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Abstract

A simple approach to calculating natural frequencies of geometrically nonlinear cable structures is presented. The

sti�ness matrix for a three-dimensional straight element is provided. The justi®cation for the use of a linearized
sti�ness relationship is shown. Illustrative examples show that this simple element produces results comparable to
theoretical and experimental results in the literature. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Prestressed cable structures, and their continuous

counterparts in membrane or fabric structures, are

often perceived as architecturally elegant structural

forms, particularly for large clear span coverings. The

extremely low weight to plan area ratio of such struc-

tures, and the associated curved surfaces, often present
cable and fabric structures as refreshing alternatives to

the more common bulky rectangular forms. The use of

prestressed mechanisms as structural forms also tends

to give clients and the general public the impression of

utilizing the most modern of available technology.

However, the same three properties of low-weight,

unusual curved surfaces, and nonlinear response to

load, combine to form challenging problems to the

structural engineer charged with ensuring a cable or

fabric structure has safe dynamic characteristics, es-
pecially under wind loading. It is therefore noteworthy

that while more cable and fabric structures are being

built, there has not been a corresponding increase in

the literature in this ®eld.

As with the spirit of an earlier paper on static re-

sponse of cable structures to load [9], the purpose of

this paper is to present a simple but su�ciently accu-
rate technique for calculating natural frequencies of

cable structures. The technique is based on a large de-

formation approach, initially in the force method, and

on discrete straight prestressed cable elements. The
technique calls on no more than a modest understand-

ing of mechanics and numerical techniques, and thus

the approach would be suitably employed in introdu-

cing the engineering student to vibration of cable struc-

tures.

While the volume of research in this ®eld is rela-

tively small (see reviews in Refs. [1,7]), there have been
several researchers in the last two decades and results

from their work are later referred to. It is noteworthy

however that while many workers have applied a range

of analytical methods to the treatment of prestressed
cable structures, the present author does not know of

any instance where attention is paid to the fact that

since prestressed cable structures have a signi®cantly

nonlinear static response to load, their corresponding
dynamic behaviour is necessarily nonlinear.

Nonlinear vibration has several phenomena not

found in linear vibration and, in particular, any displa-
cement±time relationship is dependent on initial con-

ditions. Thus di�erent values of so-called ``natural

frequencies'' can be obtained for a given system simply
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by altering the initial velocity or displacement.
Nonetheless, researchers in the literature on vibration

of cable structures often employ a linear approach and
therefore speak of ``natural frequencies'' without any
further quali®cation, nor provision of a justi®cation
for the omission of higher order terms, except on the

usual grounds of small deformation. We shall therefore
begin this paper in the next section by examining this
issue through the use of a simple two-link planar struc-

ture, with a view to setting up a de®nition of what we
mean by ``natural frequency'' in a geometrically non-
linear cable structure.

The approach used for the two-link example can be
readily extended and thus the derivation for a general
three-dimensional element is given in Section 3, while

illustrative examples are provided in Section 4 to verify
the accuracy of this technique.

2. Nonlinear vibration of a two-link structure

Although the study of the vibration behaviour of
prestressed cable networks should properly be a non-

linear treatment, we shall seek to show how infor-
mation can be obtained without recourse to a full
nonlinear analysis, and more importantly, to show the

extent of the validity of the information we obtain in
this way. For this, we shall examine the symmetrical
prestressed two-link structure shown in Fig. 1 which

has a single degree of freedom in D. It can be shown
[9] that a central load P for this structure is related to

its corresponding static de¯ection D by

EA

L0
D3 � 2t0L0Dÿ PL2

0 � 0 �1�

where EA is the axial sti�ness, t0 is the initial preten-
sion, and L0 is the original undeformed length, of the
two links.

