PROBLEM No. 1 / I

Define the following numbers:

$$ULP = 2^{-23}$$
; $EM = 2^{-24}$; and $EPS = EPSILON (real*4)$,

where EPSILON(x) is the intrinsic Fortran function.

Write a program which computes in single precision, and displays the values:

- 1) ULP; EM; EPS
- 2) u = 1.0 + ULP; u1 = 1.0 + EM; u2 = 1.0 + EPS

Check (in the program) if u, u1, and u2 are greater than or equal to 1.0.

Explain the results.

PROBLEM No. 2 / I

Calculate the values of functions f, f2, and g, at the following x values:

$$x = 10^i$$
, $i = 1, 2, ..., 7$.

$$f(x) = x(\sqrt{x+2} - \sqrt{x-1})$$
 ... In single precision;

$$f 2(x) = x(\sqrt{x+2} - \sqrt{x-1})$$
 ... In double precision;

$$g(x) = \frac{3x}{\sqrt{x+2} + \sqrt{x+1}}$$
 ... In single precision.

- Tabulate computed values (f2(x) with 15 significant digits), and explain the results.
- Find out the number of correct significant digits of f(x) value, for $x = 10^6$.

PROBLEM No. 3 / I

Equation $f(x) = e^x - 4x^2 = 0$ has three roots.

Find the roots, with tolerance $EPS = 10^{-6}$, by:

- BISECTION Method
- NEWTON Method

PROBLEM No. 4 / I

Consider the equation f(x) = 0, where:

$$f(x) = 0.98\cos(x) - x + 1.58$$

- 1) Solve the equation by NEWTON method, picking $x_0 = 1.5$ and tolerance $EPS = 10^{-6}$.
- 2) Solve again by SECANT method, with $x_0 = 1.5$, $x_1 = 1.6$, and $EPS = 10^{-6}$.
- 3) Compare the number of iterations in the two methods.

PROBLEM No. 5 / I

Given the equation

$$tg(x) = \frac{1.78 - x}{x + 0.2}.$$

- 1) Solve the equation by NEWTON method, choosing $x_0 = 0.8$ and tolerance $EPS = 10^{-6}$.
- 2) Solve the equation by SECANT method, with $x_0 = 0.7$, $x_1 = 0.9$, and $EPS = 10^{-6} \, .$
- 3) Compare the number of iterations in the two methods.

PROBLEM No. 6 / I

Consider the function

$$f(x) = x + e^{-px^2} \cos(x),$$

where p is a parameter.

Equation f(x) = 0 has a unique root in the interval (-1, 0).

- 1) Find the roots for the following p values: p = 1; 5; and 25, with a tolerance $EPS = 10^{-6}$.
- 2) Solve by Newton method the case p = 25, with $EPS = 10^{-6}$, and $x_0 = 0$.
- 3) Comment the result.

PROBLEM No. 7 / I

Equation $e^x - 4x^2 = 0$ has 3 roots.

For the positive roots, consider the equation put in the form x = g(x), where:

1)
$$g(x) = e^{x/2}/2$$
.

Iterate (in the fixed-point method), with $x_0 = 0.5$ for the first root, and with

 $x_0 = 4.2$ for the second one. Take the tolerance $XTOL = 10^{-6}$.

2)
$$g(x) = x - m(e^x - 4x^2)$$

For the root in the neighborhood of $x_0 = 4.2$:

- Set up *m* so that the process converge, and compute the root.
- Find out the value of m for which the iteration converges the most rapidly.

PROBLEM No. 8 / I

Consider the equation x = g(x), where

$$g(x) = 1.58 + 0.99\cos(x)$$
.

- 1) Iterate in single precision, with $x_0 = 1.58$, tolerance $XTOL = 10^{-6}$, and limited number of iterations $NLIM \ge 1000$. Comment the result.
- 2) Repeat the iteration in double precision and find the root with tolerance $XTOL = 10^{-9}$.

PROBLEM No. 9 / I

Let f be the friction factor for the flow of a suspension, R the Reynolds number, and k a constant depending of the suspension concentration. These quantities are related by the empirical relation (Lee & Duffy, 1976):

$$\frac{1}{\sqrt{f}} = \frac{1}{k} \ln(R\sqrt{f}) + 14 - \frac{5.6}{k}$$

Determine f for the values: k = 0.28 and R = 3750.

