, the standard dialog window of the printer is displayed.

· User’s Guide Button:

Launches WORD (Winword.exe) and opens the file containing the User’s Guide. The Romanian or English edition is opened, according to the selection in the Combo box Output File Language.

These files are named: "Nelsas-ro.doc", and "Nelsas-en.doc", respectively, and they are found in the directory Dir\Doc\, where Dir is the installation directory of NELSAS package. See Directories Structure (§ 4.2).

· If the required edition does not exist: a message is displayed, and the existing edition is opened.

· If none of the two editions exists (both files are missing): a message is given, and WORD is launched with a blank file.

8. Sound Control
Check Box for voice messages. Displays Sound On/Off. The default is On, at NELSAS program launching. Voice messages are associated to the window ”Welcome”, to the termination of ITER, and to button EXIT.

9. Program Status Control
Displays the programs launched in execution, namely:

· Execution launching: for all processes launched by the interface.

· Execution termination:

· For: INPUT, LOAD, and ITER;

· For the other processes: only under Windows 2000/NT. The termination of execution is indicated at the launching of a new process.

See Running Mode (§ 4.1.3 -3).

10. Help Button
· Launches Help on-line on description and functions of NELSAS interface controls (executable: "hh.exe"; file: "Nelsas Help.chm").

11. About Button
· Displays information about NELSAS, including the version.

12. EXIT Button
· Closes the dialog.

Note: The dialog may be closed also by the key <ESC>, or by a click on (in the dialog window (actions equivalent to “Cancel”).

4.1.3 Controls Use and Programs Running
1. General considerations on controls
· A control is activated by a mouse click (left button), on that control.

· Each control is associated with a subroutine (callback), which executes a specific action when one takes action on, or modifies the control. From this rule are excepted group and Edit-Box titles, named static controls, which are not accessible to the user.

· Disabled controls:

At dialog panel displaying the following controls are disabled:

· INPUT Program: becomes enabled (accessible) after selecting the input and output files.

· LOAD Program (group LOAD): is enable by INPUT.

· ITER Group:

· The list Select Cases: is loaded and enabled by LOAD.

· ITER Program button: is enabled after executing a selection in the list Select Cases
· View / Edit and Print controls: are enabled by selecting in the list File.

· The other controls: are available in any moment.
2. Usual running sequence
The usual running sequence is INPUT, LOAD, and ITER. Then, optionally, one can run NGRAFU or consult the output file.

INPUT:

· Click Select or Recent, and select the input file.

· The output file is set automatically, with the name of input file and extension ‘.rez’.

Remark:

Clicking in Edit Boxes, the specifiers of selected files can be edited (modified). Alternatively, the input and output file specifiers can be entered directly in the two Edit-Boxes.

· Click the button INPUT Program to run INPUT program.

LOAD:

· The output file is set automatically, with the name of input file and extension ‘.inc’. If the input file is other than that which is set, one selects the input file via Select button, or by direct entering in Loading File Edit Box.

· Click LOAD Program button to run LOAD program.

Note: After ending the running of LOAD, NELSAS loads the list Select Case with the indexes of loading cases found to be with no errors.
ITER:

· Click in the list Select Cases, to select the desired loading cases for ITER running. Multiple selections are allowed. A new click on a selected case unselects this one.

· Click ITER Program button to run ITER program.

Note: ITER accepts up to 100 loading cases, including the pretensioning case (case “0”).

A run case can be re-run by a new selection.

NGRAFU:

Pushing Displacement Graph button launches NGRAFU program, which asks to select the working directory by a dialog panel. Then, NGRAFU builds the structure graph in the displaced configuration for the loading case corresponding to the selected working directory.

Controls:

· View / Edit: serves to open the input files, the output file, or another file – for visualization or editing.

· Print: to print the selected file; at selection New, WINPRINT displays a dialog window to select the file to be printed.

· Structure Graph: launches NGRAF program, which asks to select the input file Geometry File via a dialog panel. It can be used in any moment to visualize the geometry of the structure defined by the selected input file.

3. Running Mode
Each program is put in execution by a control.

· For INPUT, LOAD and ITER: The interface waits for the termination of execution of the launched program, and then allows the access to the launching in execution of another program.

· Programs PREVIEW, NGRAF, NGRAFU, Text Processors, WINPRINT, POSTPROCESSOR, CREATE_GEOMETRYFILE and CREATE_LOADINGFILE run in separate processes, allowing to be launched concurrently.

· NELSAS dialog is closed by EXIT or by a click on (in the dialog window.

At dialog closing, NELSAS program checks if, among the launched programs, there still exist active processes:

· If no, NELSAS ends its execution.

· If there exist active processes, NELSAS asks to confirm the termination of execution of these processes:

· If one answers “Yes”, NELSAS terminates the execution of active processes, and then it ends its own execution.

· If one answers “No”, NELSAS ends its execution, and the active processes continue to run. The termination of their execution is on user’s charge.
4. Post processing
Post Processor button launches POSTPROCESSOR program, which allows consulting the results of a case already run. Pushing the button produces displaying of PostProcessor Dialog Panel (§ 8.7), which first asks to select the working directory that contains the files of the desired case. It can be displayed:

· Node displacements, for a node selected in the nodes list.

· Maximum displacement values, in X, Y, and Z directions.

· Axial force and tension, in an element selected in elements list.

· Maximum values for tension and compression in structure elements.

· Reactions in support nodes – X, Y, and Z projections, and the modulus.

The above data can be saved, optionally, in a file with the name chosen by the user. If this is a new file, it is created.
Note:

In order that the post-processor work, the working directory must contain the following files: “comnel.dat”; “last_run.dat”; “u.unf”; “el.unf”; “react.unf”. These files will not be deleted from the working directory. The files are created by ITER program. For compatibility with NELSAS versions prior to version 7.6, the post-processor works also without the file “react.unf”: in this case, a message is given, and the reactions will not be displayed.

The working directory contains also the files: ‘x0.unf’ and ‘nei.unf’ – used by NGRAFU, and the file ‘i.unf’ associated to loading case no.‘i’.

5. Creating Input Files
The buttons from CREATE group are used:

· Geometry File and Loading File buttons:

These launch CREATE_GEOMETRYFILE and respectively CREATE_LOADINGFILE programs, which permit automatic creating of input files Geometry File, and respectively Loading File. Both programs are interactive. See dialog panels Create Geometry File and Create Loading File, together with a summary of functions and using of controls - § 8.4, and respectively § 8.5.

Direct entering of data, or loading an existing file and modifying the data in this one, do create the input files either. At any moment, inputted data – even incompletely – can be saved in the output file of the program, which can be loaded later for modifications.

Note: The loading without read errors of an existing file, is guaranteed only for files created previously via the interface.

· Modular Structure button:

Launches MODULAR program for creating the input file Geometry File – for a modular structure defined by the base module, the number of modules, and other data. The Dialog panel of MODULAR program, together with a summary of controls functions, is presented in 8.6. The program generates the file Geometry File, with structure coordinates and topology, and with dummy data for node restraints, elements, and materials. To enter the actual data, this file will be edited – either directly, or via CREATE_GEOMETRYFILE program.
4.2 DIRECTORIES STRUCTURE
At installation, the following directories are created - see Directories created at the installation process (§ 7.1):

· DIR = Installation directory; it is specified by the user.

· DIR\exe: Executables directory.

· DIR\exe\uir: resources (icons, bitmaps).

· DIR\dat: data files (examples).

· DIR\doc: text files for documentation.

Note: exe, uir, dat and doc are program keywords.

At running, the following directories are created:
- DIR\work: Working directory.

- DIR\work\name: Working directory for the example with the input file "name.dat".

Working files for a run example:

· If the example contains one loading case, then the working files are opened and kept in the directory work\name;

· If the example contains "n" loading cases, n > 1, then:

· The working files for the current case "i" are opened initially in the directory work\name;

· Prior to running case "i+1", it is created a sub-directory with the name work\name\CASEi, in which are copied the working files from case "i".

· After the ending of the last loading case (nth), the working files are saved in work\name\CASEn, and are deleted from the working directory.

Therefore, the working files will be located in directories work\name\CASEi, where "i" is the index of the respective loading case.

Note: work and CASE are program keywords.

4.3 DETAILS
4.3.1 Static Analysis Programs
LOAD:
In a case with errors in load specifications, LOAD program does not create the file with node loads for this case. LOAD writes an error message in the output file.

In such a case, one can correct the file Loading File – for the respective case – and retake the running, launching again LOAD and ITER, for that case.

ITER:
(1) Confirming case running:

ITER runs the first case with no errors, without asking for confirmation of running.

