

Mike Allgyer

Do you have any advice for students who are deciding between a career in industry
or pursuing a more advanced degree?
If you can do it fi nancially and you have the drive, go for another degree. Your career
will always be there waiting. Many companies now off er tuition assistance as you
pursue an advanced degree, so you need to decide if having your education paid
for is worth working full-time and going to school at the same time. I went for a
Master’s right away and, while I accrued some debt, I’m glad I did.

What’s the most interesting project you’ve worked on in the past year?
My Master’s project, a real-time ray tracer in CUDA, was interesting for many
reasons. For one, it blended so many disciplines—3D graphics, physics, parallel
computing, embedded systems—that I really got to stretch myself and tackle a
signifi cant project. Also, because CUDA was still relatively new at the time, it was
exciting to be working on cutting-edge technology that not many people had much
knowledge about.

What drew you to your current fi eld of specialization?
I always enjoyed computers and technology and doing weird mind puzzles as a kid,
but for a long time I really didn’t know what I wanted to do as far as a career. Then
I took a few programming courses in high school, and as soon as I realized how fun
it was to make a computer solve a problem for me, I was hooked. I also have a very
visual and artistic side, so when I discovered 3D graphics, I had found my passion.

Where do you see yourself in ten years?
I would love to own my own software company someday, but if that doesn’t happen,
I would just like to see myself being challenged and developing new technologies.
If I’m helping create something that really blows people’s hair back, regardless of
whether it’s for my own company or somebody else’s, I think I’ll be happy.

Mike Allgyer has a Master’s Degree in Computer
Science from Rochester Institute of Technology, and
is currently employed at Lockheed Martin as a
software engineer.

Spotlight on Careers in Computing

Create. Contribute. Lead. www.cengage.com/coursetechnology

1423901983_ifc_se.indd 11423901983_ifc_se.indd 1 1/23/09 9:10:45 AM1/23/09 9:10:45 AM

www.cengage.com/coursetechnology

Building Parallel
Programs

SMPs, Clusters, and Java

Alan Kaminsky

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

C6910_FMTOC.indd iC6910_FMTOC.indd i 2/2/09 9:20:59 AM2/2/09 9:20:59 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

Dedication
To my father, Edmund Kaminsky

C6910_FMTOC.indd iiiC6910_FMTOC.indd iii 2/2/09 9:21:00 AM2/2/09 9:21:00 AM

Building Parallel Programs: SMPs,
Clusters, and Java
Alan Kaminsky

Managing Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt

Editorial Assistant: Julia Leroux-Lindsey

Marketing Manager: Bryant Chrzan

Senior Content Project Manager: Jill Braiewa

Associate Content Project Manager:
Lisa Weidenfeld

Art Director: Marissa Falco

Cover Designer: Riezebos Holzbaur Design Group

Cover Photo: © iStock Photography / Silense

Proofreader: Harry Johnson

Indexer: Liz Cunningham

Compositor: GEX Publishing Services

© 2010 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited
to photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

ISBN-13: 978-1-4239-0198-3

ISBN-10: 1-4239-0198-3

Course Technology
20 Channel Center Street
Boston, Massachusetts 02210
USA

The programs in this book are for instructional purposes only.

They have been tested with care, but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
offer any warranties or representations, nor do they accept any liabilities
with respect to the programs.

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 15 14 13 12 11 10 09

C6910_FMTOC.indd ivC6910_FMTOC.indd iv 2/2/09 9:21:00 AM2/2/09 9:21:00 AM

www.cengage.com/coursetechnology
www.ichapters.com
www.cengage.com/permissions

Table of Contents
v

Part I
Preliminaries

Chapter 1
Parallel Computing

1.1 Bigger Problems, Faster Answers4
1.2 Applications for Parallel Computing6
1.3 For Further Information11

Chapter 2
Parallel Computers

2.1 A Brief History of Parallel Computers16
2.2 CPU Hardware .18
2.3 SMP Parallel Computers 22
2.4 Cluster Parallel Computers 22
2.5 Hybrid Parallel Computers25
2.6 Computing Grids .26
2.7 GPU Coprocessors 27
2.8 SMPs, Clusters, Hybrids: Pros and Cons28
2.9 Parallel Programming Libraries 30
2.10 For Further Information31

Chapter 3
How to Write Parallel Programs

3.1 Patterns of Parallelism.36
3.2 Result Parallelism .36
3.3 Agenda Parallelism38
3.4 Specialist Parallelism41
3.5 Clumping, or Slicing 43
3.6 Master-Worker .44
3.7 For Further Information46

Chapter 4
A First Parallel Program

4.1 Sequential Program48
4.2 Running the Sequential Program51
4.3 SMP Parallel Program52
4.4 Running the Parallel Program 56
4.5 Running on a Regular Computer57
4.6 The Rest of the Book58
4.7 For Further Information59

Part I Exercises .61

Part II
SMPs

Chapter 5
Massively Parallel Problems

5.1 Breaking the Cipher 68
5.2 Preparing the Input69
5.3 Sequential Key Search Program71
5.4 Transitioning to a Parallel Program.75
5.5 For Further Information76

Chapter 6
SMP Parallel Programming

6.1 Parallel Team .78
6.2 Parallel Region .79
6.3 Parallel For Loop .82
6.4 Variables. .84
6.5 For Further Information87

Chapter 7
Massively Parallel Problems, Part 2

7.1 AES Key Search Parallel Program Design . . .90
7.2 AES Key Search Parallel Program Code.92
7.3 Early Loop Exit .96

Chapter 8
Measuring Speedup

8.1 Speedup Metrics .100
8.2 Amdahl’s Law .101
8.3 Measuring Running Time105
8.4 FindKeySmp Running Time Measurements . . 107
8.5 For Further Information109

Chapter 9
Cache Interference

9.1 Origin of Cache Interference112
9.2 Eliminating Cache Interference 114
9.3 FindKeySmp3 Measurements.116
9.4 For Further Information119

Chapter 10
Measuring Sizeup

10.1 Sizeup Metrics .122
10.2 Gustafson’s Law122

C6910_FMTOC.indd vC6910_FMTOC.indd v 2/2/09 9:21:01 AM2/2/09 9:21:01 AM

vi Table of Contents

10.3 The Problem Size Laws 124
10.4 Measuring Sizeup127
10.5 FindKeySmp3 Sizeup Data128
10.6 Speedup or Sizeup? 130
10.7 For Further Information131

Chapter 11
Parallel Image Generation

11.1 The Mandelbrot Set.136
11.2 Color Images .137
11.3 Sequential Program.139
11.4 Parallel Program145
11.5 For Further Information150

Chapter 12
Load Balancing

12.1 Load Balance .154
12.2 Achieving a Balanced Load157
12.3 Parallel For Loop Schedules158
12.4 Parallel Program with Load Balancing . . .161
12.5 For Further Information165

Chapter 13
Reduction

13.1 Estimating pi Using Random Numbers . . .168
13.2 Sequential Program.170
13.3 Parallel Program172
13.4 The Reduction Pattern175
13.5 Parallel Program with Reduction177
13.6 The Second Flaw180
13.7 For Further Information181

Chapter 14
Parallel Random Number Generation

14.1 Parallel PRNG Patterns 184
14.2 Pseudorandom Number Generator
Algorithms . 187

14.3 A Parallel PRNG Class190
14.4 Parallel Program with Sequence Splitting . . 191
14.5 Parting Remarks194
14.6 For Further Information195

Chapter 15
Reduction, Part 2

15.1 Histogram of the Mandelbrot Set.198
15.2 Sequential Version 200
15.3 Parallel Version without Reduction203

15.4 Reduction Operators207
15.5 Parallel Version with Reduction209
15.6 Performance Comparison 213
15.7 Critical Sections 215
15.8 Parallel Version with Critical Section 216
15.9 Summary: Combining Partial Results220

Chapter 16
Sequential Dependencies

16.1 Floyd’s Algorithm 224
16.2 Input and Output Files 226
16.3 Sequential Program.229
16.4 Parallelizing Floyd’s Algorithm231
16.5 Parallel Program with Row Slicing232
16.6 Parallel Program with Column Slicing. . . .239
16.7 For Further Information242

Chapter 17
Barrier Actions

17.1 One-Dimensional Continuous Cellular
Automata . 246

17.2 Rational Arithmetic249
17.3 Improving Memory Scalability251
17.4 Sequential Program.252
17.5 Barrier Actions .256
17.6 Parallel Program259
17.7 For Further Information264

Chapter 18
Overlapping

18.1 Overlapped Computation and I/O 268
18.2 Parallel Sections271
18.3 Nested Parallel Regions274
18.4 Parallel Program with Overlapping276

Part II Exercises .285

Part III
Clusters

Chapter 19
A First Cluster Parallel Program

19.1 Sequential Program.300
19.2 Running the Sequential Program301
19.3 Cluster Parallel Program302
19.4 Running the Parallel Program 306

C6910_FMTOC.indd viC6910_FMTOC.indd vi 2/2/09 9:21:01 AM2/2/09 9:21:01 AM

 Table of Contents vii

Chapter 20
Parallel Message Passing

20.1 Communicators 310
20.2 Point-to-Point Communication.311
20.3 Collective Communication.314

Chapter 21
Massively Parallel Problems, Part 3

21.1 Cluster Parallel Program Design.330
21.2 Parallel Key Search Program 331
21.3 Parallel Program Speedup334
21.4 Parallel Program Sizeup336
21.5 Early Loop Exit .338

Chapter 22
Data Slicing

22.1 Buffers .346
22.2 Single-Item Buffers347
22.3 Array Buffers .348
22.4 Matrix Buffers. .350
22.5 For Further Information354

Chapter 23
Load Balancing, Part 2

23.1 Collective Communication: Gather356
23.2 Parallel Mandelbrot Set Program358
23.3 Master-Worker .365
23.4 Master-Worker Mandelbrot Set Program. . . 368

Chapter 24
Measuring Communication Overhead

24.1 Measuring the Time to Send a Message . .382
24.2 Message Send-Time Model388
24.3 Applying the Model.391
24.4 Design with Reduced Message Passing . .392
24.5 Program with Reduced Message Passing . . . 394
24.6 Message Scatter and Gather Time
Models .402

24.7 Intra-Node Message Passing403

Chapter 25
Broadcast

25.1 Floyd’s Algorithm on a Cluster410
25.2 Collective Communication: Broadcast . . .412
25.3 Parallel Floyd’s Algorithm Program414
25.4 Message Broadcast Time Model.417

25.5 Computation Time Model 419
25.6 Parallel Floyd’s Algorithm Performance. . .422

Chapter 26
Reduction, Part 3

26.1 Estimating pi on a Cluster428
26.2 Collective Communication: Reduction . . .429
26.3 Parallel pi Program with Reduction 432
26.4 Mandelbrot Set Histogram Program.434

Chapter 27
All-Gather

27.1 Antiproton Motion 446
27.2 Sequential Antiproton Program455
27.3 Collective Communication: All-Gather . . .460
27.4 Parallel Antiproton Program.464
27.5 Computation Time Model 470
27.6 Parallel Program Performance473
27.7 The Gravitational N-Body Problem477
27.8 For Further Information478

Chapter 28
Scalability and Pipelining

28.1 Scalability .482
28.2 Pipelined Message Passing484
28.3 Point-to-Point Communication:
Send-Receive .487

28.4 Pipelined Antiproton Program488
28.5 Pipelined Program Performance.496

Chapter 29
Overlapping, Part 2

29.1 Overlapped Computation and
Communication .500

29.2 Non-Blocking Send-Receive.502
29.3 Pipelined Overlapped Antiproton
Program .502

29.4 Computation Time Model 508
29.5 Pipelined Overlapped Program
Performance .509

Chapter 30
All-Reduce

30.1 A Heat Distribution Problem 514
30.2 Sequential Heat Distribution Program . . .523
30.3 Collective Communication: All-Reduce . . .529

C6910_FMTOC.indd viiC6910_FMTOC.indd vii 2/2/09 9:21:01 AM2/2/09 9:21:01 AM

viii Table of Contents

30.4 Mesh Element Allocation and
Communication .530

30.5 Parallel Heat Distribution Program534
30.6 Parallel Program Performance544
30.7 For Further Information545

Chapter 31
All-to-All and Scan

31.1 The Kolmogorov-Smirnov Test 548
31.2 Block Ciphers as PRNGs 550
31.3 Sequential K-S Test Program551
31.4 Parallel K-S Test Design555
31.5 Parallel K-S Test Program.558
31.6 Parallel K-S Test Program Performance . . .564
31.7 Collective Communication: All-to-All
and Scan .565

31.8 For Further Information569

Part III Exercises. .571

Part IV
Hybrid SMP Clusters

Chapter 32
Massively Parallel Problems, Part 4

32.1 Hybrid Parallel Program Design584
32.2 Parallel Key Search Program 587
32.3 Parallel Program Performance590

Chapter 33
Load Balancing, Part 3

33.1 Load Balancing with One-Level
Scheduling. .596

33.2 Hybrid Program with One-Level
Scheduling. .598

33.3 Program Performance with One-Level
Scheduling. .605

33.4 Load Balancing with Two-Level
Scheduling. .607

33.5 Hybrid Program with Two-Level
Scheduling. .608

33.6 Program Performance with Two-Level
Scheduling. .615

Chapter 34
Partitioning and Broadcast, Part 2

34.1 Floyd’s Algorithm on a Hybrid622
34.2 Hybrid Parallel Floyd’s Algorithm
Program .623

34.3 Computation-Time Model628
34.4 Hybrid Floyd’s Algorithm Performance . . .628

Chapter 35
Parallel Data-Set Querying

35.1 Data Sets and Queries.634
35.2 Parallel Data-Set Querying Strategies634
35.3 The Prime Counting Function636
35.4 Sieving .636
35.5 Sequential Prime Counting Program 644
35.6 Hybrid Parallel Prime Counting Program . .645
35.7 For Further Information654

Part IV Exercises. .657

Part V
Applications

Chapter 36
MRI Spin Relaxometry

36.1 MRI Scanning .666
36.2 Spin Relaxometry Analysis670
36.3 Sequential Spin Relaxometry Program . . .675
36.4 Cluster Parallel Program Design.686
36.5 Parallel Spin Relaxometry Program688
36.6 Parallel Program Performance697
36.7 Displaying the Results698
36.8 Acknowledgments700
36.9 For Further Information701

Chapter 37
Protein Sequence Querying

37.1 Protein Sequences.704
37.2 Protein Sequence Alignment705
37.3 A Protein Sequence Query Example714
37.4 Sequential Program.718
37.5 Parallel Program, Version 1728
37.6 Parallel Program, Version 2742
37.7 Parallel Program Performance746

C6910_FMTOC.indd viiiC6910_FMTOC.indd viii 2/2/09 9:21:01 AM2/2/09 9:21:01 AM

 Table of Contents ix

37.8 Smith-Waterman vs. FASTA and BLAST . .749
37.9 For Further Information749

Chapter 38
Phylogenetic Tree Construction

38.1 Phylogeny. .754
38.2 Distances .757
38.3 A Distance Method: UPGMA759
38.4 Maximum Parsimony Method 763
38.5 Maximum Parsimony with Exhaustive
Search .766

38.6 Maximum Parsimony with Branch-and-Bound
Search .778

38.7 Parallel Branch-and-Bound Search787
38.8 Acknowledgments797
38.9 For Further Information798

Appendices

A
OpenMP

A.1 OpenMP Programming802
A.2 OpenMP Features803
A.3 OpenMP Performance809
A.4 For Further Information.813

B
Message Passing Interface (MPI)

B.1 MPI Programming818
B.2 MPI Features. .821

B.3 MPI Performance 824
B.4 For Further Information828

C
Numerical Methods

C.1 Log-Log Plots .834
C.2 Power Functions on a Log-Log Plot835
C.3 Power Function Curve Fitting.836
C.4 Linear Regression838
C.5 General Linear Least-Squares Curve Fitting 839
C.6 Quadratic Equations841
C.7 Cubic Equations .841
C.8 For Further Information843

D
Atomic Compare-and-Set

D.1 Blocking Synchronization 846
D.2 Atomic Compare-and-Set 848
D.3 Shared Variable Updating with
Atomic CAS .849

D.4 Limitations, Caveats850
D.5 For Further Information851

C6910_FMTOC.indd ixC6910_FMTOC.indd ix 2/2/09 9:21:01 AM2/2/09 9:21:01 AM

Preface

1 Scope
Building Parallel Programs (BPP) teaches the craft of designing and coding—building—parallel
programs, namely programs that employ multiple processors running all at once to solve a computa-
tional problem in less time than on one processor (speedup), to solve a larger problem in the same time
(sizeup), or both.

BPP covers techniques for parallel programming on both major categories of parallel computers,
SMPs and clusters. A shared memory multiprocessor (SMP) parallel computer consists of several central
processing units sharing a common main memory, all housed in a single box. The “dual-core” and “mul-
ticore” computers now available from most vendors are examples of SMP parallel computers. An SMP
parallel computer is programmed using multiple threads running in one process and manipulating shared
data in the main memory. A cluster parallel computer consists of several processors, each with its own
(non-shared) memory, interconnected by a dedicated high speed network. A cluster parallel computer
is programmed using multiple processes, one per processor; each process manipulates data in its own
memory and exchanges messages with the other processes over the network. BPP also covers techniques
for parallel programming on a hybrid SMP cluster parallel computer (a cluster each of whose members is
an SMP computer), which requires both multithreading and message passing in the same program.

BPP relies heavily on studying actual, complete, working parallel programs to teach the craft of par-
allel programming. The programs in the book are written in Java and use a Java class library I developed,
Parallel Java (http://www.cs.rit.edu/~ark/pj.shtml). The Parallel Java Library hides the low-level details
of multithreading and message passing, allowing the programmer to write parallel programs using high-
level constructs.

For each parallel program examined in BPP, the source code is included in the text, interspersed
with explanatory narrative. Learning to program begins with studying programs; so resist the temptation
to gloss over the source code, and give the same attention to the source code as to the rest of the text.
The program source files are also included in the Parallel Java Library. By downloading the Library, the
source files can be studied using a text editor or an integrated development environment.

A major emphasis in BPP is the use of performance metrics—running time, speedup, efficiency,
sizeup—in the design of parallel programs. For each parallel program studied, the book reports the pro-
gram’s running time measurements on a real parallel computer with different numbers of processors, the
book explains how to analyze the running time data to derive performance metrics, and the book explains
how the metrics provide insights that lead to improving the program’s design. Consequently, BPP covers
such performance-related topics as cache interference, load balancing, and overlapping in addition to
parallel program design and coding.

C6910_FMTOC.indd xC6910_FMTOC.indd x 2/2/09 9:21:01 AM2/2/09 9:21:01 AM

http://www.cs.rit.edu/~ark/pj.shtml

 Preface xi

2 Rationale
Why write another book on parallel programming? Like many textbooks, BPP grew out of my dis-
satisfaction with the state of parallel computing in general and my dissatisfaction with existing parallel
programming textbooks.

Some books emphasize the concepts of parallel computing or the theory of parallel algorithms, but
say little about the practicalities of writing parallel programs. BPP is not a parallel algorithms text, and
it is not primarily a parallel computing concepts text; rather, BPP is a parallel programming text. But to
teach practical parallel programming requires using a specific programming language. I have chosen to
use Java. Why write a book on parallel programming in Java?

Three trends are converging to move parallel computing out of its traditional niche of scientific com-
putations programmed in Fortran or C. First, parallel computing is becoming of interest in other domains
that need massive computational power, such as graphics, animation, data mining, and informatics; but
applications in these domains tend to be written in newer languages like Java. Second, Java is becoming
the principal programming language students learn, both in high school AP computer science curricula and
in college curricula. Recognizing this trend, the ACM Java Task Force has recently released a collection
of resources for teaching introductory programming in Java (http://jtf.acm.org). Third, even desktop and
laptop personal computers are now using multicore CPU chips. In other words, today’s desktop and laptop
PCs are SMP parallel computers, and in the near future even “regular” applications like word processors
and spreadsheets will need to use SMP parallel programming techniques to take full advantage of the PC’s
hardware. Thus, there is an increasing need for all computing students to learn parallel programming as
well as regular programming; and because students are learning Java as their main language, there is an
increasing need for students to learn parallel programming in Java. However, there are no textbooks spe-
cifically about parallel programming in Java. BPP aims to fill this gap.

In the scientific computing arena, parallel programs are generally written either for SMPs or for
clusters. Reinforcing this dichotomy are separate standard libraries—OpenMP (http://openmp.org/wp/)
for parallel programming on SMPs, MPI (http://www.mpi-forum.org/) for parallel programming on clus-
ters. Because SMPs perform best on certain kinds of problems and clusters perform best on other kinds
of problems, it is important to learn both SMP and cluster parallel programming techniques. Most books
focus either on SMPs or on clusters; none cover both in depth. BPP covers both.

However, in my experience OpenMP and MPI are difficult to teach, both because they are large and
intricate libraries and because they are designed for programming in non-object-oriented Fortran and C,
not object-oriented Java with which most students are familiar. The Parallel Java Library provides the
capabilities of OpenMP and MPI in a unified, object-oriented API. Using the Parallel Java Library, BPP
teaches the same parallel programming concepts and patterns as OpenMP and MPI programs use, but in
an object-oriented style using Java, which is easier for students to learn. OpenMP aficionados will rec-
ognize Parallel Java’s thread teams, parallel regions, work-sharing parallel for loops, reduction variables,
and other features. MPI devotees will recognize Parallel Java’s communicators and its message passing
operations—send, receive, broadcast, scatter, gather, reduce, and others. Having mastered the concepts
and patterns, students can then more easily learn OpenMP itself or MPI itself should they ever need to
write OpenMP or MPI programs. Appendix A and Appendix B provide brief introductions to OpenMP
and MPI and pointers to further information about them.

C6910_FMTOC.indd xiC6910_FMTOC.indd xi 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

http://jtf.acm.org
http://openmp.org/wp/
http://www.mpi-forum.org/

xii Preface

As multicore machines become more common, hybrid parallel computers—clusters of multicore
machines—will become more common as well. However, there are no standard parallel programming
libraries that integrate multithreading and message passing capabilities together in a single library.
Hybrid parallel programs that use both OpenMP and MPI are not guaranteed to work on every platform,
because MPI implementations are not required to support multithreading. While hybrid parallel programs
can be written using only the process-based message passing paradigm with MPI, sending messages
between different processes’ address spaces on the same SMP machine often yields poorer performance
than simply sharing the same address space among several threads. A hybrid parallel program should
use the shared memory paradigm for parallelism within each SMP machine and should use the message
passing paradigm for parallelism between the cluster machines. I developed the Parallel Java Library
especially for writing parallel programs of this kind.

Furthermore, not much has been published about hybrid parallel programming techniques, and to
my knowledge there are no textbooks that cover these techniques in depth. BPP aims to fill this gap by
including cutting-edge material on hybrid parallel programming. Even in “plain” clusters where each
node has only one CPU, considerable synergy arises from combining message passing parallel program-
ming with multithreaded parallel programming, and BPP covers these techniques as well.

Finally, many existing parallel programming textbooks give short shrift to real-world applications.
Either the books only cover general parallel programming techniques and never mention specific real-
world applications at all, or the books merely describe examples of real-world applications and never
study the actual code for such applications. In contrast, BPP covers three real-world parallel program
codes in depth, one computational medicine problem and two computational biology problems. These
applications reinforce the general parallel programming techniques covered in the rest of the book and
show how to deal with practical issues that arise when building real parallel programs.

3. Target Audience and Prerequisites
BPP is aimed at upper division undergraduate students and graduate students taking a first course in par-
allel computing. BPP is also suitable for professionals needing to learn parallel programming.

I assume you know how to write computer programs, in Java, as typically taught in the introductory
computer science course sequence.

I assume you are familiar with computer organization concepts such as CPU, memory, and cache,
as typically taught in a computer organization or computer architecture course. Chapter 2 reviews these
concepts as applied to parallel computers.

I assume you are familiar with what a thread is and with the issues that arise in multithreaded programs,
such as synchronization, atomic operations, and critical sections. This material is typically taught in an operat-
ing systems course. However, when writing Parallel Java programs, you never have to write an actual thread or
use low-level constructs like sema phores. The Parallel Java Library does all that for you under the hood.

I assume you are familiar with computer networking and with the notion of sending data in messages
between processors over a network, as typically taught in a data communications or computer networks course.
I also assume you are familiar with object serialization in Java. Again, when writing Parallel Java programs,
you never have to open a socket or send a datagram. The Parallel Java Library does it for you under the hood.

Finally, I assume you have a mathematical background at the level of first-year calculus. We will be
doing some derivatives and logarithms as we model and analyze parallel program performance.

C6910_FMTOC.indd xiiC6910_FMTOC.indd xii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

 Preface xiii

4. Organization
BPP is organized into five parts.

Part I covers preliminary material. Chapter 1 defines what parallel computing is and gives examples of
problems that benefit from parallel computing. After a brief history of parallel computing, Chapter 2 cov-
ers the parallel computer hardware and software concepts needed to develop parallel programs effectively.
Chapter 3 describes the general process of designing parallel programs, based on the design patterns of
Carriero and Gelernter. Chapter 4 gives a gentle introduction to parallel programming with Parallel Java.

Part II is an in-depth study of parallel programming on SMP parallel computers. Chapters 5, 6, and 7
introduce massively parallel problems and the programming constructs used to solve them, notably paral-
lel loops. Chapters 8, 9, and 10 focus on performance. Chapter 8 introduces parallel program performance
metrics, specifically running time, speedup, efficiency, and experimentally determined sequential fraction.
Anomalies in these metrics reveal the issue of cache interference, covered in Chapter 9 along with tech-
niques for avoiding cache interference. Chapter 10 looks at two further performance metrics, sizeup and
sizeup efficiency. Returning to parallel program design, Chapter 11 discusses the issues that arise when
using a parallel program to generate images. Chapter 12 covers parallel problems that need load balancing
to achieve good performance, along with parallel loop schedules for load balancing. Chapter 13 introduces
the topic of parallel reduction using thread safe shared variables. After an interlude in Chapter 14 on how to
generate random numbers in a parallel program, Chapter 15 continues the topic of parallel reduction using
reduction operators and critical sections. Chapter 16 looks at problems with sequential dependencies and
how to partition such problems among multiple threads. Chapter 17 covers the barrier action, a construct
for interspersing sequential code within parallel code. Concluding the coverage of SMP parallel program-
ming, Chapter 18 shows how to increase performance by overlapping computation with I/O.

Part III shifts the focus to parallel programming on cluster parallel computers. After a gentle intro-
duction in Chapter 19 to cluster parallel programming with Parallel Java, Chapter 20 covers the funda-
mental concepts of message passing. Chapter 21 describes how to solve massively parallel problems that
do not need to communicate any data. Turning to problems that require communicating large amounts of
data, Chapter 22 shows how to slice data arrays and matrices into pieces and send the pieces in messages.
Chapter 23 illustrates how to do load balancing in a cluster parallel program using the master-worker
pattern, along with data slicing. Chapter 24 derives a mathematical model for a cluster parallel pro gram’s
communication time. This is used in suceeding chapters to model the parallel program’s running time,
providing insight into the maximum performance the program can achieve. Chapter 24 also shows how
to redesign a master-worker program to reduce the communication time. The next three chapters focus
on three so-called “collective communication” message passing operations and examine programs that
illustrate each operation: Chapter 25, broadcast; Chapter 26, reduce; Chapter 27, all-gather. Chapter 28
focuses on scalability, describing how to assess a parallel pro gram’s performance and memory require-
ments as it scales up to larger problem sizes. Chapter 28 also covers pipelining, a technique that allows
problems with large memory requirements to scale up by adding processors to the cluster. Chapter 29
returns to the topic of overlapping, showing how to do overlapped computation and communication in a
cluster parallel program. The next two chapters conclude Part III with three more collective communica-
tion operations: Chapter 30, all-reduce; Chapter 31, all-to-all and scan.

Part IV brings the shared memory and message passing paradigms together to write programs for
hybrid parallel computers. Chapter 32 shows how to solve massively parallel problems with parallel

C6910_FMTOC.indd xiiiC6910_FMTOC.indd xiii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

xiv Preface

programs containing both multiple processes and multiple threads per process. Chapter 33 covers load
balancing on a hybrid parallel computer; the two degrees of freedom—load balancing among the processes,
and load balancing among the threads within each process—provide considerable flexibility in the program
design. Chapter 34 addresses the issues that arise when collective communication operations, specifically
broadcast, must be done in a multithreaded message passing program. Chapter 35 covers parallel data set
querying techniques, which are employed in many widely-used high performance scientific programs.

Parts II, III, and IV illustrate the general parallel programming techniques by studying the design,
source code, and performance of several Parallel Java programs. These include programs to carry out a
known plaintext attack on the Advanced Encryption Standard (AES) block cipher; compute an image of
the Mandelbrot Set; estimate the value of π using a Monte Carlo technique; compute a histogram of the
Mandelbrot Set image’s pixels; find all shortest paths in a graph using Floyd’s Algorithm; compute the
evolution of a continuous cellular automaton; calculate the motion of antiprotons swirling around in a
particle trap; calculate the temperature at each point on a metal plate by numerical solution of a partial
differential equation; perform a Kolmogorov-Smirnov test on a random number generator; and compute
the prime counting function using the Sieve of Eratosthenes. Many of the programs appear in several
versions demonstrating different parallel programming techniques. Some of the programs appear in all
three versions—SMP, cluster, and hybrid—to highlight the differences between the three paradigms. To
emphasize the utility of parallel computing in domains other than the traditional ones of computational
science and engineering, some of the problems solved with parallel programs in BPP are from “non-
scientific” areas, such as cryptography and mathematics. However, the problems in Parts II, III, and IV
were chosen solely for pedagogical reasons—to illustrate parallel programming techniques—and are not
necessarily problems with any great significance in the real world.

Having covered parallel programming techniques in general, Part V goes on to solve three real-
world problems requiring massive computation. Chapter 36 gives a cluster parallel program for magnetic
resonance image (MRI) spin relaxometry, a computational medicine problem, based on curve fitting via
nonlinear least squares. Chapter 37 gives two hybrid parallel programs for protein sequence querying,
a computational biology problem, based on the Smith-Waterman local alignment algorithm. Chapter 38
gives an SMP parallel program for maximum parsimony phylogenetic tree construction, another compu-
tational biology problem, based on a parallel branch-and-bound algorithm.

Although many of the programs in BPP employ numerical algorithms, BPP is not a numerical
methods textbook or a scientific computing textbook. The numerical methods are explained at a level suf-
ficient to understand the parallel programs, but space does not permit detailed descriptions of the math-
ematics behind the numerical methods. To find out more about the numerical methods, see the references
in the “For Further Information” section at the end of each chapter.

The book concludes with four appendices. Appendix A gives a brief introduction to OpenMP,
describing OpenMP’s features and comparing and contrasting OpenMP with Parallel Java. Appendix B
does the same for MPI. Appendix A and Appendix B also compare the performance of OpenMP and MPI
parallel programs written in C with the performance of the same parallel programs written in Java using
the Parallel Java Library, demonstrating that Java programs can run as fast as or faster than C programs.
Appendix C describes the numerical methods used throughout the book to analyze the parallel programs’
performance. Appendix D covers the atomic compare-and-set operation, which can be used to achieve
high-performance thread synchronization.

C6910_FMTOC.indd xivC6910_FMTOC.indd xiv 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

 Preface xv

Exercises are included at the end of Parts I, II, III, and IV. Some are pencil-and-paper problems,
some involve writing short parallel programs, some require investigating a program’s behavior, some
require a bit of research. I find that the best exercises integrate concepts from multiple chapters; thus, I
have put the exercises at the end of each part of the book rather than at the end of each chapter.

5. Teaching
BPP contains more than enough material for a one-semester course on parallel computing. The book can
also be used in a two-semester course sequence on parallel computing. The first semester would cover
general SMP and cluster parallel programming techniques using Parts I–III. The second semester would
cover hybrid parallel programming using Part IV and the real-world parallel programming applications in
Part V, supplemented by the research literature and the instructor’s own examples.

In the Computer Science Department at the Rochester Institute of Technology, I have been teach-
ing the two-quarter parallel computing course sequence since 2005 using draft versions of the material
in BPP. The “Parallel Computing I” course covers Parts I–III, the “Parallel Computing II” course covers
Parts IV–V. I assign my students two term programming projects each quarter. In Parallel Computing I,
the first project is to write an SMP parallel program to solve a stated problem; the second project is to
write a cluster parallel program to solve the same problem. The students write a sequential and a parallel
version of each program in Java using the Parallel Java Library, and they measure their programs’ perfor-
mance running on SMP and cluster parallel computers. In Parallel Computing II I do the same, except the
second project is to write a hybrid parallel program.

Of course, to do parallel programming projects you will need a parallel computer. Nowadays it’s
easy to set up a parallel computer. Simply get a multicore server, and you have an SMP parallel com-
puter. Or get several workstations and connect them with a dedicated high speed network like a 1-Gbps
Ethernet, and you have a cluster parallel computer. Or do both. An interesting configuration is a hybrid
parallel computer with four quad-core nodes. This gives you four-way parallelism for SMP parallel
programs running with four threads on one node, sixteen-way parallelism for cluster parallel programs
running with four processes on each of the nodes, and sixteen-way parallelism for hybrid parallel pro-
grams running with one process and four threads on each of the nodes. Larger multicore nodes and larger
clusters will let you scale up your programs even further.

You will also need the Parallel Java Library. Parallel Java is free, GNU GPL licensed software and is
available for download from my web site (http://www.cs.rit.edu/~ark/pj.shtml). The Library includes the
Parallel Java middleware itself as well as all the parallel programs in this textbook, with source code, class
files, and full Javadoc documentation. Parallel Java is written in 100% Java and requires only the Java 2
Standard Edition JDK 1.5 or higher to run on any machine; I have tested it on Linux and Solaris. Parallel
Java is designed to be easy to install and configure; complete instructions are included in the Javadoc.

I am happy to answer general questions about the Parallel Java Library, receive bug reports, and
entertain requests for additional features. Please contact me by email at ark@cs.rit.edu. I regret that I am
unable to provide technical support, specific installation instructions for your system, or advice about
configuring your parallel computer hardware.

C6910_FMTOC.indd xvC6910_FMTOC.indd xv 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

http://www.cs.rit.edu/~ark/pj.shtml

xvi Preface

6. Acknowledgments
I would like to thank my student Luke McOmber, who helped write the first version of the Parallel Java
Library in 2005.

I would like to thank the students in my Parallel Computing I and Parallel Computing II classes,
who have helped me debug and refine the Parallel Java Library and the material in BPP: Michael
Adams, Justin Allgyer, Brian Alliet, Ravi Amin, Corey Andalora, Sheehan Anderson, Michael Attridge,
Justin Bevan, Benjamin Bloom, Patrick Borden, John Brothers, Andrew Brown, Kai Burnett, Patrick
Campagnano, Stephen Cavilia, Samuel Chase, Mahendra Chauhan, Pierre Coirier, Christopher Connett,
Sean Connolly, Adam Cornwell, Eric Cranmer, Mason Cree, Daniel Desiderio, Derek Devine, Joseph
Dowling, Guilhem Duché, Christopher Dunnigan, Timothy Ecklund, Andrew Elble, Peter Erickson,
James Fifield, Jonathan Finamore, Gaurav Gargate, Dalia Ghoneim, Andres Gonzalez, Jason Greguske,
Allison Griggs, Craig Hammell, Joshua Harlow, Charles Hart, Jacob Hays, Darren Headrick, Ryan Hsu,
Leighton Ing, Nilesh Jain, Sean Jordan, Alban Jouvin, Glenn Katzen, Paresh Khatri, Dayne Kilheffer,
John Klepack, Venkata Krishna Sistla, Michael Kron, Rachel Laster, Andrew LeBlanc, Joshua Lewis,
Nicholas Lucaroni, Jon Ludwig, John MacDonald, Sushil Magdum, Jiong Mai, Daniel McCabe, Austin
McChord, Sean McDermott, Michael McGovern, Eric Miedlar, David Mollitor, Kyle Morse, Adam
Nabinger, Andrew Nachbar, Anurag Naidu, Paul Nicolucci, Brian Oliver, Shane Osaki, Derek Osswald,
Robert Paradise, Kunal Pathak, Bryce Petrini, James Phipps, Michael Pratt, Paul Prystaloski, Michael
Pulcini, Andrew Rader, Jessica Reuter, Aaron Robinson, Seth Rogers, Francis Rosa, Christopher
Rouland, William Rummler, Omonbek Salaev, Mark Sanders, Josef Schelch, Bhavna Sharma, Michael
Singleton, Amanda Sitterly, David Skidmore, Lukasz Skrzypek, Benjamin Solwitz, Brent Strong, Daniel
Surdyk, Michael Szebenyi, Sakshar Thakkar, Jonathan Walsh, Borshin Wang, Kevin Watters, Jason Watt,
Andrew Weller, Trevor West, Melissa Wilbert, Junxia Xu, and Andrew Yohn.

I would like to acknowledge Nan Schaller, who pioneered the RIT Computer Science Department’s
parallel computing courses. Nan also secured an NSF grant to acquire our first two SMP parallel comput-
ers. I would not have been able to develop the Parallel Java Library and the material in BPP if Nan had
not paved the way.

I would like to thank the RIT Computer Science Department chairs, first Walter Wolf, then Paul
Tymann, who procured capital funds for additional parallel computers to support teaching our parallel
computing courses. As I write we have two 4-processor SMP parallel computers, two 8-processor SMP
parallel computers, a 32-processor cluster parallel computer, and a 40-processor hybrid parallel computer
with ten quad-core nodes. All of these use commodity off-the-shelf hardware. Our department’s teaching
facilities truly are “embarrassingly parallel.”

I would like to thank Paul Austin and the Xerox Corporation. Paul was instrumental in obtaining a
Xerox University Affairs grant for me which provided part of the funding for our hybrid parallel com-
puter. Without this computer I would not have been able to develop and test the material on hybrid paral-
lel programming that appears in Part IV.

I would like to thank our department’s system administrator, James “Linus” Craig, and our hardware
technician, Mark Stamer, for setting up our parallel computers, keeping them running, and for being
generally supportive as I experimented with parallel computing middleware.

I would like to thank all the professionals at Course Technologies, especially Amy Jollymore, Alyssa
Pratt, and Jill Braiewa, for their enthusiasm and effort in publishing the book. Without them you would

C6910_FMTOC.indd xviC6910_FMTOC.indd xvi 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

 Preface xvii

not be holding BPP in your hands. I would also like to thank the reviewers who took the time to scruti-
nize the manuscript and offer many helpful suggestions: Paul Gray, University of Northern Iowa; David
Hemmendinger, Union College; Lubomir Ivanov, Iona College; April Kontostathis, Ursinus College; Tom
Murphy, Contra Costa College; George Rudolph, The Citadel; Jim Teresco, Mount Holyoke College; and
George Thiruvathukal, Loyola University Chicago. BPP is a better book because of these folks’ efforts.

Lastly, I would like to thank my wife Margaret and my daughters Karen and Laura. Many were the
days and evenings I would disappear into my upstairs sanctum to write. Thank you for your love and sup-
port during this long project.

I dedicate this book to my father, Edmund Kaminsky. Dad, you’ve waited a long time for this. Thank
you for all your encouragement.

Alan Kaminsky
December 2008

C6910_FMTOC.indd xviiC6910_FMTOC.indd xvii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

1

Preliminaries

Chapter 1
Parallel Computing 3

Chapter 2
Parallel Computers 15

Chapter 3
How to Write Parallel Programs 35

Chapter 4
A First Parallel Program 47

Part I Exercises 61

P A R T I

C6910_1.indd 1C6910_1.indd 1 1/26/09 8:26:59 AM1/26/09 8:26:59 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

3

C H A P T E R 1
in which we discover what parallel computing is; we learn how it can help us solve

computational problems; and we survey several problems that benefit from parallel

computing

Parallel Computing

C6910_1.indd 3C6910_1.indd 3 1/26/09 8:27:20 AM1/26/09 8:27:20 AM

C H A P T E R1 Parallel Computing

1.1 Bigger Problems, Faster Answers
Many of today’s computer applications require massive amounts of computation. Here’s an example of a
computational medicine problem involving magnetic resonance imaging (MRI). MRI is a technique for
making images of the inside of an organism, such as a living person’s brain, without cutting the patient
open. The MRI scanner sends a brief, high-intensity radio frequency pulse through the patient. The pulse
reverses the orientation of the spins of the atoms in the patient. The MRI scanner then measures the
atomic spins in a two-dimensional plane, or slice, through the subject as the atoms “relax,” or return to
their normal spin orientations. Each measurement takes the form of an N×N-pixel image. The MRI scan-
ner takes a sequence of these image snapshots at closely spaced time intervals (Figure 1.1).

Measurement time

 Figure 1.1 Sequence of magnetic resonance images for one slice of a brain

The rates at which the atoms’ spins relax helps a doctor diagnose disease. In healthy tissue, the spins
relax at certain rates. In diseased tissue, if abnormal chemicals are present, the spins relax at different
rates. The sequence of measured spin directions and intensities for a given pixel can be analyzed to deter-
mine the spin relaxation rates in the tissue sample corresponding to that pixel. Such a spin relaxometry
analysis requires sophisticated and time-consuming calculations on each pixel’s data sequence to recover
the underlying spin relaxation rates from the typically imperfect and noisy images. (In Chapter 36, we
will examine MRI spin relaxometry analysis in more detail.)

One computer program that did the spin relaxometry analysis took about 76 seconds to do the cal-
culations for a single pixel. To analyze all the pixels in, say, a 64×64-pixel image, a total of 4,096 pixels,
would take about 311,000 seconds—over 3.5 days—of computer time. And this is for just one slice
through the subject. A complete MRI scan involves many slices to generate a three-dimensional picture of
the subject’s interior. Clearly, the calculations need to be completed in a drastically shorter time for spin
relaxometry analysis to be a useful diagnostic technique.

One alternative for reducing the calculation time is to get a faster computer. The earlier-noted tim-
ing measurement was made on a computer that was several years old. Running the same program on an

C6910_1.indd 4C6910_1.indd 4 1/26/09 8:27:57 AM1/26/09 8:27:57 AM

 1.1 Bigger Problems, Faster Answers 5

up-to-date computer that is 5 times faster than the original computer would take about 62,000 seconds to
analyze a 64×64-pixel image, or about 17 hours instead of 3.5 days.

It used to be that computer clock speeds doubled roughly every two years. However, that trend
finally may be ending. By 2004, CPU chips had achieved clock speeds in the 3 GHz range. If the trend
had continued, clock speeds should have reached 12 GHz by 2008—but they did not. Instead, in late
2004, chip makers started moving away from the strategy of boosting chip performance by increasing the
raw clock speed, opting instead to introduce architectural features such as “hyperthreaded” and “multi-
core” chips (we will say more about these later). Although clock speeds do continue to increase, in the
future there is little hope left for dramatically reduced calculation times from faster chips.

Another alternative for reducing the calculation time is to switch to a faster algorithm. Suppose we
could devise a different program that was 100 times faster than the original; then running on the faster
computer, it would take about 620 seconds—about 10 minutes—to analyze a 64×64-pixel image. Putting
it another way, the calculation time per pixel would be 0.15 seconds instead of 76 seconds. However,
algorithmic improvements can take us only so far. There comes a point where the fastest-known algo-
rithm on the fastest available computer is still simply not fast enough.

A third alternative is to have several computers working on the problem simultaneously. Say we have
K computers instead of just one. We divide the problem up into K pieces and assign one piece to each
computer. For the MRI spin relaxometry analysis problem, each computer analyzes (N×N)/K pixels. Then
all the computers go to work on their respective pieces at the same time. We say that the computers are
executing in parallel, and we refer to the whole conglomeration as a parallel computer. Henceforth we
will refer to the individual units within the parallel computer as processors to distinguish them from the
parallel computer as a whole.

We could apply a parallel computer to the MRI spin relaxometry analysis problem in either of two
ways. Suppose we have a 16-processor parallel computer. We divide the 4,096 pixels among the 16 proces-
sors. Because each processor has to do the calculations for only 256 pixels, and because all the processors
are running at once, the computation takes only 256 × 0.15 seconds, or about 39 seconds, instead of
10 minutes. The parallel computer let us reduce the running time by a factor of 16 while holding the prob-
lem size constant. Used in this way, a K-processor parallel computer ideally gives a speedup of K
(Figure 1.2).

K = 1 processor

1 unit of computation

K = 4 processors

Running time

Figure 1.2 Speedup with a parallel computer—same problem size, (1/K) × running time

C6910_1.indd 5C6910_1.indd 5 1/26/09 8:28:40 AM1/26/09 8:28:40 AM

6 CHAPTER 1 Parallel Computing

 On the other hand, suppose we use our 16-processor parallel computer to analyze a magnetic reso-
nance image with 16 times as many pixels—a 256×256-pixel image, which is actually the typical size of
a magnetic resonance image used for a medical diagnosis. Either the image encompasses a larger area, or
the image covers the same area at a finer resolution. Then the computation still takes the same 10 min-
utes, but we have analyzed a larger image. The parallel computer has let us increase the problem size by
a factor of 16 while holding the running time constant. Used in this way, a K-processor parallel computer
ideally gives a size increase, or sizeup, of K (Figure 1.3).

K = 1 processor

1 unit of computation

K = 4 processors

Running time

 Figure 1.3 Sizeup with a parallel computer—K × problem size, same running time

Of course, we can employ both strategies. A 64-processor parallel computer, for example, would
let us analyze a 256×256-pixel image in one-fourth the time it takes a single computer to analyze a
64×64-pixel image. The more processors we add, the bigger the images we can analyze, and the faster we
can get the answers.

To sum up, parallel computing is the discipline of employing multiple processors running all at once
to solve the same problem in less time (speedup), to solve a larger problem in the same time (sizeup), or
both. Another term often used is high-performance computing (HPC), which emphasizes the improved
performance parallel computing provides in solving larger problems or solving problems faster.

1.2 Applications for Parallel Computing
In 2004, the U.S. Office of Science and Technology Policy released a report titled “Federal Plan for
High-End Computing.” This report lists four broad application areas—climate and weather, nanoscale
science and technology, life sciences, and aerospace vehicle design—with problems requiring massive
amounts of computation, that can and do benefit from parallel computing. Problems in other areas, such
as astrophysics, mathematics, games, and animation, are also attacked using parallel computing. Here are
a few examples of such problems:

Weather forecasting. In August 2005, Hurricane Katrina devastated the U.S. Gulf Coast, flooding
the city of New Orleans, killing more than 1,800 people, and causing $100 billion in damage. Computer
models of the atmosphere, such as the Weather Research and Forecasting (WRF) Model, can predict

C6910_1.indd 6C6910_1.indd 6 1/26/09 8:29:14 AM1/26/09 8:29:14 AM

 1.2 Applications for Parallel Computing 7

a storm’s track (the path it will follow, where it will hit land) and intensity (wind speed). The WRF
program takes a portion of the earth’s atmosphere—a given region of the earth’s surface, up to a given
height above the surface—and divides this three-dimensional region into many small 3-D cells. The WRF
program then uses physical models to calculate atmospheric conditions in each cell, as influenced by the
neighboring cells, and advances the forecast in a series of many small time steps. The WRF program uses
parallel computing to handle the calculations for large numbers of cells and time steps.

Accurate hurricane track and intensity forecasts can help officials decide how to prepare for a storm
and where to evacuate if necessary. However, current hurricane forecasting programs are not all that
accurate. With current models, track forecast errors can be as large as 70 kilometers (km), and wind
speed forecast errors can be as large as 37 kilometers per hour (kph). A wind-speed shift of 37 kph can
change a mere tropical storm to a Category 3 major hurricane. A track error of 70 km could cause offi-
cials to evacuate Boca Raton, Florida when they should have evacuated Miami.

To get more accurate predictions, the cells and the time steps in the model must be made smaller;
this means that the model must include more cells and more time steps to cover the same geographic
region and the same time span. For example, if the cell’s dimensions are decreased by a factor of 2, the
number of cells must increase by a factor of 8 to cover the same 3-D region. If the time step size is also
decreased by a factor of 2, the number of time steps must increase by a factor of 2 to cover the same time
span. Thus, the total amount of computation goes up by a factor of 16. This in turn means that even more
powerful parallel computers and parallel programs will be needed to calculate the models.

Climate modeling. On what date will the rainy season begin in Brazil this year, so farmers will
know when to plant their crops? Why is rainfall decreasing in the Indian subcontinent—could it be
caused by pollution from burning wood for fuel and cooking? What effect will increased levels of atmo-
spheric carbon dioxide have on the world’s climate—none at all, or drastic warming that will melt the
polar ice caps and inundate coastal cities? Computer-based climate models can answer these questions
(and fan the controversies). The Community Climate System Model (CCSM), for example, models the
atmosphere, ocean, sea ice, and land surface using a three-dimensional grid of cells like the WRF model.
The CCSM program runs on a parallel computer to simulate the earth’s climate over the entire globe for
time spans of thousands of years. Because there is no end to the number of climatological features and
the level of detail that can be included in climate simulation programs, such programs will continue to
need the power of parallel computers well into the future.

Protein sequence matching. Imagine you are a biochemist. You have isolated a new protein from
the creature you are studying, but you have no idea what the protein does—could it be an anti-cancer
agent? Or is it just a digestive enzyme?

One way to get a clue to the protein’s function is to match your protein against other proteins; if your
protein closely matches proteins of known function, chances are your protein does something similar to
the matching proteins. Chemically, a protein is a group of amino acids linked together into a long string.
Twenty different amino acids are found in proteins, so a protein can be represented as a string of letters
from a 20-character alphabet; this string is called the protein’s “sequence.” Protein sequence databases
collect information about proteins, including their sequences and functions. The Swiss-Prot database, for
example, contains well over 385,000 protein sequences ranging in length from 2 to 35,000 amino acids,
with a median length of around 300 amino acids. You can determine your new protein’s sequence and
match it against the protein sequences in the database. Doing so is more complicated than looking up a

C6910_1.indd 7C6910_1.indd 7 1/26/09 8:29:55 AM1/26/09 8:29:55 AM

8 CHAPTER 1 Parallel Computing

credit card number in a financial database, however. Rather than finding a single, exact match, you are
looking for multiple, inexact but close matches.

The Basic Local Alignment Search Tool (BLAST) program is at present the premier tool for solving
the preceding protein sequence matching problem. The BLAST program combines a “local alignment”
algorithm, which matches a piece of one protein sequence against a piece of another protein sequence,
with a search of all protein sequences in the database. Because local alignment is a computationally
intensive algorithm and because the databases are large, parallel versions of BLAST are used to speed up
the searches. In Chapter 37, we will design a parallel program for protein sequence database searching.

Quantum computer simulation. A quantum computer exploits quantum mechanical effects to
perform large amounts of computation with small amounts of hardware. A quantum computer register
with n qubits (quantum bits) can hold 2n different states at the same time via “quantum superposition”
of the individual qubits’ states. Performing one operation on the quantum register updates all 2n states
simultaneously, making some hitherto intractable algorithms practical. For example, in 1994, Peter Shor
of AT&T Bell Laboratories published a quantum algorithm that can factor large composite numbers
efficiently. If we could do that, we could break the RSA public key cryptosystem, which is the basis for
secure electronic commerce on the Internet. The potential for solving problems with polynomial time
algorithms on a quantum computer—that would otherwise require exponential time algorithms on a clas-
sical computer—has sparked interest in quantum algorithms.

Although small, specialized quantum computers have been built, it will be quite some time before
useful general-purpose quantum computers become available. Nonetheless, researchers are forging
ahead with quantum algorithm development. Lacking actual quantum computers to test their algorithms,
researchers turn to quantum computer simulators running on classical computers. The simulators must
do massive amounts of computation to simulate the quantum computer’s exponentially large number of
states, making quantum computer simulation an attractive area for (classical) parallel computing. Several
parallel simulator programs for quantum computers have been published.

Star cluster simulation. Astrophysicists are interested in the evolution of star clusters and even
entire galaxies. How does the shape of the star cluster or galaxy change over time as the stars move under
the influence of their mutual gravitational attraction? Many galaxies, including our own Milky Way, are
believed to have a supermassive black hole (SMBH) at the center. How does the SMBH move as the
comparatively much-lighter stars orbit the galactic center? What happens when two galaxies collide?
While it’s unlikely for individual stars in the galaxies to collide with each other, the galaxies as a whole
might merge, or they might pass through each other but with altered shapes, or certain stars might be
ejected to voyage alone through intergalactic space.

There are theories that purport to predict what will happen in these scenarios. But because of the
long time scales involved, millions or billions of years, there has been no way to test these theories by
observing actual star clusters or galaxies. So astrophysicists have turned to observing the evolution of star
clusters or galaxies simulated in the computer. In recent years, “computational astrophysics” has revolu-
tionized the field and revealed a host of new phenomena for theorists to puzzle over.

The most general and powerful methods for simulating stellar dynamics, the so-called “direct
N-body methods,” require enormous amounts of computation. The simulation proceeds as a series of time
steps. At each time step, the gravitational force on each star from all the other stars is calculated, each
star’s position and velocity are advanced as determined by the force, and the cycle repeats. A system of
N stars requires O(N 2) calculations to determine the forces. To simulate, say, one million stars requires

C6910_1.indd 8C6910_1.indd 8 1/26/09 8:29:55 AM1/26/09 8:29:55 AM

 1.2 Applications for Parallel Computing 9

1012 force calculations—on each and every time step; and one simulation may run for thousands or mil-
lions of time steps. In Chapter 27, we will examine an N-body problem in more detail.

To run their simulations, computational astrophysicists turn to special purpose hardware. One exam-
ple is the GRAPE-6 processor, developed by Junichiro Makino and his colleagues at the University of
Tokyo. (GRAPE stands for GRAvity piPE.) The GRAPE-6 processor is a parallel processor that does only
gravitational force calculations, but does them much, much faster than even the speediest general-purpose
computer. Multiple GRAPE-6 processors are then combined with multiple general-purpose host proces-
sors to form a massively parallel gravitational supercomputer. Examples of such supercomputers include
the GRAPE-6 system at the University of Tokyo and the “gravitySimulator” system built by David Merritt
and his colleagues at the Rochester Institute of Technology.

Mersenne primes. Mersenne numbers—named after French philosopher Marin Mersenne
(1588–1648), who wrote about them—are numbers of the form 2n–1. If a Mersenne number is also a
prime number, it is called a Mersenne prime. The first few Mersenne primes are 22–1, 23–1, 25–1, 27–1,
and 213–1. (Most Mersenne numbers are not prime.) The largest known Mersenne prime is 243,112,609–1,
a whopper of a number with nearly 13 million decimal digits, discovered in August 2008 by the Great
Internet Mersenne Prime Search (GIMPS) project.

Starting in 1996, the GIMPS project has been testing Mersenne numbers to find ever-larger
Mersenne primes. The GIMPS project uses a “virtual parallel computer” to test candidate Mersenne num-
bers for primality in parallel. The GIMPS parallel computer consists of PCs and workstations contributed
by volunteers around the globe. Each volunteer downloads and installs the GIMPS client program on
his or her computer. The client runs as a lowest-priority process, and thus uses CPU cycles only when
the computer is otherwise idle. The client contacts the GIMPS server over the Internet, obtains a candi-
date Mersenne number to work on, subjects the candidate to an array of tests to determine whether the
candidate is prime, and reports the result back to the server. Because the candidate Mersenne numbers are
so large, the primality tests can take days to weeks of computation on a typical PC. Since commencing
operation, the GIMPS project has found 12 previously unknown Mersenne primes with exponents rang-
ing from 1,398,269 to the aforementioned 43,112,609.

While Mersenne primes have little usefulness beyond pure mathematics, there is a practical incen-
tive for continuing the search. The Electronic Frontier Foundation (EFF) has announced a $100,000 prize
for the first discovery of a ten-million-digit prime number—a prize now claimed by the GIMPS project.
The EFF has also announced further prizes of $150,000 for the first 100-million-digit prime number
and $250,000 for the first one-billion-digit prime number. While any prime number (not necessarily a
Mersenne prime) qualifies for the prizes, the GIMPS project has perhaps the best chance at reaching
these goals as well. According to their Web site, with these prizes, “EFF hopes to spur the technology
of cooperative networking and encourage Internet users worldwide to join together in solving scientific
problems involving massive computation.”

Search for extraterrestrial intelligence (SETI). Since 1997, researchers at the University of
California, Berkeley have been using the radio telescope at Arecibo, Puerto Rico to search for signs of
extraterrestrial intelligence. As the telescope scans the sky, the researchers record radio signals cen-
tered around a frequency of 1.42 GHz. (Because hydrogen atoms throughout the universe emit energy
at this frequency, a fact of which any advanced civilization ought to be aware, SETI researchers feel
that extraterrestrials who want to announce their presence would broadcast signals near this frequency.)
These recorded signals are then analyzed to determine if they contain any “narrowband” signals—signals

C6910_1.indd 9C6910_1.indd 9 1/26/09 8:29:55 AM1/26/09 8:29:55 AM

10 CHAPTER 1 Parallel Computing

confined to a small frequency range. Whereas most of the energy in the signal is “broadband” back-
ground noise spread out over a wide frequency range, a narrowband signal—like an AM radio, FM radio,
television, or satellite signal—is more likely to have been generated by an intelligent being. Any detected
narrowband signals are subjected to further scrutiny to eliminate signals of terrestrial origin. Signals that
cannot be identified as terrestrial might just be extraterrestrial.

Because of the enormous amounts of radio signal data collected and the extensive computations
needed to analyze the data to detect narrowband signals, the Berkeley researchers realized they needed
a massively parallel computer. Rather than buy their own parallel supercomputer, they used the same
approach as the GIMPS project and created the SETI@home project in 1999. Volunteers install the
SETI@home client program on their computers. Running as a screen saver or as a low-priority back-
ground process, each client program contacts the SETI@home server over the Internet, downloads a
“workunit” of radio signal data, analyzes the workunit, and sends the results back to the server. The
SETI@home virtual supercomputer has analyzed nearly 300 million workunits so far, each workunit
occupying 350 kilobytes of data and requiring 10 to 12 hours of computation on a typical PC, and has
detected over 1.1 billion narrowband signals.

The SETI@home approach to parallel computing was so successful that the Berkeley researchers
developed the Berkeley Open Infrastructure for Network Computing (BOINC), a general framework for
Internet-based client-server parallel computation. Volunteers can donate compute cycles to any project
that uses the BOINC infrastructure. Some 50 projects now use BOINC; they range from SETI@home
itself to protein structure prediction to climate modeling.

Has SETI@home found any signs of extraterrestrial intelligence? The researchers are still working
their way through the 1.1 billion narrowband signals that have been detected. So far, none can be conclu-
sively stated as being of extraterrestrial origin.

Chess. On May 11, 1997, Garry Kasparov, chess grandmaster and then world chess champion, sat
down opposite IBM chess computer Deep Blue for a six-game exhibition match. Kasparov and Deep
Blue had met 15 months earlier, on February 10, 1996, and at that time Kasparov prevailed with three
wins, two draws, and one loss. After extensive upgrades, Deep Blue was ready for a rematch. This time,
the results were two wins for Deep Blue, one win for Kasparov, and three draws, for an overall score of
Deep Blue 3.5, Kasparov 2.5. It was the first time a computer had won a match against a reigning human
world chess champion. After his defeat, Kasparov demanded a rematch, but IBM refused and retired the
machine. Deep Blue’s two equipment racks are now gathering dust at the National Museum of American
History and the Computer History Museum.

Deep Blue was a massively parallel, special-purpose supercomputer, consisting of 30 IBM RS/6000
SP server nodes augmented with 480 specialized VLSI chess chips. It chose chess moves by brute force,
analyzing plays at a rate of 200 million chess positions per second. It also had an extensive database of
opening positions and endgames.

While Deep Blue is gone, computer chess research continues. The focus has shifted away from spe-
cialized parallel hardware to software programs running on commodity parallel machines. In November
2006, the Deep Fritz chess program, a parallel program running on a PC with two Intel dual-core CPU
chips, beat then world chess champion Vladimir Kramnik with two wins and four draws. Many people
now believe that in the realm of chess, human dominance over computers is at its end. Of course, it’s not
really man versus machine, it’s human chess players against human computer builders and programmers.

C6910_1.indd 10C6910_1.indd 10 1/26/09 8:29:55 AM1/26/09 8:29:55 AM

 1.3 For Further Information 11

Animated films. In 1937, Walt Disney made motion picture history with the animated feature
film Snow White and the Seven Dwarfs. While Disney had been making animated short films since the
1920s, Snow White was the world’s first feature-length animated film. In those days each frame of the
film was laboriously drawn and colored by hand on celluloid. All that would change in 1995, when
Pixar Animation Studios and Walt Disney Pictures released Toy Story, the world’s first feature-length
computer-animated film. Six years later, in 2001, DreamWorks Animation SKG debuted the computer-
animated film Shrek, the first animated film to win an Academy Award. Since then, scarcely a year has
gone by without several new feature-length computer-animated film releases.

During the early stages of production on a computer-animated film, the artists and designers work
mostly with individual high-end graphics workstations. But when the time comes to “render” each frame
of the final film, adding realistic surface textures, skin tones, hair, fur, lighting, and so on, the computa-
tion shifts to the “render farm”—a parallel computer with typically several thousand nodes, each node
a multicore server. For Toy Story, the render farm had to compute a 77-minute film, with 24 frames per
second and 1,536×922 pixels per frame—more than 157 billion pixels altogether. Despite the render
farm’s enormous computational power, it still takes hours or even days to render a single frame. As movie
audiences come to expect ever-more-realistic computer-animated films, the render farms will continue
to require increasingly larger parallel computers running increasingly sophisticated parallel rendering
programs.

We’ve only scratched the surface, but perhaps you’ve gotten a sense of the broad range of problems
that are being solved using parallel computing. The largest and most challenging of today’s computer
applications rely on parallel computing. It’s an exciting area in which to work!

1.3 For Further Information
On the end of the trend towards ever-increasing CPU clock speeds:

Herb Sutter. A fundamental turn toward concurrency in software. • Dr. Dobb’s
Journal, 30(3):16–22, March 2005.

Craig Szydlowski. Multithreaded technology and multicore processors. •
Dr. Dobb’s Journal, 30(5):58–60, May 2005.

On applications for high performance computing:

U.S. Office of Science and Technology Policy. Federal plan for high-end com-•
puting. May 10, 2004.
http://www.nitrd.gov/pubs/2004_hecrtf/20040702_hecrtf.pdf

On hurricane forecasting and the Weather Research and Forecast Model:

Thomas Hayden. Super storms: No end in sight. • National Geographic,
210(2):66–77, August 2006.

C6910_1.indd 11C6910_1.indd 11 1/26/09 8:29:55 AM1/26/09 8:29:55 AM

http://www.nitrd.gov/pubs/2004_hecrtf/20040702_hecrtf.pdf

12 CHAPTER 1 Parallel Computing

J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and •
W. Wang. The Weather Research and Forecast Model: software architecture
and performance. In Proceedings of the 11th ECMWF Workshop on the Use of
High Performance Computing In Meteorology, 2004.
http://www.wrf-model.org/wrfadmin/docs/ecmwf_2004.pdf

The Weather Research and Forecasting Model. •
http://www.wrf-model.org/index.php

On using parallel computing for weather modeling. “The Weather Man,” a fascinating science fiction
story written in 1962 when computers were still young, computer networks not yet invented, and parallel
computers barely beginning, nonetheless managed to give a remarkably prescient depiction of parallel
computing on what are now known as networked workstation clusters:

Theodore L. Thomas. “The Weather Man.” • Analog, June 1962.

“The Weather Man” is reprinted in a couple more recent science fiction collections:

Isaac Asimov and Martin H. Greenberg, editors. • Isaac Asimov Presents the
Great SF Stories #24 (1962). DAW Books, 1992.

David G. Hartwell and Kathryn Cramer, editors. • The Ascent of Wonder: The
Evolution of Hard SF. Tor Books, 1994.

On the Community Climate System Model:

Special issue on the Community Climate System Model.• Journal of Climate,
19(11), June 1, 2006.

W. Collins, C. Bitz, M. Blackmon, G. Bonan, C. Bretherton, J. Carton, •
P. Chang, S. Doney, J. Hack, T. Henderson, J. Kiehl, W. Large, D. McKenna,
B. Santer, and R. Smith. The Community Climate System Model Version 3
(CCSM3). Journal of Climate, 19(11):2122–2143, June 1, 2006.

Community Climate System Model. http://www.ccsm.ucar.edu/•

On protein sequence matching:

The Universal Protein Resource (UniProt), including the Swiss-Prot protein •
sequence database. http://www.uniprot.org/

National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/•

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local •
alignment search tool. Journal of Molecular Biology, 215(3):403–410,
October 5, 1990.

C6910_1.indd 12C6910_1.indd 12 1/26/09 8:29:55 AM1/26/09 8:29:55 AM

http://www.wrf-model.org/wrfadmin/docs/ecmwf_2004.pdf
http://www.wrf-model.org/index.php
http://www.ccsm.ucar.edu/�
http://www.ccsm.ucar.edu/�
http://www.uniprot.org/National
http://www.uniprot.org/National
http://www.ncbi.nlm.nih.gov/�
http://www.ncbi.nlm.nih.gov/�

 1.3 For Further Information 13

On quantum computers, factoring algorithms, and simulators:

D. DiVincenzo. Quantum computation. • Science, 270(5234):255–261,
October 13, 1995.

C. Williams and S. Clearwater. • Ultimate Zero and One: Computing at the
Quantum Frontier. Copernicus, 2000.

S. Loepp and W. Wootters. Protecting Information: • From Classical Error
Correction to Quantum Cryptography. Cambridge University Press, 2006.

P. Shor. Algorithms for quantum computation: discrete logarithms and factor-•
ing. In Proceedings of the 35th Annual Symposium on the Foundations of
Computer Science, 1994, pages 124–134.

K. Obenland and A. Despain. A parallel quantum computer simulator. arXiv •
preprint arXiv:quant-ph/9804039v1, April 1998.
http://arxiv.org/abs/quant-ph/9804039v1

J. Niwa, K. Matsumoto, and H. Imai. General-purpose parallel simulator for •
quantum computing. arXiv preprint arXiv:quant-ph/0201042, January 2002.
http://arxiv.org/abs/quant-ph/0201042v1

K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold, M. Richter, •
T. Lippert, H. Watanabe, and N. Ito. Massive parallel quantum computer simu-
lator. Computer Physics Communications, 176(2):121–136, January 15, 2007.

On gravitational supercomputers at the University of Tokyo and the Rochester Institute of Technology:

J. Makino, T. Fukushige, M. Koga, and K. Namura. GRAPE-6: massively-•
parallel special-purpose computer for astrophysical particle simulations.
Publications of the Astronomical Society of Japan, 55(6):1163–1187,
December 2003.

S. Harfst, A. Gualandris, D. Merritt, R. Spurzem, S. Portegies Zwart, and •
P. Berczik. Performance analysis of direct N-body algorithms on special-
purpose supercomputers. New Astronomy, 12(5):357–377, July 2007.

On GIMPS and the EFF prime number prizes:

The Great Internet Mersenne Prime Search. http://www.mersenne.org/•

Electronic Frontier Foundation Cooperative Computing Awards. •
http://www.eff.org/awards/coop.php

C6910_1.indd 13C6910_1.indd 13 1/26/09 8:29:55 AM1/26/09 8:29:55 AM

http://arxiv.org/abs/quant-ph/9804039v1
http://arxiv.org/abs/quant-ph/0201042v1
http://www.mersenne.org/�
http://www.mersenne.org/�
http://www.eff.org/awards/coop.php

14 CHAPTER 1 Parallel Computing

On SETI@home:

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@•
home—massively distributed computing for SETI. Computing in Science and
Engineering, 3(1):78–83, January 2001.

D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@•
home: an experiment in public-resource computing. Communications of the
ACM, 45(11):56–61, November 2002.

SETI@home. http://setiathome.berkeley.edu/•

On BOINC:

D. Anderson. BOINC: a system for public-resource computing and stor-•
age. In Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing, 2004, pages 4–10.

Berkeley Open Infrastructure for Network Computing.•
http://boinc.berkeley.edu/

On Deep Blue:

F. Hsu, M. Campbell, and J. Hoane. Deep Blue system overview. In •
Proceedings of the Ninth International Conference on Supercomputing
(ICS’95), 1995, pages 240–244.

F. Hsu. • Behind Deep Blue: Building the Computer that Defeated the World
Chess Champion. Princeton University Press, 2002.

F. Hsu. Chess hardware in Deep Blue. • Computing in Science and Engineering,
8(1):50–60, January 2006.

On rendering Toy Story:

T. Porter and G. Susman. Creating lifelike characters in Pixar movies. •
Communications of the ACM, 43(1):25–29, January 2000.

On Pixar’s and DreamWorks’ render farms:

M. Hurwitz. Incredible animation: Pixar’s new technologies. November 2004. •
http://www.uemedia.net/CPC/vfxpro/article_10806.shtml

S. Twombly. DreamWorks animation artists go over the top with HP technol-•
ogy. May 2006. http://www.hp.com/hpinfo/newsroom/feature_stories/2006/
06animation.html

C6910_1.indd 14C6910_1.indd 14 1/26/09 8:29:55 AM1/26/09 8:29:55 AM

http://setiathome.berkeley.edu/�
http://setiathome.berkeley.edu/�
http://boinc.berkeley.edu/On
http://boinc.berkeley.edu/On
http://www.uemedia.net/CPC/vfxpro/article_10806.shtml
http://www.hp.com/hpinfo/newsroom/feature_stories/2006/06animation.html
http://www.hp.com/hpinfo/newsroom/feature_stories/2006/06animation.html

15

C H A P T E R 2
in which we briefly recount the history of parallel computers; we examine the

characteristics of modern parallel computer hardware that influence parallel program

design; and we introduce modern standard software libraries for parallel programming

Parallel Computers

C6910_2.indd 15C6910_2.indd 15 1/26/09 8:26:57 AM1/26/09 8:26:57 AM

C H A P T E R2 Parallel Computers

2.1 A Brief History of Parallel Computers
To understand how modern parallel computers are built and programmed, we must take a quick look at
the history of parallel computers.

Up until the mid-1990s, there were no widely adopted standards in either parallel computer hardware
or software. Many vendors sold parallel computers, but each vendor had its own proprietary designs for
CPUs and CPU interconnection networks. Along with its proprietary hardware, each vendor provided its
own proprietary languages and tools for writing parallel programs on its hardware—sometimes a variant
of a scientific programming language such as Fortran, sometimes another language.

Because the hardware and software were mostly vendor-specific, parallel programs of that era tended
not to be portable. You settled on a hardware vendor, then you used the vendor’s supported parallel
programming language to write your parallel programs. If you wanted to change vendors, you were faced
with the dismaying prospect of rewriting and re-debugging all your programs using the new vendor’s
programming language.

As the twentieth century drew toward its close, four events took place that signaled the beginning
of a paradigm shift for parallel computing. First, in the late 1970s, Robert Metcalfe and David Boggs
invented the Ethernet local area network at the Xerox Palo Alto Research Center; in 1980, the 10-Mbps
Ethernet standard was published by Digital Equipment Corporation, Intel, and Xerox; in 1983, a variation
was standardized as IEEE Std 802.3. Second, in 1981, the Internet Protocol (IP) and the Transmission
Control Protocol (TCP), developed by Vinton Cerf and Robert Kahn, were published as Internet stan-
dards—“Request For Comments” (RFC) 791 and RFC 793. Third, also in 1981, IBM started selling the
IBM PC, whose open architecture became the de facto standard for personal computers. By 1983, for the
first time in the history of computing, there was an open standard computer hardware platform (the PC),
an open standard local area network (Ethernet) for interconnecting computers, and an open standard net-
work protocol stack (TCP/IP) for exchanging data between computers. Fourth, in 1991, Linus Torvalds
released the first version of the Linux operating system, a free, Unix-like operating system for the PC,
that included an implementation of TCP/IP.

In 1995, Thomas Sterling, Donald Becker, and John Dorband at the NASA Goddard Space Flight
Center, Daniel Savarese at the University of Maryland, and Udaya Ranawake and Charles Packer at the
Hughes STX Corporation published a paper titled “Beowulf: a parallel workstation for scientific com-
putation.” In this paper, they described what is now called a cluster parallel computer, built from off-the-
shelf PC boards, interconnected by an off-the-shelf Ethernet, using the Internet standard protocols for
communication, and running the Linux operating system on each PC. The Beowulf cluster’s performance
was equal to that of existing proprietary parallel computers costing millions of dollars, but because it was
built from off-the-shelf components, the Beowulf cluster cost only a fraction as much.

C6910_2.indd Sec1:16C6910_2.indd Sec1:16 1/26/09 8:26:57 AM1/26/09 8:26:57 AM

 2.1 A Brief History of Parallel Computers 17

A year later, William Hargrove and Forrest Hoffman at Oak Ridge National Laboratory proved that
a parallel computer could be built for zero dollars. Lacking a budget to buy a new parallel computer, they
instead took obsolete PCs that were destined for the landfill, loaded them with the free Linux operating
system, and hooked them up into a Beowulf cluster. Dubbing their creation the “Stone SouperComputer”
(Figure 2.1), after the fable of the soldier who cooked up “stone soup” from a small stone along with a bit
of this and a bit of that contributed by the villagers in the story, eventually Hargrove and Hoffman had a
cluster with 191 nodes.

http://www.extremelinux.info/stonesoup/photos/1999-05/image01.jpg

Figure 2.1 The Stone Souper Computer

Once the PC, Ethernet, and TCP/IP became standardized, prices were driven down by mass produc-
tion of microprocessor, memory, and Ethernet chips and cutthroat competition in the PC market. Today,
computers are commodities you can buy in a store just like you can buy toasters and televisions—a state
of affairs undreamed of when proprietary designs held sway. To get a parallel computer with a given
amount of computing power, it usually costs much less to buy a multicore PC server, or to buy a bunch
of PCs and a 1-Gbps Ethernet switch, from the corner computer store than to buy a proprietary computer;
and because Linux is free, it doesn’t cost anything to equip these PCs with an operating system. While
proprietary parallel computer companies are still in business, their computers primarily occupy a niche
at the ultra-high-performance end of the spectrum. The majority of parallel computing nowadays takes
place on commodity hardware.

Since 1993, the TOP500 List (at http://www.top500.org) has been tracking the 500 fastest supercom-
puters in the world, as measured by a standard benchmark (the LINPACK linear algebra benchmark).
In the June 1993 TOP500 List, only 104 of the top 500 supercomputers (21%) used commodity CPU
chips—Intel i860s and Sun SuperSPARCs. The rest of the top 500 (79%) used proprietary CPUs. In con-
trast, the June 2008 TOP500 list shows 498 of the top 500 supercomputers using commodity CPU chips
from (in alphabetical order) AMD, IBM, and Intel. By the way, in June 1993, 97 of the top 500 super-
computers were still single-CPU systems. In June 2008, all the top 500 supercomputers were parallel
computers of one kind or another, with anywhere from 80 to over 200,000 processors.

In the transition to commodity hardware, parallel programming also shifted away from using propri-
etary programming languages to using standard, non-parallel programming languages, chiefly Fortran,
C, and C++, coupled with standard parallel programming libraries. The Parallel Virtual Machine (PVM)

C6910_2.indd Sec1:17C6910_2.indd Sec1:17 1/26/09 8:26:57 AM1/26/09 8:26:57 AM

http://www.extremelinux.info/stonesoup/photos/1999-05/image01.jpg
http://www.top500.org

18 CHAPTER 2 Parallel Computers

library for programming cluster computers was first released in 1989. The Message Passing Interface
(MPI) standard, also for programming cluster computers, was first released in 1994. The OpenMP
standard for multithreaded parallel programming was first released in 1997. Like Linux, free versions of
PVM, MPI, and OpenMP are widely available. Because these are hardware-independent standards, paral-
lel programs written on one machine can be easily ported to another machine. The majority of parallel
programming nowadays is done using a standard language and library.

Because parallel computing with commodity hardware and software is now firmly established, this
book will focus on building parallel programs for commodity parallel computers. To build good paral-
lel programs requires understanding the characteristics of parallel computer hardware and software that
influence parallel program design. Next, we’ll look at these characteristics and at the prevalent parallel
computer architectures.

2.2 CPU Hardware
To help achieve the goal of ever-increasing computer performance (and sales), central processing units
(CPUs) have become bewilderingly complex. A modern CPU may employ architectural features such as
these:

Pipelined architecture• . While one instruction is being fetched from mem-
ory, another already-fetched instruction is being decoded, and several more
already-decoded instructions are in various stages of execution. With multiple
instructions in process at the same time in different stages of the pipeline, the
CPU’s effective computation speed increases.

Superscalar architecture• . The CPU has several functional units, each
capable of executing a different class of instructions—an integer addition
unit, an integer multiplication unit, a floating-point unit, and so on. If several
instructions use different functional units and do not have other dependencies
among each other, the CPU can execute all the instructions at once, increasing
the CPU’s effective speed.

Instruction reordering• . To utilize the CPU’s pipeline and functional units to
the fullest, the CPU may issue instructions in a different order from the order
they are stored in memory, provided the results turn out the same.

High-level programming languages hide most of this architectural complexity from the programmer.
The hardware itself, perhaps aided by the high-level language compiler or (in the case of Java) the virtual
machine, takes care of utilizing the CPU’s architectural features. A Java or C program, for example, does
not have to be rewritten if it is going to be run on a superscalar CPU rather than a CPU with just one
functional unit. However, there are two CPU architectural features that do make a difference in the way
high-level language programs are written: cache memories, and symmetric multiprocessors.

Cache memories. As CPU speeds outpaced memory speeds, computer architects added a cache
memory to avoid making a fast CPU wait for a slow main memory (Figure 2.2).

C6910_2.indd Sec1:18C6910_2.indd Sec1:18 1/26/09 8:26:57 AM1/26/09 8:26:57 AM

 2.2 CPU Hardware 19

Instruction
unit

Functional

units

Registers

CPUCacheMain
memory

read

write

Disk

Figure 2.2 Computer with cache memory

The main memory is large, typically gigabytes or hundreds of megabytes, but slow. The cache memory is
much smaller than main memory, typically a few megabytes, but is also much faster than main memory.
That is, it takes much less time for the CPU to read or write a word in cache memory than in main memory.