Consider now the vibration of the two links such
that they remain straight throughout, see Fig. 2, in
which case the acceleration of a small element of

length dx at a distance x from the support is xD/L0,
where D is the acceleration of joint B. The D 'Alembert
forces D for one link are thus given by

D �
�x�L0

x�0
rdx

�
x

L0

�D
�
� r �D

L0

�L0

0

xdx � r �DL0

2
�2�

where r is the mass per unit length of the links. If we
isolate the portion BC, and take free body moment of
the portion BC about B, we obtain�x�L0

x�0
rdx

�
x

L0

�D
�
�L0 ÿ x� � RL0

r �DL0

6
� R �3�

where R is the vertical dynamic reaction at the sup-
ports. Substitution of Eqs. (1)±(3) into the overall ver-

tical equilibrium relationship R=P/2+D leads to

�D � 3t0

rL2
0

D� 3EA

2rL4
0

D3 � 0 �4a�

which is the equation describing the free undamped vi-

bration of the prestressed two-link. If the two link
structure had a concentrated mass M at B, then Eq.
(4a) would be altered slightly to

Fig. 1. A planar symmetrical two-link structure consisting of bars AB and BC. Joint B is displaced by D under load P.

Fig. 2. Equilibrium of the dynamic forces on the vibrating

two-link structure.

A.S.K. Kwan / Computers and Structures 74 (2000) 41±5042



�D � 6t0

3ML0 � 2rL2
0

D� 3EA

3ML3
0 � 2rL4

0

D3 � 0 �4b�

It is interesting to note in passing that the linear
terms in both Eqs. (4a) and (4b) are dependent only

on the prestress t0 and completely independent of the
axial sti�ness. Therefore, where the amplitude of oscil-
lation is small, and hence where the D3 term can be
neglected, the natural frequency is controlled by the

level of prestress, rather than the sti�ness of the struc-
tural system.
Displacement±time plots for Eq. (4), taking into

account both linear and cubic terms, can be simply
obtained from a Runge±Kutta numeric integration, as
seen in Fig. 3 for EA = 556 kN, L0=1.143 m,

r=4.6415 � 10ÿ2 kg/m, t0= 3558.6 N and M = 0.
Two traces are shown in Fig. 3 for the two di�erent in-
itial displacements of 0.1 and 0.2 mm; there is no in-
itial velocity in either case. Although both traces are

for exactly the same structure with exactly the same
prestress, the period of oscillation is clearly di�erent.
As the initial displacement decreases, the correspond-

ing free vibration period increases. This relationship
however, is not linear but asymptotic; there is a limit-
ing value for the period.

Closed-form expression for the period of oscillation
described in Eq. (4) can in fact be obtained with simple
integrals. Let Eq. (4) be re-written as

�D � aD� bD3 � 0 i:e: _D
d _D
dD
� aD� bD3 � 0

which, when integrated with respect to D, gives

_D
2 � aD2 � bD4

2
� 2E �5�

in which the constant of integration E is the total

energy in the two-link structure. In the vicinity of the
origin of the phase plot, where D 1 ÇD 1 0, these
energy curves take the form of closed ellipses because

the fourth-order term would be insigni®cant in com-
parison to the second-order term. The maximum dis-
placement occurs as the velocity turns zero and hence

D2
max �

ÿa�
�������������������
a2 � 4bE

p
b

The period of oscillation can be obtained from line
integral along an energy curve. Since we are still within
the vicinity of the origin, and therefore still in the
realms of closed energy ellipses, we need only integrate

a quarter of an ellipse. The period is thus

T �
�

dt �
�

dD
_D
� 4

�Dmax

0

dD����������������������������������
2Eÿ aD2 ÿ bD4

2

r �6�

The integral in Eq. (6) is actually more instructive

Fig. 3. Displacement-time plot for the two-link structure for initial displacements of 0.1 and 0.2 mm. Note that the displacement

scale (but not the time scale) for the second plot has been halved.
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when the substitution D=Dmaxsiny is made (i.e. in
radial coordinates),

T � 4
���
2
p �p=2

0

dy�����������������������������������������������
2a� bDmax �1� sin 2y�

p �7�

because we can now clearly see that the period is
amplitude dependent, as we have discovered in Fig. 3.
It follows from amplitude dependent frequency that

the term ``natural frequency'' can therefore not take its
usual meaning; we should only use the term in the
usual way after we have de®ned the amplitude.