For each of the next cases, ITER asks for confirming the running by the question:

Shall I run loading case “N”?

One answers by:

Y or <CR> - for “YES" ; N or another character – for "NO"

If no answer within 30 seconds, ITER runs the case.
(2) The iteration in a loading case:

For a loading case specified and accepted, ITER launches successively the programs FACT, COEFB and SOLVE, the first one for generating and factorizing the matrix of the equations system, the second one – for RHS calculation, and the third one – for solving the system.

ITER waits the termination of the three programs, and then it retakes its own execution, testing if the condition for iteration termination is fulfilled:

· If NOT, it initiates the next iteration.

· If YES, ITER launches EXITER program – to write the results in the output file, and then, REACT program – for reactions calculation.

After that, ITER initiates the run of the next loading case.

(3) For each run case, ITER opens the output file (Output File) and adds to this, the results of the run in the respective case.

4.3.2 Graph Processors
1. Functions
NGRAF performs the graphical representation of a structure, based on the data in the file Geometry File.

NGRAFU creates the graphical representation of the displaced structure, for the structure and loading case corresponding to the working directory.

2. Axis system
Axes orientations with respect to the position of the user located in front of the screen, and the settings allowed by NGRAF and NGRAFU, in the present version, are presented in Figure 7 and the next table. Changing the orientation is done by setting the controls in a dialog panel displayed by the graphic processor.

Figure 7 Axes orientation in NGRAF and NGRAFU programs
	Axis

	X

	Y

	Z / Y

	Ordinal Number
Remarks
	1
	2

For: NGL = 3
	NGL (3 or 2)

Vertical axis

	Standard Orientation
	Rightward
	Forward
	Upward

	Orientation Changing
	No
	Yes
	Yes

3. Color scheme
The dialog panel allows choosing the colors for the elements of the representation, in three schemes: Standard, AllBlack, and Custom, by selecting in the list Color Scheme. At Custom selection, a dialog panel is displayed for interactive color selection. Initially, Standard scheme colors are displayed. The colors may be chosen for lines (structure, grid, scale), and for witting (node indices, element indices, and text).

4. Running
NGRAF:

The running is interactive. The Dialog panel of NGRAF program allows setting the options for structure representation. At launching, NGRAF asks selecting of Geometry File.
· Node indices are written, optionally, on the graph. For NN<100, the node is marked by a small circle, too.

· Element indices are written or not, according to user’s option.

· The grid is displayed or not, according to user’s option.

· The built image can be saved, optionally, in a bitmap file, or can be printed to the printer.
· For a structure with a large number of nodes and elements, one can build the partial graph for a specified sequence of nodes, or one can zoom a region of the graphs, this region being selected by the mouse – in the window of the last built graph.
· Structure representation is proportional. For structures expanded on a single direction, one can choose a factor of increasing of the minimum dimension, by editing the default selection Auto in the first control of the Combo Box Increasing Factor for Minimum Size. Selection Auto corresponds to a factor of one.
· The color palette is chosen by selection in the list Color Scheme.

· Optionally, one can choose the font style used to write node indices, and respectively, element indices, namely:
· Type: normal, bold, italic, underline – in any combination.
· Point Size: in the interval 10-16 (step 1) and 18-24 (step 2).
Note:

From the menu of the main window, one can go back to the settings, make zoom, or go to the construction of a new graph for another structure (maximum 39 graphs).

NGRAFU:

Launching in execution can be done only after ITER program has been run for the respective problem (in the current session or in a previous one).

The dialog panel of NGRAFU program is similar to the Dialog panel of NGRAF program
 (§ 8.8). At launching, NGRAFU asks for selecting the working directory corresponding to the problem.

· Input data are read from the files created by NELSAS package programs, namely:

last_run.dat, comnel.dat, x0.unf, nei.unf, u.unf, el.unf. These files are to exist in the selected working directory. NGRAFU checks for the existence of these files.

· NGRAFU builds the graph of the structure, in the initial and the displaced configuration.

· The built image can be saved, optionally, in a bitmap file, or can be printed to the printer.
· For a structure with a large number of nodes and elements, one can build the partial graph of the structure, by making zoom for a region selected by the mouse – in the window of the last built graph. In this case, the static control that displays the problem title displays also the indices of selected nodes.
· The displacements are multiplied by a multiplication factor. This one is entered from the keyboard, or is selected from a Combo box. Value 0 (zero) or any of the strings: Auto, AUTO, or auto, produces the automatic choosing, by the program, of the multiplication factor for displacements representation.

· Node loads, in the considered loading case, can be represented optionally on the displaced structure.
· Broken or slack elements: are represented by dot line, respectively dash-dot; the element index is followed by the characters (B), respectively (S).

· The dialog panel NGRAFU allows many graph settings: representing or not of the grid, of the initial structure, of loads, etc.

· NGRAFU allows selecting the font style for node and element indices, and the colors for structure representation (see above NGRAF and Color Scheme – point 3).

Note:

From the main window menu, one can go back to the settings, make zoom, or go to the construction of a new graph for another structure (maximum 39 graphs).

4.4 DIRECT RUNNING OF EXECUTABLES
Direct running can be done by:

· The menu Start/Run, with the below commands, for executables that require arguments (in a command line).

· By launching from Explorer or Windows Commander, by click or double click on the name/icon of the executable, for executables that do not require arguments.

4.4.1 Executables for Static Analysis
The programs that compose NELSAS have to be run in the following succession:

1) INPUT

2) LOAD

3) ITER

Each program is launched in execution by the command
> program_name command_line
after the ending of execution of the preceding program.

Program_name is: input.exe, incarc.exe, and respectively iter.exe.

Command_line has to contain the below arguments, separated by one or more spaces.
Note

Nevertheless, if there are no arguments, each program launch dialog windows to select/input these arguments.
INPUT:
3 arguments: arg1 arg2 arg3 arg4

· arg1 = File specifier of Geometry File;

· arg2 = File specifier of Output File;

· arg3 = Type indicator for the output list;

· arg4 = Language for the output file (max. 20 characters).

All arguments are of character type, of maximum lengths as follows: arg1 and arg2: 260;
arg3: 10; arg4: 20.

The arguments have to be inputted in the above order.

File specifiers will be given with full path, if the file is not in the current directory.

For arg3 and arg4, only the first character is significant, namely:

· The list type indicator is: C or c – for the complete list; any other character – for the short list. The short list does not contain the topology and direction cosines.

· For arg4: r or R = Romanian; other character = English.

In the case of errors in data in Geometry File, INPUT considers by default the complete list, regardless of the inputted type.

Note-1:

If the command line contains only arg1, then: INPUT forms arg2 from the name of arg1 and extension ‘.rez’, arg3 = S (Short list), and arg4 = Romanian.

· Examples:

>INPUT mass.dat C:\rezdir\mass.rez c rom
>INPUT mass.dat

Note-2: If arg1 or arg2 contain spaces, then enter them embraced by quotes (“ ”).

· Example:

>INPUT “mass 20000.dat” “C:\rezdir\mass 2000.rez” c rom
>INPUT “mass 20000.dat”
LOAD:
1 argument: arg1
· arg1 = File specifier of Loading File.

Type character, maximum length: 255.

· Example:

>LOAD mass.inc

Note-2 above holds.

ITER:

1 up to 100 arguments: arg1 arg2 ... argN

· arg1 arg2 ... argN = Indices of loading cases.

At least one loading case has to be inputted.

· Example:

>ITER 2 5 3

After the end of running, ITER can be run again, specifying the wanted loading cases in the command line.

4.4.2 Graph Processors
These are:

1) NGRAF.exe

2) NGRAFU.exe

The launching in execution of a graph processor is done by the command:

>program_name
Both programs are endowed with dialog windows (browse type) for selecting the input file (NGRAF), respectively the working directory (NGRAFU).

The input file for NGRAF is Geometry File.

4.4.3 Pre and Post-processors
The pre-processors for creating input files, and the post-processor for maximum values, are run by the below commands, respectively. They do not require arguments. The dialogs are interactive.

>Create_GeometryFile

>Create_LoadingFile

>Modular

>MaxProcessor

>Diagrams

WinPrint:

arg1 - The specifier of the file to be printed.

If arg1 is not entered, or if the specified file does not exist, WinPrint displays a dialog window to select the file to be printed.