With the cache in place, when the CPU reads a word at a certain address, the CPU first checks
whether the desired word has been loaded into the cache. If it has not—a cache miss—the CPU loads
the entire cache line containing the desired word from main memory into the cache; then the CPU reads
the desired word from the cache. The cache line size depends on the processor; 64 to 128 bytes is typical.
Thereafter, when the CPU reads the same word, or reads another word located in the same cache line,
there is a cache hit; the CPU reads the word directly from the cache and does not need to load it from
main memory. Thus, if the cache hit ratio—the fraction of all memory accesses that are cache hits—is
large, the CPU will read data words at nearly the speed of the fast cache memory and will seldom have to
wait for the slow main memory.

As the CPU continues to load cache lines from main memory into the cache, eventually the cache
becomes full. At the next cache miss, the CPU must replace one of the previously loaded cache lines
with the new cache line. The cache’s replacement policy dictates which cache line to replace. Various
replacement policies are possible, such as replacing a randomly chosen cache line, or replacing the cache
line that has not been accessed for the longest amount of time (the least recently used cache line).

When the CPU writes a word at a certain address, the CPU must load the relevant cache line from
main memory if there is a cache miss, then the CPU can replace the contents of the desired word in the
cache with the new value. Subsequent reads of that word will retrieve the new value from the cache.
However, after a write, the contents of the word in the cache do not match the contents of the word in
main memory; the cache line is said to be dirty. The cache’s write policy dictates what to do about a
dirty cache line. A write-through cache copies the dirty cache line to main memory immediately. A
write-back cache copies the dirty cache line to main memory only when the cache line is being replaced.

The cache has a profound effect on program performance. A program’s working set consists of all
the memory locations the program is currently accessing, both locations that contain instructions and
locations that contain data. If the program’s working set fits entirely within the cache, the CPU will be
able to execute the program as fast as it possibly can. This is often possible when the bulk of the pro-
gram’s time is spent in a tight loop operating on a data structure smaller than the cache. To the extent that
the program’s working set does not fit in the cache, the program’s performance will be reduced. In this
case, the name of the game is to design the program to minimize the number of inevitable cache misses.

Some CPUs are so fast that even the cache is a performance bottleneck. Such CPUs use a multilevel
cache (Figure 2.3).

C6910_2.indd Sec1:19C6910_2.indd Sec1:19 1/26/09 8:26:57 AM1/26/09 8:26:57 AM

20 CHAPTER 2 Parallel Computers

Instruction
unit

Functional

units

Registers

CPUL1
cache

L2
cache

Main
memory

read

write

Disk

Figure 2.3 Computer with multilevel cache

A level-1 (L1) cache sits between the CPU and the level-2 (L2) cache (formerly the only cache). The
L1 cache is even faster than, and smaller than, the L2 cache. The L1 cache bears the same relationship
to the L2 cache as the L2 cache bears to main memory. From the programmer’s point of view, whether
the cache has multiple levels is less important than the cache’s existence. The name of the game is still to
design the program to minimize the number of cache misses.

Symmetric multiprocessors. To achieve performance gains beyond what is possible on a single
CPU, computer architects replicated the CPU, resulting in a symmetric multiprocessor (Figure 2.4). It
is called “symmetric” because all the processors are identical. Each processor is a complete CPU with
its own instruction unit, functional units, registers, and cache. All the processors share the same main
memory and peripherals. The computer achieves increased performance by running multiple threads of
execution simultaneously, one on each processor.

Instruction
unit

Functional

units

Registers

CPU A

Instruction
unit

Functional

units

Registers

CPU B

Cache

Cache

Main
memory

read

write

invalidate Disk

Figure 2.4 Symmetric multiprocessor

Going to multiple processors, however, affects the caches’ operation. Suppose CPU A reads the word
at a certain address x, so that a copy of the relevant cache line is loaded from main memory into CPU A’s
cache. Suppose CPU B now writes a new value into the word at address x. CPU B’s cache line is written
back to main memory. However, CPU A’s cache line no longer has the correct contents. The CPUs use a
cache coherence protocol to bring the caches back to a consistent state. One popular cache coherence
protocol uses invalidation. When CPU B writes its value into address x, CPU B sends an “invalidate”
signal to tell CPU A that the contents of address x changed. In response, CPU A changes its cache state to

C6910_2.indd Sec1:20C6910_2.indd Sec1:20 1/26/09 8:26:57 AM1/26/09 8:26:57 AM

 2.2 CPU Hardware 21

say that the cache line containing address x does not reside in the cache. This is called “invalidating” the
cache line. The next time CPU A reads address x, CPU A will see that the cache line containing address
x is not loaded, CPU A will reload the cache line from main memory, and CPU A will retrieve the value
written by CPU B.

Note that writing a word in one CPU can slow down another CPU, because the other CPU has to re-
read the word’s cache line from slow main memory. This cache interference effect can reduce a parallel
program’s performance, and we will return to the topic of cache interference in Chapter 9.

Symmetric multiprocessor computers originally used a separate CPU chip for each processor
(thread). However, as the number of transistors that could fit on a chip continued to increase, computer
architects started to contemplate running more than one thread on a single chip. For example, instead
of simultaneously issuing multiple instructions from a single instruction stream—a single thread—to
multiple functional units, why not issue multiple instructions from multiple threads simultaneously to the
functional units? Doing this for, say, two threads requires two instruction units, one to keep track of each
thread’s instruction stream. The result is called a hyperthreaded CPU (Figure 2.5).

Instruction
unit

Instruction
unit

Functional

units

Registers

CPUCacheMain
memory

read

write

Disk

Figure 2.5 Computer with hyperthreaded CPU

Two instruction units are by no means the limit. Some of today’s fastest supercomputers use
massively multithreaded processors (MMPs) that can handle hundreds of simultaneous threads. As
soon as one thread stalls, perhaps because it has to wait for data to be loaded from main memory into the
cache, the CPU can instantly switch to another thread and keep computing.

As transistor densities continued to increase, it became possible to replicate the whole processor, not
just the instruction unit, on a single chip. In other words, it became possible to put a symmetric multipro-
cessor on a chip. Such a chip is called a multicore CPU. Alternatively, the name may refer to the number
of processors on the chip: a dual-core CPU; a quad-core CPU; and so on. Multicore chips can them-
selves be aggregated into symmetric multiprocessor systems, such as a four-processor computer compris-
ing two dual-core CPU chips.

It used to be that you could increase an application program’s performance simply by trading in
your old PC for a new one with a faster CPU chip. That won’t necessarily work any longer. Now that
chips have become hyperthreaded or multicore, your new PC may very well have a multicore CPU with
the same clock speed as, or even a slower clock speed than, your old PC. If your application is single-
threaded, as many are, it can run only on one CPU of the multicore chip and thus may run slower on your
new PC! Until applications are redesigned as multithreaded programs—parallel programs—users will
not see much of a performance improvement when running applications on the latest multicore PCs.

Having examined the salient features of individual CPUs, we next look at different ways to combine
multiple CPUs to make a complete parallel computer.

C6910_2.indd Sec1:21C6910_2.indd Sec1:21 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

22 CHAPTER 2 Parallel Computers

2.3 SMP Parallel Computers
There are three principal parallel computer architectures using commodity hardware: SMPs, clusters, and
hybrids. There is also a variant called a computing grid. Parallel coprocessors using commodity graphics
chips have also been introduced.

A shared memory multiprocessor (SMP) parallel computer is nothing more than a symmetric
multiprocessor system (Figure 2.6). Each processor has its own CPU and cache. All the processors share
the same main memory and peripherals.

A parallel program running on an SMP parallel computer (Figure 2.7) consists of one process with
multiple threads, one thread executing on each processor. The process’s program and data reside in
the shared main memory. Because all threads are in the same process, all threads are part of the same
address space, so all threads access the same program and data. Each thread performs its portion of the
computation and stores its results in the shared data structures. If the threads need to communicate or
coordinate with each other, they do so by reading and writing values in the shared data structures.

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Main memory

Disk

Thr
0

Thr
1

Thr
2

Thr
3

Program Data

Proc

Figure 2.6 SMP parallel computer Figure 2.7 SMP parallel program

2.4 Cluster Parallel Computers
A cluster parallel computer consists of multiple interconnected processor nodes (Figure 2.8). There are
several backend processors that carry out parallel computations. There is also typically a separate
frontend processor; users log into the frontend to compile and run their programs. There may be a
shared file server. Each backend has its own CPU, cache, main memory, and peripherals, such as a local
disk drive. Each processor is also connected to the others through a dedicated high-speed backend
network. The backend network is used only for traffic between the nodes of the cluster; other network
traffic, such as remote logins over the Internet, goes to the frontend. Unlike an SMP parallel computer,
there is no global shared memory; each backend can access only its local memory. The cluster computer
is said to have a distributed memory.

C6910_2.indd Sec1:22C6910_2.indd Sec1:22 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

 2.4 Cluster Parallel Computers 23

CPU

Cache

Main memory

DiskNetwork

B
a

cke
n

d

CPU

Cache

Main memory

DiskNetwork

B
a

cke
n

d

CPU

Cache

Main memory

DiskNetwork
B

a
cke

n
d

CPU

Cache

Main memory

DiskNetwork

B
a

cke
n

d

Backend
network
switch

File
server

Frontend Internet

Figure 2.8 Cluster parallel computer

Proc
0

Program Data 0

Proc
1

Program Data 1

Proc
2

Program Data 2

Proc
3

Program Data 3

Message Message

Figure 2.9 Cluster parallel program

A parallel program running on a cluster parallel computer (Figure 2.9) consists of multiple pro-
cesses, one process executing on each backend processor. Each process has its own, separate address
space. All processes execute the same program, a copy of which resides in each process’s address space
in each backend’s main memory. The program’s data is divided into pieces; a different piece resides in
each process’s address space in each backend’s main memory. Each process performs its portion of the
computation and stores its results in the data structures in its own local memory. If one process needs a

C6910_2.indd Sec1:23C6910_2.indd Sec1:23 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

24 CHAPTER 2 Parallel Computers

piece of data that resides in another process’s address space, the process that owns the data sends a
message containing the data through the backend network to the process that needs the data. The pro-
cesses may also exchange messages to coordinate with one another, without transferring data. Unlike
an SMP parallel program where the threads can simply access shared data in the one process’s address
space, in a cluster parallel program, the processes must be explicitly coded to send and receive messages.

To run a parallel program on a cluster, you typically log into the clus ter’s frontend processor and
launch the program in a process on the front end, like any other program. Under the hood, the frontend
process uses a cluster middleware library to start a backend process on each backend processor, load a
copy of the program into each backend’s memory, initialize connections for message passing through the
backend network, and commence execution of each backend process. At program completion, when all
the backend processes have terminated, the frontend process also terminates.

For maximum performance, it’s not enough to equip a cluster with fast backend processors. It’s also
important for the cluster’s backend network to have three characteristics: low latency, high bandwidth,
and high bisection bandwidth.

Latency refers to the amount of time needed to start up a message, regardless of the message’s size;
it depends on the hardware and software protocols used on the network. Bandwidth, measured in bits per
second, is the rate at which data is transmitted once a message has started. The time to transfer a message
is the latency, plus the message size divided by the bandwidth. A small latency and a large bandwidth
will minimize each mes sage’s transfer time, thus reducing the cluster parallel program’s running time.

Bisection bandwidth, also measured in bits per second, refers to the total rate at which data can
be transferred if half the nodes in the cluster are sending messages to the other half. In other words, the
network is split down the middle—bisected—and each node on one side of the split sends data as fast as
possible to a different node on the other side of the split. As we will see in Part III, some cluster parallel
programs do in fact send messages from half the processes to the other half at the same time. Ideally, in
an N-node cluster, the network’s bisection bandwidth would be N/2 times the bandwidth on a single link.
Depending on how the backend network is built, however, the bisection bandwidth may be less than the
ideal, which in turn may reduce the cluster parallel program’s performance.

Several commodity off-the-shelf technologies are used for backend networks in cluster parallel com-
puters. The available alternatives fall into two categories: Ethernet, and everything else.

Ethernet, due to its ubiquity, is the least-expensive alternative. Ethernet interface cards, switches, and
cables that support a bandwidth of 1 gigabit per second (1 Gbps), or 1 × 109 bits per second, are readily
available. Although more expensive, 10 Gbps Ethernet equipment is also available, and 100 Gbps Ethernet
is on the horizon. An Ethernet switch usually has a large bisection bandwidth. (An Ethernet hub does not;
you should never use a hub to build a cluster backend network.) Platform-independent programs that com-
municate over Ethernet are easily written using the standard socket application program interface (API) and
the Internet standard TCP/IP protocols. However, Ethernet has a much higher latency—around 150 micro-
seconds (150 µsec), or 150 × 10–6 seconds—than the alternatives, especially when using TCP/IP.

Other interconnection technologies used in cluster parallel computers, such as InfiniBand, Scalable
Coherent Interface (SCI), and Myrinet, are all more or less the same in their gross characteristics.
They all support higher bandwidths than Ethernet (up to about 100 Gbps), much lower latencies than
Ethernet (in the single microsecond range), and high bisection bandwidths. However, not being nearly
as widespread as Ethernet, they are all more expensive. They also tend to require the use of technology-
specific software libraries to achieve their full performance. While TCP/IP can be layered on top of these

C6910_2.indd Sec1:24C6910_2.indd Sec1:24 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

 2.5 Hybrid Parallel Computers 25

technologies, thus allowing platform-independent programs to run on these technologies, layering
TCP/IP increases the latency due to the TCP/IP protocol overhead.

Ultra-high-performance parallel supercomputers often use interconnect technologies such as
InfiniBand, SCI, or Myrinet because of their higher bandwidth and lower latency. Mundane parallel com-
puters usually use Ethernet because of its lower cost and platform-independent programming support.

2.5 Hybrid Parallel Computers
A hybrid parallel computer is a cluster in which each backend processor is an SMP machine (Figure 2.10).
In other words, it is a combination, or hybrid, of cluster and SMP parallel computers. A hybrid parallel
computer has both shared memory (within each backend) and distributed memory (between backends).
Eventually, all commodity clusters will be hybrid parallel computers because multicore PCs are becoming
popular and single-core PCs are becoming harder to find.

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Main memory

DiskNetwork

Backend

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Main memory

DiskNetwork

Backend

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Main memory

DiskNetwork

Backend

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Main memory

DiskNetwork

Backend

Backend
network
switch

File
server

Frontend Internet

 Figure 2.10 Hybrid parallel computer

C6910_2.indd Sec1:25C6910_2.indd Sec1:25 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

26 CHAPTER 2 Parallel Computers

A hybrid parallel computer is programmed using a combination of cluster and SMP parallel program-
ming techniques (Figure 2.11). Like a cluster parallel computer, each backend runs a separate process with
its own address space. Each process executes a copy of the same program, and each process has a portion
of the data. Like an SMP parallel computer, each process in turn has multiple threads, one thread running
on each CPU. Threads in the same process share the same address space and can access their own shared
data structures directly. Threads in different processes must send messages to each other to transfer data.

Thr
0

Thr
1

Thr
2

Thr
3

Program Data 0

Proc
0

Thr
0

Thr
1

Thr
2

Thr
3

Program Data 1

Proc
1

Thr
0

Thr
1

Thr
2

Thr
3

Program Data 2

Proc
2

Thr
0

Thr
1

Thr
2

Thr
3

Program Data 3

Proc
3

Message

Message

 Figure 2.11 Hybrid parallel program

2.6 Computing Grids
Architecturally, a computing grid is the same as a cluster parallel computer, except that the processors
are not all located in the same place and are not all connected to a common, dedicated backend network.
Instead, the processors are located at diverse sites and are connected through a combination of local area
networks and the Internet (Figure 2.12).

Often, a grid is set up by a consortium of companies, universities, research institutions, and govern-
ment agencies—the member organizations contributing computers to the grid. The Open Science Grid
(OSG), for example, is a grid devoted to large-scale scientific computation, with thousands of processors
located at 85 institutions in Brazil, Canada, England, Germany, Korea, Taiwan, and the United States.

C6910_2.indd Sec1:26C6910_2.indd Sec1:26 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

 2.7 GPU Coprocessors 27

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

Internet

 Figure 2.12 Computing grid with single processors, an SMP, and a cluster

Other grids are based on “volunteer computing.” Users download a special client program to their
desktop PCs. The client program runs as a low-priority background process, or sometimes as a screen
saver. When the PC becomes idle, the client program starts up and executes a portion of a parallel com-
putation, communicating with other nodes over the Internet. Projects using volunteer computing grids
include SETI@home, the Great Internet Mersenne Prime Search (GIMPS), and dozens of others. The
Berkeley Open Infrastructure for Network Computing (BOINC) is a general framework for developing
parallel programs that run on volunteer computing grids.

Computing grids are programmed in the same way as cluster parallel computers, with multiple
processes running on the various grid machines. However, a parallel program that performs well on a
cluster is not necessarily well suited for a grid. The Internet’s latency is orders of magnitude larger, and
the Internet’s bandwidth is orders of magnitude smaller, than a typical cluster backend network. Because
some of the computers running the grid program may be connected through the Internet, the average
message takes a lot longer to send on a grid than on a cluster. Thus, parallel programs that require inten-
sive message passing do not perform well on a grid. Problems best suited for a grid are those that can be
divided into many pieces that are computed independently with little or no communication.

In this book, we will study how to build parallel programs for tightly coupled processors: SMP paral-
lel computers where all processors use a single shared memory; and cluster and hybrid parallel computers
where all processors are connected to the same high-speed backend network. Parallel programming for
loosely coupled computing grids is beyond the scope of this book.

2.7 GPU Coprocessors
CPU, memory, and Ethernet chips are not the only chips that have become commodities. Driven by the
market’s insatiable appetite for ever-higher-performing graphics displays on PCs and game consoles,
graphics processing unit (GPU) chips have also become commonplace.

Acting as a coprocessor to the main CPU, the GPU is a specialized chip that handles graphics ren-
dering calculations at very high speeds. The CPU sends high-level commands to the GPU to draw lines
and fill shapes with realistic shading and lighting; the GPU then calculates the color of each pixel and
drives the display. Because the pixels can be computed independently, the GPU typically has multiple
processing cores and calculates multiple pixels in parallel.

Programmers have realized that GPUs can be used to do parallel computations other than pixel ren-
dering, and have even coined an acronym for it: GPGPU, or General Purpose computation on Graphics
Processing Units. In response, GPU vendors have repackaged their graphics cards as general-purpose
massively parallel coprocessors, complete with on-board shared memory and with APIs for parallel
programming on the GPU. A GPU coprocessor card transforms a regular PC into what marketers call a

C6910_2.indd Sec1:27C6910_2.indd Sec1:27 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

28 CHAPTER 2 Parallel Computers

“desktop supercomputer” (Figure 2.13). The low cost of the commodity GPU chips makes a GPU copro-
cessor an attractive alternative to general-purpose multicore CPUs and clusters.

Processor cores

Shared memory

GPU coprocessor

Cache

CPU

Main memory

Disk

Figure 2.13 Parallel computer with GPU coprocessor

A GPU’s instruction set is usually more limited than a regular CPU’s. For example, a GPU may sup-
port single-precision floating-point arithmetic, but not double precision. Also, the GPU’s cores typically
must all perform identical operations simultaneously, each core operating on its own data items. For these
reasons, current GPU coprocessors cannot run arbitrary parallel programs. However, GPU coprocessors
excel at running “inner loops,” where the same statements are performed on every element of an array
or matrix at very high speed in parallel. Thus, a GPU parallel program usually consists of regular code
executed on the main CPU with a computation-intensive section executed on the GPU. Unfortunately,
space limitations do not permit covering GPU parallel programming in this book.

2.8 SMPs, Clusters, Hybrids: Pros and Cons
Why are there three prevalent parallel computer architectures? Why not use the same architecture for all
parallel computers? The reason is that each architecture is best suited for certain kinds of problems and is
not well suited for other kinds of problems.

An SMP parallel computer is well suited for a problem where there are data dependencies between
the processors—where each processor produces results that are used by some or all of the other proces-
sors. By putting the data in a common address space (shared memory), each thread can access every other
thread’s results directly at the full speed of the CPU and memory. A cluster parallel computer running such
a program would have to send many messages between the processors. Because sending a message is orders
of magnitude slower than accessing a shared memory location, even with high-speed interconnects such as
InfiniBand, SCI, and Myrinet, an SMP parallel computer would outperform a cluster parallel computer on
this problem.

C6910_2.indd Sec1:28C6910_2.indd Sec1:28 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

 2.8 SMPs, Clusters, Hybrids: Pros and Cons 29

Conversely, a cluster parallel computer is well suited for a problem where there are few or no data
dependencies between the processors—where each processor can compute its own results with little or no
communication with the other processors. The more communication needed, the poorer a cluster parallel
program will perform compared to an SMP parallel program.

On the other hand, two limitations are encountered when trying to scale up to larger problem sizes
on an SMP parallel computer. First, there is a limit on the physical memory size. A 32-bit CPU can
access at most 4 gigabytes (232 bytes) of physical memory. While a 64-bit CPU can theoretically access
up to 16 million terabytes (264 bytes) of physical memory, it will be a long time before any single CPU
has a physical memory that large. Although virtual memory lets a process access a larger address space
than physical memory, the performance of a program whose instructions and data do not fit in physical
memory would be severely reduced due to swapping pages back and forth between physical memory and
disk. Second, there is a limit on the number of CPUs that can share the same main memory. The more
CPUs there are, the more circuitry is needed to coordinate the memory transactions from all the CPUs
and to keep all the CPUs’ caches coherent. Thus, an SMP parallel program’s problem size cannot scale
up past the point where its data no longer fits in main memory, and its speedup or sizeup cannot scale up
past a certain number of CPUs.

With a cluster parallel computer, there are no limits on scalability due to main memory size or num-
ber of processors. On a K-node cluster, the maximum total amount of memory is K times the maximum
on one node. Thus, if you need more memory, more speedup, or more sizeup, just add more nodes to
the cluster. However, because message latency tends to increase as the number of nodes on the network
increases, causing program performance to decrease, a cluster cannot keep growing forever. Still, com-
modity clusters with hundreds and even thousands of nodes have been built; the largest commodity SMPs
have dozens of nodes at most.

Like a cluster, a hybrid parallel computer can be scaled up to larger problem sizes by adding more
nodes. In addition, a hybrid parallel computer is especially well suited for a problem that can be broken
into chunks having few or no data dependencies between chunks, but that can have significant data depen-
dencies within each chunk. The chunks can be computed in parallel by separate processes running on the
cluster nodes and passing messages among each other. Within each chunk, the results can be computed in
parallel by separate threads running on the node’s CPUs and accessing data in shared memory. Many of
the supercomputers in the TOP500 List are commodity hybrid parallel computers.

Any parallel program can be implemented to run on an SMP, cluster, or hybrid parallel computer.
(For some of the example programs in this book, we will look at all three variations.) Which kind of par-
allel computer, then, should you use to solve your high-performance computing problem—assuming your
local computer center even offers you a choice? The answer is to use the kind of parallel computer that
gives the best performance on your problem. However, because so many factors influence performance,
the only way to know for sure is to implement the appropriate versions of the program and try them on
the available parallel computers. As we study how to design and code parallel programs, we will also dis-
cuss how the program’s design influences the program’s performance, and we will see how certain kinds
of parallel programs perform better on certain kinds of parallel computers.

C6910_2.indd Sec1:29C6910_2.indd Sec1:29 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

30 CHAPTER 2 Parallel Computers

2.9 Parallel Programming Libraries
It is perfectly possible to write parallel programs using a standard programming language and generic
operating system kernel functions. You can write a multithreaded program in C using the standard POSIX
thread library (Pthreads), or in Java using Java’s built-in Thread class. If you run this program on an
SMP parallel computer, each thread will run on a different processor simultaneously, yielding a paral-
lel speedup. You can write a multiprocess program in C using the standard socket API to communicate
between processes, or in Java using Java’s built-in java.net.Socket class. If you run copies of this process
on the backend processors of a cluster parallel computer, the simultaneously running processes will yield
a parallel speedup.

However, parallel programs are generally not written this way, for two reasons. First, some pro-
gramming languages popular in domains that benefit from parallel programming—such as Fortran for
scientific computing—do not support multithreaded programming and network programming as well as
other languages. Second, using low-level thread and socket libraries increases the effort needed to write a
parallel program. It takes a great deal of effort to write the code that sets up and coordinates the multiple
threads of an SMP parallel program, or to write the code that sets up network connections and sends and
receives messages for a cluster parallel program. Parallel program users are interested in solving prob-
lems in their domains, such as searching a massive DNA sequence database or calculating the motion of
stars in a galaxy, not in writing thread or network code. Indeed, many parallel program users may lack the
expertise to write thread or network code.

Instead, to write a parallel program, you use a parallel programming library. The library encapsu-
lates the low-level thread or network code that is the same in any parallel program, presenting you with
easy-to-use, high-level parallel programming abstractions. You can then devote most of your parallel
programming effort to solving your domain problem using those abstractions.

OpenMP is the standard library for SMP parallel programming. OpenMP supports the Fortran, C,
and C++ languages. By inserting special OpenMP pragmas into the source code, you designate which
sections of code are to be executed in parallel by multiple threads. You then run the annotated source code
through a special OpenMP compiler. The OpenMP compiler looks at the OpenMP pragmas, rewrites
your source code to add the necessary low-level threading code, and compiles your now-multithreaded
program as a regular Fortran, C, or C++ program. You then run your program as usual on an SMP parallel
computer. See Appendix A for further information about OpenMP.

The Message Passing Interface (MPI) is the standard library for cluster parallel programming. Like
OpenMP, MPI supports the Fortran, C, and C++ languages. Unlike OpenMP, MPI requires no special
compiler; it is just a subroutine library. You write your parallel program like any regular program, call-
ing the MPI library routines as necessary to send and receive messages, and compile your program as
usual. To run your program on a cluster parallel computer, you execute a special MPI launcher program.
The launcher takes care of starting a process to run your compiled executable program on each backend
processor. The MPI library routines your program calls then take care of all the details of setting up net-
work connections between processes and passing messages back and forth. See Appendix B for further
information about MPI.

As already mentioned, hybrid parallel computers are becoming popular, due to the wide availabil-
ity of multicore PCs. However, as yet, there are no standard libraries for hybrid parallel programming.
OpenMP has no routines for message passing. MPI has no capabilities for executing sections of code

C6910_2.indd Sec1:30C6910_2.indd Sec1:30 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

 2.10 For Further Information 31

in parallel in multiple threads. Writing a hybrid parallel program using both OpenMP and MPI is not
guaranteed to work, because the MPI standard does not require all MPI implementations to support
multithreaded programs (although an MPI implementation is allowed to do so). While hybrid parallel
programs can be written solely using MPI by running a separate process (rather than a thread) on each
CPU of each node, sending messages between different processes’ address spaces on the same node often
yields poorer performance than simply sharing the same address space among several threads.

In addition, neither the official OpenMP standard nor the official MPI standard supports the Java
language. Yet Java is becoming the language that most computing students learn. While several unofficial
versions of MPI and OpenMP in Java have appeared, none can be considered a standard, and none are
designed for hybrid parallel programming.

In this book, we will use the Parallel Java Library to learn how to build parallel programs. Parallel
Java includes both the multithreaded parallel programming capabilities of OpenMP and the message-
passing capabilities of MPI, integrated in a single library. Thus, Parallel Java is well suited for hybrid
parallel programming as well as SMP and cluster parallel programming. Parallel Java also includes its
own middleware for running parallel programs on a cluster. Because the library is written in 100% Java,
Parallel Java programs are portable to any machine that supports Java (JDK 1.5). Appendices A and B
compare and contrast Parallel Java with OpenMP and MPI.

2.10 For Further Information
On the history of parallel computers:

G. Wilson. A chronology of major events in parallel computing. University of •
Toronto Computer Systems Research Institute Technical Report CSRI–312,
December 1994. ftp://ftp.cs.toronto.edu/csrg-technical-reports/312/csri312.ps

On Beowulf:

T. Sterling, D. Becker, D. Savarese, J. Dorband, U. Ranawake, and C. Packer. •
Beowulf: A parallel workstation for scientific computation. In Proceedings of
the 24th International Conference on Parallel Processing (ICPP 1995), 1995,
volume 1, pages 11–14.

D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: harnessing the •
power of parallelism in a Pile-of-PCs. In Proceedings of the 1997 IEEE
Aerospace Conference, 1997, volume 2, pages 79–91.

Beowulf.org Web site. http://www.beowulf.org/•

On the Stone SouperComputer (and the tale of “Stone Soup”):

W. Hargrove, F. Hoffman, and T. Sterling. The do-it-yourself supercomputer. •
Scientific American, 265(2):72–79, August 2001.

The Stone SouperComputer. http://www.extremelinux.info/stonesoup/•

C6910_2.indd Sec1:31C6910_2.indd Sec1:31 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

http://www.beowulf.org/�
http://www.beowulf.org/�
http://www.extremelinux.info/stonesoup/�
http://www.extremelinux.info/stonesoup/�

32 CHAPTER 2 Parallel Computers

On the Parallel Virtual Machine (PVM) library:

V. Sunderam. PVM: a framework for parallel distributed computing.•
Concurrency Practice and Experience, 2(4):315–339, December 1990.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. •
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

PVM: Parallel Virtual Machine. •
http://www.csm.ornl.gov/pvm/pvm_home.html

On the official MPI standard:

Message Passing Interface Forum Web Site.•
http://www.mpi-forum.org/

Message Passing Interface Forum. • MPI: A Message-Passing Interface
Standard. June 12, 1995. (MPI Version 1.1)
http://www.mpi-forum.org/docs/mpi-11.ps

Message Passing Interface Forum. • MPI-2: Extensions to the Message-Passing
Interface. July 18, 1997. (MPI Version 2.0)
http://www.mpi-forum.org/docs/mpi-20.ps

A comparison of PVM and MPI:

G. Geist, J. Kohl, and P. Papadopoulos. PVM and MPI: a comparison of fea-•
tures. Calculateurs Paralleles, 8(2):137–150, 1996.

On the official OpenMP standard:

OpenMP.org Web Site. http://openmp.org/wp/•

OpenMP Architecture Review Board. • OpenMP Application Program
Interface, Version 3.0. May 2008.
http://www.openmp.org/mp-documents/spec30.pdf

On the TOP500 supercomputer list and the LINPACK benchmark:

TOP500 Supercomputer Sites. http://www.top500.org/•

LINPACK. http://www.netlib.org/linpack/•

LINPACK Benchmark—Java Version. •
http://www.netlib.org/benchmark/linpackjava/

On the Open Science Grid:

Open Science Grid. http://www.opensciencegrid.org/•

C6910_2.indd Sec1:32C6910_2.indd Sec1:32 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.mpi-forum.org/Message
http://www.mpi-forum.org/Message
http://www.mpi-forum.org/docs/mpi-11.ps
http://www.mpi-forum.org/docs/mpi-20.ps
http://openmp.org/wp/�
http://openmp.org/wp/�
http://www.openmp.org/mp-documents/spec30.pdf
http://www.top500.org/�
http://www.top500.org/�
http://www.netlib.org/linpack/�
http://www.netlib.org/linpack/�
http://www.netlib.org/benchmark/linpackjava/On
http://www.netlib.org/benchmark/linpackjava/On
http://www.opensciencegrid.org/�
http://www.opensciencegrid.org/�

 2.10 For Further Information 33

On volunteer computing grids:

Distributed Computing Projects directory.•
http://www.distributedcomputing.info/

SETI@home. http://setiathome.berkeley.edu/•

GIMPS. http://www.mersenne.org/•

Berkeley Open Infrastructure for Network Computing.•
http://boinc.berkeley.edu/

On parallel computing with GPUs:

GPGPU Web Site. http://www.gpgpu.org/•

N. Goodnight, R. Wang, and G. Humphreys. Computation on programmable •
graphics hardware. IEEE Computer Graphics and Applications, 25(5):12–15,
September/October 2005.

J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. GPU •
computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

R. Fernando, editor. • GPU Gems: Programming Techniques, Tips and Tricks
for Real-Time Graphics. Pearson Education, 2004.

M. Pharr, editor. • GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation.
Pearson Education, 2005.

H. Nguyen, editor. • GPU Gems 3. Addison-Wesley, 2007.

On the Parallel Java Library:

A. Kaminsky. Parallel Java: a unified API for shared memory and clus-•
ter parallel programming in 100% Java. In Proceedings of the 21st IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2007),
March 2007.

Parallel Java Library (including downloads).•
http://www.cs.rit.edu/~ark/pj.shtml

Parallel Java documentation.•
http://www.cs.rit.edu/~ark/pj/doc/index.html

C6910_2.indd Sec1:33C6910_2.indd Sec1:33 1/26/09 8:26:58 AM1/26/09 8:26:58 AM

http://www.distributedcomputing.info/SETI@home
http://www.distributedcomputing.info/SETI@home
http://setiathome.berkeley.edu/�
http://setiathome.berkeley.edu/�
http://www.mersenne.org/�
http://www.mersenne.org/�
http://boinc.berkeley.edu/On
http://boinc.berkeley.edu/On
http://www.gpgpu.org/�
http://www.gpgpu.org/�
http://www.cs.rit.edu/~ark/pj.shtml
http://www.cs.rit.edu/~ark/pj/doc/index.html

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

35

C H A P T E R 3
in which we discover the three principal patterns for designing parallel programs; we

encounter examples of problems for which each pattern is suited; and we see how to

realize the patterns on practical parallel computers

How to Write Parallel Programs

C6910_3.indd 35C6910_3.indd 35 1/26/09 8:26:51 AM1/26/09 8:26:51 AM

C H A P T E R3 How to Write Parallel Programs

3.1 Patterns of Parallelism
Let’s say you are given a problem that requires a massive amount of computation—such as finding, in
an enormous genomic database of DNA sequences, the few sequences that best match a short query
sequence; or calculating the three-dimensional positions as a function of time of a thousand stars in a star
cluster under the influence of their mutual gravitational forces. To get the answer in an acceptable amount
of time, you need to write a parallel program to solve the problem. But where do you start? How do you
even think about designing a parallel program?

In an 1989 paper titled “How to write parallel programs: a guide to the perplexed,” Nicholas Carriero
and David Gelernter of Yale University addressed this question by codifying three patterns for design-
ing parallel programs: result parallelism; agenda parallelism; and specialist parallelism. Each pattern
encompasses a whole class of similarly structured problems; furthermore, each pattern suggests how
to design a parallel program for any problem in that class. Using the patterns, the steps for designing a
parallel program are the following:

Identify the pattern that best matches the problem.•

Take the pattern’s suggested design as the starting point.•

Implement the design using the appropriate constructs in a parallel •
programming language.

Next, we describe each of the three patterns and give examples of how they are used.

3.2 Result Parallelism
In a problem that exhibits result parallelism (Figure 3.1), there is a collection of multiple results. The
individual results are all computed in parallel, each by its own processor. Each processor is able to carry
out the complete computation to produce one result. The conceptual parallel program design is:

Processor 1: Compute result 1

Processor 2: Compute result 2

. . .

Processor N: Compute result N

C6910_3.indd 36C6910_3.indd 36 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

 3.2 Result Parallelism 37

Pro−
cessor

1

Result
1

Pro−
cessor

2

Result
2

Pro−
cessor

3

Result
3

Pro−
cessor

4

Result
4

Pro−
cessor

5

Result
5

Pro−
cessor

6

Result
6

Pro−
cessor

7

Result
7

Pro−
cessor

8

Result
8

Figure 3.1 Result parallelism

A problem that requires computing each element of a data structure often exhibits result parallel-
ism. As an example, consider the problem of calculating all the pixels in all the frames of a computer-
animated film. One way to solve the problem is to assign a separate processor to calculate each pixel.
Another way is to assign a separate processor to render each entire frame, calculating all the pixels in that
frame. The former is an example of fine-grained parallelism, where each result requires a small amount
of computation. The latter is an example of coarse-grained parallelism, where each result requires a
large amount of computation. In both cases, though, none of the processors needs to use the result calcu-
lated by any other processor; there are no dependencies among the computations. Thus, in concept, all
the processors can start at the same time, calculate, and finish at the same time.

Other problems, however, do have dependencies among the computations. Consider calculating the
3-D positions of N stars in a star cluster as a function of time for a series of M time steps. The result can
be viewed as an M�N-element matrix of positions: row 1 contains the stars’ positions after the first time
step; row 2 contains the stars’ positions after the second time step; and so on. In concept, the parallel
program has M�N processors. The processors in row 1 can begin computing their results immediately.
Each processor in row 1 calculates the gravitational force on its star due to each of the other stars, using
the stars’ input initial positions. Each processor in row 1 then moves its star by one time step in a direc-
tion determined by the net gravitational force, and the star’s new position becomes the processor’s result.
However, the processors in row 2 cannot begin computing their results immediately. To do their compu-
tations, these processors need the stars’ positions after the first time step, so these processors must wait
until all the row-1 processors have computed their results. We say there are sequential dependencies
from the computations in each row to the computations in the next row (Figure 3.2). There are no sequen-
tial dependencies between the computations in the same row, though.

Faced with the problem of calculating stellar motion for, say, one thousand stars and one million
time steps, you might wonder where to find a parallel computer with enough hardware to compute each
element of the result in its own separate processor. Keep in mind that, for now, we are still in the realm
of conceptual parallel program design, where there are no pesky hardware limitations. In Section 3.5 we
will see how to translate this conceptual design into a real parallel program.

Recalculating a spreadsheet is another example of a result parallel problem with sequential depen-
dencies. The spreadsheet cell values are the results computed by the program. Conceptually, each cell has
its own processor that computes the value of the cell’s formula. When you type a new value into an input
cell, the processors all calculate their respective cells’ formulas. Normally, all the cells can be calculated
in parallel. However, if the formula for cell B1 uses the value of cell A1, then the B1 processor must wait
until the A1 processor has finished. Soon all spreadsheets will have to be result parallel programs to get
full performance out of a desktop or laptop computer’s multicore CPU chip.

C6910_3.indd 37C6910_3.indd 37 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

38 CHAPTER 3 How to Write Parallel Programs

Pro−
cessor

1

Star 1,
time 1

Pro−
cessor

9

Star 1,
time 2

Pro−
cessor

2

Star 2,
time 1

Pro−
cessor

1 0

Star 2,
time 2

Pro−
cessor

3

Star 3,
time 1

Pro−
cessor

1 1

Star 3,
time 2

Pro−
cessor

4

Star 4,
time 1

Pro−
cessor

1 2

Star 4,
time 2

Pro−
cessor

5

Star 5,
time 1

Pro−
cessor

1 3

Star 5,
time 2

Pro−
cessor

6

Star 6,
time 1

Pro−
cessor

1 4

Star 6,
time 2

Pro−
cessor

7

Star 7,
time 1

Pro−
cessor

1 5

Star 7,
time 2

Pro−
cessor

8

Star 8,
time 1

Pro−
cessor

1 6

Star 8,
time 2

 Figure 3.2 Result parallelism with sequential dependencies—star cluster simulation

3.3 Agenda Parallelism
In a problem that exhibits agenda parallelism (Figure 3.3), there is an agenda of tasks that must be per-
formed to solve the problem, and there is a team of processors, each processor able to perform any task.
The conceptual parallel program design is:

Processor 1: Perform task 1

Processor 2: Perform task 2

. . .

Processor N: Perform task N

C6910_3.indd 38C6910_3.indd 38 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

 3.3 Agenda Parallelism 39

A problem that requires computing one result, or a small number of results, from a large number of
inputs often exhibits agenda parallelism. Querying a DNA sequence database is one example. The agenda
items are: “Determine if the query sequence matches database sequence 1”; “Determine if the query
sequence matches database sequence 2”; and so on. Each of these tasks can be performed independently
of all the others, in parallel.

Task
1

Pro−
cessor

1

Task
2

Pro−
cessor

2

Task
3

Pro−
cessor

3

Task
4

Pro−
cessor

4

Task
5

Pro−
cessor

5

Task
6

Pro−
cessor

6

Task
7

Pro−
cessor

7

Task
8

Pro−
cessor

8

 Figure 3.3 Agenda parallelism

Other agenda parallel problems have sequential dependencies among the tasks (Figure 3.4). Certain
tasks cannot start until other tasks have finished. The Basic Local Alignment Search Tool (BLAST)
program, a widely used DNA and protein sequence database search program, can be viewed as an agenda
parallel problem. BLAST proceeds in a series of phases. In the first phase, BLAST looks for matches
between short pieces of the query sequence and short pieces of the sequence database; this results in a
large number of tentative starting points known as “seeds.” In the second phase, BLAST takes each seed
and tries to align the complete query sequence with the sequence database, starting from the seed’s loca-
tion. BLAST computes a score for each alignment that tells how biologically plausible the alignment is;
alignments that don’t result in a good match (too low a score) are discarded. In the third phase, BLAST
sorts the surviving alignments into descending order of plausibility and outputs the alignments, most
plausible first. Conceptually, the phase-1 agenda items are of the form “For seed X, match piece Y of the
query against piece Z of the database.” These can all be done in parallel. The phase-2 agenda items are
of the form “Align the query with the database at seed X’s location and compute the plausibility score.”
These can all be done in parallel with each other, but each must wait until the corresponding phase-1
agenda item has finished. The final agenda item, “Sort and output the alignments,” must wait until the
phase-2 agenda items have finished.

C6910_3.indd 39C6910_3.indd 39 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

40 CHAPTER 3 How to Write Parallel Programs

Find
seed 1

Pro−
cessor

1

Align
seed 1

Pro−
cessor

9

Find
seed 2

Pro−
cessor

2

Align
seed 2

Pro−
cessor

1 0

Find
seed 3

Pro−
cessor

3

Align
seed 3

Pro−
cessor

1 1

Find
seed 4

Pro−
cessor

4

Align
seed 4

Pro−
cessor

1 2

Find
seed 5

Pro−
cessor

5

Align
seed 5

Pro−
cessor

1 3

Find
seed 6

Pro−
cessor

6

Align
seed 6

Pro−
cessor

1 4

Find
seed 7

Pro−
cessor

7

Align
seed 7

Pro−
cessor

1 5

Find
seed 8

Pro−
cessor

8

Align
seed 8

Pro−
cessor

1 6

Sort
align−
ments

Pro−
cessor

1 7

 Figure 3.4 Agenda parallelism with sequential dependencies—BLAST

A result parallel problem could be viewed as an agenda parallel problem, where the agenda items
are “Compute result 1,” “Compute result 2,” and so on. The difference is that in a result parallel problem,
we are typically interested in every processor’s result. In an agenda parallel problem, we are typically not
interested in every processor’s (agenda item’s) result, but only in certain results, or only in a combination
or summary of the individual results.

When an agenda parallel program’s output is a combination or summary of the individual tasks’
results, the program is following the so-called reduction pattern (Figure 3.5). The number of results is
reduced from many down to one. Often, the final result is computed by applying a reduction operator to
the individual results. For example, when the operator is addition, the final result is the sum of the tasks’
results. When the operator is minimum, the final result is the smallest of the tasks’ results.

C6910_3.indd 40C6910_3.indd 40 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

 3.4 Specialist Parallelism 41

Task
1

Pro−
cessor

1

Task
2

Pro−
cessor

2

Task
3

Pro−
cessor

3

Task
4

Pro−
cessor

4

Task
5

Pro−
cessor

5

Task
6

Pro−
cessor

6

Task
7

Pro−
cessor

7

Task
8

Pro−
cessor

8

Reduction

Final result

Figure 3.5 Agenda parallelism with reduction

3.4 Specialist Parallelism
In a problem that exhibits specialist parallelism (Figure 3.6), like agenda parallelism, there is a group of
tasks that must be performed to solve the problem, and there is a team of processors. But, unlike agenda
parallelism, each processor performs only a specific one of the tasks, not just any task. Often, one spe-
cialist processor’s job is to perform the same task on a series of items. The conceptual parallel program
design is:

Processor 1: For each item:
Perform task 1 on the item

Processor 2: For each item:
Perform task 2 on the item

. . .

Processor N: For each item:
Perform task N on the item

C6910_3.indd 41C6910_3.indd 41 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

42 CHAPTER 3 How to Write Parallel Programs

Task 1,
item 1

Task 1,
item 2

Task 1,
item 3

Task 1,
item 4

Task 1,
item 5

Pro−
cessor

1

Task 2,
item 1

Task 2,
item 2

Task 2,
item 3

Task 2,
item 4

Task 2,
item 5

Pro−
cessor

2

Task 3,
item 1

Task 3,
item 2

Task 3,
item 3

Task 3,
item 4

Task 3,
item 5

Pro−
cessor

3

 Figure 3.6 Specialist parallelism

When there are sequential dependencies between the tasks in a specialist parallel problem, the
program follows the so-called pipeline pattern. The output of one processor becomes the input for the
next processor. All the processors execute in parallel, each taking its input from the preceding processor’s
previous output.

Consider again the problem of calculating the 3-D positions of N stars in a star cluster as a function of
time for a series of M time steps. Now add a feature: At each time step, the program must create an image
of the stars’ positions and store the image in a Portable Network Graphics (PNG) file. This problem can
be broken into three steps: calculate the stars’ positions; create an image of the star’s positions; and store
the image in a PNG file. Each step requires a certain amount of computation: to calculate the numerical
(x,y,z) coordinates of each star; to determine the color of each pixel so as to display the stars’ 3-D posi-
tions properly in the 2-D image; and to compress the pixel data and store it in a PNG file. The three steps
can be performed in parallel by three processors in a specialist parallel program (Figure 3.7). While one
processor is calculating the stars’ positions for time step t, another processor is taking the stars’ positions
for time step t–1 and rendering an image, and a third processor is taking the image for time step t–2, com-
pressing it, and storing it in a file. A program like this, where some processors are doing computations and
other processors are doing file input or output, is said to be using the overlapping pattern, also called the
overlapped computation and I/O pattern.

C6910_3.indd 42C6910_3.indd 42 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

 3.5 Clumping, or Slicing 43

Calc
stars,
time 1

Calc
stars,
time 2

Calc
stars,
time 3

Calc
stars,
time 4

Calc
stars,
time 5

Pro−
cessor

1

Render
image,
time 1

Render
image,
time 2

Render
image,
time 3

Render
image,
time 4

Render
image,
time 5

Pro−
cessor

2

Store
PNG,

time 1

Store
PNG,

time 2

Store
PNG,

time 3

Store
PNG,

time 4

Store
PNG,

time 5

Pro−
cessor

3

 Figure 3.7 Specialist parallelism with sequential dependencies—star cluster simulation

It’s possible for a problem to exhibit multiple patterns of parallelism. The star cluster program, for
example, can combine result parallelism with specialist parallelism. At each time step, we can have N
processors each calculating one star’s position (result parallelism); one processor rendering the image for
the previous time step (specialist parallelism); and one processor compressing and writing the previous
image to a PNG file (specialist parallelism). Putting it another way, the specialist parallel task of comput-
ing the stars’ positions for one time step is itself a subproblem that exhibits result parallelism.

To sum up the three patterns: Result parallelism focuses on the results that can be computed in
parallel. Agenda parallelism focuses on the tasks that can be performed in parallel. Specialist parallelism
focuses on the processors that can execute in parallel.

3.5 Clumping, or Slicing
Applying the parallel program design patterns, as described so far, to a problem large enough to need a
parallel computer would require a veritable horde of processors. A result parallel problem with a billion
results would require a billion processors, one to compute each result. An agenda parallel problem with a
billion agenda items would require a billion processors as well. (Specialist parallel problems tend not to
require such large numbers of different specialists.) A problem size of one billion—109, or about 230—is
by no means far-fetched. We will run even the simple, pedagogical parallel programs in this book on
problems of this size. Real-world parallel programs regularly run on much larger problems.

The difficulty, of course, is finding a parallel computer with billions and billions of processors. Well-
funded government or academic high-performance computing centers may have parallel computers with
processors numbering in the thousands. Most of us would count ourselves lucky to have a dozen or two.

To fit a large parallel problem on an actual parallel computer with comparatively few processors, we
use clumping. Many conceptual processors are clumped together and executed by one actual processor.
In a result parallel program, each processor computes a clump of many results instead of just one result
(Figure 3.8).

C6910_3.indd 43C6910_3.indd 43 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

44 CHAPTER 3 How to Write Parallel Programs

Result
1

Result
2

Result
3

Result
4

Result
5

Result
6

Result
7

Result
8

Pro−
cessor

1

Pro−
cessor

2

Pro−
cessor

3

 Figure 3.8 Result parallelism with clumping (or slicing)

Slicing is another way of looking at the same thing. Rather than thinking of clumping many proces-
sors into one, think of dividing the result data structure into slices, as many slices as there are processors,
and assigning one processor to compute all the results in the corresponding slice. For example, suppose
there are 100 results and 4 processors. The design of the result parallel program with slicing is:

Processor 1: Compute result 1, 2, . . . 24, 25

Processor 2: Compute result 26, 27, . . . 49, 50

Processor 3: Compute result 51, 52, . . . 74, 75

Processor 4: Compute result 76, 77, . . . 99, 100

In the rest of the book, we will study several parallel programming constructs that automatically slice
up a problem of any size to use however many processors the parallel computer has.

3.6 Master-Worker
An agenda parallel problem with many more tasks than processors must also use clumping on a real par-
allel computer (Figure 3.9). Each processor performs many tasks, not just one. Conceptually, the agenda
takes the form of a bag of tasks. Each processor repeatedly takes a task out of the bag and performs the
task, until the bag is empty, as follows:

Processor 1: While there are more tasks:
Get and perform the next task

Processor 2: While there are more tasks:
Get and perform the next task

 . . .

Processor K: While there are more tasks:
Get and perform the next task

Task
1

Task
2

Task
3

Task
4

Task
5

Task
6

Task
7

Task
8

Pro−
cessor

1

Pro−
cessor

2

Pro−
cessor

3

 Figure 3.9 Agenda parallelism with clumping

C6910_3.indd 44C6910_3.indd 44 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

 3.6 Master-Worker 45

On a cluster parallel computer, an agenda parallel problem with clumping is often realized con-
cretely using the master-worker pattern (Figure 3.10). There is one master processor in charge of the
agenda, and there are K worker processors that carry out the agenda items. The master sends tasks to the
workers, receives the task results from the workers, and keeps track of the program’s overall results. Each
worker receives tasks from the master, computes the task results, and sends the results back to the master.
The conceptual parallel program design is:

Master

Worker
1

Worker
2

Worker
3

Task

Res
ul

t

T
a

sk
R

e
su

lt

TaskResult

Agenda
Final
result

 Figure 3.10 Agenda parallelism, master-worker pattern

Master: Send initial task to each worker

 Repeat:
Receive task result from any worker X
Record task result
Get next task
If there are no more tasks, tell worker X to stop
Otherwise, send task to worker X

Worker 1: Repeat:
Receive a task from the master
If there are no more tasks, stop
Compute task results
Send results to the master

Worker 2: Repeat:
Receive a task from the master
If there are no more tasks, stop
Compute task results
Send results to the master

. . .

Worker K: Repeat:
Receive a task from the master
If there are no more tasks, stop
Compute task results
Send results to the master

C6910_3.indd 45C6910_3.indd 45 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

46 CHAPTER 3 How to Write Parallel Programs

In the rest of the book, we will study many parallel programs designed to run on SMP parallel com-
puters, cluster parallel computers, and hybrid cluster parallel computers. All these programs, however,
will follow one of the three parallel design patterns—result parallelism, agenda parallelism, specialist
parallelism—or a combination thereof. Before diving into an in-depth study of the parallel programming
constructs that let us implement these patterns, in Chapter 4 we will wet our toes with a small introduc-
tory parallel program.

3.7 For Further Information
On the three parallel design patterns—Carriero’s and Gelernter’s paper:

N. Carriero and D. Gelernter. How to write parallel programs: a guide to the •
perplexed. ACM Computing Surveys, 21(3):323–357, September 1989.

Carriero and Gelernter later expanded their paper into a book:

N. Carriero and D. Gelernter. • How to Write Parallel Programs: A First
Course. MIT Press, 1990.

A more recent book about parallel design patterns, coming from the “patterns movement” in software
design:

T. Mattson, B. Sanders, and B. Massingill. • Patterns for Parallel Programming.
Addison-Wesley, 2005.

On the Basic Local Alignment Search Tool (BLAST)—the original paper:

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local •
alignment search tool. Journal of Molecular Biology, 215(3):403–410,
October 5, 1990.

Sequential implementations of BLAST:

FSA-BLAST. http://www.fsa-blast.org/•

NCBI BLAST. http://www.ncbi.nlm.nih.gov/•

WU-BLAST. http://blast.wustl.edu/•

Parallel implementations of BLAST:

mpiBLAST. http://www.mpiblast.org/•

ScalaBLAST. http://hpc.pnl.gov/projects/scalablast/•

C6910_3.indd 46C6910_3.indd 46 1/26/09 8:26:52 AM1/26/09 8:26:52 AM

http://www.fsa-blast.org/�
http://www.fsa-blast.org/�
http://www.ncbi.nlm.nih.gov/�
http://www.ncbi.nlm.nih.gov/�
http://blast.wustl.edu/�
http://blast.wustl.edu/�
http://www.mpiblast.org/�
http://www.mpiblast.org/�
http://hpc.pnl.gov/projects/scalablast/�
http://hpc.pnl.gov/projects/scalablast/�

47

C H A P T E R 4
in which we build a simple sequential program; we convert it to a program for an SMP

parallel computer; we see how long it takes to run each version; and we get some

insight into how parallel programs execute

A First Parallel Program

C6910_4.indd 47C6910_4.indd 47 1/26/09 8:15:56 AM1/26/09 8:15:56 AM

C H A P T E R4 A First Parallel Program

4.1 Sequential Program
To demonstrate a program that can benefit from running on a parallel computer, let’s invent a simple
computation that will take a long time. Here is a Java subroutine that decides whether a number x is
prime using the trial division algorithm. The subroutine tries to divide x by 2 and by every odd number p
from 3 up to the square root of x. If any remainder is 0, then p is a factor of x and x is not prime; other-
wise x is prime. While trial division is by no means the fastest way to test primality, it suffices for this
demonstration program.

 private static boolean isPrime

 (long x)

 {

 if (x % 2 == 0) return false;

 long p = 3;

 long psqr = p*p;

 while (psqr <= x)

 {

 if (x % p == 0) return false;

 p += 2;

 psqr = p*p;

 }

 return true;

 }

Here is a main program that uses a loop to call the subroutine with the values of x specified on the
command line.

 static int n;

 static long[] x;

 public static void main

 (String[] args)

 throws Exception

 {

 n = args.length;

C6910_4.indd 48C6910_4.indd 48 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

 4.1 Sequential Program 49

When we run the primality testing program, we want to know the time when each subroutine call
starts and the time when each subroutine call finishes, relative to the time the program started. This
tells us how long it took to run the subroutine. To measure these times, we use Java’s System.
currentTimeMillis() method, which returns the wall clock time in milliseconds (msec). We record
each instant in a variable, and postpone printing the results, so as to disturb the timing as little as possible
while the program is running. It can take several msec to call println(), and we don’t want to include
that time in our measurements.

 x = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = Long.parseLong (args[i]);

 }

 for (int i = 0; i < n; ++ i)

 {

 isPrime (x[i]);

 }

 }

 static int n;

 static long[] x;

 static long t1, t2[], t3[];

 public static void main

 (String[] args)

 throws Exception

 {

 t1 = System.currentTimeMillis();

 n = args.length;

 x = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = Long.parseLong (args[i]);

 }

 t2 = new long [n];

 t3 = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 t2[i] = System.currentTimeMillis();

 isPrime (x[i]);

 t3[i] = System.currentTimeMillis();

 }

 }

C6910_4.indd 49C6910_4.indd 49 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

50 CHAPTER 4 A First Parallel Program

Here is the complete Java class, Program1Seq, including code to print the running time
measurements.

public class Program1Seq

 {

 static int n;

 static long[] x;

 static long t1, t2[], t3[];

 public static void main

 (String[] args)

 throws Exception

 {

 t1 = System.currentTimeMillis();

 n = args.length;

 x = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = Long.parseLong (args[i]);

 }

 t2 = new long [n];

 t3 = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 t2[i] = System.currentTimeMillis();

 isPrime (x[i]);

 t3[i] = System.currentTimeMillis();

 }

 for (int i = 0; i < n; ++ i)

 {

 System.out.println

 ("i = "+i+" call start = "+(t2[i]-t1)+" msec");

 System.out.println

 ("i = "+i+" call finish = "+(t3[i]-t1)+" msec");

 }

 }

 private static boolean isPrime

 (long x)

 {

 if (x % 2 == 0) return false;

 long p = 3;

 long psqr = p*p;

 while (psqr <= x)

C6910_4.indd 50C6910_4.indd 50 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

 4.2 Running the Sequential Program 51

4.2 Running the Sequential Program
When run on an SMP parallel computer, Program1Seq prints the following. The parallel computer has
four processors, each a 450 MHz Sun Microsystems UltraSPARC-II CPU, and 2 GB of shared main
memory. (Running the program on a different computer would, in general, yield different results.) All
four arguments happen to be prime numbers.

 {

 if (x % p == 0) return false;

 p += 2;

 psqr = p*p;

 }

 return true;

 }

 }

$ java Program1Seq 1000000000000037 1000000000000091 \

 1000000000000159 1000000000000187

i = 0 call start = 1 msec

i = 0 call finish = 3842 msec

i = 1 call start = 3842 msec

i = 1 call finish = 7663 msec

i = 2 call start = 7663 msec

i = 2 call finish = 11502 msec

i = 3 call start = 11502 msec

i = 3 call finish = 15342 msec

Plotting each subroutine call’s start and finish on a timeline reveals how the program executes
(Figure 4.1). The program executes each subroutine call in its entirety before going on to the next subrou-
tine call. Because the program’s statements are executed in sequence with no overlap in time, we call it a
sequential program. There is no parallelism, even when running on a parallel computer.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
Running time (sec)

i = 0

i = 1

i = 2

i = 3

Figure 4.1 Program1Seq execution timeline, SMP parallel computer

C6910_4.indd 51C6910_4.indd 51 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

52 CHAPTER 4 A First Parallel Program

4.3 SMP Parallel Program
Now let’s rewrite the program using Parallel Java so it will run in parallel when executed on an SMP par-
allel computer. In the main program, after extracting the command line arguments, we create a parallel
team object. The constructor argument, n, says we want as many threads in the parallel team as there are
values to test for primality.

 public static void main

 (String[] args)

 throws Exception

 {

 n = args.length;

 x = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = Long.parseLong (args[i]);

 }

 new ParallelTeam(n).execute (new ParallelRegion()

 {

 public void run()

 {

 }

 });

 }

 public static void main

 (String[] args)

 throws Exception

 {

 n = args.length;

 x = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = Long.parseLong (args[i]);

 }

 new ParallelTeam(n);

 }

Each thread in the parallel team simultaneously executes the code in a parallel region object, declared
here as an anonymous inner class. The actual parallel code goes in the parallel region’s run() method.

C6910_4.indd 52C6910_4.indd 52 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

 4.3 SMP Parallel Program 53

Here is the complete Java class, Program1Smp, including code to record the running time measure-
ments and print them after the parallel region has finished executing.

 public static void main

 (String[] args)

 throws Exception

 {

 n = args.length;

 x = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = Long.parseLong (args[i]);

 }

 new ParallelTeam(n).execute (new ParallelRegion()

 {

 public void run()

 {

 int i = getThreadIndex();

 isPrime (x[i]);

 }

 });

 }

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

public class Program1Smp

 {

 static int n;

 static long[] x;

 static long t1, t2[], t3[];

 public static void main

 (String[] args)

 throws Exception

Rather than use a loop to execute the computations (subroutine calls) in sequence, we want the
threads to execute the computations in parallel. To make this happen, we put the code for one computation
in the parallel region’s run() method. However, we want each computation to use a different x value.
To make this happen, we set i to the index of the calling thread within the parallel team (0 through 3, as
returned by the parallel region’s getThreadIndex() method).

C6910_4.indd 53C6910_4.indd 53 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

54 CHAPTER 4 A First Parallel Program

 {

 t1 = System.currentTimeMillis();

 n = args.length;

 x = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = Long.parseLong (args[i]);

 }

 t2 = new long [n];

 t3 = new long [n];

 new ParallelTeam(n).execute (new ParallelRegion()

 {

 public void run()

 {

 int i = getThreadIndex();

 t2[i] = System.currentTimeMillis();

 isPrime (x[i]);

 t3[i] = System.currentTimeMillis();

 }

 });

 for (int i = 0; i < n; ++ i)

 {

 System.out.println

 ("i = "+i+" call start = "+(t2[i]-t1)+" msec");

 System.out.println

 ("i = "+i+" call finish = "+(t3[i]-t1)+" msec");

 }

 }

 private static boolean isPrime

 (long x)

 {

 if (x % 2 == 0) return false;

 long p = 3;

 long psqr = p*p;

 while (psqr <= x)

 {

 if (x % p == 0) return false;

 p += 2;

 psqr = p*p;

 }

 return true;

 }

 }

C6910_4.indd 54C6910_4.indd 54 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

 4.3 SMP Parallel Program 55

Here’s how the program works (Figure 4.2). The main program begins with one thread, the “main
thread,” executing the main() method. When the main thread creates the parallel team object, the
parallel team object creates additional hidden threads; the constructor argument specifies the number of
threads. These form a “team” of threads for executing code in parallel. When the main thread calls the
parallel region’s execute() method, the main thread suspends execution and the parallel team threads
take over. All the team threads call the parallel region’s run() method simultaneously, each thread
retrieves a value for x, and each thread calls isPrime(). Thus, the isPrime() subroutine calls happen
at the same time, and each subroutine call is performed by a different thread with a different argument.
When all the subroutine calls have finished executing, the main thread resumes executing statements after
the parallel region and prints the timing measurements.

run()

isPrime (x[0])

Thr
0

run()

isPrime (x[1])

Thr
1

run()

isPrime (x[2])

Thr
2

run()

isPrime (x[3])

Thr
3

ParallelRegion

ParallelTeam

main()

Program1Smp

Main
Thr

 Figure 4.2 Program1Smp operation

When running such a thread-based program on an SMP parallel computer, the Java Virtual Machine
(JVM) and the operating system are responsible for scheduling each thread to execute on a different
processor. Thus, the computations done by each thread—in this case, the different subroutine calls—are
executed in parallel on different processors, resulting in a speedup with respect to the sequential program.

The parallel program illustrates a central theme of parallel program design: Repetition does not
necessarily imply sequencing. The sequential program used a loop to get n repetitions of a subroutine
call. As a side effect, the loop did the repetitions in sequence. However, for this program there is no
need to do the repetitions in sequence. We wrote the original program with a loop because Java, like
many programming languages, only has constructs for expressing a sequence of repetitions (a loop).
So accustomed are we to this feature that whenever we are confronted with a repeated calculation, we
automatically think “loop.” However, a loop is not the only way to do a repeated calculation. Provided the

C6910_4.indd 55C6910_4.indd 55 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

56 CHAPTER 4 A First Parallel Program

repetitions do not have to be done in sequence, another way to do a repeated calculation is to run several
copies of the calculation in multiple threads. A large part of the effort in learning parallel program design
is breaking the habit of always using a loop to do repetitions in sequence, and forming the new habit of
doing repetitions in parallel whenever possible.

4.4 Running the Parallel Program
When run on the four-processor parallel computer, Program1Smp printed the following:

$ java Program1Smp 1000000000000037 1000000000000091 \

 1000000000000159 1000000000000187

i = 0 call start = 125 msec

i = 0 call finish = 4076 msec

i = 1 call start = 125 msec

i = 1 call finish = 4098 msec

i = 2 call start = 125 msec

i = 2 call finish = 4082 msec

i = 3 call start = 125 msec

i = 3 call finish = 4076 msec

Now the timeline (Figure 4.3) shows parallelism. (Compare Figures 4.1 and 4.3 to Figure 1.2.)
All the computations start at the same time, execute simultaneously, and finish at about the same time.
Whereas the sequential version’s running time was 15342 msec, the parallel version’s running time on
four processors was 4098 msec—a reduction by a factor of about four, as expected.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
Running time (sec)

i = 0

i = 1

i = 2

i = 3

 Figure 4.3 Program1Smp execution timeline, SMP parallel computer

To be precise, the speedup (the reduction factor) was 15342/4098 = 3.744. The speedup was some-
what less than 4 because of overhead in the parallel version that is not present in the sequential version.
With Program1Smp, the first subroutine call didn’t begin until 125 msec after the program started.
During this time, the program was occupied in creating the parallel team and parallel region objects,
starting up the parallel team threads, and executing the parallel region’s run() method—work that the
sequential program didn’t have to do.

This illustrates another central theme of parallel program design: Parallelism is not free. The benefit
of speedup or sizeup comes with a price of extra overhead that is not needed in a sequential program. The
name of the game is to minimize this extra overhead.

C6910_4.indd 56C6910_4.indd 56 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

 4.5 Running on a Regular Computer 57

4.5 Running on a Regular Computer
Although intended to run on a parallel computer, Program1Seq and Program1Smp are perfectly happy
to run on a nonparallel computer. In fact, one benefit of programming in Parallel Java is that you can
develop and test parallel programs on any computer, and then you can shift to a parallel computer when
the program is debugged and ready for usage.

Let’s look at what happens when we run these programs on a regular computer. This was a non-
parallel computer with a 1.6 GHz Intel Pentium CPU and 512 MB of main memory. The sequential
Program1Seq program printed the following:

$ java Program1Seq 1000000000000037 1000000000000091 \

 1000000000000159 1000000000000187

i = 0 call start = 0 msec

i = 0 call finish = 1594 msec

i = 1 call start = 1594 msec

i = 1 call finish = 2881 msec

i = 2 call start = 2881 msec

i = 2 call finish = 4165 msec

i = 3 call start = 4165 msec

i = 3 call finish = 5450 msec

The timeline (Figure 4.4) shows the typical pattern of sequential execution.

0 1 2 3 4 5 6
Running time (sec)

i = 0

i = 1

i = 2

i = 3

 Figure 4.4 Program1Seq execution timeline, regular computer

Suppose we run the multithreaded Program1Smp program on the regular computer. Because each
subroutine call will now run in a different thread, we would expect all the subroutine calls to start at
roughly the same time near the beginning of the program. But because all the threads will share the same
processor, and the processor will execute one thread at a time and switch to another thread every so often,
we would expect the overall running time to be about the same as the sequential program. Here is what
the parallel program printed.

$ java Program1Smp 1000000000000037 1000000000000091 \

 1000000000000159 1000000000000187

i = 0 call start = 21 msec

i = 0 call finish = 5190 msec

C6910_4.indd 57C6910_4.indd 57 1/26/09 8:15:57 AM1/26/09 8:15:57 AM

58 CHAPTER 4 A First Parallel Program

The timeline for this run (Figure 4.5) is about what we expected—except for one thing. The overall
running time was 260 msec shorter for the four-thread parallel version than for the single-thread sequen-
tial version. We got a slight but noticeable speedup when we went from one thread to four threads on the
regular computer. How can this be, when there was only one processor?

0 1 2 3 4 5 6
Running time (sec)

i = 0

i = 1

i = 2

i = 3

 Figure 4.5 Program1Smp execution timeline, regular computer

The reason has to do with how the JVM works. A modern JVM includes a just-in-time (JIT)
compiler that converts the Java bytecode instructions into native machine code instructions as the pro-
gram runs. The JVM then executes the machine code directly instead of interpreting the Java bytecode;
this greatly increases the program’s execution speed. Furthermore, a modern JVM monitors which sec-
tions of bytecode are executed most frequently and compiles just those sections to machine code, leaving
the remaining sections as interpreted bytecode. This avoids spending the time it would take to compile
infrequently used sections of bytecode. (Sun Microsystems refers to this as a HotSpot JVM.) However,
it takes a certain amount of execution before the JVM detects that the isPrime() subroutine is a hot
spot and compiles it to machine code. With four threads all calling the subroutine at the same time, the
JVM can detect the hot spot, and compile it to machine code, sooner in the parallel version than in the
sequential version. This allows more of the parallel ver sion’s running time to be executed in the faster
machine code mode, thus reducing the parallel version’s running time compared to the sequential version.
(To verify that this is in fact what’s going on, try running both versions with the JIT compiler disabled;
the parallel version then invariably takes longer than the sequential version due to the parallel version’s
extra overhead.) We will see further instances of how the JVM’s behavior influences program perfor-
mance as we study parallel programming in Java.

4.6 The Rest of the Book
Let’s step back and look at what we’ve done. We started with a problem statement. We wrote a sequential
program and a parallel program to solve the problem. The parallel program illustrated both general paral-
lel programming techniques (in this case, achieving repetition via multiple threads) and specific Parallel

i = 1 call start = 71 msec

i = 1 call finish = 5053 msec

i = 2 call start = 91 msec

i = 2 call finish = 5134 msec

i = 3 call start = 14 msec

i = 3 call finish = 4981 msec

C6910_4.indd Sec1:58C6910_4.indd Sec1:58 1/26/09 8:15:58 AM1/26/09 8:15:58 AM

 4.7 For Further Information 59

Java features (parallel team and parallel region). Then we ran the sequential and parallel programs,
measured their running times, and gained some insight about parallel programming by comparing the
programs’ performance.

The rest of the book will be much the same—solving a series of problems that are chosen to illus-
trate various parallel programming techniques and studying the programs’ performance measurements. In
Part II, we will begin with SMP parallel programs, because those are quite similar to regular sequential
programs. Then, in Part III, we will move on to cluster parallel programs, which are a bit more different
from regular sequential programs due to the explicit message passing that is needed. In Part IV, we will
combine techniques for SMP parallel programming and techniques for cluster parallel programming to
write hybrid parallel programs. While the problems we solve in Parts II through IV will be interesting
and perhaps fun, they were chosen solely for pedagogical reasons—to illustrate parallel programming
techniques—and are not necessarily problems with any great significance in the real world. Finally, in
Part V, we will apply the techniques we’ve learned to solve some real-world problems using parallel
computing.

4.7 For Further Information
On the HotSpot JVM, and performance tuning of Java programs in general:

Steve Wilson and Jeff Kesselman. • Java Platform Performance: Strategies and
Tactics. Addison-Wesley, 2000. Available online at:
http://java.sun.com/docs/books/performance/

Java Performance Documentation. •
http://java.sun.com/docs/performance/index.html

C6910_4.indd Sec1:59C6910_4.indd Sec1:59 1/26/09 8:15:58 AM1/26/09 8:15:58 AM

http://java.sun.com/docs/books/performance/Java
http://java.sun.com/docs/books/performance/Java
http://java.sun.com/docs/performance/index.html

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

61

P A R T I
Exercises 1–2. The year is 1944. World War II is at its height. The Computer
Department at your company has 50 state-of-the-art computers all together in a big
room. Each “computer” is a young lady with a Friden automatic electromechanical
calculator that can do addition, subtraction, multiplication, and division. Your task is to
prepare a table of the function:

 (1)

Collection of the author

Friden automatic electromechanical calculator

Exercises

C6910_Part1Exercises 61C6910_Part1Exercises 61 1/26/09 11:25:57 AM1/26/09 11:25:57 AM

62 PART I Exercises

for given constant values a, b, and c and for 1,020 values of x: x = 0.1, 0.2, 0.3, . . ., 101.8, 101.9, 102.0.
This table will be used for computing the trajectories of artillery shells on the battlefield.

Describe a parallel algorithm to solve the problem in the shortest possible time 1.
using the full resources of the Computer Department.

Which parallel design pattern or patterns does this problem exhibit?2.

Exercises 3–4. Here’s another problem for the Computer Department. Each computer has a sheet of paper with
a list of all the prime numbers less than or equal to 1000; there are 168 primes in the list. Your problem is to
determine whether the number N = 988027 is prime. The algorithm is as follows: Divide N by each prime in
the list; if any prime in the list divides N with no remainder, then N is not prime; otherwise, N is prime. The
algorithm always goes through the entire list of primes. (Note: If N is not prime, then N must have a prime fac-
tor , so P must be in the list of primes and the algorithm is guaranteed to find P.)

Describe a parallel version of the preceding algorithm to solve the prob-3.
lem in the shortest possible time using the full resources of the Computer
Department.

Which parallel design pattern or patterns does this problem exhibit?4.

Exercises 5–6. Here’s another problem for the Computer Department. Multiply two matrices A and B
to get the product matrix C = A•B. Each matrix has 12 rows and 12 columns of numbers. The elements
of the two matrices A and B have been printed on a sheet of paper, and each computer has a copy. The
formula for computing the element at row i, column j of the product is:

 (2)

Describe a parallel algorithm to solve the problem in the shortest possible time 5.
using the full resources of the Computer Department.

Which parallel design pattern or patterns does this problem exhibit?6.

Exercises 7–8. Here’s another problem for the Computer Department. Compute the mean of 256 given
numbers x

1
 through x

256
; that is:

 (3)

Describe a parallel algorithm to solve the problem in the shortest possible time 7.
using the full resources of the Computer Department.

Which parallel design pattern or patterns does this problem exhibit?8.

C6910_Part1Exercises 62C6910_Part1Exercises 62 1/26/09 11:25:58 AM1/26/09 11:25:58 AM

 63

Exercises 9–10. Here’s another problem for the Computer Department. Your company’s Sales
Department has 360 salesmen (in 1944, they were all males) selling floor brushes, hairbrushes, tooth-
brushes, and scrub brushes door-to-door. Each salesman has submitted his quarterly sales report showing
the number of floor brushes, hairbrushes, toothbrushes, and scrub brushes he sold. Your task is to calcu-
late each salesman’s total commission. The commission is 50 cents for each floor brush, 25 cents for each
hairbrush, 10 cents for each toothbrush, and one dollar for each scrub brush.

Describe a parallel algorithm to solve the problem in the shortest possible time 9.
using the full resources of the Computer Department.

Which parallel design pattern or patterns does this problem exhibit?10.

Exercises 11–16. For each of the following parallel computing systems, do some research, describe how
the hardware and software are designed, and state which parallel design pattern or patterns each system’s
parallel program exhibits.

Weather Research and Forecasting (WRF).11.

Community Climate System Model (CCSM).12.

Basic Local Alignment Search Tool (BLAST).13.

Great Internet Mersenne Prime Search (GIMPS).14.

SETI@home.15.

Deep Blue.16.

Exercises 17–18. A cluster parallel program needs to send a message consisting of 4,000 integers (type
int). Each int occupies 4 bytes. Each byte is 8 bits.

How long will it take to send the message if the cluster backend network is an 17.
Ethernet with a bandwidth of 1 Gbps and a latency of 150 msec?

How long will it take to send the message if the cluster backend network is an 18.

InfiniBand with a bandwidth of 48 Gbps and a latency of 2 msec?

Exercises 19–20. A parallel program calculates an n�n-element matrix, where each matrix element is a
double-precision floating-point number (type double). Each double occupies 8 bytes.

How large a matrix can the parallel program calculate if run on an SMP paral-19.
lel computer with 8 GB of main memory available to store the matrix?
(1 GB = 230 bytes.)

How large a matrix can the parallel program calculate if run on a 100-node 20.
cluster parallel computer with 256 MB of main memory on each node avail-

able to store the matrix? (1 MB = 220 bytes.)

C6910_Part1Exercises 63C6910_Part1Exercises 63 1/26/09 11:25:58 AM1/26/09 11:25:58 AM

64 PART I Exercises

Run Program1Seq and Program1Smp with a different number of computa-21.
tions (command-line arguments), say 8 or 16. What are the programs’ running
times on an SMP computer? On a regular computer? What do you discover by
examining the running times?

Run Program1Seq and Program1Smp so the computations take a different 22.
amount of time (that is, specify different values as command-line arguments).
What are the programs’ running times on an SMP computer? On a regular
computer? What do you discover by examining the running times?

Suppose Program1Smp, when run on an SMP computer, did not experience 23.
the overhead between the start of the program and the start of the actual
computations, but otherwise the computations took the same time as listed in
Chapter 4, Section 4.4. What would the speedup be? How close would that be
to the ideal?

Write sequential and SMP parallel versions of a program that does a given 24.
number of computations, where each computation consists of printing the
message “Hello world <i>”, where <i> is the computation number start-
ing from 0. The output should look like this:

 Hello world 0

 Hello world 1

 Hello world 2

 ...

 Run your programs on an SMP computer and on a regular computer with dif-
ferent numbers of computations. Do you notice anything strange happening?
If so, why is it happening?

C6910_Part1Exercises 64C6910_Part1Exercises 64 1/26/09 11:25:58 AM1/26/09 11:25:58 AM

SMPs

65

P A R T I I
Part II
SMPs

Chapter 5
Massively Parallel Problems. 67

Chapter 6
SMP Parallel Programming 77

Chapter 7
Massively Parallel Problems, Part 2 89

Chapter 8
Measuring Speedup 99

Chapter 9
Cache Interference 111

Chapter 10
Measuring Sizeup 121

Chapter 11
Parallel Image Generation 135

Chapter 12
Load Balancing 153

Chapter 13
Reduction . 167

Chapter 14
Parallel Random Number Generation . 183

Chapter 15
Reduction, Part 2 197

Chapter 16
Sequential Dependencies 223

Chapter 17
Barrier Actions 245

Chapter 18
Overlapping . 267

Part II Exercises 285

C6910_5.indd 65C6910_5.indd 65 1/26/09 8:37:51 AM1/26/09 8:37:51 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

Massively Parallel Problems

in which we encounter a cryptographic problem requiring an enormous amount of

computation; we build a sequential program to solve the problem; we reflect on how

a parallel program could solve the problem; and we learn why such problems are

called massively parallel

C H A P T E R 5

67

Massively Parallel Problems

C6910_5.indd Sec1:67C6910_5.indd Sec1:67 1/26/09 8:37:51 AM1/26/09 8:37:51 AM

C H A P T E R5 Massively Parallel Problems

5.1 Breaking the Cipher
To conceal passwords, credit card numbers, and other sensitive information from prying eyes while
e-mail messages and Web pages traverse the public Internet, the information is encrypted. Nowadays
encryption is done using a block cipher, such as the U.S. Government’s Advanced Encryption
Standard (AES) (Figure 5.1).

Plaintext

128 bits

AES
encrypt

Ciphertext

128 bits

Key

256 bits

AES
decrypt

Plaintext

128 bits

Key

256 bits

Figure 5.1 Encryption and decryption using AES

Here’s how one person named Alice uses a block cipher to send an encrypted message to another
person named Bob. (In cryptographic lore, the two parties in a secure communication are always named
Alice and Bob.) Alice feeds the original message, called the plaintext, into the AES encryption
function. For AES, the plaintext is a block of 128 bits. The encryption function’s output is another block
of 128 bits, called the ciphertext. (AES is called a “block” cipher because it converts a block of plaintext
into an equal-sized block of ciphertext.) The ciphertext is random-seeming gibberish that reveals nothing
about the plaintext. Alice can safely send the ciphertext over a public network without fear that Eve, who
is eavesdropping on the network traffic, will discover the sensitive information in the plaintext. Upon
receiving the ciphertext, Bob feeds the ciphertext into the AES decryption function, which converts the
ciphertext back into the original plaintext.