We have already remarked earlier when examining
Fig. 3 that there is a limiting value for period with
decreasing amplitude. It would seem that the only sen-
sible de®nition for ``natural frequency'' would be that

asymptotic frequency associated with in®nitesimal
amplitude. With Dmax 4 0, the b term in Eq. (7)
would become ine�ectual. That is, as the amplitude

tends to zero, the period for nonlinear vibration tends
to that for the equivalent linearized vibration and this
is completely independent of the size of the nonlinear-

ity in the system. Here then is the justi®cation for the
removal of higher order terms that is not, to the
author's knowledge, found in the literature.
The removal of b would reduce Eq. (4b) to

�D � 6t0

3ML0 � 2rL2
0

D � 0 �8�

and, by inspection, the natural frequency is

o � 1

2p

������������������������������
6t0

3ML0 � 2rL2
0

s
�9�

We shall return to Eq. (9) in the Section 4.

3. A three-dimensional-element

The justi®cation for the removal of nonlinear sti�-
ness terms in the calculation of the period of nonlinear
vibration is fundamental in the establishment of a
simple technique to assess the natural frequencies of

three-dimensional cable structures. A simple, but
thoroughly su�cient, geometrically nonlinear sti�ness
matrix, and the associated distributed mass matrix

shall be derived in this section for a three-dimensional
straight axial element. Although it has been argued
that curved elements are necessary [3], it shall be

shown that the element derived in this paper is entirely
adequate even for examples without concentrated
mass/loads.
The sti�ness relationship for the three-dimensional

element shown in Fig. 4 is based on the following re-
lationships originally formulated in the ¯exibility
method. These relationships are completely analogous

to those for a two-dimensional geometrically nonlinear
element shown previously by the author [9] so no
detailed derivation will be provided here.

The internal bar tension t of a bar of length L, with
coordinates (xi, yi, zi )i=1,2 for its ends, is related to
the external displacements through a consideration of

Fig. 4. Loads and displacements on the 3D element.
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compatibility by:

t � EA

L

(
~x

L
d ~x � ~y

L
d ~y � ~z

L
d ~z �

�
1

2L
ÿ ~x 2

2L3

�
d ~x 2

�
�

1

2L
ÿ ~y 2

2L3

�
d ~y 2 �

�
1

2L
ÿ ~z 2

2L3

�
d ~z 2

ÿ ~x ~y

L3
d ~xd ~y ÿ ~x ~z

L3
d ~xd ~z ÿ ~y ~z

L3
d ~yd ~z

)
�10�

where xÄ=x2ÿx1, dxÄ=dx2ÿdx1, etc. The material here

is assumed to have a linear response to load at all load
levels. The equilibrium equations, which are derived in
the displaced con®guration are:

Px 2
� �t� t0�

�
~x

L
ÿ ~x 2

L3
d ~x ÿ ~x ~y

L3
d ~y ÿ ~x ~z

L3
d ~z � d ~x

L

�

Py2 � �t� t0�
�

~y

L
ÿ ~x ~y

L3
d ~x ÿ ~y 2

L3
d ~y ÿ ~y ~z

L3
d ~z � d ~y

L

�

Pz2 � �t� t0�
�

~z

L
ÿ ~x ~z

L3
d ~x ÿ ~y ~z

L3
d ~y ÿ ~z 2

L3
d ~z

� d ~z

L

�
�11a�

and

Px 1
� ÿPx 2 0 Py1 � ÿPy2 and Pz1 � ÿPz2 �11b�

Here the prestress in the bar is denoted again by t0.