Example:

>C:\Nelsas\exe\WinPrint c:\Nelsas\dat\mass.inc

4.5 OUTPUT FILES

4.5.1 The "Output File"

The run results are written in the output file (Output File), by the programs that compose NELSAS. Output data are described shortly in that follows. Data indicators used in the output file are indicated in brackets. The explanatory text that accompanies numerical data (i.e. headings, codes, units, etc.) may be written, optionally, in Romanian or English.
1. Data written by INPUT

· General data: Problem title; number of nodes, elements, and node degrees of freedom; maximum number of elements incident in node; half-bandwidth.

· Node restraints – for support nodes.

· Topology – if the list type is “C” or “c”.

· Node coordinates (X0, Y0, Z0(
· Elements data:

· Initial and final node (NI, NF(, area, initial axial force, indicator of material type, length;

· Direction cosines (TETAX, TETAY, TETAZ(- if the list type is “C” or “c”.

· Material characteristics:

· Index of material type [ITM], maximum element index of this type (ELMAX(, elasticity modulus (Y0(, characteristic curve elements (SIGMA1, SIGMA2, ELIM1, ELIM2(, and mass density (R0(- see Materials (§ 3.1.4).

2. Data written by LOAD

· Number of loading cases and general codes LNIT, EPS, KOD (See § 3.4.1); gravity acceleration G (if G (0).

· Data specific to each loading case: codes KTIP, ICOR, IM (§ 3.4.2) and node loads (in loaded nodes).

If it has been entered codes IM (0 and G (0, the NGL component of node load will contain also one-half of the self-weight of elements incident in node.

Remark:

INPUT and LOAD programs write also error messages in the case of detecting errors in input data. See Errors in input data … list (§ 8.3).

3. Data written by ITER

For each loading case are written:

· The number of the last iteration and the condition of uterations ending: corrections less than tolerance EPS, or attaining of the imposed limit number of iterations.
· Maximum correction to displacements (KOD = 0), or the RHS of maximum modulus (KOD (0).

· The corrections to node displacements.

· Node displacements along directions X, Y, Z: (UX, UY, UZ(.

· Axial force and stress () in elements.

· The right-hand side of maximum modulus (this represents the non-equilibrated force in node, namely the projection of maximum modulus, which serves to appreciate the iteration ending.).

· The reactions in support nodes: [RX, RY, RZ].

· If it was specified ICP (0 (pretensioning calculation) then ITER writes, in the above form, the results of the pretensioning calculation, namend loading case "0". After that, ITER writes node coordinated and element characteristics in the equilibrium configuration from loading case "0". (In the form of data written by INPUT – see point 1.)

· If it was specified code KTIP (0, then ITER writes also the results of each iteration as follows:

· Right-hand sides of equations system (before iteration).

· Corrections to displacements and node displacements (UX, UY, UZ(.

· Axial force and stress in elements.

Remark
FACT program (launched by ITER) writes an error message in the case a diagonal element (DIAG(of the system matrix is less than 1E-12. The message is displayed to the terminal too, having the following format:

ITERATION
NO.
“i”

** NODE:
“K”, DIRECTION:
“L”,

DIAG = “value”

 (Stiffness matrix is not positive definite)

** STRUCTURE IS UNSTABLE !

 * Check node “K” connections !

Such an error appears from a wrong specification of structure topology, the structure becoming a critical system ■
INPUT and LOAD programs write the time of beginning of execution, in the format:

 *** NELSAS "program_name" "date" "time"
ITER writes the start and end time of execution, for each loading case (in the format above).

4.5.2 Stiffness Matrix File

FACT program writes, in the directory \work\name\, a file that contains the tangent stiffness matrix for the corresponding loading case.

The file name is “Stiff-casen.dat”, respectively “Rigid-casen.dat” (as the set language is English, respectively Romanian); “n” is the index of the loading case.

The file contains the upper triangle of the tangent stiffness matrix, in the equilibrium configuration for the considered loading case.

The first line in the file is a text-line that specifies the unit for the entries of the tangent stiffness matrix, and the half-bandwidth.

Example:

Stiffness Matrix (Upper Triangle) (kN/m); Half-Bandwidth: 21

Note
This file is used in the computation of structure eigenvalues.

■

5 COMPUTATION THEORY (Summary)

5.1 EQUILIBRIUM EQUATIONS
The computation theory supposes finite deformations and is exposed in [1], [2].

For a generic node K, the displacement vector from the reference configuration
[image: image17.wmf]0

G

, to the current configuration (, is:

where
[image: image18.wmf]L

K

U

 are the coordinates of UK in the initial basis of unit vectors {I1, I2, I3}.
The equilibrium equation of node K has the form

fK(U) = PK

(1)

where PK is the vector of the node equivalent loading, and fK a non-linear vector-valued function depending on node displacements:

[image: image19.wmf]X

1

K

0

K

(K-1)

0

(K+1)

0

K-1

K+1

I

0

II

0

II

I

U

K

X

2

X

3

Figure 8 Node and node displacement
Function
[image: image20.wmf]K

f

 is given by:

[image: image21.wmf]å

=

-

-

-

=

NK

J

J

K

J

K

J

K

J

K

K

T

T

1

1

1

)

(

)

(

V

V

U

f

(2)

where J covers the set of paths incident in node K, and
[image: image22.wmf]K

V

 is given by:

[image: image23.wmf]0

0

1

K

K

K

K

K

s

Θ

U

U

V

+

D

-

=

+

,

(3)

where:

·
[image: image24.wmf]0

K

s

D

 is the length of element (K, K+1);

·
[image: image25.wmf]0

K

Θ

 is the unit vector of element (K, K+1) , in the initial configuration (0;

·
[image: image26.wmf]K

T

 is the resultant of Piola stress in the section of element (K, K+1).
The axial force in the element (the resultant of Cauchy stress) is given by

(4)

The vector equation (1) projected on the axes, leads to the equilibrium equations of node K:

[image: image27.wmf]3

3

2

2

1

1

)

(

)

(

)

(

K

K

K

K

K

K

P

f

P

f

P

f

=

=

=

U

U

U

These ones, considered for K = 1, 2, 3, ... , NNL (NNL = Number of free and partial free nodes), lead to the system of equilibrium equations:

(5)

In the case of a partial free node, the equation corresponding to a restrained displacement is not generated. The number of equations in (5) is denoted NEQ. In matrix form, system (5) reads:

f(U) = P

(6)

where:

[image: image28.wmf][

]

T

NEQ

f

f

f

,

....

,

,

2

1

=

f

[image: image29.wmf][

]

T

NEQ

P

P

P

3

2

1

,

....

,

,

=

P

- Node loading vector

[image: image30.wmf][

]

T

NEQ

U

U

U

,

....

,

,

2

1

=

U

- Node displacement vector

Displacements
[image: image31.wmf]J

U

 are the unknowns of system (5). They are measured with respect to the reference configuration
[image: image32.wmf]0

G

. A function associates the displacement
[image: image33.wmf]J

U

 to node K and to the degree of freedom L.

5.2 SOLVING PROCEDURE
The non-linear system (5), or equation (6), is solved by Newton’s method – see [5].

The matrix equation (6) is put in the form:

F(U) = 0
where

F(U) (f(U) - P

Let ((be a configuration near to
[image: image34.wmf]0

G

, then we put

(7)

where:

The iteration scheme is the following:

[image: image35.wmf]î

í

ì

D

+

=

-

=

D

+

+

+

)

1

(

)

(

)

1

(

)

(

)

1

(

)

(

)

(

)

(

i

i

i

i

i

i

U

U

U

U

F

U

U

A

(8)

and

A(U) is the jacobian of function F (or the jacobian of f, since P does not depend on U) - called tangent stiffness matrix in configuration ((U).

In the case of elements incident in nod on two paths, equations (8) have the form [1], [2]:

[image: image36.wmf]K

II

K

I

K

K

II

K

I

K

II

K

I

K

II

I

J

J

K

J

K

II

K

I

K

B

U

U

U

U

U

A

A

A

A

A

A

=

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

D

D

D

D

D

×

ú

û

ù

ê

ë

é

-

-

+

-

-

+

+

-

-

=

-

-

-

å

,

1

,

1

,

1

,

1

,

,

,

,

,

1

,

1

,

1

)

(

(10)

where:

[image: image37.wmf]P

U

f

B

-

=

)

(

K

;

[image: image38.wmf]3

,

1

,

3

,

1

]

[

=

=

=

L

M

K

ML

A

A

,

and the entries of matrix A are given by:

[image: image39.wmf]ú

û

ù

ê

ë

é

×

-

×

×

+

×

D

=

2

0

0

0

0

|

|

)

(

1

K

M

K

L

K

K

K

K

K

ML

K

K

K

ML

V

V

V

T

A

Y

T

s

A

l

d

 (11)

Notations:

· Quantities with upper index 0 are calculated in configuration
[image: image40.wmf]0

G

;

· Quantities with lower index K refer to element (K, K+1), namely:

[image: image41.wmf]0

K

A

 = Cross-sectional area of element;

[image: image42.wmf]0

K

Y

 = Elasticity modulus of element;

[image: image43.wmf]0

0

0

/

1

K

K

K

Y

s

l

+

=

, where
[image: image44.wmf]0

K

s

 is the initial stress in element.