The security of block cipher encryption rests in the key, which is an input parameter to the encryption
function and the decryption function. For AES, the key is a 256-bit value. The same plaintext, encrypted
with a different key, will yield a different ciphertext. To recover the original plaintext from the ciphertext,
the decryption function must use the same key as the encryption function. Because knowledge of the key
would let Eve decrypt ciphertext messages, the key must be a secret key known only to Alice and Bob.

One way that Eve could breach the secure communication is to find the key Alice and Bob are using.
One way that Eve could find the key is a known plaintext attack. Eve somehow manages to obtain both
a plaintext block p and the ciphertext block c that is the result of encrypting p with some secret key k.
Eve then uses her knowledge of these corresponding p and c values to deduce the value of k. One way
to find k is an exhaustive search. Eve starts with k = 0, feeds p and k into the encryption function, and

C6910_5.indd Sec1:68C6910_5.indd Sec1:68 1/26/09 8:37:51 AM1/26/09 8:37:51 AM

 5.2 Preparing the Input 69

checks whether the ciphertext that comes out is equal to c. If so, Eve has found the correct value for k.
Otherwise, Eve repeats the process with k = 1, k = 2, and so on until she is successful.

Block cipher key sizes are chosen to make exhaustive key searches impractical. To find an AES key
this way, Eve has to perform on the order of 2256, or 1077, encryptions. Long before Eve has found the key,
the universe will have come to an end.

However, suppose Eve knows some of the key. Perhaps Alice and Bob were careless and revealed the
values of 232 bits of the 256-bit key. Then Eve only has to do 224, or 16 million, encryptions to find the
complete key. That’s doable.

This, then, is our first problem: Write a program for an AES partial key search. The program’s
inputs are a plaintext block p, a ciphertext block c, and a portion of the key k that was used to produce c
from p. The values of the known key bits are given, along with the number of missing bits. The program’s
output is the complete key. The program does an exhaustive search over all possible values for the miss-
ing key bits.

5.2 Preparing the Input
Let’s do our AES partial key search on a realistic example. First, we need a random 256-bit key.
However, it’s a bad idea to use a pseudorandom number generator (PRNG) such as class java.util.
Random to generate the key. The problem is that class java.util.Random has only 48 bits of internal state,
from which it generates random values. If the secret key came from class java.util.Random, Eve would
have to search only the 248 possible internal state values to find the key, not the 2256 possible key values.

Rather than use a PRNG, we should use an entropy source to generate a random key. Most Unix
and Linux kernels have a special device file, /dev/random, that provides an entropy source. The kernel
accumulates “randomness,” or entropy, into this file from the random times at which certain events occur,
such as keystrokes, mouse movements, disk block accesses, and network packet receptions. Then, as a
program reads this file, the kernel uses the accumulated entropy to return truly random bytes. In contrast,
a PRNG generates only pseudo-random values using a deterministic formula.

Here is a program that prints a random 256-bit key in hexadecimal. To access the platform-
dependent entropy source in a portable manner, we use the getSeed() method of class java.security.
SecureRandom.

package edu.rit.smp.keysearch;

import edu.rit.util.Hex;

import java.security.SecureRandom;

public class MakeKey

 {

 public static void main

 (String[] args)

 throws Exception

 {

 System.out.println (Hex.toString (SecureRandom.getSeed (32)));

 }

 }

C6910_5.indd Sec1:69C6910_5.indd Sec1:69 1/26/09 8:37:51 AM1/26/09 8:37:51 AM

70 CHAPTER 5 Massively Parallel Problems

And here is an example of what the MakeKey program prints.

$ java edu.rit.smp.keysearch.MakeKey

26ab7c3cb314cb3eed163e1bb9a65aa0e7a2261fb7139e75412d4cf44719520b

Next, we need a plaintext-ciphertext pair to use for our known plaintext attack. Here is a program that
creates just such a pair. The program takes three command-line arguments: a message string to encrypt,
the encryption key (generated by the MakeKey program), and n, the number of key bits for which to
search. The program prints the plaintext block (a 128-bit hexadecimal number), the ciphertext block (a
128-bit hexadecimal number), the partial key with the n least-significant bits set to 0 (a 256-bit hexadeci-
mal number), and n, the number of key bits for which to search. To do the encryption, the program uses
an instance of class AES256Cipher from the Parallel Java Library.

package edu.rit.smp.keysearch;

import edu.rit.crypto.blockcipher.AES256Cipher;

import edu.rit.util.Hex;

public class Encrypt

 {

 public static void main

 (String[] args)

 throws Exception

 {

 // Parse command line arguments.

 if (args.length != 3) usage();

 String message = args[0];

 byte[] key = Hex.toByteArray (args[1]);

 int n = Integer.parseInt (args[2]);

 // Set up plaintext block.

 byte[] msg = message.getBytes();

 byte[] block = new byte [16];

 System.arraycopy

 (msg, 0, block, 0, Math.min (msg.length, 16));

 System.out.println (Hex.toString (block));

 // Encrypt plaintext.

 AES256Cipher cipher = new AES256Cipher (key);

 cipher.encrypt (block);

 System.out.println (Hex.toString (block));

 // Wipe out n least significant bits of the key.

 int off = 31;

 int len = n;

 while (len >= 8)

C6910_5.indd Sec1:70C6910_5.indd Sec1:70 1/26/09 8:37:52 AM1/26/09 8:37:52 AM

 5.3 Sequential Key Search Program 71

And here is an example of what the Encrypt program prints. (The Java command stretches across two
lines.) The Encrypt program’s output will become the actual key-searching program’s input.

 {

 key[off] = (byte) 0;

 -- off;

 len -= 8;

 }

 key[off] &= mask[len];

 System.out.println (Hex.toString (key));

 System.out.println (n);

 }

 private static final int[] mask = new int[]

 {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80};

 }

$ java edu.rit.smp.keysearch.Encrypt "Hello, world!" \

 26ab7c3cb314cb3eed163e1bb9a65aa0e7a2261fb7139e75412d4cf44719520b 20

48656c6c6f2c20776f726c6421000000

af3afe16ce815ad209f34b009da37e58

26ab7c3cb314cb3eed163e1bb9a65aa0e7a2261fb7139e75412d4cf447100000

20

5.3 Sequential Key Search Program
Here is the FindKeySeq program, which takes the Encrypt program’s outputs as command-line argu-
ments—the plaintext, the ciphertext, the partial key, and n, the number of key bits for which to search.
The FindKeySeq program performs an exhaustive search over all the missing key bits and prints the com-
plete key. It is a sequential program (no parallelism); later, we will modify it to make a parallel program.

We follow the convention that variables used throughout the main program are declared as static
fields of the main program class, rather than local variables of the main() method. The reason for this
will become clear when we write the parallel program.

package edu.rit.smp.keysearch;

import edu.rit.crypto.blockcipher.AES256Cipher;

import edu.rit.util.Hex;

public class FindKeySeq

 {

 // Command line arguments.

 static byte[] plaintext;

 static byte[] ciphertext;

C6910_5.indd Sec1:71C6910_5.indd Sec1:71 1/26/09 8:37:52 AM1/26/09 8:37:52 AM

72 CHAPTER 5 Massively Parallel Problems

The variable keylsbs holds the least-significant 32 bits of the partial key from the command line; this
value has n low-order zero bits.

 static byte[] partialkey;

 static int n;

 // Variables for doing trial encryptions.

 static int keylsbs;

 static int maxcounter;

 static byte[] foundkey;

 static byte[] trialkey;

 static byte[] trialciphertext;

 static AES256Cipher cipher;

 /**

 * AES partial key search main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length != 4) usage();

 plaintext = Hex.toByteArray (args[0]);

 ciphertext = Hex.toByteArray (args[1]);

 partialkey = Hex.toByteArray (args[2]);

 n = Integer.parseInt (args[3]);

 // Make sure n is not too small or too large.

 if (n < 0)

 {

 System.err.println ("n = " + n + " is too small");

 System.exit (1);

 }

 if (n > 30)

 {

 System.err.println ("n = " + n + " is too large");

 System.exit (1);

 }

C6910_5.indd Sec1:72C6910_5.indd Sec1:72 1/26/09 8:37:52 AM1/26/09 8:37:52 AM

 5.3 Sequential Key Search Program 73

To search over the missing key bits, we run an integer counter from 0 to 2n – 1. The variable maxcounter
holds the upper bound for the counter. To be certain that this upper bound fits in a variable of type int,
we ensure that n lies in the range 0 through 30. The variable trialkey is for holding the encryption key
we are currently trying; this starts out the same as the partial key from the command line. The variable
trialciphertext is for holding the output ciphertext from the current encryption. The cipher object
performs the actual encryptions.

 // Set up variables for doing trial encryptions.

 keylsbs =

 ((partialkey[28] & 0xFF) << 24) |

 ((partialkey[29] & 0xFF) << 16) |

 ((partialkey[30] & 0xFF) << 8) |

 ((partialkey[31] & 0xFF));

 maxcounter = (1 << n) - 1;

 trialkey = new byte [32];

 System.arraycopy (partialkey, 0, trialkey, 0, 32);

 trialciphertext = new byte [16];

 cipher = new AES256Cipher (trialkey);

Now we can run the search loop, with the counter going from 0 to 2n – 1. To set up the trial encryption
key, we combine the counter value with the least significant bits of the partial key (keylsbs) using
bitwise-or (the | operator). The counter fills in the missing low-order bits of the partial key, thus creating
the complete trial key. We use the cipher object to encrypt the plaintext with this trial key.

 // Try every possible combination of low-order key bits.

 for (int counter = 0; counter < maxcounter; ++ counter)

 {

 // Fill in low-order key bits.

 int lsbs = keylsbs | counter;

 trialkey[28] = (byte) (lsbs >>> 24);

 trialkey[29] = (byte) (lsbs >>> 16);

 trialkey[30] = (byte) (lsbs >>> 8);

 trialkey[31] = (byte) (lsbs);

 // Try the key.

 cipher.setKey (trialkey);

 cipher.encrypt (plaintext, trialciphertext);

C6910_5.indd Sec1:73C6910_5.indd Sec1:73 1/26/09 8:37:52 AM1/26/09 8:37:52 AM

74 CHAPTER 5 Massively Parallel Problems

If the resulting ciphertext equals the input ciphertext, we have found the correct key, and we store a copy
of it in the variable foundkey. At this point, we could exit the loop, because further trials are pointless.
However, for now, we will stay in the loop; the program will always try all 2n key values. (We will need
this behavior later, when we study the parallel ver sion’s running time.)

 // If the result equals the ciphertext, we found the key.

 if (match (ciphertext, trialciphertext))

 {

 foundkey = new byte [32];

 System.arraycopy (trialkey, 0, foundkey, 0, 32);

 }

 }

 // Stop timing.

 long t2 = System.currentTimeMillis();

 // Print the key we found.

 System.out.println (Hex.toString (foundkey));

 System.out.println ((t2-t1) + " msec");

 }

 /**

 * Returns true if the two byte arrays match.

 */

 private static boolean match

 (byte[] a,

 byte[] b)

 {

 boolean matchsofar = true;

 int n = a.length;

 for (int i = 0; i < n; ++ i)

 {

 matchsofar = matchsofar && a[i] == b[i];

 }

 return matchsofar;

 }

 }

Here is an example of the FindKeySeq program’s output. (The Java command stretches across five
lines.) The inputs (command-line arguments) are what the Encrypt program generated—the plaintext

C6910_5.indd Sec1:74C6910_5.indd Sec1:74 1/26/09 8:37:52 AM1/26/09 8:37:52 AM

 5.4 Transitioning to a Parallel Program 75

block, the ciphertext block, the partial key with the low-order bits missing, and the number of missing
key bits. The FindKeySeq program prints the complete key that it found, as well as the running time.

$ java edu.rit.smp.keysearch.FindKeySeq \

 48656c6c6f2c20776f726c6421000000 \

 af3afe16ce815ad209f34b009da37e58 \

 26ab7c3cb314cb3eed163e1bb9a65aa0e7a2261fb7139e75412d4cf447100000 \

 20

26ab7c3cb314cb3eed163e1bb9a65aa0e7a2261fb7139e75412d4cf44719520b

2936 msec

5.4 Transitioning to a Parallel Program
The AES partial key search problem is an agenda parallel problem, where the agenda items are to try
all possible values of the missing key bits: “Try k = 0,” “Try k = 1,” . . . , “Try k = 2n – 1.” We are not
interested in all the tasks’ results, but only in the key for the one task that succeeded. In this problem, the
results of one task do not in any way affect the results of the other tasks; there are no sequential dependen-
cies between tasks. Putting it an other way, none of the tasks produces any result needed by any other task.

The FindKeySeq program performs the agenda items by doing a loop over all the missing key bits
from 0 to 2n – 1. In the sequential program, the loop iterations are performed one at a time, in order.
However, because there are no sequential dependencies between tasks, the loop iterations do not have to
be performed in sequence—as we saw with the introductory program in Chapter 4. The loop iterations
can be performed all at once, in parallel. In fact, if we had a parallel computer with 2n processors, we
could find the answer in the same amount of time as the sequential program would take to try just one
key. For this reason, a problem such as AES partial key search—one where we can do all the computa-
tions en masse, with no dependencies between the computations—is called a massively parallel
problem. It is also sometimes called an embarrassingly parallel problem; there’s so much parallelism,
it’s embarrassing!

In Chapter 4, we saw how to execute a parallel program with each computation in a separate thread
and each thread running on its own processor. If n is a small number, such as 2 or 4, we’d have no trouble
finding a parallel computer with 2n processors. But this approach breaks down if n is a more interesting
number such as 24 or 28. What we need is an approach somewhere in the middle of the two extremes of
doing all the computations in sequence in a single thread and doing each computation in parallel in its
own thread.

Suppose we are solving the AES partial key search program on a parallel computer with K proces-
sors. Then we will set up a parallel program with K threads. Like the sequential program, each thread will
execute a loop to do its computations. However, each thread’s loop will go through only a subset of the
total set of computations—2n/K of them, to be exact. The set of computations will be partitioned among
the K threads; multiple tasks will be clumped together and executed by one of the K threads.

C6910_5.indd Sec1:75C6910_5.indd Sec1:75 1/26/09 8:37:52 AM1/26/09 8:37:52 AM

76 CHAPTER 5 Massively Parallel Problems

As a specific example, suppose n is 20; then there are 1,048,576 keys to search. Suppose K is 10;
then six of the threads will do 104,858 iterations each and the other four threads will do 104,857 itera-
tions each. (The per-thread iteration counts differ because the total number of iterations is not evenly
divisible by K.) The range of counter values in each thread will be as follows:

Thread Lower Bound Upper Bound Thread Lower Bound Upper Bound

0 0 104857 5 524290 629147

1 104858 209715 6 629148 734004

2 209716 314573 7 734005 838861

3 314574 419431 8 838862 943718

4 419432 524289 9 943719 1048575

The Parallel Java Library has classes that let you program parallel loops, where the total set of loop
iterations is divided among a group of threads in the preceding manner. Chapter 6 will introduce these
features of Parallel Java. In Chapter 7, we will use Parallel Java to convert the FindKeySmp program to a
parallel program.

5.5 For Further Information
On cryptography, block ciphers, and ways of attacking them:

Douglas R. Stinson. • Cryptography: Theory and Practice, 3rd Edition. Chapman
& Hall, 2005.

Niels Ferguson and Bruce Schneier. • Practical Cryptography. Wiley
Publishing, 2003.

Charlie Kaufman, Radia Perlman, and Mike Speciner. • Network Security: Private
Communication in a Public World, 2nd Edition. Prentice Hall PTR, 2002.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. • Handbook of
Applied Cryptography. CRC Press, 1997.

Bruce Schneier. • Applied Cryptography, Second Edition. John Wiley &
Sons, 1996.

On the Advanced Encryption Standard in particular:

Advanced Encryption Standard (AES)• . Federal Information Processing
Standards Publication 197. November 26, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

C6910_5.indd Sec1:76C6910_5.indd Sec1:76 1/26/09 8:37:52 AM1/26/09 8:37:52 AM

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

77

C H A P T E R 6
in which we take a closer look at the principal constructs for SMP parallel

programming; we learn how to declare shared and non-shared variables; and we gain

some insight into how a Parallel Java program achieves parallelism on an SMP parallel

computer

SMP Parallel Programming

C6910_6.indd 77C6910_6.indd 77 1/26/09 8:26:54 AM1/26/09 8:26:54 AM

C H A P T E R6 SMP Parallel Programming

6.1 Parallel Team
A sequential program to do some computation, as embodied in the main program class’s main() method,
looks like this:

Initial setup

Execute the computation

Clean up

To change this to an SMP parallel program, we change the middle step to use a parallel team:

Initial setup

Create a parallel team

Have the parallel team execute the computation

Clean up

In Parallel Java, you get a parallel team by creating an instance of class ParallelTeam. The paral-
lel team comprises a certain number of threads, which will be the ones to carry out the computation in
parallel. You have three choices for specifying the number of threads in the team. You can specify the
number of threads at compile time as the constructor argument.

 new ParallelTeam(4); // Create a team of four threads

You can specify the number of threads at run time by using the no-argument constructor.

 new ParallelTeam();

In this case, you specify the number of threads by defining the “pj.nt” Java system property when
you run the program. You can do this by including the “-Dpj.nt” flag on the Java command line. For
example,

$ java -Dpj.nt=4 . . .

C6910_6.indd 78C6910_6.indd 78 1/26/09 8:26:54 AM1/26/09 8:26:54 AM

 6.2 Parallel Region 79

specifies four threads. Finally, if you use the no-argument constructor and you do not define the “pj.nt”
property, Parallel Java chooses the number of parallel team threads automatically to be the same as the
number of processors on the computer where the program is running. (Parallel Java discovers the number
of processors by calling the Runtime.availableProcessors() method, which is part of the standard
Java platform.)

Normally, you will let Parallel Java choose the number of threads automatically at run time, so as
to get the maximum possible degree of parallelism. Sometimes you will specify the number of threads
explicitly at run time—for example, when you are measuring the parallel program’s performance as a
function of the number of processors. Certain parallel programming patterns, such as “overlapping”
(which we will study in Chapter 18), always use the same number of threads, and when utilizing these
patterns, you specify the number of threads at compile time.

Once a parallel team has been created, K threads are in existence inside the parallel team object
(Figure 6.1). These are in addition to the Java program’s main thread, the thread that is executing the
main program class’s main() method and that created the parallel team object. Each parallel team
thread has a thread index from 0 through K–1. Each thread is poised to execute the program’s computa-
tion. However, these threads are hidden, and you do not manipulate them directly in your program. To
get the threads to execute the program’s computation, you use another Parallel Java class, namely class
ParallelRegion.

main()

ParallelTeam

MainProgramClass

Main
Thr

Thr
0

Thr
1

Thr
2

Thr
3

 Figure 6.1 A parallel team witk K = 4 threads

6.2 Parallel Region
Whereas a parallel team contains the threads that will carry out the pro gram’s computation, a parallel
region contains the actual code for the computation. Class ParallelRegion is an abstract base class with
three principal methods—start(), run(), and finish()—that you can override. To write the parallel
portion of your program, define a subclass of class ParallelRegion and put the code for the parallel com-
putation in the sub class’s start(), run(), and finish() methods. To make the parallel team execute

C6910_6.indd Sec1:79C6910_6.indd Sec1:79 1/26/09 8:26:54 AM1/26/09 8:26:54 AM

80 CHAPTER 6 SMP Parallel Programming

the code in the parallel region, create an instance of your ParallelRegion subclass and pass that instance to
the parallel team’s execute() method. A convenient coding idiom is to use an anonymous inner class.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void start()

 {

 // Initialization code

 }

 public void run()

 {

 // Parallel computation code

 }

 public void finish()

 {

 // Finalization code

 }

 });

This code creates a new parallel team object, defines the ParallelRegion subclass as an anonymous inner
class, creates an instance of the parallel region subclass, and passes the instance to the parallel team’s
execute() method.

Here’s what happens inside the parallel team (Figure 6.2). Each parallel team thread is initially
blocked and will not commence execution until signaled. The main thread, executing the program’s
main() method, calls the parallel team’s execute() method. Inside the execute() method, the main
thread calls the parallel region’s start() method. When the start() method returns, the main thread
signals each team thread to commence execution. The main thread then blocks.

All the team threads now proceed to call the parallel region’s run() method. Here is where the
parallel execution of the parallel region code happens. When the run() method returns, each team thread
signals the main thread. At this point, the team threads block again, waiting for the team to execute
another parallel region.

Once the main thread has been signaled by each of the team threads, the main thread resumes execu-
tion and calls the parallel region’s finish() method. When the finish() method returns, the parallel
team’s execute() method also returns, and the main thread continues executing whatever comes after-
ward in the program’s main() method.

It’s important to emphasize that you don’t have to do the preceding steps yourself. Parallel Java does
it all for you. You merely have to write the code you want executed in the parallel region’s start(),
run(), and finish() methods. However, to design your parallel program properly, you have to under-
stand what’s going on “under the hood.”

Focusing on the parallel region’s methods in Figure 6.2, the sequence of execution is the following:

The • start() method is executed by a single thread.

The • run() method is executed by K threads simultaneously.

The • finish() method is executed by a single thread.

C6910_6.indd Sec1:80C6910_6.indd Sec1:80 1/26/09 8:26:54 AM1/26/09 8:26:54 AM

 6.2 Parallel Region 81

main() execute()

ParallelTeam

start()

run()

finish()

MainProgramClass

Main
Thr

Thr
0

Thr
1

Thr
2

Thr
3

 Figure 6.2 A parallel team executing a parallel region

Thus, in the start() method, put any initialization code that must be executed in a single thread before
the parallel computation starts. In the run() method, put the parallel computation code itself. In the
finish() method, put any finalization code that must be executed in a single thread after the parallel
computation finishes. If no initialization or finalization code is necessary, simply omit the start() or
finish() method or both.

As already mentioned, when running a program with a parallel team and a parallel region on an
SMP parallel computer, the JVM and the operating system are responsible for scheduling each thread
to execute on a different processor. To see a parallel speedup, the parallel region’s run() method must
divide the computation among the K team threads—that is, among the K processors. With all processors
executing simultaneously and each processor doing 1/K of the total work, the program should experience
a speedup.

C6910_6.indd Sec1:81C6910_6.indd Sec1:81 1/26/09 8:26:55 AM1/26/09 8:26:55 AM

82 CHAPTER 6 SMP Parallel Programming

6.3 Parallel For Loop
Often, a program’s computation consists of some number N of loop iterations. To divide the N loop itera-
tions among the K threads (processors), you use yet another Parallel Java class, IntegerForLoop, which
provides a parallel for loop. Class IntegerForLoop is an abstract base class with three principal
methods—start(), run(), and finish()—that you can override. To write the parallel for loop, define
a subclass of class IntegerForLoop and put the loop code in the subclass’s start(), run(), and
finish() methods. Then, in the parallel region’s run() method, call the parallel region’s execute()
method, passing in the first loop index (inclusive), the last loop index (inclusive), and the IntegerForLoop
subclass instance. Again, a convenient coding idiom is to use an anonymous inner class. Here is a parallel
for loop with the index going from 0 to 99, inclusive.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run()

 {

 execute (0, 99, new IntegerForLoop()

 {

 public void start()

 {

 // Per-thread pre-loop initialization code

 }

 public void run (int first, int last)

 {

 // Loop code

 }

 public void finish()

 {

 // Per-thread post-loop finalization code

 }

 });

 }

 });

Here’s what happens inside the parallel team (Figure 6.3). The parallel team threads are executing
the parallel region’s run() method simultaneously. Each team thread executes the following statement:

execute (0, 99, new IntegerForLoop()...);

C6910_6.indd Sec1:82C6910_6.indd Sec1:82 1/26/09 8:26:55 AM1/26/09 8:26:55 AM

 6.3 Parallel For Loop 83

start()

run(0,24)

finish()

IntegerForLoop

start()

run(25,49)

finish()

IntegerForLoop

start()

run(50,74)

finish()

IntegerForLoop

start()

run(75,99)

finish()

IntegerForLoop

execute(0,99,new IntegerForLoop()...)

ParallelRegion

barrier

Thr
0

Thr
1

Thr
2

Thr
3

 Figure 6.3 A parallel team executing a parallel for loop

Each thread, therefore, first creates its own new instance of the Integer For Loop subclass. Each thread then
calls the parallel region’s execute() method, passing in the loop index lower bound (0), the loop index
upper bound (99), and the thread’s own IntegerForLoop object. (All threads must pass in the same loop
index lower and upper bounds, and these must be the bounds for the whole loop.) The parallel region’s
execute() method partitions the complete index range, 0–99 in this example, into K equal-sized
subranges, or chunks, namely 0–24, 25–49, 50–74, and 75–99. Each thread now proceeds to call its own
IntegerForLoop object’s start(), run(), and finish() methods in sequence. However, each thread
passes a different chunk to the run() method. Thread 0 passes the arguments first = 0 and last = 24,
thread 1 passes the arguments 25 and 49, thread 2 passes the arguments 50 and 74, and thread 3 passes
the arguments 75 and 99. After completing this sequence of execution through its IntegerForLoop object,
each thread waits at a barrier. A barrier is a thread synchronization mechanism that ensures that none
of the threads will proceed past the barrier until all the threads have arrived at the barrier. When the last
thread finishes its portion of the parallel for loop and arrives at the barrier, like the final horse arriving at
the starting gate for the Kentucky Derby, the barrier opens. Each thread resumes execution, returns from
the parallel re gion’s execute() method, and continues executing the code that comes after the parallel
for loop in the parallel region’s run() method.

As with the parallel region, it’s important to emphasize that you don’t have to do the preceding steps.
Parallel Java does it all for you. You merely have to write the code you want executed in the parallel for
loop’s start(), run(), and finish() methods.

The purpose of the parallel for loop’s start() and finish() methods is to do any necessary ini-
tialization within the parallel for loop before beginning the actual loop iterations, and to do any necessary
finalization after finishing the loop iterations. If no initialization or finalization code is necessary, simply
omit the start() or finish() method or both.

C6910_6.indd Sec1:83C6910_6.indd Sec1:83 1/26/09 8:26:55 AM1/26/09 8:26:55 AM

84 CHAPTER 6 SMP Parallel Programming

The parallel for loop’s run() method’s job is to execute the loop iterations for the chunk whose
first and last loop indexes, inclusive, are passed in as arguments. Thus, the run() method typically
looks like this.

 public void run (int first, int last)

 {

 for (int i = first; i <= last; ++ i)

 {

 // Code for loop iteration i

 }

 }

Note that your code does not decide which chunk a particular call of the run() method will perform.
The parallel region decides that. The run() method must do exactly the loop iterations specified by the
first and last arguments, no more, no less.

Figure 6.3 shows where the parallel for loop’s speedup comes from. Instead of executing 100 loop
iterations in sequence as a regular program would do, the parallel program executes four chunks of
25 iterations in parallel, each chunk being executed by a different thread. Each thread (processor) does
1/K of the total work, resulting in a speedup.

Parallel Java also has classes for doing a parallel loop with an index of type long, and for doing a
parallel loop over a collection of objects instead of a range of indexes. For further information, refer to
the Parallel Java documentation.

6.4 Variables
Having looked at where to put the code for a Parallel Java program, let us turn our attention to where to
put the variable declarations for a Parallel Java program.

Following the aforementioned coding idioms gives rise to a nested class structure (Figure 6.4). The
parallel for loop class is nested inside the parallel region class, which in turn is nested inside the main
program class.

 public class MainProgramClass

 {

 // Shared variable declarations

 static int a;

 public static void main

 (String[] args)

 throws Exception

 {

 // Main program local variable declarations

 int b;

C6910_6.indd Sec1:84C6910_6.indd Sec1:84 1/26/09 8:26:55 AM1/26/09 8:26:55 AM

 6.4 Variables 85

run()
 int d;

int c;

IntegerForLoop

run()
 int d;

int c;

IntegerForLoop

run()
 int d;

int c;

IntegerForLoop

run()
 int d;

int c;

IntegerForLoop

ParallelRegion

main()
 int b;

static int a;
MainProgramClass

 Figure 6.4 Variable declarations in a Parallel Java program

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run()

 {

 execute (0, 99, new IntegerForLoop()

 {

 // Per-thread variable declarations

 int c;

 public void run (int first, int last)

 {

 // Loop local variable declarations

 int d;

 for (int i = first; i <= last; ++ i)

 {

 // Code for loop iteration i

 }

 }

 });

 }

 });

 }

 }

C6910_6.indd Sec1:85C6910_6.indd Sec1:85 1/26/09 8:26:55 AM1/26/09 8:26:55 AM

86 CHAPTER 6 SMP Parallel Programming

Variables can be declared either as fields of these classes, or as local variables of the classes’
methods. In practice, there are four categories of variables in a Parallel Java program; they differ in the
places they are declared and in the ways they are accessed.

Shared variables (such as a) are declared as static fields of the main program class. Because they
are static fields, there is only one instance of each shared variable. Furthermore, each shared variable can
be accessed by code in the static main() method, by code in other static methods of the main program
class, and by code in the parallel region and parallel for loop subclasses. Thus, the main program thread
and all the parallel team threads can access every shared variable. These variables are called “shared”
variables to emphasize that all the threads access the same instance of each variable. If one thread
changes the value of a shared variable, all the other threads will see that new value.

Per-thread variables (such as c) are declared as instance fields of the parallel for loop subclass.
Such variables can be accessed by code anywhere in the parallel for loop subclass. Because each thread
creates its own instance of the parallel for loop subclass, each thread gets its own separate instances of
the per-thread variables. If one thread changes the value of a per-thread variable, this will not affect the
value of the corresponding per-thread variable in any other thread; per-thread variables are not shared.
The parallel for loop’s start() and finish() methods can be used to initialize and finalize these per-
thread variables.

Loop local variables (such as d) are declared as local variables of the parallel for loop subclass’s
run() method. The loop control variable (such as i) is also a loop local variable. Loop local variables
can be accessed only by code in the parallel for loop’s run() method, and each thread gets its own sepa-
rate instance of each loop local variable.

Main program local variables (such as b) are declared as local variables of the static main()
method. Such variables are used only by the main thread executing the main() method. (Code inside the
parallel region or parallel for loop cannot access main program local variables.)

An SMP parallel program is organized around a data structure or data structures located in shared
memory, that is, in memory accessed by all the processors (threads) in the SMP parallel computer
(Figure 6.5). In a result parallel program, the shared data structure may contain all the pro gram’s results.
In an agenda parallel program, the shared data structure may contain the program’s agenda items and
their results. In a specialist parallel program, the shared data structure may contain certain tasks’ outputs,
which become other tasks’ inputs. To get a parallel speedup, all the threads must access the same data
structure, each thread working with a different piece of the data structure simultaneously. In a Parallel
Java program, a data structure is made to reside in shared memory by declaring the data structure as a
shared variable. The JVM then ensures that all the threads access the same instance of the variable.

 Figure 6.5 Shared data structure, each thread accessing its own portion

Shared data structure

Thr
0

Thr
1

Thr
2

Thr
3

C6910_6.indd Sec1:86C6910_6.indd Sec1:86 1/26/09 8:26:55 AM1/26/09 8:26:55 AM

 6.5 For Further Information 87

If a variable is shared by multiple threads, however, we must make sure that the threads do not
conflict with each other when they access the shared variable. A thread can do certain operations on a
variable:

A thread can • read a variable; that is, the thread can examine the variable’s
state without changing its state.

A thread can • write a variable; that is, the thread can change the variable’s
state.

A thread can • update a variable; that is, the thread can read the variable’s state,
compute a new state based on the old state, and write the new state back into
the variable.

A conflict can arise when two or more threads do certain operations on a variable at the same time:

A • read-write conflict can arise if one thread reads a variable at the same time
as another thread writes or updates the variable; the reading thread may read
an inconsistent state where part of the state is the old state and part of the state
is the new state.

A • write-write conflict can arise if two threads write or update a variable at
the same time; one thread’s writes may wipe out some of the other thread’s
writes, again leading to an inconsistent state.

However, there is no conflict if two threads read a variable at the same time.•

If multiple threads cannot conflict when they access a shared variable, then we don’t have to do any-
thing special. But if multiple threads can conflict when they access a shared variable, we must
synchronize the threads to eliminate the potential conflict. Parallel Java has several constructs for thread
synchronization that we will study later. As we will see, thread synchronization adds overhead to the
parallel program and can significantly increase the program’s running time. Because the goal of parallel
programming is to reduce the running time, we must carefully analyze each shared variable for thread
conflicts and introduce thread synchronization only where it is absolutely needed.

A key aspect of designing a Parallel Java program, then, is to decide where in the program to declare
each variable, depending on whether the variable does or does not need to be shared. A second key aspect
is to decide whether and how to synchronize the multiple threads accessing each shared variable. This
will be a recurring theme as we study SMP parallel programming in the chapters ahead.

With this introduction to Parallel Java’s constructs for SMP parallel programming, we are ready to
convert the sequential AES key search program from Chapter 5 to an SMP parallel program in Chapter 7.

6.5 For Further Information
On the concepts of multithreading and thread synchronization, see any operating systems textbook,
such as:

A. Silberschatz, P. Galvin, and G. Gagne. • Operating System Concepts,
8th Edition. John Wiley & Sons, 2009.

C6910_6.indd Sec1:87C6910_6.indd Sec1:87 1/26/09 8:26:55 AM1/26/09 8:26:55 AM

88 CHAPTER 6 SMP Parallel Programming

A. Tanenbaum. • Modern Operating Systems, 3rd Edition. Prentice-Hall, 2007.

W. Stallings.• Operating Systems: Internals and Design Principles, 5th Edition.
Prentice-Hall, 2004.

G. Nutt. • Operating Systems, 3rd Edition. Addison-Wesley, 2003.

On the concepts of multithreaded programming and thread synchronization in Java:

B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. • Java
Concurrency in Practice. Addison-Wesley, 2006.

D. Lea. • Concurrent Programming in Java: Design Principles and Patterns,
3rd Edition. Addison-Wesley, 2006.

Java Threads Tutorial. •
http://java.sun.com/docs/books/tutorial/essential/threads/ index.html

C6910_6.indd Sec1:88C6910_6.indd Sec1:88 1/26/09 8:26:55 AM1/26/09 8:26:55 AM

http://java.sun.com/docs/books/tutorial/essential/threads/index.html
http://java.sun.com/docs/books/tutorial/essential/threads/index.html

89

C H A P T E R 7
in which we convert the sequential program for a massively parallel cryptographic

problem into an SMP parallel program; and we learn how to apply Parallel Java’s SMP

parallel programming features

Massively Parallel Problems, Part 2

C6910_7.indd 89C6910_7.indd 89 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

C H A P T E R7 Massively Parallel Problems, Part 2

7.1 AES Key Search Parallel Program Design
Now that we’ve been introduced to the constructs for writing SMP parallel programs in Parallel Java,
let’s return to the AES partial key search problem from Chapter 5. In that chapter, we built a sequential
program that found the complete encryption key, given a plaintext, the corresponding ciphertext, and the
partial key. Now we’ll build an SMP parallel program that does the same thing.

The first step in designing the parallel version is to identify the computational code that will be
executed in parallel. That’s easy; it is the for loop in the middle of the main program. As we have already
remarked, because this is a massively parallel problem, each computation (loop iteration) is independent
of every other computation, and the iterations can all be done in parallel. Thus, the for loop will become a
parallel for loop inside a parallel region.

The next step is to analyze the program’s variables, decide which ones will and will not be shared by
the parallel team threads, and decide where to declare each variable.

plaintext• , ciphertext, partialkey, n—A program’s command-line
arguments are typically used throughout the program. They will always be
shared variables.

keylsbs• —This holds the least significant 32 bits of the partial key. It is writ-
ten by the main program during the setup phase and read (but not written) by
each thread during the parallel for loop. Because it is accessed both by the
main program and by the threads, it will be a shared variable.

maxcounter• —This is the upper bound for the loop counter that ranges over
all possible values for the missing key bits. It is written by the main program
and read (but not written) during the parallel for loop. It, too, will be a shared
variable.

foundkey• —This holds a copy of the key that was found to encrypt the plain-
text correctly. It is written by one of the threads during the parallel for loop
and read by the main program during the cleanup phase when the results are
printed. It will be a shared variable.

trialkey• —This holds the complete key that the current loop iteration is
using for its trial encryption. While the most significant bits of the trial key
remain constant, the least significant bits are different on every loop iteration.
Therefore, trialkey must be a per-thread variable. Each thread must have its
own copy so that one thread will not overwrite another thread’s trial key.

C6910_7.indd 90C6910_7.indd 90 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

 7.1 AES Key Search Parallel Program Design 91

trialciphertext• —This receives the result of the current loop itera tion’s
trial encryption. Again, this will be different on every loop iteration. It, too,
will be a per-thread variable, so that one thread will not overwrite another
thread’s trial ciphertext.

cipher• —This is the AES block cipher object that does the actual encryp-
tion. It uses a different key on each loop iteration. It, too, will be a per-thread
variable, so that one thread will not change the key of another thread’s cipher
object.

t1• , t2—These are used solely within the main program for timing measure-
ments. They will remain local variables of the main program.

Now we need to take a second look at each of the shared variables and decide whether the threads
can conflict with each other when accessing the shared variables. If a conflict is possible, we have to
decide how to synchronize the threads. We don’t have to worry about the per-thread variables, because
only one thread will ever access those.

plaintext• , ciphertext, partialkey, n—These are write once, read
many (WORM) variables. Once initialized from the command-line argu-
ments, they are never written again, only read. Because multiple threads
reading a shared variable do not conflict with each other, no synchronization
is needed for these variables.

keylsbs• —WORM variable. No synchronization is needed.

maxcounter• —WORM variable. No synchronization is needed.

foundkey• —Because there are 2256 possible AES keys, but only 2128 pos-
sible ciphertext blocks, it must be the case that different keys yield the same
ciphertext block for a given plaintext block. Therefore, it is possible for
different threads to find a correct key and store it in the foundkey variable.
Consequently, write-write conflicts are possible, and thread synchronization is
needed. After the parallel region has finished, when the main program prints
the contents of foundkey, only the main thread is executing; so no conflicts
are possible and no synchronization is needed at this point.

The remaining variables are per-thread variables or main program local vari-•
ables and need no synchronization.

We have reached the conclusion that this program does not need to synchronize the threads when
accessing the shared variables, except when writing the foundkey variable. It’s important to empha-
size that we are not merely omitting the synchronization out of laziness. We have carefully analyzed the
program, decided where synchronization is and is not needed, and deliberately omitted any unnecessary
synchronization, thereby eliminating the overhead that goes with it. When designing a parallel program,
you must always analyze how your variables are accessed.

To prevent write-write conflicts over the foundkey variable, each thread will make a copy of the
correct key in a temporary byte array, and then will store a reference to this byte array in the foundkey

C6910_7.indd 91C6910_7.indd 91 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

92 CHAPTER 7 Massively Parallel Problems, Part 2

variable. Reads and writes of an array reference variable in Java are guaranteed to be atomic. If multiple
threads try to read or write the variable simultaneously, the JVM ensures that each read or write opera-
tion finishes before the next read or write operation begins. Thus, the JVM itself synchronizes multiple
threads writing the foundkey variable. It’s important to emphasize that this synchronization happens
only when writing the array reference, not the array elements. That’s why each thread makes its own copy
of the array elements first, and afterward writes the array reference into the foundkey variable.

Reads and writes of the following Java primitive types are guaranteed to be atomic: boolean, byte,
char, short, int, and float. Reads and writes of object and array references are also guaranteed to
be atomic. Reads and writes of the types long and double are not guaranteed to be atomic. In addition,
updates of any type of variable—where the old value is read and a new value is computed and written
back—are not guaranteed to be atomic. SMP parallel programs where multiple threads use long or
double shared variables, or where multiple threads update shared variables, must synchronize the
threads when they access such variables.

7.2 AES Key Search Parallel Program Code
Taking the foregoing design considerations into account, here is the code for the SMP parallel version of
the AES key search program, class FindKeySmp.

package edu.rit.smp.keysearch;

import edu.rit.crypto.blockcipher.AES256Cipher;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Hex;

public class FindKeySmp

 {

As in the sequential version, we declare the shared variables as static fields of the main program class.

 // Command line arguments.

 static byte[] plaintext;

 static byte[] ciphertext;

 static byte[] partialkey;

 static int n;

 // The least significant 32 bits of the partial key.

 static int keylsbs;

 // The maximum value for the missing key bits counter.

 static int maxcounter;

C6910_7.indd Sec1:92C6910_7.indd Sec1:92 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

 7.2 AES Key Search Parallel Program Code 93

In the main program’s setup phase, we initialize the shared variables.

 // The complete key.

 static byte[] foundkey;

 /**

 * AES partial key search main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length != 4) usage();

 plaintext = Hex.toByteArray (args[0]);

 ciphertext = Hex.toByteArray (args[1]);

 partialkey = Hex.toByteArray (args[2]);

 n = Integer.parseInt (args[3]);

 // Make sure n is not too small or too large.

 if (n < 0)

 {

 System.err.println ("n = " + n + " is too small");

 System.exit (1);

 }

 if (n > 30)

 {

 System.err.println ("n = " + n + " is too large");

 System.exit (1);

 }

 // Set up shared variables for doing trial encryptions.

 keylsbs =

 ((partialkey[28] & 0xFF) << 24) |

 ((partialkey[29] & 0xFF) << 16) |

 ((partialkey[30] & 0xFF) << 8) |

 ((partialkey[31] & 0xFF));

 maxcounter = (1 << n) - 1;

C6910_7.indd Sec1:93C6910_7.indd Sec1:93 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

94 CHAPTER 7 Massively Parallel Problems, Part 2

Now comes the computational heart of the program. We set up a parallel team, which executes a parallel
region, which in turn executes a parallel for loop with the index going from 0 to 2n – 1 (maxcounter),
inclusive.

 // Do trial encryptions in parallel.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (0, maxcounter, new IntegerForLoop()

 {

We declare the per-thread variables as instance fields of the parallel for loop subclass.

 // Thread local variables.

 byte[] trialkey;

 byte[] trialciphertext;

 AES256Cipher cipher;

We initialize the per-thread variables in the parallel for loop’s start() method.

 // Set up thread local variables.

 public void start()

 {

 trialkey = new byte [32];

 System.arraycopy

 (partialkey, 0, trialkey, 0, 32);

 trialciphertext = new byte [16];

 cipher = new AES256Cipher (trialkey);

 }

The sequential program’s loop body ends up in the parallel for loop’s run() method.

 // Try every possible combination of low-order key

 // bits.

 public void run (int first, int last)

 {

 for (int counter = first; counter <= last;

 ++ counter)

 {

 // Fill in low-order key bits.

 int lsbs = keylsbs | counter;

 trialkey[28] = (byte) (lsbs >>> 24);

C6910_7.indd Sec1:94C6910_7.indd Sec1:94 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

 7.2 AES Key Search Parallel Program Code 95

If a thread finds the correct key, it copies the key into a temporary byte array and writes the array refer-
ence into the shared foundkey variable. The JVM synchronizes multiple threads writing foundkey,
preventing write-write conflicts.

 trialkey[29] = (byte) (lsbs >>> 16);

 trialkey[30] = (byte) (lsbs >>> 8);

 trialkey[31] = (byte) (lsbs);

 // Try the key.

 cipher.setKey (trialkey);

 cipher.encrypt (plaintext, trialciphertext);

 // If the result equals the ciphertext, we

 // found the key.

 if (match (ciphertext, trialciphertext))

 {

 byte[] key = new byte [32];

 System.arraycopy (trialkey, 0, key, 0, 32);

 foundkey = key;

 }

 }

 }

 });

 }

 });

At the conclusion of the parallel computation, the main program prints the results and exits as before.

 // Stop timing.

 long t2 = System.currentTimeMillis();

 // Print the key we found.

 System.out.println (Hex.toString (foundkey));

 System.out.println ((t2-t1) + " msec");

 }

 /**

 * Returns true if the two byte arrays match.

 */

 private static boolean match

 (byte[] a,

 byte[] b)

C6910_7.indd Sec1:95C6910_7.indd Sec1:95 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

96 CHAPTER 7 Massively Parallel Problems, Part 2

And that’s it! To go from the sequential program to the SMP parallel program, we moved some
of the variables’ declarations to a different point to make them per-thread variables. We added a paral-
lel team, parallel region, and parallel for loop. We moved the per-thread variable initialization into the
parallel for loop’s start() method. We moved the loop body into the parallel for loop’s run() method.
And we changed the code that saves the correct key to prevent thread conflicts. The parallel program’s
structure is much the same as the sequential program’s, except the parallel computation code follows the
nested parallel team–parallel region–parallel for loop idiom we studied in Chapter 6.

We will put off examining the FindKeySeq and FindKeySmp programs’ running times until Chapter 8.
Before moving on, though, let’s consider a slight variation of these programs.

7.3 Early Loop Exit
As currently written, the AES key search programs try all possible values for the missing key bits, even
though there’s no need to continue once the correct key is found. Let’s change that. In the sequential
FindKeySeq program, when the correct key is found, it’s easy enough to do an early loop exit by adding
a break statement.

 {

 boolean matchsofar = true;

 int n = a.length;

 for (int i = 0; i < n; ++ i)

 {

 matchsofar = matchsofar && a[i] == b[i];

 }

 return matchsofar;

 }

 }

 for (int counter = 0; counter < maxcounter; ++ counter)

 {

 . . .

 if (match (ciphertext, trialciphertext))

 {

 . . .

 break;

 }

 }

However, if we add a similar break statement to the parallel FindKeySmp program, it won’t work.
The break statement will exit the loop in the parallel team thread that happens to find the correct key, but
the other threads will stay in their loops trying useless keys. What we really want is for all the threads to
exit their loops as soon as any thread finds the key.

C6910_7.indd Sec1:96C6910_7.indd Sec1:96 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

 7.3 Early Loop Exit 97

Here’s one way to do it. At the top of the loop, test foundkey and exit the loop if it is not null. This
works because foundkey is initially null, and when the correct key is discovered, foundkey is set to a
non-null array reference. Because foundkey is a shared variable (declared as a static field of the main
program class), all the threads will be testing and setting the same variable, hence all the threads will exit
their loops as soon as any thread finds the key. Reads and writes of an array reference variable are atomic,
so no additional synchronization is needed when testing foundkey.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (0, maxcounter, new IntegerForLoop()

 {

 . . .

 public void run (int first, int last)

 {

 for (int counter = first;

 counter <= last && foundkey == null;

 ++ counter)

 {

 . . .

 if (match (ciphertext, trialciphertext))

 {

 byte[] key = new byte [32];

 System.arraycopy (trialkey, 0, key, 0, 32);

 foundkey = key;

 }

 }

 }

 });

 }

 });

The FindKeySeq2 and FindKeySmp2 programs in the Parallel Java Library are sequential and SMP
parallel versions of the AES key search program with an early loop exit as soon as the correct key is
found. They will usually finish sooner than the original versions.

It’s high time we measured and analyzed the SMP parallel AES partial key search program’s perfor-
mance. That will be the subject of Chapters 8, 9, and 10.

C6910_7.indd Sec1:97C6910_7.indd Sec1:97 1/26/09 8:16:08 AM1/26/09 8:16:08 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

99

C H A P T E R 8
in which we define several metrics for a parallel program’s performance; we predict

what the ideal theoretical metrics should look like; and we measure the actual metrics

for our parallel program

Measuring Speedup

C6910_8 99C6910_8 99 1/26/09 11:26:36 AM1/26/09 11:26:36 AM

C H A P T E R8 Measuring Speedup

8.1 Speedup Metrics
In Chapter 1, we said that one way parallel computing could help with to day’s massive computational
problems is to reduce the time needed to get the results—a speedup. The time has come to define
speedup precisely and to see how much speedup a real parallel program can achieve.

A program’s problem size, N, is the number of computations the program performs to solve that
problem. The particular problem determines how the problem size is measured. For an image-processing
problem, the problem size might be the number of pixels in the image. For an n × n-pixel image, the
problem size would be N = n2. For the AES key search problem, the problem size is the number of keys
tested: N = 2n, where n is the number of missing key bits. In general, the problem size is defined so that
the amount of computation is proportional to N.

A program’s running time, T, is the amount of time the program takes to compute the answer to a
problem. Many factors influence T. The com puter’s hardware characteristics—such as CPU clock speed,
memory speed, caches, and so on—affect T; the faster the computer, the shorter the running time. T
depends on the problem size; the larger the problem, the longer the running time. Furthermore, the algo-
rithm used to solve the problem determines how quickly T increases as n increases; an O(n log n) algo-
rithm’s running time will not grow nearly as quickly as an O(n2) algo rithm’s. T also depends on how the
program is implemented; the same algorithm can sometimes run faster when coded differently. T depends
on the number of processors K; adding more processors reduces the running time (one hopes).

When comparing the performance of different versions of a program, such as sequential and paral-
lel versions using the same basic algorithm, we will always run the programs on the same computer.
Furthermore, each processor of the parallel computer will have the same hardware characteristics; each
processor will have the same CPU clock speed, for example. Thus, there will be no variation in the
running times due to different algorithms or different hardware characteristics, and the only factors that
influence T are N and K. We use the notation T(N,K) to emphasize that the running time is a function of
the problem size and the number of processors. When we need to distinguish the running times of the
sequential version and the parallel version of a certain program, we write Tseq(N,K) and Tpar(N,K).

A program’s speed, S, is the rate at which program runs can be done. Speed is the reciprocal of run-
ning time:

 (8.1)

T is measured in seconds per program run, S is measured in program runs per second.

C6910_8 100C6910_8 100 1/26/09 11:26:36 AM1/26/09 11:26:36 AM

 8.2 Amdahl’s Law 101

A program’s speedup is the speed of the parallel version running on K processors relative to the
speed of the sequential version running on one processor for a given problem size N:

 (8.2)

Note that the denominator is Sseq(N,1), not Spar(N,1). Speedup compares the parallel version of a program
to the sequential version, not the parallel version to itself. If we were solving the problem on one proces-
sor, we would run the sequential version of the program to avoid the parallel ver sion’s extra overhead.
(Unfortunately, some published papers calculate the speedup of the parallel version with respect to itself
rather than the sequential version, which can result in misleading performance numbers.)

Substituting Equation 8.1 into Equation 8.2 yields a formula for calculating speedup directly from
running time, which is more convenient:

 (8.3)

Ideally, a parallel program should run twice as fast on two processors as on one processor, three
times as fast on three processors, four times as fast on four processors, and so on. Thus, ideally, Speedup
should equal K. A plot of the ideal Speedup versus K is a straight line with unity slope, so this ideal
speedup is also called a linear speedup.

As we will see, however, real parallel programs usually fall short of this ideal. Efficiency is a metric
that captures how close to ideal a program’s speedup is:

 (8.4)

An ideal parallel program has an efficiency of 1 for all problem sizes N and all numbers of processors K. A
real parallel program typically has an efficiency less than 1, so that the speedup is less than K—a sublinear
speedup. When designing parallel programs, we nonetheless strive to achieve the goal of a linear speedup.

The only way to know how closely we have achieved our goal is to run the program with a range of
N and K values, measure T, and calculate the speedup and efficiency. However, it helps if we know what
the speedup and efficiency are “supposed” to look like as a function of N and K. If the speedup and effi-
ciency measurements don’t look the way they’re supposed to, the program’s design might have a problem
that must be fixed.

8.2 Amdahl’s Law
Forty years ago, Gene Amdahl—the chief designer of IBM’s System/360 family of mainframe computers, and
who later founded his own company, Amdahl Corporation, to make IBM plug-compatible mainframes—
published a short paper titled “Validity of the single processor approach to achieving large scale computing
capabilities.” In this paper, he compared two approaches for solving massive computational problems—the

C6910_8 101C6910_8 101 1/26/09 11:26:36 AM1/26/09 11:26:36 AM

102 CHAPTER 8 Measuring Speedup

single-processor approach (sequential programs) and the then-newfangled multiple-processor approach
(parallel programs). Amdahl’s key insight was that a certain portion of any program must be executed
sequentially—nowadays, we would say in a single thread. This portion consists of initialization, cleanup,
thread synchronization, and similar housekeeping overhead, as well as I/O in some programs. This sequen-
tial portion can use only one processor, no matter how many processors are available in the parallel computer.
Consequently, there is an upper bound on the speedup a parallel program can achieve.

K = 1
Sequential Parallelizable

F T(N,1) (1 − F) T(N,1)

T(N,1)

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

Figure 8.1 A parallel program with running time T(N,1) and sequential
fraction F executing with different numbers of processors K

C6910_8 102C6910_8 102 1/26/09 11:26:36 AM1/26/09 11:26:36 AM

 8.2 Amdahl’s Law 103

Let the sequential fraction F, where 0 ≤ F ≤ 1, be the fraction of a program that must be executed
sequentially. If, for a given problem size N, a program’s running time on a single processor is T(N,1),
then F⋅T(N,1) of the running time must be executed sequentially and (1–F)⋅T(N,1) can be executed in
parallel. If the latter portion of the running time is split equally among K processors (Figure 8.1), then the
parallel program’s running time is:

 (8.5)

Equation 8.5 is known as Amdahl’s Law, although that moniker was bestowed by others, not by Amdahl.
From Amdahl’s Law, we can derive equations for speedup and efficiency as a function of the sequen-

tial fraction:

 (8.6)

 Eff N K
Speedup N K

K KF F
(,)

(,)= =
+ −
1

1
 (8.7)

Consider what happens to the speedup as the number of processors increases. In the limit as K goes
to infinity, the speedup (Equation 8.6) goes to 1/F. No matter how many processors we add, we will
never achieve a speedup greater than the reciprocal of the program’s sequential fraction. Furthermore, in
the limit as K goes to infinity, the efficiency (Equation 8.7) goes to 0. As we add processors, the effi-
ciency just gets worse and worse. Figures 8.2 and 8.3 plot speedup and efficiency from Amdahl’s Law as
a function of K for several values of F.

From Amdahl’s Law, we can gain three important insights regarding parallel program design. The
first insight is that a program’s sequential fraction F has to be very small if we want to achieve good
speedup and efficiency as we scale up the number of processors in our parallel computer. For example,
Figure 8.3 shows that if we want an efficiency of 90 percent or better as we scale up to 100 processors,
then we need a sequential fraction of 0.001 or less. In other words, no more than one-tenth of one percent
of the running time is allowed to execute on a single processor, and all the rest has to execute in parallel.
Sequential overhead in a parallel program severely reduces the program’s performance, and when design-
ing parallel programs, we go to great lengths, if necessary, to reduce F.

C6910_8 103C6910_8 103 1/26/09 11:26:36 AM1/26/09 11:26:36 AM

104 CHAPTER 8 Measuring Speedup

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

F = 0.001

F = 0.002

F = 0.005

F = 0.01

F = 0.02

F = 0.05

F = 0.1

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

Figure 8.2 Speedup predicted by Amdahl’s Law

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F = 0.001

F = 0.002

F = 0.005

F = 0.01

F = 0.02

F = 0.05

F = 0.1

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 8.3 Efficiency predicted by Amdahl’s Law

However, there is another way to get good performance as the number of processors scales up. Some
20 years after Amdahl’s paper John Gus taf son published a short paper titled “Reevaluating Amdahl’s
Law,” in which he pointed out that if the problem size is also scaled up as the number of processors is
scaled up—what we call a sizeup—the program can achieve a near-linear speedup, seemingly contradict-
ing Amdahl’s Law. We defer further discussion of Gustafson’s observation until Chapter 10. For now, we
simply note that Amdahl’s Law is not the last word in parallel program performance.

The second insight from Amdahl’s Law is the expected shape of the plot of a program’s efficiency
versus the number of processors. Figure 8.4 plots the efficiencies we expect to see when running a
parallel program on an eight-processor SMP parallel computer. The measured efficiencies should start
near 1 and decrease in roughly a straight line as K increases, unless F is relatively large. If the measured
efficiency plots don’t resemble Figure 8.4, we must figure out what’s going on and change the program’s
design to fix the problem.

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F = 0.005
F = 0.01
F = 0.02

F = 0.05

F = 0.1

F = 0.2

F = 0.5

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 8.4 Efficiency for an 8-processor SMP parallel computer

C6910_8 104C6910_8 104 1/26/09 11:26:36 AM1/26/09 11:26:36 AM

 8.3 Measuring Running Time 105

Suppose we have measured a program’s running time as a function of problem size and number of
processors, T(N,K), and have plotted the pro gram’s efficiency. The plot looks more or less like Figure 8.4,
with efficiency decreasing as K increases. But how can we tell whether the efficiency curves are behaving
as Amdahl’s Law predicts? The third insight from Amdahl’s Law yields another metric we can use to ana-
lyze a pro gram’s performance. Rearranging Equation 8.5 gives a formula for F as a function of T and K:

 (8.8)

Equation 8.8 lets us calculate F from the running-time measurements, namely T(N,1) and T(N,K), for the
parallel program. When F is determined from the data in this way, it is called the experimentally determined
sequential fraction, EDSF. (Note that we can only calculate EDSF for K ≥ 2.)

In a 1990 paper titled “Measuring parallel processor performance,” Alan Karp and Horace Flatt
pointed out how the EDSF metric can help diagnose problems in a parallel program’s performance. If
the program is behaving as shown in Figure 8.1—a sequential portion with a fixed running time plus a
parallel portion with a running time inversely proportional to K—then F should be a constant, and a plot
of EDSF versus K should be a horizontal line. If the measured EDSF plot does not show up as roughly a
horizontal line, it’s another indication that something is going on that might require changing the pro-
gram’s design.

Armed with these insights, we are ready to start measuring and analyzing the AES key search pro-
gram’s speedup, efficiency, and EDSF.

8.3 Measuring Running Time
The AES key search program measures its own wall-clock running time using the
System.currentTimeMillis() method. However, two program runs hardly ever yield the same run-
ning time measurements, even with identical inputs. There are several reasons for this. The system clock
is not perfectly accurate; readings may vary a few tens of milliseconds on typical systems. Chiefly, how-
ever, other user programs and background processes running on the same computer take CPU time away
from the parallel program, increasing the parallel program’s wall-clock running time by an unpredictable
amount on each run. We need a way to get a meaningful running time measurement for the program
despite all these random fluctuations.

Faced with random errors in an experimental measurement, it’s likely that your first thought is to
take several readings and use their average. However, this is not the proper procedure for measuring a
program’s running time. To see why, we have to examine the often-unstated assumption behind the proce-
dure of averaging a series of measurements.

An experimental reading of some quantity consists of the true value, known only to Mother Nature,
plus a measurement error arising from the measuring apparatus. Mathematically, the measurement error
is modeled as a random variable with some probability distribution. If we assume that the measurement
error obeys a Gaussian probability distribution with a mean of zero, then taking the average of a series of
measurements gives a close approximation to the true value. Figure 8.5 illustrates why. In this example,
the true value of the running time being measured is T = 10,000 msec. If the measurement error obeys a
Gaussian distribution with a mean of zero and a certain variance σ2, the measurements obey a Gaussian
distribution with a mean of 10,000 and the same variance (the bell-shaped curve). The black dots are

C6910_8 105C6910_8 105 1/26/09 11:26:36 AM1/26/09 11:26:36 AM

106 CHAPTER 8 Measuring Speedup

several measurements, which are samples of the Gaussian distribution. The sample mean ⎯T is the average
of the measurements. Probability theory tells us that with n measurements, ⎯T obeys a Gaussian distribution
with the same mean as T, 10,000, but with a variance of only σ2/n. Thus, ⎯T fluctuates around the true value
less widely than the raw measurements, making ⎯T more likely to be closer to, hence a better estimator of,
the true value than any of the raw measurements. In Figure 8.5, even though the measured T values fluctu-
ate between about 5,000 and 17,000, the sample mean of 10,095.2 ends up quite close to the true T value.

0 10000 20000

True T = 10000.0

Sample mean T = 10095.2

T Samples

Running time T (msec)

P
r

[T
]

Figure 8.5 Running-time measurement with a Gaussian error distribution

The problem is that when measuring a program’s wall-clock running time, the measurement error
distribution is not a zero-mean Gaussian. A Gaussian distribution is symmetric; positive and negative
errors both are equally possible. But the chief source of errors in the program’s wall-clock running time
does not have a symmetric distribution. When the operating system takes the CPU away from the parallel
program to respond to an interrupt or to let another process run, the parallel program’s running-time mea-
surement can only increase, never decrease. The measurement-error probability distribution ends up look-
ing more like Figure 8.6, which shows that the sample mean always ends up being larger than the true
value. When the measurement error is always positive, the best estimator of the true value is the minimum
of the measurements, not the average.

0 10000 20000

True T = 10000.0

Sample mean T = 12698.6Sample minimum T = 10315.4

T Samples

Running time T (msec)

P
r

[T
]

Figure 8.6 Running time measurement with a positive error distribution

C6910_8 106C6910_8 106 1/26/09 11:26:36 AM1/26/09 11:26:36 AM

 8.4 FindKeySmp Running Time Measurements 107

Based on these considerations, here’s the procedure we use in this book to measure our programs’
running times:

Ensure that the parallel program is the only user process running. Don’t let 1.
other users log in while timing measurements are being made. Don’t run other
programs such as editors, Web browsers, or e-mail clients.

To the extent possible, don’t have any server or daemon processes running, 2.
such as Web servers, e-mail servers, file servers, network time daemons, and
so on.

Prepare several input data sets, covering a range of problem sizes 3. N. Choose
the smallest problem size so that Tseq(N,1) is at least 60 seconds.

For each 4. N (each input data set), run the sequential version of the program
seven times. (The number of runs, seven, is just an arbitrary choice.) Take the
smallest of the running times as the measured Tseq(N,1) value.

For each 5. N, and for each K from 1 up to the number of available processors,
run the parallel version of the program seven times. Take the smallest of the
running times as the measured Tpar(N,K) value.

There are two reasons for measuring only problem sizes whose running times are 60 seconds or
more. First, if we’re willing to wait a certain amount of time for the program to finish before losing
patience, and the program takes less time than this “impatience threshold” even on one processor, then
there’s no point in trying to reduce the running time by going to multiple processors. For this book, we
arbitrarily peg the impatience threshold at 60 seconds. Second, when a Java program starts, the JVM
needs some time to “warm up”—to load and verify the class files, to detect hot spots, and to run the JIT
compiler to compile the hot spots’ bytecode to machine instructions. This warm-up overhead contributes
to the pro gram’s sequential portion. Running the program for a longer time reduces the sequential frac-
tion due to JVM warm-up.

8.4 FindKeySmp Running Time Measurements
Table 8.1 (at the end of the chapter) gives the running-time measurements in milliseconds for the AES
key search program, as well as the speedups, efficiencies, and EDSFs calculated from the running times.
The programs were run on a computer named “parasite,” a Sun Microsystems eight-processor SMP paral-
lel computer with four UltraSPARC-IV dual-core CPU chips, a 1.35 GHz CPU clock speed, and 16 GB
of main memory. The six input data sets had from n = 24 to 29 missing key bits, yielding problem sizes
of N = 16M, 32M, 64M, 128M, 256M, and 512M encryption keys tested. (“M” stands for 220.) In the K
column, “seq” denotes the sequential version of the program (FindKeySeq) and 1 through 8 denote the
parallel version of the program (FindKeySmp). The T column lists the smallest running time among the
seven program runs.

C6910_8 107C6910_8 107 1/26/09 11:26:37 AM1/26/09 11:26:37 AM

108 CHAPTER 8 Measuring Speedup

Figure 8.7 plots running time versus number of processors for the AES key search program. Note
that this is a log-log plot—both axes use a logarithmic scale rather than a linear scale. (See Appendix C
for further information about log-log plots.) The logarithmic scale is better suited to plotting data that
spans many orders of magnitude, as does the running time data. Furthermore, the log-log plot lets us eye-
ball whether the parallel program is achieving ideal performance. Ideally, T should be proportional to K–1.
This would show up on a log-log plot as a straight line with a slope of –1. If the T versus K curves don’t
look like that, the program’s performance is not ideal. As we can see, the AES key search program’s
performance is less than ideal, especially for larger numbers of processors.

1 1 0
1E1

1E2

1E3

1E4

N = 16M

N = 32M

N = 64M

N = 128M

N = 256M

N = 512M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

2 0

4 0

6 0

8 0

100

120

140

160

180

200

N = 16MN = 32MN = 64M

N = 128M

N = 256MN = 512M

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
N = 16MN = 32M
N = 64M

N = 128M

N = 256MN = 512M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

 Figure 8.7 FindKeySeq/FindKeySmp running-time metrics

C6910_8 108C6910_8 108 1/26/09 11:26:37 AM1/26/09 11:26:37 AM

 8.5 For Further Information 109

Figure 8.7 also plots speedup, efficiency, and EDSF versus number of processors for the AES key
search program. These curves reinforce what we saw in the running-time curves. For smaller numbers of
processors, we are getting close to linear speedups and efficiencies close to 1, but for larger numbers of
processors, the speedup and efficiency curves start jumping around. The efficiency curves in particular do
not look anything like what we would expect from Figure 8.4. The EDSF curves are all over the map, and
are nowhere near constant. Something is going on in the parallel program that must be fixed. This will be
the topic of Chapter 9.

By the way, the running-time metric plots in Figure 8.7 were produced by a Java program, class
Speedup, in the Parallel Java Library. The program takes the raw running-time measurements as in
Table 8.1, calculates and prints the running time, speedup, efficiency, and EDSF metrics, and generates
the plots. On each plot, the program labels each curve with the corresponding problem size (N = 16M,
N = 32M, and so on). If the curves fall on top of each other—as often happens with the speedup and
efficiency curves—then the labels fall on top of each other as well. Refer to the Parallel Java documen-
tation for instructions on how to use the Speedup program.

8.5 For Further Information
Amdahl’s original paper on parallel program performance:

G. Amdahl. Validity of the single processor approach to achieving large scale •
computing capabilities. In Proceedings of the AFIPS Spring Joint Computer
Conference, 1967, pages 483–485.

Gustafson’s original paper on parallel program performance:

J. Gustafson. Reevaluating Amdahl’s law. • Communications of the ACM,
31(5):532–533, May 1988.

A critique of Amdahl’s and Gustafson’s work:

Y. Shi. Reevaluating Amdahl’s law and Gustafson’s law. October 1996. •
http://joda.cis.temple.edu/~shi/docs/amdahl/amdahl.html

Karp’s and Flatt’s original paper on parallel program performance:

A. Karp and H. Flatt. Measuring parallel processor performance. •
Communications of the ACM, 33(5):539–543, May 1990.

C6910_8 109C6910_8 109 1/26/09 11:26:37 AM1/26/09 11:26:37 AM

http://joda.cis.temple.edu/~shi/docs/amdahl/amdahl.html

110 CHAPTER 8 Measuring Speedup

Table 8.1 FindKeySeq/FindKeySmp running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

16M seq 87026 128M seq 694908

16M 1 86914 1.001 1.001 128M 1 696352 0.998 0.998

16M 2 46291 1.880 0.940 0.065 128M 2 398902 1.742 0.871 0.146

16M 3 31581 2.756 0.919 0.045 128M 3 254240 2.733 0.911 0.048

16M 4 22931 3.795 0.949 0.018 128M 4 187697 3.702 0.926 0.026

16M 5 19715 4.414 0.883 0.034 128M 5 143717 4.835 0.967 0.008

16M 6 15333 5.676 0.946 0.012 128M 6 133041 5.223 0.871 0.029

16M 7 13138 6.624 0.946 0.010 128M 7 123930 5.607 0.801 0.041

16M 8 11561 7.528 0.941 0.009 128M 8 110477 6.290 0.786 0.038

32M seq 174282 256M seq 1396225

32M 1 174621 0.998 0.998 256M 1 1393962 1.002 1.002

32M 2 94301 1.848 0.924 0.080 256M 2 733449 1.904 0.952 0.052

32M 3 67931 2.566 0.855 0.084 256M 3 506964 2.754 0.918 0.046

32M 4 46449 3.752 0.938 0.021 256M 4 357525 3.905 0.976 0.009

32M 5 39578 4.404 0.881 0.033 256M 5 286268 4.877 0.975 0.007

32M 6 30895 5.641 0.940 0.012 256M 6 244600 5.708 0.951 0.011

32M 7 25567 6.817 0.974 0.004 256M 7 205257 6.802 0.972 0.005

32M 8 23649 7.370 0.921 0.012 256M 8 189344 7.374 0.922 0.012

64M seq 349907 512M seq 2693607

64M 1 348290 1.005 1.005 512M 1 2717345 0.991 0.991

64M 2 183820 1.904 0.952 0.056 512M 2 1358338 1.983 0.992 0.000

64M 3 125050 2.798 0.933 0.039 512M 3 913330 2.949 0.983 0.004

64M 4 96578 3.623 0.906 0.036 512M 4 705661 3.817 0.954 0.013

64M 5 70986 4.929 0.986 0.005 512M 5 582974 4.620 0.924 0.018

64M 6 62586 5.591 0.932 0.016 512M 6 476279 5.656 0.943 0.010

64M 7 51142 6.842 0.977 0.005 512M 7 416946 6.460 0.923 0.012

64M 8 45945 7.616 0.952 0.008 512M 8 363923 7.402 0.925 0.010

C6910_8 110C6910_8 110 1/26/09 11:26:37 AM1/26/09 11:26:37 AM

111

C H A P T E R 9
in which we see how cache interference can ruin a parallel program’s performance; we

study how to design programs to eliminate cache interference; and we measure the

effect on our program’s running time

Cache Interference

C6910_9.indd 111C6910_9.indd 111 1/26/09 8:26:48 AM1/26/09 8:26:48 AM

C H A P T E R9 Cache Interference

9.1 Origin of Cache Interference
To understand why the SMP parallel program for AES key search from Chapter 7 performs as poorly as
the metrics in Chapter 8 show, we have to take a detour into the internals of the JVM and the CPU.

Here again are the per-thread variables used by each thread in the FindKeySmp program’s paral-
lel team. These are declared as instance fields of the parallel for loop subclass and are initialized in the
parallel for loop’s start() method.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (0, maxcounter, new IntegerForLoop()

 {

 // Thread local variables.

 byte[] trialkey;

 byte[] trialciphertext;

 AES256Cipher cipher;

 // Set up thread local variables.

 public void start()

 {

 trialkey = new byte [32];

 System.arraycopy

 (partialkey, 0, trialkey, 0, 32);

 trialciphertext = new byte [16];

 cipher = new AES256Cipher (trialkey);

 }

When one of the parallel team threads creates an instance of the parallel for loop subclass, the JVM
allocates a block of storage in the com puter’s main memory to hold the parallel for loop object’s instance
fields. The storage block consists of four bytes to store the reference to the trial key array, four bytes to
store the reference to the trialciphertext array, four bytes to store the reference to the cipher object,
and a few extra bytes of overhead for the JVM’s internal use. (This assumes a 32-bit CPU where memory
addresses are 32 bits, or 4 bytes.)

C6910_9.indd 112C6910_9.indd 112 1/26/09 8:26:49 AM1/26/09 8:26:49 AM

 9.1 Origin of Cache Interference 113

When the trialkey variable is initialized in the parallel for loop’s start() method with the
expression new byte [32], the JVM allocates another block of storage to hold the byte array and stores
a reference to this block in the trialkey variable. The block consists of JVM overhead plus 32 bytes for
the array elements. Likewise, the trialciphertext and cipher variables each get a block of stor-
age. The cipher object is an instance of class AES256Cipher, so storage blocks are also allocated for
the object itself and for its instance fields. When all the threads have finished initializing their per-thread
variables, the storage blocks might end up arranged in main memory somewhat as shown in Figure 9.1.
(Actually, the JVM is allowed to place each storage block wherever it wants; the JVM is not required to
allocate one thread’s storage blocks contiguously.)

However, the computer’s CPUs do not access the main memory directly. As described in Chapter 2,
a cache memory sits between the CPU and the main memory. When the CPU needs to read a memory
location, it first reads the appropriate cache line, a block of contiguous memory locations that includes
the desired location, from main memory into the cache. The CPU then reads the contents of the memory
location from the cache. Subsequent reads of the same memory location, or any location in the same
cache line, come from the fast cache rather than the slow main memory, thus speeding up the program’s
execution. The cache line size depends on the CPU hardware; it is typically 64 bytes or 128 bytes.

Figure 9.2 shows the cache line boundaries superimposed on the program variables’ storage blocks.
Note that while the cache line boundaries occur regularly every 64 or 128 memory locations, the bound-
aries between the variables’ storage blocks can fall at any locations, depending on the sizes of the blocks.
Therefore, it is quite possible for a particular cache line to contain pieces of different variables’ storage
blocks. In particular, it is possible for a particular cache line to contain pieces of different threads’
per-thread variables’ storage blocks—as is the case for the cache line in the middle of Figure 9.2.

Main memory

T
h

re
a

d
 0

p
e

r−
th

re
a

d
va

ri
a

b
le

s

T
h

re
a

d
 1

p
e

r−
th

re
a

d
va

ri
a

b
le

s

Figure 9.1 Per-thread variable memory layout

Main memory

T
h

re
a

d
 0

p
e

r−
th

re
a

d
va

ri
a

b
le

s

T
h

re
a

d
 1

p
e

r−
th

re
a

d
va

ri
a

b
le

s

C
a

ch
e

 lin
e

Figure 9.2 Memory layout showing cache line
boundaries

Recall from Chapter 2 that one example of a cache-management strategy involves a write-through
policy for dirty cache lines and an invalidation-based cache-coherence protocol. Suppose one CPU has

C6910_9.indd 113C6910_9.indd 113 1/26/09 8:26:49 AM1/26/09 8:26:49 AM

114 CHAPTER 9 Cache Interference

read a certain variable, so the variable’s cache line has been loaded into that CPU’s cache, and then that
CPU writes a value into the variable. The cache’s contents no longer agree with the main memory’s con-
tents, so the cache line is written from the cache back out to main memory. Furthermore, the writing CPU
sends a signal telling the other CPUs to invalidate the cache line in question in the other CPUs’ caches.
This causes the other CPUs to read the cache line’s new contents from the main memory the next time the
other CPUs access the cache line. This is how a thread executing in one CPU obtains a new value stored
into a shared variable by a thread executing in another CPU.

Now, consider what happens when one thread reads its own per-thread variable located in a certain
cache line and another thread reads its own per-thread variable located in the same cache line. Each CPU
loads the same cache line into its own cache, and then each CPU proceeds to read its own per-thread
variable from the cache line. Suppose the first thread writes a new value into its own per-thread variable.
The first thread’s write causes the second thread’s cache line to become invalidated. Suppose the second
thread reads its own per-thread variable a second time. Normally, this variable would be read from the
fast cache without needing to go to the main memory. But because the cache line was invalidated, the
second thread’s CPU has to reload the cache line from slow main memory before it can get the variable’s
value—even though the second thread’s variable’s value did not change. Thus, the overall program takes
longer to run than it would if the threads never wrote the same cache lines. This effect is called cache
interference.

Even though the threads never read or write the same memory locations (because each thread its
accessing only its own per-thread variables), the threads do read and write the same cache line (because
the JVM put different threads’ per-thread variables at addresses that fell in the same cache line). The
resulting performance reduction is similar to what happens if the threads have to take turns reading and
writing a shared variable. But because the threads are not actually sharing the variables, the phenomenon
is called false sharing.

Cache interference, then, is the reason the AES key search program fails to achieve the expected
performance. The more threads (processors) there are, the more opportunities there are for each CPU to
invalidate the other CPU’s cache lines, and the greater the detriment to the program’s performance.

9.2 Eliminating Cache Interference
To eliminate the cache interference that arises from false sharing of per-thread variables, we must ensure
that different threads’ per-thread variables never reside in the same cache line. One way to accomplish
this would be for the JVM to allocate each storage block starting at a cache line boundary. However, JVM
implementations don’t do this because of all the wasted space that would result in the cache lines at the
ends of the allocated blocks. A better way to avoid cache interference would be for the JVM to allocate
the storage blocks for each thread’s per-thread variables in separate regions of memory, with no over-
lapping cache lines. However, the Java language has no way for the programmer to declare variables as
per-thread variables for purposes of memory allocation. (While the Java platform does provide class java.
lang.ThreadLocal, this class does not cause variables to be allocated in different cache lines.)

Another way to eliminate cache interference is to add some padding in the memory layout. Suppose
every per-thread variable’s storage block has some extra bytes at the end, enough bytes to spill across
the next cache line boundary. Suppose the program never reads or writes these extra padding bytes.
Figure 9.3 shows the result. In Figure 9.3, the accessed portion of each variable’s storage block is

C6910_9.indd 114C6910_9.indd 114 1/26/09 8:26:49 AM1/26/09 8:26:49 AM

 9.2 Eliminating Cache Interference 115

shaded, and the padding (non-accessed) portion is white. You can see that the shaded portion of one
variable is never in the same cache line as the shaded portion of another variable. Consequently, cache
interference does not occur.

Main memory

T
h

re
a

d
 0

p
e

r−
th

re
a

d
va

ri
a

b
le

s

T
h

re
a

d
 1

p
e

r−
th

re
a

d
va

ri
a

b
le

s
C

a
ch

e
 lin

e

Accessed

Padding

 Figure 9.3 Memory layout with extra padding

Here’s how to get that extra padding. First, when declaring a class’s instance fields, throw in some
extra padding fields. Not knowing what the cache line size will be when we run the program, we’ll be
conservative and add 128 bytes of padding. Sixteen fields of type long, each of which occupies eight
bytes, does the job. Here are the AES key search program’s parallel for loop subclass’s instance fields,
with padding.

 // Thread local variables.

 byte[] trialkey;

 byte[] trialciphertext;

 AES256Cipher cipher;

C6910_9.indd 115C6910_9.indd 115 1/26/09 8:26:49 AM1/26/09 8:26:49 AM

116 CHAPTER 9 Cache Interference

 // Extra padding.

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

Note that getting the padding by declaring a 16-element long array instance field (or a 128-element
byte array instance field) does not work. The problem is that only a four-byte reference to the array ends
up in the parallel for loop subclass’s storage block; the actual array elements end up in a separate block.
The padding fields must be of a primitive type, such as long, for them to be located in the parallel for
loop subclass’s storage block.

Second, when creating a new array, allocate enough extra array elements to occupy 128 bytes. Here
is the parallel for loop subclass’s start() method, allocating extra padding in the byte arrays.