Substitution of t from Eq. (10) to Eq. (11) leads to the
set of load±displacement relationships, which when
linearised, is

0BBBBBB@
Px 1

Py1

Pz1

Px 2

Py2

Pz2

1CCCCCCA �
0BBBBBBB@

~x 2G� t0=L ~x ~yG ~x ~zG ÿ ~x 2Gÿ t0=L ÿ ~x ~yG ÿ ~x ~zG
~y 2G� t0=L ~y ~zG ÿ ~x ~yG ÿ ~y 2Gÿ t0=L ÿ ~y ~zG

~z 2G� t0=L ÿ ~x ~zG ÿ ~y ~zG ÿ ~z 2G� t0=L
~x 2G� t0=L ~x ~yG ~x ~zG

sym: ~y 2G� t0=L ~y ~zG
~z 2G� t0=L

1CCCCCCCA

0BBBBBB@
dx 1

dy1
dz1
dx 2

dy2
dz2

1CCCCCCA

�

0BBBBBB@
ÿt0 ~x=L
ÿt0 ~y=L
ÿt0 ~z=L
t0 ~x=L
t0 ~y=L
t0 ~z=L

1CCCCCCA

�12�

where G=EA/2L 3.

The distributed mass matrix is best formulated
through Lagrange's equation. The kinetic energy T for

the 3D-element is

T �
�z�L0

z�0

1

2
mdz

�
z
L0
�d _x 2 � d _y 2 � d _z 2�

� L0 ÿ z
L0
�d _x 1 � d _y 1 � d _z 1�

�2

:

Individual rows of the mass matrix are obtained
from

d

dt

@T

@ �dx 1� ,
d

dt

@T

@ �dy1� etc:

which leads to the mass matrix

mL0

6

0BBBBBB@
2 2 2 1 1 1
2 2 2 1 1 1
2 2 2 1 1 1
1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2

1CCCCCCA �13�

Where required, the usual lumped mass matrix
(mL0/2)I6�6, where I6�6 is the 6 � 6 identity matrix,

could be used instead of Eq. (13).

4. Illustrative examples

Illustrative examples have been chosen for com-
parison to ®rstly show the technique chosen for dealing

with the sti�ness relationship and mass matrix,
and secondly to show accuracy with results in the
literature.
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4.1. Example 1: 2 � 2 ¯at net

The ®rst example is a small four cable ¯at net
shown in Fig. 5. This structure has essentially only one
single degree of freedom, and its natural frequency is

identical to that of the two-link structure discussed in
Section 3 and so, in addition to external literature, Eq.
(9) can also be used to compare with results obtained

with the formulae given in Section 3. We shall consider
the case of t0=4448 kN in detail.
Substituting the geometric and material parameters

into Eqs. (12) and (13), together with an application of

transformation matrix on the mass matrix, results in
the following set of equations:

7:0736� 10ÿ2

0@ 1 0 0
0 1 0
0 0 1

1A0@ d �x
d �y
d �z

1A�
0@ 9:8071� 105 0 0

0 9:8071� 105 0
0 0 1:5567� 104

1A
0@ dx

dy
dz

1A �
0@ 0
0
0

1A
i:e:M �D �KD � T

�14�

where the displacements and accelerations are those

for the central unsupported joint. As it turned out in

the above example, the mass and the sti�ness matrices

are both diagonal matrices and hence the natural fre-

quencies can be obtained by a trivial division of the

two diagonals; e.g. Z(1.5567 � 104/7.0736 � 10ÿ2) gives
469.12 rad/s, i.e. 74.66 Hz.

In general, MD+KD=T would need to be

uncoupled by the matrix of eigenvectors of the corre-

sponding homogeneous equations P through

PTMPD+PTKPD=PTT. Since such a transformation

is purely a coordinate re-orientation, the natural fre-

quencies would be unaltered by the transformation.

The natural frequencies are found thereafter from the

division of the two diagonals as above. Table 1 shows

the variation of the fundamental natural frequency

with pretension for the 2 � 2 ¯at net, as compared

with results in the literature.

For comparison with the lumped-mass results given

by Sangster [13], the present 3D element can be used

with the lumped mass matrix. There is almost no dis-

cernible di�erence between the two sets of results. The

experimentally measured results, as well as the mem-

brane model results are also due to Sangster [13].