For plastic domain calculation, with reference configuration
[image: image45.wmf]0

G

:

[image: image46.wmf]ú

û

ù

ê

ë

é

×

-

D

=

2

0

|

|

K

M

K

L

K

ML

K

K

K

ML

V

V

V

s

T

A

d

(11')

The iterative process goes on until one of the following conditions is fulfilled:

(12)
or

(13)

The choosing of the test condition (12) or (13) is commanded by code KOD (§ 3.4.1).

In (12) and (13), the following norms have been taken:

[image: image47.wmf]L

K

NNL

K

NGL

L

U

D

=

=

=

4

3

4

2

1

,

1

;

,

1

maximum

B

EPS is set beforehand (§ 3.4.1). Due to iteration with the exact tangent stiffness matrix, the iterative process is rapidly convergent, namely:
· Generally, 3 to 4 iterations ensure the fulfillment of tests (12), (13), with EPS = 10-3 ... 10-4;

· Flexible structures may require, for the same test, more iterations: 6 - 7.
5.3 SOLUTION of the LINEAR SYSTEM
System (8) is linear, with band matrix symmetric and positive definite. For its solving, a solver by CHOLESKY decomposition of matrix A is used.

The main characteristics of the solver are the following (See also [3]):

1) Memory needed to store the elements of matrix A, needed at a step:
These elements are in number of LIM*(LIM+1)/2 – where LIM = half-bandwidth of the system (8).

The elements needed at each step are generated, at the respective step, by function AA and are put in the working vector Y. The array Y is allocated of dimension NY = LIM*(LIM+1)/2.

Processed rows are “written” in the array YA(neq*LIM). After processing, array YA is written in the file “AA.unf” – read by SOLVE program and used for Forward and Back-substitution stages.

2) The number of operations needed for system solving – which is about 1/2 of the number of operations required by GAUSS elimination [5].

[image: image48.wmf]

Array for CHOLESKY

decomposition (at a step)

LIM

*

(LIM+1)/2

LIM

LIM

LIM

Array for processed rows

Y

YA

Figure 9 Arrays Y and YA
The following programs perform the process of iterative solving:

1. FACT: generation of elements of matrix A and CHOLESKY factorization.

2. COEFB: generation of right-hand sides.

3. SOLVE: system solving.

4. ITER: Program that govern the iteration:

· Launches FACT, COEFB and SOLVE programs;

· Performs test (12) or (13) and initiates or not, a new iteration;

· Launches EXITER program at iteration exit.

■
6 CHECK EXAMPLE
6.1 STRUCTURE
As check example, the space structure represented in Figure 10 is considered. The structure is calculated in [4] pp. 539-549, in loading case 1 from this example, by linear analysis. Node and element (bar) numbering is given in the figure.

Structure geometry is entered by nodes coordinates in the represented axis system, and by the list of elements incident in each node, on four paths oriented as follows:

I - Vertical bars: oriented downward.

II - Horizontal section bars: oriented counter-clockwise.

III – Diagonals of side faces: oriented downward.

IV – Horizontal diagonals: oriented in the sense 1(3, 5(7, 9(11.

General structure data:

Number of nodes: NN = 16

Number of free nodes: 12

Number of elements: NEL = 39

Number of node degrees of freedom: NGL = 3

Maximum number of elements incident in node: MAX = 8

Element cross-sectional areas are:

· Vertical bars and horizontal section bars: 10.2 cm2.

· Face diagonals and horizontal diagonals: 14.425 cm2.

All elements are from the same material type = Type 1.

Four loading cases are considered, the structure being loaded with:

1) P = 10 kN, applied in node 1, direction + X.

2) P = 10 kN, applied in node 1, direction + Y.

3) P = 10 kN, nodes 1 and 2 , direction -X.

4) P = 10 kN, nodes 1 and 4 , direction +X.

The self-weight of bars is not taken into consideration, in the calculation.

The files containing the input data are given in § 6.2.

[image: image49.wmf]10

 kN

32

36

 5

37

16

Y

31

 3

35

22

29

20

19

26

14

28

 16

18

39

34

24

21

12

10

11

9

38

30

8

 7

8

4

2

 1

13

3

10

 kN

14

12

1

m

1

m

1

m

1

m

1

m

Z

Z

X

9

13

5

15

11

7

3

4

2

10

6

1

15

25

27

33

6

17

23

24

Figure 10 The structure for the ckeck example
6.2 INPUT FILES for the CHECK EXAMPLE
The input files for the check example are found under the names “mass.dat” (Geometry File), and “mass.inc” (Loading File). They are listed in what follows.

The output file is “mass.rez” (Output File).

Remark: In the output file, in the list of bars incident in nodes, the bars appear regrouped in paths incident in node (some of them, different from the paths inputted in “mass.dat”).

File “mass.dat”:

// Check Example
// File "mass.dat"

// Support Nodes: 12-16

// kodTopo = 0

//

MASSONNET STRUCTURE
16

39

3 0
8

12

16

1
1
1

Elastic_Supports:None

Basic_Units:

m

cm2

kN

Coordinates_x_y_z

1 0. 0. 3.

2 1. 0. 3.

3 1. 1. 3.

4 0. 1. 3.

5 0. 0. 2.

6 1. 0. 2.

7 1 1 2

8 0 1 2

9 0 0 1

10 1 0 1

11 1 1 1

12 0 1 1

13 0 0 0

14 1 0 0

15 1 1 0

16 0 1 0

NODE&TOPOLOGY:

1 0 1 13 14 0 25 0 37

2 0 2 14 15 0 26 0 0

3 0 3 15 16 0 27 37 0

4 0 4 16 13 0 28 0 0

5 1 5 17 18 26 29 0 38

6 2 6 18 19 27 30 0 0

7 3 7 19 20 28 31 38 0

8 4 8 20 17 25 32 0 0

9 5 9 21 22 30 33 0 39

10 6 10 22 23 31 34 0 0

11 7 11 23 24 32 35 39 0

12 8 12 24 21 29 36 0 0

13 9 0 34 0 0 0 0 0

14 10 0 35 0 0 0 0 0

15 11 0 36 0 0 0 0 0

16 12 0 33 0 0 0 0 0

ELEMENTS:

1 24 10.2 0

25 39 14.425 0

Material_Caracteristics:

1 39 0. 0.21E5 21. 21. 0. 0.

End

File “mass.inc”:

// Check Example
// File "mass.inc"

//

Massonnet Structure. NC,ICP,G :

2

0

0

CODES
10 1.E-4 0

CASE_1

1 0 0 0

1 0 10. 0. 0.

Case_2

0 0 0 0

1 0 0. 10. 0.

Case_3:

-1 0 0 0

 1 1 -10. 0. 0.

 2 2 -10. 0. 0.

Case_4:

-1 0 0 0

 1 1 10. 0. 0.

 4 4 10. 0. 0.

End

(
7 NELSAS PACKAGE INSTALLATION

NELSAS package will be installed in a directory chosen by the user.

In what follows, the installation directory will be called DIR.. (Recommended name: NELSAS).

The programs assume the existence of the below directories.

These ones will be created by the user.

7.1 DIRECTORES CREATED AT THE INSTALLATION PROCESS

Figure 11 Directories structure
· Dat directory: contains input files, and, after run, output files too.
· Doc directory: contains three document files:

· User’s Guide (Romanian and English editions): Files “NELSAS-ro.doc” and “NELSAS-en.doc”, in Microsoft Word format;

· File “Readme.txt”: last updates.

· Exe directory: contains executable programs.
The directory also contains the sub-directories Exe\Uir and Exe\Wav that contain resources.

· Work directory: This one will be created at the time of the first run, and it will contain the working files of executables. See List of files used by NELSAS program (§ 8.2).

8 APPENDICES
8.1 INPUT FILES CONTENT (resumé)

8.1.1 "Geometry File" (Geometrical and mechanical data)

	No.
	DATA
	TYPE 1)
	REMARKS

	0
	Comments
	C
	Character / in columns 1 and 2.

	1
	Problem title
	C
	Text (80 characters.

	2
	NN, NEL, NGL, kodTopo, MAX
	<5>I
	General data. NGL = 3 or 2. For kodTopo = 0: MAX = even number.

	3
	K1, K2, (bloc(L), L = 1, NGL)
	<2>I, <ngl>I
	K1,K2: nodes with identical restraints from K1 to K2; K2 (K1; bloc(L) = 0/1.