 // Set up thread local variables.

 public void start()

 {

 trialkey = new byte [32+128]; // + padding

 System.arraycopy

 (partialkey, 0, trialkey, 0, 32);

 trialciphertext = new byte [16+128]; // + padding

 cipher = new AES256CipherSmp (trialkey);

 }

The start() method also creates an instance of class AES256CipherSmp instead of class
AES256Cipher. Class AES256CipherSmp has extra padding in its instance fields. To eliminate cache
interference, all the per-thread storage blocks must include the extra padding.

This technique of adding padding bytes is not a perfect solution to the problem of cache interference.
It increases the amount of storage the program consumes. It requires either knowing the machine’s cache
line size (which reduces the program’s portability) or picking an amount of padding one hopes is larger
than any machine’s cache line size (which may increase storage usage unnecessarily). But most of all, it
requires that the programmer add code to do something the Java compiler or JVM should do. Perhaps a
future version of the Java platform will automatically place per-thread variables in memory so as to avoid
false sharing.

9.3 FindKeySmp3 Measurements
Program FindKeySmp3 in the Parallel Java Library is the same as program FindKeySmp from Chapter 7,
except it incorporates padding to avert cache interference, as described earlier. To see whether the padding
made a difference, we measure the FindKeySmp3 program’s running time on the same “parasite” SMP
parallel computer with the same input data sets as the FindKeySmp program. As it happens, the “parasite”
computer’s cache line size is 128 bytes.

C6910_9.indd 116C6910_9.indd 116 1/26/09 8:26:49 AM1/26/09 8:26:49 AM

 9.3 FindKeySmp3 Measurements 117

Table 9.1 (at the end of the chapter) gives the running-time measurements in milliseconds for the
modified AES key search program for various problem sizes N, as well as the speedups, efficiencies, and
EDSFs calculated from the running times. Figure 9.4 plots the running-time metrics versus the number
of processors. The T versus K plot looks a lot better than the FindKeySmp pro gram’s plot—it has nice
straight lines. The Speedup versus K and Eff versus K plots also look dramatically better, just as they
should according to Am dahl’s Law, with efficiencies greater than 0.92 for all problem sizes. Add ing extra
padding in the memory layout has definitely eliminated the effects of cache interference.

1 1 0
1E1

1E2

1E3

1E4

N = 16M

N = 32M

N = 64M

N = 128M

N = 256M

N = 512M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

N = 16MN = 32MN = 64M

N = 128M

N = 256M

N = 512M

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N = 16MN = 32MN = 64MN = 128MN = 256MN = 512M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

Figure 9.4 FindKeySeq/FindKeySmp3 running-time metrics

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 16MN = 32MN = 64MN = 128MN = 256MN = 512M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

The EDSF versus K plot still looks strange; the curves are not even close to being horizontal lines.
The fluctuations we see are due to two things: random measurement error, and the JVM’s JIT compiler.

C6910_9.indd 117C6910_9.indd 117 1/26/09 8:26:49 AM1/26/09 8:26:49 AM

118 CHAPTER 9 Cache Interference

To illustrate just how the JIT compiler affects a Parallel Java pro gram’s performance, Table 9.2 (at
the end of the chapter) lists the running-time metrics for a problem size of N = 16M with the JIT com-
piler disabled. Figure 9.5 compares the running-time metrics for N = 16M with and without the JIT com-
piler. From the plots, it’s apparent that the JIT compiler introduces a small but definite reduction in the
speedup and efficiency. Without the JIT compiler, the EDSF plot is nearly constant, as it should be, with
small fluctuations due to random measurement error. With the JIT compiler enabled, the sequential frac-
tion increases, as does the variation in the EDSF curve. The JIT compiler reduces the speedup, reduces
the efficiency, and increases the sequential fraction by taking a bit of CPU time away from the program’s
computations to compile the hot spots to machine code.

1 1 0
1E1

1E2

1E3

1E4

JIT

No JIT

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

JIT

No JIT

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

JIT
No JIT

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

JIT
No JIT

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 9.5 FindKeySeq/FindKeySmp3 running time metrics for N = 16M, with and without the JIT compiler

If the JIT compiler has negative effects on the speedup, efficiency, and sequential fraction, why not
run with the JIT compiler disabled all the time? The plot of running time versus processors makes the
answer clear. Without the JIT compiler, the program’s running time increases by a factor of 30. The CPU

C6910_9.indd 118C6910_9.indd 118 1/26/09 8:26:49 AM1/26/09 8:26:49 AM

 9.4 For Further Information 119

can execute native machine code instructions 30 times faster than it can interpret Java bytecodes. A slight
impact on the speedup, efficiency, and EDSF is well worth such a drastic reduction in the running time.
We always run our Parallel Java programs with the JIT compiler enabled (which is the default).

Now that we’ve dealt with the cache interference in the AES key search program, in Chapter 10
we’ll return to Gustafson’s observation and look at what happens when we scale up the problem size as
we scale up the number of parallel processors.

9.4 For Further Information
On cache-related and other issues affecting Java program performance on SMP parallel computers:

Z. Cao, W. Huang, and J. Chang. A study of Java virtual machine scalabil-•
ity issues on SMP systems. In Proceedings of the 2005 IEEE International
Workload Characterization Symposium, 2005, pages 119–128.

\
Table 9.1 FindKeySeq/FindKeySmp3 running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

16M seq 84981 128M seq 677725

16M 1 87346 0.973 0.973 128M 1 699172 0.969 0.969

16M 2 44166 1.924 0.962 0.011 128M 2 348984 1.942 0.971 -0.002

16M 3 29540 2.877 0.959 0.007 128M 3 235672 2.876 0.959 0.006

16M 4 22166 3.834 0.958 0.005 128M 4 175724 3.857 0.964 0.002

16M 5 17895 4.749 0.950 0.006 128M 5 140989 4.807 0.961 0.002

16M 6 15004 5.664 0.944 0.006 128M 6 119072 5.692 0.949 0.004

16M 7 12877 6.599 0.943 0.005 128M 7 101317 6.689 0.956 0.002

16M 8 11520 7.377 0.922 0.008 128M 8 90134 7.519 0.940 0.004

32M seq 170452 256M seq 1350158

32M 1 171926 0.991 0.991 256M 1 1364950 0.989 0.989

32M 2 87999 1.937 0.968 0.024 256M 2 704288 1.917 0.959 0.032

32M 3 58833 2.897 0.966 0.013 256M 3 469923 2.873 0.958 0.016

32M 4 44433 3.836 0.959 0.011 256M 4 355856 3.794 0.949 0.014

32M 5 35588 4.790 0.958 0.009 256M 5 284293 4.749 0.950 0.010

32M 6 29624 5.754 0.959 0.007 256M 6 237631 5.682 0.947 0.009

32M 7 25824 6.601 0.943 0.009 256M 7 202138 6.679 0.954 0.006

32M 8 22568 7.553 0.944 0.007 256M 8 180758 7.469 0.934 0.008

64M seq 339088 512M seq 2704213

64M 1 342194 0.991 0.991 512M 1 2805340 0.964 0.964

64M 2 176237 1.924 0.962 0.030 512M 2 1402986 1.927 0.964 0.000

64M 3 118196 2.869 0.956 0.018 512M 3 944822 2.862 0.954 0.005

64M 4 88214 3.844 0.961 0.010 512M 4 709384 3.812 0.953 0.004

64M 5 71601 4.736 0.947 0.012 512M 5 565657 4.781 0.956 0.002

64M 6 59347 5.714 0.952 0.008 512M 6 475636 5.685 0.948 0.003

64M 7 50980 6.651 0.950 0.007 512M 7 405143 6.675 0.954 0.002

64M 8 45032 7.530 0.941 0.008 512M 8 357483 7.565 0.946 0.003

C6910_9.indd 119C6910_9.indd 119 1/26/09 8:26:49 AM1/26/09 8:26:49 AM

120 CHAPTER 9 Cache Interference

T

Table 9.2 FindKeySeq/FindKeySmp3 running time-metrics without JIT compiler

N K T Spdup Eff EDSF

16M seq 2634676

16M 1 2638909 0.998 0.998

16M 2 1322203 1.993 0.996 0.002

16M 3 884351 2.979 0.993 0.003

16M 4 664967 3.962 0.991 0.003

16M 5 532116 4.951 0.990 0.002

16M 6 443904 5.935 0.989 0.002

16M 7 381755 6.901 0.986 0.002

16M 8 338981 7.772 0.972 0.004

C6910_9.indd 120C6910_9.indd 120 1/26/09 8:26:50 AM1/26/09 8:26:50 AM

121

C H A P T E R 10
in which we define further metrics for a parallel program’s performance, based on

size rather than speed; we predict what the theoretical metrics should look like; we

measure the actual metrics for our parallel program; and we compare two approaches

for scaling up a parallel program

Measuring Sizeup

C6910_10 121C6910_10 121 1/26/09 11:26:16 AM1/26/09 11:26:16 AM

C H A P T E R10 Measuring Sizeup

10.1 Sizeup Metrics
In Chapter 8, we expressed a program’s running time as a function of the problem size and the num-
ber of processors: T(N,K). However, we can just as easily turn that relationship around and express the
program’s problem size as a function of the running time and the number of processors: N(T,K). Given a
certain value for T, there is some problem size N such that the program’s running time on K processors
will be exactly T. We write Nseq (T,K) for the sequential version’s problem size and Npar (T,K) for the paral-
lel version’s problem size.

We can now define a metric analogous to speedup, but one focusing on problem size instead of
speed. A program’s sizeup is the size of the parallel version running on K processors relative to the size
of the sequential version running on one processor for a given running time T:

 (10.1)

Ideally, a parallel program should be able to solve twice as large a problem on two processors as on
one processor, thrice as large a problem on three processors, four times as large a problem on four pro-
cessors, and so on. That is, ideally, Sizeup should equal K. Because a plot of the ideal Sizeup versus K is a
straight line with unity slope, this ideal sizeup is also called a linear sizeup.

As with speedup, real parallel programs usually fall short of this ideal. Sizeup efficiency is a metric
that captures how close to ideal a program’s sizeup is:

 (10.2)

An ideal parallel program will have a sizeup efficiency of 1 for all running times T and all numbers of
processors K. A real parallel program typically has a sizeup efficiency less than 1, so that the sizeup is
less than K—a sublinear sizeup.

10.2 Gustafson’s Law
In his 1988 paper “Reevaluating Amdahl’s Law” which we already mentioned, John Gustafson made two
key observations based on Sandia National Laboratories’ work with real-world parallel programs on large
(1,024-processor) parallel computers. Quoting Gustafson:

“One does not take a fixed-size problem and run it on various numbers of proces-•
sors except when doing academic research; in practice, the problem size scales
with the number of processors.”

C6910_10 122C6910_10 122 1/26/09 11:26:16 AM1/26/09 11:26:16 AM

 10.2 Gustafson’s Law 123

“As a first approximation, we have found that it is the • parallel or vector part
of a program that scales with the problem size.”

In other words, the running time for the sequential portion of the program is the same no matter what the
problem size. Based on these observations, Gustafson recommended that when running a parallel pro-
gram on a computer with more processors, one should make the problem size larger to keep the running
time the same. The picture looks like Figure 10.1, rather than the picture that led to Amdahl’s Law.

K = 1
Sequential Parallelizable

F T(N,K) (1 − F) T(N,K)

T(N,K)

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

 Figure 10.1 A parallel program with running time T (N,K) and sequential fraction F,
where the problem size scales with the number of processors K

C6910_10 123C6910_10 123 1/26/09 11:26:16 AM1/26/09 11:26:16 AM

124 CHAPTER 10 Measuring Sizeup

It’s possible to derive a formula for the program’s speedup when running on K processors, based on
how long the program would have taken to run on one processor with the larger problem size. If the pro-
gram’s running time on K processors is T(N,K) (kept the same regardless of what K is), and if a fraction F
of that running time must be executed sequentially, then the running time on one processor for the same
problem size would be the following:

 (10.3)

Equation 10.3 is known as Gustafson’s Law. The corresponding formulas for speedup and effi-
ciency follow:

 (10.4)

 (10.5)

As the number of processors increases, Gustafson’s Law predicts that the speedup continues increasing
without limit, becoming approximately K . (1–F) as K goes to infinity. Likewise, the efficiency becomes
approximately (1–F) as K goes to infinity. This seemingly contradicts Amdahl’s Law, which predicts that
the speedup approaches a limit of 1/F and the efficiency approaches a limit of 0 as K goes to infinity.

Gustafson’s paper resulted in much confusion and controversy in the parallel computing community
over whether Amdahl’s Law really was “broken.” In fact, there is no contradiction. The two laws are
predicated on different assumptions. Amdahl’s Law defines the sequential fraction F with respect to the
program’s running time on one processor; Gustafson’s Law defines the sequential fraction F with respect
to the program’s running time on K processors. Each law is valid under its own assumptions.

Actually, the speedup from Gustafson’s Law is not all that meaningful. When scaling the problem
size with the number of processors, we would never run the larger problem on a single processor in the
first place, so there’s not much point in considering the speedup with respect to a single processor. Our
goal now is to achieve a sizeup rather than a speedup, so we are interested in a theoretical formula for
problem size as a function of K, analogous to Amdahl’s Law for running time as a function of K.

10.3 The Problem Size Laws
Suppose we assume, as Gustafson did, that a parallel program’s sequential portion’s running time is inde-
pendent of N, that is, constant. Let’s further assume that the program’s parallelizable portion’s running
time (on one processor) is directly proportional to N. Then the program’s running time model is given
by this formula,

 (10.6)

C6910_10 124C6910_10 124 1/26/09 11:26:16 AM1/26/09 11:26:16 AM

 10.3 The Problem Size Laws 125

where N is the problem size, K is the number of processors, and a and d are model parameters that are
determined empirically for a particular program. (Later, we will see how to determine the model param-
eters.) Then, to get the program’s problem size model, solve Equation 10.6 for N:

 (10.7)

Equation 10.7 is the First Problem Size Law. From it, we can derive formulas for sizeup and sizeup
efficiency:

 (10.8)

 (10.9)

Thus, the program should experience nothing but ideal sizeups when scaling to larger numbers of
processors—if the assumptions behind the First Problem Size Law hold true, that the sequential portion’s
running time is constant and the parallelizable portion’s running time is proportional to N.

However, this assumption, as Gustafson admits, is only an approximation. In reality, a parallel pro-
gram’s sequential portion’s running time does increase somewhat as the problem size increases. Thus, a
more realistic running-time model assumes that both the sequential portion’s running time and the paral-
lelizable portion’s running time are general linear functions of N,

 (10.10)

where (a+bN) is the running time for the sequential portion, (c+dN) is the running time for the paralleliz-
able portion, and there are now four model parameters, a, b, c, and d. Solving Equation 10.10 for N gives
the problem size model:

 (10.11)

C6910_10 125C6910_10 125 1/26/09 11:26:16 AM1/26/09 11:26:16 AM

126 CHAPTER 10 Measuring Sizeup

Equation 10.11 is the Second Problem Size Law. The corresponding formula for sizeup follows:

 (10.12)

The constant portions of the running-time model, a and c, are usually negligible compared to the pro-
gram’s total running time T. With this assumption, the sizeup is the following:

 (10.13)

Let’s define the quantity G to be the ratio of the model parameters b/d, that is, the rate at which the
sequential portion’s running time grows with N relative to the rate at which the parallelizable portion’s
running time grows with N. Then, we can express sizeup and sizeup efficiency in terms of G:

 (10.14)

 (10.15)

Under the Second Problem Size Law, the sizeups are no longer ideal as K scales up. In the limit as K
goes to infinity, the sizeup efficiency goes to 0, and the sizeup becomes the following:

 (10.16)

The sizeup approaches a fixed upper bound that depends on the reciprocal of G. Thus, 1/G plays the same
role in limiting the sizeup under the Second Problem Size Law as 1/F played in limiting the speedup under
Am dahl’s Law. Plots of Sizeup and SizeupEff versus K for various values of G (Figures 10.2 and 10.3)
closely resemble those for Speedup and Eff versus K (Figures 8.2 and 8.3).

Having derived the theoretical problem size formulas, we next look at how to measure a parallel
program’s actual sizeup and sizeup efficiency.

C6910_10 126C6910_10 126 1/26/09 11:26:17 AM1/26/09 11:26:17 AM

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

G = 0.001

G = 0.002

G = 0.005

G = 0.01

G = 0.02

G = 0.05

G = 0.1

Sizeup vs. Processors

Processors, K

S
iz

e
u

p
(N

,K
)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G = 0.001

G = 0.002

G = 0.005

G = 0.01

G = 0.02

G = 0.05

G = 0.1

Sizeup Efficiency vs. Processors

Processors, K

S
iz

e
u

p
E

ff
(N

,K
)

Figure 10.2 Sizeup predicted by the Second Problem Figure 10.3 Sizeup efficiency predicted by the Second
Problem Size Law Problem Size Law

10.4 Measuring Sizeup
While we can’t directly measure the problem size that would make a program run for a certain amount
of time, we can determine N as a function of T and K from our running-time measurements. Instead of
plotting our data as T versus K for various values of N, suppose we plot our data as N versus T for various
values of K. Table 10.1 (at the end of the chapter) tabulates, and Figure 10.4 plots, the FindKeySmp3 pro-
gram’s running-time data this way. Note that each curve is a straight line with a slope of 1. On a log-log
plot, this means that N equals some constant times T to the power 1. This is what we expect. The amount
of computation is defined to be proportional to the problem size N (the number of keys tested), therefore
the running time T should be proportional to N and vice versa.

1E1 1E2 1E3 1E4
1E7

1E8

1E9

K
=

 1

K
=

 2
K

=
 3

K
=

 4
K

=
 5

K
=

 6
K

=
 7

K
=

 8

Problem Size vs. Running Time

Running time, T (sec)

P
ro

bl
em

 s
iz

e,
 N

Figure 10.4 FindKeySeq/FindKeySmp3 N versus T

C6910_10 127C6910_10 127 1/26/09 11:26:17 AM1/26/09 11:26:17 AM

128 CHAPTER 10 Measuring Sizeup

We can now read problem size off the plot. Suppose we want to find N for T = 200 seconds and
K = 1 processor; that is, N(200,1). We go to T = 200 on the horizontal axis, move up until we intersect the
K = 1 curve, move left to the vertical axis, and find N is about 3.9�107. If the program were to run for
200 seconds on one processor, it would test 39 million keys.

Instead of squinting at the plot, we can calculate N by interpolation in the tabulated data. First, find
two entries in the table, (T1, N1) and (T2, N2), that bracket the desired T value—such that T1 ≤ T ≤ T2.
For our example with T = 200,000 msec (200 seconds) and K = 1, the relevant table entries are (171926,
33554432) and (342194, 67108864). Then, calculate N using the linear interpolation formula:

 (10.17)

Substituting the values T = 200000, T1 = 171926, N1 = 33554432, T2 = 342194, and N2 = 67108864 into
Equation 10.17, we compute N = 39086929.

Using interpolation, we can compute tables of N versus K for selected values of T, completely
analogous to the tables of T versus K for selected values of N that we compiled from our running-time
measurements. From these tables, we can calculate sizeup and sizeup efficiency and gain insight into the
program’s performance as it scales up to larger problem sizes running on more processors.

However, when we select values of T to analyze, we must make sure that the chosen values fall
between the lowest and the highest T values in the tables for every value of K. For Figure 10.4, this
would be roughly from T = 90 seconds (the smallest T value in the table for K = 1) to T = 350 seconds
(the largest T value in the table for K = 8). If we choose values for T much outside this range, the linear
interpolation formula will still work, but, in fact, we will be extrapolating beyond our measured data, not
interpolating. Extrapolation is always more dangerous than interpolation.

10.5 FindKeySmp3 Sizeup Data
Table 10.2 (at the end of the chapter) gives the interpolated problem sizes for selected running times for
the AES key search program (the one designed to avoid cache interference), as well as the sizeups and
sizeup efficiencies. The chosen running times are T = 80, 100, 150, 200, 300, and 400 seconds. In the K
column, “seq” denotes the sequential version of the program (FindKeySeq) and 1 through 8 denote the
parallel version of the program (FindKeySmp3).

Figure 10.5 plots the N versus K data from Table 10.2 for the AES key search program. Each curve
is nearly a straight line with unity slope, indicating the ideal situation where the problem size that can be
solved in a given amount of time is directly proportional to the number of processors. The plots of Sizeup
versus K and SizeupEff versus K confirm that the program is achieving near-linear sizeups and sizeup
efficiencies greater than 94 percent for all the selected running-time values.

C6910_10 128C6910_10 128 1/26/09 11:26:17 AM1/26/09 11:26:17 AM

 10.5 FindKeySmp3 Sizeup Data 129

1 1 0
1E7

1E8

1E9

T = 80 sec
T = 100 sec

T = 150 sec

T = 200 sec

T = 300 sec

T = 400 sec

Problem Size vs. Processors

Processors, K

N
 (

T
,K

)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
T = 80 secT = 100 secT = 150 secT = 200 secT = 300 secT = 400 sec

Sizeup vs. Processors

Processors, K

S
iz

e
u

p
(T

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

T = 80 secT = 100 secT = 150 secT = 200 secT = 300 secT = 400 sec

Sizeup Efficiency vs. Processors

Processors, K

S
iz

e
u

p
E

ff
(T

,K
)

Figure 10.5 FindKeySeq/FindKeySmp3 problem size metrics

We can also use the running-time data to calculate values for the model parameters a, b, c, and d in
the Second Problem Size Law’s running-time model (Equation 10.10). From these, we can calculate the
value G = b/d that determines the maximum possible sizeup (Equation 10.16). The model parameters are
calculated by doing a general linear least squares curve fit on the data. See Appendix C for a descrip-
tion of the general linear least squares algorithm. A Java program, class TimeFit, in the Parallel Java
Library implements the algorithm. The fitted model parameters for the AES key search program are
a = 0, b = 2.26�10–5, c = 0, and d = 5.18�10–3 (all times are in msec). The AES key search program’s G
is 4.36�10–3, and its maximum sizeup is 229. Refer to the Parallel Java documentation for instructions on
how to use the TimeFit program.

C6910_10 129C6910_10 129 1/26/09 11:26:17 AM1/26/09 11:26:17 AM

130 CHAPTER 10 Measuring Sizeup

By the way, the problem size metric plots in Figures 10.4 and 10.5 were produced by another Java
program, class Sizeup, in the Parallel Java Library. The program takes the raw running-time measure-
ments as in Table 9.1, calculates and prints the problem size, sizeup, and sizeup efficiency metrics, and
generates the plots. Refer to the Parallel Java documentation for instructions on how to use the Sizeup
program.

10.6 Speedup or Sizeup?
In Chapters 8 and 9 and in this chapter, we took a close look at the two approaches for utilizing a parallel
computer as the number of processors increases:

Reduce the running time while keeping the same problem size—go for •
speedup.

Increase the problem size while keeping the same running time—go for •
sizeup.

We have Gustafson’s testimony, with which most parallel computing practitioners agree, that on
real-world problems one goes for sizeup, not speedup, as one scales up the number of processors. On the
other hand, we have seen how Amdahl’s Law predicts, and actual running time data verifies, that a paral-
lel program’s speedup diminishes as the number of processors increases, approaching an upper bound
that depends on the program’s sequential fraction F. Likewise, we have seen how the Second Problem
Size Law predicts, and actual running time data verifies, that a parallel pro gram’s sizeup diminishes
as the number of processors increases, approaching an upper bound that depends on the program’s G
value. Sizeup and speedup both diminish as the number of processors scales up, so why prefer sizeup to
speedup?

One reason has nothing to do with the metrics per se, but rather with time constraints. Often, the
problem size one does calculate is smaller than the problem size one would like to calculate, because the
latter takes too long. For example, a parallel weather-modeling program used to generate tomorrow’s
forecast needs to finish well before tomorrow arrives, otherwise the forecast is useless. This time con-
straint in turn puts a limit on the problem size—the number of 3-D cells modeling the atmosphere, the
number of time steps—that can be calculated, and therefore puts a limit on the accuracy of the solution.
If we double the number of processors in the parallel computer, we don’t particularly care that we can get
the same forecast in half the time. We’d rather increase the problem size—cover the atmospheric region
and time span with more, smaller cells and more, smaller time steps—to increase the forecast’s accuracy.

Apart from such considerations, do the metrics themselves support the notion that going for sizeup
is preferable to going for speedup? To gain some insight into this question, let’s look more closely at the
plots of Eff versus K and SizeupEff versus K for the AES key search program (Figures 10.6 and 10.7).
We expanded the vertical scale to separate the curves for the various T and N values. Comparing the two
plots, a slight but definite difference is apparent: As the number of processors scales up, the sizeups do
not diminish quite as much as the speedups. This is true of most parallel programs. For programs other
than the AES key search program—programs that have larger sequential fractions—the sizeups can be
considerably larger than the speedups when adding more processors. This is another reason going for
sizeup is preferable to going for speedup.

C6910_10 130C6910_10 130 1/26/09 11:26:17 AM1/26/09 11:26:17 AM

 10.7 For Further Information 131

0 1 2 3 4 5 6 7 8
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

N = 16M

N = 32M
N = 64MN = 128M

N = 256M

N = 512M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

T = 80 secT = 100 secT = 150 secT = 200 sec
T = 300 sec
T = 400 sec

Sizeup Efficiency vs. Processors

Processors, K

S
iz

e
u

p
E

ff
(T

,K
)

Figure 10.6 Eff vs. K Figure 10.7 SizeupEff vs. K

Why, then, worry about speedup at all? Why not focus solely on sizeup? Speedup is important dur-
ing the parallel program’s development stage. Precisely because speedup tends to be more sensitive to
the number of processors and to the sequential fraction than sizeup tends to be, focusing on a program’s
speedup magnifies any design flaws that adversely affect the program’s performance. Once these flaws
are fixed and the program is yielding good speedups, the program will then experience good sizeups dur-
ing the operational stage.

This book is concerned with designing parallel programs, so we will focus more on speedup as the
performance metric. Just keep in mind that when solving actual problems on a parallel computer, you
usually want to go for sizeup rather than speedup.

10.7 For Further Information
Amdahl’s original paper on parallel program performance:

G. Amdahl. Validity of the single processor approach to achieving large scale •
computing capabilities. In Proceedings of the AFIPS Spring Joint Computer
Conference, 1967, pages 483–485.

Gustafson’s original paper on parallel program performance:

J. Gustafson. Reevaluating Amdahl’s law. • Communications of the ACM,
31(5):532–533, May 1988.

A critique of Amdahl’s and Gustafson’s work:

Y. Shi. Reevaluating Amdahl’s law and Gustafson’s law. October 1996. •

http://joda.cis.temple.edu/~shi/docs/amdahl/amdahl.html

C6910_10 131C6910_10 131 1/26/09 11:26:17 AM1/26/09 11:26:17 AM

http://joda.cis.temple.edu/~shi/docs/amdahl/amdahl.html

132 CHAPTER 10 Measuring Sizeup

Table 10.1 FindKeySeq/FindKeySmp3 running-time metrics, rearranged

K T N K T N

seq 84981 16777216

seq 170452 33554432

seq 339088 67108864

seq 677725 134217728

seq 1350158 268435456

seq 2704213 536870912

1 87346 16777216 5 17895 16777216

1 171926 33554432 5 35588 33554432

1 342194 67108864 5 71601 67108864

1 699172 134217728 5 140989 134217728

1 1364950 268435456 5 284293 268435456

1 2805340 536870912 5 565657 536870912

2 44166 16777216 6 15004 16777216

2 87999 33554432 6 29624 33554432

2 176237 67108864 6 59347 67108864

2 348984 134217728 6 119072 134217728

2 704288 268435456 6 237631 268435456

2 1402986 536870912 6 475636 536870912

3 29540 16777216 7 12877 16777216

3 58833 33554432 7 25824 33554432

3 118196 67108864 7 50980 67108864

3 235672 134217728 7 101317 134217728

3 469923 268435456 7 202138 268435456

3 944822 536870912 7 405143 536870912

4 22166 16777216 8 11520 16777216

4 44433 33554432 8 22568 33554432

4 88214 67108864 8 45032 67108864

4 175724 134217728 8 90134 134217728

4 355856 268435456 8 180758 268435456

4 709384 536870912 8 357483 536870912

C6910_10 132C6910_10 132 1/26/09 11:26:18 AM1/26/09 11:26:18 AM

 10.7 For Further Information 133

Table 10.2 FindKeySeq/FindKeySmp3 problem size metrics

T K N Sizeup SizeEff T K N Sizeup SizeEff

80000 seq 15799489 200000 seq 39433760

80000 1 15320070 0.970 0.970 200000 1 39086929 0.991 0.991

80000 2 30492790 1.930 0.965 200000 2 76340329 1.936 0.968

80000 3 45518899 2.881 0.960 200000 3 113839886 2.887 0.962

80000 4 60813528 3.849 0.962 200000 4 152305961 3.862 0.966

80000 5 75231988 4.762 0.952 200000 5 189487102 4.805 0.961

80000 6 90315216 5.716 0.953 200000 6 225834326 5.727 0.954

80000 7 105798083 6.696 0.957 200000 7 265589248 6.735 0.962

80000 8 119138990 7.541 0.943 200000 8 297662985 7.548 0.944

100000 seq 19725315 300000 seq 59331310

100000 1 19287253 0.978 0.978 300000 1 58793762 0.991 0.991

100000 2 38118075 1.932 0.966 300000 2 115188393 1.941 0.971

100000 3 56823729 2.881 0.960 300000 3 171075449 2.883 0.961

100000 4 76147203 3.860 0.965 300000 4 226816724 3.823 0.956

100000 5 94575063 4.795 0.959 300000 5 283420727 4.777 0.955

100000 6 112787837 5.718 0.953 300000 6 338778730 5.710 0.952

100000 7 132461915 6.715 0.959 300000 7 397839316 6.705 0.958

100000 8 148829664 7.545 0.943 300000 8 449557429 7.577 0.947

150000 seq 29539882 400000 seq 79180005

150000 1 29205210 0.989 0.989 400000 1 77975906 0.985 0.985

150000 2 57131670 1.934 0.967 400000 2 153489258 1.938 0.969

150000 3 85277088 2.887 0.962 400000 3 228371993 2.884 0.961

150000 4 114490743 3.876 0.969 400000 4 301954201 3.814 0.953

150000 5 142657380 4.829 0.966 400000 5 378825774 4.784 0.957

150000 6 169230556 5.729 0.955 400000 6 451564367 5.703 0.951

150000 7 199026862 6.738 0.963 400000 7 530070274 6.694 0.956

150000 8 222881642 7.545 0.943 400000 8 601451873 7.596 0.950

C6910_10 133C6910_10 133 1/26/09 11:26:18 AM1/26/09 11:26:18 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

135

C H A P T E R 11
in which we encounter the issues and trade-offs that must be addressed when a

parallel program generates an image and writes it to a file; we study an example of

a program that generates large images; and we observe this program’s curious and

unsatisfactory performance

Parallel Image Generation

C6910_11 135C6910_11 135 1/26/09 11:26:21 AM1/26/09 11:26:21 AM

C H A P T E R11 Parallel Image Generation

11.1 The Mandelbrot Set
For our second programming problem, we will explore generating an image in parallel. Rather than
render a frame of a computer-animated film, we’ll generate an image that’s much easier to compute: the
Mandelbrot Set (Figure 11.1). Published by IBM mathematician Benoit Mandelbrot in his 1977 book
The Fractal Geometry of Nature, the Mandelbrot Set is perhaps the most famous fractal object ever
discovered.

The Mandelbrot Set is a set of points in the plane, defined as follows. Given a point (x,y), compute a
sequence of other points (ai,bi), i=0, 1, 2, ... using the following formulas:

 (11.1)

If each point in the infinite sequence (ai,bi) stays finite, then (x,y) is a member of the Mandelbrot Set. If
the sequence of points (ai,bi) shoots off to infinity, then (x,y) is not a member of the Mandelbrot Set. In
Figure 11.1, points in the Mandelbrot Set are black, and points not in the Mandelbrot Set are shades of
gray. An alternative image renders points not in the Mandelbrot set with a range of colors.

 Figure 11.1 The Mandelbrot Set

C6910_11 136C6910_11 136 1/26/09 11:26:21 AM1/26/09 11:26:21 AM

 11.2 Color Images 137

A computer program for computing an image of the Mandelbrot Set needs a different criterion for
deciding whether a point is in the set; it is not possible to compute an infinite sequence of points and still
get the answer in a finite time. It can be proven that if the point (ai,bi) ever exceeds a distance of 2 from
the origin—if for some i—then the sequence will inevitably shoot off to infinity. So set a
limit on the number of points, say 1,000 points, and start computing the sequence. If (ai,bi) exceeds a dis-
tance of 2 from the origin before i reaches the limit on the number of points, then (x,y) is not a member of
the Mandelbrot Set. If i reaches the limit before (ai,bi) exceeds a distance of 2, then (x,y) is assumed to be
a member of the Mandelbrot Set. Further iterations may reveal that (x,y) is, in fact, not in the set, but the
program has to stop somewhere.

The color of a point not in the Mandelbrot Set depends on the value of i when the iteration stops.
The color’s hue is given by the formula (i/imax)

γ
, where imax is the iteration limit and γ is a parameter

that adjusts the range of hues displayed. In the grayscale version, the gray shade of a point not in the
Mandelbrot Set likewise depends on (i/imax).

11.2 Color Images
The program we are about to study, our second parallel program, computes an image of the Mandelbrot
Set and stores it in a file for later viewing. But, before we can design the program, we need to take a
detour and consider how a program can create color images.

Each pixel in the image can have a different color, so we need a way to set the color of each indi-
vidual pixel. However, the graphics classes in the standard Java platform are not well suited to this task.
Class Graphics2D in package java.awt is primarily intended for displaying graphical user interfaces and
is oriented toward drawing lines, rectangles, ellipses, text, and so on, not pixels. While the classes in
package java.awt.image do you let you manipulate pixels, these classes are so general and flexible that it
takes multiple objects and several layers of method calls just to set the color of one pixel. Performance
is paramount in parallel programs, and a program that uses package java.awt.image to manipulate pixels
would be too slow.

The Parallel Java Library takes a different approach. Creating a color image is done in two steps. The
first step is to create an integer matrix (type int[][]) containing the pixel data. The rows and columns
of elements in the matrix correspond one-for-one with the rows and columns of pixels in the image. Each
element in the matrix stores the corresponding pixel’s color in packed red-green-blue (RGB) format
(Figure 11.2).

red green blue
3 1 2 4 2 3 1 6 1 5 8 7 0

 Figure 11.2 Packed RGB format

The pixel’s color is specified by three components, red, green, and blue. Each component is an 8-bit
unsigned integer in the range 0 through 255, with 0 being fully dark and 255 being fully bright. The com-
ponents are packed into an int with the red component in bits 23 through 16, green in bits 15 through 8,
and blue in bits 7 through 0. Bits 31 through 24 are unused and are set to zero. Class edu.rit.color.IntRGB
has a static pack() method that packs the three separate components together into an int.

C6910_11 137C6910_11 137 1/26/09 11:26:21 AM1/26/09 11:26:21 AM

138 CHAPTER 11 Parallel Image Generation

A color can also be specified as hue-saturation-brightness (HSB) components instead of RGB. The
hue component is a real number between 0 and 1, where a hue of 0 gives red, 1/6 gives yellow, 2/6 gives
green, 3/6 gives cyan, 4/6 gives blue, 5/6 gives magenta, 1 gives red again, and other values produce
intermediate colors. The saturation component is a real number between 0 and 1 that specifies how gray
or colored the color is. A saturation of 0 yields fully gray; a saturation of 1 yields fully colored; interme-
diate saturation values yield mixtures of gray and colored. The brightness component is a real number
between 0 and 1 that specifies how dark or light the color is. A brightness of 0 yields fully dark (black);
a brightness of 1 yields fully light (somewhere between white and colored depending on the saturation);
intermediate brightness values yield somewhere between a gray shade and a darkened color (depending
on the saturation). Class edu.rit.color.HSB has a static pack() method that converts the three HSB com-
ponents to RGB components and packs the RGB components together into an int.

After allocating an integer matrix for the pixel data and setting the color of each pixel by storing
the desired packed RGB value into each matrix element, the second step is to store the image in a file.
One way is simply to write the integers in the matrix to the file. With an integer occupying four bytes, a
1,000�1,000-pixel image file requires 4,000,000 bytes. However, this would be an inefficient way to store
the pixel data. In a typical image, the data is redundant; there are many regions where all the pixels have
the same value (color). Such data can be compressed to remove the redundancy and reduce the file size.

For this reason, widely used image file formats like the Joint Photographic Expert Group’s JPEG
format and the Portable Network Graphics (PNG) format store the pixel data in compressed form. JPEG
uses lossy compression; when the image is reconstructed from the compressed data, the pixel values turn
out to be slightly different from their original values. While this is fine for photographs where the human
eye can’t tell the difference, lossy compression is not appropriate for non-photographic images like the
Mandelbrot Set image. PNG, on the other hand, uses lossless compression; the reconstructed pixels are
identical to the originals.

However, there’s a problem with using PNG to generate images in a parallel program. Any data-
compression scheme involves a trade-off between short running time and small compressed file size.
It takes a longer-running algorithm to produce a smaller file. PNG was designed for network graphics,
where an image file is generated once, stored on a Web server, and downloaded millions of times. In
that setting, it’s sensible to spend time making the image file size as small as possible. The reduction in
the time required to download millions of copies of the image file more than compensates for the time
required to run the compression algorithm. Thus, PNG uses sophisticated compression techniques that
take a long time to compress large images. But, in a parallel program, this is the wrong trade-off. Because
the pixel data must be compressed and written to the image file sequentially, using PNG increases the
parallel program’s sequential fraction. Depending on the time required to compress and write the pixel
data relative to the time required to calculate the pixel data, the sequential fraction could be large and the
resulting performance reduction severe.

In a parallel program, we need a different trade-off: an image-compression technique that runs
faster than PNG, at the price of increased image file size. We will use the Parallel Java Graphics (PJG)
format. On the Mandelbrot Set images, PJG file sizes are 30–50 percent larger than the corresponding
PNG files. However, to compress and write the pixel data, the PJG algorithm takes only one-tenth to
one-twentieth as much time as the PNG algorithm. The Parallel Java Library provides class edu.rit.image.
PJGImage and class edu.rit.image.PJGColorImage for creating color images, writing them to PJG files,
and reading them from PJG files. For further information about the PJG image file format and compres-
sion algorithm, refer to the Parallel Java documentation.

C6910_11 138C6910_11 138 1/26/09 11:26:21 AM1/26/09 11:26:21 AM

 11.3 Sequential Program 139

To store an image in a PJG file, construct an instance of class edu.rit.image.PJGColorImage, specify-
ing the image height, image width, and pixel data matrix as constructor arguments.

 int[][] pixeldata = new int [ROWS] [COLS];

 PJGColorImage image = new PJGColorImage (ROWS, COLS, pixeldata);

 PJGImage.Writer writer = image.prepareToWrite (outputstream);

Then, call the image’s prepareToWrite() method, specifying the output stream on which to write the
PJG file.

The prepareToWrite() method returns a writer object, an instance of class PJGImage.Writer. Call the
writer’s write() method to write the pixel data, and then close the writer.

 writer.write();

 writer.close();

The Parallel Java Library includes a program to display an image stored in a PJG file. To run the
program, type this command, specifying the PJG filename:

$ java PJG file.pjg

The program has menu items to convert the image to a PNG file or a PostScript file, should you desire to
use those formats.

Package edu.rit.image also has class PJGGrayImage for creating grayscale images, where each pixel
is one of 256 shades of gray. Class PJGGrayImage uses a byte array (type byte[][]) to store the pixel
data, which takes one-fourth as much storage as an integer array of the same height and width. Likewise,
grayscale image files tend to be smaller than full-color image files for an image of the same height and
width. For further information about class PJGGrayImage, refer to the Parallel Java documentation.

11.3 Sequential Program
Class MandelbrotSetSeq in package edu.rit.smp.fractal is a sequential program for calculating an image
of the Mandelbrot Set and storing the image in a PJG file. The program can calculate different regions of
the Mandelbrot Set at different resolutions by specifying these command-line arguments:

width• —Image width in pixels.

height• —Image height in pixels.

xcenter• —X coordinate of the image’s center point.

ycenter• —Y coordinate of the image’s center point.

resolution• —Image resolution in pixels per unit. The distance between adjacent
pixels is 1/resolution.

C6910_11 139C6910_11 139 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

140 CHAPTER 11 Parallel Image Generation

maxiter• —Maximum number of iterations for deciding whether a point is in
the set (imax).

gamma• —Exponent in the formula for calculating pixel hues (γ).

filename• —Output PJG image filename.

A color image corresponding to Figure 11.1 is produced with this command:

$ java edu.rit.smp.fractal.MandelbrotSetSeq 400 400 -0.75 0 150 \

 1000 0.4 fig11_1.pjg

Figure 11.3 is a magnified view (at higher resolution) of one of the little blobs off the main blob. A color
image corresponding to Figure 11.3 is produced with this command:

$ java edu.rit.smp.fractal.MandelbrotSetSeq 400 400 -0.55 0.6 9600 \

 1000 0.6 fig11_3.pjg

package edu.rit.smp.fractal;

import edu.rit.color.HSB;

import edu.rit.image.PJGColorImage;

import edu.rit.image.PJGImage;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class MandelbrotSetSeq

 {

Here is the source code for class MandelbrotSetSeq.

Figure 11.3 A piece of the Mandelbrot Set

C6910_11 140C6910_11 140 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

 11.3 Sequential Program 141

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static double gamma;

 static File filename;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Image matrix.

 static int[][] matrix;

 static PJGColorImage image;

 // Table of hues.

 static int[] huetable;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 8) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 gamma = Double.parseDouble (args[6]);

 filename = new File (args[7]);

C6910_11 141C6910_11 141 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

142 CHAPTER 11 Parallel Image Generation

The variables xoffset and yoffset store the horizontal and vertical distances, in pixels, from the top-
left pixel to the center of the image.

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

Here are the two steps for creating a color image: allocate an integer matrix with one element for each
pixel, and create an instance of class PJGColorImage.

 // Create image matrix to store results.

 matrix = new int [height] [width];

 image = new PJGColorImage (height, width, matrix);

After determining the number of iterations i for each pixel inside the loop, we could compute the pixel’s
RGB value using the formula (i/imax)

γ
 also inside the loop. However, it will save time in the loop if we

pre-calculate the RGB value corresponding to each i value just once outside the loop and store the RGB
value in a table indexed by i. Then, inside the loop, we can simply look up the proper RGB value in the
table, which is faster than calculating the RGB value. This table-lookup technique often can be used to
reduce a computation’s running time, at the price of more storage to hold the table. For this program, the
table lookup yields about a 10 percent savings in the calculation’s running time.

 // Create table of hues for different iteration counts.

 huetable = new int [maxiter+1];

 for (int i = 0; i < maxiter; ++ i)

 {

 huetable[i] = HSB.pack

 (/*hue*/ (float) Math.pow

 (((double) i) / ((double) maxiter), gamma),

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 huetable[maxiter] = HSB.pack (1.0f, 1.0f, 0.0f);

The program measures the running time for the three parts of the program—pre-calculation, calculation,
and post-calculation—as well as the total running time. Here is the first of the three time snapshots, as we
begin the pixel calculations.

C6910_11 142C6910_11 142 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

 11.3 Sequential Program 143

In a Java program, a matrix is stored as an array of rows, where each row is a reference to an array of
successive column elements (Figure 11.4). When accessing a matrix row by row, setting up a reference
to the current row can reduce the program’s running time. In this program, matrix_r is a reference to
row r of the pixel data matrix. Accessing the matrix element in row r, column c with the expression
matrix_r[c] requires only one array index operation; the expression matrix[r][c] requires two
array index operations.

 long t2 = System.currentTimeMillis();

 // Compute all rows and columns.

 for (int r = 0; r < height; ++ r)

 {

 int[] matrix_r = matrix[r];

 double y = ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x = xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

matrix

matrix_r

 Figure 11.4 Storage for pixel data matrix and reference to one row

C6910_11 143C6910_11 143 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

144 CHAPTER 11 Parallel Image Generation

Note that we don’t have to store all the points (ai,bi) for every value of i; we need to store only the
previous point (aold, bold) and the current point (a,b). The variable zmagsqr stores the square of
the distance of the point (ai,bi) from the origin, namely . We compute the square of the distance
rather than the distance itself, , to eliminate all the time taken by the square root calculations.
Because the square root function is monotonic, comparing the squared distance to 22 is equivalent to
comparing the distance to 2. By the way, it is much, much faster to compute a2 with the expression a*a
than with the expression Math.pow(a,2).

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

Here is where we do the table lookup to get the RGB value for the current pixel, and use the row refer-
ence matrix_r to store it.

 // Record number of iterations for pixel.

 matrix_r[c] = huetable[i];

 }

 }

 long t3 = System.currentTimeMillis();

Here we use the PJG color image object to write the PJG image file. Using a BufferedOutputStream
on top of the FileOutputStream causes the program to write the file in large chunks of bytes. Using a
FileOutputStream directly would cause the program to write the file one byte at a time, which is slower
than writing it in large chunks.

 // Write image to PJG file.

 PJGImage.Writer writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (filename)));

 writer.write();

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre");

C6910_11 144C6910_11 144 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

 11.4 Parallel Program 145

11.4 Parallel Program
Calculating the Mandelbrot Set is a result parallel problem where the results are the pixel colors. Like
the AES key search problem, calculating the Mandelbrot Set is another example of a massively parallel
problem. The calculations for each pixel do not depend in any way on the calculations for any other pixel.
We can calculate all the pixels in parallel, in any order we please.

To parallelize the computation, we divide the image rows among the parallel team threads. Each
thread will compute a different subset of the rows and will compute all the columns within each row. The
outer loop will become a parallel for loop and the inner loop will stay as it is. The code before and after
the outer loop will be done in a single thread as in the sequential version. (Because calculating the hue
table takes little time, it’s not worth the effort to parallelize it.)

The variables in the parallel version are treated as follows:

width• , height, xcenter, ycenter, resolution, maxiter, gamma,
filename, xoffset, and yoffset—The command-line arguments will
be program shared variables. They are WORM variables, so they need no
synchronization.

matrix• —The pixel data matrix is the principal shared variable in the pro-
gram. It will be a program shared variable because all the threads as well as
the main program must access it. Each matrix element is written by just one
thread, so there is no need to synchronize the threads when they access the
matrix. Because the threads are no longer active when the main program is
reading the matrix elements to write the PJG image file, there is no need to
synchronize the threads with the main program. There’s no need to add pad-
ding bytes to the pixel data matrix, because it is a shared variable. (We add
padding to per-thread variables to eliminate false sharing.)

image• —It is not strictly necessary for the image object to be a program
shared variable because the threads never access it. However, for readability,
we will declare it immediately after the pixel data matrix.

huetable• —This also will be a program shared variable because the main
program writes it and all the threads read it. It is a WORM variable and needs
no synchronization.

The remaining variables are all thread local variables or main program local •
variables that need no synchronization.

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

 }

C6910_11 145C6910_11 145 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

146 CHAPTER 11 Parallel Image Generation

Class MandelbrotSetSmp in package edu.rit.smp.fractal is the SMP parallel version of the program.

package edu.rit.smp.fractal;

import edu.rit.color.HSB;

import edu.rit.image.PJGColorImage;

import edu.rit.image.PJGImage;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class MandelbrotSetSmp

 {

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static double gamma;

 static File filename;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Image matrix.

 static int[][] matrix;

 static PJGColorImage image;

 // Table of hues.

 static int[] huetable;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

C6910_11 146C6910_11 146 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

 11.4 Parallel Program 147

The outer loop is now a parallel for loop, inside a parallel region, executed by a parallel thread team.

 // Validate command line arguments.

 if (args.length != 8) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 gamma = Double.parseDouble (args[6]);

 filename = new File (args[7]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Create image matrix to store results.

 matrix = new int [height] [width];

 image = new PJGColorImage (height, width, matrix);

 // Create table of hues for different iteration counts.

 huetable = new int [maxiter+1];

 for (int i = 0; i < maxiter; ++ i)

 {

 huetable[i] = HSB.pack

 (/*hue*/ (float) Math.pow

 (((double) i) / ((double) maxiter), gamma),

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 huetable[maxiter] = HSB.pack (1.0f, 1.0f, 0.0f);

 long t2 = System.currentTimeMillis();

 // Compute all rows and columns.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (0, height-1, new IntegerForLoop()

 {

 public void run (int first, int last)

C6910_11 147C6910_11 147 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

148 CHAPTER 11 Parallel Image Generation

 {

 for (int r = first; r <= last; ++ r)

 {

 int[] matrix_r = matrix[r];

 double y = ycenter+(yoffset-r)/resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x = xcenter+(xoffset+c)/resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Record number of iterations for pixel.

 matrix_r[c] = huetable[i];

 }

 }

 }

 });

 }

 });

 long t3 = System.currentTimeMillis();

 // Write image to PJG file.

 PJGImage.Writer writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (filename)));

 writer.write();

 writer.close();

C6910_11 148C6910_11 148 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

 11.4 Parallel Program 149

Table 11.1 (at the end of the chapter) lists, and Figure 11.5 plots, the MandelbrotSetSmp program’s
running-time data. Each program run calculated the same area as Figure 11.1, with increasing image
dimensions n�n pixels, and with resolutions r increasing in proportion to n. Each run’s problem size was
the total number of pixels, N = n2. The particular n, r, and N values follow:

n r N
3200 1200 10M

4480 1680 20M

6400 2400 40M

8960 3360 80M

12800 4800 160M

17920 6720 320M

The other command-line arguments were xcenter = –0.75, ycenter = 0, maxiter = 1000, and gamma = 0.4.
The running time plot shows that something strange is going on in this program. The pattern is the

same no matter what the problem size. The running time for two processors is a bit more than half the
running time for one processor, more or less as expected. But then the running time for three proces-
sors is larger than the running time for two processors! Going to four processors reduces the running
time again, although it is not half as much as for two processors. Going to five processors increases the
running time, and so on. There’s no point in worrying about the Mandelbrot Set program’s speedup or
efficiency until we figure out what is causing this strange behavior, and then fix it. That will be the topic
of Chapter 12.

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

 }

C6910_11 149C6910_11 149 1/26/09 11:26:22 AM1/26/09 11:26:22 AM

150 CHAPTER 11 Parallel Image Generation

1 1 0
1E1

1E2

1E3

1E4

N = 10M

N = 20M

N = 40M

N = 80M

N = 160M

N = 320M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000

N = 10MN = 20MN = 40MN = 80MN = 160MN = 320M

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N = 10MN = 20MN = 40MN = 80MN = 160MN = 320M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N = 10MN = 20MN = 40MN = 80MN = 160MN = 320M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 11.5 MandelbrotSetSeq/MandelbrotSetSmp running time metrics

11.5 For Further Information
On the Mandelbrot Set and many other aspects of fractals:

B. Mandelbrot. • The Fractal Geometry of Nature. W. H. Freeman and Company, 1977.

C6910_11 Sec2:150C6910_11 Sec2:150 1/26/09 11:26:23 AM1/26/09 11:26:23 AM

 11.5 For Further Information 151

Table 11.1 MandelbrotSetSeq/MandelbrotSetSmp running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

10M seq 46082 80M seq 358869

10M 1 46198 0.997 0.997 80M 1 359057 0.999 0.999

10M 2 24514 1.880 0.940 0.061 80M 2 188679 1.902 0.951 0.051

10M 3 35195 1.309 0.436 0.643 80M 3 272468 1.317 0.439 0.638

10M 4 23277 1.980 0.495 0.338 80M 4 179037 2.004 0.501 0.332

10M 5 24488 1.882 0.376 0.413 80M 5 188658 1.902 0.380 0.407

10M 6 18840 2.446 0.408 0.289 80M 6 143824 2.495 0.416 0.281

10M 7 18589 2.479 0.354 0.303 80M 7 142449 2.519 0.360 0.296

10M 8 15002 3.072 0.384 0.228 80M 8 114025 3.147 0.393 0.220

20M seq 89953 160M seq 732332

20M 1 93200 0.965 0.965 160M 1 758750 0.965 0.965

20M 2 47396 1.898 0.949 0.017 160M 2 384454 1.905 0.952 0.013

20M 3 68348 1.316 0.439 0.600 160M 3 555532 1.318 0.439 0.598

20M 4 43444 2.071 0.518 0.288 160M 4 364862 2.007 0.502 0.308

20M 5 47417 1.897 0.379 0.386 160M 5 384832 1.903 0.381 0.384

20M 6 35004 2.570 0.428 0.251 160M 6 283484 2.583 0.431 0.248

20M 7 35804 2.512 0.359 0.282 160M 7 290204 2.524 0.361 0.280

20M 8 28828 3.120 0.390 0.211 160M 8 232241 3.153 0.394 0.207

40M seq 183295 320M seq 1433954

40M 1 183428 0.999 0.999 320M 1 1485352 0.965 0.965

40M 2 96494 1.900 0.950 0.052 320M 2 752769 1.905 0.952 0.014

40M 3 139167 1.317 0.439 0.638 320M 3 1087533 1.319 0.440 0.598

40M 4 91535 2.002 0.501 0.332 320M 4 689470 2.080 0.520 0.286

40M 5 96547 1.899 0.380 0.408 320M 5 753350 1.903 0.381 0.384

40M 6 71180 2.575 0.429 0.266 320M 6 553974 2.588 0.431 0.248

40M 7 72818 2.517 0.360 0.296 320M 7 567188 2.528 0.361 0.279

40M 8 58451 3.136 0.392 0.221 320M 8 452692 3.168 0.396 0.205

C6910_11 Sec1:151C6910_11 Sec1:151 1/26/09 11:26:23 AM1/26/09 11:26:23 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

153

C H A P T E R 12
in which we discover why it is important to give each thread in a parallel program

an equal amount of work; we see that dividing the computations evenly among the

threads does not always divide the work evenly; and we learn the programming

constructs for splitting up the work equally

Load Balancing

C6910_12 153C6910_12 153 1/26/09 11:26:26 AM1/26/09 11:26:26 AM

C H A P T E R12 Load Balancing

12.1 Load Balance
To understand the strange running-time behavior of the Mandelbrot Set program from Chapter 11, we must
first collect running-time data for each thread in the parallel team separately. Class MandelbrotSetSmp2 is
a modified version of class MandelbrotSetSmp that collects this extra data. The program takes a snapshot
of the system clock at the beginning, the end of the initialization section, the end of the pixel-calculation
section, and the end of the PJG file-writing section. In addition, the program records the starting and end-
ing times of the parallel region’s run() method executed by each parallel team thread. The program also
records the starting and ending times of the parallel for loop’s run() method as each thread executes a
certain chunk of loop indexes.

Here’s what the program printed when it was run on one processor of the “parasite” computer to
calculate a 3,200�3,200-pixel image.

$ java -Dpj.nt=1 edu.rit.smp.fractal.MandelbrotSetSmp2 3200 3200 \

 -0.75 0 1200 1000 0.4 ms3200.pjg

242 msec pre finish

 268 msec thread 0 start

 279 msec chunk 0 start

 45531 msec chunk 0 finish

 45535 msec thread 0 finish

45535 msec calc finish

46333 msec post finish

46333 msec total

Here’s what the program printed when run on two processors. Because the pre-calculation section
and post-calculation section run in a single thread, their running times are nearly the same as the one-
processor case. The running time for the parallel calculation section decreased by a factor of about 2, as
expected. To be precise, the speedup for the calculation section was 1.926, an efficiency of 0.963.

$ java -Dpj.nt=2 edu.rit.smp.fractal.MandelbrotSetSmp2 3200 3200 \

 -0.75 0 1200 1000 0.4 ms3200.pjg

242 msec pre finish

 267 msec thread 0 start

 283 msec chunk 0 start

C6910_12 154C6910_12 154 1/26/09 11:26:26 AM1/26/09 11:26:26 AM

 12.1 Load Balance 155

Here’s what the program printed when run on three processors. Unlike the two-processor case where each
thread’s running time was about the same, here thread 1’s running time is much larger than thread 0’s or
thread 2’s running time.

 23752 msec chunk 0 finish

 23752 msec thread 0 finish

 267 msec thread 1 start

 283 msec chunk 0 start

 23705 msec chunk 0 finish

 23708 msec thread 1 finish

23753 msec calc finish

24528 msec post finish

24528 msec total

$ java -Dpj.nt=3 edu.rit.smp.fractal.MandelbrotSetSmp2 3200 3200 \

 -0.75 0 1200 1000 0.4 ms3200.pjg

240 msec pre finish

 269 msec thread 0 start

 281 msec chunk 0 start

 5847 msec chunk 0 finish

 5847 msec thread 0 finish

 269 msec thread 1 start

 281 msec chunk 0 start

 34435 msec chunk 0 finish

 34435 msec thread 1 finish

 269 msec thread 2 start

 281 msec chunk 0 start

 5803 msec chunk 0 finish

 5806 msec thread 2 finish

34435 msec calc finish

35095 msec post finish

35095 msec total

Figure 12.1 depicts the program’s running time for K = 1 through 8 processors. The pre-calculation time
is shown as a white bar. The parallel team threads’ calculation times are shown as dark gray bars. The
post-calculation time is shown as a light gray bar.

Load balance is the extent to which each processor (thread) in a parallel program does the same
amount of work. If each thread’s running time is the same, as for K = 2 in Figure 12.1, the program is
said to have a balanced load. If each thread’s running time is not the same, as for K = 3 through 8, the
program is said to have an unbalanced load.

C6910_12 155C6910_12 155 1/26/09 11:26:26 AM1/26/09 11:26:26 AM

156 CHAPTER 12 Load Balancing

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
Running time, T (sec)

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

 Figure 12.1 Running times for each portion of the MandelbrotSetSmp program on different numbers
of processors

To quantify the load balance, we divide the actual running time for the program’s parallel portion by
what the parallel portion running time should have been if the load were perfectly balanced:

 (12.1)

C6910_12 156C6910_12 156 1/26/09 11:26:26 AM1/26/09 11:26:26 AM

 12.2 Achieving a Balanced Load 157

where Tp(K) is the running time for the program’s parallel portion (not the whole program) on K proces-
sors. If B is 1, the load is perfectly balanced. The larger B is, the more unbalanced the load. Here are the
load balance values calculated from the Mandelbrot Set program’s running time measurements.

K Tp(K) Tp(1) B

2 23511 45293 1.04

3 34195 45293 2.26

4 22298 45293 1.97

5 23484 45293 2.59

6 22400 45293 2.97

7 17585 45293 2.72

8 13953 45293 2.46

In Figure 12.1, the dark gray bars depict the actual running time for the parallel portion, Tp(K), and the
dotted lines depict what the running time should have been, Tp(1)/K. This illustrates the effect of an
unbalanced load on a parallel program’s performance. If the load is not balanced, the program takes more
time than it should when running on multiple processors, thus reducing the speedup and efficiency. A
balanced load is crucial for good parallel program performance.

12.2 Achieving a Balanced Load
The AES key search program divided the computations equally among the threads and achieved good
speedups and efficiencies, indicative of a balanced load. The Mandelbrot Set program also divides the
computations equally among the threads, but does not achieve a balanced load. How can this be?

The answer lies in the nature of the calculations each program performs within its parallel loop. In
the AES key search program, each loop iteration does exactly the same calculations—generate a full key,
set the trial key into the cipher object, encrypt the plaintext, and compare the trial ciphertext to the correct
ciphertext—and these calculations take the same amount of time in every loop iteration. Therefore, the
AES key search program’s load is inherently balanced.

In the Mandelbrot Set program, however, the calculations for each pixel do not take the same amount
of time. Look back at Figure 11.1. The gray areas represent pixels that the program concluded were not
in the Mandelbrot Set. Furthermore, for most of these pixels the program was able to reach its decision
after just a few iterations. On the other hand, the black areas represent pixels that the program concluded
were in the Mandelbrot Set; but the program could not reach this conclusion until it had done 1,000 itera-
tions for each of these pixels. Thus, the program required much more running time to calculate the black
pixels.

Now look at what happens when we run the program on a parallel computer (Figure 12.2). The paral-
lel for loop divides the pixel rows evenly among the threads. For K = 2, each thread does about the same
amount of work because of the image’s symmetry. This results in a balanced load and good performance.
But for K = 3, thread 1 gets the lion’s share of the black pixels while threads 0 and 2 get mostly gray pix-
els. Because the black pixels take much longer to calculate, thread 1’s running time ends up much longer

C6910_12 157C6910_12 157 1/26/09 11:26:26 AM1/26/09 11:26:26 AM

158 CHAPTER 12 Load Balancing

than thread 0’s and thread 2’s. For larger numbers of processors, the middle threads continue to get more
of the black pixels, resulting in an unbalanced load.

Figure 12.2 Pixel rows divided among 2 and 3 threads

To achieve a balanced load for the Mandelbrot Set program, the pixel rows cannot be divided evenly
among the threads. Some of the threads must calculate more of the rows, namely the rows with mostly
gray pixels. The other threads must calculate fewer rows, namely the rows with many black pixels. In this
way, all the threads end up computing for about the same amount of time.

12.3 Parallel For Loop Schedules
Parallel Java has the ability to divide the iterations of a parallel for loop unevenly among the parallel team
threads, so as to achieve a balanced load when some iterations require more time than others. You do this
by specifying the parallel for loop’s schedule. There are three kinds of schedules: fixed, dynamic, and
guided.

With a fixed schedule, Parallel Java divides the set of N loop iterations into K chunks, one chunk for
each thread (Figure 12.3).

 Figure 12.3 Fixed schedule, 100 iterations, 4 threads

The chunk size, the number of iterations in the chunk, is the same for each chunk, namely N/K (plus or
minus one in case N is not divisible by K). Parallel Java hands one chunk to each thread, and each thread
calls the parallel for loop’s run() method exactly once with the lower and upper bounds for the thread’s
own chunk passed in as arguments. This is called a “fixed” schedule because the set of iterations each
thread will perform is predetermined, or fixed, before the iterations start.

With a dynamic schedule, Parallel Java divides the set of loop iterations into chunks of a specified
size (Figure 12.4).

C6910_12 158C6910_12 158 1/26/09 11:26:27 AM1/26/09 11:26:27 AM

 12.3 Parallel For Loop Schedules 159

 Figure 12.4 Dynamic schedule, 100 iterations, chunk size 5

The default chunk size is 1, but you can specify a chunk size greater than 1. Parallel Java hands one
chunk to each thread, which calls the run() method for that chunk. When the run() method returns,
the thread gets the next available chunk and proceeds to execute it. The threads continue in this way until
all the chunks have been executed. This is called a “dynamic” schedule because the set of iterations each
thread performs is determined dynamically as the parallel loop progresses.

In the Mandelbrot Set program, the amount of computation in each loop iteration (each image row)
depends on the region of the Mandelbrot Set being calculated. Different images result in different distri-
butions of workload among the loop iterations. However, the dynamic schedule does not need to know
the workload distribution ahead of time; the dynamic schedule adapts automatically to the workload
distribution as the loop executes. If one thread is taking a long time to compute one chunk of iterations,
the other threads are able to work on other chunks. With some threads executing a few long-running-time
chunks and other threads executing many short-running-time chunks, it’s more likely that all the threads
will finish at about the same time, resulting in a more balanced load than a fixed schedule.

With a guided schedule, Parallel Java divides the set of loop iterations into chunks that start out
large and get progressively smaller (Figure 12.5).

 Figure 12.5 Guided schedule, 100 iterations, 1 thread

Specifically, the size of each chunk is half the remaining number of iterations divided by the number of
threads, except each chunk is no smaller than a specified minimum chunk size. The default minimum
chunk size is 1, but you can specify a minimum chunk size greater than 1. For example, with N = 100
iterations, K = 1 thread, and a minimum chunk size of 1, the first chunk’s size will be 100/2/1 = 50; the
second chunk’s size will be (100–50)/2/1 = 25; and successive chunk sizes will be 12, 6, 3, 2, 1, 1.

With a guided schedule, the more threads there are, the more chunks there are, and the smaller the
chunks are. For example, with N = 100 iterations, K = 2 threads, and a minimum chunk size of 1, the
first chunk’s size will be 100/2/2 = 25; the second chunk’s size will be (100–25)/2/2 = 18; and successive
chunk sizes will be 14, 10, 8, 6, 4, 3, 3, 2, and seven chunks of size 1 (Figure 12.6).

 Figure 12.6 Guided schedule, 100 iterations, 2 threads

Like a dynamic schedule, a guided schedule adapts automatically to the workload distribution as the
loop executes, resulting in a more-balanced load than a fixed schedule.

Which parallel loop schedule should you use? Keep in mind that the goal is to achieve a balanced
load while minimizing the loop overhead; the more chunks into which the loop iterations are partitioned,

C6910_12 159C6910_12 159 1/26/09 11:26:27 AM1/26/09 11:26:27 AM

160 CHAPTER 12 Load Balancing

the more the overhead. If every loop iteration’s computations will take the same amount of time, use a
fixed schedule; this achieves a balanced load with as few chunks as possible (one chunk per thread). If
different iterations will take different amounts of time, use a guided or dynamic schedule to balance the
load. It’s difficult to give more specific guidelines because parallel programs are too diverse. A guided
schedule might give better performance on one program; a dynamic schedule might give better perfor-
mance on another program. Increasing the chunk size might give better performance due to fewer chunks
and less overhead, or might give worse performance due to increased load imbalance. You probably will
have to try different schedules or chunk sizes to get the best performance for a particular program.

To specify the schedule for a parallel for loop, declare the parallel for loop subclass’s schedule()
method to return an object representing the desired schedule.

 new IntegerForLoop()

 {

 public IntegerSchedule schedule()

 {

 return /* desired schedule object */;

 }

 . . .

 }

The possible schedule objects are the following:

Fixed schedule—•
return IntegerSchedule.fixed();

Dynamic schedule, default chunk size (1)—•
return IntegerSchedule.dynamic();

Dynamic schedule, chunk size of, for example, 10—•
return IntegerSchedule.dynamic(10);

Guided schedule, default minimum chunk size (1)—•
return IntegerSchedule.guided();

Guided schedule, minimum chunk size of, for example, 10—•
return IntegerSchedule.guided(10);

Custom schedule—•
return new classname();

where classname is the name of the custom schedule subclass

Runtime schedule (the default; discussed shortly)—•
return IntegerSchedule.runtime();

You can define your own subclass of class IntegerSchedule to implement a custom parallel for loop
scheduling algorithm if the built-in ones don’t do what you need. For further information, see the Parallel
Java documentation for class IntegerSchedule.

C6910_12 160C6910_12 160 1/26/09 11:26:27 AM1/26/09 11:26:27 AM

 12.4 Parallel Program with Load Balancing 161

If you do not declare the parallel for loop’s schedule() method, the default schedule is a runtime
schedule. You can also specify a runtime schedule explicitly. A runtime schedule is not a fourth kind of
schedule; rather, it lets you specify the schedule at run time. A parallel for loop with a runtime schedule
looks at the “pj.schedule” Java system property to determine the actual schedule. You can specify the
schedule by including the “-Dpj.schedule” flag on the Java command line. For example:

$ java -Dpj.schedule=guided . . .

The possible values for the “-Dpj.schedule” flag are the following:

Fixed schedule—•
-Dpj.schedule=fixed

Dynamic schedule, default chunk size—•
-Dpj.schedule=dynamic

Dynamic schedule, chunk size of 10—•
-Dpj.schedule=”dynamic(10)”

Guided schedule, default minimum chunk size—•
-Dpj.schedule=guided

Guided schedule, minimum chunk size of 10—•
-Dpj.schedule=”guided(10)”

Custom schedule—•
-Dpj.schedule=classname

where classname is the fully qualified class name of the custom schedule sub-
class. For further information, refer to the Parallel Java documentation.

Note that quotation marks might be needed. If a parallel for loop has a runtime schedule and the “pj.
schedule” Java system property is not defined, the default is a fixed schedule. (This is why every paral-
lel for loop we’ve studied up until this point has divided the iterations evenly among the threads.)

The default runtime schedule lets you experiment with different parallel for loop schedules from
the Java command line without needing to recompile your program. Once you have decided on the best
schedule, you can enshrine it in your program by declaring the schedule() method.

12.4 Parallel Program with Load Balancing
To achieve a balanced load in the Mandelbrot Set program, all that’s needed is to switch the parallel for
loop from the default fixed schedule to, let’s say, a guided schedule. Table 12.1 (at the end of the chapter)
lists, and Figure 12.7 plots, the MandelbrotSetSmp program’s running time metrics for the same inputs as
Figure 11.5, except the command line included the following flag:

$ java -Dpj.schedule=guided ...

The new data looks a lot better than the old data. No longer do the running times bounce up and down as
K increases.

C6910_12 161C6910_12 161 1/26/09 11:26:27 AM1/26/09 11:26:27 AM

162 CHAPTER 12 Load Balancing

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 10M

N = 20M

N = 40M

N = 80M

N = 160M

N = 320M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
−90

−80

−70

−60

−50

−40

−30

−20

−10

−0

1 0
N = 10M

N = 20M
N = 40MN = 80MN = 160M
N = 320M

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
N = 10M
N = 20MN = 40MN = 80MN = 160MN = 320M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N = 10M
N = 20MN = 40MN = 80MN = 160MN = 320M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 12.7 MandelbrotSetSeq/MandelbrotSetSmp running-time metrics, guided schedule

To confirm that switching to a guided schedule has solved the load balance problem, Figure 12.8
depicts the program’s running time for K = 1 through 8 processors with a guided schedule for a
3,200�3,200-pixel image. Each thread’s calculation time is subdivided to show how long it took to cal-
culate each chunk. The figure demonstrates why dividing the image into chunks using a guided schedule
achieves a balanced load; with chunks of various running times distributed among the threads, all the
threads finish processing chunks at about the same time.

C6910_12 162C6910_12 162 1/26/09 11:26:27 AM1/26/09 11:26:27 AM

 12.4 Parallel Program with Load Balancing 163

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
Running time, T (sec)

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

 Figure 12.8 Running times for each portion of the MandelbrotSetSmp program on different
numbers for processors, guided schedule

C6910_12 163C6910_12 163 1/26/09 11:26:27 AM1/26/09 11:26:27 AM

164 CHAPTER 12 Load Balancing

The measured B values follow. They all are now about the same and all are close to 1, as they should
be, indicating that the load stays balanced as the number of processors increases.

K Tp(K) Tp(1) B

2 21778 45123 0.97

3 13607 45123 0.90

4 10401 45123 0.92

5 8332 45123 0.92

6 6796 45123 0.90

7 5926 45123 0.92

8 5103 45123 0.90

In fact, the B values are less than 1, which seems to indicate that the load balance is “better than
perfect.” Also, the efficiencies are mostly greater than 1, which seems to indicate that the speedups and
efficiencies are “better than ideal.” This behavior is due to the JVM’s just-in-time (JIT) compiler. To gain
some insight into the JIT compiler’s effect on the program’s performance, the program’s running time
was measured for N=10M pixels with the JIT compiler turned off. Table 12.2 (at the end of the chapter)
lists the running time data, and Figure 12.9 plots the data with and without the JIT compiler. As we saw
in Chapter 9, without the JIT compiler, the program runs about 30 times slower. Without the JIT com-
piler, the speedups are less than K, the efficiencies are less than 1, and the EDSFs are closer to constant,
as we expect from Amdahl’s Law. So the JIT compiler is indeed responsible for the odd speedup, effi-
ciency, and EDSF curves.

How does the JIT compiler pull off this feat? With a guided schedule, the more threads there are,
the more chunks there are in the parallel for loop, thus the more calls there are to the parallel for loop’s
run() method. With multiple threads executing more run() method calls, the JVM can detect that
the run() method is a hot spot sooner than when a single thread is running. This, in turn, lets the JVM
compile the run() method to machine code sooner and lets more of the program execute in the faster
machine code mode when there are multiple threads. This, in turn, reduces the parallel portion’s running
time even further than would happen merely by switching to more threads. So Tpar(N,K) turns out smaller
than Tseq(N,1)/K, the speedup ends up greater than K, and the efficiency ends up greater than 1. We will
observe this same JIT compiler effect in other parallel programs.

Figure 12.7 plots the Mandelbrot Set program’s EDSF versus K. (Most of the values are negative due
to the JIT compiler effect.) Note that, despite fluctuations due to measurement error, the EDSF increases
as the number of processors increases. This increase also is due to the JIT compiler. After compiling
the Java bytecode to machine code, the JVM continues to optimize the compiled machine code, and the
longer the program runs, the more optimizations the JVM applies. When the program runs for a short
time, the JVM does not get the chance to optimize the machine code fully. Thus, with a small number of
threads, the program runs for a longer period, the JVM optimizes the machine code more, the program’s
speed is larger, and the measured EDSF is smaller. With a large number of threads, the program runs for
a shorter period, the JVM does not optimize the machine code as much, the program’s speed is smaller,
and the measured EDSF is larger.

C6910_12 164C6910_12 164 1/26/09 11:26:27 AM1/26/09 11:26:27 AM

 12.5 For Further Information 165

To sum up, now that we’ve dealt with the load balancing, the speedup and efficiency curves look
more like Amdahl’s Law says they should. As K increases, the efficiencies increase above 1 due to the
JIT compiler effect, and then the efficiencies drop off again due to the program’s sequential fraction.
However, because this program’s sequential fraction is small, the efficiency reduction is minor. Most of
the program’s sequential time is occupied compressing the image’s pixel data and writing the PJG file.
PJG’s fast compression algorithm ensures that the program’s sequential time is small relative to its paral-
lel time; this is the reason we went with PJG in the first place.

1E0

1E1

1E2

1E3

1E4

N = 10M

N = 10M

With JIT compiler

Without JIT compiler

Running Time vs. Processors

T
 (

N
,K

)
(s

ec
)

−70

−60

−50

−40

−30

−20

−10

0

1 0

2 0

3 0

N = 10M
N = 10M

With JIT compiler

Without JIT compiler

EDSF vs. Processors

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0

1

2

3

4

5

6

7

8
N = 10M

With JIT compiler

Without JIT compiler

Speedup vs. Processors

S
p

e
e

d
u

p
(N

,K
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 10M

With JIT compiler

Without JIT compiler

Efficiency vs. Processors

E
ff

(N
,K

)

Figure 12.9 MandelbrotSetSeq/MandelbrotSetSmp running-time metrics, guided schedule, with and
without JIT compiler

12.5 For Further Information
On the Mandelbrot Set and many other aspects of fractals:

B. Mandelbrot. • The Fractal Geometry of Nature. W. H. Freeman and Company, 1977.

C6910_12 165C6910_12 165 1/26/09 11:26:28 AM1/26/09 11:26:28 AM

166 CHAPTER 12 Load Balancing

Table 12.1 MandelbrotSetSeq/MandelbrotSetSmp running time metrics, guided schedule

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

10M seq 46082 80M seq 358869

10M 1 47725 0.966 0.966 80M 1 358904 1.000 1.000

10M 2 22295 2.067 1.033 -0.066 80M 2 170638 2.103 1.052 -0.049

10M 3 14597 3.157 1.052 -0.041 80M 3 110982 3.234 1.078 -0.036

10M 4 11288 4.082 1.021 -0.018 80M 4 86138 4.166 1.042 -0.013

10M 5 8943 5.153 1.031 -0.016 80M 5 66782 5.374 1.075 -0.017

10M 6 7653 6.021 1.004 -0.008 80M 6 56540 6.347 1.058 -0.011

10M 7 6950 6.631 0.947 0.003 80M 7 48342 7.424 1.061 -0.010

10M 8 6125 7.524 0.940 0.004 80M 8 44695 8.029 1.004 -0.001

20M seq 89953 160M seq 732332

20M 1 92936 0.968 0.968 160M 1 730873 1.002 1.002

20M 2 42883 2.098 1.049 -0.077 160M 2 347837 2.105 1.053 -0.048

20M 3 27993 3.213 1.071 -0.048 160M 3 223581 3.275 1.092 -0.041

20M 4 21804 4.126 1.031 -0.021 160M 4 166094 4.409 1.102 -0.030

20M 5 16934 5.312 1.062 -0.022 160M 5 136216 5.376 1.075 -0.017

20M 6 14371 6.259 1.043 -0.014 160M 6 118190 6.196 1.033 -0.006

20M 7 12316 7.304 1.043 -0.012 160M 7 100780 7.267 1.038 -0.006

20M 8 11337 7.934 0.992 -0.003 160M 8 90421 8.099 1.012 -0.001

40M seq 183295 320M seq 1433954

40M 1 183093 1.001 1.001 320M 1 1481640 0.968 0.968

40M 2 87317 2.099 1.050 -0.046 320M 2 680360 2.108 1.054 -0.082

40M 3 56874 3.223 1.074 -0.034 320M 3 442219 3.243 1.081 -0.052

40M 4 44096 4.157 1.039 -0.012 320M 4 324784 4.415 1.104 -0.041

40M 5 34311 5.342 1.068 -0.016 320M 5 265607 5.399 1.080 -0.026

40M 6 29032 6.314 1.052 -0.010 320M 6 224330 6.392 1.065 -0.018

40M 7 24893 7.363 1.052 -0.008 320M 7 196165 7.310 1.044 -0.012

40M 8 22860 8.018 1.002 0.000 320M 8 176553 8.122 1.015 -0.007

Table 12.2 MandelbrotSetSeq/MandelbrotSetSmp running time metrics, guided schedule, without JIT compiler

N K T Spdup Eff EDSF

10M seq 1440962

10M 1 1440995 1.000 1.000

10M 2 723308 1.992 0.996 0.004

10M 3 502099 2.870 0.957 0.023

10M 4 378627 3.806 0.951 0.017

10M 5 303613 4.746 0.949 0.013

10M 6 253245 5.690 0.948 0.011

10M 7 216955 6.642 0.949 0.009

10M 8 188342 7.651 0.956 0.007

C6910_12 166C6910_12 166 1/26/09 11:26:28 AM1/26/09 11:26:28 AM

167

C H A P T E R 13
in which we study a program where the threads must synchronize with each other

when accessing shared variables; we discover how this synchronization can severely

reduce the program’s performance; and we learn how to overcome the problem using

the parallel reduction pattern

Reduction

C6910_13.indd 167C6910_13.indd 167 1/26/09 8:33:02 AM1/26/09 8:33:02 AM

C H A P T E R13 Reduction

13.1 Estimating pi Using Random Numbers
Imagine we have a square dartboard, with each side being 1 unit in length (Figure 13.1). We use a com-
pass to draw a quadrant of a circle of radius 1 unit centered at the lower-left corner. We throw a large
number of darts at the board. What fraction of the dart holes will lie within the circle quadrant?