These were compared by Gambhir and Batchelor [4]

who promoted their own curved ®nite element to

improve on accuracy of ®nite elements that employed

straight cable elements. Chisalita [2] developed com-

Table 1

Comparison of the fundamental frequency of the 2 � 2 ¯at net (Fig. 4) by various methods for di�erent levels of pretension

(1)lb=4.44822 N)

t0 (lbs)

Lumped mass

(Sangster)

Present

lumped mass Membrane model

(Sangster)

Curved FE

(Gambhir and

Batchelor)

Measured

(Sangster)

Closed form (Eq. (9));

present distributed mass; &

Chisalita

200 27.27 27.26 30.29 30.28 34 33.39

400 38.57 38.56 42.83 42.82 44 47.22

600 47.24 47.22 52.46 52.44 56 57.83

800 54.54 54.53 60.58 60.55 64 66.78

1000 60.98 60.96 67.73 67.70 73 74.66

Fig. 5. A square ¯at net with each element having length of 1.143 m.
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plex equations for cable networks that incorporated

features such as large deformations with Poisson e�ect,
elasto-plastic material properties, cable slack, and
Piola±Kirchho� stresses. In actual fact, for this simple

example, Chisalita's formulation is reduced to Eq. (9),
and hence Chisalita's results, Eq. (9), and the present
3D element with distributed mass (Eq. (13)) all pro-
duce the same results.

It is clear that the two lumped mass approaches pro-
duced consistently low frequencies and highlight the
drawback of keeping the mass matrix diagonal.

Gambhir and Batchelor's curved element was particu-
larly successful in replicating the membrane model, but
both techniques do not show a good match with the

experimental results. Results from the current studies,
and Chisalita's studies, both of which impose straight
elements, correspond much better to Sansgter's exper-

imental results, tending to dispute Gambhir and
Batchelor's assumption that curved elements are
necessarily better models for prestressed cable net-
works, particularly when this example was one without

concentrated mass/loads at the joints.

4.2. Example 2: 3 � 3 ¯at net

The second example is a 3 � 3 ¯at net made up of
cables with EA= 44.48 kN, r=2.589 kg/m, and

t0=333.62 kN, see Fig. 6. This grid has previously
been analysed by numerous researchers and the funda-
mental frequency from the present study is compared
with results in the literature in Table 2. Leonard [10]

used curved ®nite elements and analysed this net with
three levels of discretisation. Again, it can be seen that
the present technique produces very similar results to

those in the literature, including those that employed
curved elements.

4.3. Example 3: cable beam

The third example is a ``cable beam'' ®rst introduced

by Jensen [6] who produced experimental and theoreti-

cal results. The main cables have EA= 190,314 N,
and vertical hangars have EA= 103,005 N. The cable
geometry and initial cable tensions take values

measured by Jensen, and these are shown in Fig. 7.
Both Morris [11] and Chisalita [2] also analysed this
example. The ®rst few natural frequencies, and the
range of natural frequencies where known, are pre-

sented in Table 3 for three load cases. Since concen-
trated loads are applied at the nodes, the present
analysis and that by Chisalita have used the lumped

Table 2

Comparison of the fundamental frequency of the 3 � 3 ¯at

net (Fig. 5) by various methods

Frequency (Hz)

Method of analysis Lumped Distributed

Soler and Afshari [16]:

Galerkin 59.10

Shore and Chaudhari [15]:

Lumped mass 56.40

Membrane 58.80

Leonard [10], ®nite element:

12 elements 61.59

24 elements 59.55

48 elements 59.05

Sangster and Batchelor [14]:

Lumped mass 56.76

Equiv. Membrane 60.43

Gambhir and Batchelor [3]:

Curved element 60.06

Ozdemir [12], curved elements:

2 node elements 61.64

3 node elements 58.97

4 node elements 58.93

Present study (12 elements):

Lumped mass 56.29

Distributed mass 61.37

Fig. 6. A square ¯at net with each element having length of 1.016 m.
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mass model. It can be seen that all theoretical results

in this example are in good agreement with Jensen's
experimental results, and the present study agrees clo-
sely with Chisalita's results even for o28.

4.4. Example 4: Aden Airways building

The fourth example is a 35.052 � 35.052 m hyper-

bolic paraboloid, ®rst presented by Knudson [8] as the

Aden Airways building, having the shape function (m):

y � 5:334

17:5262
z2 ÿ 3:81

17:5262
x 2

and seven cables each way in equal spacings. The
cables have EA = 210.312 MN, r=10.0 kg/m, and
horizontal component of cable prestress tension as

200.17 kN for cables in the x-direction, and 142.97 kN

Fig. 7. Jensen's planar cable beam with coordinates (boxed values) in cm, and initially measured cable pretension in kN.