	4
	Terminator – Group 3
	C
	Data (80 characters. First character non-numerical, and different from: T, t, F, f. Does not contain spaces, tabs, commas, <CR> .

	5
	K1, (el_const(L), L = 1, NGL)
	I, <ngl>R
	K1 = elastic support; el_const(L) = elastic contant along direction L; 0. – if there is not elastic support along direction L.

	6
	Terminator – Group 5
	C
	See data 4.

	7
	Length Unit

Area Unit

Force Unit
	C

C

C
	Base units: character strings.

Are written on separate lines.

	8
	K, (X0(L), L = 1, NGL)
	I, <ngl>R
	Node coordinates: K = node;

X0(L) = node K coordinates.

NN groups 8.

	9
	Terminator – Group 6
	C
	See data 4.

	10

 a)
	K, NEI(J), J = 1, MAX
	I, <max>I
	Either data ‘a’ or data ‘b’ are entered.

a) Topology for kodTopo = 0:

K = node; NEI(J) = elements incident in node K.

NN groups 10-a.

	 b)
	M, NI, NF
	<3>I
	b) Topology for kodTopo ≠ 0:

M = element; NI, NF = initial node, final node, for element M.

NEL groups 10-b.

	11
	Terminator – Group 10
	C
	Idem 4

	12
	M1, M2, A0, T0
	<2>I, <2>R
	M1, M2: elements with the same A0 (area) and T0 (initial axial force), from M1 to M2; M2 (M1.

Total element specifications = NEL.

	 13
	Terminator – Group 12
	C
	Idem 4

	 14
	ITM, ELMAX, R0, Y0, SIGMA1, SIGMA2, ELIM1, ELIM2
	<2>I, <6>R
	Material characteristics. SIGMA2 and ELIM2 – in modulus.
1 (ITM (5

	 15
	Terminator – Group 14
	C
	Idem 4. Last data in the file.

 1) Legend:
I = integer; R = real; C = character. <n>I = “n” integers. <n>R = “n” reals.
Remark:

Data are read in the program with the following formats:

· Numerical data (type I, R): list-directed format (();

· Problem title: format A80;

· Comments and Terminators: ignored.

8.1.2 "Loading File" (Loading data)

	No.
	DATA
	TYPE 1)
	REMARKS

	0
	Comments
	C
	Character / in columns 1 and 2.

	1
	Text-Line - I
	C
	Arbitrary text (80 characters.

	2
	NC

ICP

G
	I

I

R
	General codes.

Writing on separate lines.

	3
	Text-Line - II
	C
	Idem 1

	4
	LNIT, EPS, KOD
	I, R, I
	Codes common to all loading cases.

	5
	Text-Line - III
	C
	Idem 1

	6 - 1
	KTIP, ICOR, IM, LNIP
	<4>I
	Codes specific to loading case.

	7 - 1
	K1, K2, (P(L), L = 1,NGL)
	<2>I,

<ngl>R
	K1, K2 = nodes with identical loading, from K1 to K2; K2 (K1.

P(L) = node loading, along direction L.

Only loaded nodes are inputted.

	8 - 1
	Terminator – group 7
	C
	Arbitrary data (80 characters. First character non-numerical, and different from T, t, F, f. Does not contain spaces, tabs, commas, <CR>.

	6 - 2
	Idem 6 - 1
	<4>I
	Data 6, for loading case no. 2.

	7 - 2
	Idem 7 – 1
	<2>I, <ngl>R
	Data 7, for loading case no. 2.

	8 - 2
	Idem 8 – 1
	C
	Data 8, for loading case no. 2.

	. . .
	Etc.
	. . .
	Data 6, 7, 8 are repeated up to case “NC“ (last case).

 1) See the type legend at point 8.1.1 – The Geometry File.
Remark:

· Numerical data (type I, R) are read with list-directed format (();

· Commentaries, Text-Lines and Terminators: are ignored.
8.2 LIST OF FILES USED BY NELSAS PROGRAM
1) All files have sequential structure.

2) A file with extension .UNF has the attribute "unformatted".

3) The content of a file record is indicated by |...| .

	No.
	NAME.extension
Name
	RECORD
	CREATED BY
	REMARKS

	1
	NAME1.dat

Geometry File
	Geometry and materials.

(§ 3.6.4)
	User
	Input File – I:

Used by INPUT and NGRAF.

	 2
	NAME2.rez

Output File
	Output data. (§ 4.5)
	INPUT

LOAD

ITER
	Output File.
Default: NAME1.rez

	 3
	NAME3.inc

Loading File
	Loading cases.

(§ 3.6.6)
	User
	Input File – II: Used by LOAD. Default: NAME1.inc

	 4
	X0.unf
	|X0,A0,T0,S0|
	INPUT
	-

	 5
	NEI.unf
	|NEI|, |NI|, |NF|
	INPUT
	-

	 6
	TETA.unf
	|TETA|
	INPUT
	-

	 7
	COMNEL.dat
	Common data
	INPUT
	Managed only by the program !

	 8
	1.unf

2.unf

. . .
	Loads in loading cases 1, 2, ...
	LOAD
	Not created, if errors in loads specifications, in the respective case.

	 9
	B.unf
	Right-hand sides B
	COEFB
	-

	 10
	AA.unf
	CHOLESKY decomposition of matrix
A
	FACT
	Fixed length records.

	 11
	AA0.unf
	Data from AA.UNF - in the initial configuration
	FACT
	Used at loading cases > 1

	 12
	EL.unf
	Element state
	ITER
	Written by ALTER

	 13
	EL0.unf
	Data from EL.unf for the reference configuration
	ITER
	Written by ALTER

	 14
	U.unf
	Node displacements U(K,L)
	ITER
	-

	 15
	UU.unf
	Corrections to displacements UU(K,L)
	ITER
	Solution of the equations system (8)

	 16
	300.unf
	. . .
	EXITER
	Usede by ITER / COR, for ICP, ICOR (0

	17
	REACT.unf†
	Reactions
	REACT
	Used by PostProcessor

	18
	FACT0.dat
	Exit code from FACT
	FACT
	Used by ITER

	19
	LAST_RUN.dat
	Information about the last run
	INPUT
	Used by ITER

	20
	TEMP.dat
	Current loading case
	ITER
	Used by ITER and REACT

	21
	WORK_DIR.dat
	Working directory
	INPUT
	Used by the interface

	22
	NEL32.pst
	Programs status
	ITER
	-

	23
	RECENT.dat
	Last 5 files Geometry File
	NELSAS
	Managed by NELSAS

Remark: During the running, the user will not modify the file COMNEL.DAT and the files with extension .UNF!
8.3 ERRORS in INPUT DATA REPORTED by ”Input” and ”Load”

(M) = Error Message, written in Output File.

In the column Error Type, "Data xx" refers to the content of Geometry File (§ 3.6.4).

	ERROR CODE
	ERROR TYPE

	11
	NN (0 sau NNL (0 sau NEL (0

	12
	Number of restraints < 6 (NGL =3) or < 3 (NGL =2)

	13
	NEL < Number of free nodes + 1

	14
	NGL does not comply with: 1 (NGL (3

	15 (M)
	MAX is not even number (kodTopo = 0).

	16
	MAX (1 (kodTopo = 0).

	17 (M)
	Errors in elastic supports specification. Indices of nodes in error are given in the message.

	200
	Number of nodes for which is specified the topology < NN (kodTopo = 0) – Data 6.

	201
	Node indices equal to zero – at topology specification (kodTopo = 0).

	202
	Node indices > NN – at topology specification (kodTopo = 0).

	203
	Number of nodes with specified coordinates < NN – Data 4.

	204
	Node indices equal to zero – at coordinates specification.

	205
	Node indices > NN - at coordinates specification.

	206
	Number of elements in Data 10 < NEL.

	207
	Element indices equal to zero – in Data 8.

	208
	Element indices > NEL – Data 10.

	209 (M)
	Indices of material type < 1 or > 5 – Data 12.

	210 (M)
	A same element appears twice in the list NEI(J) of a node (kodTopo = 0). Node index is given in the message.

	211 (M)
	Nodes with different indices that have identical coordinates. Node indices are given in the message.

	212
	ELMAX undefined for a material type – Data 12.

	213
	Element with index > NEL, specified in topology (kodTopo = 0).

	214 (M)
	ELMAX < NEL in Data 12.