PROBLEM No. 10 / I

For a solar-energy collector (with plane mirrors focused on a central collector), L.L.Van-Hull (1976) establishes the following equation for the geometrical concentration factor C:

$$C = \frac{\pi (h/\cos A)^2 F}{0.5\pi D^2 (1 + \sin A - 0.5\cos A)}$$

In which: A = rim angle of the field; F = fractional coverage of the field with mirrors; D and h = the collector diameter and height, respectively.

Find A, for the values: C = 1200, D = 14, h = 300, and F = 0.8.

PROBLEM No. 11 / I

Determine t, with a tolerance of 10^{-5} , from the equation

$$e^{-t/2} \cosh^{-1}(e^{t/2}) = \sqrt{0.5L_{cr}}$$
,

for $L_{cr} = 0.088$. (t is the temperature in the interior of a material with imbedded heat sources; Frank-Kamenetski, 1955).

PROBLEM No. 12 / I

Given the LEGENDRE polynomial of order 6

$$P_6(x) = \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5),$$

- Find initial approximations of the roots (by algebraic methods, function graph, etc.)
- 2) Calculate the roots, with tolerance 10^{-6} .

Note: All roots are of modulus < 1.

PROBLEM No. 13 / I

The polynomial

$$p(x) = x^5 - 15x^4 + 85x^3 - 225x^2 + 274x - 120$$

has the roots: $x_1 = 1$; $x_2 = 2$; ...; $x_5 = 5$.

Let $\tilde{p}(x)$ be the polynomial obtained form p(x) by replacing the coefficient $a_4 = -15$ of x^4 , with $\tilde{a}_4 = -15.003$.

- Calculate the roots of $\tilde{p}(x)$.
- Calculate the modulus of the ratio: relative perturbation in the root x₅ / relative perturbation in the coefficient a₄. Comment the result.
 (If a perturbed becomes \$\tilde{a}\$, the relative perturbation is: \$(\tilde{a} a)/a\$.)

PROBLEM No. 14 / I

Consider the system:

$$\begin{cases} xy - z^{2} = 2 \\ -xyz - x^{2} + y^{2} = 4 \\ e^{x} - e^{y} - z = 7 \end{cases}$$

Solve by NEWTON method, with tolerance $EPS = 10^{-6}$.

- 1) With initial approximation $w_0 = (1, 1, 1)$
- 2) With initial approximation $w_0 = (2, 2, -1)$

Compare the number of iterations and explain.

PROBLEM No. 15 / I

Consider the system:

$$\begin{cases} x - y + \sqrt{x + y} = 1\\ x + y - e^{x - y} = 3 \end{cases}$$

Solve the system, by iteration with constant matrix A (updated after 3 steps), with tolerance $EPS = 10^{-6}$ and initial approximation $w_0 = (1, 2)$.

PROBLEM No. 16 / I

Consider the system:

$$\begin{cases} x^2 + x - y^2 = 1\\ y - \sin(x)^2 = 0 \end{cases}$$

Solve the system, with tolerance $EPS = 10^{-6}$, and initial approximations:

$$w_0^{(1)} = (0.7, 0.5); \ w_0^{(2)} = (-1.5, 0.4):$$

- 1) by NEWTON method;
- 2) by iteration with constant matrix A (with updating after 3 steps).

PROBLEM No. 17 / I

Consider the system:

$$\begin{cases} x^3 + 3y^2 = 21\\ x^2 + 2y = -2 \end{cases}$$

Solve by NEWTON method, with tolerance $EPS = 10^{-6}$. Find the initial approximations x_0, y_0 , from the intersection of the two graphs.

PROBLEM No. 18 / I

Consider the system:

$$\begin{cases} f_1(x, y) = x^2 + 4y^2 - 9 = 0 \\ f_2(x, y) = -14x^2 + 18y + 45 = 0 \end{cases}$$

Solve by NEWTON method, with tolerance $EPS = 10^{-6}$. Determine the initial approximations x_0, y_0 , from the intersection of curves $f_1(x, y) = 0$ and $f_2(x, y) = 0$.