Table 3

Measured and theoretically predicted natural frequencies for the cable beam tested by Jensen, under three load cases as detailed in

Table 4

Case A Case B Case C

Jensen,

experimental

Jensen,

theoretical

Morris,

theoretical

Chisalita,

theoretical

Present

study

Jensen,

experimental

Jensen,

theorectical

Chisalita,

theoretical

Present

study

Chisalita,

theoretical

Present

study

o1 5.7 5.78 5.82 5.698 5.683 7.50 8.07 8.077 8.077 5.773 5.768

o2 8.1 8.08 8.10 7.999 8.009 11.1 11.26 11.354 11.382 8.131 8.124

o3 10.9 10.51 10.51 10.423 10.402 14.5 14.65 14.785 14.781 10.593 10.569

o4 12.1 12.02 12.03 11.918 11.905 16.1 16.75 16.927 16.918 12.114 12.103

o5 12.8 12.81 12.81 12.896 12.922 17.2 17.87 18.315 18.363 13.136 13.127

o6 13.9 13.81 13.757 13.826 19.1 19.27 19.541 19.648 14.033 14.026

o7 15.0 14.90 14.728 14.720 21.0 20.70 20.919 20.918 14.986 14.970

o8 54.206 54.275 76.694 76.778 74.212 74.221

* * * * * *
o28 1565 1558.5 1557.5 2697.7 382.10 382.16
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for cables in the z-direction. The structure has 75
degrees of freedom.

The structure was initially analysed by Geshwinder
and West [5], and then by Swaddiwudhipong et al.
[17], both using a lumped mass model, see Table 5.
Chisalita also provided results using a lumped mass

which agree closely to those from the present study,
and from Geshwinder and West, even for the last natu-
ral frequency. Swaddiwudhipong's set of results stands

out as the one that is about 1% below the rest.
Chisalita also provided some results for the Aden

building using a distributed mass model which the pre-

sent study has failed to replicate, except for the funda-
mental natural frequency. The largest natural

frequency quoted by Chisalita is 2286 rad/s, but the
present study gives a value of around 15,700 rad/s.

Chisalita's ®rst four natural frequencies increased in
almost constant steps, while the present study has
found the second and third natural frequencies close to

each other, a feature also seen in the lumped mass
model. The present study would conclude with
Chisalita though that ``in order to ®nd the correct

values of the frequencies, a distributed mass model has
to be adopted, the lumped mass model leading to
lower values.''

5. Conclusions

It can be concluded that the geometrically nonlinear
axial element presented in this paper, together with the
simple and quick frequency assessment procedure illus-

trated in Section 4, gives rapid and accurate answers.
This study also questions the assumption that curved
elements are necessarily better for modelling vibrations

of prestressed cable structures where the cable seg-
ments remain taut (due to initial prestress) at all times.

Table 4

The distribution of mass for the three cases in Table 3

Case A Case B Case C

Mass on upper joints (kg) 0.03 0.01 0.50

Mass on lower joints (kg) 1.00 0.50 0.50

Fig. 8. The Aden Airways hyperbolic paraboloid.
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Table 5

Table of natural frequencies (in rad/s) for the Aden Airways building (Fig. 8) using both lumped mass and distributed mass models

Mass Geshwinder and

West, lumped

Swaddiwudhipong,

lumped

Chisalita,

lumped

Present study,

lumped

Chisalita,

distributed

Present study,

distributed

o1 32.87 32.57 32.892 32.890 36.945 36.473

o2 39.18 38.82 39.209 39.203 46.775 45.211

o3 39.89 39.50 39.916 39.909 50.343 46.432

o4 41.29 40.90 41.326 41.315 55.140 49.411

o5 43.81 43.39 * 43.837 * 53.634

* * * * * *
o75 1436 1435.893 1435.896 2285.769 15733
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