	215 (M)
	Number of nodes read without errors ≠ NEL (kodTopo ≠0).

	216 (M)
	Elements with end nodes = 0 (kodTopo ≠0). Data in error are given in the message.

	217 (M)
	Elements with end nodes > NEL (kodTopo ≠0). Data in error are given in the message.

	- - - (M)
	Multiple declaration for elements (kodTopo ≠0). Data in error are given in the message.

	30 (M)
	Elements of length < 0.001 (length units). Element index is given in the message.

	32 (M)
	At topology specification, there exist elements incident only in one node (element index is given in the message).

	33 (M)
	Elements that do not appear as incident in any node – at topology specification (element index is given in the message).

	- - (M)
	Errors in specification of nodes K1, K2 with identical loading:

indices K1 > K2 or K2 > NNL or K1 < 0 or K2 < 0 (indices in error are given in the message).

Remarks:

· The errors whose code begins with i = 1 and i = 3 stop INPUT program with the message

(CHECKi: STOP.

· The last error (signaled by LOAD) leads to the canceling of creating the file with node loads, for the respective case.

· In the case of errors in input data, in the output file are written the data found to be free of errors (accepted data).

· A special error is signaled by FACT program, in the case a diagonal element (DIAG) of matrix A is less than 1E-12 (Matrix A is not positive definite, or is singular.). The situation DIAG < 1E-12 halts of execution of programs FACT and ITER, and produces the following error message (at display, and in output file):

*** NELSAS

FACT

ITERATION
NO.
“i”

** NODE:
“K”, DIRECTION:
“L”,

DIAG = “value”

 (Stiffness matrix is not positive definite)

** STRUCTURE IS UNSTABLE !

 * Check node “K” connections !

Such an error appears, in general, from a wrong specification of structure topology, the structure becoming a critical system ■
8.4 MAIN PANEL of “Create_GeometryFile” PROGRAM
[image: image50.png]
Figure 12 Main panel of CREATE_GEOMETRYFILE program
Panoul conţine 4 grupuri de controale pentru introducerea datelor, şi controale de ieşire.

1) Grupul LOAD:

Serveşte în cazul în care datele se incarcă dintr-un fişier existent (după care, se pot modifica). Butonul Old Geometry File deschide o fereastră de selectie a fişierului. În controlul static File se afişează numele fişierului selectat. Check box-ul New Load permite o noua încărcare a unui fişier existent.

2) Grupul GENERAL DATA:

Datele generale se introduc în cele trei Edit Box-uri sau se selectează din cele două Combo Box-uri, şi anume:

Number of Nodes: NN; Number of Elements: NEL; Max. Incident Elements in a Node: MAX.

Degrees of Freedom/Node: NGL; Topology Input: kodTopo.

La încărcarea unui fişier existent, acesta controale afişează valorile corespunzătoare datelor din fişier.

Combo Box-ul Topology Input permite selectarea tipului de introducere a topologiei, şi anume: Incident Elements sau End Nodes – care corespund valorilor kodTopo = 0, şi respectiv, kodTopo ≠ 0. Le modificarea selecţiei, programul crează lista necesară: NI-NF sau NEI. (Aceasta va fi afişată în panoul de dialog deschis de butonul Topology – v. 3.)

Butonul Node Restraints deschide un panou de dialog pentru introducerea blocajelor de nod (noduri suport). Butonul UNITS deschide o fereastră de dialog pentru introducerea unităţilor de bază.

3) Grupul SPECIFIC DATA:

Iniţal controalele sunt invalidate. Ele devin accesibile după introducerea datelor din grupul GENERAL DATA – fie direct, fie prin încărcare dintr-un fişier existent – v. 1.

Butoanele Coordinates, Topology, Elements şi Materials, deschid fiecare câte un panou de dialog pentru introducerea datelor respective. În particular, Topology deschide panouri de dialog diferite, corespunzător selecţiei din Combo Box-ul Topology Input.

4) Grupul GEOMETRY FILE:

Butonul Select deschide o fereastră de tip Browse pentru selectarea/editarea numelui fişierului de intrare. Dacă se introduce un nume de fişier nou, acesta se crează. În acest caz numele se dă cu calea completă. Butonul Create crează fişierul sub numele selectat. Butonul View permite vizualizarea fişierului. Butonul Preview permite vizualizarea structurii definite de fişierul creat/incărcat.

EditBox-ul Name afişează numele fişierului selectat şi permite introducerea/editarea numelui; la introducerea directă, numele se dă cu calea completă (se introduce specifierul de fişier).

ListBox-ul Language permite selecţia limbii pentru fişierul generat: română sau engleză.

5) Controalele Cancel şi DONE inchid dialogul principal.

8.5 DIALOG PANELS of “Create_LoadingFile” PROGRAM
8.5.1 Panel no. 1 – Common Data for All Loading Cases
Panoul conţine 4 grupuri de controale, şi controale de ieşire.

1) Grupul RELATED Problem:
Prima acţiune trebuie să fie selectarea fişierului Geometry File asociat problemei: Butonul Geometry File deschide o fereastră de dialog de tip Browse. Fişierul se selectează prin dublu click pe icoana acestuia, sau click urmat de OK. Numele fişierului apare în controlul static File.

2) Grupul COMMON Data and Codes:

Datele grupului se introduc fie direct (Edit Box-uri, Check Box şi Combo Box) – fie se încarcă dintr-un fişier existent prin click pe butonul Old Loading File.

3) Grupul LOADING:

Butonul Loading Cases devine accesibil după completarea datelor din grupul COMMON Data and Codes. Acest buton deschide dialogul cazurilor de încărcare (§ 8.5.2). Butonul Old Loading File încarcă datele dintr-un fişier de încărcări existent. Check Box-ul New Load permite o nouă încărcare a unui fişier existent.

4) Grupul LOADING FILE:

Butonul Select permite selectarea / editarea numelui fişierului de încărcări (dacă e nume de fişer nou, acesta se crează). Butonul Create crează fişierul de încărcări sub numele selectat. Butonul View permite vizualizarea fişierului.
ListBox-ul Language permite selecţia limbii pentru fişierul generat: română sau engleză.

4) Butoanele Cancel şi EXIT inchid dialogul.

[image: image51.png]
Figure 13 Main panel of CREATE_LOADINGFILE program
8.5.2 Panel no. 2 – Loading Cases
[image: image52.png]
Figure 14 Main panel of CREATE_LOADINGFILE program
Panoul conţine 2 grupuri de controale, şi controale de ieşire.

1) Grupul LOADING CASE No.:

Prima acţiune este selectarea cazului de încărcare din lista Loading Case. Apoi, se introduc codurile cazului în Combo Box, cele două Check Box-uri şi Edit Box. Selecţiile 1, 2, 3, din lista Printing Data corespund valorilor KTIP = 0, 1, -1.

2) Grupul LOADING
Se introduc în Edit Box-uri indicii de nod şi pasul, pentru nodurile cu încărcare identică de la indicele From la To, cu pasul Step. Implicit, pasul este afişat 1.

Se introduc în Edit Box-urile X, Y, Z proiecţiile încărcării de nod. Se adaugă grupul prin click pe butonul ADD Group. Grupul apare în lista Processed Loading Groups. Un click pe un grup din listă afişează în Edit Box-uri, valorile corespunzătoare ale nodurilor şi încărcării grupului.

Butonul REMOVE permite eliminarea unui grup existent. Eliminarea devine efectivă după salvarea cazului.

3) Butonul Save Case din grupul LOADING CASE No. salvează cazul. Cazul salvat este

evidenţiat prin indicele său, în lista Processed Loading Cases. La salvare, se verifică grupurile de incărcări – indicii From, To şi Step. Un grup cu erori nu se salvează (şi nu se scrie în fişierul de ieşire).

4) Butoanele Cancel şi DONE produc revenirea în panoul de dialog principal (§ 8.5.1). La

apăsarea DONE, dacă nu s-a salvat cazul, se dă un mesaj care permite revenirea la panoul nr. 2.

8.6 DIALOG PANEL of “Modular” PROGRAM
[image: image53.png]
Figure 15 Dialog panel of MODULAR program
1) Descrierea programului:

Programul MODULAR generează fişierul de intrare pentru INPUT (Geometry File), pentru o structură modulară formată din modulul de bază repetat de un număr de ori în direcţia E = X, Y, sau Z. În versiunea actuală, lungimea modulelor în direcţia de extindere E este aceeaşi.