 Figure 13.1 A dartboard for estimating

Suppose we count the dart holes and find that when we threw N darts, C of them landed within the
circle quadrant. Assuming the darts landed at random locations spread uniformly across the dartboard,
the ratio of the number of darts within the circle quadrant to the total number of darts, C/N, should be
approximately the same as the ratio of the circle quad rant’s area to the square’s area. Because a full circle
of radius r has an area of r2, the circle quadrant’s area is /4. Because a square of side r has an area of
r2, the square’s area is 1. Therefore, C/N should be approximately /4.

This immediately suggests how a computer program can estimate the value of . Generate a
large number N of points (x,y), where x and y are each chosen uniformly at random in the range 0 to 1.
Determine whether each point falls within the circle quadrant, that is, whether each point’s distance from
the origin is less than or equal to 1. (Actually, test the squared distance, x2 + y2 ≤ 12, to avoid unnecessary
square root calculations.) Count the number of points C that fall within the circle quadrant. Because C/N
is approximately /4, print out 4C/N as the estimate for .

Algorithms such as the preceding that calculate their results using random numbers are called
Monte Carlo algorithms, after the famed casino of Monte Carlo (Figure 13.2), where random num-
ber generators—roulette wheels, dice, shuffled packs of cards—govern the outcome. This particular

C6910_13.indd 168C6910_13.indd 168 1/26/09 8:33:03 AM1/26/09 8:33:03 AM

 13.1 Estimating pi Using Random Numbers 169

algorithm for estimating is an example of a Monte Carlo integration algorithm. Technically, we
are calculating the integral—the area under the curve—of the mathematical function y(x) for a circle of
radius 1:

 1
4

2

0

1

– x x∫ =d (13.1)

The area under the curve, as a fraction of the unit square’s area, is estimated by the number of random
points under the curve as a fraction of the total number of points.

 Courtesy of Berthold Werner. http://commons.wikimedia.org/wiki/Image:Casino_2005.jpg

 Figure 13.2 The Casino of Monte Carlo

The Monte Carlo algorithm yields an estimate of the integral’s true value. The estimate’s accuracy is
proportional to the square root of the number of random points N. If we want to double the accuracy of
the answer, we have to do four times as many random points; if we want one additional decimal place of
accuracy, an improvement by a factor of 10, we have to do 100 times as many random points. Although
Monte Carlo algorithms are easy to program, to get reasonably accurate answers they require sampling
massive numbers of random points. Thus, Monte Carlo algorithms are attractive candidates for parallel
programs.

C6910_13.indd 169C6910_13.indd 169 1/26/09 8:33:03 AM1/26/09 8:33:03 AM

http://commons.wikimedia.org/wiki/Image:Casino_2005.jpg

170 CHAPTER 13 Reduction

13.2 Sequential Program
To embody the Monte Carlo algorithm for in a program is straightforward. Here is the source code for
class PiSeq, a sequential program.

 package edu.rit.smp.monte;

 import java.util.Random;

 public class PiSeq

 {

 // Command line arguments.

 static long seed;

 static long N;

To generate random points, the program uses a pseudorandom number generator (PRNG). (This is not
a cryptographic program, so we don’t need to use an entropy source.) For now we will use an instance of
class java.util.Random, the standard PRNG class in the Java platform.

 // Pseudorandom number generator.

 static Random prng;

 // Number of points within the unit circle.

 static long count;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long time = -System.currentTimeMillis();

The program’s command-line arguments include a seed for the PRNG and the number of points to gener-
ate, N. When using a PRNG, we always specify a seed. Initializing the PRNG with the same seed causes
the PRNG to generate the same sequence of random numbers. This lets us run the program many times
and get the same output. We’ll use type long for N and for the counter; this lets us do up to 263 – 1 itera-
tions. (An int can go up to only 231 – 1 iterations, or about two billion.)

C6910_13.indd 170C6910_13.indd 170 1/26/09 8:35:51 AM1/26/09 8:35:51 AM

 13.2 Sequential Program 171

The computational heart of the program loops N times. On each iteration, it uses the PRNG to gener-
ate two random double-precision floating-point numbers x and y, tests whether (x,y) falls within the unit
circle, and, if so, increments the counter.

 // Parse command line arguments.

 if (args.length != 2) usage();

 seed = Long.parseLong (args[0]);

 N = Long.parseLong (args[1]);

 // Set up PRNG.

 prng = new Random (seed);

 // Generate n random points in the unit square, count how

 // many are in the unit circle.

 count = 0;

 for (long i = 0; i < N; ++ i)

 {

 double x = prng.nextDouble();

 double y = prng.nextDouble();

 if (x*x + y*y <= 1.0) ++ count;

 }

 // Stop timing.

 time += System.currentTimeMillis();

 // Print results.

 System.out.println

 ("pi = 4 * " + count + " / " + N + " = " +

 (4.0 * count / N));

 System.out.println (time + " msec");

 }

 }

Here is what the program printed for seed = 142857 and N = 10 million.

$ java edu.rit.smp.monte.PiSeq 142857 10000000

pi = 4 * 7854789 / 10000000 = 3.1419156

2746 msec

C6910_13.indd 171C6910_13.indd 171 1/26/09 8:35:51 AM1/26/09 8:35:51 AM

172 CHAPTER 13 Reduction

13.3 Parallel Program
To convert the sequential program to an SMP parallel program is also, seemingly, straightforward. We
replace the sequential loop with a parallel loop so that multiple threads can throw darts at once. But if
we do that, the prng variable and the count variable become shared variables, and we must consider
whether the threads must synchronize with each other when accessing these variables.

Each prng.nextDouble() method call is an update operation. The calling thread reads the PRNG’s
state from a private field of the Random object, generates a random value as the PRNG’s new state, and
writes the new state back into the private field. Thus, multiple threads calling prng.nextDouble() must
synchronize with each other.

Anticipating this, the designers of class Random chose to make the class multiple-thread safe. They
did so by using an atomic compare-and-set (CAS) operation to update the private field that holds the
PRNG’s state. When one thread tries to update the private field, the CAS operation checks whether there
was a conflict with another thread updating the private field at the same time. If there was a conflict, the
CAS operation does not perform the update, and the thread must retry the update. The thread must retry
repeatedly, if necessary, until the update succeeds. (See Appendix D for a fuller explanation of how the
CAS operation works.) The CAS operation ensures that multiple threads will not interfere with each
other’s updates, making class Random multiple-thread safe. That being the case, the parallel program can
call methods on the prng variable in the same way as the sequential program.

Each increment of the count variable is also an update operation. The executing thread reads the
variable’s value, adds 1, and writes the new value back into the variable. Thus, multiple threads incre-
menting the count variable must also synchronize with each other.

While class Random is multiple-thread safe, type long is not. We no longer can use type long for
the count variable in the multithreaded parallel program. Instead, we will use a multiple-thread-safe
class from the Parallel Java Library, class edu.rit.pj.reduction.SharedLong. Class SharedLong has a pri-
vate field of type long as well as methods for reading, writing, and updating the private field. Like class
Random, class SharedLong achieves multiple-thread safety using an atomic CAS operation.

Here is the source code for class PiSmp, an SMP parallel version of the Monte Carlo program.

 package edu.rit.smp.monte;

 import edu.rit.pj.LongForLoop;

 import edu.rit.pj.ParallelTeam;

 import edu.rit.pj.ParallelRegion;

 import edu.rit.pj.reduction.SharedLong;

 import java.util.Random;

 public class PiSmp

 {

 // Command line arguments.

 static long seed;

 static long N;

 // Pseudorandom number generator.

 static Random prng;

C6910_13.indd 172C6910_13.indd 172 1/26/09 8:35:51 AM1/26/09 8:35:51 AM

 13.3 Parallel Program 173

As mentioned earlier, the count variable is now an instance of class SharedLong.

 // Number of points within the unit circle.

 static SharedLong count;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long time = -System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 2) usage();

 seed = Long.parseLong (args[0]);

 N = Long.parseLong (args[1]);

 // Set up PRNG.

 prng = new Random (seed);

 // Generate n random points in the unit square, count how

 // many are in the unit circle.

 count = new SharedLong (0L);

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

The plain for loop in the sequential version becomes a parallel loop in the parallel version. Instead of
class IntegerForLoop, we use class LongForLoop, whose loop index variable is type long.

 execute (0, N-1, new LongForLoop()

 {

 public void run (long first, long last)

 {

 for (long i = first; i <= last; ++ i)

 {

To get a random number, each thread calls a method on the multiple-thread-safe prng object. To incre-
ment the counter, each thread calls a method on the multiple-thread-safe count object.

C6910_13.indd 173C6910_13.indd 173 1/26/09 8:35:51 AM1/26/09 8:35:51 AM

174 CHAPTER 13 Reduction

 double x = prng.nextDouble();

 double y = prng.nextDouble();

 if (x*x + y*y <= 1.0) count.incrementAndGet();

 }

 }

 });

 }

 });

 // Stop timing.

 time += System.currentTimeMillis();

 // Print results.

 System.out.println

 ("pi = 4 * " + count + " / " + N + " = " +

 (4.0 * count.doubleValue() / N));

 System.out.println (time + " msec");

 }

 }

Don’t be too eager to emulate the preceding parallel program. It has two serious design flaws. One
flaw has to do with performance; the other flaw has to do with the way in which multiple threads gener-
ate random numbers.

The first flaw becomes apparent when we measure the PiSmp pro gram’s running time on the “para-
site” SMP computer. Table 13.1 lists the running-time data for a problem size of N = 200 million darts.
Figure 13.3 plots the running time and speedup versus the number of processors. The parallel program’s
speedup on one processor, which ought to be very close to 1, instead is only 0.900. Much worse, the run-
ning time on two processors is longer than the running time on one processor, and the more processors
we add, the longer the running time becomes. We are getting a slowdown instead of a speedup! Before
doing anything else, we must determine the cause of the slowdown and fix the problem.

Table 13.1 PiSeq/PiSmp running time metrics

N K T Spdup Eff EDSF

200M seq 53167

200M 1 59105 0.900 0.900

200M 2 137653 0.386 0.193 3.658

200M 3 212120 0.251 0.084 4.883

200M 4 319983 0.166 0.042 6.885

200M 5 349657 0.152 0.030 7.145

200M 6 451591 0.118 0.020 8.969

200M 7 539920 0.098 0.014 10.491

200M 8 636163 0.086 0.010 12.158

C6910_13.indd 174C6910_13.indd 174 1/26/09 8:35:51 AM1/26/09 8:35:51 AM

 13.4 The Reduction Pattern 175

 Figure 13.3 PiSeq/PiSmp running time metrics

1 1 0
1E1

1E2

1E3

N = 200M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N = 200M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

13.4 The Reduction Pattern
Ironically, the PiSmp program’s multiple-thread safety is what’s causing the slowdown.

Consider how the program uses the shared PRNG (Figure 13.4). Because class Random is multiple-
thread safe, only one thread at a time is allowed to get a random number from the PRNG. But the threads
are doing almost nothing except getting random numbers. Consequently, each thread spends much of its
time waiting its turn to access the PRNG instead of computing. In addition, the parallel program must
spend some time doing an atomic CAS operation each time it increments the count variable, even if
there’s only one thread. This extra overhead, not present in the sequential program, causes the parallel
program’s running time on one processor to exceed the sequential program’s running time, resulting in a
speedup of only 0.900. Worse, the more threads that are trying to do atomic CAS operations on the prng
and count variables, the more likely that conflicts will occur, and the more retries that each thread must
do. Thus, the time to get a random number and to increment the counter becomes longer the more threads
there are.

Now consider that this thread-synchronization overhead happens on each and every loop iteration;
and to get accurate answers from the Monte Carlo algorithm, we will need millions or billions of loop
iterations. It’s little wonder the program slows down as we add more processors (threads).

We are facing a dilemma. If we leave the thread synchronization out, the threads will interfere with
each other when accessing the shared variables and the program will compute the wrong answer. If we
put the thread synchronization in, the program’s performance goes way down.

C6910_13.indd 175C6910_13.indd 175 1/26/09 8:35:52 AM1/26/09 8:35:52 AM

176 CHAPTER 13 Reduction

Thr
0

Thr
1

Thr
2

Thr
3

Random
prng

SharedLong
count

 Figure 13.4 Threads accessing variables

The way out of the dilemma is for the threads not to contend with each other—not to access shared
variables—while doing their loop iterations. Instead, each thread will have its own per-thread PRNG
variable and per-thread counter variable (Figure 13.5). Each thread can then update its own PRNG and
counter without interference from the other threads and without having to contend with the other threads
for access to shared variables. Once the threads have finished their iterations, the per-thread counters
must be added together to yield the final total count. Because all the threads must update the same total
count, the total counter variable must still be a shared variable; and because multiple threads are updat-
ing the total count, the shared variable must still be multiple-thread safe. However, this time, each thread
has to synchronize with the other threads only once at the end of the program, not on every loop iteration.
Hence, the program’s performance should be a lot better.

When multiple individual per-thread results are combined, or reduced, in this way to yield an overall
result, the program is following the parallel reduction pattern. The shared variable that holds the com-
bined result is called a reduction variable. The classes in package edu.rit.pj.reduction in the Parallel Java
Library are designed to be used for shared reduction variables in SMP parallel programs. Package edu.rit.
pj.reduction provides multiple-thread-safe wrapper classes for each primitive type as well as object types,
and for arrays thereof.

Thr
0

long
count

Random
prng

Thr
1

long
count

Random
prng

Thr
2

long
count

Random
prng

Thr
3

long
count

Random
prng

SharedLong
count

 Figure 13.5 Threads accessing variables using the reduction pattern

C6910_13.indd 176C6910_13.indd 176 1/26/09 8:35:52 AM1/26/09 8:35:52 AM

 13.5 Parallel Program with Reduction 177

13.5 Parallel Program with Reduction
Here is the source code for class PiSmp2, an SMP parallel version of the Monte Carlo program that
uses parallel reduction.

 package edu.rit.smp.monte;

 import edu.rit.pj.LongForLoop;

 import edu.rit.pj.ParallelTeam;

 import edu.rit.pj.ParallelRegion;

 import edu.rit.pj.reduction.SharedLong;

 import java.util.Random;

 public class PiSmp2

 {

 // Command line arguments.

 static long seed;

 static long N;

The shared PRNG variable is gone. The shared counter variable is still here, but now it is used as a reduc-
tion variable.

 // Number of points within the unit circle.

 static SharedLong count;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long time = -System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 2) usage();

 seed = Long.parseLong (args[0]);

 N = Long.parseLong (args[1]);

 // Generate n random points in the unit square, count how

 // many are in the unit circle.

 count = new SharedLong (0L);

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

C6910_13.indd 177C6910_13.indd 177 1/26/09 8:35:52 AM1/26/09 8:35:52 AM

178 CHAPTER 13 Reduction

Now each thread has its own PRNG and counter. Because these are fields of the LongForLoop sub-
class, each thread gets its own copies when it executes the loop. Because only one thread accesses these
variables, we can go back to the non-multiple-thread-safe type long for the counter. It takes less time
to increment a long than to increment a SharedLong because the former does not need to do an atomic
compare-and-set operation. (Note the extra padding to avert cache interference when the threads access
their own per-thread variables.)

 {

 execute (0, N-1, new LongForLoop()

 {

 // Set up per-thread PRNG and counter.

 Random prng_thread = new Random (seed);

 long count_thread = 0;

 // Extra padding to avert cache interference.

 long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7;

 long pad8, pad9, pada, padb, padc, padd, pade, padf;

 // Parallel loop body.

 public void run (long first, long last)

 {

 // Generate random points.

 for (long i = first; i <= last; ++ i)

 {

Inside the loop, each thread now accesses its own PRNG and counter.

 double x = prng_thread.nextDouble();

 double y = prng_thread.nextDouble();

 if (x*x + y*y <= 1.0) ++ count_thread;

 }

 }

After finishing the loop, each thread performs the parallel reduction by adding its own per-thread counter
into the shared reduction variable. Putting this code in the LongForLoop’s finish() method ensures
that each thread will run this code only once, no matter how many chunks of loop iterations the thread
executes (as dictated by the loop schedule).

C6910_13.indd 178C6910_13.indd 178 1/26/09 8:35:52 AM1/26/09 8:35:52 AM

 13.5 Parallel Program with Reduction 179

Table 13.2 (at the end of the chapter) gives the running-time measurements in milliseconds for the
Monte Carlo program with parallel reduction for various problem sizes N from 200 million (200M, for
“mega”) to 10 billion (10G, for “giga”) darts, as well as the speedups, efficiencies, and EDSFs calculated
from the running times. Figure 13.6 plots the running-time metrics versus the number of processors.
Switching to the parallel reduction pattern has eradicated the slowdowns, and we are now seeing excel-
lent speedups and efficiencies.

The EDSF curves are curious. There is an abrupt increase in the EDSF values when going from
K = 4 processors to K = 5 processors. This behavior is due to the CPU hardware. The “parasite” SMP
parallel computer has four Sun Microsystems UltraSPARC-IV CPU chips. These are hyperthreaded
CPUs, each having two instruction units that can issue instructions for two threads simultaneously, but
each having only one set of functional units to execute instructions. For K = 1 to 4, the JVM and operat-
ing system schedule each parallel team thread on a different CPU chip, and each thread has the whole
CPU to itself. For K = 5 to 8, the JVM and operating system start scheduling two threads per CPU chip,
and the threads have to share the CPU’s functional units. Because the threads are executing the same
instructions, the threads are contending with each other to use the same functional units, and sometimes
one thread must wait for the other thread to finish using a particular functional unit. These waits cause the
program’s EDSF to increase. These waits also cause the program’s speedup and efficiency to dip slightly
as we go from K = 4 to 5.

 public void finish()

 {

 // Reduce per-thread counts into shared count.

 count.addAndGet (count_thread);

 }

 });

 }

 });

 // Stop timing.

 time += System.currentTimeMillis();

 // Print results.

 System.out.println

 ("pi = 4 * " + count + " / " + N + " = " +

 (4.0 * count.doubleValue() / N));

 System.out.println (time + " msec");

 }

 }

C6910_13.indd 179C6910_13.indd 179 1/26/09 8:35:52 AM1/26/09 8:35:52 AM

180 CHAPTER 13 Reduction

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 200M

N = 500M

N = 1G

N = 2G

N = 5G

N = 10G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
−8

−6

−4

−2

0

2

4

6

8

1 0

1 2

1 4

1 6

N = 200M
N = 500M
N = 1GN = 2GN = 5GN = 10G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
N = 200MN = 500MN = 1GN = 2GN = 5GN = 10G

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 200MN = 500MN = 1GN = 2GN = 5GN = 10G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 13.6 PiSeq/PiSmp2 running-time metrics

13.6 The Second Flaw
Now that we’ve fixed the first design flaw in the Monte Carlo program and are getting decent per-
formance, we turn our attention to the second design flaw. This one is more subtle. Here are the values
of the program calculated with a seed of 142857 and with N = 200 million darts running on different
numbers of processors K.

C6910_13.indd 180C6910_13.indd 180 1/26/09 8:35:52 AM1/26/09 8:35:52 AM

 13.7 For Further Information 181

K
seq 3.14166696

1 3.14166696

2 3.14177916

3 3.14187478

4 3.14195848

5 3.14187660

6 3.14197380

7 3.14193412

8 3.14188656

The parallel version with one thread computed the same answer as the sequential version. But with more
than one thread, the parallel version computed different answers! Although all the answers are within
0.01% of the true value of , the program ought to be capable of giving identical answers no matter how
many processors we use. Why are the answers all different?

In the parallel version with one thread, there is one PRNG. Initialized with the same seed as the
sequential version, the PRNG generates the same sequence of random numbers. Thus, the parallel version
generates 200 million random points (x,y) that are the same as the ones the sequential version generates,
so the parallel version with one thread computes the same answer as the sequential version.

In the parallel version with two threads, there are two PRNGs, each initialized with the same seed
as the sequential version. Each thread in the parallel version does 100 million iterations. But this time,
instead of generating 200 million different points, the parallel version generates 100 million differ-
ent points, twice each—the same as the first 100 million points the sequential version generates. It is
as though two identical twins were throwing darts at the dartboard—twins so identical that their darts
always land in exactly the same place. The missing 100 million points explain why the parallel version
with two (or more) threads computes an answer that differs from the sequential version.

We need to fix the parallel version so it gives the same answer as the sequential version, no mat-
ter how many processors it runs on. Before we can do so, we need to understand how PRNGs generate
random numbers. That’s the topic of the next chapter.

13.7 For Further Information
On Monte Carlo integration techniques:

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. • Numerical Recipes:
The Art of Scientific Computing, Third Edition. Cambridge University Press,
2008, Chapter 7.

C6910_13.indd 181C6910_13.indd 181 1/26/09 8:35:52 AM1/26/09 8:35:52 AM

182 CHAPTER 13 Reduction

Table 13.2 PiSeq/PiSmp2 running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

200M seq 53156 2G seq 530894

200M 1 53215 0.999 0.999 2G 1 531417 0.999 0.999

200M 2 26542 2.003 1.001 -0.002 2G 2 264221 2.009 1.005 -0.006

200M 3 17783 2.989 0.996 0.001 2G 3 176897 3.001 1.000 -0.001

200M 4 13376 3.974 0.993 0.002 2G 4 132714 4.000 1.000 0.000

200M 5 11138 4.772 0.954 0.012 2G 5 110249 4.815 0.963 0.009

200M 6 9348 5.686 0.948 0.011 2G 6 91826 5.782 0.964 0.007

200M 7 8074 6.584 0.941 0.010 2G 7 79517 6.676 0.954 0.008

200M 8 7101 7.486 0.936 0.010 2G 8 69985 7.586 0.948 0.008

500M seq 132867 5G seq 1328267

500M 1 132912 1.000 1.000 5G 1 1329193 0.999 0.999

500M 2 66139 2.009 1.004 -0.005 5G 2 661072 2.009 1.005 -0.005

500M 3 44265 3.002 1.001 0.000 5G 3 441836 3.006 1.002 -0.001

500M 4 33260 3.995 0.999 0.000 5G 4 331410 4.008 1.002 -0.001

500M 5 27945 4.755 0.951 0.013 5G 5 276593 4.802 0.960 0.010

500M 6 23226 5.721 0.953 0.010 5G 6 229002 5.800 0.967 0.007

500M 7 19991 6.646 0.949 0.009 5G 7 198640 6.687 0.955 0.008

500M 8 17575 7.560 0.945 0.008 5G 8 174579 7.608 0.951 0.007

1G seq 265748 10G seq 2655504

1G 1 265954 0.999 0.999 10G 1 2659653 0.998 0.998

1G 2 132267 2.009 1.005 -0.005 10G 2 1321340 2.010 1.005 -0.006

1G 3 88491 3.003 1.001 -0.001 10G 3 883942 3.004 1.001 -0.001

1G 4 66401 4.002 1.001 0.000 10G 4 662640 4.007 1.002 -0.001

1G 5 55111 4.822 0.964 0.009 10G 5 548864 4.838 0.968 0.008

1G 6 46175 5.755 0.959 0.008 10G 6 458232 5.795 0.966 0.007

1G 7 39848 6.669 0.953 0.008 10G 7 397122 6.687 0.955 0.008

1G 8 34956 7.602 0.950 0.007 10G 8 348678 7.616 0.952 0.007

C6910_13.indd 182C6910_13.indd 182 1/26/09 8:35:52 AM1/26/09 8:35:52 AM

183

C H A P T E R 14
in which we look at patterns of random number generation in parallel programs;

we learn how pseudorandom number generators work; we design a parallel

pseudorandom number generator; and we apply it to our parallel Monte Carlo

program

Parallel Random Number Generation

C6910_14 183C6910_14 183 1/26/09 11:26:00 AM1/26/09 11:26:00 AM

C H A P T E R14 Parallel Random Number Generation

14.1 Parallel PRNG Patterns
The black-box interface to a pseudorandom generator (PRNG) is simple and standard: initialize the
PRNG by setting the seed, and then repeatedly call some kind of next() method to generate a sequence
of random numbers. A PRNG might have different next() methods that return numbers of various
types, such as floating-point numbers between 0.0 and 1.0, or integers between 0 and a given upper
bound. Because the set of random numbers a PRNG can generate is finite, after some number of random
numbers have been generated, the PRNG repeats the same sequence of random numbers. That is, the
PRNG goes through a cycle of random numbers; the initial seed value determines where in this cycle
the PRNG starts. If you re-initialize the PRNG with the same seed, you will get the same sequence of
random numbers.

The sequential Monte Carlo program from Chapter 13 uses a single PRNG to generate a certain
sequence of random numbers (Figure 14.1). The white circle stands for the initial seed value, the black
circles stand for the subsequently generated random numbers. The particular sequence depends on the
initial seed value supplied as a command-line argument.

Seq.

 Figure 14.1 Sequential random number sequence

The parallel Monte Carlo program from Chapter 13 uses a separate PRNG for each thread. But
because each PRNG is initialized—incorrectly—with the same seed, each PRNG generates the identical
random number sequence (Figure 14.2).

Seq.

Par.

Figure 14.2 Parallel random number sequences, incorrect

As we saw in Chapter 13, this causes the parallel program’s output to differ from the sequential pro-
gram’s. To fix this problem, we can use any of three techniques: independent sequences, leapfrogging, or
sequence splitting.

C6910_14 184C6910_14 184 1/26/09 11:26:00 AM1/26/09 11:26:00 AM

 14.1 Parallel PRNG Patterns 185

Independent sequences. Instead of initializing each thread’s PRNG with the same seed, we can ini-
tialize them all with different seeds. This causes each PRNG to start at a different point in its cycle, and
each PRNG will generate a different random number sequence (Figure 14.3).

Seq.

Par.

 Figure 14.3 Parallel random number sequences, independent sequences

However, there are several problems with this technique. First, if the parallel program has K threads,
then K different seeds are needed instead of just one. Either the user must supply multiple seeds, or the
program must somehow derive multiple seeds from a single user-supplied seed. Second, depending on
the particular seeds chosen, it’s possible that at some point in the program the sequence generated by
one PRNG will overlap the sequence generated by another PRNG, as Figure 14.3 illustrates. We want
to avoid overlapping sequences, because this might throw off the program’s results. Finally, even if the
PRNG’s sequences do not overlap, it’s unlikely that the set of random numbers generated by the parallel
program’s PRNGs together will be the same as the set of random numbers generated by the sequential
program’s single PRNG. This will prevent the parallel program from duplicating the sequential program’s
output.

Leapfrogging. After each thread initializes its PRNG with the same seed, thread 0 can leave its
PRNG alone; thread 1 can tell its PRNG to skip over one random number; thread 2 can tell its PRNG to
skip over two random numbers; and so on through thread K–1. When each thread now tells its PRNG
to generate a random number, the numbers that come out will be the same as the first K numbers the
sequential program’s PRNG generated. Then, each thread tells its PRNG to skip over K–1 random num-
bers, namely the numbers the other PRNGs are generating. By repeatedly generating one random
number and skipping K–1 random numbers, each thread leapfrogs over the other threads’ random num-
bers (Figure 14.4).

Seq.

Par.

Figure 14.4 Parallel random number sequences, leapfrogging

Unlike the independent sequences technique, with leapfrogging, the parallel program generates the same
random numbers as the sequential program.

On each loop iteration, the Monte Carlo program generates a pair of random numbers. To get the
same sequence of random points (x,y) in the parallel version as in the sequential version using leapfrog-
ging, each thread must repeatedly generate two random numbers and skip 2(K–1) random numbers
(Figure 14.5).

C6910_14 Sec1:185C6910_14 Sec1:185 1/26/09 11:26:00 AM1/26/09 11:26:00 AM

186 CHAPTER 14 Parallel Random Number Generation

Seq.

Par.

Figure 14.5 Generating pairs of random numbers with leapfrogging

Sequence splitting. Suppose the program will generate N random numbers. After each thread ini-
tializes its PRNG with the same seed, thread 0 can leave its PRNG alone; thread 1 can tell its PRNG to
skip N/K random numbers; thread 2 can tell its PRNG to skip 2N/K random numbers; and so on through
thread K–1. Thereafter, each thread simply generates random numbers without any skipping
(Figure 14.6).

Seq.

Par.

 Figure 14.6 Parallel random number sequences, sequence splitting

In effect, the random number sequence is split into K pieces, each with N/K consecutive random num-
bers. Like leapfrogging, with sequence splitting, the parallel program generates the same random num-
bers as the sequential program.

Which technique should you use? Keep in mind that skipping a PRNG an arbitrary distance ahead
might take more time than generating the next random number. If you don’t need the parallel program to
generate the same random sequence when run on different numbers of processors, then the independent
sequence technique is the easiest and fastest, because it does not involve any skipping. Otherwise, you
must choose between leapfrogging and sequence splitting. Because leapfrogging does a skip after every
random number and sequence splitting does only one skip at the beginning, a parallel program using
sequence splitting might have a smaller running time than one using leapfrogging. On the other hand,
sequence splitting requires that you know N (the number of random numbers needed) before you start
generating random numbers; leapfrogging does not require knowing N ahead of time.

It is possible to do sequence splitting if you don’t know N ahead of time. You can skip each PRNG’s
thread ahead a distance larger than any possible value of N (Figure 14.7). However, by doing so, the par-
allel program will not generate the same random numbers as the sequential program.

Seq.

Par.

Figure 14.7 Sequence splitting with N not known ahead of time

C6910_14 Sec1:186C6910_14 Sec1:186 1/26/09 11:26:00 AM1/26/09 11:26:00 AM

A key design criterion for a PRNG to be used in parallel programs, then, is that the PRNG algorithm
supports an efficient skip operation. It must be possible to skip the PRNG an arbitrary number of posi-
tions ahead in its cycle much more quickly than calling the next() method that many times.

14.2 Pseudorandom Number Generator Algorithms
A PRNG algorithm has two aspects: a hash function and a mode of operation. The hash function,
denoted H(x), takes an integer input value x and “randomizes” it, yielding a random number to be
returned by the next() method. More precisely, the hash function maps each input value to a certain
output value; for a given input value, the hash function always yields the same output value; but the map-
ping looks as if it were chosen at random. The mode of operation specifies how successive input values
are presented to the hash function on successive next() method calls to yield a sequence of random
numbers.

Many PRNG hash functions have been invented. We will look at four: the linear congruential genera-
tor, the multiplicative congruential generator, the xorshift generator, and the composite hash function. We
will also look at two modes of operation: iterated mode and counter mode.

Linear congruential generator (LCG). Discovered in the mid-twentieth century, the hash function
for an LCG is

 (14.1)

where a, b, and m are constant parameters. We denote this hash function as LCG(x; a,b,m). It is called
“linear” because it computes a linear function of x, and it is called “congruential” because the function’s
output is congruent to the linear function’s value modulo m.

Multiplicative congruential generator (MCG). An MCG is a special case of an LCG with b = 0,

 (14.2)

where a and m are constant parameters. We denote this hash function as MCG(x; a,m). The value x = 0
should be avoided, because in that case H(x) yields x (rather than a “random” output). Earlier, we said that
the set of random numbers a PRNG can generate is finite. For an LCG or MCG, we now can see why. The
(mod m) operation forces the output to be a member of the finite set {1, 2, …, m–1} (avoiding x = 0).

Xorshift generator. Invented by George Marsaglia in 2003, here is the pseudocode for the xorshift
generator’s hash function H(x),

x x x a

x x x b

x x x c

x

←
←
←

Return

�

�

�

()

()

()
 (14.3)

where a, b, and c are constant parameters, ⊕ is the exclusive-or (xor) operation, ≫ is the right-shift
operation, and ≪ is the left-shift operation. The operations are performed on n-bit unsigned integers,
thus yielding outputs in the finite set {1, 2, …, 2n–1}. (Again, the value x = 0 should be avoided.) We
denote this hash function as XorShiftRight(x; a,b,c).

C6910_14 Sec1:187C6910_14 Sec1:187 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

188 CHAPTER 14 Parallel Random Number Generation

A variation of the xorshift hash function H(x) begins with a left-shift instead of a right-shift:

x x x a

x x x b

x x x c

x

←
←
←

Return

�

�

�

()

()

()
 (14.4)

We denote this hash function as XorShiftLeft(x; a,b,c).
Composite hash function. Feeding the output of one hash function into the input of another hash

function gives still another hash function, a composite hash function:

 (14.5)

Any number of hash functions can be composed together; for example, four:

 (14.6)

A composite hash function can be used to increase the degree of randomness when a single hash function
is not random enough.

Iterated mode. Combining a hash function with a mode of operation gives a complete PRNG
algorithm. In iterated mode, after setting the seed, the first random number generated is the hash of the
seed; the second random number is the hash of the first random number; the third random number is the
hash of the second random number; and so on. Treating the seed as an internal state variable, the next()
method is the following:

 (14.7)

Counter mode. In this mode, the PRNG’s internal state is a counter. Setting the seed initializes the
counter. Successive generated random numbers are the hashes of successive counter values. The next()
method is the following:

 (14.8)

Which mode of operation shall we use for our parallel PRNG algorithm? The PRNG must support an
efficient skip operation. The obvious choice, then, is counter mode. To skip a counter-mode PRNG ahead
n positions, simply increase the counter by n instead of 1. In general, there is no way to skip an iterated-
mode PRNG ahead n positions other than by calling the next() method n times. While some hash
functions do support faster skip operations—for example, an iterated-mode MCG can be skipped ahead n
positions by a modular exponentiation using an O(log n) algorithm—these are still not as fast as adding n
to a counter.

Another important design consideration is the PRNG’s period. This is the length of the PRNG’s
cycle, the number of random numbers that can be generated before the sequence starts repeating itself.
If a counter-mode PRNG’s hash function maps each distinct input value to a different output value, the

C6910_14 Sec1:188C6910_14 Sec1:188 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

 14.2 Pseudorandom Number Generator Algorithms 189

period will be 2n for an n-bit counter. (n is often chosen to be the computer’s word size.) A 32-bit counter,
however, is too small for use in large-scale parallel programs; the PRNG starts repeating itself after
only four billion random numbers. A 64-bit counter is much better. Even then, the program should not
consume more than a fraction of the PRNG’s period. Otherwise, numbers generated later might correlate
with numbers generated earlier, which might throw off the program’s results.

Which hash function shall we use with our counter mode parallel PRNG? The answer is to use a
hash function that yields an output sequence that is statistically indistinguishable from a true random
sequence, such as the numbers obtained by flipping coins or rolling dice. Most of the theory about
PRNGs pertains to iterated mode PRNGs; for counter mode PRNGs there is little theory to guide us,
and we must instead rely on empirical testing. As one simple example of a statistical test, consider using a
PRNG to simulate a fair coin toss. If a random number’s high-order bit is 0, the toss is heads; if it is 1,
the toss is tails. Suppose we generate one million random numbers and observe 499,735 heads and
500,265 tails. That seems consistent with what we’d expect if the sequence were truly random. (We’d
never expect to see precisely 500,000 heads and 500,000 tails, even when flipping a real coin.) But sup-
pose we got 745,127 heads and 254,873 tails. That is almost certainly not random. A statistical test called
the “chi-square test” can distinguish these cases; the former case would pass the chi-square test and the lat-
ter case would fail. In Chapter 31, we will examine another statistical test, the “Kolmogorov-Smirnov test.”

There are test suites that apply a battery of statistical tests to a PRNG and report which tests failed.
Passing all the tests increases our confidence in the PRNG as a source of random numbers. George
Marsag lia’s Diehard test suite, first published in 1995, has become the de facto standard for testing
PRNGs. Pierre L’Ecuyer’s and Richard Simard’s Crush test suite, first published in 2002 as part of their
TestU01 PRNG software library, provides more tests and more stringent tests than Die hard. A PRNG that
passes Diehard might not pass Crush.

We want a counter-mode PRNG with a hash function that passes Crush. William Press et al. recom-
mend the following 64-bit composite hash function, which does indeed pass both Diehard and Crush. The
LCG and MCG parameters were found by Pierre L’Ecuyer and his colleagues to give hash functions with
good randomness properties.

 (14.9)

While a PRNG algorithm generates random numbers that are integers, often we want random
floating-point numbers. One way to get random floating-point numbers is to divide the PRNG’s output
value by the largest possible output value (using floating-point division, not integer division). For a 64-bit
PRNG, divide the output by 264. This yields a random number in the range 0.0 to 1.0.

C6910_14 Sec1:189C6910_14 Sec1:189 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

190 CHAPTER 14 Parallel Random Number Generation

14.3 A Parallel PRNG Class
Taking the foregoing considerations into account, we can now design a PRNG suitable for random num-
ber generation in parallel programs. This is class edu.rit.util.Random in the Parallel Java Library.

Algorithm. Class edu.rit.util.Random uses the 64-bit hash function (14.9) in counter mode, which
passes Diehard and Crush.

Period. With a 64-bit counter, class edu.rit.util.Random’s period is 264, or about twenty billion billion
(2�1019).

Types of random numbers. Class edu.rit.util.Random has the methods nextBoolean(),
nextInt(), nextFloat(), and nextDouble() to generate the next random number as type boolean,
int, float, or double, respectively.

Skipping. To support the leapfrogging and sequence splitting techniques, class edu.rit.util.Random
has a skip() method to skip over the next n random numbers in the sequence. Class edu.rit.util.Random
also has variations of the nextBoolean(), nextInt(), nextFloat(), and next Double() methods
to skip over the next n–1 random numbers in the sequence and generate the n-th random number.

Not multiple-thread safe. Unlike class java.util.Random, class edu.rit.util.Random is not multiple-
thread safe. In parallel programs, PRNGs are usually per-thread variables for performance reasons, as in
the PiSmp2 program in Chapter 13. But if only one thread ever calls methods on the PRNG, the PRNG
class does not need to be multiple-thread safe, and omitting the thread synchronization code (atomic
compare-and-set) reduces the parallel program’s running time even further.

Serializable. An instance of class edu.rit.util.Random can serialize its state into an output stream, a
file, for example. This can be useful for checkpointing the state of a parallel computation into a file so the
program can stop temporarily and later pick up where it left off.

Usage. To create a PRNG object, call a static factory method in class edu.rit.util.Random, passing
the seed as an argument.

 Random prng = Random.getInstance (seed);

Alternate algorithms. The getInstance() factory method looks at the “pj.prng” Java
system property to determine which PRNG algorithm to use. If this property is not specified, the
getInstance() method creates an instance of the default PRNG described earlier. If the “pj.prng”
property is specified, it gives the name of a class to instantiate. For example, the command:

$ java -Dpj.prng=SpecialRandom . . .

causes the getInstance() method to create an instance of class SpecialRandom (which must be a
subclass of class edu.rit.util.Random). In this way, you can write your own PRNG classes and experiment
with different PRNG algorithms from the command line without rewriting and recompiling your parallel
program.

C6910_14 Sec1:190C6910_14 Sec1:190 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

 14.4 Parallel Program with Sequence Splitting 191

14.4 Parallel Program with Sequence Splitting
Class PiSeq3 in the Parallel Java Library is a sequential version of the Monte Carlo program that uses
class edu.rit.util.Random to generate random numbers instead of class java.util.Random. Class PiSmp3 is
an SMP parallel version that uses class edu.rit.util.Random with sequence splitting to generate the same
random points as class PiSeq3. Here is the source code for class PiSmp3.

package edu.rit.smp.monte;

import edu.rit.pj.LongForLoop;

import edu.rit.pj.ParallelTeam;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.reduction.SharedLong;

import edu.rit.util.Random;

public class PiSmp3

 {

 // Command line arguments.

 static long seed;

 static long N;

 // Number of points within the unit circle.

 static SharedLong count;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long time = -System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 2) usage();

 seed = Long.parseLong (args[0]);

 N = Long.parseLong (args[1]);

 // Generate n random points in the unit square, count how

 // many are in the unit circle.

 count = new SharedLong (0);

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

C6910_14 Sec1:191C6910_14 Sec1:191 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

192 CHAPTER 14 Parallel Random Number Generation

The first of only two differences between class PiSmp3 and class PiSmp2 is the following line. We create
an instance of class edu.rit.util.Random instead of class java.util.Random.

 execute (0, N-1, new LongForLoop()

 {

 // Set up per-thread PRNG and counter.

 Random prng_thread = Random.getInstance (seed);

 long count_thread = 0L;

 // Extra padding to avert cache interference.

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

 // Parallel loop body.

 public void run (long first, long last)

 {

The other difference is that each thread, after initializing its per-thread PRNG with the seed specified on
the command line, skips its PRNG ahead. The number of positions to skip is given by the lower bound
of the loop index range (first), multiplied by 2 because each loop iteration generates two random
numbers. This implements the sequence splitting. Note that the thread must re-seed and re-skip its PRNG
each time the thread calls the run() method; this is necessary in case the parallel loop schedule makes
the thread execute more than one chunk of loop indexes.

 // Skip PRNG ahead to index <first>.

 prng_thread.setSeed (seed);

 prng_thread.skip (2 * first);

 // Generate random points.

 for (long i = first; i <= last; ++ i)

 {

 double x = prng_thread.nextDouble();

 double y = prng_thread.nextDouble();

 if (x*x + y*y <= 1.0) ++ count_thread;

 }

 }

 public void finish()

 {

 // Reduce per-thread counts into shared count.

 count.addAndGet (count_thread);

 }

C6910_14 Sec1:192C6910_14 Sec1:192 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

 14.4 Parallel Program with Sequence Splitting 193

Let’s consider whether this new program has fixed the design flaws in the original Monte Carlo
program from Chapter 13 (PiSmp). Table 14.1 (at the end of the chapter) gives the running-time mea-
surements in milliseconds for the Monte Carlo program with parallel reduction and sequence splitting
for various problem sizes N from 1 billion to 50 billion darts, as well as the speedups, efficiencies, and
EDSFs calculated from the running times. Comparing the PiSeq and PiSmp2 programs’ running times
from Chapter 13 to the PiSeq3 and PiSmp3 programs’ running times shows that the latter programs are
about four times faster. This improvement is due to switching the PRNG class.

Figure 14.8 plots the running-time metrics versus the number of processors. The speedups and effi-
ciencies are better than in Chapter 13—almost perfect, in fact. The EDSFs are mostly below two thou-
sandths, also better than in Chapter 13. This is due to eliminating the thread synchronization code in the
PRNG class. As was the case for the PiSmp2 program, the parallel reduction pattern has eliminated the
first design flaw—the slowdown as K increases.

What about the second design flaw, that the parallel program gives different answers when run on
different numbers of processors? With a seed of 142857 and with N = 1 billion darts, the PiSeq3 program
printed 3.141581704 as the estimate for . The PiSmp3 program printed the same answer for K = 1 to 8
processors. The same is true for the other problem sizes. The sequence splitting technique has eliminated
the second design flaw.

Here are the estimates for the PiSmp3 program calculated with a seed of 142857 for various num-
bers of iterations N, as well as the relative errors in the estimates:

N Estimate Relative
Error

1G 3.14158170400 3.49�10–6

2G 3.14156025000 1.03�10–5

5G 3.14157178880 6.64�10–6

10G 3.14157868680 4.45�10–6

20G 3.14160519400 3.99�10–6

50G 3.14159556112 9.25�10–7

 });

 }

 });

 // Stop timing.

 time += System.currentTimeMillis();

 // Print results.

 System.out.println

 ("pi = 4 * " + count + " / " + N + " = " +

 (4.0 * count.doubleValue() / N));

 System.out.println (time + " msec");

 }

 }

C6910_14 Sec1:193C6910_14 Sec1:193 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

194 CHAPTER 14 Parallel Random Number Generation

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 1G

N = 2G

N = 5G

N = 10G

N = 20G

N = 50G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N = 1G

N = 2G

N = 5G
N = 10GN = 20GN = 50G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8 N = 1GN = 2GN = 5GN = 10GN = 20GN = 50G
Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 1GN = 2GN = 5GN = 10GN = 20GN = 50G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 14.8 PiSeq3/PiSmp3 running time metrics

14.5 Parting Remarks
Designing a parallel Monte Carlo program to compute results identical to its sequential counterpart
requires extra code to implement leapfrogging or sequence splitting and requires using a special paral-
lel PRNG with a skip operation. But why go to this extra effort? After all, because we are using random
numbers to solve the problem, we don’t expect the program to give the precise answer; we only expect an
answer that is statistically close. If the parallel program’s answer is just as close to the true answer as the
sequential program’s answer, statistically speaking, isn’t that good enough?

No, that is not good enough. Unfortunately, a Monte Carlo program’s use of random numbers can
mask the existence of bugs. If the parallel pro gram’s output is not the same as the sequential program’s,
we don’t know whether it is due to the random sequences or to a bug in the program. We saw this with
the Monte Carlo programs in Chapter 13. The parallel program’s outputs for various numbers of pro-
cessors, although different from each other, were all within 0.01% of the true value of . If we had been

C6910_14 Sec1:194C6910_14 Sec1:194 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

 14.6 For Further Information 195

less suspicious, we might have attributed that to random variation and we might not have discovered the
bug, that all the threads were generating the same sequences of random numbers.

On the other hand, if the program is designed so that the parallel version is supposed to produce
output identical to the sequential version no matter how many processors are used, and the parallel ver-
sion’s output is not identical to the sequential version’s, then there is definitely a bug somewhere. We still
won’t be able to detect a bug that affects the sequential and parallel versions the same way. But because
sequential programs are easier to debug than parallel programs, we ought to be able to detect those kinds
of bugs when developing the sequential version.

14.6 For Further Information
On PRNG algorithms and statistical tests of randomness:

P. L’Ecuyer. Random numbers for simulation. • Communications of the ACM,
33(10):85–97, October 1990.

P. L’Ecuyer. Random number generation. In J. Banks, editor. • Handbook of
Simulation: Principles, Methodology, Advances, Applications, and Practice.
Wiley, 1998, Chapter 4.

D. Knuth. • The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Third Edition. Addison-Wesley, 1998, Chapter 3.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. • Numerical Recipes:
The Art of Scientific Computing, Third Edition. Cambridge University Press,
2008, Chapter 7.

On good parameter values for MCGs and LCGs:

P. L’Ecuyer, F. Blouin, and R. Couture. A search for good multiple recursive •
random number generators. ACM Transactions on Modeling and Computer
Simulation, 3(2):87–98, April 1993.

P. L’Ecuyer. Tables of linear congruential generators of different sizes and •
good lattice structure. Mathematics of Computation, 68(225):249–260, 1999.

On the xorshift generator:

G. Marsaglia. Xorshift RNGs. • Journal of Statistical Software, 8(14):1–6,
July 2003.

On the Diehard PRNG test suite:

G. Marsaglia. Diehard Battery of Tests of Randomness v0.2 beta.•
http://www.cs.hku.hk/~diehard/

On the Crush PRNG test suite and the TestU01 PRNG software library:

P. L’Ecuyer and R. Simard. TestU01: a C library for empirical testing of •
random number generators. ACM Transactions on Mathematical Software,
33(4):22, August 2007.

C6910_14 Sec1:195C6910_14 Sec1:195 1/26/09 11:26:01 AM1/26/09 11:26:01 AM

http://www.cs.hku.hk/~diehard/On
http://www.cs.hku.hk/~diehard/On

196 CHAPTER 14 Parallel Random Number Generation

R. Simard. TestU01: Empirical testing of random number generators.•
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

On parallel PRNG design in Java:

P. Coddington and A. Newell. JAPARA—a Java random number generator •
library for high-performance computing. In Proceedings of the 18th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’04),

April 2004, page 156.

Table 14.1 PiSeq3/PiSmp3 running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

1G seq 68702 10G seq 685992

1G 1 68030 1.010 1.010 10G 1 678884 1.010 1.010

1G 2 34099 2.015 1.007 0.002 10G 2 339580 2.020 1.010 0.000

1G 3 22789 3.015 1.005 0.002 10G 3 226441 3.029 1.010 0.000

1G 4 17094 4.019 1.005 0.002 10G 4 169925 4.037 1.009 0.000

1G 5 13722 5.007 1.001 0.002 10G 5 135964 5.045 1.009 0.000

1G 6 11447 6.002 1.000 0.002 10G 6 113319 6.054 1.009 0.000

1G 7 9827 6.991 0.999 0.002 10G 7 97132 7.062 1.009 0.000

1G 8 8669 7.925 0.991 0.003 10G 8 85158 8.056 1.007 0.001

2G seq 137300 20G seq 1371888

2G 1 135906 1.010 1.010 20G 1 1357531 1.011 1.011

2G 2 68046 2.018 1.009 0.001 20G 2 678981 2.021 1.010 0.000

2G 3 45408 3.024 1.008 0.001 20G 3 452664 3.031 1.010 0.000

2G 4 34106 4.026 1.006 0.001 20G 4 339668 4.039 1.010 0.000

2G 5 27303 5.029 1.006 0.001 20G 5 271701 5.049 1.010 0.000

2G 6 22785 6.026 1.004 0.001 20G 6 226480 6.057 1.010 0.000

2G 7 19543 7.026 1.004 0.001 20G 7 194156 7.066 1.009 0.000

2G 8 17220 7.973 0.997 0.002 20G 8 170231 8.059 1.007 0.000

5G seq 343064 50G seq 3429530

5G 1 339525 1.010 1.010 50G 1 3393498 1.011 1.011

5G 2 169879 2.019 1.010 0.001 50G 2 1696993 2.021 1.010 0.000

5G 3 113296 3.028 1.009 0.001 50G 3 1131360 3.031 1.010 0.000

5G 4 85035 4.034 1.009 0.001 50G 4 848870 4.040 1.010 0.000

5G 5 68046 5.042 1.008 0.001 50G 5 679023 5.051 1.010 0.000

5G 6 56727 6.048 1.008 0.000 50G 6 565910 6.060 1.010 0.000

5G 7 48651 7.052 1.007 0.001 50G 7 485098 7.070 1.010 0.000

5G 8 42639 8.046 1.006 0.001 50G 8 425339 8.063 1.008 0.000

C6910_14 Sec1:196C6910_14 Sec1:196 1/26/09 11:26:02 AM1/26/09 11:26:02 AM

http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

197

C H A P T E R 15
in which we learn different ways to implement the parallel reduction pattern in an

SMP parallel program; and we discover how each technique affects the parallel

program’s performance

Reduction, Part 2

C6910_15.indd 197C6910_15.indd 197 1/26/09 8:37:34 AM1/26/09 8:37:34 AM

C H A P T E R15 Reduction, Part 2

15.1 Histogram of the Mandelbrot Set
Let’s return to the problem of computing the Mandelbrot Set from Chapter 11. However, this time we
want to calculate, not the image itself, but rather the number of pixels whose iteration count was 0, the
number of pixels whose iteration count was 1, and so on, up to the maximum iteration count. This data is
called the Mandelbrot Set image’s histogram.

The program for computing a Mandelbrot Set histogram that we are about to examine takes these
command-line arguments:

width• —Image width in pixels.

height• —Image height in pixels.

xcenter• —X coordinate of the image’s center point.

ycenter• —Y coordinate of the image’s center point.

resolution• —Image resolution in pixels per unit.

maxiter• —Maximum number of iterations for deciding whether a point is in
the set.

outfile• —Output file name.

The first six command-line arguments are the same as the Mandelbrot Set programs in Chapter 11. The
Mandelbrot Set histogram program prints the histogram data into the output file. Here is an example of
the pro gram’s output, for a 3,200�3,200-pixel image of the whole Mandelbrot Set.

C6910_15.indd 198C6910_15.indd 198 1/26/09 8:37:34 AM1/26/09 8:37:34 AM

 15.1 Histogram of the Mandelbrot Set 199

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0.0

0.5

1.0

1.5

2.0

2.5

Iterations

P
ix

e
l

co
u

n
t

(x
 1

,0
0

0
,0

0
0

)
Figure 15.1 Histogram of the Mandelbrot Set

$ java edu.rit.smp.fractal.MSHistogramSeq 3200 3200 -0.75 0 \

 1200 1000 out.txt; cat out.txt

0 0

1 933024

2 1056585

3 2376460

4 1151978

5 692974

. . .

995 6

996 2

997 0

998 6

999 14

1000 2175587

That is, there were no pixels with an iteration count of 0, there were 933,024 pixels with an iteration
count of 1, there were 1,056,585 pixels with an iteration count of 2, and so on. Figure 15.1 shows the
image and plots the histogram data (for iteration counts from 0 to 50) for the preceding command-line
arguments.

Figure 15.2 shows the image and plots the histogram data (for iteration counts from 0 to 50) for a
different set of parameters:

$ java edu.rit.smp.fractal.MSHistogramSeq 3200 3200 -0.55 0.6 \

 76800 1000 out.txt

C6910_15.indd 199C6910_15.indd 199 1/26/09 8:37:34 AM1/26/09 8:37:34 AM

200 CHAPTER 15 Reduction, Part 2

The histogram plot shows that in this region of the Mandelbrot Set, the pixels tend to have higher itera-
tion counts than in Figure 15.1.

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0.0

0.5

1.0

1.5

2.0

2.5

Iterations
P

ix
e

l
co

u
n

t
(x

 1
,0

0
0

,0
0

0
)

Figure 15.2 Histogram of a portion of the Mandelbrot Set

15.2 Sequential Version
Here is the source code for class MSHistogramSeq, the sequential version of the Mandelbrot Set

histogram program.

package edu.rit.smp.fractal;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.PrintWriter;

public class MSHistogramSeq

 {

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static File outfile;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

C6910_15.indd 200C6910_15.indd 200 1/26/09 8:37:34 AM1/26/09 8:37:34 AM

 15.2 Sequential Version 201

In this program, instead of setting up an image, we’ll set up an array of counters. The array index is the
iteration count, from 0 to the maximum number of iterations. The array element at index i is the number
of pixels whose iteration count is equal to i.

 // Histogram (array of counters indexed by pixel value).

 static int[] histogram;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 7) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 outfile = new File (args[6]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Create histogram.

 histogram = new int [maxiter + 1];

 long t2 = System.currentTimeMillis();

 // Compute all rows and columns.

 for (int r = 0; r < height; ++ r)

 {

 double y = ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x = xcenter + (xoffset + c) / resolution;

C6910_15.indd 201C6910_15.indd 201 1/26/09 8:37:34 AM1/26/09 8:37:34 AM

202 CHAPTER 15 Reduction, Part 2

Instead of setting the pixel’s color in the image, we increase the counter corresponding to the pixel’s
iteration count i.

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Increment histogram counter for pixel value.

 ++ histogram[i];

 }

 }

 long t3 = System.currentTimeMillis();

 // Print histogram.

 PrintWriter out =

 new PrintWriter

 (new BufferedWriter

 (new FileWriter (outfile)));

 for (int i = 0; i <= maxiter; ++ i)

 {

 out.print (i);

 out.print ('\t');

 out.print (histogram[i]);

 out.println();

 }

 out.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

C6910_15.indd 202C6910_15.indd 202 1/26/09 8:37:34 AM1/26/09 8:37:34 AM

 15.3 Parallel Version without Reduction 203

15.3 Parallel Version without Reduction
In Chapter 11’s parallel program for computing an image of the Mandelbrot Set, the pixel RGB data was
stored in a shared variable, an integer matrix (type int[][]), accessed by all the parallel team threads.
However, in that program, no thread synchronization was necessary when accessing the shared matrix
because each matrix element (pixel) was written by only one thread.

For the Mandelbrot Set histogram program, this is no longer the case. In general, each element of
the shared histogram data array can be accessed by every parallel team thread. Because incrementing an
array element is an update operation, the threads conflict with each other when accessing the array, and
thread synchronization is required. We are about to look at three different ways to implement this thread
synchronization as well as each implementation’s effect on the program’s performance.

The first version of the parallel program uses a multiple-thread-safe shared variable, an instance
of class edu.rit.pj.reduction.SharedIntegerArray, to hold the histogram data (Figure 15.3). This class
encapsulates an array of ints and provides several methods to manipulate the array, including a method
to increment a given array element. Each parallel team thread calls this method on the shared variable to
increment the proper histogram counter (array element) for each pixel. However, this first version does
not use the parallel reduction pattern. Each thread increments the shared histogram counters directly.

Thr
0

Thr
1

Thr
2

Thr
3

SharedIntegerArray
histogram

 Figure 15.3 Threads accessing shared variable, without reduction

Here is the source code for class MSHistogramSmp, the first parallel version.

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

package edu.rit.smp.fractal;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import edu.rit.pj.reduction.SharedIntegerArray;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.PrintWriter;

public class MSHistogramSmp

C6910_15.indd 203C6910_15.indd 203 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

204 CHAPTER 15 Reduction, Part 2

We declare a SharedIntegerArray variable to hold the histogram data.

 {

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static File outfile;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Histogram (array of counters indexed by pixel value).

 static SharedIntegerArray histogram;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 7) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 outfile = new File (args[6]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

We initialize the histogram array with a length of maxiter (the maximum iteration count) plus 1, yielding
array indexes of 0 through maxiter. The SharedIntegerArray constructor initializes each array element to 0.

C6910_15.indd 204C6910_15.indd 204 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

 15.3 Parallel Version without Reduction 205

As we did with the Mandelbrot Set image program in Chapter 11, we change the sequential version’s
outer loop over the pixel rows to be a parallel loop inside a parallel region, executed by a parallel team of
threads. The inner loop over the pixel columns remains a regular loop. Because each loop iteration does
a different amount of work, we must balance the load by specifying a dynamic or guided schedule when
we run the program.

 // Create histogram.

 histogram = new SharedIntegerArray (maxiter + 1);

 long t2 = System.currentTimeMillis();

 // Parallel computation region.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (0, height-1, new IntegerForLoop()

 {

 public void run (int first, int last)

 {

 // Compute all rows and columns.

 for (int r = first; r <= last; ++ r)

 {

 double y =

 ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x =

 xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

C6910_15.indd 205C6910_15.indd 205 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

206 CHAPTER 15 Reduction, Part 2

Each thread increments the proper histogram counter directly using the multiple-thread-safe
incrementAndGet() method.

 aold = a;

 bold = b;

 }

 // Increment histogram counter.

 histogram.incrementAndGet (i);

 }

 }

 }

 });

 }

 });

 long t3 = System.currentTimeMillis();

 // Print histogram.

 PrintWriter out =

 new PrintWriter

 (new BufferedWriter

 (new FileWriter (outfile)));

 for (int i = 0; i <= maxiter; ++ i)

 {

 out.print (i);

 out.print ('\t');

 out.print (histogram.get (i));

 out.println();

 }

 out.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

 }

We’ll put off measuring the MSHistogramSmp program’s performance until we can compare it to the
next version of the program.

C6910_15.indd 206C6910_15.indd 206 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

 15.4 Reduction Operators 207

15.4 Reduction Operators
As we saw in Chapter 13, a parallel program might perform poorly if multiple threads have to synchro-
nize with each other repeatedly in a parallel loop. Using the parallel reduction pattern restores good
performance.

The elements of the parallel reduction pattern are threefold:

The program has a global shared reduction variable or variables to hold the 1.
complete result computed by the whole program.

Each parallel team thread has a per-thread variable or variables that hold the 2.
partial result computed by that thread.

A computation is executed to combine the threads’ partial results, storing the 3.
complete result in the global shared reduction variable or variables.

While the reduction step (Step 3) could be any computation, often the reduction consists of combin-
ing the partial results with a reduction operator, a binary operation (Figure 15.4). The reduction variable
is initialized to a certain value. The contents of the reduction variable and the contents of one per-thread
variable are fed into the reduction operator, the reduction operator computes a result from those two
inputs, and the result is stored back into the shared reduction variable. Repeating this process for each
per-thread variable yields the program’s complete result, which is stored in the reduction variable. For
example, if the reduction variable is initialized to 0 and the reduction operator is addition, the reduction
variable ends up holding the sum of all the per-thread variables.

Thr 0
per−thread

variable

op

Thr 1
per−thread

variable

op

Thr 2
per−thread

variable

op

Thr 3
per−thread

variable

op

Shared
reduction
variable

 Figure 15.4 Reduction operator op

However, the program has no control over when each thread performs the reduction. The threads’
partial results could be accumulated into the reduction variable in any order. Thus, the reduction operator
must yield the same final answer regardless of the order in which the partial results are reduced. That is,
the binary operation must be commutative and associative.

Parallel Java provides class edu.rit.pj.reduction.IntegerOp, an abstraction of a reduction operator with
integer operands. The class defines one method that computes (x op y) for some binary operation op.

C6910_15.indd 207C6910_15.indd 207 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

208 CHAPTER 15 Reduction, Part 2

Class IntegerOp provides objects for four common reduction operators: SUM, PRODUCT, MINIMUM,
and MAXIMUM. As an example, here is how the Parallel Java Library implements class IntegerOp’s SUM
operator. It is just an object whose op() method returns the sum of its arguments. (Shortly we will see a
program that uses the SUM operator to do a reduction.)

You can also define your own reduction operator classes. If, say, your pro gram’s complete result must
be the sum of the partial results modulo some fixed number M, you can define the following reduction
operator class:

Besides class IntegerOp, Parallel Java has reduction operator classes for all the primitive types as well as
nonprimitive types (objects).

Each shared reduction variable class in package edu.rit.pj.reduction has a method to perform a reduc-
tion using a reduction operator. For example, class SharedInteger has the following method:

 public abstract int op (int x, int y);

 public static final IntegerOp SUM = new IntegerOp()

 {

 public int op (int x, int y)

 {

 return x + y;

 }

 };

 public int reduce (int value, IntegerOp op);

import edu.rit.pj.reduction.IntegerOp;

public class ModularSum

 extends IntegerOp

 {

 private int M;

 public ModularSum (int M)

 {

 this.M = M;

 }

 public int op (int x, int y)

 {

 return (x + y) % M;

 }

 }

C6910_15.indd 208C6910_15.indd 208 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

 15.5 Parallel Version with Reduction 209

Calling x.reduce (y, op)—where x is a reduction variable of type SharedInteger, y is a per-thread
variable of type int, and op is a reduction operator—replaces the contents of x with (x op y) and returns
the new contents of x. The reduce() method uses an atomic compare-and-set operation for thread syn-
chronization (it is multiple-thread safe).

int[] int[]

Thr 1
per−thread

variable

int[]

Thr 0
per−thread

variable

opop

opop

opop

opop

opop

opop

opop

opop

SharedIntegerArray

Shared
reduction variable

 Figure 15.5 Reduction operator op acting on an array

Likewise, each shared reduction array class in package edu.rit.pj.reduction has a method to perform a reduc-
tion using a reduction operator (Figure 15.5). For example, class SharedIntegerArray has the following method:

 public void reduce (int[] value, IntegerOp op);

package edu.rit.smp.fractal;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import edu.rit.pj.reduction.IntegerOp;

Calling x.reduce (y, op)—where x is a reduction variable of type SharedIntegerArray, y is a per-
thread variable of type int[], and op is a reduction operator—replaces the contents of x[i] with (x[i]
op y[i]) for every index i in the array x. Again, the reduce() method is multiple-thread safe; each
element of x is updated using an atomic compare-and-set operation.

15.5 Parallel Version with Reduction
The second version of the parallel Mandelbrot Set histogram program uses the reduction pattern (Figure 15.6).
Each thread computes the histogram for a portion of the pixels and stores the histogram data in a per-thread
variable. The per-thread histograms are combined using a reduction operator to form the complete histogram
stored in a shared variable. Here is the source code for class MSHistogramSmp2.

C6910_15.indd 209C6910_15.indd 209 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

210 CHAPTER 15 Reduction, Part 2

Thr
0

int[]
thr_histogram

Thr
1

int[]
thr_histogram

Thr
2

int[]
thr_histogram

Thr
3

int[]
thr_histogram

SharedIntegerArray
histogram

 Figure 15.6 Threads using reduction with a reduction operator

This program still has a shared histogram variable of type SharedIntegerArray, but now it is acting as a
reduction variable.

import edu.rit.pj.reduction.SharedIntegerArray;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.PrintWriter;

public class MSHistogramSmp2

 {

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static File outfile;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Histogram (array of counters indexed by pixel value).

 static SharedIntegerArray histogram;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

C6910_15.indd 210C6910_15.indd 210 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

 15.5 Parallel Version with Reduction 211

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 7) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 outfile = new File (args[7]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Create histogram.

 histogram = new SharedIntegerArray (maxiter + 1);

 long t2 = System.currentTimeMillis();

 // Parallel computation region.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (0, height-1, new IntegerForLoop()

 {

Continuing the parallel reduction pattern, each parallel team thread also creates its own per-thread histo-
gram variable. Because only one thread accesses this variable, it does not need to be multiple thread safe,
and type int[] suffices. However, to avert cache interference between the threads, we add 128 padding
bytes (32 ints, 4 bytes each) to the array’s storage block, and we add 128 padding bytes (16 long fields,
8 bytes each) to the IntegerForLoop subclass’s storage block.

 // Per-thread histogram, plus extra padding.

 int[] thr_histogram = new int [maxiter + 1 + 32];

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

C6910_15.indd 211C6910_15.indd 211 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

212 CHAPTER 15 Reduction, Part 2

 public void run (int first, int last)

 {

 // Compute all rows and columns.

 for (int r = first; r <= last; ++ r)

 {

 double y =

 ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x =

 xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Increment histogram counter.

 ++ thr_histogram[i];

 }

 }

 }

 // Reduce per-thread histogram into global

 // histogram.

Inside the parallel for loop, each thread increments its own per-thread histogram counter.

To finish the parallel reduction, each thread uses the IntegerOp.SUM reduction operator to add its own
per-thread histogram into the shared reduction variable. Putting this code in the parallel for loop’s finish()
method causes each thread to perform the reduction after all the thread’s loop iterations have finished.

C6910_15.indd 212C6910_15.indd 212 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

 15.6 Performance Comparison 213

 public void finish()

 {

 histogram.reduce (thr_histogram, IntegerOp.SUM);

 }

 });

 }

 });

 long t3 = System.currentTimeMillis();

 // Print histogram.

 PrintWriter out =

 new PrintWriter

 (new BufferedWriter

 (new FileWriter (outfile)));

 for (int i = 0; i <= maxiter; ++ i)

 {

 System.out.print (i);

 System.out.print ('\t');

 System.out.print (histogram.get (i));

 System.out.println();

 }

 out.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.err.println ((t2-t1) + " msec pre");

 System.err.println ((t3-t2) + " msec calc");

 System.err.println ((t4-t3) + " msec post");

 System.err.println ((t4-t1) + " msec total");

 }

 }

15.6 Performance Comparison
Before going on to the third parallel version of the Mandelbrot Set histogram program, let’s compare the
performance of the first and second versions. Table 15.1 (at the end of the chapter) lists, and Figure 15.7
plots, the MSHistogramSmp program’s running times, speedups, and efficiencies for the same input data
as in Chapter 11, using a guided schedule for load balancing, without parallel reduction. Table 15.2 lists,
and Figure 15.8 plots, the same for the MSHistogramSmp2 program, with parallel reduction.

The plots clearly show that the program with reduction performs better than the program without reduc-
tion. The running times for the program with reduction are less than for the program without reduction, rang-
ing from 1 percent less on one processor to 20 percent less on eight processors. Furthermore, the speedups and
efficiencies are higher for the program with reduction. This is because the reduction pattern eliminates almost
all of the thread synchronization overhead incurred when accessing the shared histogram variable.

C6910_15.indd 213C6910_15.indd 213 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

214 CHAPTER 15 Reduction, Part 2

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 10M

N = 20M

N = 40M

N = 80M

N = 160M

N = 320M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 10M

N = 20M

N = 40M

N = 80M

N = 160M

N = 320M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

1 0

N = 10MN = 20MN = 40MN = 80MN = 160MN = 320M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

1 0

N = 10MN = 20MN = 40MN = 80MN = 160M
N = 320M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N = 10MN = 20MN = 40MN = 80MN = 160MN = 320M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N = 10MN = 20MN = 40MN = 80MN = 160M
N = 320M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 15.7 MSHistogramSeq/MSHistogramSmp Figure 15.8 MSHistogramSeq/MSHistogramSmp2
running-time metrics, without reduction running-time metrics, with reduction

C6910_15.indd 214 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

 15.7 Critical Sections 215

In fact, the program with reduction is showing superlinear speedups. This is due to the Java virtual
machine’s just-in-time compiler coupled with the parallel for loop’s guided schedule—the JIT compiler
effect we observed in Chapter 12. The efficiency curves (Figure 15.8) demonstrate this effect. The more
threads there are, the more chunks there are (with a guided schedule), the more run() method calls there
are, the sooner the JVM can detect the hot spot and compile it, the sooner the program can start running
fast machine code, and the greater the speedup and efficiency. The efficiency curves increase until about
K = 4 or 5, after which there is no further improvement.

While the curves for the parallel program without reduction (Figure 15.7) do show a slight superlin-
ear speedup until about K = 3, as more processors are added the speedup becomes sublinear again. This is
because the thread synchronization overhead, from more and more threads contending to access the one
shared histogram variable, is wiping out the performance gain from the JIT compiler effect.

Although the reduction pattern improved the program’s performance, it did increase the program’s
memory usage. Instead of one copy of the histogram array, the program now has K+1 copies: the shared
reduction variable, and K per-thread variables in the K threads. The original program uses 4,004 bytes of
storage for the histogram array (1,001 array elements times 4 bytes per int array element). On 8 proces-
sors, the program with reduction uses 36,036 bytes of storage for all the copies of the histogram array
(not counting the extra padding to avert cache interference). In a different program with more data, K+1
copies of the data structure might require a substantial amount of memory. Increased storage is the price
we pay for the parallel reduction pattern’s benefit of reduced running time.

15.7 Critical Sections
While many programs that need parallel reduction can use reduction operators, sometimes the reduction
computation is more complicated than combining the reduction variable and the per-thread variables with
a binary operation. In that case, the program must synchronize the threads when executing an arbitrary
block of code to perform the reduction. Parallel Java provides the critical section for this purpose.

To execute a critical section inside a parallel region, call the critical() method, passing in a
ParallelSection whose run() method contains the code for the critical section.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run()

 {

 . . .

 critical (new ParallelSection()

 {

 public void run()

 {

 // Code for the critical section

 }

 });

 . . .

 }

 });

C6910_15.indd 215C6910_15.indd 215 1/26/09 8:37:35 AM1/26/09 8:37:35 AM

216 CHAPTER 15 Reduction, Part 2

Thr
0

ParallelRegion
run()

ParallelSection
run()

Thr
1

ParallelRegion
run()

ParallelSection
run()

Thr
2

ParallelRegion
run()

ParallelSection
run()

Thr
3

ParallelRegion
run()

ParallelSection
run()

 Figure 15.9 Critical section

When each parallel team thread calls the critical() method, the threads automatically coordinate with
each other so that only one thread at a time executes the critical section (Figure 15.9). If one thread is in
the middle of a critical() method call, and another thread calls the critical() method, the second
thread blocks. Any further threads calling the critical() method also block. When the first thread returns
from the critical() method, one of the waiting threads unblocks and proceeds to execute the code in the
critical section. We say the threads are executing the critical section in a mutually exclusive fashion. When
a particular thread’s turn to execute the critical section arrives, the thread calls the ParallelSection’s run()
method. Thus, only one thread at a time calls the run() method. When the run() method returns, the
thread continues executing whatever comes after the critical section in the parallel region.

15.8 Parallel Version with Critical Section
The third version of the parallel Mandelbrot Set histogram program uses the reduction pattern, with the
reduction computation in a critical section. As in the second version, each thread computes the histogram
for a portion of the pixels and stores the histogram data in a per-thread variable. Code in the critical sec-
tion combines the per-thread histograms to form the complete histogram stored in a shared variable. Here
is the source code for class MSHistogramSmp3.

C6910_15.indd 216C6910_15.indd 216 1/26/09 8:37:36 AM1/26/09 8:37:36 AM

 15.8 Parallel Version with Critical Section 217

package edu.rit.smp.fractal;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.PrintWriter;

public class MSHistogramSmp3

 {

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static File outfile;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

Because the critical section synchronizes the parallel team threads, the shared reduction variable does not
need to be multiple-thread safe, and type int[] suffices.

 // Histogram (array of counters indexed by pixel value).

 static int[] histogram;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 7) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

C6910_15.indd 217C6910_15.indd 217 1/26/09 8:37:36 AM1/26/09 8:37:36 AM

218 CHAPTER 15 Reduction, Part 2

The per-thread variables, with the extra padding to avert cache interference, are the same as in the second
version.

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 outfile = new File (args[6]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Create histogram.

 histogram = new int [maxiter + 1];

 long t2 = System.currentTimeMillis();

 // Parallel computation region.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (0, height-1, new IntegerForLoop()

 {

 // Per-thread histogram, plus extra padding.

 int[] thr_histogram = new int [maxiter + 1 + 32];

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

 public void run (int first, int last)

 {

 // Compute all rows and columns.

 for (int r = first; r <= last; ++ r)

 {

 double y =

 ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x =

 xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

C6910_15.indd 218C6910_15.indd 218 1/26/09 8:37:36 AM1/26/09 8:37:36 AM

 15.8 Parallel Version with Critical Section 219

 // Increment histogram counter.

 ++ thr_histogram[i];

 }

 }

 }

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

Inside the parallel for loop, each thread increments its own per-thread histogram counter, the same as in
the second version.

This time, instead of a reduction operator, code in a critical section adds the per-thread histogram into
the shared reduction variable. The critical() method must be invoked on the ParallelRegion object,
but this code is inside the IntegerForLoop object. The region() method returns a reference to the
ParallelRegion within which this IntegerForLoop is executing.

 // Reduce per-thread histogram into global

 // histogram.

 public void finish() throws Exception

 {

 region().critical (new ParallelSection()

 {

 public void run()

 {

 for (int i = 0; i <= maxiter; ++ i)

 {

 histogram[i] += thr_histogram[i];

 }

 }

 });

C6910_15.indd 219C6910_15.indd 219 1/26/09 8:37:36 AM1/26/09 8:37:36 AM

220 CHAPTER 15 Reduction, Part 2

What about performance? For the Mandelbrot Set histogram problem, the parallel version
with a reduction operator (MSHistogramSmp2) and the parallel version with a critical section
(MSHistogramSmp3) have running times that differ by only a few milliseconds, well within the expected
measurement error. Both parallel reduction techniques yield essentially the same performance for this
problem.

15.9 Summary: Combining Partial Results
To sum up, we’ve now seen four ways to design an SMP parallel in which multiple threads each compute part
of the answer, and the partial results are combined to yield the complete answer stored in a shared variable. For
different programs one technique might be more applicable than another; it’s useful to know them all.

No reduction pattern1. . Each thread updates the shared variable directly using
a multiple-thread-safe operation. This approach might reduce the program’s
performance if the updates are frequent.

 }

 });

 }

 });

 long t3 = System.currentTimeMillis();

 // Print histogram.

 PrintWriter out =

 new PrintWriter

 (new BufferedWriter

 (new FileWriter (outfile)));

 for (int i = 0; i <= maxiter; ++ i)

 {

 out.print (i);

 out.print ('\t');

 out.print (histogram[i]);

 out.println();

 }

 out.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

 }

C6910_15.indd 220C6910_15.indd 220 1/26/09 8:37:36 AM1/26/09 8:37:36 AM

 15.9 Summary: Combining Partial Results 221

Reduction pattern2. . Each thread accumulates its partial result in its own per-
thread variable (which does not have to be multiple-thread safe). As its last act,
each thread updates the shared variable using a multiple-thread-safe operation.
This approach might improve the pro gram’s performance if updates to the
threads’ partial results are frequent.

Reduction pattern with reduction operator3. . Each thread accumulates its
partial result in its own per-thread variable. As its last act, each thread updates
the shared variable using a reduction operator.

Reduction pattern with critical section4. . Each thread accumulates its partial
result in its own per-thread variable. As its last act, each thread updates the shared
variable in a critical section. In this case the shared variable does not have to be
multiple-thread safe. This approach is appropriate when combining the partial
results requires executing a whole section of code, not just a reduction operator.

