II Civil Engineering NUMERICAL ANALYSIS Academic year 2008-2009

Exam Questions – January-February 2009

Item	Chapter [– Sub-Chapter]:
No.	Topic
1	Object of Numerical Analysis: Object. Problem conditioning, condition number. Algorithm stability. Conclusions regarding problem conditioning and algorithm stability.
2	Computer representation of numbers:
	Integers. Reals, floating-point representation: Representation models (scientific; binary computer).
3	Computer representation of numbers:
	Reals, floating-point representation: Format structure; IEEE Formats.
4	Computer representation of numbers –IEEE Formats:
	Special values; Representation range.
5	Computer representation of numbers – Rounding error measure:
	ULP; machine- ε , Unit rounding error.
6	Errors, sources and propagation:
	Error; Relative error; Significant digits; Relationship with the relative error.
7	Errors, sources and propagation:
	Error sources. Rounding error; Truncation case. Examples for base $\beta = 2$.
8	Errors, sources and propagation – Error propagation:
	Propagated error. Multiplication; Division; Function evaluation.
9	Errors, sources and propagation – Error propagation:
	Loss of signification error. Addition and subtraction. Propagation of errors in a sum.
10	Nonlinear equations:
	Method and method analysis; Order of convergence. Linear convergence.
11	Roots of an equation $f(x) = 0$:
	Bisection method. Secant method. Remarks on secant method.
13	<i>Roots of an equation</i> $f(x) = 0$ – <i>Newton method:</i>
	Method; Convergence.
14	<i>Roots of an equation</i> $f(x) = 0$ – <i>Newton method:</i>
	Error estimation. Comparison with Secant method.
15	Fixed-Point method:
	Fixed-point theorems. Geometrical interpretation.
16	Fixed-Point method:
	Fixed-point methods of order higher than 1; Application: Newton method.
17	Fixed-Point method – Implementation:
	Error evaluation. Algorithm: test for stopping the iteration. The stationary process.
18	Fixed-Point method:
	Explicit fixed-point procedures; Examples: Iteration with constant $\Phi(x) = m$ (chord
	method); Newton method.

Item	Chapter [– Sub-Chapter]:
No.	Topic [†]
19	Multiple roots of equation $f(x) = 0$:
	Problems; Newton method and Modified Newton method; Determination of order of
	multiplicity.
20	Root of a polynomial:
	Polynomial evaluation; Deflation; Newton method for polynomials.
21	Root of a polynomial:
	Method algorithm: Computation of coefficients b_k, c_k . The algorithm with deflation;
	Direct iteration in the original polynomial.
22	Root of a polynomial:
	Stability of the roots. Examples. Complex roots (elements).
23	Systems of non-linear equations:
1	Definitions. Vector norm. Matrix norm; spectral radius.
24	Systems of non-linear equations:
	Fixed-point method. Convergence. Second order convergence. Practical iteration
25	Scheme.
25	Systems of non-linear equations – Fixed-Point method: Explicit fixed point procedure: Iteration with constant matrix \mathbf{A} (updated)
26	Explicit fixed-point procedure, iteration with constant matrix A (updated).
20	Systems of non-linear equations. Newton Method: Convergence: Practical iteration scheme
27	Systems of non-linear equations – Newton method:
21	Numerical evaluation of partial derivatives. Newton-like methods.
28	Linear systems of equations:
	General considerations. Gauss elimination. Triangular factorization of system matrix;
	determinant evaluation. Pivoting in Gauss elimination.
29	Linear systems of equations – Gauss elimination:
	Number of operations in Gauss elimination; Comparison with other processes. Matrix
	inversion, number of operations.
30	Linear systems of equations:
	LU decomposition; Solution steps; Number of operations. Direct evaluation of LU
	factors, methods.
31	Linear systems of equations – Cholesky method:
	Symmetric and positive definite matrices: definition, properties. Cholesky method,
	number of operations.
32	Linear systems of equations – Solution stability and error analysis:
	Perturbation in b (RHS); Number of condition of a matrix: definition, properties.
	well- and ill-conditioned matrices. Examples.

[†] *Chapter/Sub-chapter* and Topic refer to course lectures.

January 20, 2009

Adrian Chisăliță