Fişierul Geometry File se generează cu datele reale privind coordonatele şi topologia structurii – cu kodTopo = 1, şi date fictive pentru blocaje de nod, unităţi, elemente şi materiale. Pentru a introduce datele reale pentru acestea, se va edita fişierul generat – fie direct, fie încărcându-l în programul CREATE_GEOMETRYFILE.

MODULAR poate generea trei tipuri de extinderi:

· Prismatic (tip = 1): Prismă dreaptă: modulul de bază se repetă identic în direcţia E (X, Y, Z);

· Pyramidal (tip = 2): Trunchi de piramidă: bazele se reduc/se măresc proporţional, în ambele direcţii diferite de E, conform unui raport (shrink ratio). Feţele modulului de bază devin trapeze.

· 1-direction Shrink (tip = 3): trunchi de prismă dreaptă: raportul de reducere se aplică numai dimensiunilor din direcţia specificată (diferită de E). Două feţe opuse din modulului de bază devin trapeze dreptunghice; celelalte rămân dreptunghiuri.

Modulul de bază se defineşte prin:

· Nodurile din Baza0 şi Baza1 (baza inferioară, respectiv superioară, relativ la direcţia de extindere E): indice nod şi coordonate.

· Elementele de conexiune a nodurilor: indice element şi noduri de capăt.

· Tipurile de elemente şi aria secţiunii transversale: MODULAR recunoaşte 4 tipuri de elemente, distinse în raport cu direcţia de extindere E:

· Tipul 1: elemente logitudinale (în direcţia E); Exemplu: talpă.

· Tipul 2: elemente transversale (perpendiculare pe E) şi paralele cu una din celelalte două direcţii; Exemplu: montant.

· Tipul 3: diagonale longitudinale.

· Tipul 4: diagonale în secţiunea transversală.

Check Box-ul Last Node Indices in Base 0: permite alegerea numerotării nodurilor astfel ca ultimii de nod să fie afectaţi nodurilor din Baza 0.

Numele tipurilor şi aria secţiunii se dau în panoul de dialog deschis de butonul ”Element Types and Area”.

Pentru toate trei tipurile de extindere, modulul de bază se defineşte ca o prismă dreaptă (NGL = 3), respectiv dreptunghi (NGL = 2).

2) Fişierul de intrare al programului MODULAR:

Datele se citesc dintr-un fişier de intrare, numit în continuare fişier “Modular“. Acesta conţine datele pentru modulul de bază şi pentru extindere.

Conţinutul fişierului de intrare, precum şi regulile de numerotare a nodurilor şi elementelor în modulul de bază, sunt descrise în fişierul “Modular-Readme.txt” – aflat în directoriul “Dir\doc\”. Butonul Help deschide acest fişier în NOTEPAD.

Crearea fişierului de intrare se poate face în unul din următoarele moduri:

· Editare directă – urmând regulile din “Modular-Readme.txt”.

· Interfaţă, prin:

· Încărcarea unui fişier “Modular“ existent (creat anterior de MODULAR, sau prin editare directă), şi modificarea datelor. Încărcarea se face cu butonul din grupul LOAD.

· Introducerea directă a datelor în controalele panoului de dialog (fişier “Modular“ nou):
Se utilizează controalele din grupurile BASE MODULUS şi EXPANSION. În general, titlurile controalelor explică funcţiunile acestora. În particular: Butoanele Coordinates şi Topology deschid fiecare câte o fereastră de dialog pentru introducerea datelor.
Lista Expansion Type permite selecţia tipului de extindere. Selecţiile Pyramidal şi 1-direction Shrink în listă, deschid fiecare câte o fereastră de dialog pentru datele care definesc tipul de extindere selectat, şi anume:

· Pyramidal: coordonatele piciorului vârfului piramidei în Baza0 a modulului de bază şi raportul de reducere.

· 1-direction Shrink: raportul de reducere şi direcţia de reducere.

Generarea datelor se face cu butonul Generate Data. Datele generate pot fi salvate cu butonul Save Data ... intr-un fişier “Modular“. Acesta se poate vizualiza cu butonul View Modular File.
3) Fişierul de intrare al programului INPUT (Geometry File):

Se utzilizează controalele din grupul NELSAS Geometry File. Fişierul Geometry File se crează cu butonul Create, şi se poate vizualiza cu butonul View File. Structura generată de MODULAR se poate vizualiza cu programul PREVIEW (Butonul Preview Structure), sau cu programul NGRAF.

Notă:
Butoanele Help, View Modular File, View File, şi Preview Structure lansează programele NOTEPAD, şi respectiv PREVIEW, ca procese separate. Help uses the language set by NELSAS interface.
(
Reprezentările a trei structuri generate, cu extindere in Z şi tipurile de extindere: Prismatic (tip 1); Pyramidal (tip2); 1-direction Shrink (tip3 – direcţie de reducere: X), sunt date în paragraful următor.
8.6.1 Examples of Structures Generated by “Modular” program

Figure 16 “Prismatic” type structure – generated by MODULAR program

[image: image54.png]
Figure 17 ”Pyramidal” – type structure generated by MODULAR program
[image: image55.png]
Figure 18 “1-direction Shrink” – type structure generated by MODULAR program
[image: image56.png]
[image: image57.png]
Figure 19 Spatial circular arch with 12 modules, generated by MODULAR (structure and zoom)

8.7 DIALOG PANEL of “MaxProcessor” PROGRAM
[image: image58.png]
Figure 20 MAXPROCESSOR Panel – “DISPLACEMENT” Tab
Panoul de dialog cuprinde trei grupuri de controale şi butonul Exit:

· Grupul BEGIN
· Controlul Tab EXTREME
· Grupul SAVE
· Butonul Exit
Grupul BEGIN:

Prima acţiune este selectarea directoriului de lucru: butonul Select WORKING DIRECTORY deschide o fereastră de dialog de tip Browse. Directoriul se selectează prin dublu click pe icoana acestuia, şi apoi DONE. Directoriul selectat este afişat în primul control static. În al doilea control static, se afişează titlul problemei asociată cu directoriul de lucru.

Programul verifică existenţa fişierelor necesare în directoriul selectat (cu excepţia fişierului de salvare a reacţiunilor, “react.unf”). Dacă un fişier lipseşte se dă un mesaj de eroare şi se poate selecta alt directoriu. Dacă lipseşte “react.unf”: se afişează deplasările, şi forţele axiale şi tensiunile. Această facilitate este introdusă pentru compatibilitate cu versiunile anterioare care nu salvau reacţiunile într-un fişier din care să poată fi regăsite de PostProcessor.

Tab-ul DISPLACEMENT:

La selecţia în lista NODE se afişează, pentru nodul selectat: în lista DISPLACEMENT, deplasările în direcţiile X, Y, Z (sau X, Y – pentru NGL = 2).

La selecţia în Combo Box-ul Extreme in DIRECTION, se afişează: în lista DISPLACEMENT, deplasarea extremă după direcţia selectată, în raport cu toate nodurile; în lista NODES – nodul (nodurile) în care are loc deplasarea extremă.

Tab-ul STRESS:

La selecţia în lista ELEMENT se afişează, pentru elementul selectat: În lista Stress – tensiunea; în lista Axial Force – forţa axială; în controlul static End Nodes – nodurile de capăt.

La selecţia în Combo Box-ul EXTREME se afişează, pentru întindere/compresiune: în lista Stress – tensiunea extremă, în raport cu toate elementele; în lista Elements – elementele în care are loc tensiunea extremă.

Tab-ul este prezentat în Figura 20 - v. mai jos.

Tab-ul REACTION:
La selecţia în lista Support NODE se afişează, pentru nodul suport selectat: În lista REACTION proiecţiile X, Y, Z ale reacţiunii şi modulul acesteia | R |.

Grupul SAVE:

Deplasările nodurilor, forţele axiale şi tensiunile în elemente (şi valorile maxime ale acestora), precum şi reacţiunile, se pot salva într-un fişier ales de utilizator. Pentru aceasta:

Se face click pe Check Box-ul Displacement şi/sau Stress şi/sau Reaction.

Din lista Save File Language se selectează limba pentru fişierul de salvare. The default setting is the language set via NELSAS interface; at direct launching, this is the language used un in the run example.

Se face click pe butonul Save to File: acesta deschide o fereastră de dialog pentru selectarea fişierului de salvare. Dacă acesta este un fişier nou, cu nume specificat de utilizator, se crează.

Butonul View File lansează programul NOTEPAD care deschide fişierul de salvare. NOTEPAD este lansat ca un proces separat – v. mai jos.