Table 15.1 MSHistogramSeq/MSHistogramSmp running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

10M seq 45148 80M seq 353413

10M 1 45590 0.990 0.990 80M 1 356381 0.992 0.992

10M 2 22375 2.018 1.009 -0.018 80M 2 174571 2.024 1.012 -0.020

10M 3 14685 3.074 1.025 -0.017 80M 3 114366 3.090 1.030 -0.019

10M 4 11205 4.029 1.007 -0.006 80M 4 86936 4.065 1.016 -0.008

10M 5 9120 4.950 0.990 0.000 80M 5 70189 5.035 1.007 -0.004

10M 6 7863 5.742 0.957 0.007 80M 6 61051 5.789 0.965 0.006

10M 7 7007 6.443 0.920 0.013 80M 7 53115 6.654 0.951 0.007

10M 8 6345 7.116 0.889 0.016 80M 8 47922 7.375 0.922 0.011

20M seq 88399 160M seq 721166

20M 1 89205 0.991 0.991 160M 1 727179 0.992 0.992

20M 2 43730 2.021 1.011 -0.020 160M 2 356261 2.024 1.012 -0.020

20M 3 28657 3.085 1.028 -0.018 160M 3 231504 3.115 1.038 -0.022

20M 4 21847 4.046 1.012 -0.007 160M 4 176971 4.075 1.019 -0.009

20M 5 17735 4.984 0.997 -0.001 160M 5 144561 4.989 0.998 -0.002

20M 6 15270 5.789 0.965 0.005 160M 6 124176 5.808 0.968 0.005

20M 7 13595 6.502 0.929 0.011 160M 7 107261 6.723 0.960 0.005

20M 8 12141 7.281 0.910 0.013 160M 8 99002 7.284 0.911 0.013

40M seq 180337 320M seq 1413394

40M 1 181903 0.991 0.991 320M 1 1424946 0.992 0.992

40M 2 89114 2.024 1.012 -0.020 320M 2 697856 2.025 1.013 -0.021

40M 3 58349 3.091 1.030 -0.019 320M 3 458947 3.080 1.027 -0.017

40M 4 44457 4.056 1.014 -0.007 320M 4 346455 4.080 1.020 -0.009

40M 5 36008 5.008 1.002 -0.003 320M 5 283425 4.987 0.997 -0.001

 40M 6 30879 5.840 0.973 0.004 320M 6 243228 5.811 0.968 0.005

40M 7 27784 6.491 0.927 0.012 320M 7 214852 6.578 0.940 0.009

40M 8 24697 7.302 0.913 0.012 320M 8 195240 7.239 0.905 0.014

C6910_15.indd 221C6910_15.indd 221 1/26/09 8:37:36 AM1/26/09 8:37:36 AM

222 CHAPTER 15 Reduction, Part 2

Table 15.2 MSHistogramSeq/MSHistogramSmp2 running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

10M seq 45148 80M seq 353413

10M 1 45118 1.001 1.001 80M 1 352895 1.001 1.001

10M 2 21190 2.131 1.065 -0.061 80M 2 165245 2.139 1.069 -0.063

10M 3 13595 3.321 1.107 -0.048 80M 3 105732 3.343 1.114 -0.051

10M 4 10409 4.337 1.084 -0.026 80M 4 76391 4.626 1.157 -0.045

10M 5 7957 5.674 1.135 -0.030 80M 5 61650 5.733 1.147 -0.032

10M 6 6636 6.803 1.134 -0.024 80M 6 51442 6.870 1.145 -0.025

10M 7 5950 7.588 1.084 -0.013 80M 7 43196 8.182 1.169 -0.024

10M 8 5107 8.840 1.105 -0.013 80M 8 39449 8.959 1.120 -0.015

20M seq 88399 160M seq 721166

20M 1 88305 1.001 1.001 160M 1 720058 1.002 1.002

20M 2 41404 2.135 1.068 -0.062 160M 2 337074 2.139 1.070 -0.064

20M 3 26524 3.333 1.111 -0.049 160M 3 212614 3.392 1.131 -0.057

20M 4 20295 4.356 1.089 -0.027 160M 4 155842 4.628 1.157 -0.045

20M 5 15503 5.702 1.140 -0.031 160M 5 129859 5.553 1.111 -0.025

20M 6 12937 6.833 1.139 -0.024 160M 6 107954 6.680 1.113 -0.020

20M 7 10880 8.125 1.161 -0.023 160M 7 90609 7.959 1.137 -0.020

20M 8 9918 8.913 1.114 -0.014 160M 8 82564 8.735 1.092 -0.012

40M seq 180337 320M seq 1413394

40M 1 180094 1.001 1.001 320M 1 1410755 1.002 1.002

40M 2 84373 2.137 1.069 -0.063 320M 2 660569 2.140 1.070 -0.064

40M 3 54006 3.339 1.113 -0.050 320M 3 422585 3.345 1.115 -0.051

40M 4 41312 4.365 1.091 -0.027 320M 4 312725 4.520 1.130 -0.038

40M 5 31495 5.726 1.145 -0.031 320M 5 254333 5.557 1.111 -0.025

40M 6 26266 6.866 1.144 -0.025 320M 6 211378 6.687 1.114 -0.020

40M 7 22079 8.168 1.167 -0.024 320M 7 177334 7.970 1.139 -0.020

40M 8 20172 8.940 1.117 -0.015 320M 8 155797 9.072 1.134 -0.017

C6910_15.indd 222C6910_15.indd 222 1/26/09 8:37:36 AM1/26/09 8:37:36 AM

223

C H A P T E R 16
in which we learn how to analyze an algorithm for sequential dependencies; we learn

how to parallelize the algorithm while enforcing the sequential dependencies; and we

discover how the CPU’s cache memory affects a parallel program’s performance

Sequential Dependencies

C6910_16.indd 223C6910_16.indd 223 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

C H A P T E R16 Sequential Dependencies

16.1 Floyd’s Algorithm
Suppose you are making a map. You have marked several cities on the map. Some of the cities are connected
by roads, and you have marked these on the map as well. Some roads cross over each other, but the roads
connect only to the cities. You know each road’s distance in kilometers. Your task is to prepare a table of the
distances between each pair of cities. The table lists starting cities along the left and destination cities along the
top. The table entry for starting city X, destination city Y gives the shortest total distance one has to travel to get
from X to Y following the roads. This is the all-pairs shortest-paths problem.

A graph, such as the one in Figure 16.1, consists of a set of vertices, or nodes (the circles), and a set of
edges connecting pairs of vertices (the lines). Two vertices connected by an edge are said to be adjacent. A
path from some vertex X to some vertex Y consists of a sequence of vertices where each vertex is adjacent
to its predecessor. For example, in Figure 16.1, AHGCB is one path from vertex A to vertex B. (This is not
the only path from A to B.) A weight (a number) is associated with each edge. The length of a path is the
sum of the weights of the edges in the path. The all-pairs shortest-paths problem is to find, for each start-
ing vertex X and each ending vertex Y, the length of the shortest path from X to Y. Identifying the map as
a graph, the cities as vertices, the roads as edges, and the road distances as edge weights transforms the
problem of preparing the map distance table into the graph all-pairs shortest-paths problem.

C6910_16.indd 224C6910_16.indd 224 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

 16.1 Floyd’s Algorithm 225

A

B

C

D

E

F
G

H

I

J

Figure 16.1 A graph

A B C D E F G H I J

A 0 ∞ ∞ 462 ∞ 451 ∞ 370 ∞ ∞
B ∞ 0 190 ∞ ∞ 399 ∞ ∞ ∞ ∞
C ∞ 190 0 ∞ ∞ 234 333 366 414 ∞
D 462 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞
E ∞ ∞ ∞ ∞ 0 359 394 269 ∞ 325

F 451 399 234 ∞ 359 0 239 144 ∞ ∞
G ∞ ∞ 333 ∞ 394 239 0 337 389 ∞
H 370 ∞ 366 ∞ 269 144 337 0 ∞ ∞
I ∞ ∞ 414 ∞ ∞ ∞ 389 ∞ 0 ∞
J ∞ ∞ ∞ ∞ 325 ∞ ∞ ∞ ∞ 0

 Figure 16.2 Distance matrix

C6910_16.indd 225C6910_16.indd 225 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

226 CHAPTER 16 Sequential Dependencies

One way to represent a graph is a weight matrix, or distance matrix. The distance matrix element
at row r and column c, drc, is the weight of the edge between vertex r and vertex c. If vertices r and c are
not adjacent, then drc is infinity (∞). Figure 16.2 gives the distance matrix for the graph in Figure 16.1.
These distances were derived by placing the vertices at random locations in a square of side 1,000 units
and measuring the Euclidean distances between adjacent vertices. However, in general, the edge weights
could be any numbers, not necessarily Euclidean distances. This particular distance matrix is symmetric;
the distance from vertex r to vertex c is the same as from c to r. Again, in general, the distance matrix
need not be symmetric.

A B C D E F G H I J

A 0 850 685 462 639 451 690 370 1079 964

B 850 0 190 1312 758 399 523 543 604 1083

C 685 190 0 1147 593 234 333 366 414 918

D 462 1312 1147 0 1101 913 1152 832 1541 1426

E 639 758 593 1101 0 359 394 269 783 325

F 451 399 234 913 359 0 239 144 628 684

G 690 523 333 1152 394 239 0 337 389 719

H 370 543 366 832 269 144 337 0 726 594

I 1079 604 414 1541 783 628 389 726 0 1108

J 964 1083 918 1426 325 684 719 594 1108 0

 Figure 16.3 Distance matrix after running Floyd’s Algorithm

In 1962, Robert Floyd published an algorithm for the all-pairs shortest-paths problem. The input to
Floyd’s Algorithm is the n×n distance matrix d for a graph of n vertices. On output, the contents of d have
been replaced such that drc is the length of the shortest path from vertex r to vertex c. If there is no path
from r to c, drc is ∞. Floyd’s Algorithm is quite simple:
 for i = 0 to n–1
 for r = 0 to n–1
 for c = 0 to n–1
 drc ← min (drc, dri + dic)
Because Floyd’s Algorithm has three nested loops each with n iterations, the algorithm’s running time T
is O(n3), and the problem size N is n3.

Figure 16.3 shows the result when Floyd’s Algorithm is run on the distance matrix in Figure 16.2.
The shortest path from vertex A to vertex B has a length of 850. In its present form, Floyd’s Algorithm
only gives the length of the shortest path, not the shortest path itself. Examining the original distance
matrix shows that the path from A to B of length 850 is path AFB with edge weights of 451 and 399.

16.2 Input and Output Files
Before we can write a program for Floyd’s Algorithm, we must define how the program will obtain the
input distance matrix. The program will read the input distance matrix from a file and write the output

C6910_16.indd 226C6910_16.indd 226 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

 16.2 Input and Output Files 227

Look familiar? This is the same pattern that class edu.rit.image.PJGImage uses to write a PJG image file.
The double matrix file writer stores the matrix in a binary format, where each element of type double
occupies 8 bytes. For further information about the double matrix file format, refer to the documentation
for class DoubleMatrixFile.

To read the matrix back in from the file, do the following:

 double[][] matrix = new double [R] [C];

 DoubleMatrixFile dmf = new DoubleMatrixFile (R, C, matrix);

 writer.write();

 writer.close();

 DoubleMatrixFile dmf = new DoubleMatrixFile();

 DoubleMatrixFile.Reader reader = dmf.prepareToRead (instream);

 reader.read();

 reader.close();

 int R = dmf.getRowCount();

 int C = dmf.getColCount();

 double[][] matrix = dmf.getMatrix();

 DoubleMatrixFile.Writer writer = dmf.prepareToWrite (outstream);

Then call the double matrix file’s prepareToWrite() method, specifying the output stream on which to
write the matrix.

The prepareToWrite() method returns a writer object, an instance of class DoubleMatrixFile.Writer.
Call the writer’s write() method to write the matrix, and then close the writer.

After executing the preceding code, R is the number of rows in the matrix that was read in, C is the num-
ber of columns, and matrix is a reference to the matrix itself.

Here is a short program to generate a random distance matrix file to feed into Floyd’s Algorithm. The
program’s arguments are a random seed, an adjacency radius, the number of vertices n, and the distance
matrix file name. The program generates n vertices at random locations in the unit square. Two vertices
are adjacent if the Euclidean distance between them is less than or equal to the adjacency radius, in which
case the edge weight is the Euclidean distance.

distance matrix to another file, using class edu.rit.io.DoubleMatrixFile from the Parallel Java Library to
do the actual I/O.

To store a matrix of type double in a file, construct an instance of class DoubleMatrixFile, specifying
the number of rows, the number of columns, and the matrix to be written.

C6910_16.indd 227C6910_16.indd 227 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

228 CHAPTER 16 Sequential Dependencies

package edu.rit.smp.network;

import edu.rit.io.DoubleMatrixFile;

import edu.rit.util.Random;

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

public class FloydRandom

 {

 public static void main

 (String[] args)

 throws Exception

 {

 // Parse command line arguments.

 if (args.length != 4) usage();

 long seed = Long.parseLong (args[0]);

 double radius = Double.parseDouble (args[1]);

 int n = Integer.parseInt (args[2]);

 String matrixfile = args[3];

 // Set up pseudorandom number generator.

 Random prng = Random.getInstance (seed);

 // Generate random node locations in the unit square.

 double[] x = new double [n];

 double[] y = new double [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = prng.nextDouble();

 y[i] = prng.nextDouble();

 }

 // Compute distance matrix elements.

 double[][] d = new double [n] [n];

 for (int r = 0; r < n; ++ r)

 {

 double[] d_r = d[r];

 for (int c = 0; c < n; ++ c)

 {

 double dx = x[r] - x[c];

 double dy = y[r] - y[c];

 double distance = Math.sqrt (dx*dx + dy*dy);

 d_r[c] =

 (distance <= radius ?

 distance :

 Double.POSITIVE_INFINITY);

 }

 }

C6910_16.indd 228C6910_16.indd 228 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

 16.3 Sequential Program 229

16.3 Sequential Program
Here is the source code for class FloydSeq, a sequential version of Floyd’s Algorithm. The program’s
command-line arguments are the name of the input distance matrix file and the name of the output dis-
tance matrix file.

package edu.rit.smp.network;

import edu.rit.io.DoubleMatrixFile;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

public class FloydSeq

 {

 // Number of nodes.

 static int n;

 // Distance matrix.

 static double[][] d;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Throwable

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Write distance matrix to output file.

 DoubleMatrixFile dmf = new DoubleMatrixFile (n, n, d);

 DoubleMatrixFile.Writer writer =

 dmf.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (matrixfile)));

 writer.write();

 writer.close();

 }

 }

C6910_16.indd 229C6910_16.indd 229 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

230 CHAPTER 16 Sequential Dependencies

 // Parse command line arguments.

 if (args.length != 2) usage();

 File infile = new File (args[0]);

 File outfile = new File (args[1]);

 // Read distance matrix from input file.

 DoubleMatrixFile dmf = new DoubleMatrixFile();

 DoubleMatrixFile.Reader reader =

 dmf.prepareToRead

 (new BufferedInputStream

 (new FileInputStream (infile)));

 reader.read();

 reader.close();

 n = dmf.getRowCount();

 d = dmf.getMatrix();

 // Run Floyd’s Algorithm.

 // for i = 0 to N-1

 // for r = 0 to N-1

 // for c = 0 to N-1

 // D[r,c] = min (D[r,c], D[r,i] + D[i,c])

 long t2 = System.currentTimeMillis();

 for (int i = 0; i < n; ++ i)

 {

 double[] d_i = d[i];

 for (int r = 0; r < n; ++ r)

 {

 double[] d_r = d[r];

 for (int c = 0; c < n; ++ c)

 {

 d_r[c] = Math.min (d_r[c], d_r[i] + d_i[c]);

 }

 }

 }

 long t3 = System.currentTimeMillis();

 // Write distance matrix to output file.

 DoubleMatrixFile.Writer writer =

 dmf.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (outfile)));

 writer.write();

 writer.close();

C6910_16.indd 230C6910_16.indd 230 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

 16.4 Parallelizing Floyd’s Algorithm 231

16.4 Parallelizing Floyd’s Algorithm
Until now, all the programs we’ve studied had an outermost loop with no sequential dependencies
between the loop iterations; the iterations could be done in any order. Thus, to get each program’s parallel
version, we simply changed the outermost loop to a parallel loop, and let the parallel loop divide the loop
iterations among the parallel team threads however it pleased. However, to parallelize Floyd’s Algorithm
we must be more careful.

Let’s analyze Floyd’s Algorithm’s three nested loops one at a time. We’ll assume that the distance from
a vertex to itself is always 0. That is, the distance matrix’s diagonal elements are all 0: dii = 0 for all i.

Can we do the iterations of the outer loop, the loop over i, in parallel? During iteration i, we will
store a value into every distance matrix element drc, and the value that is stored depends on the cur-
rent values of drc, dri, and dic. However, on the previous iteration the values of drc, dri, and dic could have
changed, because the same thing happened during the previous iteration—a value was stored into each
element. Therefore, we have a sequential dependency from each iteration i to the next iteration i+1. We
cannot do iterations for different values of i in parallel; we must do them in sequence. This means we
cannot make the outer loop a parallel loop; it must remain a plain sequential loop.

If not the outer loop, can we do the iterations of the middle loop over r in parallel? For a given outer
loop iteration i, the middle loop iterates over all the distance matrix rows. At first glance, it looks like
we must do the middle loop iterations in sequence: During the middle loop iteration where r = i, values
are stored into the elements in row i, and these values affect the calculation of elements in higher rows,
which depend on elements in row i (dic). However, notice that during the middle loop iteration where r = i,
the last line of the algorithm sets the elements in row i as follows (substituting i for r in the subscripts):

 dic ← min (dic, dii + dic)
Now, because dii is 0 (we assume), dii + dic equals dic, so the right side of the preceding assignment is dic,
and dic is set to itself. Thus, during outer loop iteration i, the elements in row i do not change their values.
By similar reasoning, during outer loop iteration i the elements in column i do not change their values. In
general, then, during outer loop iteration i the new value of each element drc depends on its old value, an
element in column i which is constant (dri), and an element in row i which is constant (dic), but drc does
not depend on any other element. Therefore, during outer loop iteration i, the order in which rows are
calculated does not in fact matter, and the middle loop can become a parallel loop.

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

 }

C6910_16.indd 231C6910_16.indd 231 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

232 CHAPTER 16 Sequential Dependencies

Distance matrix

Thr
0

Thr
1

Thr
2

Thr
3

Distance matrix

Thr
0

Thr
1

Thr
2

Thr
3

Figure 16.4 Distance matrix sliced by rows Figure 16.5 Distance matrix sliced by columns

The parallel version of Floyd’s Algorithm is the following:
 for i = 0 to n–1
 parallel for r = 0 to n–1
 for c = 0 to n–1

drc ← min (drc, dri + dic)
Because every middle loop iteration does the same amount of computation, dividing the middle loop
iterations equally among the parallel team threads using a fixed schedule yields a balanced load. The
preceding algorithm slices the distance matrix by rows (Figure 16.4). Each thread does every outer loop
iteration; within each outer loop iteration, each thread computes a subset of the rows and all the columns.

It would also be possible to make the inner loop, the loop over c, a parallel loop:
 for i = 0 to n–1
 for r = 0 to n–1
 parallel for c = 0 to n–1

drc ← min (drc, dri + dic)
This version slices the distance matrix by columns (Figure 16.5). Each thread does every outer loop itera-
tion; within each outer loop iteration, each thread computes all the rows and a subset of the columns.

16.5 Parallel Program with Row Slicing
Here is the source code for class FloydSmpRow, an SMP parallel version of Floyd’s Algorithm in which
each parallel team thread computes a subset of the rows and all the columns of the distance matrix.

package edu.rit.smp.network;

import edu.rit.io.DoubleMatrixFile;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import java.io.BufferedInputStream;

C6910_16.indd 232C6910_16.indd 232 1/26/09 8:16:21 AM1/26/09 8:16:21 AM

 16.5 Parallel Program with Row Slicing 233

The number of vertices n and the distance matrix d are now shared variables. Because it is a WORM
variable, n needs no synchronization. Accessing d while reading the input file and writing the output file
requires no synchronization, because at those points only the main program thread is active. During the
execution of Floyd’s Algorithm, all the parallel team threads are reading and updating d. Nonetheless, a
little later, we will see that synchronization is not needed for d either.

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

public class FloydSmpRow

 {

 // Number of nodes.

 static int n;

 // Distance matrix.

 static double[][] d;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length != 2) usage();

 File infile = new File (args[0]);

 File outfile = new File (args[1]);

 // Read distance matrix from input file.

 DoubleMatrixFile dmf = new DoubleMatrixFile();

 DoubleMatrixFile.Reader reader =

 dmf.prepareToRead

 (new BufferedInputStream

 (new FileInputStream (infile)));

 reader.read();

 reader.close();

 n = dmf.getRowCount();

 d = dmf.getMatrix();

C6910_16.indd 233C6910_16.indd 233 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

234 CHAPTER 16 Sequential Dependencies

Having read the input distance matrix file, now comes the computational heart of the program, the
part we parallelize. We put the entire computation of the distance matrix—all three loops of Floyd’s
Algorithm—inside the parallel region. This way, the program creates only one parallel team of threads
and creates only one parallel region of code for them to execute. If we put the parallel team and parallel
region inside the outer loop, then each time around the outer loop the parallel team would incur the over-
head of starting up and terminating execution of the parallel region, and we want to avoid that.

 // Run Floyd’s Algorithm.

 // for i = 0 to N-1

 // parallel for r = 0 to N-1

 // for c = 0 to N-1

 // D[r,c] = min (D[r,c], D[r,i] + D[i,c])

 long t2 = System.currentTimeMillis();

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 for (int ii = 0; ii < n; ++ ii)

 {

 final int i = ii;

 final double[] d_i = d[i];

 execute (0, n-1, new IntegerForLoop()

 {

 public void run (int first, int last)

 {

As stated earlier, the outer loop on i must remain a plain sequential loop. Each thread executes all the
outer loop iterations.

The local variables i and d_i are declared final so that code in the IntegerForLoop subclass (an anony-
mous inner class) can use these variables’ values. In Java, an inner class cannot refer to a local variable in
the enclosing code unless the local variable is declared final.

The middle loop on r becomes a parallel for loop. Each thread executes a subset of the middle loop itera-
tions and computes a subset of the distance matrix rows. Because Floyd’s Algorithm is inherently load
balanced, the parallel for loop’s default fixed schedule suffices.

C6910_16.indd 234C6910_16.indd 234 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

 16.5 Parallel Program with Row Slicing 235

The inner loop on c remains a sequential loop. Each thread computes all the distance matrix columns in
the thread’s subset of the rows.

Earlier, we claimed that thread synchronization is not required when accessing the distance matrix d.
Here’s why. During a particular outer loop iteration i, each element of d (except those in row i and in
column i) is read and written by only one thread. Thus, the threads do not conflict when accessing these
elements, and no synchronization is required.

Although the elements in row i and in column i are read and written by multiple threads, earlier we
proved that these elements’ values do not change during outer loop iteration i. More precisely, the new
value written back into the element is the same as the element’s current value. Therefore, it doesn’t mat-
ter if one thread writes one of these elements while another thread is reading one of these elements, and
no synchronization is required.

 for (int c = 0; c < n; ++ c)

 {

 d_r[c] =

 Math.min (d_r[c], d_r[i]+d_i[c]);

 }

 }

 }

 });

 for (int r = first; r <= last; ++ r)

 {

 double[] d_r = d[r];

 }

 }

 });

 long t3 = System.currentTimeMillis();

This marks the end of the middle parallel loop over r. When a thread reaches this point, the thread is
poised to go on to the next iteration of the outer loop over i. However, because of the sequential depen-
dency from each outer loop iteration to the next, none of the threads can be allowed to proceed past this
point until all the threads have finished the previous outer loop iteration and have reached this point.
Thus, at this point all the threads must wait at a barrier. As explained in Chapter 6, a parallel for loop in
Parallel Java includes an implicit barrier wait at the end of the loop. Although some parallel programs
do not need this barrier wait, in the Floyd’s Algorithm parallel program this barrier wait is crucial; the
program will not compute the correct answer without it.

C6910_16.indd 235C6910_16.indd 235 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

236 CHAPTER 16 Sequential Dependencies

 // Write distance matrix to output file.

 DoubleMatrixFile.Writer writer =

 dmf.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (outfile)));

 writer.write();

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

 }

$ java edu.rit.smp.network.FloydRandom 142857 0.25 $n in$n.dat

Table 16.1 (at the end of the chapter) lists, and Figure 16.6 plots, the FloydSmpRow program’s
performance on the “parasite” SMP parallel computer. The running times are for the calculation portion
only, not including the distance matrix file I/O. The program was run on distance matrices with the num-
bers of vertices n and problem sizes N = n3 listed.

n N
1,000 1,000,000,000 (1G)

1,260 2,000,376,000 (2G)

1,590 4,019,679,000 (4G)

2,000 8,000,000,000 (8G)

2,520 16,003,008,000 (16G)

3,180 32,157,432,000 (32G)

Each distance matrix input file was created with this command, where $n stands for one of the pre-
ceding n values.

These performance curves are like nothing we’ve seen so far, certainly nothing like what Amdahl’s
Law predicts. Consider the efficiency curves. For n = 1,000 vertices (N = 1G), the efficiencies are in the
1.0–1.2 range, with a small downward trend as K, the number of processors, increases. The efficien-
cies are greater than 1 because of the JIT compiler effect. The downward trend is due to the program’s
sequential fraction. For larger values of n, the efficiencies start out the same; but at a certain point as K
increases, the efficiencies abruptly jump up to the 2.0–2.2 range! Furthermore, the greater the number of
vertices, the larger the number of processors before reaching the jump in efficiency. How can the parallel
version possibly be twice as efficient as the sequential version? What is going on?

C6910_16.indd 236C6910_16.indd 236 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

 16.5 Parallel Program with Row Slicing 237

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 1G

N = 2G

N = 4G

N = 8G

N = 16G

N = 32G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
−500

−400

−300

−200

−100

−0

100

200

N = 1G

N = 2GN = 4GN = 8GN = 16G

N = 32G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N = 1G

N = 2G
N = 4G

N = 8G
N = 16G

N = 32G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

1 0

1 2

1 4

1 6

N = 1G

N = 2G
N = 4G

N = 8G
N = 16G

N = 32G

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

Figure 16.6 FloydSeq/FloydSmpRow running-time metrics

The answer lies in this program’s pattern of data accesses coupled with the behavior of the proces-
sors’ cache memories.

First, let’s calculate the amount of storage needed to hold each parallel team thread’s portion of the
distance matrix d, as a function of the number of vertices n and the number of processors K. Because
the distance matrix consists of n×n doubles and each double requires 8 bytes, d requires 8n2 bytes. But
because the distance matrix is sliced equally among the threads, each processor accesses only 8n2/K
bytes. Here are the numbers of mega bytes (1 megabyte = 220 bytes) each processor accesses for the six n
values and for K = 1 to 8. The highlighted numbers show where the abrupt increase in efficiency occurs.

C6910_16.indd 237C6910_16.indd 237 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

238 CHAPTER 16 Sequential Dependencies

n = n = n = n = n = n =

K 1,000 1,260 1,590 2,000 2,520 3,180

1 7.63 12.11 19.29 30.52 48.45 77.15

2 3.82 6.06 9.64 15.26 24.22 38.58

3 2.54 4.04 6.43 10.17 16.15 25.72

4 1.91 3.03 4.82 7.63 12.11 19.29

5 1.53 2.42 3.86 6.10 9.69 15.43

6 1.27 2.02 3.21 5.09 8.07 12.86

7 1.09 1.73 2.76 4.36 6.92 11.02

8 0.95 1.51 2.41 3.81 6.06 9.64

The “parasite” SMP parallel computer has four Sun Microsystems UltraSPARC-IV CPU chips.
These are hyperthreaded CPUs each with two instruction units, letting each chip run two threads in paral-
lel. The UltraSPARC-IV CPU also has a three-level cache. Each instruction unit has its own dedicated
level-1 cache located on the CPU chip, with 64 kilobytes for instructions and 64 kilobytes for data. There
is also a two-megabyte level-2 cache located on the CPU chip; it is not quite as fast as the level-1 cache.
Finally, there is a 32-megabyte level-3 cache located outside the CPU chip; it is not as fast as the level-2
cache but faster than main memory. The level-2 and level-3 caches hold both instructions and data.

Consider what happens when the sequential Floyd’s Algorithm program (FloydSeq) runs with n =
1,000 vertices. Once the program has started executing the three nested loops and the JIT compiler has
had a chance to run, the machine instructions for the three nested loops have all been read into the cache
from main memory, as have the machine instructions for the JVM itself. As the program executes the first
outer loop iteration with i = 0, the program reads and writes every distance matrix element, pulling them
all into the cache from main memory. The distance matrix occupies a bit less than 8 megabytes and so
fits entirely within the level-3 cache, leaving 24 megabytes in the cache to hold other program data, JVM
internal data structures, and the program’s machine instructions. Thus, at the end of outer loop iteration 0,
all the instructions and all the data the program needs for the three nested loops have been pulled into the
fast cache. For the rest of the outer loop iterations, the program runs exclusively out of the cache and does
not need to access main memory at all. The same happens with the parallel Floyd’s Algorithm program
(FloydSmpRow). Everything fits in the cache, so the program computes results at the same rate regard-
less of the number of processors, and the pro gram’s efficiency does not change much as K increases.

Next, consider what happens when the sequential program runs with n = 1,260 vertices. Now the dis-
tance matrix occupies 12 megabytes and no longer fits entirely in the cache along with the other data and
instructions. During one outer loop iteration, as the middle loop pulls different distance matrix rows into
the cache, eventually the cache fills up, and the new rows have to replace old rows in the cache. During
the next outer loop iteration, the CPU has to reread these replaced rows from main memory, evicting still
other rows. Because of this continual cache churning, the program computes results more slowly than
it would if the whole distance matrix fit in the cache. The same thing happens when the parallel program
runs on one processor. But when the parallel program runs on two (or more) processors, the portion of
the distance matrix accessed by each thread fits entirely inside the cache again, and the cache churning
stops. Thus, the program computes results more quickly, and the program’s efficiency (compared to the
sequential version) jumps up abruptly.

C6910_16.indd 238C6910_16.indd 238 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

 16.6 Parallel Program with Column Slicing 239

As the problem size increases, it takes more processors to make the distance matrix slice accessed by
each thread small enough to fit in the cache. Looking at the preceding table, you can see that the effi-
ciency increase always occurs as soon as each thread’s distance matrix slice drops below about 8 mega-
bytes. For n = 3,180 vertices, the distance matrix slice never does get small enough to fit entirely in the
cache—although it comes close, so there is a slight increase in efficiency for K = 8.

To sum up, a parallel program’s speedup need not be caused solely by reducing the number of
calculations each processor must do. Some of the speedup might also be due to reducing the amount of
data each processor must access, allowing each processor’s data slice to fit in the cache.

16.6 Parallel Program with Column Slicing
Earlier, we said that it would also be possible to parallelize Floyd’s Algorithm by dividing the distance
matrix into column slices. Class Floyd Smp Col is an SMP parallel version of Floyd’s Algorithm in which
each parallel team thread computes all the rows and a subset of the columns of the distance matrix. The
source code is identical to class FloydSmpRow, except that in the parallel region, the innermost loop is a
parallel loop.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 for (int ii = 0; ii < n; ++ ii)

 {

 final int i = ii;

 final double[] d_i = d[i];

 for (int r = 0; r < n; ++ r)

 {

 final double[] d_r = d[r];

 execute (0, n-1, new IntegerForLoop()

 {

 public void run (int first, int last)

 {

 for (int c = first; c <= last; ++ c)

 {

 d_r[c] =

 Math.min (d_r[c], d_r[i]+d_i[c]);

 }

 }

 });

 }

 }

 }

 });

C6910_16.indd 239C6910_16.indd 239 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

240 CHAPTER 16 Sequential Dependencies

Despite the similarities in the code, this program’s performance is completely different. Table 16.2 (at the
end of the chapter) lists, and Figure 16.7 plots, the FloydSmpCol program’s performance on the “parasite”
SMP parallel computer. The running times are for the calculation portion only, not including the distance
matrix file I/O. The program was run on the same distance matrices as the FloydSmpRow program.

This time, there are no superlinear speedups and there are no abrupt increases in efficiency. Instead,
we see the hallmarks of a parallel program under Amdahl’s Law: speedups approaching a limit and
efficiencies continually decreasing as K increases. The EDSF curves show that the Floyd Smp Col pro-
gram suffers from a large sequential fraction: 0.5–0.6 for N = 1G (n = 1,000 vertices), 0.1–0.3 for larger
problem sizes. Where is this large sequential fraction coming from? And why didn’t we see it in the
FloydSmpRow program?

The sequential fraction is caused by the thread synchronization—the implicit barrier wait—at the
end of the parallel for loop. The sequential fraction is so large because of the number of barrier waits that
take place. In the FloydSmpCol program, there are n2 barrier waits, one at the end of every middle loop
iteration. In contrast, the FloydSmpRow program has only n barrier waits, one at the end of every outer
loop iteration. Compared to the total of n3 computations that take place in Floyd’s Algorithm, the sequen-
tial fraction due to n barrier waits is hardly noticeable, but the sequential fraction due to n2 barrier waits
cripples the performance.

Notice that the FloydSmpCol program’s sequential fraction decreases as the problem size increases.
This is because the total running time T is proportional to n3, while the sequential portion of the run-
ning time is only proportional to n2. Thus, the sequential fraction F is proportional to n2/n3 = n–1. As n
increases, F decreases; consequently, the speedups and efficiencies improve. This phenomenon is called
the surface-to-volume effect. (In biology, the surface-to-volume effect refers to how an animal’s surface
area and volume depend on the animal’s length: the surface area is proportional to the square of the
length, the volume to the cube of the length.) Whenever a parallel program’s sequential running time
grows more slowly than the program’s total running time, you can get better speedups and efficiencies by
scaling up to a larger problem size.

Nonetheless, the moral of the FloydSmpCol program is: With nested loops, always parallelize the
outermost possible loop. Parallelizing the innermost loop typically yields poor performance.

C6910_16.indd 240C6910_16.indd 240 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

 16.6 Parallel Program with Column Slicing 241

1 1 0
1E1

1E2

1E3

1E4

N = 1G

N = 2G

N = 4G

N = 8G

N = 16G

N = 32G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000

N = 1G

N = 2G
N = 4G
N = 8GN = 16GN = 32G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 1G

N = 2G
N = 4G
N = 8GN = 16GN = 32G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N = 1G

N = 2G
N = 4G
N = 8GN = 16GN = 32G

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

Figure 16.7 FloydSeq/FloydSmpCol running-time metrics

C6910_16.indd 241C6910_16.indd 241 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

242 CHAPTER 16 Sequential Dependencies

16.7 For Further Information
Robert Floyd’s original publication of the all-pairs shortest-paths algorithm:

R. Floyd. Algorithm 97: shortest path. • Communications of the ACM, 5(6):345,
June 1962.

Floyd based his algorithm on an algorithm by Stephen Warshall for computing products of Boolean
matrices:

S. Warshall. A theorem on Boolean matrices. • Journal of the ACM, 9(1):11–12,
January 1962.

Other explications of Floyd’s Algorithm:

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. • Introduction to Algorithms,
Second Edition. MIT Press, 2001, Section 25.2.

R. Sedgewick. • Algorithms, Second Edition. Addison-Wesley, 1988, Chapter 32.

A. Aho, J. Hopcroft, and J. Ullman. • Data Structures and Algorithms. Addison-
Wesley, 1983, Section 6.4.

C6910_16.indd 242C6910_16.indd 242 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

 16.7 For Further Information 243

Table 16.1 FloydSeq/FloydSmpRow running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

1G seq 27191 8G seq 378557

1G 1 22726 1.196 1.196 8G 1 351896 1.076 1.076

1G 2 10847 2.507 1.253 -0.045 8G 2 195594 1.935 0.968 0.112

1G 3 8032 3.385 1.128 0.030 8G 3 111168 3.405 1.135 -0.026

1G 4 5627 4.832 1.208 -0.003 8G 4 45701 8.283 2.071 -0.160

1G 5 4736 5.741 1.148 0.010 8G 5 40903 9.255 1.851 -0.105

1G 6 4280 6.353 1.059 0.026 8G 6 34665 10.920 1.820 -0.082

1G 7 3618 7.515 1.074 0.019 8G 7 29432 12.862 1.837 -0.069

1G 8 3246 8.377 1.047 0.020 8G 8 24048 15.742 1.968 -0.065

2G seq 96580 16G seq 759572

2G 1 87071 1.109 1.109 16G 1 705772 1.076 1.076

2G 2 24056 4.015 2.007 -0.447 16G 2 393951 1.928 0.964 0.116

2G 3 15991 6.040 2.013 -0.225 16G 3 271809 2.795 0.932 0.078

2G 4 11152 8.660 2.165 -0.163 16G 4 215268 3.528 0.882 0.073

2G 5 9318 10.365 2.073 -0.116 16G 5 134310 5.655 1.131 -0.012

2G 6 7873 12.267 2.045 -0.091 16G 6 75120 10.111 1.685 -0.072

2G 7 7133 13.540 1.934 -0.071 16G 7 60768 12.500 1.786 -0.066

2G 8 6552 14.741 1.843 -0.057 16G 8 49690 15.286 1.911 -0.062

4G seq 188427 32G seq 1542463

4G 1 175013 1.077 1.077 32G 1 1444761 1.068 1.068

4G 2 74020 2.546 1.273 -0.154 32G 2 774616 1.991 0.996 0.072

4G 3 30180 6.243 2.081 -0.241 32G 3 520599 2.963 0.988 0.041

4G 4 24405 7.721 1.930 -0.147 32G 4 427279 3.610 0.902 0.061

4G 5 18411 10.234 2.047 -0.119 32G 5 341923 4.511 0.902 0.046

4G 6 15753 11.961 1.994 -0.092 32G 6 285792 5.397 0.900 0.037

4G 7 15115 12.466 1.781 -0.066 32G 7 240887 6.403 0.915 0.028

4G 8 13185 14.291 1.786 -0.057 32G 8 177570 8.687 1.086 -0.002

C6910_16.indd 243C6910_16.indd 243 1/26/09 8:16:22 AM1/26/09 8:16:22 AM

244 CHAPTER 16 Sequential Dependencies

Table 16.2 FloydSeq/FloydSmpCol running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

1G seq 27191 8G seq 378557

1G 1 34673 0.784 0.784 8G 1 394757 0.959 0.959

1G 2 27218 0.999 0.500 0.570 8G 2 234233 1.616 0.808 0.187

1G 3 24266 1.121 0.374 0.550 8G 3 177376 2.134 0.711 0.174

1G 4 23254 1.169 0.292 0.561 8G 4 142598 2.655 0.664 0.148

1G 5 22114 1.230 0.246 0.547 8G 5 130186 2.908 0.582 0.162

1G 6 21654 1.256 0.209 0.549 8G 6 117264 3.228 0.538 0.156

1G 7 22520 1.207 0.172 0.591 8G 7 117071 3.234 0.462 0.179

1G 8 22623 1.202 0.150 0.603 8G 8 111067 3.408 0.426 0.179

2G seq 96580 16G seq 759572

2G 1 100760 0.959 0.959 16G 1 778678 0.975 0.975

2G 2 51394 1.879 0.940 0.020 16G 2 466016 1.630 0.815 0.197

2G 3 41532 2.325 0.775 0.118 16G 3 346826 2.190 0.730 0.168

2G 4 38542 2.506 0.626 0.177 16G 4 284760 2.667 0.667 0.154

2G 5 36541 2.643 0.529 0.203 16G 5 251825 3.016 0.603 0.154

2G 6 35663 2.708 0.451 0.225 16G 6 232688 3.264 0.544 0.159

2G 7 36019 2.681 0.383 0.250 16G 7 225841 3.363 0.480 0.172

2G 8 36276 2.662 0.333 0.269 16G 8 216155 3.514 0.439 0.174

4G seq 188427 32G seq 1542463

4G 1 200487 0.940 0.940 32G 1 1516993 1.017 1.017

4G 2 116544 1.617 0.808 0.163 32G 2 900058 1.714 0.857 0.187

4G 3 83818 2.248 0.749 0.127 32G 3 663482 2.325 0.775 0.156

4G 4 70532 2.672 0.668 0.136 32G 4 551848 2.795 0.699 0.152

4G 5 66588 2.830 0.566 0.165 32G 5 492942 3.129 0.626 0.156

4G 6 63690 2.959 0.493 0.181 32G 6 455612 3.385 0.564 0.160

4G 7 64589 2.917 0.417 0.209 32G 7 434572 3.549 0.507 0.168

4G 8 63534 2.966 0.371 0.219 32G 8 417449 3.695 0.462 0.172

C6910_16.indd 244C6910_16.indd 244 1/26/09 8:16:23 AM1/26/09 8:16:23 AM

245

C H A P T E R 17
in which we learn how to improve a program’s scalability by reducing its memory

requirements; we encounter a parallel program that requires sections of sequential

code interspersed within the parallel code; and we study the Parallel Java constructs

for writing such programs

Barrier Actions

C6910_17 245C6910_17 245 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

C H A P T E R17 Barrier Actions

17.1 One-Dimensional Continuous Cellular Automata
A cellular automaton (CA) is a simple abstract computing device that is capable of generating all kinds
of interesting behavior. For the past 20 years, Stephen Wolfram, the inventor of the symbolic mathematics
software package Mathematica, has studied CAs and other similar computing devices. In 2002, Wolfram
published a monograph, A New Kind of Science, describing his work and its implications. We will use
Wolfram’s one-dimensional continuous cellular automaton (1-D CCA) as the subject of our SMP
parallel programs in this chapter.

A 1-D CCA consists of a one-dimensional array of cells (Figure 17.1). There are C cells in the array,
with indexes going from 0 to C–1. Each cell has a value, a real number in the range 0.0 through 1.0. Xi is
the value of the cell at index i. This kind of CA is called a continuous CA because Xi takes on values from
a continuous range. (In another kind of CA, Xi takes on values from a discrete set.)

X X X X X X X X X X X X X X X X X X X X

Figure 17.1 CCA with C = 20 cells

Each cell has a neighborhood consisting of the cell itself, the cell to its left, and the cell to its right.
The neighborhood of cell i consists of the three cells {Xi–1, Xi, Xi+1}. Although we will usually draw the CCA
in linear fashion as in Figure 17.1, the cells are actually arranged in a ring (Figure 17.2), and the leftmost
cell is adjacent to the rightmost cell. We say the cell array has wraparound boundaries. The neighborhood
of cell 0 is {XC–1, X0, X1} as shown in Figure 17.2; the neighborhood of cell C–1 is {XC–2, XC–1, X0}.

C6910_17 246C6910_17 246 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

 17.1 One-Dimensional Continuous Cellular Automata 247

X X
X

X

X

X

X

X

X
XXX

X

X

X

X

X

X

X
X

Figure 17.2 CCA with wraparound boundaries,
showing the neighborhood of cell 0

The state of the CCA evolves in the following manner. First, the initial state must be specified. While
all kinds of initial states are possible, we will use Xi = 0 for all i, except XC/2 = 1. That is, all cells are
initially 0, except one cell in the middle is initially 1. Then, for each index i, a new value is calculated for
cell i by averaging the current values in cell i’s neighborhood, multiplying the average by a constant A,
adding another constant B, and keeping the fractional part of the result (discarding the integer part):

 (17.1)

Once all the new values have been calculated from the current values, all the cells simultaneously change
to their new values. This process repeats as long as desired. As the iterations progress, the CCA evolves
through a sequence of states. Different choices for the constants A and B yield different sequences of states.

Table 17.1 gives an example of the evolution of a CCA with C = 10 cells, A = 1, and B = 11/12 for
the first few steps s in the state sequence. The cell values are written as exact fractions—rational num-
bers, or ratios of integers—rather than numbers with a decimal point.

Table 17.1 Evolution of a CCA—10 cells, 5 steps, A=1, B=11∕12

s X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

0 0 0 0 0 0 1 0 0 0 0

1 11/12 11/12 11/12 11/12 1/4 1/4 1/4 11/12 11/12 11/12

2 5/6 5/6 5/6 11/18 7/18 1/6 7/18 11/18 5/6 5/6

3 3/4 3/4 73/108 19/36 11/36 25/108 11/36 19/36 73/108 3/4

4 2/3 52/81 46/81 34/81 22/81 16/81 22/81 34/81 46/81 52/81

5 551/972 527/972 149/324 109/324 23/108 53/324 23/108 109/324 149/324 527/972

C6910_17 247C6910_17 247 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

248 CHAPTER 17 Barrier Actions

Instead of listing the cell values numerically, we can depict the cell values graphically (Figure 17.3).
Each cell is drawn as a box. The box’s color depends on the cell’s value: 0 is white; 1 is black; and
intermediate values are shades of gray. The cells are laid out horizontally in rows, with the initial state at
the top and successive states in the evolution in successive rows, like Table 17.1.

X X X X X X X X X X

0

1

2

3

4

5

s

Figure 17.3 Evolution of a CCA—10 cells, 5 steps, A=1, B=11/12

Taking this idea to the limit, we can create an image where each pixel represents one cell. Each
pixel’s gray level represents the corresponding cell’s value. The image is C pixels wide by S+1 pixels
high, where C is the number of cells and S is the number of steps in the CCA evolution. The first row of
pixels represents the initial state.

Figure 17.4 shows the evolution of a 400-cell CCA for 200 steps, with A = 1 and B = 11/12. Notice
the complex pattern of cell states that emerges. Figure 17.5 shows the evolution of a similar CCA, with
a slight change in one parameter: A = 13/12, B = 11/12. Despite having almost identical parameters,
the two CCAs’ patterns of cell states are completely different. Numerous images of this sort appear in
Wolfram’s book. Wolfram has studied many kinds of systems, all operating according to simple rules (a
CA being one example), but which nonetheless generate complex behavior. Wolfram considers this to be
a revolutionary finding, the basis for “a new kind of science” that explains the complexity found in nature
better than traditional mathematical models.

C6910_17 248C6910_17 248 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

 17.2 Rational Arithmetic 249

Figure 17.4: Evolution of a CCA—400 cells, 200 steps, A=1, B=11∕12

 Figure 17.5: Evolution of a CCA—400 cells, 200 steps, A=13∕12, B=11/12

17.2 Rational Arithmetic
Earlier, we illustrated the CCA’s cell values with exact rational numbers. This was no mere whim. When
calculating the states of a CCA, we must use rational arithmetic instead of floating-point arithmetic.

C6910_17 249C6910_17 249 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

250 CHAPTER 17 Barrier Actions

Floating-point numbers—even double-precision floating-point numbers—do not have enough precision to
calculate the exact cell values. After a while, roundoff errors creep into the calculations, and then the calcu-
lated cell states quickly become incorrect. Using exact rational numbers eliminates the roundoff errors.

A rational number consists of a numerator and a denominator, each of which is an integer. The
numerator and denominator are stored separately. Recall the formulas for rational arithmetic:

 (17.2)

 (17.3)

 (17.4)

where a rem b is the remainder when a is divided by b.
After calculating a formula yielding a rational number, the result should be reduced to lowest terms

by dividing any common factors out of the numerator and denominator:

 (17.5)

where gcd(a,b) is the greatest common divisor (GCD) of a and b. If we don’t divide out the GCD, eventu-
ally the numerator and denominator become excessively large, leading to slower calculations.

When using rational arithmetic for CCA calculations, the numerator and denominator must be stored
as arbitrary precision integers—type java.math.BigInteger in Java. Even when we divide out the GCD,
the cell values’ numerators and denominators quickly become many hundreds of digits long. The Java
primitive integer types, int and long, do not have enough precision to represent the exact cell values.

To determine the gray level for a cell’s pixel in the image, the cell’s value must be converted from an exact
rational number a/b to a floating-point number (type float) in the range 0 to 1, because the methods for setting
a pixel’s value in the image take an argument of type float. Doing so involves a loss of precision, but that’s
okay because the image can display only 256 different shades of gray anyway. However, the numerator and
the denominator can’t be converted to type float. The largest value type float can represent is 3.40×1038, a
39-digit number; this is not large enough to hold a several-hundred-digit number. Even type double, which can
represent numbers up to 1.80×10308, doesn’t have a large enough range for some CCAs. Instead, the conversion
must be done using arbitrary precision decimal numbers—type java.math.BigDecimal in Java.

So as not to clutter the main program with rational arithmetic formulas, a separate class edu.rit.
smp.ca.BigRational provides an arbitrary precision rational number. The class has private fields for the
numerator and denominator (BigIntegers), and exports these constructors and methods:

public BigRational()• —Construct a new rational number whose value is 0.

public BigRational (String s)• —Construct a new rational number
whose value is parsed from the given string (such as “11/12”).

C6910_17 250C6910_17 250 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

 17.3 Improving Memory Scalability 251

public BigRational assign (BigRational x)• —Set this rational
num ber’s value to x, and return this rational number.

public BigRational add (BigRational x)• —Set this rational number’s
value to the sum of itself and x, and return this rational number.

public BigRational mul (BigRational x)• —Set this rational number’s
value to the product of itself and x, and return this rational number.

public BigRational fracPart()• —Set this rational number’s value to
the fractional part of itself, and return this rational number.

public BigRational normalize()• —Reduce this rational number’s
numerator and denominator to lowest terms (divide out the GCD), and return
this rational number.

public float floatValue()• —Return this rational number’s value
approximated as a single-precision floating-point number.

While this is not a full-featured rational arithmetic class, it suffices for calculating the CCA cell values.
If not for the necessity of using rational arithmetic and arbitrary precision numbers, computing the

evolution of a CCA would be very fast. As it is, however, computing even a modestly sized CCA image
can require many minutes of calculations and is an attractive candidate for parallel computing.

17.3 Improving Memory Scalability
Let’s design a program to compute an image of a CCA’s evolution. The command-line arguments are the
number of cells C, the number of steps S, and the parameters A and B in the update formula (17.1). The
program generates a grayscale image, like Figures 17.4–17.5, depicting the CCA’s evolution and stores the
image in a Parallel Java Graphics (PJG) file named on the command line. The program uses class edu.rit.
image.PJG Gray Image to create the image. The image’s pixel data is stored in a byte matrix (type byte[][]).

One way to design the program is to allocate a matrix of BigRational cell values and a pixel data byte matrix,
each matrix with S+1 rows and C columns, one element in each matrix corresponding to one pixel in the image;
calculate all the cell and pixel matrix elements; and finally write the entire pixel matrix to the image file.

For c = 0 to C–1:
 cell0,C ← 0
 pixel0,C ← 0
 cell0,C/2 ← 1
 pixel0,C/2 ← 1
 For s = 1 to S:
 For c = 0 to C–1:
 cells,c ← frac((cells−1,c−1 + cells−1,c + cells−1,c+1) × 1/3 × A + B)
 pixels,c ← floatValue(cells,c)
 Write pixel data to PJG image file

C6910_17 251C6910_17 251 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

252 CHAPTER 17 Barrier Actions

However, there’s a problem with this design: it requires O(SC) memory to hold all the data. This means
that when scaling up the problem on an SMP parallel computer, the size of the physical memory limits
both the number of cells and the number of steps we can compute.

To improve this program’s scalability, we must reduce its memory requirements. To calculate a cell
value in a certain row, we need the cell values in the previous row only, not in all prior rows. This means
we don’t need a whole matrix of cell values; rather, we need only two arrays, the current cell values and
the next cell values. We can’t update the cell values in place because we need each current cell value in
the calculation of three next cell values. To advance to the next time step after calculating all the next cell
values, we merely swap the two array references; this is faster than copying the next cell array back to the
current cell array. Likewise, we don’t need a whole matrix of pixel data values, but only an array to hold
the current row of pixels. The new design follows:

For c = 0 to C–1:
 currCellc ← 0
 currCellC/2 ← 1
 For s = 0 to S–1:
 For c = 0 to C–1:
 nextCellc ← frac((currCellc–1 + currCellc + currCellc+1) × 1/3 × A + B)
 For c = 0 to C–1:
 pixelc ← floatValue(currCellc)
 Write pixel data as row s of PJG image file
 Swap (currCell, nextCell)
 For c = 0 to C–1:
 pixelc ← floatValue(currCellc)
 Write pixel data as row S of PJG image file

Note that if we are going to keep an array with only one row of pixels, we need to write the PJG image
file one row at a time, not all at once. (The PJG image classes support reading and writing PJG files in
multiple separate chunks.) Now the program requires only O(C) storage, not O(SC). As we scale up the
problem, the physical memory limits only the number of cells we can compute, not the number of steps.
Of course, the size of the disk drive on which we are writing the image file still limits the number of steps
we can do; but disk drives are orders of magnitude larger than CPU main memories.

17.4 Sequential Program
Here is the source code for class edu.rit.smp.ca.CCASeq, the sequential version of the program to calcu-
late an image of a CCA’s evolution.

package edu.rit.smp.ca;

import edu.rit.image.GrayImageRow;

import edu.rit.image.PJGGrayImage;

import edu.rit.image.PJGImage;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

C6910_17 252C6910_17 252 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

 17.4 Sequential Program 253

We will use class edu.rit.image.PJGGrayImage to write the PJG image file. Class PJGGrayImage
requires the pixel data to be stored in a byte matrix, namely the variable pixelmatrix. However, we
will not allocate separate storage for each row of the matrix. Instead, we will allocate storage for only
one row, namely the variable pixelrow. The variable imagerow, an instance of class edu.rit.image.
GrayImageRow, lets us manipulate the pixels in one row of an image, which is stored in a byte array.

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

public class CCASeq

 {

 // Constants.

 static final BigRational ZERO = new BigRational ("0");

 static final BigRational ONE = new BigRational ("1");

 static final BigRational ONE_THIRD = new BigRational ("1/3");

 // Command line arguments.

 static int C;

 static int S;

 static BigRational A;

 static BigRational B;

 static File imagefile;

 // Old and new cell arrays.

 static BigRational[] currentCell;

 static BigRational[] nextCell;

 // Grayscale image matrix.

 static byte[][] pixelmatrix;

 static PJGGrayImage image;

 static PJGImage.Writer writer;

 // One row of the grayscale image matrix.

 static byte[] pixelrow;

 static GrayImageRow imagerow;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

C6910_17 253C6910_17 253 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

254 CHAPTER 17 Barrier Actions

Because the factor A/3 in the update formula (17.1) is a constant, we calculate it once at this point rather
than repeatedly in the cell update loop.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length != 5) usage();

 C = Integer.parseInt (args[0]);

 S = Integer.parseInt (args[1]);

 A = new BigRational (args[2]) .mul (ONE_THIRD);

 B = new BigRational (args[3]);

 imagefile = new File (args[4]);

 // Allocate storage for old and new cell arrays. Initialize

 // all cells to 0, except center cell to 1.

 currentCell = new BigRational [C];

 nextCell = new BigRational [C];

 for (int i = 0; i < C; ++ i)

 {

 currentCell[i] = new BigRational();

 nextCell[i] = new BigRational();

 }

 currentCell[C/2].assign (ONE);

 // Set up pixel matrix, image, and image writer.

 pixelmatrix = new byte [S+1] [];

 image = new PJGGrayImage (S+1, C, pixelmatrix);

 writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (imagefile)));

 // Allocate storage for one pixel matrix row.

 pixelrow = new byte [C];

 imagerow = new GrayImageRow (pixelrow);

When storing a pixel value, the default is to interpret 0 as black and 1 as white. We want it the other way
around: 0 as white and 1 as black.

 imagerow.setInterpretation (PJGGrayImage.ZERO_IS_WHITE);

 // Do S time steps.

 for (int s = 0; s < S; ++ s)

C6910_17 254C6910_17 254 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

 17.4 Sequential Program 255

Here is where we calculate the update formula (17.1). The index expression (i-1+C)%C refers to the left
neighbor of cell i, wrapping around to index C–1 if i is 0. The index expression (i+1)%C refers to the
right neighbor of cell i, wrapping around to index 0 if i is C–1. Remember that A was premultiplied by
1⁄3. Normalizing the result once at the end of the formula results in a smaller running time than normal-
izing after each step of the formula.

 {

 // Calculate next state of each cell.

 for (int i = 0; i < C; ++ i)

 {

 nextCell[i]

 .assign (currentCell[i])

 .add (currentCell[(i-1+C)%C])

 .add (currentCell[(i+1)%C])

 .mul (A)

 .add (B)

 .normalize()

 .fracPart();

 }

 // Write current CA state to image file.

 writeCurrentCell (s);

 // Advance one time step — swap old and new cell arrays.

 BigRational[] tmp = currentCell;

 currentCell = nextCell;

 nextCell = tmp;

 }

 // Write final CA state to image file.

 writeCurrentCell (S);

 writer.close();

 // Stop timing.

 long t2 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec total");

 }

We put this bit of pseudocode:
 For c = 0 to C–1:

 pixelc ← floatValue(currCellc)
 Write pixel data as row s of PJG image file

in a subroutine, writeCurrentCell(), because it appears in two places in the algorithm.

C6910_17 255C6910_17 255 1/26/09 11:26:31 AM1/26/09 11:26:31 AM

256 CHAPTER 17 Barrier Actions

Here is where we set each row of the pixel matrix to refer to the already-allocated pixel array, which we
have just filled with the current row’s pixel data.

 /**

 * Write the current cell array to the given row of the image

 * file.

 */

 private static void writeCurrentCell

 (int r)

 throws IOException

 {

 // Set image row’s gray values based on current cell states.

 for (int i = 0; i < C; ++ i)

 {

 imagerow.setPixel (i, currentCell[i].floatValue());

 }

 // Set row r of the pixel matrix.

 pixelmatrix[r] = pixelrow;

And here is where we write one chunk of pixel data to the PJG image file. The writeRowSlice()
method writes the rows from the lower bound to the upper bound, inclusive, of the given range. The pixel
data comes from row r of the pixelmatrix variable.

 // Write row-r slice of the image to the image file.

 writer.writeRowSlice (new Range (r, r));

 }

 }

17.5 Barrier Actions
To design a parallel version of this program, we must first analyze the algorithm for sequential dependen-
cies. There is a sequential dependency between steps in the evolution; we cannot compute the cell values
for the next step until we finish computing the cell values for the current step. Therefore, the outer loop
must remain a sequential loop. However, the value calculated for any element in the nextCell array does
not depend on the value of any other element in the nextCell array; there are no sequential dependencies
in the inner loop. Therefore, the inner loop can become a parallel loop, as follows:

For c = 0 to C–1:
 currCellc ← 0
 currCellC/2 ← 1
 For s = 0 to S–1:
 Parallel for c = 0 to C–1:

C6910_17 256C6910_17 256 1/26/09 11:26:32 AM1/26/09 11:26:32 AM

 17.5 Barrier Actions 257

 nextCellc ← frac((currCellc–1 + currCellc + currCellc+1) × 1/3 × A + B)
 Compute and write pixel data as row s of PJG image file
 Swap (currCell, nextCell)
 Compute and write pixel data as row S of PJG image file

As we did with the program for Floyd’s Algorithm in Chapter 16, we enclose both the outer and the inner
loops in a parallel region of code executed by a parallel team of threads, as follows:

For c = 0 to C–1:
 currCellc ← 0
 currCellC/2 ← 1
 Parallel region:
 For s = 0 to S–1:
 Parallel for c = 0 to C–1:
 nextCellc ← frac((currCellc–1 + currCellc + currCellc+1) ← 1/3 × A + B)
 Compute and write pixel data as row s of PJG image file
 Swap (currCell, nextCell)
 Compute and write pixel data as row S of PJG image file

As was the case for the parallel Floyd’s Algorithm program, the implicit barrier wait at the end of the
parallel for loop is crucial. The threads cannot be allowed to proceed to the next step of the evolution
until all threads have finished the current step. But this time, there’s a twist. Before going to the next
outer loop iteration, some processing has to happen, namely computing and writing the pixel row to the
image file and swapping the cell array references. Furthermore, this processing must be done by only one
thread, not by all the threads that are executing the parallel region. Having each parallel team thread com-
pute and write the pixel row would store incorrect data in the image file; besides, class PJG Gray Image is
not multiple-thread safe. Having each parallel team thread swap the cell array references would likewise
result in chaos.

Parallel Java provides the barrier action for situations like this. When executing a parallel for loop,
you can include an instance of class edu.rit.pj.BarrierAction (Figure 17.6).

 new ParallelTeam().execute (new ParallelRegion()

 {

 . . .

 execute (0, 99, new IntegerForLoop()

 {

 public void run (int first, int last)

 {

 for (int i = first; i <= last; ++ i)

 {

 // Loop body code goes here

 }

 }

 },

 new BarrierAction()

C6910_17 257C6910_17 257 1/26/09 11:26:32 AM1/26/09 11:26:32 AM

258 CHAPTER 17 Barrier Actions

run(0,24)

IntegerForLoop

run(25,49)

IntegerForLoop

run(50,74)

IntegerForLoop

run(75,99)

IntegerForLoop

BarrierAction

run()

execute(0,99,new IntegerForLoop()...,new BarrierAction()...)

ParallelRegion

barrier start

barrier finish

Thr
0

Thr
1

Thr
2

Thr
3

Figure 17.6 A parallel for loop with a barrier action

After finishing the parallel for loop, each parallel team thread waits at the barrier. When all threads have
arrived at the barrier, one of the threads calls the barrier action’s run() method; during this time, the
other threads continue to wait at the barrier. When the barrier action’s run() method returns, all threads
resume, leave the barrier, and execute whatever comes after the parallel for loop in the parallel region.

Instead of specifying a barrier action object, you can specify the constant BarrierAction.WAIT.

 {

 public void run()

 {

 // Code to be executed in a single thread goes here

 }

 });

 . . .

 });

 execute (0, 99, new IntegerForLoop()

 {

 . . .

C6910_17 258C6910_17 258 1/26/09 11:26:32 AM1/26/09 11:26:32 AM

 17.6 Parallel Program 259

In this case, after finishing the parallel for loop, each parallel team thread waits at the barrier. When
all threads have arrived at the barrier, no single-threaded barrier action is executed. All threads simply
leave the barrier and execute whatever comes after the parallel for loop in the parallel region. (This is the
default behavior if the barrier action is omitted.)

You can also specify the constant BarrierAction.NO_WAIT.

 },

 BarrierAction.WAIT);

 execute (0, 99, new IntegerForLoop()

 {

 . . .

 },

 BarrierAction.NO_WAIT);

Specifying NO_WAIT eliminates the barrier. After finishing the parallel for loop, each parallel team thread
does not wait for the others, but immediately proceeds to execute whatever comes after the parallel for
loop in the parallel region. (There is no single-threaded barrier action, either.)

17.6 Parallel Program
Pulling it all together, the parallel CCA program consists of a sequential outer loop and a parallel inner
loop with a barrier action.

For c = 0 to C–1:
 currCellc ← 0
 currCellC/2 ← 1
 Parallel region:
 For s = 0 to S–1:
 Parallel for c = 0 to C–1: (K threads)
 nextCellc ← frac((currCellc–1 + currCellc + currCellc+1) × 1/3 × A + B)
 Barrier action: (single thread)
 Compute and write pixel data as row s of PJG image file
 Swap (currCell, nextCell)
 Compute and write pixel data as row S of PJG image file

To finish the design, we must decide which variables will be shared and whether to synchronize
multiple threads accessing the shared variables. The command-line arguments are shared WORM
variables that need no synchronization. The currCell array is shared, but during the parallel for loop the
threads only read it; therefore, it needs no synchronization. The nextCell array is shared, but during the
parallel for loop each array element is written by only one thread; therefore, it needs no synchronization.
The code to compute the pixel data array, write it to the image file, and swap the cell array references is
synchronized by the barrier action.

C6910_17 259C6910_17 259 1/26/09 11:26:33 AM1/26/09 11:26:33 AM

260 CHAPTER 17 Barrier Actions

Here is the source code for class edu.rit.smp.ca.CCASmp, the parallel version of the program.

package edu.rit.smp.ca;

import edu.rit.image.GrayImageRow;

import edu.rit.image.PJGGrayImage;

import edu.rit.image.PJGImage;

import edu.rit.pj.BarrierAction;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

public class CCASmp

 {

 // Constants.

 static final BigRational ZERO = new BigRational ("0");

 static final BigRational ONE = new BigRational ("1");

 static final BigRational ONE_THIRD = new BigRational ("1/3");

 // Command line arguments.

 static int C;

 static int S;

 static BigRational A;

 static BigRational B;

 static File imagefile;

 // Old and new cell arrays.

 static BigRational[] currentCell;

 static BigRational[] nextCell;

 // Grayscale image matrix.

 static byte[][] pixelmatrix;

 static PJGGrayImage image;

 static PJGImage.Writer writer;

 // One row of the grayscale image matrix.

 static byte[] pixelrow;

 static GrayImageRow imagerow;

 /**

 * Main program.

 */

C6910_17 260C6910_17 260 1/26/09 11:26:33 AM1/26/09 11:26:33 AM

 17.6 Parallel Program 261

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length != 5) usage();

 int argi = 0;

 C = Integer.parseInt (args[0]);

 S = Integer.parseInt (args[1]);

 A = new BigRational (args[2]) .mul (ONE_THIRD);

 B = new BigRational (args[3]);

 imagefile = new File (args[4]);

 // Allocate storage for old and new cell arrays. Initialize

 // all cells to 0, except center cell to 1.

 currentCell = new BigRational [C];

 nextCell = new BigRational [C];

 for (int i = 0; i < C; ++ i)

 {

 currentCell[i] = new BigRational();

 nextCell[i] = new BigRational();

 }

 currentCell[C/2].assign (ONE);

 // Set up pixel matrix, image, and image writer.

 pixelmatrix = new byte [S+1] [];

 image = new PJGGrayImage (S+1, C, pixelmatrix);

 writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (imagefile)));

 // Allocate storage for one pixel matrix row.

 pixelrow = new byte [C];

 imagerow = new GrayImageRow (pixelrow);

 imagerow.setInterpretation (PJGGrayImage.ZERO_IS_WHITE);

 // Parallel calculation section.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

C6910_17 261C6910_17 261 1/26/09 11:26:33 AM1/26/09 11:26:33 AM

262 CHAPTER 17 Barrier Actions

Here is the inner parallel for loop over the cells in the cell array. Dividing the cells evenly among the
parallel team threads usually results in an unbalanced load. In Figure 17.4, for example, the central cell
values have many more digits, and require more time to calculate, than the outer cells. To balance the
load, we hard-code a guided schedule into the parallel for loop.

 // Do S time steps. Sequential outer loop.

 for (int s = 0; s < S; ++ s)

 {

 final int step = s;

 // Calculate next state of each cell. Parallel inner

 // loop with a barrier action.

 execute (0, C-1, new IntegerForLoop()

 {

 public IntegerSchedule schedule()

 {

 return IntegerSchedule.guided();

 }

 public void run (int first, int last)

 {

 for (int i = first; i <= last; ++ i)

 {

 nextCell[i]

 .assign (currentCell[i])

 .add (currentCell[(i-1+C)%C])

 .add (currentCell[(i+1)%C])

 .mul (A)

 .add (B)

 .normalize()

 .fracPart();

 }

 }

 },

And here is the barrier action.

 // Synchronize threads before next outer loop

 // iteration.

 new BarrierAction()

 {

 public void run() throws Exception

 {

 // Write current CA state to image file.

 writeCurrentCell (step);

C6910_17 262C6910_17 262 1/26/09 11:26:33 AM1/26/09 11:26:33 AM

 17.6 Parallel Program 263

 // Advance one time step — swap old and new

 // cell arrays.

 BigRational[] tmp = currentCell;

 currentCell = nextCell;

 nextCell = tmp;

 }

 });

 }

 }

 });

 // Write final CA state to image file.

 writeCurrentCell (S);

 writer.close();

 // Stop timing.

 long t2 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec total");

 }

 /**

 * Write the current cell array to the given row of the image

 * file.

 */

 private static void writeCurrentCell

 (int r)

 throws IOException

 {

 // Set image row’s gray values based on current cell states.

 for (int i = 0; i < C; ++ i)

 {

 imagerow.setPixel (i, currentCell[i].floatValue());

 }

 // Set row r of the pixel matrix.

 pixelmatrix[r] = pixelrow;

 // Write row-r slice of the image to the image file.

 writer.writeRowSlice (new Range (r, r));

 }

 }

C6910_17 263C6910_17 263 1/26/09 11:26:33 AM1/26/09 11:26:33 AM

264 CHAPTER 17 Barrier Actions

Table 17.2 (at the end of the chapter) lists, and Figure 17.7 plots, the CCASmp program’s perfor-
mance on the “parasite” SMP parallel computer. The command line arguments were C = 2,000 cells;
S = 400, 500, 600, 700, 800, and 1,000 steps; A = 1; and B = 11/12. The EDSF curves evince a rather
large sequential fraction, resulting in less-than-ideal speedups and efficiencies. Might there be a way to
improve this parallel program’s performance? That will be the topic of Chapter 18.

17.7 For Further Information
On cellular automata:

S. Wolfram. • A New Kind of Science. Stephen Wolfram, LLC, 2002.

A New Kind of Science Online. http://www.wolframscience.com/•

1 1 0
1E1

1E2

1E3

1E4

S = 400

S = 500

S = 600

S = 700
S = 800

S = 1000

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
−50

−25

−0

2 5

5 0

7 5

100

125

150

175

200

225

250

S = 400

S = 500
S = 600
S = 700
S = 800S = 1000

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

S = 400

S = 500
S = 600
S = 700
S = 800S = 1000

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

Figure 17.7 CCASeq/CCASmp running-time metrics

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S = 400

S = 500
S = 600
S = 700
S = 800S = 1000

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

C6910_17 264C6910_17 264 1/26/09 11:26:33 AM1/26/09 11:26:33 AM

http://www.wolframscience.com/�
http://www.wolframscience.com/�

 17.7 For Further Information 265

Table 17.2 CCASeq/CCASmp running-time metrics

S K T Spdup Eff EDSF S K T Spdup Eff EDSF

400 seq 64678 700 seq 461504

400 1 65972 0.980 0.980 700 1 488912 0.944 0.944

400 2 41021 1.577 0.788 0.244 700 2 254648 1.812 0.906 0.042

400 3 29638 2.182 0.727 0.174 700 3 182282 2.532 0.844 0.059

400 4 24245 2.668 0.667 0.157 700 4 141228 3.268 0.817 0.052

400 5 20239 3.196 0.639 0.133 700 5 113927 4.051 0.810 0.041

400 6 17619 3.671 0.612 0.120 700 6 97148 4.751 0.792 0.038

400 7 15815 4.090 0.584 0.113 700 7 85119 5.422 0.775 0.036

400 8 14654 4.414 0.552 0.111 700 8 76548 6.029 0.754 0.036

500 seq 137161 800 seq 753220

500 1 142423 0.963 0.963 800 1 805800 0.935 0.935

500 2 79915 1.716 0.858 0.122 800 2 409614 1.839 0.919 0.017

500 3 59437 2.308 0.769 0.126 800 3 296633 2.539 0.846 0.052

500 4 45783 2.996 0.749 0.095 800 4 226226 3.330 0.832 0.041

500 5 36980 3.709 0.742 0.075 800 5 182961 4.117 0.823 0.034

500 6 33507 4.094 0.682 0.082 800 6 153422 4.909 0.818 0.028

500 7 28600 4.796 0.685 0.068 800 7 135786 5.547 0.792 0.030

500 8 26041 5.267 0.658 0.066 800 8 115802 6.504 0.813 0.021

600 seq 262908 1000 seq 1753323

600 1 276906 0.949 0.949 1000 1 1898334 0.924 0.924

600 2 151574 1.735 0.867 0.095 1000 2 920580 1.905 0.952 -0.030

600 3 107588 2.444 0.815 0.083 1000 3 661783 2.649 0.883 0.023

600 4 84142 3.125 0.781 0.072 1000 4 511109 3.430 0.858 0.026

600 5 67950 3.869 0.774 0.057 1000 5 404329 4.336 0.867 0.016

600 6 58693 4.479 0.747 0.054 1000 6 324731 5.399 0.900 0.005

600 7 51639 5.091 0.727 0.051 1000 7 282019 6.217 0.888 0.007

600 8 46905 5.605 0.701 0.051 1000 8 263116 6.664 0.833 0.016

C6910_17 265C6910_17 265 1/26/09 11:26:33 AM1/26/09 11:26:33 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

267

C H A P T E R 18
in which we learn why input/output can reduce a parallel program’s performance;

we discover how doing the computation and I/O in parallel can restore the program’s

performance; and we learn how to write parallel programs with overlapped

computation and I/O

Overlapping

C6910_18 267C6910_18 267 1/26/09 11:26:11 AM1/26/09 11:26:11 AM

C H A P T E R18 Overlapping

18.1 Overlapped Computation and I/O
The one-dimensional continuous cellular automaton program in Chapter 17 suffered from a rather large
sequential fraction, leading to poor speedups and efficiencies. It’s fairly obvious what’s causing the large
sequential fraction. We coded it ourselves. It is the barrier action that computes and writes the pixel row
to the image file. By its nature, file I/O must be done sequentially, and that is why we put this code in the
single-threaded barrier action. The time spent executing the statements in the barrier action, along with
the time required to synchronize the threads before and after the barrier action, is time the program is not
running in parallel.

However, in this program, nothing requires us to finish calculating all the cells’ next states before
starting to write the cells’ current states to the image file. Because the current states do not change during
the next-state computations, we can start the next round of computations and the I/O at the same time. In
fact, why not do the computations in one team of threads and the I/O in a separate thread? (The threads
have to synchronize with each other so that the I/O thread doesn’t get ahead of the computation threads.)
Better yet, why not take advantage of the SMP parallel computer’s hardware capabilities and run the I/O
thread on its own processor, in parallel with the computation threads running on the other processors?
This technique is called overlapped computation and I/O, or just overlapping.

C6910_18 268C6910_18 268 1/26/09 11:26:11 AM1/26/09 11:26:11 AM

 18.1 Overlapped Computation and I/O 269

Sequential Parallelizable

F T (N,1) (1 − F) T (N,1)

T (N,1)

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

Figure 18.1 A parallel program with running time Tseq(N,1) and sequential fraction F using
 overlapping with different numbers of processors K

C6910_18 269C6910_18 269 1/26/09 11:26:11 AM1/26/09 11:26:11 AM

270 CHAPTER 18 Overlapping

Figure 18.1 shows what happens in the ideal situation where all the program’s sequential portion can
be overlapped with the parallel portion. The program’s running time is the maximum of the sequential
portion’s running time and the parallel portion’s running time, rather than the sum. The running time is

 (18.1)

where Tseq(N,1) is the running time for the sequential version of the program, F is the sequential fraction,
K is the number of processors doing the calculation section in parallel (not counting the extra processor
doing the I/O), and Tpar(N,K) is the running time for the parallel version of the program executing on K+1
processors.

From Equation 18.1, we can derive equations for speedup and efficiency with overlapping:

 (18.2)

 (18.3)

As K increases, Speedup goes to a limit of 1/F and Eff goes to a limit of 0. These are the same limits
Amdahl’s Law predicts for a program that doesn’t use overlapping. So what difference does overlapping make?

The difference becomes clear when we plot the speedup both with and without overlapping
(Figure 18.2). Without overlapping, the speedup approaches its limit gradually as K increases, and the
speedups are far from linear even with a modest number of processors. With overlapping, the speedup
is linear right up until it hits its limit, and then the speedup remains constant. In fact, with overlapping
the speedup is superlinear. The additional processor doing the I/O (processor K+1) causes Tpar(N,K) to
be less than Tseq(N,1)/K, hence the speedup is greater than K.

Figure 18.3 shows the expected shapes of the efficiency curves with and without overlapping. With
overlapping, the efficiency stays constant until the speedup hits its limit, and then the efficiency decreases
in proportion to 1/K. This results in higher efficiencies than a program without overlapping.

C6910_18 270C6910_18 270 1/26/09 11:26:11 AM1/26/09 11:26:11 AM

 18.2 Parallel Sections 271

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9 F = 0.10

F = 0.15

F = 0.20
F = 0.10

F = 0.15

F = 0.20

With overlapping

Without overlapping

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

Figure 18.2 Predicted speedup with overlapping

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F = 0.10

F = 0.15

F = 0.20
F = 0.10

F = 0.15
F = 0.20

With overlapping

Without overlapping

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 18.3 Predicted efficiency with overlapping

Overlapping is a way to get linear or even superlinear speedup behavior for larger numbers of pro-
cessors than is possible without overlapping. If the sequential fraction is small enough, the program can
even exhibit linear speedups all the way up to the maximum number of processors in the SMP parallel
computer, as can be seen for F = 0.10 in Figure 18.2. However, overlapping cannot cheat Amdahl’s Law.
Once the speedup hits its limit, adding more processors does not decrease the running time further.

18.2 Parallel Sections
Hitherto, all our Parallel Java programs had every parallel team thread executing the same piece of code,
namely the body of a parallel loop (although with different loop indexes in each thread). To write a Parallel
Java program that uses overlapping, we need a parallel team of threads where each thread is executing a
different piece of code. For the CCA program, we need to execute two sections of code in parallel: the com-
putation section that calculates the cells’ next states, and the I/O section that computes and writes the current
cells’ pixel data to the image file. The relevant Parallel Java construct is the parallel section.

To execute multiple sections of code in parallel, first create a parallel team executing a parallel region,
as usual. Typically, we want as many team threads as there are sections, so we specify the number of
threads explicitly to the parallel team constructor. However, the number of team threads need not be the
same as the number of sections. If there are more sections than there are physical processors, for example,
we’d create a parallel team with as many threads as there are processors (using class Paral lelTeam’s
no-argument constructor).

new ParallelTeam(2).execute (new ParallelRegion()

 {

 . . .

 });

C6910_18 271C6910_18 271 1/26/09 11:26:11 AM1/26/09 11:26:11 AM

272 CHAPTER 18 Overlapping

Inside the parallel region’s run() method, call the execute() method and pass one or more parallel
section objects—instances of class ParallelSection—as the arguments. (In this example, we are doing two
parallel sections, but you can specify any number of parallel sections.)

new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run()

 {

 execute (new ParallelSection()

 {

 . . .

 },

 new ParallelSection()

 {

 . . .

 });

 }

 });

Put the code for each section in the parallel sections’ run() methods.

new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run()

 {

 execute (new ParallelSection()

 {

 public void run()

 {

 // Code for computation section goes here

 }

 },

 new ParallelSection()

 {

 public void run()

 {

 // Code for I/O section goes here

 }

 });

 }

 });

C6910_18 272C6910_18 272 1/26/09 11:26:11 AM1/26/09 11:26:11 AM

 18.2 Parallel Sections 273

If needed, add a barrier action argument after the parallel section arguments in the execute() method
call. As with a parallel for loop, the barrier action can be an instance of class BarrierAction, the con-
stant BarrierAction.WAIT (which is the default if the barrier action is omitted), or the constant
BarrierAction.NO_WAIT.

new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run()

 {

 execute (new ParallelSection()

 {

 public void run()

 {

 // Code for computation section goes here

 }

 },

 new ParallelSection()

 {

 public void run()

 {

 // Code for I/O section goes here

 }

 },

 new BarrierAction()

 {

 public void run()

 {

 // Code for single-threaded barrier action goes here

 }

 });

 }

 });

Here’s what happens under the hood (Figure 18.4). The parallel team threads all call the parallel
region’s run() method and all in turn call the parallel region’s execute() method, passing in the paral-
lel section objects. The parallel region now hands off a different section to each thread. Each thread calls
its own section’s run() method. Thus, the sections’ run() methods are executed in parallel by different
threads. If there are more sections than threads, as each thread finishes executing the previous section,
the parallel region hands off a new section to the thread. When there are no more sections to execute,
each thread waits at a barrier. When all sections have finished executing and all threads have arrived at
the barrier, one thread calls the barrier action’s run() method (if there is a barrier action) while the other
threads continue to wait. When the barrier action, if any, finishes executing, all the parallel team threads
resume, the parallel region’s execute() method returns, and each thread continues executing whatever
comes next in the parallel region’s run() method.

C6910_18 273C6910_18 273 1/26/09 11:26:11 AM1/26/09 11:26:11 AM

274 CHAPTER 18 Overlapping

run()

ParallelSection
(computation section)

run()

ParallelSection
(I/O section)

BarrierAction

run()

execute()

ParallelRegion

barrier start

barrier finish

Thr
0

Thr
1

 Figure 18.4 A parallel team executing a group of parallel sections

18.3 Nested Parallel Regions
Applying the parallel sections pattern to the design of the CCA program, we compute the cells’ next
states at the same time as we output the cells’ current states. The barrier after the parallel sections pre-
vents the program from going to the next step in the evolution until both the computation section and
the I/O section have finished the current step. Swapping the cell array references must still be done in a
single-threaded barrier action, though. The new parallel CCA program’s design follows Figure 18.4.

For c = 0 to C–1:
 currCellc ← 0
 currCellC/2 ← 1
 Parallel region:
 For s = 0 to S–1:
 Parallel sections: (two threads)
 Compute all elements of nextCell from currCell

C6910_18 274C6910_18 274 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

 18.3 Nested Parallel Regions 275

 Compute and write pixel data as row s of PJG image file
 Barrier action: (single thread)
 Swap (currCell, nextCell)
 Compute and write pixel data as row S of PJG image file

This is an example of the specialist parallelism design pattern from Chapter 3. The specialists are the
two parallel team threads executing the two parallel sections. One is the computation specialist; the other
is the I/O specialist.