PROBLEM No. 19 / I

Consider the system:

$$\begin{cases} x^2 + y^2 + z^2 = 6.4 \\ xyz = -2.2 \\ x + y - z^2 = 2.4 \end{cases}$$

Solve by NEWTON method, with tolerance $EPS = 10^{-6}$ and initial approximation $w_0 = (2., 1, -1)$.

PROBLEM No. 20 / I

Given the linear system with matrix:

$$A = \begin{bmatrix} 3.01 & 6.03 & 1.99 \\ 1.27 & 4.16 & -1.23 \\ .987 & -4.81 & 9.34 \end{bmatrix}$$

- 1) Calculate the solution for the right-hand side $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$.
- 2) Repeat part (1), with matrix A' obtained from A, by the replacements: $3.01 \rightarrow 3.00$ (element a_{11}) and $.987 \rightarrow .990$ (element a_{31}). Compare the results and explain.

PROBLEM No. 21 / I

Given the matrix:

$$A = \begin{bmatrix} 3.01 & 6.03 & 1.99 \\ 1.27 & 4.16 & -1.23 \\ .987 & -4.81 & 9.34 \end{bmatrix}.$$

- 1) Calculate the inverse A^{-1} of A.
- 2) Calculate the number of condition $cond(A)_{\infty} = \|\mathbf{A}\|_{\infty} \cdot \|\mathbf{A}^{-1}\|_{\infty}$.

PROBLEM No. 22 / I

Given the matrix

$$A = \begin{bmatrix} 0.2 & 0.3 & 0.4 & 0.501 \\ 0.3 & 0.4 & 0.5 & 0.6 \\ 0.4 & 0.5 & 0.6 & 0.7 \\ 0.501 & 0.6 & 0.7 & 0.8 \end{bmatrix}$$

- 1) Calculate the inverse A^{-1} of A.
- 2) Calculate the number of condition $cond(A)_1 = \|\mathbf{A}\|_1 \cdot \|\mathbf{A}^{-1}\|_1$.

PROBLEM No. 23 / I

Consider the HILBERT matrix of order 5:

$$H_5 = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 & 1/5 \\ 1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1/5 & 1/6 & 1/7 & 1/8 & 1/9 \end{bmatrix};$$

1) Solve the linear system $H_5 x = b$, for:

$$b = \begin{bmatrix} 1.0 & 0.6 & 0.4 & 0.3 & 0.3 \end{bmatrix}^T$$
, and $\tilde{b} = \begin{bmatrix} 1.02 & 0.6 & 0.4 & 0.3 & 0.3 \end{bmatrix}^T$.

2) Compute the ratio: maximum relative perturbation in solution (in modulus) / relative perturbation in right-hand side b_1 (in modulus). Comment the result.

PROBLEM No. 24 / I

Consider the linear system Ax = b, where:

$$A = \begin{bmatrix} 4 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & -1 & 4 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 1 & 1 \\ -2 & 0 \\ -2 & 1 \\ -2 & 0 \\ 1 & 1 \end{bmatrix}.$$

Matrix *A* is positive definite.

- 1) Solve the system by CHOLESKY method.
- 2) Display matrix L, and calculate the determinant of A.

PROBLEM No. 25 / I

Consider the linear system Ax = b, where:

$$A = \begin{bmatrix} 16 & 4 & 8 \\ 4 & 5 & -4 \\ 8 & -4 & 22 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 1 & 2 & 28 \\ 1 & 1 & 5 \\ 1 & -1 & 26 \end{bmatrix}.$$

Matrix *A* is positive definite.

- 1) Solve the system by CHOLESKY method.
- 2) Display matrix L, and calculate the determinant of A.

PROBLEM No. 26 / I

Consider the HILBERT matrix of order 3:

$$\boldsymbol{H}_{3} = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix};$$

Matrix entries are: $h_{ij} = 1./(i + j - 1)$.

- 1) Calculate H_3^{-1} in single precision.
- 2) Calculate H_3^{-1} in double precision.
- 3) Calculate in single precision the *analytical* inverse $(H_3^{-1})_T = [\alpha_{ij}]$, where:

$$\alpha_{ij} = (-1)^{i+j} \frac{(n+i-1)!(n+j-1)!}{(i+j-1)[(i-1)(j-1)]^2(n-i)!(n-j)!}$$

Compare the elements of the inverses in part (1) and (2), with those of the inverse in part (3). Explain the comparison results.