Butonul Exit:

Închide dialogul. La închidere, programul verifică dacă mai rulează copii al programului NOTEPAD care vizualizează fişierul/fişiere de salvare. Dacă da, programul întreabă dacă să termine execuţia acestora: la răspunsul “Yes”, se termină execuţia.

[image: image59.png]
Figure 20 MAXPROCESSOR Panel – “STRESS” Tab
■

8.8 DIALOG PANEL of “Ngraf” PROGRAM
[image: image60.png]

Figure 21 NGRAF – Main Panel
La lansare, NGRAF afişează o fereastră de dialog pentru selecţia fişierului de intrare: acesta este fişierul Geometry File (fişierul de intrare pentru INPUT). După selecţie, NGRAF afişează panoul de mai sus cu setări standard.

Panoul de dialog conţine trei grupuri de controale, un control static, şi butoanele CANCEL şi DRAW Graph:

1) Grupul AXIS ORIENTATION:

Conţine trei check box-uri pentru schimbarea orientării axelor, în raport cu orientarea standard (cea ilustrată de bitmap).

2) Grupul STRUCTURE DRAWING:

Conţine controalele pentru construcţia grafului pentru întreaga structură (All Nodes checkat), respectiv pentru un număr de noduri. Dacă All Nodes nu este checkat se validează edit box-ul Node Range and Nodes. Nodurile se introduc în edit-box, prin grupuri de forma unei secvenţe de noduri sau noduri singure. O secvenţă de noduri se introduce în forma “Nod1-Nod2”, unde Nod2 (Nod1, şi desemnează nodurile cu indici cuprinşi între Nod1 şi Nod2. Exemplu: 2-7, 21 30. Secvenţa 2-7 desemnează nodurile 2,3,4,5,6,7. Grupurile se separă prin virgulă sau spaţiu (spaţii). Secvenţa nu conţine spaţii.
Celelalte controale reprezintă opţiuni pentru construcţia grafului.
3) Grupul DRAWING STYLE:

Controale pentru opţiuni de stil: font, schema de culori, factor pentru mărirea dimensiunii minime a structurii.

4) Controlul static (de sub grupul Font Style) afişează titlul problemei – aşa cum este în fişierul de intrare.

5) Butoane:

Butonul DRAW Graph produce afişarea grafului structurii.

Butonul CANCEL încheie dialogul, fără construcţia grafului.

După încheierea dialogului, din meniul ferestrei principale se pot selecta opţiunile:

· BACK to Settings: Produce revenirea la setări, care pot fi modificate.

· ZOOM (Mouse): Permite zoom-ul unei regiuni, selectate cu mouse-ul în fereastra ultimului graf construit. Graful este reconstruit pentru nodurile aflate in regiunea selectată.

· NEW Graph: se deschide fereastra de dialog pentru selecţia fişierului de intrare pentru un nou graf.

· Exit: încheie dialogul.

Grafurile construite se pot salva sau tipări: selecţia se face din meniul File al ferestrei principale.

Notă: În fereastra de construcţie, titlurile apar în ultima limbă utilizată (română/engleză).

■

8.9 DIALOG PANEL of ”ModularPost” PROGRAM
[image: image61.png]

Figura 23 MODULARPOST – Main panel
8.10 DIALOG PANEL of ”Diagrams” PROGRAM
[image: image62.png]

Figura 24 DIAGRAMS – Dialog panel
9 REFERENCES
1. Chisăliţă, A., (1983). " Contribuţii la studiul răspunsului neliniar, static şi dinamic, al sistemelor suspendate ”, Teză de doctorat, Institutul Politehnic Cluj-Napoca.

2. Chisăliţă, A. (1984) " Finite Deformation Analysis of Cable Networks ", Journal of Engineering Mechanics Division,Vol. 110, No. 2, Feb. 1984.

3. Chisăliţă, A. (1988) " NELSAS-88 ...", Construcţii Nr. 11-12.

4. Massonnet, Ch., s.a., (1974) " Calculul structurilor la calculatoare electronice ", E.T. Bucureşti.

5. Atkinson, K., E. (1978) " An Introduction to Numerical Analysis ", J.Willey & Sons, N.Y.

6. Chisăliţă, A., Nedevschi, A. (1988) “ Program GEOM - Manual de utilizare ", Institutul Politehnic Cluj-Napoca.

7. Chisăliţă, A., (2002). " Numerical Analysis ", Universitatea Tehnică din Cluj-Napoca.

8. [C10] Chisăliţă, A. (2009) ”Structuri din bare articulate și cabluri”, Curs on-line, ftp://ftp.utcluj.ro/pub/users/chisalita/Studii Aprofundate/Structuri/
10 Figures Index

6Figure 1 Characteristic curve modeling

Figure 2 Topology – Example 1
8
Figure 3 Topology – Example 2
9
Figure 4 Generic element “J” incident in node K
10
Figure 5 Code “G”
11
Figure 6 Dialog Panel of NELSAS program
25
Figure 7 Axes orientation in NGRAF and NGRAFU programs
32
Figure 8 Node and node displacement
39
Figure 9 Arrays Y and YA
42
Figure 10 The structure for the ckeck example
44
Figure 11 Directories structure
46
Figure 12 Main panel of CREATE_GEOMETRYFILE program
53
Figure 13 Main panel of CREATE_LOADINGFILE program
55
Figure 14 Main panel of CREATE_LOADINGFILE program
56
Figure 15 Dialog panel of MODULAR program
57
Figure 16 “Prismatic” type structure – generated by MODULAR program
60
Figure 17 ”Pyramidal” – type structure generated by MODULAR program
61
Figure 18 “1-direction Shrink” – type structure generated by MODULAR program
62
Figure 19 Spatial circular arch with 12 modules, generated by MODULAR (structure and zoom)
63
Figure 20 MAXPROCESSOR Panel – “DISPLACEMENT” Tab
64
Figure 20 MAXPROCESSOR Panel – “STRESS” Tab
66
Figure 21 NGRAF – Main Panel
67
Figura 23 MODULARPOST – Main panel
69
Figura 24 DIAGRAMS – Dialog panel
70

[image: image63.png]
55

17

18

47

IIII

50

25

24

48

K

K-1, I

K+1, I

I

II

IV

K-1, I

K+1, I

K

III

IV

V

II

I

0

17

18

47

24

55

25

50

0

48

K

KJ

p1(J)

p2(J)

element “J”

S0(J)

X

Z

Z

Y

Y

X

Y

Y

NGL = 2

NGL = 3

DIR

Dat

Doc

Exe

Work

Uirxe

Wav

PAGE

_987075650.unknown

_1016526274.unknown

_1091278638.unknown

_1093417727.unknown

_1093418315.unknown

_1227954842.doc

SIGMA2

SIGMA1

(

0

Y0

Y0

ELIM1

ELIM2

(

(

 (Tension)

 (Compression)

YY

(0

(

_1093431298.doc

YA

Array for CHOLESKY decomposition (at a step)

LIM((LIM+1)/2

LIM

LIM

LIM

Array for processed rows

Y

_1093417899.unknown

_1091362199.doc
[image: image1.wmf]g

r

axis NGL

axis 1

� EMBED Equation.3 ���g

_1044983004.unknown

_1038392936.doc

K0

K

(K-1)0

(K+1)0

K-1

K+1

I0

II0

II

I

UK

X2

X3

X1

_1064303092.unknown

_1064303102.unknown

_1060700996.unknown

_1042360583.unknown

_1016526293.unknown

_1016294945.unknown

_1016521544.unknown

_1016526260.unknown

_1016522433.doc

Y

31

 3

35

22

16

29

20

19

26

14

28

 16

18

39

34

24

21

12

10

11

9

38

30

8

 7

8

4

2

 1

133

10 kN

14

12

1m

1m

1m

1m

1m

Z

Z

X

9

13

5

15

11

7

3

4

2

10

6

1

10 kN

15

25

27

37

32

33

6

17

23

24

36

 5

_1016521302.unknown

_1009023937.unknown

_1009024398.unknown

_1009024412.unknown

_1009024184.unknown

_1009010182.unknown

_1009023796.unknown

_1008859584.unknown

_941551008.unknown

_979576636.unknown

_979640638.unknown

_979660318.unknown

_979660412.unknown

_979660674.unknown

_979660366.unknown

_979660296.unknown

_979576708.unknown

_979577201.unknown

_961166468.unknown

_968672990.unknown

_961166359.unknown

_908882547.unknown

_908888460.unknown

_941461548.unknown

_941461565.unknown

_908889231.unknown

_908888542.unknown

_908888189.unknown

_908888346.unknown

_908887999.unknown

_908886491.unknown

_908880721.unknown

_908881489.unknown

_856890984.unknown