The computation specialist’s task, however, is itself a result parallel problem, that of computing all
the cells’ next states. So the computation section should itself contain a parallel region executed by a mul-
tiple-thread parallel team. The parallel CCA program’s design has nested parallel regions (Figure 18.5).

For c = 0 to C–1:
 currCellc ← 0
 currCellC/2 ← 1
 Parallel region:
 For s = 0 to S–1:
 Parallel sections: (two threads)
 Parallel region:
 Parallel for c = 0 to C–1: (K threads)
 nextCellc ← frac((currCellc–1 + currCellc +
 currCellc+1) × 1/3 × A + B)
 Compute and write pixel data as row s of PJG image file
 Barrier action: (single thread)
 Swap (currCell, nextCell)
 Compute and write pixel data as row S of PJG image file

The program has two parallel teams, an outer team with two threads and an inner team with K threads.
The outer team executes the computation section and the I/O section in parallel. The computation thread
has the inner team execute the parallel for loop. The computation thread waits for the inner team to finish
the parallel for loop. Then the computation thread synchronizes with the I/O thread at the barrier, the bar-
rier action is performed, and the program moves to the next step in the CCA evolution.

C6910_18 275C6910_18 275 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

276 CHAPTER 18 Overlapping

IntegerForLoop

run()

IntegerForLoop

run()

IntegerForLoop

run()

IntegerForLoop

run()

execute()

ParallelRegion

Thr
0

Thr
1

Thr
2

Thr
3

ParallelTeam

run()

ParallelSection
(computation section)

ParallelSection
(I/O section)

run()

barrier start

BarrierAction

run()

barrier finish

execute()

ParallelRegion

Thr
0

Thr
1

ParallelTeam

Figure 18.5 Parallel CCA program design with nested parallel regions

18.4 Parallel Program with Overlapping
Here is the source code for class edu.rit.smp.ca.CCASmp2, the parallel CCA program with overlapped
computation and I/O, following the design in Figure 18.5.

package edu.rit.smp.ca;

import edu.rit.image.GrayImageRow;

import edu.rit.image.PJGGrayImage;

import edu.rit.image.PJGImage;

import edu.rit.pj.BarrierAction;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

C6910_18 276C6910_18 276 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

 18.4 Parallel Program with Overlapping 277

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

public class CCASmp2

 {

 // Constants.

 static final BigRational ZERO = new BigRational ("0");

 static final BigRational ONE = new BigRational ("1");

 static final BigRational ONE_THIRD = new BigRational ("1/3");

 // Command line arguments.

 static int C;

 static int S;

 static BigRational A;

 static BigRational B;

 static File imagefile;

 // Old and new cell arrays.

 static BigRational[] currentCell;

 static BigRational[] nextCell;

 // Grayscale image matrix.

 static byte[][] pixelmatrix;

 static PJGGrayImage image;

 static PJGImage.Writer writer;

 // One row of the grayscale image matrix.

 static byte[] pixelrow;

 static GrayImageRow imagerow;

 // Thread team for cell calculations.

 static ParallelTeam calcTeam;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

C6910_18 277C6910_18 277 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

278 CHAPTER 18 Overlapping

Here, we create the inner parallel team with K threads, K being specified with the -Dpj.nt flag on the
command line. We create this parallel team once and re-use it inside the computation section on each
outer loop iteration.

 // Parse command line arguments.

 if (args.length != 5) usage();

 int argi = 0;

 C = Integer.parseInt (args[0]);

 S = Integer.parseInt (args[1]);

 A = new BigRational (args[2]) .mul (ONE_THIRD);

 B = new BigRational (args[3]);

 imagefile = new File (args[4]);

 // Allocate storage for old and new cell arrays. Initialize

 // all cells to 0, except center cell to 1.

 currentCell = new BigRational [C];

 nextCell = new BigRational [C];

 for (int i = 0; i < C; ++ i)

 {

 currentCell[i] = new BigRational();

 nextCell[i] = new BigRational();

 }

 currentCell[C/2].assign (ONE);

 // Set up pixel matrix, image, and image writer.

 pixelmatrix = new byte [S+1] [];

 image = new PJGGrayImage (S+1, C, pixelmatrix);

 writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (imagefile)));

 // Allocate storage for one pixel matrix row.

 pixelrow = new byte [C];

 imagerow = new GrayImageRow (pixelrow);

 imagerow.setInterpretation (PJGGrayImage.ZERO_IS_WHITE);

 // Set up thread team for cell calculations.

 calcTeam = new ParallelTeam();

And here is the outer parallel team with two threads, executing the outer parallel region.

 // Perform overlapped computation and I/O.

 new ParallelTeam(2).execute (new ParallelRegion()

C6910_18 278C6910_18 278 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

 18.4 Parallel Program with Overlapping 279

 {

 public void run() throws Exception

 {

 // Do S time steps. Sequential outer loop.

 for (int s = 0; s < S; ++ s)

 {

 final int step = s;

 // Calculation section.

 execute (new ParallelSection()

 {

 public void run() throws Exception

 {

 calculateNextCell();

 }

 },

 // I/O section.

 new ParallelSection()

 {

 public void run() throws Exception

 {

 // I/O section.

 writeCurrentCell (step);

 }

 },

 // Synchronize threads before next outer loop

 // iteration.

 new BarrierAction()

 {

 public void run() throws Exception

 {

 // Advance one time step — swap old and new

 // cell arrays.

 BigRational[] tmp = currentCell;

 currentCell = nextCell;

 nextCell = tmp;

 }

 });

 }

 }

 });

 // Write final CA state to image file.

 writeCurrentCell (S);

C6910_18 279C6910_18 279 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

280 CHAPTER 18 Overlapping

 writer.close();

 // Stop timing.

 long t2 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec total");

 }

The calculateNextCell() subroutine contains the code for the calculation section. The inner parallel
team executes the inner parallel region, which executes the parallel for loop.

 /**

 * Calculate the next state of each cell in parallel.

 */

 private static void calculateNextCell()

 throws Exception

 {

 // Calculate next state of each cell. Parallel inner loop.

 calcTeam.execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (0, C-1, new IntegerForLoop()

 {

 public IntegerSchedule schedule()

 {

 return IntegerSchedule.guided();

 }

 public void run (int first, int last)

 {

 for (int i = first; i <= last; ++ i)

 {

 nextCell[i]

 .assign (currentCell[i])

 .add (currentCell[(i-1+C)%C])

 .add (currentCell[(i+1)%C])

 .mul (A)

 .add (B)

 .normalize()

 .fracPart();

 }

 }

 },

 BarrierAction.NO_WAIT);

 }

C6910_18 280C6910_18 280 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

 18.4 Parallel Program with Overlapping 281

 /**

 * Write the current cell array to the given row of the image

 * file.

 */

 private static void writeCurrentCell

 (int r)

 throws IOException

 {

 // Set image row’s gray values based on current cell states.

 for (int i = 0; i < C; ++ i)

 {

 imagerow.setPixel (i, currentCell[i].floatValue());

 }

 // Set row r of the pixel matrix.

 pixelmatrix[r] = pixelrow;

 // Write row-r slice of the image to the image file.

 writer.writeRowSlice (new Range (r, r));

 }

 }

The inner parallel team threads do not need to wait at a barrier after the parallel for loop, because the bar-
rier after the parallel sections in the outer parallel region suffices. The writeCurrentCell() subrou-
tine contains the code for the I/O section.

Table 18.1 (at the end of the chapter) lists, and Figure 18.6 plots, the CCASmp2 program’s perfor-
mance on the “parasite” SMP parallel computer. The command-line arguments are the same as in Chapter
17: C = 2,000 cells; S = 400, 500, 600, 700, 800, and 1,000 steps; A = 1; and B = 11/12.

There’s one slight anomaly in the data. The running time increases, so the speedup decreases, when going from
K = 7 to K = 8. This is because K is the number of computation threads; the I/O is being done in an additional thread.
However, the “parasite” computer has only eight physical processors. Thus, when K is 7, the program is using all
eight processors. When K is 8, the JVM is trying to run nine threads on eight processors, and two of the threads must
share the same processor. Because the operating system swaps back and forth between these two threads, they do not
have full use of the processor, they take longer to finish, and the program’s overall running time increases.

The measured speedup and efficiency curves in Figure 18.6 don’t look like the theoretical speedup and
efficiency curves in Figures 18.2–18.3. This is because the CCASmp2 program only overlaps the parallel portion
with some of the sequential portion, namely computing the pixels’ gray values and writing them to the image file.
The rest of the sequential portion, namely swapping the cell array references, is still performed in a single thread.
The necessary barrier synchronization among the threads also is not overlapped with the parallel portion. Figures
18.2–18.3 depict the ideal situation where all of the sequential portion overlaps the parallel portion.

 });

 }

C6910_18 281C6910_18 281 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

282 CHAPTER 18 Overlapping

1 1 0
1E1

1E2

1E3

1E4

S = 400

S = 500

S = 600

S = 700

S = 800

S = 1000

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
−20

0

2 0

4 0

6 0

8 0

100

120

140

160

S = 400

S = 500

S = 600

S = 700S = 800

S = 1000

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

S = 400
S = 500
S = 600
S = 700S = 800
S = 1000

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S = 400
S = 500
S = 600
S = 700S = 800
S = 1000

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 18.6 CCASeq/CCASmp2 running-time metrics

So has the overlapping done any good? Figure 18.7 plots the running-time metrics for S = 800 for
both the CCASmp program (without overlapping) and the CCASmp2 program (with overlapping) on
the same axes. Overlapping has clearly reduced the running times, reduced the EDSFs, increased the
speedups, and increased the efficiencies (except when K = 8). Similar improvements in the metrics can
be seen for the other problem sizes as well. While the improvements on this program were modest, other
programs—those with larger sequential fractions due to I/O—might see more dramatic improvements
using overlapping.

C6910_18 282C6910_18 282 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

 18.4 Parallel Program with Overlapping 283

1 1 0
1E2

1E3

S = 800S = 800

Without overlapping

With overlapping

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

S = 800

S = 800

Without overlapping

With overlapping

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

S = 800
S = 800

Without overlapping

With overlapping

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S = 800
S = 800

Without overlapping

With overlapping

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 18.7 Running-time metrics with and without overlapping

C6910_18 283C6910_18 283 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

284 CHAPTER 18 Overlapping

Table 18.1 CCASeq/CCASmp2 running-time metrics

S K T Spdup Eff EDSF S K T Spdup Eff EDSF

400 seq 64678 700 seq 461504

400 1 63215 1.023 1.023 700 1 463389 0.996 0.996

400 2 36389 1.777 0.889 0.151 700 2 236698 1.950 0.975 0.022

400 3 26826 2.411 0.804 0.137 700 3 168363 2.741 0.914 0.045

400 4 21018 3.077 0.769 0.110 700 4 128651 3.587 0.897 0.037

400 5 17134 3.775 0.755 0.089 700 5 102300 4.511 0.902 0.026

400 6 14575 4.438 0.740 0.077 700 6 86696 5.323 0.887 0.025

400 7 13025 4.966 0.709 0.074 700 7 74125 6.226 0.889 0.020

400 8 13323 4.855 0.607 0.098 700 8 75694 6.097 0.762 0.044

500 seq 137161 800 seq 753220

500 1 136173 1.007 1.007 800 1 760990 0.990 0.990

500 2 76374 1.796 0.898 0.122 800 2 375233 2.007 1.004 -0.014

500 3 53429 2.567 0.856 0.089 800 3 275040 2.739 0.913 0.042

500 4 40978 3.347 0.837 0.068 800 4 209763 3.591 0.898 0.034

500 5 32497 4.221 0.844 0.048 800 5 162022 4.649 0.930 0.016

500 6 27655 4.960 0.827 0.044 800 6 138575 5.435 0.906 0.019

500 7 24550 5.587 0.798 0.044 800 7 115803 6.504 0.929 0.011

500 8 26133 5.249 0.656 0.076 800 8 121917 6.178 0.772 0.040

600 seq 262908 1000 seq 1753323

600 1 265109 0.992 0.992 1000 1 1809869 0.969 0.969

600 2 138001 1.905 0.953 0.041 1000 2 888667 1.973 0.986 -0.018

600 3 102564 2.563 0.854 0.080 1000 3 605515 2.896 0.965 0.002

600 4 76610 3.432 0.858 0.052 1000 4 442961 3.958 0.990 -0.007

600 5 59885 4.390 0.878 0.032 1000 5 377692 4.642 0.928 0.011

600 6 53791 4.888 0.815 0.043 1000 6 301661 5.812 0.969 0.000

600 7 45821 5.738 0.820 0.035 1000 7 270836 6.474 0.925 0.008

600 8 46353 5.672 0.709 0.057 1000 8 264149 6.638 0.830 0.024

C6910_18 284C6910_18 284 1/26/09 11:26:12 AM1/26/09 11:26:12 AM

285

P A R T I I
A parallel program has a parallel loop with 1. N iterations and
runs on an SMP parallel computer with K processors (threads).
Write a short program whose inputs are N and K and whose
outputs are the lower and upper bounds of each thread’s
range of loop indexes, such that the total set of loop indexes
(0 through N–1) is partitioned as equally as possible among
the K threads. Keep in mind that each index bound must be an
integer and that N need not be evenly divisible by K.

In the AES partial key search program searching for 2. n
missing key bits and running on K parallel processors, give
the lower and upper bounds of each thread’s range of loop
indexes for n = 16, 17, 18, and 19 and for K = 2, 3, 4, and 5.

Suppose a computer takes 2.5 microseconds to perform one 3.
AES encryption. What will the FindKeySeq program’s run-
ning time be for n = 16? n = 20? n = 24? n = 28? Neglect all
times other than the AES encryption time.

Why is the AES partial key search problem classified as 4.
an agenda parallel problem rather than a result parallel
problem?

How long does the FindKeySeq program take on your com-5.
puter for various values of n?

Approximately how long does your computer take to per-6.
form one AES encryption using class AES256Cipher?

Exercises

C6910_Part2Exercises 285C6910_Part2Exercises 285 1/26/09 11:25:54 AM1/26/09 11:25:54 AM

286 PART II Exercises

How do the FindKeySeq program’s running times compare with the 7.
FindKeySmp program’s running times on your computer with identical inputs
when using one parallel team thread (-Dpj.nt=1)? If there is any difference,
what causes it?

Write an SMP parallel program fragment using Parallel Java to compute the 8.
vector sum S of two vectors A and B. A, B, and S are n-element vectors of
double-precision floating-point numbers. Each element of S is the sum of the
corresponding elements of A and B. What parallel design pattern or patterns
does this problem exhibit?

Write an SMP parallel program fragment using Parallel Java to compute 9.
the dot product C of two vectors A and B. A and B are n-element vectors of
double-precision floating-point numbers. C is a double-precision floating-
point number given by the following formula:

 (1)

What parallel design pattern or patterns does this problem exhibit?

Exercises 10–14. The following is a fragment of a sequential Java program to compute a table of the sine
function, sin(x), for the values x = 0.0, 0.1, 0.2, . . ., 15.6, 15.7, using the Taylor series expansion:

 (2)

Each value of the sine function is to be computed with three digits of precision. Note that for different val-
ues of x, different numbers of terms in the Taylor series might be needed to achieve the required precision.

 double[] sineTable = new double [158];

 sineTable[0] = 0.0;

 for (int i = 1; i <= 157; ++ i)

 {

 double x = i / 10.0;

 double sum = 0.0;

 double term = x;

 int denom = 1;

 do

 {

 sum += term;

 term = -term * x * x / (denom+1) / (denom+2);

 denom += 2;

 }

 while (Math.abs (term / sum) >= 0.001);

C6910_Part2Exercises 286C6910_Part2Exercises 286 1/26/09 11:25:55 AM1/26/09 11:25:55 AM

 287

Describe the sequential dependencies, if any, in the preceding program. Is it 10.
possible to parallelize the outer for loop? Is it possible to parallelize the inner
do-while loop?

Write an SMP parallel program fragment using Parallel Java to compute the 11.
sine function table.

Which parallel design pattern or patterns does your program use?12.

In the preceding program fragment, explain why the line “13. sineTable[0]

= 0.0;” is there.

The parallel program is required to have a balanced load. To achieve a bal-14.
anced load, do you have to add any statements to the program? If not, explain
why not. If so, describe the statements that must be added.

Exercises 15–18. The following is a fragment of a sequential Java program to compute the outer product
C of two vectors A and B. A and B are n-element vectors, and C is an n×n matrix defined as follows:

 (3)

 sineTable[i] = sum;

 }

 int n = ...;

 double[] a = new double [n];

 double[] b = new double [n];

 double[][] c = new double [n] [n];

 for (int i = 0; i < n; ++ i)

 {

 for (int j = 0; j < n; ++ j)

 {

 c[i][j] = a[i] * b[j];

 }

 }

Describe the sequential dependencies, if any, in the preceding program. Is it 15.
possible to parallelize the outer for loop? Is it possible to parallelize the inner
for loop?

Write an SMP parallel program fragment using Parallel Java to compute the 16.
outer product.

Which parallel design pattern or patterns does your program use?17.

C6910_Part2Exercises 287C6910_Part2Exercises 287 1/26/09 11:25:55 AM1/26/09 11:25:55 AM

288 PART II Exercises

The parallel program is required to have a balanced load. To achieve a bal-18.
anced load, do you have to add any statements to the program? If not, explain
why not. If so, describe the statements that must be added.

A certain program initializes the variable 19. x to a fixed value, and then reads
a sequence of integers from an input file. For each integer i in the input file,
if i = 1, the program sets x = f1(x); if i = 2, the program sets x = f2(x); if i = 3,
the program sets x = f3(x); if i = 4, the program sets x = f4(x); if i is anything
else, the program prints an error message and exits. After the program has
processed the entire input file, the program prints the final value of x and exits.
Because the input file can be quite large and each function f1, f2, f3, and f4 can
take some time to compute, we want to implement this program as a parallel
program and run it on multiple processors to get a speedup. Is it possible for a
parallel version of this program to yield a speedup, compared to a sequential
version of this program? Explain why or why not.

The 20. binomial coefficient B(n,k) is defined by the following formula:

 (4)

If you make a table of the binomial coefficient for various values of n and k, you get Pascal’s
Triangle:

k=

0 1 2 3 4 …

n=0 1 0 0 0 0 …

1 1 1 0 0 0 …

2 1 2 1 0 0 …

3 1 3 3 1 0 …

4 1 4 6 4 1 …

o o o o o o ∞

Suppose you want to compute a very large table of Pascal’s Triangle. Computing each table
entry using the preceding formula for B(n,k) would require many multiplications and divisions.
However, note that for n > 0 and k > 0, B(n,k) = B(n–1,k–1) + B(n–1,k). This suggests a sequential
algorithm for computing each table entry simply by adding two entries in the previous row. Is it
possible to modify that sequential algorithm to get a parallel algorithm for an SMP parallel com-
puter? If so, describe the parallel algorithm. If not, explain why a parallel algorithm is impossible.

Exercises 21–25. The year is 1944. World War II is at its height. The Computer Department at your com-
pany has 50 state-of-the-art computers all together in a big room. Each “computer” is a young lady with
a Friden automatic electromechanical calculator that can do addition, subtraction, multiplication, and

C6910_Part2Exercises 288C6910_Part2Exercises 288 1/26/09 11:25:55 AM1/26/09 11:25:55 AM

 289

division. A computer takes the following amount of time to perform a calculation: 1 second to add two
numbers or subtract two numbers, 5 seconds to multiply two numbers or divide two numbers. Your task is
to prepare a table of the function

 (5)

for given constant values a, b, and c and for 1,020 values of x: x = 0.1, 0.2, 0.3, . . ., 101.8, 101.9, 102.0.
This table will be used for computing the trajectories of artillery shells on the battlefield.

The mathematical expert at your company has recommended that you cal-21.
culate the function using Equation (6), which is equivalent to Equation (5).
Explain why the expert recommends using the alternate formula.

 (6)

Considering only calculation time, how long will it take for one computer to 22.
do the task using Equation (6)?

Considering only calculation time, how long will it take for the whole 23.
Computer Department to do the task in parallel using Equation (6)?

Considering only calculation time, what is the speedup of the whole Computer 24.
Department for this task?

Considering only calculation time, what is the efficiency of the whole 25.
Computer Department for this task?

Exercises 26–29. Here’s another problem for the Computer Department. Each computer has a sheet of
paper with a list of all the prime numbers less than or equal to 1000; there are 168 primes in the list. Your
problem is to determine whether the number N = 988027 is prime. The algorithm is as follows: Divide N
by each prime in the list; if any prime in the list divides N with no remainder, then N is not prime; other-
wise N is prime. The algorithm always goes through the entire list of primes. (Note that if N is not prime,
then N must have a prime factor , so P must be in the list of primes and the algorithm is
guaranteed to find P.)

Considering only calculation time, how long will it take for one computer to 26.
solve the problem?

Considering only calculation time, how long will it take for the whole 27.
Computer Department to solve the problem in parallel?

Considering only calculation time, what is the speedup of the whole Computer 28.
Department for this problem?

Considering only calculation time, what is the efficiency of the whole 29.
Computer Department for this problem?

C6910_Part2Exercises 289C6910_Part2Exercises 289 1/26/09 11:25:55 AM1/26/09 11:25:55 AM

290 PART II Exercises

Exercises 30–34. Here’s another problem for the Computer Department. Multiply two matrices A and B
to get the product matrix C = A⋅B. Each matrix has 12 rows and 12 columns of numbers. The elements
of the two matrices A and B have been printed on a sheet of paper, and each computer has a copy. The
formula for computing the element at row i, column j of the product is the following:

 (7)

Considering only calculation time, how long will it take for one computer to 30.
solve the problem?

Considering only calculation time, how long will it take for the whole 31.
Computer Department to solve the problem in parallel?

Considering only calculation time, what is the speedup of the whole Computer 32.
Department for this problem?

Considering only calculation time, what is the efficiency of the whole 33.
Computer Department for this problem?

Your boss proposes to buy 10 more Friden calculators and to hire and train 34.
10 more young ladies to solve the problem faster. Will this expansion of the
Computer Department in fact solve the problem faster? Explain why or why not.

Exercises 35–38. Here’s another problem for the Computer Department. Compute the mean of 256 given
numbers x1 through x256; that is:

 (8)

Considering only calculation time, how long will it take for one computer to 35.
solve the problem?

Considering only calculation time, how long will it take for the whole 36.
Computer Department to solve the problem in parallel?

Considering only calculation time, what is the speedup of the whole Computer 37.
Department for this problem?

Considering only calculation time, what is the efficiency of the whole 38.
Computer Department for this problem?

Exercises 39–42. Here’s another problem for the Computer Department. Your company’s Sales
Department has 360 salesmen (in 1944, they were all males) selling floor brushes, hairbrushes, tooth-
brushes, and scrub brushes door-to-door. Each salesman has submitted his quarterly sales report show-
ing the number of floor brushes, hairbrushes, toothbrushes, and scrub brushes he sold. Your task is to

C6910_Part2Exercises 290C6910_Part2Exercises 290 1/26/09 11:25:55 AM1/26/09 11:25:55 AM

 291

calculate each salesman’s total commission. The commission is 50 cents for each floor brush, 25 cents for
each hairbrush, 10 cents for each toothbrush, and one dollar for each scrub brush.

Considering only calculation time, how long will it take for one computer to 39.
solve the problem?

Considering only calculation time, how long will it take for the whole 40.
Computer Department to solve the problem in parallel?

Considering only calculation time, what is the speedup of the whole Computer 41.
Department for this problem?

Considering only calculation time, what is the efficiency of the whole 42.
Computer Department for this problem?

Exercises 43–47. You have made the following measurements of running time T (msec) versus number of
processors K for a certain parallel program solving a problem with a fixed problem size N:

K T
1 14000

2 7560

3 5413

4 4340

What fraction of this program’s total running time must be performed 43.
sequentially?

What would the program’s running time be for 44. K = 5 processors?

What are the program’s speedup and efficiency for 45. K = 1, 2, 3, 4, and
5 processors?

Suppose all of the program’s sequential portion is overlapped with the parallel 46.
portion. What are the program’s speedup and efficiency for K = 1, 2, 3, 4, and
5 processors?

What is the maximum speedup you can expect from this program as 47. K
increases while holding N fixed?

Exercises 48–52. You have made the following measurements of running time T (msec) versus number of
processors K for a certain parallel program solving a problem with a fixed problem size N:

K T
1 50000

2 28750

3 21667

4 18125

What fraction of this program’s total running time must be per formed 48.
sequentially?

What would the program’s running time be for 49. K = 5 processors?

C6910_Part2Exercises 291C6910_Part2Exercises 291 1/26/09 11:25:55 AM1/26/09 11:25:55 AM

292 PART II Exercises

What are the program’s speedup and efficiency for 50. K = 1, 2, 3, 4, and
5 processors?

Suppose all of the program’s sequential portion is overlapped with the parallel 51.
portion. What are the program’s speedup and efficiency for K = 1, 2, 3, 4, and
5 processors?

What is the maximum speedup you can expect from this program as 52. K
increases while holding N fixed?

Exercises 53–57. You have made the following measurements of running time T (msec) versus number of
processors K for a certain parallel program solving a problem with a fixed problem size N:

K T
1 240000

2 134400

3 99200

4 81600

What fraction of this program’s total running time must be per formed 53.
sequentially?

What would the program’s running time be for 54. K = 8 processors?

What are the program’s speedup and efficiency for 55. K = 1, 2, 3, 4, and 8
processors?

Suppose all of the program’s sequential portion is overlapped with the parallel 56.
portion. What are the program’s speedup and efficiency for K = 1, 2, 3, 4, and
8 processors?

What is the maximum speedup you can expect from this program as 57. K
increases while holding N fixed?

Exercises 58–62. You have measured the running time T for a certain program for several values of n,
where the problem size N = n3, and for several values of K, the number of processors:

n K T n K T n K T n K T
100 seq 10926 125 seq 20966 150 seq 35964 200 seq 83368

100 1 11315 125 1 21530 150 1 36366 200 1 81626

100 2 6194 125 2 10841 150 2 18764 200 2 42750

100 3 4376 125 3 7669 150 3 12383 200 3 27822

100 4 3543 125 4 6155 150 4 9806 200 4 21164

Calculate 58. Speedup, Eff, and EDSF as a function of K for each value of N.

Calculate 59. N, Sizeup, and SizeupEff as a function of K for T = 15,000.

Calculate 60. N, Sizeup, and SizeupEff as a function of K for T = 20,000.

C6910_Part2Exercises 292C6910_Part2Exercises 292 1/26/09 11:25:55 AM1/26/09 11:25:55 AM

 293

Calculate the Second Problem Size Law model parameters for this program. 61.
Use the TimeFit program in the Parallel Java Library.

What is the maximum sizeup this program can achieve as 62. K increases?

Exercises 63–67. You have measured the running time T for a certain program for several values of N, the
problem size, and for several values of K, the number of processors:

N K T N K T N K T N K T N K T
40 seq 2377 160 seq 7812 360 seq 16855 640 seq 29534 1000 seq 45737

40 1 2466 160 1 8049 360 1 17165 640 1 30473 1000 1 46864

40 2 1516 160 2 4270 360 2 9011 640 2 15474 1000 2 23826

40 3 1215 160 3 3081 360 3 6280 640 3 10819 1000 3 16496

40 4 1052 160 4 2473 360 4 4896 640 4 8275 1000 4 12634

Calculate 63. Speedup, Eff, and EDSF as a function of K for each value of N.

Calculate 64. N, Sizeup, and SizeupEff as a function of K for T = 5,000.

Calculate 65. N, Sizeup, and SizeupEff as a function of K for T = 10,000.

Calculate the Second Problem Size Law model parameters for this program. 66.
Use the TimeFit program in the Parallel Java Library.

What is the maximum sizeup this program can achieve as 67. K increases?

Exercises 68–70. You have made the following measurements of running time T versus number of
processors K and problem size N for a certain parallel program. For each value of N, you have measured
the running time on one processor and on K processors. You have discovered that the running time is
constant, provided N scales up with K. Assume the First Problem Size Law holds.

One Processor K Processors

K N T T

1 100 17250 17250

2 200 33465 17250

3 300 49680 17250

4 400 65895 17250

What fraction of this program’s total running time must be performed sequen-68.
tially for K = 1 and N = 100?

For 69. K = 5 and N = 500, what will the speedup be?

Suppose you don’t let 70. N scale up with K, but instead you run this program
with K = 2 and N = 100. What will the speedup be?

Exercises 71–73. You have made the following measurements of running time T versus number of proces-
sors K and problem size N for a certain parallel program. For each value of N, you have measured the

C6910_Part2Exercises 293C6910_Part2Exercises 293 1/26/09 11:25:55 AM1/26/09 11:25:55 AM

294 PART II Exercises

running time on one processor and on K processors. You have discovered that the running time is constant
provided N scales up with K. Assume the First Problem Size Law holds.

One Processor K Processors

K N T T
1 100 20655 20655

2 200 40095 20655

3 300 59535 20655

4 400 78975 20655

What fraction of this program’s total running time must be performed sequen-71.
tially for K = 1 and N = 100?

For 72. K = 5 and N = 500, what will the speedup be?

Suppose you don’t let 73. N scale up with K, but instead you run this program
with K = 2 and N = 100. What will the speedup be?

Try running the MandelbrotSetSmp2 program with various loop schedules. 74.
Examine the data on the starting and ending times of each chunk of loop itera-
tions (see Chapter 12, Section 12.1 and Figure 12.8). What do you learn about
how different loop schedules achieve (or fail to achieve) a balanced load?

Measure the MandelbrotSetSmp program’s running time 75. T using a dynamic
schedule for different problem sizes N, different numbers of processors K, and
different chunk sizes. Determine the effect of N, K, and chunk size on T. What
dynamic schedule chunk size gives the best performance?

Measure the MandelbrotSetSmp program’s running time 76. T using a guided
schedule for different problem sizes N, different numbers of processors K, and
different minimum chunk sizes. Determine the effect of N, K, and minimum
chunk size on T. What guided schedule minimum chunk size gives the best
performance? How does this compare with a dynamic schedule?

Exercises 77–80. Given an integer i > 0, consider the following procedure:
x ← i
While x > 1:
 If x is even:
 x ← x/2
 Else:
 x ← 3x+1

The Collatz Conjecture, proposed by Lothar Collatz in 1937, states that for every i > 0, the preced-
ing procedure terminates; that is, x eventually becomes 1. While mathematicians believe the Collatz
Conjecture is true, no one has been able to prove it.

Write a sequential program to investigate whether the Collatz Conjecture 77.
is true for all values of i from 1 through N, where N is a command-line

C6910_Part2Exercises 294C6910_Part2Exercises 294 1/26/09 11:25:56 AM1/26/09 11:25:56 AM

 295

argument. Use type long so N can be as large as 263–1. The program also has
a command-line argument MaxIter (type long). In the preceding procedure,
for a certain value of i, if x reaches 1 before the number of while loop itera-
tions reaches MaxIter, then the Collatz Conjecture is true for i. If the number
of while loop iterations reaches MaxIter before x reaches 1, then the Collatz
Conjecture might be false for i. (The Collatz Conjecture is not definitely false
for i because x might reach 1 with further iterations, but the program has to
stop somewhere.) The program prints the values of i for which the Collatz
Conjecture might be false.

Describe the sequential dependencies, if any, in the program. Is it possible to 78.
parallelize the program?

If possible, write an SMP parallel program to investigate the Collatz 79.
Conjecture. The parallel program has the same command-line arguments and
the same output as the sequential program. Measure the parallel program’s
running times as a function of N and K, calculate the program’s running-time
metrics, and improve the program’s design, if necessary.

Do you have to do anything to achieve load balance in the parallel program? If 80.
so, describe how to balance the load. If not, explain why not.

Exercises 81–85. A three-dimensional random walk is defined as follows. A particle is initially posi-
tioned at (0, 0, 0) in the X-Y-Z coordinate space. The particle does a sequence of N steps. At each step,
the particle chooses one of the six directions left, right, ahead, back, up, or down at random, and then
moves one unit in that direction. Specifically, if the particle is at (x, y, z):

With probability 1/6 the particle moves left to (x–1, y, z).
With probability 1/6 the particle moves right to (x+1, y, z).
With probability 1/6 the particle moves back to (x, y–1, z).
With probability 1/6 the particle moves ahead to (x, y+1, z).
With probability 1/6 the particle moves down to (x, y, z–1).
With probability 1/6 the particle moves up to (x, y, z+1).

Write a sequential program to calculate the particle’s final position. The 81.
program’s command-line arguments are the random seed and the number of
steps N. The program prints the particle’s final position (x, y, z) as well as the
particle’s final distance from the origin.

Describe the sequential dependencies, if any, in the program. Is it possible to 82.
parallelize the program?

If possible, write an SMP parallel program to calculate the particle’s final 83.
position. The parallel program has the same command-line arguments and
the same output as the sequential program. Measure the parallel program’s
running times as a function of N and K, calculate the program’s running-time
metrics, and improve the program’s design, if necessary.

C6910_Part2Exercises 295C6910_Part2Exercises 295 1/26/09 11:25:56 AM1/26/09 11:25:56 AM

296 PART II Exercises

What is the particle’s expected final distance from the origin as a function of 84.
the number of steps N?

Run your program for a large number of steps and a variety of different ran-85.
dom seeds. Do the particle’s computed final distances from the origin agree
with the expected final distance?

Run the sequential Monte Carlo 86. π program (class PiSeq) for different numbers
of iterations N. Compute the fractional error between the pro gram’s estimate
for π and the true value of π. The theory behind Monte Carlo integration says
that the fractional error should be proportional to . Is it?

Do some research and discover how to modify Floyd’s Algorithm to compute 87.
the shortest path itself (the sequence of vertices), in addition to the length of
the shortest path, between each pair of vertices. Write a sequential program
and an SMP parallel program for the modified Floyd’s Algorithm and mea-
sure their performance. How does their performance compare to the original
programs’ performance?

Like the program for Floyd’s Algorithm (FloydSeq/FloydSmpRow), the pro-88.
gram that generates an image of the Mandelbrot Set (MandelbrotSetSeq/
MandelbrotSetSmp) computes each element of a large matrix. But the Mandelbrot
Set program does not experience an abrupt increase in efficiency as the number of
processors increases, as the Floyd’s Algorithm program does. Why?

C6910_Part2Exercises 296C6910_Part2Exercises 296 1/26/09 11:25:56 AM1/26/09 11:25:56 AM

297

Clusters

P A R T III
Chapter 19
A First Cluster Parallel Program 299

Chapter 20
Parallel Message Passing 309

Chapter 21
Massively Parallel Problems, Part 3 . . . 329

Chapter 22
Data Slicing . 345

Chapter 23
Load Balancing, Part 2 355

Chapter 24
Measuring Communication Overhead . . 381

Chapter 25
Broadcast . 409

Chapter 26
Reduction, Part 3 427

Chapter 27
All-Gather . 445

Chapter 28
Scalability and Pipelining 481

Chapter 29
Overlapping, Part 2 499

Chapter 30
All-Reduce . 513

Chapter 31
All-to-All and Scan 547

Part III Exercises 571

C6910_19.indd 297C6910_19.indd 297 1/26/09 8:16:24 AM1/26/09 8:16:24 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

299

C H A P T E R 19
in which we revisit our introductory sequential program; we convert it to a program for

a cluster parallel computer; we see how long it takes to run each version; and we get

some insight into how parallel programs execute on a cluster

A First Cluster Parallel Program

C6910_19.indd 299C6910_19.indd 299 1/26/09 8:16:25 AM1/26/09 8:16:25 AM

C H A P T E R19 A First Cluster Parallel Program

19.1 Sequential Program
It’s time to switch from building SMP parallel programs, like those of Figure 2.7, to building cluster
parallel programs, like those of Figure 2.9. Before diving in, let’s revisit the simple little program from
Chapter 4 that checks its command-line arguments for primality using trial division. Here again is the
source code for class Program1Seq, the sequential version.

public class Program1Seq

 {

 static int n;

 static long[] x;

 static long t1, t2[], t3[];

 public static void main

 (String[] args)

 throws Exception

 {

 t1 = System.currentTimeMillis();

 n = args.length;

 x = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 x[i] = Long.parseLong (args[i]);

 }

 t2 = new long [n];

 t3 = new long [n];

 for (int i = 0; i < n; ++ i)

 {

 t2[i] = System.currentTimeMillis();

 isPrime (x[i]);

 t3[i] = System.currentTimeMillis();

 }

 for (int i = 0; i < n; ++ i)

 {

 System.out.println

 ("i = "+i+" call start = "+(t2[i]-t1)+" msec");

C6910_19.indd 300C6910_19.indd 300 1/26/09 8:16:25 AM1/26/09 8:16:25 AM

 19.2 Running the Sequential Program 301

19.2 Running the Sequential Program
Here is what Program1Seq printed when run on one backend processor of a cluster parallel computer. In
this cluster, each backend processor has a 440 MHz Sun Microsystems UltraSPARC-IIi CPU and
256 MB of main memory.

$ java -server Program1Seq 1000000000000037 1000000000000091 \

 1000000000000159 1000000000000187

i = 0 call start = 1 msec

i = 0 call finish = 2662 msec

i = 1 call start = 2662 msec

i = 1 call finish = 5316 msec

i = 2 call start = 5316 msec

i = 2 call finish = 7966 msec

i = 3 call start = 7966 msec

i = 3 call finish = 10611 msec

 System.out.println

 ("i = "+i+" call finish = "+(t3[i]-t1)+" msec");

 }

 }

 private static boolean isPrime

 (long x)

 {

 if (x % 2 == 0) return false;

 long p = 3;

 long psqr = p*p;

 while (psqr <= x)

 {

 if (x % p == 0) return false;

 p += 2;

 psqr = p*p;

 }

 return true;

 }

 }

C6910_19.indd 301C6910_19.indd 301 1/26/09 8:16:25 AM1/26/09 8:16:25 AM

302 CHAPTER 19 A First Cluster Parallel Program

0 1 2 3 4 5 6 7 8 9 1 0 1 1
Running time (sec)

i = 0

i = 1

i = 2

i = 3

 Figure 19.1 Program1Seq execution timeline, sequential computer

On this computer, the java command runs the Java HotSpot Client Virtual Machine by default. The
-server flag runs the Java HotSpot Server Virtual Machine instead. The Server JVM’s JIT compiler
does more extensive optimizations than the Client JVM’s JIT compiler, thus substantially reducing the
program’s running time. In general, you should use the Server JVM to run any Java program involving
lengthy computation. (On the SMP parallel computers used in the previous chapters, the Server JVM runs
by default.)

Plotting each subroutine call’s start and finish on a timeline (Figure 19.1) reveals the typical pattern
of sequential execution. The program executes each isPrime() subroutine call in its entirety before
going to the next subroutine call, and there is no parallel execution.

19.3 Cluster Parallel Program
Now let’s rewrite the program using Parallel Java so it will run in parallel when executed on a cluster
parallel computer. Because a cluster parallel program runs on multiple backend processors and sends
messages between the backend processors as well as the frontend processor, every cluster parallel pro-
gram’s first act is to initialize Parallel Java’s communication layer. To do so, we call the Comm.init()
method, passing in the array of command-line arguments.

 public static void main

 (String[] args)

 throws Exception

 {

 Comm.init (args);

 }

When the Comm.init() method returns, the communication layer has created a process on each
backend processor of the cluster. Each process is running a JVM, is executing the same main() method
with the same command-line arguments, and has returned from the Comm.init() method call. Each
process’s communication layer has also created an object called the world communicator. A commu-
nicator is an object used to send and receive messages, and the world communicator is able to send and
receive messages between any or all of the backend processes in the program. Next, we get a reference to
the world communicator object, world.

C6910_19.indd 302C6910_19.indd 302 1/26/09 8:16:25 AM1/26/09 8:16:25 AM

 19.3 Cluster Parallel Program 303

The world communicator has two attributes, size and rank. The world communicator’s size is the
number of backend processes in the program, K. Each process is assigned a different rank in the range
0 through K–1. A cluster parallel program typically needs to know the size and rank. We obtain them by
calling methods on the world communicator.

 static Comm world;

 public static void main

 (String[] args)

 throws Exception

 {

 Comm.init (args);

 world = Comm.world();

 }

 static Comm world;

 static int size;

 static int rank;

 static long x;

 public static void main

 (String[] args)

 throws Exception

 {

 Comm.init (args);

 static Comm world;

 static int size;

 static int rank;

 public static void main

 (String[] args)

 throws Exception

 {

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 }

Rather than using a loop to execute the computations (subroutine calls) in sequence, we want the pro-
cesses to execute the computations in parallel. We’ve already got multiple processes running, so we simply
call the isPrime() subroutine (without the loop). However, we want each computation to use a different x
value. To get this to happen, we use the rank to retrieve the appropriate command-line argument.

C6910_19.indd 303C6910_19.indd 303 1/26/09 8:16:25 AM1/26/09 8:16:25 AM

304 CHAPTER 19 A First Cluster Parallel Program

Here is the complete Java class, Program1Clu, including code to record the running-time measure-
ments and print them after the computation has finished.

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 x = Long.parseLong (args[rank]);

 isPrime (x);

 }

import edu.rit.pj.Comm;

public class Program1Clu

 {

 static Comm world;

 static int size;

 static int rank;

 static long x;

 static long t1, t2, t3;

 public static void main

 (String[] args)

 throws Exception

 {

 t1 = System.currentTimeMillis();

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 x = Long.parseLong (args[rank]);

 t2 = System.currentTimeMillis();

 isPrime (x);

 t3 = System.currentTimeMillis();

 System.out.println

 ("rank = "+rank+" call start = "+(t2-t1)+" msec");

 System.out.println

 ("rank = "+rank+" call finish = "+(t3-t1)+" msec");

 }

C6910_19.indd 304C6910_19.indd 304 1/26/09 8:16:26 AM1/26/09 8:16:26 AM

 19.3 Cluster Parallel Program 305

Job
Scheduler
Daemon

Job
Frontend
Process

Job
Launcher
Daemon

Job
Backend
Process

Terminal

Web
browser

stdin

stdout
stderr

Cluster
status

Communicator

Frontend processor

Backend processors

Figure 19.2 Parallel Java program running on a cluster

 private static boolean isPrime

 (long x)

 {

 if (x % 2 == 0) return false;

 long p = 3;

 long psqr = p*p;

 while (psqr <= x)

 {

 if (x % p == 0) return false;

 p += 2;

 psqr = p*p;

 }

 return true;

 }

 }

Here’s how the program works. When Parallel Java is installed on a cluster parallel computer, several
daemon processes are running at all times (Figure 19.2). The Job Scheduler Daemon is running on the
front end processor, and a Job Launcher Daemon is running on each backend processor. You launch the
parallel program on the frontend processor like any other Java program. This creates the job frontend
process running a JVM. When the program calls the Comm.init() method, the job frontend process
contacts the Job Scheduler Daemon and asks it to create a new parallel processing job. The Job Scheduler
Daemon assigns particular backend processors to the job and informs the job frontend process. The job
frontend process then contacts each backend processor’s Job Launcher Daemon and asks it to create a
new process running a JVM executing the same main() method with the same command-line arguments

C6910_19.indd 305C6910_19.indd 305 1/26/09 8:16:26 AM1/26/09 8:16:26 AM

306 CHAPTER 19 A First Cluster Parallel Program

as the job frontend process’s JVM. These become the job backend processes. The job backend processes
establish communication with each other and with the job frontend process.

All of the preceding happens inside the Comm.init() method call. In the job frontend process, the
Comm.init() method does not return; instead, the job frontend process waits for all the job backend
processes to finish. In the job backend processes, the Comm.init() method call returns, and the main
program continues executing. Thus, several isPrime() subroutine calls happen at the same time, each
subroutine call being performed by a different job backend process with a different argument. Each job
backend process prints its own timing measurements on the standard output. The Parallel Java communi-
cation layer intercepts these printouts and sends them to the job frontend process, which prints them on
its own terminal. When each job backend process finishes executing the main() method, it informs the
job frontend process. When all the job backend processes have terminated, the job frontend process also
terminates.

When running such a process-based program on a cluster parallel computer, the cluster middleware—
which in Parallel Java consists of the Job Scheduler Daemon, the Job Launcher Daemons, and the
communication layers in the job frontend and backend processes—is responsible for creating each pro-
cess on a different processor. Thus, the computations done by each process—in this case, the different
subroutine calls—are executed in parallel on different processors, resulting in a speedup with respect
to the sequential program.

The Job Scheduler Daemon also maintains a job queue of pending parallel processing jobs. If
the backend processors are busy, the job goes into the job queue until the running job finishes and the
backend processors become available. In this way, the Job Scheduler Daemon ensures that only one job
at a time runs on each backend processor, letting each job utilize the full CPU power of each backend
processor. The Job Scheduler Daemon has a Web interface that displays the status of each backend pro-
cessor and the status of the job queue. Refer to the Parallel Java documentation for further information on
installing and configuring Parallel Java on a cluster.

19.4 Running the Parallel Program
Here is what Program1Clu printed when run on four processors of the cluster parallel computer. The

-Dpj.np flag specifies how many processors to use. If this flag is omitted, the default is one proces-
sor. The first line of output was printed by the Parallel Java middleware; it gives the job number and the
names of the backend processors assigned to the job from rank 0 to rank K–1.

0 1 2 3 4 5 6 7 8 9 1 0 1 1
Running time (sec)

i = 0

i = 1

i = 2

i = 3

Figure 19.3 Program1Clu execution timeline, cluster computer

C6910_19.indd 306C6910_19.indd 306 1/26/09 8:16:26 AM1/26/09 8:16:26 AM

 19.4 Running the Parallel Program 307

$ java -Dpj.np=4 Program1Clu 1000000000000037 1000000000000091 \

 1000000000000159 1000000000000187

Job 3, thug05, thug06, thug07, thug08

rank = 1 call start = 165 msec

rank = 2 call start = 170 msec

rank = 0 call start = 165 msec

rank = 3 call start = 169 msec

rank = 1 call finish = 2842 msec

rank = 2 call finish = 2833 msec

rank = 0 call finish = 2843 msec

rank = 3 call finish = 2830 msec

Now the timeline (Figure 19.3) shows parallelism. All the computations start at about the same time,
execute simultaneously, and finish at about the same time. Whereas the sequential version’s running time
was 10611 msec, the parallel version’s running time on four processors was 2843 msec—a speedup of
3.732, an efficiency of 0.933. The program’s efficiency falls short of ideal because of the time needed to
initialize the communication layer (Comm.init()).

Note that the processes’ printouts do not appear in ascending rank order. This is because the printouts
are being done separately by each process running independently of the others, rather than being done all
at once by a single process. Doing the printouts in rank order would require some kind of communication
or coordination among the processes.

Now that we understand the basics of writing and running programs on a cluster, we can begin our
in-depth study of cluster parallel programming techniques. Because cluster parallel programs usually
send and receive messages to transfer data between the processes or to coordinate the processes’ actions,
in Chapter 20, we will start by looking at how message passing works in Parallel Java.

C6910_19.indd 307C6910_19.indd 307 1/26/09 8:16:26 AM1/26/09 8:16:26 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

309

C H A P T E R 20
in which we learn how to use a communicator for message passing in a cluster parallel

program; and we encounter various patterns for transferring messages between single

processes and multiple processes

Parallel Message Passing

C6910_20.indd 309C6910_20.indd 309 1/26/09 8:16:00 AM1/26/09 8:16:00 AM

C H A P T E R20 Parallel Message Passing

20.1 Communicators
In this chapter, we’ll introduce Parallel Java’s palette of message-passing operations and describe what each
one does. Parallel Java’s message-passing capabilities are the same as in the MPI standard. (See Appendix B
for further information about MPI.) Each message-passing operation is useful in solving certain kinds of prob-
lems on cluster parallel computers. In the rest of Part III, we’ll study examples of such problems and see how
the message-passing operations are used in cluster parallel programs that solve these problems.

As we saw in Chapter 19, a cluster parallel program uses a communicator for message passing
among the parallel processes. A communicator is an abstraction of the communication medium that
encompasses a group of processes (Figure 20.1). The communicator’s size is the number of processes
in the group, K. Each process has a rank in the range 0 through K–1; the rank uniquely identifies the
process within the communicator.

Proc
0

Proc
1

Proc
2

Proc
3

Communicator

 Figure 20.1 A communicator of size 4

When initialized, the Parallel Java communication layer automatically creates one standard com-
municator, the world communicator. The world communicator encompasses all the processes in the
program. The -Dpj.np flag on the Java command line specifies the world communicator’s size. The
program can create additional communicators, if necessary.

In the Parallel Java Library, class edu.rit.pj.Comm provides the API for communicators. Each
instance of class Comm represents a different communicator. Class Comm includes these methods:

The static • Comm.init(args) method initializes the Parallel Java communication
layer. args is an array of the program’s command-line argument strings.

The static • Comm.world() method returns a reference to the world communicator.

The • size() method returns the communicator’s size.

The • rank() method returns the calling process’s rank within the communicator.

C6910_20.indd 310C6910_20.indd 310 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

 20.2 Point-to-Point Communication 311

Typically, the first few lines in a cluster parallel program are these.

 public static void main

 (String[] args)

 throws Exception

 {

 Comm.init (args);

 Comm world = Comm.world();

 int size = world.size();

 int rank = world.rank();

 . . .

 }

At this point, the program has a reference to the world communicator with which to do message-passing
operations, the program knows the total number of processes that are participating in the parallel compu-
tation, and the program knows the current process’s rank within the group.

The other methods of class Comm fall into two categories: point-to-point communication operations;
and collective communication operations. For further information about class Comm, refer to the Parallel
Java documentation.

20.2 Point-to-Point Communication
A point-to-point communication operation transfers data from one process to one other process in
a communicator. We’ll examine six point-to-point communication operations: send, receive, wildcard
receive, nonblocking send, nonblocking receive, and send-receive.

Send and receive. To send data from one process to another (Figure 20.2), the sending process calls
the send() method on a communicator, such as the world communicator.

 world.send (toRank, buf);

The first argument specifies the rank of the process to which to send the outgoing data. The second
argument is a buffer, an instance of class edu.rit.mp.Buf. The buffer object specifies where to obtain the
outgoing data item or items. Buffer objects are very flexible; they can refer to a single variable, an array,
a portion of an array, a matrix, a portion of a matrix, or other possibilities. We’ll discuss the various kinds
of buffer objects in Chapter 22. For now, just think of the buffer as an abstract data source.

C6910_20.indd 311C6910_20.indd 311 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

312 CHAPTER 20 Parallel Message Passing

Proc
0

Proc

Before:

1
Proc

2
Proc

3

1

2

3

4

5

6

7

8

buf

world.send
(2, buf);

buf

world.receive
(0, buf);

Proc
0

Proc
1

Proc
2

Proc
3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

After:

 Figure 20.2 A send operation and a receive operation

To accomplish the data transfer, the receiving process must also call the receive() method on the
same communicator the sending process is using.

 CommStatus status = world.receive (fromRank, buf);

The first argument specifies the rank of the process from which to receive the incoming data. The second
argument is a buffer object that specifies where to deposit the incoming data item or items. Think of the
buffer object in the receive operation as an abstract data destination.

When a process X calls send() to send data to a process Y and process Y calls receive() to
receive data from process X, the send operation and the receive operation match each other. When a
match occurs, a message with the data from process X’s source buffer goes through the cluster backend
network from process X to process Y. The message data is then placed into process Y’s destination buffer.

In process Y, the receive() method returns when all the message data has been received. This
means that if process Y calls receive() before process X calls send(), the receive() method call
blocks until the data arrives. The receive() method also returns a communication status object
(class edu.rit.pj.CommStatus) that reports the sending process’s rank and the number of data items in the
message.

In process X, the send() method returns when all the message data has been sent. However, because
of buffering in the underlying network, process Y might not have received some or all of the message data
when the send() method returns in process X. Conversely, flow control in the underlying network might
cause the send() method call to block in process X if process Y has not called the receive() method yet.

C6910_20.indd 312C6910_20.indd 312 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

 20.2 Point-to-Point Communication 313

Cluster parallel programs that follow the master-worker pattern (refer to Section 3.6) use the send
and receive operations. The master sends tasks that the workers receive; the workers send results that the
master receives. We will see an example of a master-worker program in Chapter 23.

Wildcard receive. As just described, the receive operation requires the receiving process to know
the rank of the sending process. However, sometimes it’s useful for a process to receive a message from
any sending process, not just one specific sending process. To do so, call the receive() method with
null as the sending process rank.

 CommStatus status = world.receive (null, buf);

The null acts as a wildcard that matches any sending process rank. To discover which process sent a
message, examine the sending process rank in the returned communication status object. The master pro-
cess in a master-worker program typically uses a wildcard receive operation to receive a result from any
worker process; we’ll see an example in Chapter 23.

Nonblocking send and receive. The communicator has nonblocking versions of the send and
receive operations. The nonblocking send method has an additional communication request argument.

 CommRequest request = new CommRequest();

 world.send (toRank, buffer, request);

 // Other processing goes here

 request.waitForFinish();

Whereas the send() method without a communication request argument blocks the calling thread until
the send operation has finished, the send() method with a communication request argument initiates the
send operation and returns immediately. The message transmission then takes place in a separate thread
hidden inside the communication layer. The communication request object (request) acts as a “handle”
for the in-progress send operation. After returning from the send() method, the original thread can per-
form other processing while the message is being sent. When such other processing is complete and the
thread must wait for the send operation to finish before proceeding, the thread calls the communication
request ob ject’s waitForFinish() method; this blocks the calling thread, if necessary, until the send
operation has finished.

Likewise, the communicator’s nonblocking receive method has an additional communication
request argument.

 CommRequest request = new CommRequest();

 world.receive (fromRank, buffer, request);

 // Other processing goes here

 CommStatus status = request.waitForFinish();

The nonblocking receive method performs the message reception in a separate thread. To wait for the
receive operation to finish, the original thread calls the communication request object’s waitForFinish()
method, which returns a communication status object to report the outcome of the receive operation.

C6910_20.indd 313C6910_20.indd 313 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

314 CHAPTER 20 Parallel Message Passing

The nonblocking send and receive operations are useful for implementing the overlapping pattern in
a cluster parallel program. The program initiates a nonblocking send or receive operation; performs some
computation (which is thus overlapped with the message I/O); and waits for the send or receive operation
to finish. In Chapter 29, we’ll study a program that does overlapped computation and communication.

Send-receive. The last point-to-point communication operation we examine is send-receive (Figure 20.3).

 CommStatus status =

 world.sendReceive (toRank, srcBuf, fromRank, dstBuf);

The calling process both sends data from a source buffer (srcBuf) to a process at a given rank (toRank)
and simultaneously receives data into a destination buffer (dstBuf) from a process at a given rank
(fromRank). The sendReceive() method returns a communication status object that reports the status
of the receive half of the send-receive operation.

Of course, to accomplish the data transfers, the process at rank toRank must perform a receive
operation and the process at rank fromRank must perform a send operation. If toRank and fromRank
are the same, then that process can also do a send-receive operation, as shown in Figure 20.3. In this way,
two processes can exchange data with each other in a single operation. However, toRank and fromRank
need not be the same process (Figure 20.4).

Like the send operation and the receive operation, there is a nonblocking version of the send-receive
operation.

 CommRequest request = new CommRequest();

 world.sendReceive (toRank, srcBuf, fromRank, dstBuf, request);

 // Other processing goes here

 CommStatus status = request.waitForFinish();

The send and receive operations are performed in a separate thread. This pattern can be used to overlap
computation, sending a message, and receiving a message.

Send-receive operations often turn up in programs where each process repeatedly performs a computation
in lockstep with the other processes. The send-receive operations serve both to communicate data among the
processes and to synchronize the processes. We’ll see examples of such programs in Chapters 28, 29, and 30.

20.3 Collective Communication
In contrast to a point-to-point communication operation, which transfers data between only two pro-
cesses, a collective communication operation transfers data among all the processes in a communicator.
Different collective communication operations transfer data in different patterns; these patterns are often
encountered in cluster parallel programs. The collective communication operations are broadcast, flood,
scatter, gather, all-gather, reduce, all-reduce, all-to-all, scan, and barrier.

C6910_20.indd 314C6910_20.indd 314 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

 20.3 Collective Communication 315

Proc
0

Proc
1

Proc
2

Proc
3

1

3

2

4

buf1

buf2

world
.sendReceive

(2, buf1,
 2, buf2);

buf1

buf2

world
.sendReceive

(0, buf2,
 0, buf1);

Before:

Proc
0

Proc
1

Proc
2

Proc
3

1

3

1

3

2

4

2

4

After:

 Figure 20.3 A send-receive operation between two processors

Proc
0

Proc
1

Proc
2

Proc
3

1 3

2 4

buf1

buf2

world
.sendReceive

(2, buf1,
 0, buf2);

buf1

buf2

world.receive
(1, buf2);

world.send
(1, buf1);

Before:

Proc
0

Proc
1

Proc
2

Proc
3

1

1

3

3

2

2

4

4

After:

 Figure 20.4 A send-receive operation involving three processors

C6910_20.indd 315C6910_20.indd 315 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

316 CHAPTER 20 Parallel Message Passing

Broadcast. In a broadcast operation (Figure 20.5), one process, called the root process, has a buffer
of data that it must send to every process. (Any process can be the root.) To accomplish this, every pro-
cess in the communicator calls the broadcast() method.

 world.broadcast (root, buf);

The first argument is the rank of the root process. In the root process, the second argument is a buffer
object specifying the source of the message data. In the non-root processes, the second argument is a
buffer object specifying the destination of the message data. The broadcast operation does not take place
until every process in the communicator has called the broadcast() method. After the broadcast()
method returns, each process’s buffer holds the same data as the root process’s buffer.

buf

world.broadcast
(1, buf);

Proc
0

buf

world.broadcast
(1, buf);

Proc
1

buf

world.broadcast
(1, buf);

Proc
2

buf

world.broadcast
(1, buf);

Proc
3

1

2

3

4

5

6

7

8

Before:

Proc
0

Proc
1

Proc
2

Proc
3

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

After:

Figure 20.5 A broadcast operation

The broadcast operation and the other collective communication operations are implemented as a
series of point-to-point messages. However, the diagrams in this chapter are intended only to indicate
where the data ends up, not the actual messages used to transfer the data. When we examine the perfor-
mance of message passing starting in Chapter 24, we will look at the actual message patterns for collec-
tive communication operations.

On an SMP parallel computer, if every thread must look at a data item, we just put the data in shared
memory. That won’t work on a cluster parallel computer, which has a distributed memory. One alterna-
tive is for the process that owns the data to broadcast the data to all the processes. We’ll see an example
in Chapter 25.

 world.broadcast (root, buf);

C6910_20.indd 316C6910_20.indd 316 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

 20.3 Collective Communication 317

Flood. The flood operation (Figure 20.6) is a combination of the broadcast, send, and receive opera-
tions. Like broadcast, the flood operation transfers data from one process to every process in the com-
municator. Unlike broadcast, the flood operation is split into a flood-send operation and a flood-receive
operation. Every process in the communicator calls the floodReceive() method, specifying a destina-
tion buffer for the incoming message data.

 CommStatus status = world.floodReceive (dstBuf);

buf1

world
.floodReceive

(buf1);

Proc
0

buf1

world
.floodReceive

(buf1);

Proc
1

buf1

world
.floodReceive

(buf1);

Proc
2

buf1

world
.floodReceive

(buf1);

Proc
3

1

2

3

buf2

world
.floodSend

(buf2);

Before:

Proc
0

Proc
1

Proc
2

Proc
3

1

1 1 1 1

2

2 2 2 2

3

3 3 3 3

After:

Figure 20.6 A flood operation

One process in the communicator calls the floodSend() method, specifying a source buffer for the
outgoing message data.

 CommStatus status = world.floodReceive (dstBuf);

 world.floodSend (srcBuf);

The floodSend() and floodReceive() methods block until every process has called floodReceive()
and one process has called floodSend(). Then the source buffer’s contents are “flooded” throughout the
communicator to every destination buffer. The floodReceive() method returns a communication status
object stating which process sent the message and the number of data items in the message.

There are also nonblocking versions of the floodReceive() and floodSend() methods, similar
to the nonblocking receive() and send() methods.

C6910_20.indd 317C6910_20.indd 317 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

318 CHAPTER 20 Parallel Message Passing

Flood-send and flood-receive are useful for notifications that must go to all processes, when we don’t
know ahead of time which process will send the notification. (With a broadcast, the sending process—the
root—must be known ahead of time.) In Chapter 21, we’ll see a program that uses flood-send and flood-
receive to do an early loop exit in all processes.

Scatter. In a scatter operation (Figure 20.7), the root process has a group of source data buffers.
Every process has one destination data buffer. The source data in the root process is to be distributed, or
scattered, among all the processes. To do so, every process calls the scatter() method.

 world.scatter (root, srcBufArray, dstBuf);

 CommRequest request = new CommRequest;

 world.floodReceive (dstBuf, request);

 // Other processing goes here

 CommStatus status = request.waitForFinish();

 CommRequest request = new CommRequest();

 world.floodSend (srcBuf, request);

 // Other processing goes here

 request.waitForFinish();

buf1

Proc
0

buf1

Proc
1

buf1

Proc
2

buf1

Proc
3

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.scatter
(0, buf2, buf1);

world.scatter
(0, null, buf1);

world.scatter
(0, null, buf1);

world.scatter
(0, null, buf1);

1

2

3

4

5

6

7

8

Before:

Proc
0

Proc
1

Proc
2

Proc
3

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

After:

 Figure A scatter operation

C6910_20.indd 318C6910_20.indd 318 1/26/09 8:16:01 AM1/26/09 8:16:01 AM

 20.3 Collective Communication 319

The first argument is the rank of the root process. In the root process, the second argument is an array of
K source buffer objects. In the non-root processes, the second argument is not used and can be null. The
third argument is the destination buffer object. When all processes have called the scatter() method,
the contents of the source buffer at index 0 are transferred to the destination buffer in process 0, the con-
tents of the source buffer at index 1 are transferred to the destination buffer in process 1, and so on.

Gather. The gather operation (Figure 20.8) is the opposite of the scatter operation. Every process
has one source data buffer. The root process has a group of destination data buffers. The source data
scattered among all the processes is to be brought back, or gathered, into the root process. To do so, every
process calls the gather() method.

 world.gather (root, srcBuf, dstBufArray);

buf1

Proc
0

buf1

Proc
1

buf1

Proc
2

buf1

Proc
3

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.gather
(0, buf1, buf2);

world.gather
(0, buf1, null);

world.gather
(0, buf1, null);

world.gather
(0, buf1, null);

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

Before:

Proc
0

Proc
1

Proc
2

Proc
3

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

After:

Figure 20.8 A gather operation

C6910_20.indd 319C6910_20.indd 319 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

320 CHAPTER 20 Parallel Message Passing

The first argument is the rank of the root process. The second argument is the source buffer object. In the
root process, the third argument is an array of K destination buffer objects. In the non-root processes, the
third argument is not used and can be null. When all processes have called the gather() method, the
contents of the source buffer in process 0 are transferred to the destination buffer at index 0, the contents
of the source buffer in process 1 are transferred to the destination buffer at index 1, and so on.

The scatter and gather operations are often paired in a cluster parallel program. One process, the root
process, obtains the program’s input data, divides the input data into chunks, and scatters the chunks to all
the processes. (Often process 0 acts as the root, although it doesn’t matter which process is the root.) Every
process performs computations on its own chunk of the input data to produce a chunk of the output data.
Finally, the output data chunks are gathered back into the root process. We’ll see an example in Chapter 23.

All-gather. The all-gather operation (Figure 20.9) is like a gather operation, except that the data is
gathered into every process instead of just one process. (The all-gather operation has no root process.)
Every process calls the allGather() method.

 world.allGather (srcBuf, dstBufArray);

buf1

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.allGather
(buf1, buf2);

Proc
0

buf1

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.allGather
(buf1, buf2);

Proc
1

buf1

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.allGather
(buf1, buf2);

Proc
2

buf1

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.allGather
(buf1, buf2);

Proc
3

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

Before:

Proc
0

Proc
1

Proc
2

Proc
3

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

After:

Figure 20.9 An all-gather operation

C6910_20.indd 320C6910_20.indd 320 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

 20.3 Collective Communication 321

The first argument is the source buffer object. The second argument is an array of K destination buffer
objects. When all processes have called the allGather() method, the contents of the source buffer in
process 0 are transferred to the destination buffer at index 0 in every process, the contents of the source
buffer in process 1 are transferred to the destination buffer at index 1 in every process, and so on.

All-gather operations turn up in programs where each process repeatedly performs a computation in
lockstep with the other processes, where the data being computed is partitioned among the processes, and
where every process must look at all the data to compute its own piece of the data. The all-gather opera-
tions serve both to keep the data up to date in all the processes and to synchronize the processes. We’ll
study a program that uses all-gather in Chapter 27.

Reduce. The reduce operation (Figure 20.10) does parallel reduction while passing messages. Every
process has a data buffer. The many buffers are to be reduced into one using a reduction operator, leaving
the result in the root process’s buffer. To do so, every process calls the reduce() method.

 world.reduce (root, buf, op);

buf

world.reduce
(2, buf, SUM);

Proc
0

1

2

3

4

5

6

7

8

buf

world.reduce
(2, buf, SUM);

Proc
1

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

buf

world.reduce
(2, buf, SUM);

Proc
2

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

buf

world.reduce
(2, buf, SUM);

Proc
3

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

SUM

Before:

Proc
0

Proc
1

Proc
2

Proc
3

5 2

5 6

6 0

6 4

6 8

7 2

7 6

8 0

After:

 Figure 20.10 A reduce operation

The first argument is the rank of the root process. The second argument is the data buffer. The third argument is
the reduction operator to use, an instance of a class in package edu.rit.pj.reduction. (We studied reduction opera-
tors in Chapter 15.) When all processes have called the reduce() method, the first data items in all the buffers are
combined using the reduction operator and the result becomes the first data item in the root process’s buffer; the
second data items in all the buffers are combined using the reduction operator and the result becomes the second
data item in the root process’s buffer; and so on. (In the non-root processes, the buffers are used to hold intermedi-
ate results and thus may be altered from their original contents.) In other words, the original data is overwritten.

 world.reduce (root, buf, op);

C6910_20.indd 321C6910_20.indd 321 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

322 CHAPTER 20 Parallel Message Passing

The reduce operation is used in cluster parallel programs that follow the parallel reduction pattern.
We’ll see some examples in Chapter 26.

All-reduce. The all-reduce operation (Figure 20.11) is the same as the reduce operation, except there
is no root process, and every process’s buffer ends up holding the result of the reduction. Every process
calls the allReduce() method.

 world.allReduce (buf, op);

buf

world.allReduce
(buf, SUM);

Proc
0

1

2

3

4

5

6

7

8

buf

world.allReduce
(buf, SUM);

Proc
1

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

buf

world.allReduce
(buf, SUM);

Proc
2

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

buf

world.allReduce
(buf, SUM);

Proc
3

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

SUM

Before:

Proc
0

5 2

5 6

6 0

6 4

6 8

7 2

7 6

8 0

Proc
1

5 2

5 6

6 0

6 4

6 8

7 2

7 6

8 0

Proc
2

5 2

5 6

6 0

6 4

6 8

7 2

7 6

8 0

Proc
3

5 2

5 6

6 0

6 4

6 8

7 2

7 6

8 0

After:

Figure 20.11 An all-reduce operation

The all-reduce operation is used in cluster parallel programs that follow the parallel reduction pat-
tern, but where every process needs to use the overall reduced result. We’ll study a program that uses
all-reduce in Chapter 30.

C6910_20.indd 322C6910_20.indd 322 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

 20.3 Collective Communication 323

All-to-all. In a single operation, all-to-all (Figure 20.12) simultaneously scatters a group of source
data buffers from every process and gathers a group of destination buffers into every process. To do so,
every process calls the allToAll() method.

 world.allToAll (srcBufArray, dstBufArray);

buf1[0]

buf1[1]

buf1[2]

buf1[3]

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.allToAll
(buf1, buf2);

Proc
0

1

2

3

4

5

6

7

8

buf1[0]

buf1[1]

buf1[2]

buf1[3]

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.allToAll
(buf1, buf2);

Proc
1

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

buf1[0]

buf1[1]

buf1[2]

buf1[3]

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.allToAll
(buf1, buf2);

Proc
2

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

buf1[0]

buf1[1]

buf1[2]

buf1[3]

buf2[0]

buf2[1]

buf2[2]

buf2[3]

world.allToAll
(buf1, buf2);

Proc
3

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

Before:

Proc
0

1

2

3

4

5

6

7

8

Proc
1

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

Proc
2

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

Proc
3

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

1

2

9

1 0

1 7

1 8

2 5

2 6

3

4

1 1

1 2

1 9

2 0

2 7

2 8

5

6

1 3

1 4

2 1

2 2

2 9

3 0

7

8

1 5

1 6

2 3

2 4

3 1

3 2

Figure 20.12 An all-to-all operation

C6910_20.indd 323C6910_20.indd 323 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

324 CHAPTER 20 Parallel Message Passing

The first argument is an array of K source buffer objects. The second argument is an array of K destination
buffer objects, different from the source buffers. When all processes have called the allToAll() method, the
source buffers in process 0 are scattered to the destination buffers at index 0 in every process, the source buffers
in process 1 are scattered to the destination buffers at index 1 in every process, and so on. Putting it another way,
the destination buffers in process 0 are gathered from the source buffers at index 0 in every process, the destina-
tion buffers in process 1 are gathered from the source buffers at index 1 in every process, and so on.

Where might all-to-all be useful? One example is a program that does sorting in parallel on a cluster,
which we’ll study in Chapter 31.

Scan. Before explaining the scan operation, consider a simpler operation, prefix sum. Applied to
an array, prefix sum replaces each array element with the sum of itself and all previous array elements
(Figure 20.13).

Before: 3 56 7 76 22 16 59 94

After: 3 59 66 142 164 180 239 333
 Figure 20.13 Prefix sum of an array

The scan operation generalizes the prefix sum operation to use any reduction operator, not just sum-
mation. Furthermore, the scan operation uses message passing to combine data items located in buffers in
all the processes rather than data elements located in a single array. To do a scan, every process calls the
scan() method (Figure 20.14).

 world.scan (buf, op); world.scan (buf, op);

C6910_20.indd 324C6910_20.indd 324 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

 20.3 Collective Communication 325

buf

world.scan
(buf, SUM);

Proc
0

1

2

3

4

5

6

7

8

buf

world.scan
(buf, SUM);

Proc
1

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

buf

world.scan
(buf, SUM);

Proc
2

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

buf

world.scan
(buf, SUM);

Proc
3

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

SUM SUM SUM

Before:

Proc
0

1

2

3

4

5

6

7

8

Proc
1

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

Proc
2

2 7

3 0

3 3

3 6

3 9

4 2

4 5

4 8

Proc
3

5 2

5 6

6 0

6 4

6 8

7 2

7 6

8 0

After:

Figure 20.14 A scan operation

The first argument is a buffer containing the data for the scan. The second argument is the reduction
operator to be used. After the scan, the first data item in each process’s buffer contains the result of
combining the first data items in its own buffer and in all lower-ranked processes’ buffers using the
reduction operator; the second data item in each process’s buffer contains the result of combining
the second data items in its own buffer and in all lower-ranked processes’ buffers using the reduction
operator; and so on.

C6910_20.indd 325C6910_20.indd 325 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

326 CHAPTER 20 Parallel Message Passing

A variation of prefix sum is exclusive prefix sum, which replaces each array element with the sum
of all previous array elements, excluding itself (Figure 20.15). The first array element is replaced with 0.

Before: 3 56 7 76 22 16 59 94

After: 0 3 59 66 142 164 180 239
 Figure 20.15 Exclusive prefix sum of an array

There is also an exclusive-scan operation that generalizes the exclusive prefix-sum operation. To do
an exclusive-scan, every process calls the exclusiveScan() method (Figure 20.16).

 world.exclusiveScan (buf, op, initialValue);

buf

world.exclusiveScan
(buf, SUM, 0);

Proc
0

1

2

3

4

5

6

7

8

buf

world.exclusiveScan
(buf, SUM, 0);

Proc
1

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

buf

world.exclusiveScan
(buf, SUM, 0);

Proc
2

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

buf

world.exclusiveScan
(buf, SUM, 0);

Proc
3

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

0 SUM SUM

Before:

Proc
0

0

0

0

0

0

0

0

0

Proc
1

1

2

3

4

5

6

7

8

Proc
2

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

Proc
3

2 7

3 0

3 3

3 6

3 9

4 2

4 5

4 8

After:

Figure 20.16 An exclusive-scan operation

C6910_20.indd 326C6910_20.indd 326 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

 20.3 Collective Communication 327

The first argument is a buffer containing the data for the scan. The second argument is the reduction oper-
ator to be used. The third argument is the initial value to go into the buffer in process 0. After the scan,
in process rank 1 and higher, the first data item in each process’s buffer contains the result of combining
the first data items in all lower-ranked processes’ buffers using the reduction operator; the second data
item in each process’s buffer contains the result of combining the second data items in all lower-ranked
processes’ buffers using the reduction operator; and so on. In process rank 0, every item in the buffer is
set to the initial value.

The program in Chapter 31 that does sorting in parallel on a cluster uses the exclusive-scan operation
as well as the all-to-all operation.

Barrier. The final collective communication operation, barrier, uses messages to coordinate all
the processes in the communicator, but does not transfer any data. Every process calls the barrier()
method.

 world.barrier(); world.barrier();

The barrier() method call blocks until all processes have called the barrier method, whereupon the
barrier() method unblocks and returns. This provides a barrier wait among the processes in the com-
municator, exactly like a barrier wait among the threads in a parallel team that we encountered in the
SMP parallel programs in Part II.

Equipped with this palette of communication operations, we are ready to tackle cluster parallel
programming in earnest. The remaining chapters in Part III will provide more detailed illustrations of the
communication operations and the programming patterns in which they are typically used.

C6910_20.indd 327C6910_20.indd 327 1/26/09 8:16:02 AM1/26/09 8:16:02 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

329

C H A P T E R 21
in which we convert the sequential program for a massively parallel cryptographic

problem into a cluster parallel program; and we begin learning how to apply Parallel

Java’s cluster parallel programming features

Massively Parallel Problems,
Part 3

C6910_21.indd 329C6910_21.indd 329 1/26/09 8:39:26 AM1/26/09 8:39:26 AM

C H A P T E R21 Massively Parallel Problems, Part 3

21.1 Cluster Parallel Program Design
We’ll begin our study of cluster parallel programming with the simplest kind of parallel program, a
massively parallel program. As our example, we’ll revisit the AES partial key search program from
Chapter 7. Recall that the program takes four command-line arguments: a 128-bit plaintext block, a 128-
bit ciphertext block, a 256-bit key with a certain number of low-order bits missing, and n, the number of
missing key bits. The ciphertext was produced by encrypting the plaintext using the (complete) key. The
program’s job is to find the correct key by trying to encrypt the plaintext using all 2n possible keys. The
program prints the key that successfully reconstructs the ciphertext.

The design considerations for a cluster parallel version of this program are somewhat different from
an SMP parallel version. Instead of one process with many threads, each thread running on a different
CPU of the same SMP machine, we have many processes with one thread, each process running on a dif-
ferent backend processor of the cluster. Because each process is single-threaded, there are no shared vari-
ables accessed by multiple threads, and we don’t have to worry about synchronizing the threads. Also,
there are no per-thread variables to occupy the same cache lines as other threads’ per-thread variables, so
we don’t have to worry about cache interference. On the other hand, because there are no shared vari-
ables, we do have to worry about how the processes will send and receive messages to use data located
in other processors. However, in a massively parallel problem, where the pieces are computed indepen-
dently of each other, there is no need for such communication.

We must divide the computations in the program—the trial encryptions—among the available pro-
cessors. In the SMP parallel program, the parallel for loop partitioned the computation among the parallel
team threads and synchronized the threads to ensure that each thread executed the proper chunk of loop
iterations. In the cluster parallel program, there is no need for a central point of coordination like the
parallel for loop object; each process needs merely to execute its own chunk of loop iterations.

The sequential key search program does N = 2n loop iterations, with loop indexes in the range 0
through N–1. To divide the computations (loop iterations) among the processes in the cluster parallel
program, each process must do a subset, or subrange, of the full range. The number of subranges is K, the
number of processes—the world communicator’s size. Each process’s rank within the world communica-
tor determines which subrange the process will do—process 0 will do the first subrange, process 1 will
do the second subrange, and so on. An instance of class edu.rit.util.Range represents a range of indexes
and has a method to extract a certain subrange from that range.

 Range range = new Range (0, N-1);

 Range subrange = range.subrange (size, rank);

C6910_21.indd 330C6910_21.indd 330 1/26/09 8:39:26 AM1/26/09 8:39:26 AM

 21.2 Parallel Key Search Program 331

The Range object represents an index range from L through U inclusive, where the constructor arguments
L and U are the lower and upper bounds of the complete range. The subrange() method divides the
range into a number of subranges given by the first argument (size) and returns the subrange associated
with the second argument (rank); each subrange is the same length (plus or minus one). The subrange’s
lower and upper bounds can then control the process’s computation loop.

Because each process does a different subrange of the loop iterations, and because together the sub-
ranges cover the computation’s full range, the cluster parallel program does the same computations as the
sequential program. But because all the processes are running at the same time in different processors,
the cluster parallel program should experience a speedup or sizeup.

21.2 Parallel Key Search Program
Taking the foregoing design considerations into account, here is the code for the cluster parallel version
of the AES key search program, FindKeyClu.

 int lb = subrange.lb();

 int ub = subrange.ub();

 for (int i = lb; i <= ub; ++ i)

 {

 . . .

 }

package edu.rit.clu.keysearch;

import edu.rit.crypto.blockcipher.AES256Cipher;

import edu.rit.pj.Comm;

import edu.rit.util.Hex;

import edu.rit.util.Range;

public class FindKeyClu

 {

 // Command line arguments.

 static byte[] plaintext;

 static byte[] ciphertext;

 static byte[] partialkey;

 static int n;

 // Variables for doing trial encryptions.

 static int keylsbs;

 static int maxcounter;

 static byte[] foundkey;

 static byte[] trialkey;

 static byte[] trialciphertext;

 static AES256Cipher cipher;

C6910_21.indd 331C6910_21.indd 331 1/26/09 8:39:26 AM1/26/09 8:39:26 AM

332 CHAPTER 21 Massively Parallel Problems, Part 3

Here are the standard statements to initialize the communication layer, get the number of processes, and
get the current process’s rank.

 /**

 * AES partial key search main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize PJ middleware.

 Comm.init (args);

 Comm world = Comm.world();

 int size = world.size();

 int rank = world.rank();

 // Parse command line arguments.

 if (args.length != 4) usage();

 plaintext = Hex.toByteArray (args[0]);

 ciphertext = Hex.toByteArray (args[1]);

 partialkey = Hex.toByteArray (args[2]);

 n = Integer.parseInt (args[3]);

 // Make sure n is not too small or too large.

 if (n < 0)

 {

 System.err.println ("n = " + n + " is too small");

 System.exit (1);

 }

 if (n > 30)

 {

 System.err.println ("n = " + n + " is too large");

 System.exit (1);

 }

 // Set up variables for doing trial encryptions.

 keylsbs =

 ((partialkey[28] & 0xFF) << 24) |

 ((partialkey[29] & 0xFF) << 16) |

 ((partialkey[30] & 0xFF) << 8) |

 ((partialkey[31] & 0xFF));

C6910_21.indd 332C6910_21.indd 332 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

 21.2 Parallel Key Search Program 333

Each process determines the lower and upper bounds of its own loop index subrange, based on the size and rank.

 maxcounter = 1 << n;

 trialkey = new byte [32];

 System.arraycopy (partialkey, 0, trialkey, 0, 32);

 trialciphertext = new byte [16];

 cipher = new AES256Cipher (trialkey);

And each process only tries encryption keys within that subrange.

The process that found the key prints it. The other processes, failing to find the key, print nothing.

 // Determine which chunk of the search space this process

 // will do.

 Range chunk =

 new Range (0, maxcounter-1) .subrange (size, rank);

 int lb = chunk.lb();

 int ub = chunk.ub();

 // Try every possible combination of low-order key bits.

 for (int counter = lb; counter <= ub; ++ counter)

 {

 // Fill in low-order key bits.

 int lsbs = keylsbs | counter;

 trialkey[28] = (byte) (lsbs >>> 24);

 trialkey[29] = (byte) (lsbs >>> 16);

 trialkey[30] = (byte) (lsbs >>> 8);

 trialkey[31] = (byte) (lsbs);

 // Try the key.

 cipher.setKey (trialkey);

 cipher.encrypt (plaintext, trialciphertext);

 // If the result equals the ciphertext, we found the key.

 if (match (ciphertext, trialciphertext))

 {

 foundkey = new byte [32];

 System.arraycopy (trialkey, 0, foundkey, 0, 32);

 }

 }

C6910_21.indd 333C6910_21.indd 333 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

334 CHAPTER 21 Massively Parallel Problems, Part 3

And that’s it! To go from the sequential program to the cluster parallel program, we added code to initial-
ize the communication layer, we changed the bounds on the computation loop, and we made sure that the
correct process printed the answer. The parallel program’s structure is the same as the sequential program’s.

21.3 Parallel Program Speedup
In Part III, we’ll measure our cluster parallel programs’ running times on a 40-processor hybrid parallel
computer named “tardis.” Each of this compu ter’s ten backend machines has two 2.6-GHz AMD Opteron
2218 dual-core CPU chips and 8 GB of main memory. The backend machines are connected by a 1-Gbps
switched Ethernet. Although the “tardis” parallel computer is a hybrid SMP cluster with four shared-
memory processors per backend, in Part III we’ll treat this computer as a plain cluster. We will run up
to four processes on each backend, but each process will run in its own separate address space with no
shared memory. In Part IV, we’ll study hybrid parallel programming, and there our programs will achieve
parallelism using both message passing and multithreading.

Each process in the parallel program reports its own running time. We will take the program’s overall
running time to be the largest of the individual processes’ running times. Some parallel programs (although

 // If we found the key, print it.

 if (foundkey != null)

 {

 System.out.println (Hex.toString (foundkey));

 }

 // Stop timing.

 long t2 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec (" + rank + ")");

 }

 /**

 * Returns true if the two byte arrays match.

 */

 private static boolean match

 (byte[] a,

 byte[] b)

 {

 boolean matchsofar = true;

 int n = a.length;

 for (int i = 0; i < n; ++ i)

 {

 matchsofar = matchsofar && a[i] == b[i];

 }

 return matchsofar;

 }

 }

C6910_21.indd 334C6910_21.indd 334 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

 21.3 Parallel Program Speedup 335

not FindKeyClu) are designed so that a certain process does more work than the others. Using the longest
process running time ensures that we capture all the program’s computation in our measurement.

As we did with the SMP parallel programs in Part II, we’ll run the cluster parallel program on sev-
eral problem sizes. For each problem size, we’ll do seven program runs and record the minimum of the
running time measurements.

Table 21.1 (at the end of the chapter) gives the running-time measurements in milliseconds for the AES
key search program for various problem sizes N, as well as the speedups, efficiencies, and EDSFs calculated
from the running times. Figure 21.1 plots the running-time metrics versus the number of processors K. We use
K = 1, 2, 3, 4, 5, 6, 8, 10, 14, 20, 28, and 40; these are spaced more or less equally on a logarithmic scale.

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 32M

N = 64M

N = 128M

N = 256M

N = 512M

N = 1G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

N = 32M

N = 64M

N = 128M
N = 256MN = 512MN = 1G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 32M

N = 64M
N = 128M
N = 256MN = 512MN = 1G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 32M

N = 64M
N = 128M
N = 256MN = 512MN = 1G

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

Figure 21.1 FindKeySeq/FindKeyClu running-time metrics

C6910_21.indd 335C6910_21.indd 335 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

336 CHAPTER 21 Massively Parallel Problems, Part 3

The speedup and efficiency curves behave as Amdahl’s Law predicts, dropping farther away from ideal
as the number of processors increases. The cluster parallel program’s efficiency drops farther than the SMP
parallel program’s efficiency did because now we are scaling up to five times as many processors—the
cluster has 40 processors, the SMP machine had only 8. Still, with a large problem size, we can achieve
excellent efficiencies—95 percent or better for N = 1G keys searched as K scales up to 40 processors. The
high efficiencies are due to low sequential fractions; F is around 2 thousandths for N = 1G.

The EDSF curves show that the sequential fraction is more or less constant for each problem size,
with fluctuations due to the JIT compiler effect and measurement error for the smaller K values. The
sequential fraction decreases as the problem size increases; this suggests that the sequential portion of the
running time does not grow as quickly as the total running time. We can confirm this by fitting the run-
ning time data to the following model:

 T N K a bN
K

c dN(,) () ()= + + +1
 (21.1)

The TimeFit program determines that a = 312, b = 5.00 × 10–6, c = 312, and d = 1.65 × 10–3 msec. For
N ranging from 32M to 1G, the sequential portion of the running time (a + bN) ranges from 480 to
5,680 msec. While the problem size and total running time grew by a factor of 32, the sequential time
grew only by a factor of 12.

21.4 Parallel Program Sizeup
Table 21.2 (at the end of the chapter) gives the interpolated problem sizes for selected running times for
the AES key search program, as well as the sizeups and sizeup efficiencies. The chosen running times are
T = 10, 20, 50, 100, 200, and 500 seconds.

Figure 21.2 plots the N versus K data from Table 21.2 for the AES key search program. Each curve
is nearly a straight line with unity slope, indicating the ideal situation where the problem size that can be
solved in a given amount of time is directly proportional to the number of processors. The plots of Sizeup
versus K and SizeupEff versus K confirm that the program is achieving near-linear sizeups and sizeup
efficiencies greater than 95 percent for all the selected running-time values.

C6910_21.indd 336C6910_21.indd 336 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

 21.4 Parallel Program Sizeup 337

1E0 1E1 1E2 1E3 1E4
1E7

1E8

1E9

1E10

K
 =

 1

K
 =

 2
K

 =
 3

K
 =

 4
K

 =
 5

K
 =

 6
K

 =
 8

K
 =

 1
0

K
 =

 1
4

K
 =

 2
0

K
 =

 2
8

K
 =

 4
0

Problem Size vs. Running Time

Running time, T (sec)

P
ro

b
le

m
 s

iz
e

,
N

1 1 0 100
1E6

1E7

1E8

1E9

1E10

1E11

T = 10 sec

T = 20 sec

T = 50 sec

T = 100 sec
T = 200 sec

T = 500 sec

Problem Size vs. Processors

Processors, K

N
 (

T
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

T = 10 secT = 20 secT = 50 secT = 100 secT = 200 secT = 500 sec

Sizeup Efficiency vs. Processors

Processors, K

S
iz

e
u

p
E

ff
(T

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0
T = 10 secT = 20 secT = 50 secT = 100 secT = 200 secT = 500 sec

Sizeup vs. Processors

Processors, K

S
iz

e
u

p
(T

,K
)

Figure 21.2 FindKeySeq/FindKeyClu problem-size metrics

The data also illustrate what Gustafson claimed—that when scaling up to more processors, we get
better results by increasing the problem size (a sizeup) than by reducing the running time (a speedup).
The sizeup and sizeup efficiency curves do not droop as much as the speedup and efficiency curves. The
running-time model in Equation 21.1 tells why. For a problem size of N = 32M, for example, the running-
time model predicts a sequential fraction F = 8.54 × 10–3. Amdahl’s Law then predicts that the maximum
speedup is 1/F = 117. For sizeup, the quantity analogous to F is G = b/d = 3.03 × 10–3. The Second
Problem Size Law then predicts that the maximum sizeup is 1 + 1/G = 331. Figure 21.3 plots these
predicted speedups and sizeups as we scale K up to 200 processors. Although both the speedups and the
sizeups deviate from the ideal, the sizeups always beat the speedups.

C6910_21.indd 337C6910_21.indd 337 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

338 CHAPTER 21 Massively Parallel Problems, Part 3

0 2 0 4 0 6 0 8 0 100 120 140 160 180 200
0

2 0

4 0

6 0

8 0

100

120

140

160

180

200

Speedup

Sizeup

Speedup and Sizeup vs. Processors

Processors, K

S
p

e
e

d
u

p
,

S
iz

e
u

p

Figure 21.3 FindKeySeq/FindKeyClu predicted speedup and sizeup

21.5 Early Loop Exit
As we did for the SMP version, let’s change the cluster version of the AES key search program to stop
as soon as it finds the correct key, rather than trying all possible keys. We need all the processes to exit
their loops as soon as any process finds the key. This time, the notification has to use messages instead
of a shared variable. When a process finds the key, the process sends a message to every process. When
a process receives this message, the process breaks out of its loop. The message doesn’t need to include
any data; the mere act of receiving the message suffices.

The communicator’s flood operation is designed precisely for global notifications of this kind. Here
is the source code for class FindKeyClu2, which uses a flood operation to trigger an early loop exit.

package edu.rit.clu.keysearch;

import edu.rit.crypto.blockcipher.AES256Cipher;

import edu.rit.mp.Buf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommRequest;

import edu.rit.util.Hex;

import edu.rit.util.Range;

public class FindKeyClu2

 {

 // Command line arguments.

 static byte[] plaintext;

 static byte[] ciphertext;

 static byte[] partialkey;

 static int n;

C6910_21.indd 338C6910_21.indd 338 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

 21.5 Early Loop Exit 339

 // Variables for doing trial encryptions.

 static int keylsbs;

 static int maxcounter;

 static byte[] foundkey;

 static byte[] trialkey;

 static byte[] trialciphertext;

 static AES256Cipher cipher;

 /**

 * AES partial key search main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize PJ middleware.

 Comm.init (args);

 Comm world = Comm.world();

 int size = world.size();

 int rank = world.rank();

 // Parse command line arguments.

 if (args.length != 4) usage();

 plaintext = Hex.toByteArray (args[0]);

 ciphertext = Hex.toByteArray (args[1]);

 partialkey = Hex.toByteArray (args[2]);

 n = Integer.parseInt (args[3]);

 // Make sure n is not too small or too large.

 if (n < 0)

 {

 System.err.println ("n = " + n + " is too small");

 System.exit (1);

 }

 if (n > 30)

 {

 System.err.println ("n = " + n + " is too large");

 System.exit (1);

 }

 // Set up variables for doing trial encryptions.

C6910_21.indd 339C6910_21.indd 339 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

340 CHAPTER 21 Massively Parallel Problems, Part 3

 keylsbs =

 ((partialkey[28] & 0xFF) << 24) |

 ((partialkey[29] & 0xFF) << 16) |

 ((partialkey[30] & 0xFF) << 8) |

 ((partialkey[31] & 0xFF));

 maxcounter = 1 << n;

 trialkey = new byte [32];

 System.arraycopy (partialkey, 0, trialkey, 0, 32);

 trialciphertext = new byte [16];

 cipher = new AES256Cipher (trialkey);

 // Determine which chunk of the search space this process

 // will do.

 Range chunk =

 new Range (0, maxcounter-1) .subrange (size, rank);

 int lb = chunk.lb();

 int ub = chunk.ub();

 // Set up to receive a notification when any process finds the

 // key.

 CommRequest req = new CommRequest();

 world.floodReceive (IntegerBuf.emptyBuffer(), req);

 // Try every possible combination of low-order key bits.

 for (int counter = lb; counter <= ub; ++ counter)

 {

 // Fill in low-order key bits.

 int lsbs = keylsbs | counter;

 trialkey[28] = (byte) (lsbs >>> 24);

 trialkey[29] = (byte) (lsbs >>> 16);

 trialkey[30] = (byte) (lsbs >>> 8);

 trialkey[31] = (byte) (lsbs);

 // Try the key.

 cipher.setKey (trialkey);

 cipher.encrypt (plaintext, trialciphertext);

Immediately before beginning the computations, we initiate a nonblocking flood-receive operation on
the world communicator to receive the notification message, which will arrive sometime in the future.
Because the message does not include any data, we specify a zero-length (empty) buffer, returned by the
static IntegerBuf.emptyBuffer() method, as the destination for the (nonexistent) incoming data.
We also specify a communication request object (req) with which to keep track of the flood-receive
operation’s status. The nonblocking floodReceive() method returns immediately, allowing the main
program thread to proceed to the computations while another thread hidden inside the communication
layer waits, poised to receive the message.

C6910_21.indd 340C6910_21.indd 340 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

 21.5 Early Loop Exit 341

 // If the result equals the ciphertext, we found the key.

 // Send a notification to all processes.

 if (match (ciphertext, trialciphertext))

 {

 foundkey = new byte [32];

 System.arraycopy (trialkey, 0, foundkey, 0, 32);

Here is the other half of the flood operation. When we find the key, we do a flood-send operation on the
world communicator, specifying a zero-length buffer. A message whose outgoing data comes from the
buffer—a message with no data—is sent to every process and is received by the waiting flood-receive
operation.

 world.floodSend (IntegerBuf.emptyBuffer());

 }

Here is where we do the actual early loop exit. At the end of each loop iteration, we check whether the
previously initiated communication request (req) has finished—whether the flood-receive operation has
received a message. If not, we stay in the loop and try the next key; if so, we break out of the loop.

 // If key was found, exit loop.

 if (req.isFinished()) break;

 }

 // If we found the key, print it.

 if (foundkey != null)

 {

 System.out.println (Hex.toString (foundkey));

 }

 // Stop timing.

 long t2 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec (" + rank + ")");

 }

 /**

 * Returns true if the two byte arrays match.

 */

 private static boolean match

 (byte[] a,

 byte[] b)

 {

 boolean matchsofar = true;

 int n = a.length;

C6910_21.indd 341C6910_21.indd 341 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

342 CHAPTER 21 Massively Parallel Problems, Part 3

Program FindKeyClu2 illustrates that a cluster parallel program can achieve the same effect with mes-
sage passing as an SMP parallel program can achieve with a shared variable—in this case, an early loop
exit. However, the cluster parallel program requires more machinery to achieve this effect—operations to
send and receive messages, buffers to specify the data sources and destinations. In return for the extra effort
to write a cluster parallel program, we gain the ability to scale the program up to many more processors and
much larger problem sizes than is possible on an SMP parallel computer. We will see this theme played out
repeatedly as we build cluster parallel versions of the SMP parallel programs we studied in Part II.

 for (int i = 0; i < n; ++ i)

 {

 matchsofar = matchsofar && a[i] == b[i];

 }

 return matchsofar;

 }

 }

C6910_21.indd 342C6910_21.indd 342 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

 21.5 Early Loop Exit 343

Table 21.1 FindKeySeq/FindKeyClu running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

32M seq 56152 256M seq 445007

32M 1 55891 1.005 1.005 256M 1 445115 1.000 1.000

32M 2 28066 2.001 1.000 0.004 256M 2 226326 1.966 0.983 0.017

32M 3 19142 2.933 0.978 0.014 256M 3 151760 2.932 0.977 0.011

32M 4 14563 3.856 0.964 0.014 256M 4 113315 3.927 0.982 0.006

32M 5 11697 4.801 0.960 0.012 256M 5 91327 4.873 0.975 0.006

32M 6 9842 5.705 0.951 0.011 256M 6 75895 5.863 0.977 0.005

32M 8 7517 7.470 0.934 0.011 256M 8 56588 7.864 0.983 0.002

32M 10 5957 9.426 0.943 0.007 256M 10 45699 9.738 0.974 0.003

32M 14 4368 12.855 0.918 0.007 256M 14 33268 13.376 0.955 0.004

32M 20 3152 17.815 0.891 0.007 256M 20 23260 19.132 0.957 0.002

32M 28 2373 23.663 0.845 0.007 256M 28 16755 26.560 0.949 0.002

32M 40 1753 32.032 0.801 0.007 256M 40 11787 37.754 0.944 0.002

64M seq 112018 512M seq 890071

64M 1 111426 1.005 1.00 512M 1 890510 1.000 1.000

64M 2 56073 1.998 0.999 0.006 512M 2 446856 1.992 0.996 0.004

64M 3 37970 2.950 0.983 0.011 512M 3 301704 2.950 0.983 0.008

64M 4 28137 3.981 0.995 0.003 512M 4 229116 3.885 0.971 0.010

64M 5 23187 4.831 0.966 0.010 512M 5 182643 4.873 0.975 0.006

64M 6 19023 5.889 0.981 0.005 512M 6 152091 5.852 0.975 0.005

64M 8 14318 7.824 0.978 0.004 512M 8 115192 7.727 0.966 0.005

64M 10 11759 9.526 0.953 0.006 512M 10 92254 9.648 0.965 0.004

64M 14 8427 13.293 0.949 0.005 512M 14 65520 13.585 0.970 0.002

64M 20 6057 18.494 0.925 0.005 512M 20 46449 19.162 0.958 0.002

64M 28 4380 25.575 0.913 0.004 512M 28 33282 26.743 0.955 0.002

64M 40 3183 35.193 0.880 0.004 512M 40 23433 37.984 0.950 0.001

128M seq 222581 1G seq 1780626

128M 1 222757 0.999 0.999 1G 1 1780457 1.000 1.000

128M 2 112673 1.975 0.988 0.012 1G 2 894524 1.991 0.995 0.005

128M 3 75424 2.951 0.984 0.008 1G 3 594964 2.993 0.998 0.001

128M 4 56294 3.954 0.988 0.004 1G 4 454011 3.922 0.980 0.007

128M 5 45910 4.848 0.970 0.008 1G 5 361425 4.927 0.985 0.004

128M 6 38585 5.769 0.961 0.008 1G 6 308250 5.777 0.963 0.008

128M 8 28509 7.807 0.976 0.003 1G 8 228307 7.799 0.975 0.004

128M 10 23134 9.621 0.962 0.004 1G 10 183436 9.707 0.971 0.003

128M 14 16710 13.320 0.951 0.004 1G 14 131606 13.530 0.966 0.003

128M 20 11749 18.945 0.947 0.003 1G 20 91987 19.357 0.968 0.002

128M 28 8515 26.140 0.934 0.003 1G 28 66321 26.849 0.959 0.002

128M 40 6092 36.537 0.913 0.002 1G 40 46779 38.065 0.952 0.001

C6910_21.indd 343C6910_21.indd 343 1/26/09 8:39:27 AM1/26/09 8:39:27 AM

344 CHAPTER 21 Massively Parallel Problems, Part 3

Table 21.2 FindKeySeq/FindKeyClu problem-size metrics

T K N Sizeup SizeEff T K N Sizeup SizeEff

10000 seq 5834457 100000 seq 59890571

10000 1 5826937 0.999 0.999 100000 1 60205237 1.005 1.005

10000 2 11910044 2.041 1.021 100000 2 119191745 1.990 0.995

10000 3 17261962 2.959 0.986 100000 3 177428466 2.963 0.988

10000 4 22274863 3.818 0.954 100000 4 237094212 3.959 0.990

10000 5 28598656 4.902 0.980 100000 5 293930886 4.908 0.982

10000 6 34131885 5.850 0.975 100000 6 353356405 5.900 0.983

10000 8 45804933 7.851 0.981 100000 8 467283999 7.802 0.975

10000 10 56936123 9.759 0.976 100000 10 582478621 9.726 0.973

10000 14 79853310 13.687 0.978 100000 14 816980300 13.641 0.974

10000 20 113596961 19.470 0.974 100000 20 1168211204 19.506 0.975

10000 28 158406238 27.150 0.970 100000 28 1621012487 27.066 0.967

10000 40 226320078 38.790 0.970 100000 40 2297626293 38.364 0.959

20000 seq 11840692 200000 seq 120511649

20000 1 11868970 1.002 1.002 200000 1 120500107 1.000 1.000

20000 2 23890775 2.018 1.009 200000 2 237345948 1.969 0.985

20000 3 35083522 2.963 0.988 200000 3 354796540 2.944 0.981

20000 4 46994497 3.969 0.992 200000 4 469377827 3.895 0.974

20000 5 57801817 4.882 0.976 200000 5 588992873 4.887 0.977

20000 6 70460534 5.951 0.992 200000 6 701580910 5.822 0.970

20000 8 93978892 7.937 0.992 200000 8 939390015 7.795 0.974

20000 10 115728130 9.774 0.977 200000 10 1171269075 9.719 0.972

20000 14 160886186 13.588 0.971 200000 14 1629362518 13.520 0.966

20000 20 230424007 19.460 0.973 200000 20 2347162655 19.477 0.974

20000 28 321141516 27.122 0.969 200000 28 3245973630 26.935 0.962

20000 40 457741690 38.658 0.966 200000 40 4597253261 38.148 0.954

50000 seq 29859396 500000 seq 301603879

50000 1 29995070 1.005 1.005 500000 1 301514139 1.000 1.000

50000 2 59832966 2.004 1.002 500000 2 600604455 1.991 0.996

50000 3 88663828 2.969 0.990 500000 3 899891284 2.984 0.995

50000 4 119216727 3.993 0.998 500000 4 1183527085 3.924 0.981

50000 5 146304623 4.900 0.980 500000 5 1489873686 4.940 0.988

50000 6 175281662 5.870 0.978 500000 6 1732973744 5.746 0.958

50000 8 236944791 7.935 0.992 500000 8 2363261947 7.836 0.979

50000 10 293234960 9.821 0.982 500000 10 2937640438 9.740 0.974

50000 14 407696961 13.654 0.975 500000 14 4066509169 13.483 0.963

50000 20 578735478 19.382 0.969 500000 20 5884017010 19.509 0.975

50000 28 808531916 27.078 0.967 500000 28 8120857059 26.926 0.962

50000 40 1147812809 38.441 0.961 500000 40 11496134166 38.117 0.953

C6910_21.indd 344C6910_21.indd 344 1/26/09 8:39:28 AM1/26/09 8:39:28 AM

345

C H A P T E R 22
in which we see how data gets into and out of messages; and we learn how to slice

arrays and dice matrices to partition data among the processes in a cluster parallel

program

Data Slicing

C6910_22.indd 345C6910_22.indd 345 1/26/09 8:16:31 AM1/26/09 8:16:31 AM

C H A P T E R22 Data Slicing

22.1 Buffers
In Chapter 20, we examined the point-to-point and collective communication operations, implemented
as methods of class Comm. These allow a cluster parallel program to transfer data among the processes
in various patterns. At that time, we put off describing how to tell the communication operations where
to obtain the outgoing source data and where to deposit the incoming destination data. In Chapter 21, we
studied two versions of the cluster parallel AES key search program. One version did not send messages
at all. The other version sent a message that contained no data. These programs, however, are atypical;
a cluster parallel program usually has to send data between the processes. Before we continue studying
cluster parallel programming, we must understand how data gets into and out of messages, and we must
understand how a program uses messages to partition data among the processes in the computation.

With Parallel Java, a cluster parallel program uses a buffer object to designate a data source or
destination. Different abstract base classes provide buffers for each of Java’s primitive types as well as
for nonprimitive (object) types. These buffer classes, in turn, are subclasses of the abstract base class edu.
rit.mp.Buf; objects of type Buf get passed to the communication methods in class Comm. The following
table lists the type-specific buffer classes.

Java Type Buffer Class
boolean edu.rit.mp.BooleanBuf

byte edu.rit.mp.ByteBuf

char edu.rit.mp.CharacterBuf

double edu.rit.mp.DoubleBuf

float edu.rit.mp.FloatBuf

int edu.rit.mp.IntegerBuf

long edu.rit.mp.LongBuf

short edu.rit.mp.ShortBuf

Object edu.rit.mp.ObjectBuf

An IntegerBuf designates a source or destination of int data items, a DoubleBuf designates a source or
destination of double data items, and so on.

An ObjectBuf is for data items of any nonprimitive type. Parallel Java uses Java Object
Serialization to send and receive objects. When the data items (objects) in an ObjectBuf are sent in an
outgoing message, the objects in the buffer are serialized, or converted to a sequence of bytes, which are
then transmitted. When an incoming message has data items destined for an ObjectBuf, the serialized

C6910_22.indd 346C6910_22.indd 346 1/26/09 8:16:31 AM1/26/09 8:16:31 AM

 22.2 Single-Item Buffers 347

sequence of bytes is deserialized, or converted back to objects, which are then stored in the buffer. For
this procedure to work, each object in an ObjectBuf must be serializable; its class must implement inter-
face java.io.Serializable and its instance fields must be primitive types or serializable objects.

A program creates a buffer object using a static factory method in the appropriate buffer class. In the
rest of the chapter we will look at the factory methods in class IntegerBuf for buffers of int data items.
The other buffer classes have analogous factory methods; for further information, refer to the Parallel Java
documentation. Buffer objects can refer to a single data item, to an array of items, to a portion of an array, to
a matrix, or to a portion of a matrix. You can also write your own buffer subclasses to refer to data stored in
other kinds of data structures; for further information, refer to the Parallel Java documentation.

22.2 Single-Item Buffers
The simplest buffer is one that refers to a single data item (Figure 22.1). To create a single-item buffer,
call the buffer() method with no arguments:

 IntegerItemBuf buf = IntegerBuf.buffer();

 buf.item = 42;

 System.out.println (buf.item);

4 2item

IntegerItemBuf
buf

Figure 22.1 Buffer for a single data item

The buffer object is an instance of class edu.rit.mp.buf.IntegerItemBuf, a subclass of class IntegerBuf.
The single data item is located in a public field of the buffer, named item. To access the data item in the
program, get or set the item field:

When this buffer is used as a data source, the outgoing message contains one data item, namely the
contents of the item field. When this buffer is used as a data destination, the incoming message data is
placed in the item field.

Many of the cluster parallel programs in the rest of Part III use single-item buffers. In some pro-
grams, the items are of primitive types such as int and double; in other programs, the items are of a
nonprimitive (object) type. We’ll see examples in Chapters 23, 26, and 30.

Keep in mind that the “single data item” in this kind of buffer can be an object, and thus can actu-
ally be an entire data structure—possibly an object with multiple fields of various types, or even a whole
collection such as a list or a tree. As long as the object’s class is serializable, there will be no difficulty
sending and receiving the data item in a message. This is because Parallel Java relies on Java Object
Serialization to convert the object to a series of bytes, which are transmitted and used to reconstruct the
object on the receiving side. Most of the classes in the Java Collections Framework in package java.util

C6910_22.indd 347C6910_22.indd 347 1/26/09 8:16:31 AM1/26/09 8:16:31 AM

348 CHAPTER 22 Data Slicing

are serializable. As an example utilizing this capability, the cluster parallel program in Chapter 37 uses a
single-item ObjectBuf to send a list of “alignments,” where each alignment is itself an object:

 List<Alignment> alignments = new ArrayList<Alignment>();

 world.send (0, ObjectBuf.buffer (alignments));

 int[] data = new int [8];

 IntegerBuf buf = IntegerBuf.buffer (data);

 int[] data = new int [8];

 Range slicerange = new Range (2, 4);

 IntegerBuf buf = IntegerBuf.sliceBuffer (data, slicerange);

22.3 Array Buffers
A buffer can refer to an entire array of data items. A buffer can also refer to a portion, or slice, of an
array. An array can be partitioned into multiple slices and a buffer created for each slice.

Buffer for an array. To create a buffer referring to an entire array (Figure 22.2), call the buffer()
method, passing in the array:

0 2 5 7 9 4 9 7 6 8 6 4 4 8dataIntegerBufbuf

Figure 22.2 Buffer for an array

In this case, it’s best to view the buffer object as a “handle” that refers to the data items, which are located in
the array (data). To access the data items in the program, get or set the elements of the array. When this buffer
is used as a data source, the outgoing message contains N data items, namely all the elements in the array, from
index 0 through index N–1, where N is the array’s length. When this buffer is used as a data destination, the
incoming message data items are placed into the array elements from index 0 through index N–1.

The cluster parallel programs in Chapters 25, 26, and 31 each use a buffer for an entire array of data.
The arrays are communicated among the processes using various message-passing operations, including
broadcast, reduce, and exclusive-scan.

Buffer for an array slice. To create a buffer for one slice of an array (Figure 22.3), call the
sliceBuffer() method. The first argument is the array that holds the data. The second argument is a
range object, an instance of class edu.rit.util.Range, giving the lower and upper array indexes (inclusive)
of the array elements to include in the buffer.

0 2 5 7 9 4 9 7 6 8 6 4 4 8dataIntegerBufbuf

Figure 22.3 Buffer for an array slice

C6910_22.indd 348C6910_22.indd 348 1/26/09 8:16:31 AM1/26/09 8:16:31 AM

 22.3 Array Buffers 349

When this buffer is used as a data source, the outgoing message contains len data items, where len is the
length of the range. These data items come from the array elements at indexes L through U, where L and
U are the lower and upper bounds of the range. When this buffer is used as a data destination, the incom-
ing message data items are placed into the array elements from index L through index U.

In a range object, the difference between successive indexes is called the range’s stride. By default,
the stride is 1, and each index in the range is one higher than the previous index. In the preceding
example, slicerange represents the indexes (2, 3, 4). When used to create a buffer for an array slice, an
index range with a stride of 1 yields a buffer that refers to a slice of contiguous array elements.

It is also possible to specify a range with a stride greater than 1. To do so, give the stride as the third argument
of the range constructor. When used to create a buffer for an array slice, such an index range yields a buffer that
refers to a slice of noncontiguous array elements. For example, here’s how to create a buffer for sending or receiv-
ing the array elements at even-numbered indexes (0, 2, 4, 6) in an 8-element array (Figure 22.4).

 int[] data = new int [8];

 Range evenrange = new Range (0, 6, 2);

 IntegerBuf buf = IntegerBuf.sliceBuffer (data, evenrange);

 int[] data = new int [8];

 Range oddrange = new Range (1, 7, 2);

 IntegerBuf buf = IntegerBuf.sliceBuffer (data, oddrange);

0 2 5 7 9 4 9 7 6 8 6 4 4 8dataIntegerBufbuf

Figure 22.4 Buffer for array elements at even indexes

Here’s how to create a buffer for sending or receiving the array elements at the odd-numbered indexes (1, 3,
5, 7) (Figure 22.5).

0 2 5 7 9 4 9 7 6 8 6 4 4 8dataIntegerBufbuf

Figure 22.5 Buffer for array elements at odd indexes

The cluster parallel program in Chapter 30 sends and receives data using buffers referring to slices of
noncontiguous array elements, specified by a range with a stride greater than 1.

Buffers to partition an array. Suppose we have an array of N elements in a parallel program run-
ning with K processes, and we need to do a computation involving each array element. Often such a
program must slice the array and scatter the slices to all the processes, or gather the slices from all the
processes, or both. Each array slice is identified by an index range. Together, the K index ranges cover all
the array indexes from 0 through N–1; the slices constitute a partition of the array.

To do a scatter or a gather operation, we need an array of buffers, one buffer for each slice of the data
array. Here’s how to get the array of buffers (Figure 22.6). Create a range object representing the array’s

C6910_22.indd 349C6910_22.indd 349 1/26/09 8:16:31 AM1/26/09 8:16:31 AM

350 CHAPTER 22 Data Slicing

complete index range (0 through N–1). Call the range object’s subranges() method, passing in the number
of slices, namely the communicator’s size K. The subranges() method partitions the complete range into K
equal-length subranges and returns an array of range objects representing these subranges. Pass the data array
and the array of subranges into the sliceBuffers() method. For example, with N = 8 and K = 4:

 int[] data = new int [8];

 Range[] sliceranges = new Range (0, 7) .subranges (4);

 IntegerBuf[] slicebufs =

 IntegerBuf.sliceBuffers (data, sliceranges);

 int[][] data = new int [4] [8];

 IntegerBuf buf = IntegerBuf.buffer (data);

0 2 5 7 9 4 9 7 6 8 6 4 4 8data

IntegerBufslicebufs[0]

IntegerBuf[1]

IntegerBuf[2]

IntegerBuf[3]

Figure 22.6 Buffers for an array partition

The sliceBuffers() method returns an array of buffer objects. The buffer at index i refers to the slice of the
data array with index subrange i. The array of buffer objects can be used as the source buffer array in a scatter
operation; slice i of the data array is sent to process i. The array of buffer objects can also be used as the desti-
nation buffer array in a gather or all-gather operation; slice i of the data array is received from process i.

The cluster parallel programs in Chapters 27, 28, 29, and 31 partition arrays into equal-sized slices
using the sliceBuffers() method and transfer the data between processes using various message-
passing operations, including all-gather, send-receive, and all-to-all.

22.4 Matrix Buffers
A buffer can refer to an entire matrix (two-dimensional array) of data items. A buffer can also refer to a
slice of a matrix. A matrix can be partitioned into multiple slices and a buffer created for each slice. With
two dimensions, however, there are more ways to slice up a matrix than an array.

Buffer for a matrix. To create a buffer referring to an entire matrix (Figure 22.7), call the
buffer() method, passing in the matrix:

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

dataIntegerBufbuf

Figure 22.7 Buffer for a matrix

C6910_22.indd 350C6910_22.indd 350 1/26/09 8:16:32 AM1/26/09 8:16:32 AM

 22.4 Matrix Buffers 351

To access the data items in the program, get or set the elements of the matrix. When this buffer is used
as a data source, the outgoing message contains M×N data items, namely all the elements in the matrix,
where M is the number of rows and N is the number of columns. The data items are extracted from the
matrix in row major order. That is, the message data consists of the matrix elements in row 0, col-
umns 0 through N–1, then the matrix elements in row 1, columns 0 through N–1, and so on through row
M–1. When this buffer is used as a data destination, the incoming message data items are placed into the
matrix elements in row major order.

Buffer for a matrix slice. A matrix has two dimensions along which we can slice. To slice along
the rows (Figure 22.8), creating a row slice, call the rowSliceBuffer() method. The first argument is
the matrix that holds the data. The second argument is a range object giving the lower and upper indexes
(inclusive) of the rows to include in the buffer.

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

dataIntegerBufbuf

Figure 22.8 Buffer for a row slice of a matrix

When this buffer is used as a data source, the outgoing message contains len×N data items, where len is
the length of the row range and N is the number of columns in the matrix. The data items are extracted
from rows L through U and columns 0 through N–1 in row major order, where L and U are the lower and
upper bounds of the row range. When this buffer is used as a data destination, the incoming message data
items are placed into rows L through U and columns 0 through N–1 in row major order.

To slice a matrix along the columns (Figure 22.9), creating a column slice, call the colSliceBuffer()
method. The first argument is the matrix that holds the data. The second argument is a range object giving the
lower and upper indexes of the columns to include in the buffer.

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

databuf IntegerBuf

Figure 22.9 Buffer for a column slice of a matrix

 int[][] data = new int [4] [8];

 Range rowrange = new Range (2, 3);

 IntegerBuf buf = IntegerBuf.rowSliceBuffer (data, rowrange);

 int[][] data = new int [4] [8];

 Range colrange = new Range (2, 4);

 IntegerBuf buf = IntegerBuf.colSliceBuffer (data, colrange);

C6910_22.indd 351C6910_22.indd 351 1/26/09 8:16:32 AM1/26/09 8:16:32 AM

352 CHAPTER 22 Data Slicing

When this buffer is used as a data source, the outgoing message contains M×len data items, where M is
the number of rows in the matrix and len is the length of the column range. The data items are extracted
from rows 0 through M–1 and columns L through U in row major order, where L and U are the lower and
upper bounds of the column range. When this buffer is used as a data destination, the incoming message
data items are placed into rows 0 through M–1 and columns L through U in row major order.

To slice a matrix along both the rows and the columns (Figure 22.10), creating a patch of the matrix,
call the patchBuffer() method. The first argument is the matrix that holds the data. The second argu-
ment is a range object giving the lower and upper indexes of the rows to include in the buffer. The third
argument is a range object giving the lower and upper indexes of the columns to include in the buffer.

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

databuf IntegerBuf

Figure 22.10 Buffer for a patch of a matrix

When this buffer is used as a data source, the outgoing message contains Rlen×Clen data items,
where Rlen is the length of the row range and Clen is the length of the column range. The data items are
extracted from rows RL through RU and columns CL through CU in row major order, where RL and RU
are the lower and upper bounds of the row range and CL and CU are the lower and upper bounds of the
column range. When this buffer is used as a data destination, the incoming message data items are placed
into rows RL through RU and columns CL through CU in row major order.

Chapter 23 includes a cluster parallel program that sends row slices of a matrix from one process to
another. Because of load balancing, different processes will send matrix row slices of different sizes.

Buffers to partition a matrix by rows. As we did with arrays, we can create multiple buffers that
partition a matrix. To partition a matrix into row slices (Figure 22.11), call the rowSliceBuffers()
method. The first argument is the data matrix. The second argument is an array of row index ranges, one
for each slice in the partition.

 int[][] data = new int [4] [8];

 Range rowrange = new Range (1, 2);

 Range colrange = new Range (4, 5);

 IntegerBuf buf =

 IntegerBuf.patchBuffer (data, rowrange, colrange);

 int[][] data = new int [4] [8];

 Range[] rowranges = new Range (0, 3) .subranges (4);

 IntegerBuf[] rowbufs =

 IntegerBuf.rowSliceBuffers (data, rowranges);

C6910_22.indd 352C6910_22.indd 352 1/26/09 8:16:32 AM1/26/09 8:16:32 AM

 22.4 Matrix Buffers 353

The rowSliceBuffers() method returns an array of buffer objects. The buffer at index i refers to the
row slice of the data matrix with index subrange i. The array of buffer objects can be used as the source
buffer array in a scatter operation or the destination buffer array in a gather or all-gather operation.

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

data

IntegerBufrowbufs[0]

IntegerBuf[1]

IntegerBuf[2]

IntegerBuf[3]

Figure 22.11 Buffers for a matrix partitioned by rows

Buffers to partition a matrix by columns. To partition a matrix into column slices (Figure 22.12),
call the colSliceBuffers() method. The first argument is the data matrix. The second argument is an
array of column index ranges, one for each slice in the partition.

 int[][] data = new int [4] [8];

 Range[] colranges = new Range (0, 7) .subranges (4);

 IntegerBuf[] colbufs =

 IntegerBuf.colSliceBuffers (data, colranges);

 int[][] data = new int [4] [8];

 Range[] rowranges = new Range (0, 3) .subranges (2);

 Range[] colranges = new Range (0, 7) .subranges (2);

 IntegerBuf[] patchbufs =

 IntegerBuf.patchBuffers (data, rowranges, colranges);

The colSliceBuffers() method returns an array of buffer objects. The buffer at index i refers to the
column slice of the data matrix with index subrange i.

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

data

IntegerBufcolbufs[0]

IntegerBuf[1]

IntegerBuf[2]

IntegerBuf[3]

Figure 22.12 Buffers for a matrix partitioned by columns

Buffers to partition a matrix by rows and columns. To partition a matrix into patches by slicing
along both the rows and the columns (Figure 22.13), call the patchBuffers() method. The first argu-
ment is the data matrix. The second argument is an array of row index ranges. The third argument is an
array of column index ranges.

C6910_22.indd 353C6910_22.indd 353 1/26/09 8:16:32 AM1/26/09 8:16:32 AM

354 CHAPTER 22 Data Slicing

The patchBuffers() method returns an array of buffer objects. Each buffer in the array refers to a
patch of the matrix with one of the specified row index ranges and one of the specified column index
ranges, in every possible combination.

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

data

IntegerBufpatchbufs[0]

IntegerBuf[1]

IntegerBuf[2]

IntegerBuf[3]

Figure 22.13 Buffers for a matrix partitioned into patches

Chapter 23 includes a cluster parallel program that partitions a matrix into equal-sized row slices and
gathers the slices from all the processes into one process.

We’ve now seen most of the methods for creating buffers for single items, arrays, and matrices. Any
buffer object can be passed to any communication method. While the number of combinations of buffer
objects and communication methods might seem daunting, only a few of the many possible combinations
tend to be used in cluster parallel programs. As mentioned earlier, we will see examples of these common
patterns in the upcoming chapters.

22.5 For Further Information
On Java Object Serialization:

The Java Tutorials: Basic I/O.•
http://java.sun.com/docs/books/tutorial/essential/io/

JDK 5.0 Documentation: Object Serialization.•
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/

C6910_22.indd 354C6910_22.indd 354 1/26/09 8:16:32 AM1/26/09 8:16:32 AM

http://java.sun.com/docs/books/tutorial/essential/io/JDK
http://java.sun.com/docs/books/tutorial/essential/io/JDK
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/

355

C H A P T E R 23
in which we discover that cluster parallel programs can have unbalanced loads just like

SMP parallel programs; we learn how to write a cluster parallel program that balances

its load; and we see the send, receive, and gather message passing operations in action

Load Balancing, Part 2

C6910_23.indd 355C6910_23.indd 355 1/26/09 8:16:35 AM1/26/09 8:16:35 AM

C H A P T E R23 Load Balancing, Part 2

23.1 Collective Communication: Gather
Now that we’ve seen Parallel Java’s message-passing operations and buffer classes, we turn our attention
to a cluster parallel program that requires message passing. We’ll write a cluster parallel version of the
Mandelbrot Set program from Chapter 11. This program computes the color of each pixel in an image of
the Mandelbrot Set and stores the pixel data in an integer matrix. The program then writes the pixel data
to a PJG image file.

In the SMP parallel version, the pixel data matrix was shared among the threads, and each thread
computed a different subset of the shared matrix’s rows. We’ll use the same concept for the cluster paral-
lel version—each process will compute a different subset of the matrix rows. But in a cluster parallel
computer, the pixel data matrix no longer can be a shared variable. Instead, each process must have its
own local pixel data matrix, or rather a portion of the matrix. After each process has computed its por-
tion of the matrix, the processes do message passing to bring the matrix portions together into a single
process. That process can then write all the pixel data to the PJG image file.

The gather collective communication operation can do the job (Figure 23.1). The pixel data matrix
is partitioned into K row slices, where K is the number of parallel processes (the world communica-
tor’s size). Process 0 will eventually write the PJG file. The choice of process 0 is arbitrary; any of the
processes would serve equally well. Process 0, therefore, allocates storage for the entire matrix and sets
up communication buffers for all the matrix slices. Each remaining process allocates storage for, and sets
up a communication buffer for, only its own matrix slice (not all the matrix rows). Each process, includ-
ing process 0, does its own pixel computations and fills in its own slice. All the processes participate in a
gather operation to bring the slices together into process 0. Because process 0’s slice is already where it
needs to be, process 0’s part of the gather operation is essentially a no-op. After the gather (Figure 23.2),
process 0 writes the now completely filled-in pixel data matrix to the PJG file. Figure 23.3 depicts the
parallel program’s overall execution timeline, showing the computations and message passing each pro-
cess performs, and showing process 0 writing the complete image file.

C6910_23.indd 356C6910_23.indd 356 1/26/09 8:16:35 AM1/26/09 8:16:35 AM

 23.1 Collective Communication: Gather 357

matrix

Process 0

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

slices

IntegerBuf

IntegerBuf

IntegerBuf

IntegerBuf

gather

matrix

Process 1

null

nul l

nul l

nul l

nul l

nul l

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8
IntegerBuf

myslice
gather

matrix

Process 2

null

nul l

nul l

nul l

nul l

nul l

9 0 4 5 4 1 9 5 7 2 1 2 1 6 4 1

2 8 4 0 7 2 7 9 4 3 5 9 1 9 2 4
IntegerBuf

myslice
gather

matrix

Process 3

null

nul l

nul l

nul l

nul l

nul l

2 3 1 3 5 4 5 1 1 5 9 5 2 7 3

7 1 5 4 9 4 5 6 9 1 1 9 6 4 3 1
IntegerBuf

myslice
gather

Figure 23.1 Pixel data matrix sliced among K=4 processes

C6910_23.indd 357C6910_23.indd 357 1/26/09 8:16:35 AM1/26/09 8:16:35 AM

358 CHAPTER 23 Load Balancing, Part 2

matrix

Process 0

0 2 5 7 9 4 9 7 6 8 6 4 4 8

6 2 1 5 2 7 9 2 1 4 2 7 4 1 1

2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

9 0 4 5 4 1 9 5 7 2 1 2 1 6 4 1

2 8 4 0 7 2 7 9 4 3 5 9 1 9 2 4

2 3 1 3 5 4 5 1 1 5 9 5 2 7 3

7 1 5 4 9 4 5 6 9 1 1 9 6 4 3 1

slices

IntegerBuf

IntegerBuf

IntegerBuf

IntegerBuf

 Figure 23.2 Pixel data matrix in process 0 after the gather

in
it

co
m

p
u

te
 p

ixe
l d

a
ta

Proc
0

in
it

co
m

p
u

te
 p

ixe
l d

a
ta

Proc
1

in
it

co
m

p
u

te
 p

ixe
l d

a
ta

Proc
2

in
it

co
m

p
u

te
 p

ixe
l d

a
ta

Proc
3

w
rite

gather
pixel data

Image

 Figure 23.3 Parallel program execution timeline

23.2 Parallel Mandelbrot Set Program
Taking the foregoing design considerations into account, here is the code for the cluster parallel version
of the Mandelbrot Set program, MandelbrotSetClu.

C6910_23.indd 358C6910_23.indd 358 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

 23.2 Parallel Mandelbrot Set Program 359

package edu.rit.clu.fractal;

import edu.rit.color.HSB;

import edu.rit.image.PJGColorImage;

import edu.rit.image.PJGImage;

import edu.rit.mp.IntegerBuf;

import edu.rit.pj.Comm;

import edu.rit.util.Arrays;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class MandelbrotSetClu

 {

 // Communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static double gamma;

 static File filename;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Image matrix.

 static int[][] matrix;

 static PJGColorImage image;

 static Range[] ranges;

 static Range myrange;

 static int mylb;

 static int myub;

 // Communication buffers.

 static IntegerBuf[] slices;

 static IntegerBuf myslice;

 // Table of hues.

 static int[] huetable;

C6910_23.indd 359C6910_23.indd 359 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

360 CHAPTER 23 Load Balancing, Part 2

All processes allocate storage for the matrix row references. All processes also partition the matrix into K
row slices and store the range of row indexes for each slice in the variable ranges. Each process’s own
slice is given by the row range at index rank, the process’s own rank.

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize middleware.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Validate command line arguments.

 if (args.length != 8) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 gamma = Double.parseDouble (args[6]);

 filename = new File (args[7]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Create image matrix to store results; the full matrix in

 // process 0, one row slice of the matrix in the other

 // processes.

 matrix = new int [height] [];

 ranges = new Range (0, height-1) .subranges (size);

 myrange = ranges[rank];

 mylb = myrange.lb();

 myub = myrange.ub();

C6910_23.indd 360C6910_23.indd 360 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

 23.2 Parallel Mandelbrot Set Program 361

Process 0 allocates storage for all the matrix rows. The other processes allocate storage only for the rows
in the process’s slice.

 // Compute all rows and columns.

 for (int r = mylb; r <= myub; ++ r)

 {

 int[] matrix_r = matrix[r];

 double y = ycenter + (yoffset - r) / resolution;

 if (rank == 0)

 {

 Arrays.allocate (matrix, width);

 }

 else

 {

 Arrays.allocate (matrix, myrange, width);

 }

 // Set up communication buffers.

 slices = IntegerBuf.rowSliceBuffers (matrix, ranges);

 myslice = slices[rank];

 // Create table of hues for different iteration counts.

 huetable = new int [maxiter+1];

 for (int i = 0; i < maxiter; ++ i)

 {

 huetable[i] = HSB.pack

 (/*hue*/ (float) Math.pow

 (((double)i) / ((double)maxiter), gamma),

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 huetable[maxiter] = HSB.pack (1.0f, 1.0f, 0.0f);

 long t2 = System.currentTimeMillis();

All processes set up communication buffers for every row slice of the matrix, the row indexes for
each slice being specified by the ranges variable. Process 0 will use all these buffers (the variable
slices). The other processes will use only the buffer corresponding to the process’s rank (the variable
myslice).

Each process computes the pixel data only for rows in its own slice.

C6910_23.indd 361C6910_23.indd 361 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

362 CHAPTER 23 Load Balancing, Part 2

After the pixel computations have finished, all processes participate in the gather operation. The destina-
tion (root) of the gather is process 0. In every process, the source buffer is the myslice variable, which
refers just to the process’s own row slice. In process 0, the destination buffers are the ones in the slices
variable, which refer to the slices of the full pixel data matrix.

 for (int c = 0; c < width; ++ c)

 {

 double x = xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Record number of iterations for pixel.

 matrix_r[c] = huetable[i];

 }

 }

 long t3 = System.currentTimeMillis();

 // Gather all matrix row slices into process 0.

 world.gather (0, myslice, slices);

 // Write image to PJG file in process 0.

 if (rank == 0)

 {

 image = new PJGColorImage (height, width, matrix);

 PJGImage.Writer writer =

After the gather, process 0 writes the PJG file; the other processes skip this step.

C6910_23.indd 362C6910_23.indd 362 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

 23.2 Parallel Mandelbrot Set Program 363

Table 23.1 (at the end of the chapter) lists, and Figure 23.4 plots, the MandelbrotSetClu program’s
running time data on the “tardis” computer. Each program run calculated the same area as Figure 11.1,
with increasing image dimensions n×n pixels, and with resolutions r increasing in proportion to n. Each
run’s problem size was the total number of pixels, N = n2. The particular n, r, and N values were the
following:

n r N
4480 1680 20M

6400 2400 40M

8960 3360 80M

12800 4800 160M

17920 6720 320M

25600 9600 640M

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (filename)));

 writer.write();

 writer.close();

 }

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

 }

C6910_23.indd 363C6910_23.indd 363 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

364 CHAPTER 23 Load Balancing, Part 2

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 20M

N = 40M

N = 80M

N = 160M

N = 320M

N = 640M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

100

200

300

400

500

600

700

800

900

1000

N = 20MN = 40MN = 80MN = 160MN = 320MN = 640M

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 20MN = 40MN = 80MN = 160MN = 320MN = 640M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 20MN = 40MN = 80MN = 160MN = 320MN = 640M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 23.4 MandelbrotSetSeq/MandelbrotSetClu running-time metrics

The other command-line arguments were xcenter = –0.75, ycenter = 0, maxiter = 1000, and gamma = 0.4.
The programs were run with K = 1, 2, 3, 4, 5, 6, 8, 10, 14, 20, 28, and 40 parallel processes.

Like the SMP parallel version in Chapter 11, the running times fail to diminish in proportion to 1/K;
the speedups and efficiencies are nowhere near linear. This behavior should come as no surprise. Dividing
the pixel data matrix into equal-sized slices in the cluster parallel program is equivalent to using a fixed
schedule for the outer parallel for loop in the SMP parallel program. As we have seen, this results in an
unbalanced load and poor parallel performance. To get the cluster parallel version to perform properly,
we need to balance the load.

C6910_23.indd 364C6910_23.indd 364 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

 23.3 Master-Worker 365

23.3 Master-Worker
Balancing the load in a cluster parallel program is exactly what the master-worker pattern is designed
to do. Figure 23.5 shows the master-worker pattern applied to an agenda parallel problem. To use the
master-worker pattern here, we recast the problem of calculating a Mandelbrot Set image, a result paral-
lel problem, as an agenda parallel problem. The tasks in the agenda are to calculate slices of the image;
the slices are chosen to yield a balanced load. The master sends these tasks one at a time to the workers.
The worker calculates the pixel data for the assigned slice and sends the slice to the master. The master
accumulates the slices into its own pixel data matrix. When all the slices have returned from the workers,
the master writes the now completely filled-in pixel data matrix to the PJG file.

Master

Worker
1

Worker
2

Worker
3

Task

Res
ul

t
T

a
sk

R
e

su
lt

TaskResult

Agenda
Final
result

 Figure 23.5 Master-worker pattern

To implement load balancing using the master-worker pattern, we need a way to divide the pixel
matrix into row slices such that all the worker processes finish at the same time. In the SMP version, we
achieved this by specifying the parallel for loop’s schedule as a dynamic or guided schedule. The parallel
for loop then divided the outer loop iterations into chunks, each chunk corresponding to a row slice of the
pixel data matrix, and handed the slices off to the parallel team threads to be calculated. While we can’t
use a parallel for loop in the cluster version, we can use the schedule. Class edu.rit.pj.IntegerSchedule
has methods for dividing a range into chunks. The master process can create an instance of the desired
kind of schedule and can call the schedule object’s methods to generate agenda items (row slices) for the
worker processes.

In a cluster parallel program with K processes, one process (process 0, say) can be the master process
and K–1 processes (processes 1 and higher) can be the worker processes (Figure 23.6). With this design,
the master process is blocked most of the time waiting to receive a message from a worker process. When
a message arrives, the master process wakes up, does a little flurry of work to store the pixel data and
send the next task to the worker process, and then blocks again until the next message arrives.

But if most of the time process 0’s CPU is idle because the master process is blocked, then we are not
fully utilizing the cluser parallel compu ter’s CPU power. That idle time in process 0 could be put to use cal-
culating pixels. We want to run a worker thread in process 0 alongside a separate master thread; when the
master thread blocks waiting to receive a message, the worker thread can take over the CPU. In other words,
in process 0, we want to overlap the master and the worker. We’ll do it the same way we did overlapped

C6910_23.indd 365C6910_23.indd 365 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

366 CHAPTER 23 Load Balancing, Part 2

computation and I/O in the continuous cellular automaton program in Chapter 18. A parallel team of two
threads executes two parallel sections concurrently, the master section and the worker section.

Now the program has one master thread communicating with one worker thread in the same process
and with K–1 worker threads in the other processes (Figure 23.7). This is doable; a communicator allows
one thread in a process either to send a message to another thread in the same process or to send a mes-
sage to a different process.

Process 0

M

Process 1

W

Process 2

W

Process 3

W

Figure 23.6 Master-worker program with one

Process 0

M

W

Process 1

W

Process 2

W

Process 3

W

Figure 23.7 Master-worker program with one
master (M) and K–1 workers (W) master and K workers (K)

Figure 23.8 shows the master-worker program’s overall execution timeline. Each process initializes
its variables. The master thread in process 0 sends the first K row slices to the worker threads in processes
0 through K–1; each slice is sent as a Range object (lower and upper row indexes). Each worker thread
begins computing its respective slice of pixel data. Meanwhile, the master thread waits to receive results
from the worker threads. However, the master thread has no way of knowing ahead of time which worker
thread will be the first to finish its slice and report the result. Thus, the master thread cannot designate a
specific message source rank in the receive() method call. Instead, the master must use a wildcard to
receive a message from any source. Furthermore, the worker thread must first send a message echoing the
Range object back to let the master know which chunk of pixel data is about to arrive; the worker thread
then sends the actual pixel data in a second message. After storing the second message’s contents in the
proper rows of the pixel data matrix, the master thread sends the next slice (Range object) to the worker
thread, which commences computing the new slice. This continues until there are no more slices. At this
point, as each worker thread reports its result, the master thread sends a message containing null (rather
than a Range object); this tells the worker thread that there’s no more work, whereupon the worker
process terminates. After telling every worker process to terminate, the master thread writes the now
completely filled-in pixel data matrix to the PJG file.

C6910_23.indd 366C6910_23.indd 366 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

 23.3 Master-Worker 367

co
m

p
u

te
 p

ixe
l d

a
ta

co
m

p
u

te
 p

ixe
l d

a
ta

co
m

p
u

te
 p

ixe
l d

a
ta

co
m

p
u

te
 p

ixe
l d

a
ta

co
m

p
u

te
 p

ixe
l d

a
ta

co
m

p
u

te
 p

ixe
l d

a
ta

co
m

p
u

te
 p

ixe
l d

a
ta

co
m

p
u

te
 p

ixe
l d

a
ta

in
it

in
it

in
it

in
it

in
it

Range

Range

Range

Range

Range

Pixel data

Range

Range

Pixel data

Range

Range

Pixel data

Range

Range

Pixel data

Range

Range

Pixel data

null

Range

Pixel data

null

Range

Pixel data

null

Range

Pixel data

null

w
rite

Image

Master Worker

Proc 0 Proc 1
Worker

Proc 2
Worker

Proc 3
Worker

 Figure 23.8 Master-worker program execution timeline

C6910_23.indd 367C6910_23.indd 367 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

368 CHAPTER 23 Load Balancing, Part 2

After considering one final detail, we’ll be ready to write the code for the master-worker Mandelbrot
Set program. Unlike the previous version which had just one kind of message (a gather), the master-
worker version has three different kinds of messages: a message sent to a worker containing a range; a
message sent to the master containing a range; and a message sent to the master containing pixel data.
We need a way to distinguish the various kinds of messages. The communicator’s message-passing
operations provide message tags for this purpose. A tag is just an integer. To send a message with a tag,
include the tag after the destination process rank.

 world.send (toRank, tag, buffer);

 world.receive (fromRank, tag, buffer);

package edu.rit.clu.fractal;

import edu.rit.color.HSB;

import edu.rit.image.PJGColorImage;

import edu.rit.image.PJGImage;

import edu.rit.mp.IntegerBuf;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommStatus;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

public class MandelbrotSetClu2

To receive a message with a tag, include the tag after the source process rank.

If the tag is omitted, it defaults to 0. A receive() method call with a tag will match only a send()
message call with the same tag. By tagging each kind of message with a different tag value, the program
can receive the proper kind of message at the proper time. We will use tags to make sure the master
thread first receives a message with a Range object, and then receives a message with pixel data.

23.4 Master-Worker Mandelbrot Set Program
Here is the code for the second cluster parallel version of the Mandelbrot Set program,
MandelbrotSetClu2, which uses the master-worker pattern for load balancing.

C6910_23.indd 368C6910_23.indd 368 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

 23.4 Master-Worker Mandelbrot Set Program 369

 {

 // Communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static double gamma;

 static File filename;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Image matrix.

 static int[][] matrix;

 static PJGColorImage image;

 // Table of hues.

 static int[] huetable;

 // Message tags.

 static final int WORKER_MSG = 0;

 static final int MASTER_MSG = 1;

 static final int PIXEL_DATA_MSG = 2;

 // Number of chunks the worker computed.

 static int chunkCount;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

C6910_23.indd 369C6910_23.indd 369 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

370 CHAPTER 23 Load Balancing, Part 2

 // Initialize middleware.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Validate command line arguments.

 if (args.length != 8) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 gamma = Double.parseDouble (args[6]);

 filename = new File (args[7]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Create table of hues for different iteration counts.

 huetable = new int [maxiter+1];

 for (int i = 0; i < maxiter; ++ i)

 {

 huetable[i] = HSB.pack

 (/*hue*/ (float)

 Math.pow (((double)i)/((double)maxiter),gamma),

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 huetable[maxiter] = HSB.pack (1.0f, 1.0f, 0.0f);

 long t2 = System.currentTimeMillis();

 // In master process, run master section and worker section

 // in parallel.

 if (rank == 0)

 {

 new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run() throws Exception

Here is the parallel team of two threads executing the master section and the worker section (which are
located in subroutines). Only process 0, the master process, sets up this team.

C6910_23.indd 370C6910_23.indd 370 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

 23.4 Master-Worker Mandelbrot Set Program 371

 // In worker process, run only worker section.

 else

 {

 workerSection();

 }

 long t3 = System.currentTimeMillis();

 // Write image to PJG file in master process.

 if (rank == 0)

 {

 image = new PJGColorImage (height, width, matrix);

 PJGImage.Writer writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (filename)));

 {

 execute (new ParallelSection()

 {

 public void run() throws Exception

 {

 masterSection();

 }

 },

 new ParallelSection()

 {

 public void run() throws Exception

 {

 workerSection();

 }

 });

 }

 });

 }

In processes 1 and higher, the one worker thread (the main program thread) merely executes the worker section.

In process 0, the parallel team threads wait at a barrier at the end of the parallel section group. When the
master section has finished, meaning the master threads have sent all the tasks to the workers and have
received all the results from the workers, the first team thread arrives at the barrier. When the worker sec-
tion in process 0 has finished, the second team thread also arrives at the barrier. Process 0 now writes the
pixel data matrix to the PJG image file and terminates; the other processes simply terminate.

C6910_23.indd 371C6910_23.indd 371 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

372 CHAPTER 23 Load Balancing, Part 2

Here is the subroutine with the code for the master section. Figure 23.9 shows the messages that go back
and forth between the master and the worker, along with the messages’ source and destination buffers.

The master allocates storage for all rows of the image matrix to hold the pixel data arriving from the
workers.

 writer.write();

 writer.close();

 }

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println (chunkCount + " chunks " + rank);

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

 /**

 * Perform the master section.

 */

 private static void masterSection()

 throws IOException

 {

 int worker;

 Range range;

 // Allocate all rows of image matrix.

 matrix = new int [height] [width];

 // Set up a schedule object to divide the row range into

 //chunks.

 IntegerSchedule schedule = IntegerSchedule.runtime();

 schedule.start (size, new Range (0, height-1));

By creating a runtime schedule object, the master will divide the image into row slices according to the
schedule specified with the -Dpj.schedule flag on the command line. The start() method call ini-
tializes the schedule object to slice up the overall row index range.

C6910_23.indd 372C6910_23.indd 372 1/26/09 8:16:36 AM1/26/09 8:16:36 AM

 23.4 Master-Worker Mandelbrot Set Program 373

 // Send initial chunk range to each worker. If range is null,

 // no more work for that worker. Keep count of active workers.

 int activeWorkers = size;

 for (worker = 0; worker < size; ++ worker)

 {

 range = schedule.next (worker);

 world.send (worker, WORKER_MSG, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

matrix

Process 0, master

IntegerBuf

ObjectBuf

Range(2,4)

ObjectBuf

Range(2,4)

Process 1, worker

ObjectBuf

Range(2,4)

ObjectBuf

Range(2,4)

slice
2 2 8 7 8 4 8 9 3 3 1 9 7 1 4 0

3 2 3 9 4 3 6 1 9 6 3 6 1 4 4 8

9 0 4 5 4 1 9 5 7 2 1 2 1 6 4 1

IntegerBuf

send

receive

receive

send

send

receive

 Figure 23.9 Messages sent and received between master and worker

For each worker, the master calls the schedule object’s next() method to get the first slice (Range
object) for that worker. The master sends the Range object to the worker using a message tag of
WORKER_MSG. If there is no slice for a worker, the next() method returns null, which the master duly
sends to the worker to tell it there’s no more work. The master keeps track of the number of active work-
ers in the activeWorkers variable. Each time the master sends null to a worker, activeWorkers is
decremented.

C6910_23.indd 373C6910_23.indd 373 1/26/09 8:16:37 AM1/26/09 8:16:37 AM

374 CHAPTER 23 Load Balancing, Part 2

Now the master repeats its processing loop until activeWorkers goes to 0, indicating that there are no
more slices and that all the workers have been informed of that fact.

The master receives a Range object from any worker by specifying a source rank of null in the receive()
method call. The message tag is specified as MASTER_MSG; this ensures that the master receives a message
with a Range object at this point rather than a message with pixel data. The master discovers which worker
sent the message by examining the fromRank field in the communication status object returned by the
receive() method.

The master sets up a destination buffer encompassing the rows of the pixel data matrix specified by the
range in the worker’s first message. The master receives the pixel data message from the specific worker
that sent the first message (not from any worker) using a message tag of PIXEL_DATA_MSG. The pixel
data ends up in the proper rows of the matrix.

Finally, the master gets the next slice for the worker from the schedule object, and sends the slice (or null
if there are no more slices) to the worker. When there are no more active workers, the master exits its
processing loop.

 // Repeat until all workers have finished.

 while (activeWorkers > 0)

 {

 // Receive a chunk range from any worker.

 ObjectItemBuf<Range> rangeBuf = ObjectBuf.buffer();

 CommStatus status =

 world.receive (null, MASTER_MSG, rangeBuf);

 worker = status.fromRank;

 range = rangeBuf.item;

 // Receive pixel data from that specific worker.

 world.receive

 (worker,

 PIXEL_DATA_MSG,

 IntegerBuf.rowSliceBuffer (matrix, range));

 // Send next chunk range to that specific worker. If null,

 // no more work.

 range = schedule.next (worker);

 world.send (worker, WORKER_MSG, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

 }

C6910_23.indd 374C6910_23.indd 374 1/26/09 8:16:37 AM1/26/09 8:16:37 AM

 23.4 Master-Worker Mandelbrot Set Program 375

 /**

 * Perform the worker section.

 */

 private static void workerSection()

 throws IOException

 {

 // Storage for matrix row slice.

 int[][] slice = null;

 // Allocate storage for matrix row slice if necessary.

 if (slice == null || slice.length < len)

 {

 slice = new int [len] [width];

 }

 // Process chunks from master.

 for (;;)

 {

 // Receive chunk range from master. If null, no more work.

 ObjectItemBuf<Range> rangeBuf = ObjectBuf.buffer();

 world.receive (0, WORKER_MSG, rangeBuf);

 Range range = rangeBuf.item;

 if (range == null) break;

 int lb = range.lb();

 int ub = range.ub();

 int len = range.length();

 ++ chunkCount;

Here is the subroutine with the code for the worker section.

The worker repeats its processing loop until there’s no more work. The worker begins by receiving a slice
(Range object) from the master with a message tag of WORKER_MSG; if the Range object is null, the worker
exits its processing loop. Out of curiosity, the worker also keeps track of the number of slices it has com-
puted in the variable chunkCount; this is printed along with the running time at the end of the program.

So as not to use more storage than necessary, the worker only allocates the number of rows in the slice,
not the number of rows in the whole image. Further, to save time, the worker reuses the previous slice’s
storage if it has enough rows to hold the current slice.

The worker proceeds to compute each pixel in rows lb through ub. However, these are the row indexes
in the full pixel matrix back in the master. The row indexes in the worker’s slice go from 0 to len-1, not
from lb to ub. Thus, the reference to the current row (slice_r) is set to slice[r-lb], not slice[r].

C6910_23.indd 375C6910_23.indd 375 1/26/09 8:16:37 AM1/26/09 8:16:37 AM

376 CHAPTER 23 Load Balancing, Part 2

Here is the first of the two messages the worker sends to report its result to the master. The Range
object that came from the master is still sitting in the destination buffer, rangeBuf. The worker simply
uses rangeBuf as the source buffer to send the Range object back to the master with a message tag of
MASTER_MSG.

The worker sets up a source buffer encompassing row indexes 0 through len-1 of the slice matrix, and
sends the pixel data to the master with a message tag of PIXEL_DATA_MSG. The worker then repeats its
processing loop.

 // Compute all rows and columns in slice.

 for (int r = lb; r <= ub; ++ r)

 {

 int[] slice_r = slice[r-lb];

 double y = ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x = xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Record number of iterations for pixel.

 slice_r[c] = huetable[i];

 }

 }

 // Send chunk range back to master.

 world.send (0, MASTER_MSG, rangeBuf);

C6910_23.indd 376C6910_23.indd 376 1/26/09 8:16:37 AM1/26/09 8:16:37 AM

 23.4 Master-Worker Mandelbrot Set Program 377

 // Send pixel data to master.

 world.send

 (0,

 PIXEL_DATA_MSG,

 IntegerBuf.rowSliceBuffer

 (slice, new Range (0, len-1)));

 }

 };

 }

This concludes the parallel master-worker Mandelbrot Set program.
Table 23.2 (at the end of the chapter) lists, and Figure 23.10 plots, the MandelbrotSetClu2 program’s

running-time data on the “tardis” cluster. Each program run used the same command-line arguments as
Table 23.1 and Figure 23.3, with a dynamic schedule for load balancing.

$ java -Dpj.schedule="dynamic(10)" . . .

The data show that the master-worker pattern with a dynamic schedule has balanced the load. The running
times steadily decrease as the number of processors increases. However, the speedups flatten out rather
quickly, symptomatic of a substantial sequential fraction. Where is the sequential fraction coming from?

Several factors contribute to the sequential fraction, including the initialization that takes place
before the master and worker processing commences, the allocation of the pixel data matrix or slice at
the beginning of the master and worker processing, and the generation of the PJG image file after the
master and worker processing finishes. But in a cluster parallel program, there is an additional contribu-
tion to the sequential fraction not found in an SMP parallel program: the time spent in message passing.
While the worker is sending its slice message and its pixel data message to the master and is waiting to
receive its next slice message from the master, the worker is not computing any pixels. This increases the
parallel version’s running time relative to the sequential version, thus reducing the speedups, reducing the
efficiencies, and increasing the EDSFs. In Chapter 24, we will quantify just how much time this program
spends in message passing.

Before leaving the running-time metrics, observe the strangely high efficiency, about 1.1, of the
parallel version running in one processor. This is another manifestation of the JIT compiler effect. Recall
that there are two threads in process 0, the master thread and the worker thread; the multiple threads let
the JIT compiler detect and compile hot spots more quickly. But when running in two or more proces-
sors, the processes at rank 1 and higher have only one thread, the JIT compiler does not optimize these
processes as quickly as process 0, and the efficiencies drop back below 1.0. Because the running time on
one processor is smaller than it would be without the JIT compiler effect, the EDSF values for smaller

C6910_23.indd 377C6910_23.indd 377 1/26/09 8:16:37 AM1/26/09 8:16:37 AM

378 CHAPTER 23 Load Balancing, Part 2

numbers of processors are higher than they would be otherwise. As more processors are added, the EDSF
curves converge to roughly horizontal lines, reflecting a constant sequential fraction.

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 20M

N = 40M

N = 80M

N = 160M

N = 320M

N = 640M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

2 0

4 0

6 0

8 0

100

120

140

160

180

200

N = 20M
N = 40MN = 80MN = 160MN = 320MN = 640M

EDSF vs. Processors

Processors, K
ED

SF
 (

N
,K

)
(/

1
0

0
0

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 20M
N = 40MN = 80MN = 160M
N = 320MN = 640M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N = 20M
N = 40MN = 80MN = 160M
N = 320MN = 640M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 23.10 MandelbrotSetSeq/MandelbrotSetClu2 running-time metrics

C6910_23.indd 378C6910_23.indd 378 1/26/09 8:16:37 AM1/26/09 8:16:37 AM

 23.4 Master-Worker Mandelbrot Set Program 379

Table 23.1 MandelbrotSetSeq/MandelbrotSetClu running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

20M seq 34463 160M seq 279672

20M 1 34474 1.000 1.000 160M 1 280467 0.997 0.997

20M 2 17648 1.953 0.976 0.024 160M 2 142849 1.958 0.979 0.019

20M 3 26136 1.319 0.440 0.637 160M 3 212524 1.316 0.439 0.637

20M 4 16635 2.072 0.518 0.310 160M 4 134843 2.074 0.519 0.308

20M 5 18166 1.897 0.379 0.409 160M 5 146996 1.903 0.381 0.405

20M 6 13511 2.551 0.425 0.270 160M 6 109151 2.562 0.427 0.267

20M 8 11177 3.083 0.385 0.228 160M 8 90012 3.107 0.388 0.224

20M 10 9469 3.640 0.364 0.194 160M 10 77005 3.632 0.363 0.194

20M 14 7191 4.793 0.342 0.148 160M 14 58418 4.787 0.342 0.147

20M 20 5189 6.642 0.332 0.106 160M 20 42870 6.524 0.326 0.108

20M 28 4025 8.562 0.306 0.084 160M 28 32127 8.705 0.311 0.082

20M 40 3088 11.160 0.279 0.066 160M 40 24084 11.612 0.290 0.062

40M seq 70096 320M seq 547023

40M 1 70063 1.000 1.000 320M 1 548300 0.998 0.998

40M 2 35850 1.955 0.978 0.023 320M 2 278781 1.962 0.981 0.017

40M 3 53276 1.316 0.439 0.641 320M 3 415362 1.317 0.439 0.636

40M 4 33831 2.072 0.518 0.310 320M 4 263352 2.077 0.519 0.307

40M 5 36967 1.896 0.379 0.410 320M 5 288072 1.899 0.380 0.407

40M 6 27383 2.560 0.427 0.269 320M 6 213029 2.568 0.428 0.266

40M 8 22630 3.097 0.387 0.226 320M 8 175619 3.115 0.389 0.223

40M 10 19443 3.605 0.361 0.197 320M 10 150382 3.638 0.364 0.194

40M 14 14651 4.784 0.342 0.148 320M 14 114177 4.791 0.342 0.147

40M 20 10729 6.533 0.327 0.109 320M 20 83587 6.544 0.327 0.108

40M 28 8148 8.603 0.307 0.084 320M 28 62723 8.721 0.311 0.082

40M 40 6159 11.381 0.285 0.065 320M 40 46786 11.692 0.292 0.062

80M seq 137327 640M seq 1116057

80M 1 137311 1.000 1.000 640M 1 1119359 0.997 0.997

80M 2 70151 1.958 0.979 0.022 640M 2 571346 1.953 0.977 0.021

80M 3 104254 1.317 0.439 0.639 640M 3 852306 1.309 0.436 0.642

80M 4 66142 2.076 0.519 0.309 640M 4 542763 2.056 0.514 0.313

80M 5 72216 1.902 0.380 0.407 640M 5 593785 1.880 0.376 0.413

80M 6 53443 2.570 0.428 0.267 640M 6 439437 2.540 0.423 0.271

80M 8 44175 3.109 0.389 0.225 640M 8 358484 3.113 0.389 0.223

80M 10 37819 3.631 0.363 0.195 640M 10 306056 3.647 0.365 0.193

80M 14 28772 4.773 0.341 0.149 640M 14 233446 4.781 0.341 0.148

80M 20 20966 6.550 0.327 0.108 640M 20 170445 6.548 0.327 0.108

80M 28 15772 8.707 0.311 0.082 640M 28 127722 8.738 0.312 0.081

80M 40 11850 11.589 0.290 0.063 640M 40 95390 11.700 0.292 0.062

C6910_23.indd 379C6910_23.indd 379 1/26/09 8:16:37 AM1/26/09 8:16:37 AM

380 CHAPTER 23 Load Balancing, Part 2

Table 23.2 MandelbrotSetSeq/MandelbrotSetClu2 running-time metrics

 N K T Spdup Eff EDSF N K T Spdup Eff EDSF

20M seq 34464 160M seq 279855

20M 1 31247 1.103 1.103 160M 1 253410 1.104 1.104

20M 2 17906 1.925 0.962 0.146 160M 2 144145 1.941 0.971 0.138

20M 3 12233 2.817 0.939 0.087 160M 3 97811 2.861 0.954 0.079

20M 4 9436 3.652 0.913 0.069 160M 4 75088 3.727 0.932 0.062

20M 5 7766 4.438 0.888 0.061 160M 5 61522 4.549 0.910 0.053

20M 6 6644 5.187 0.865 0.055 160M 6 51951 5.387 0.898 0.046

20M 8 5249 6.566 0.821 0.049 160M 8 40578 6.897 0.862 0.040

20M 10 4410 7.815 0.781 0.046 160M 10 34161 8.192 0.819 0.039

20M 14 3440 10.019 0.716 0.042 160M 14 26318 10.634 0.760 0.035

20M 20 2761 12.482 0.624 0.040 160M 20 20420 13.705 0.685 0.032

20M 28 2423 14.224 0.508 0.043 160M 28 16786 16.672 0.595 0.032

20M 40 2083 16.545 0.414 0.043 160M 40 14363 19.484 0.487 0.032

40M seq 70084 320M seq 546761

40M 1 63395 1.106 1.106 320M 1 493854 1.107 1.107

40M 2 36182 1.937 0.968 0.141 320M 2 280704 1.948 0.974 0.137

40M 3 24679 2.840 0.947 0.084 320M 3 190801 2.866 0.955 0.080

40M 4 19011 3.686 0.922 0.067 320M 4 146233 3.739 0.935 0.061

40M 5 15573 4.500 0.900 0.057 320M 5 118798 4.602 0.920 0.051

40M 6 13266 5.283 0.880 0.051 320M 6 100744 5.427 0.905 0.045

40M 8 10481 6.687 0.836 0.046 320M 8 78733 6.944 0.868 0.039

40M 10 8707 8.049 0.805 0.041 320M 10 65015 8.410 0.841 0.035

40M 14 6785 10.329 0.738 0.038 320M 14 49531 11.039 0.788 0.031

40M 20 5370 13.051 0.653 0.037 320M 20 38521 14.194 0.710 0.029

40M 28 4507 15.550 0.555 0.037 320M 28 31435 17.393 0.621 0.029

40M 40 3898 17.979 0.449 0.037 320M 40 26315 20.778 0.519 0.029

80M seq 137256 640M seq 1115607

80M 1 124461 1.103 1.103 640M 1 1007507 1.107 1.107

80M 2 70767 1.940 0.970 0.137 640M 2 572637 1.948 0.974 0.137

80M 3 48130 2.852 0.951 0.080 640M 3 388308 2.873 0.958 0.078

80M 4 36891 3.721 0.930 0.062 640M 4 296031 3.769 0.942 0.058

80M 5 30228 4.541 0.908 0.054 640M 5 241254 4.624 0.925 0.049

80M 6 25635 5.354 0.892 0.047 640M 6 205340 5.433 0.905 0.045

80M 8 20161 6.808 0.851 0.042 640M 8 159642 6.988 0.874 0.038

80M 10 16835 8.153 0.815 0.039 640M 10 131208 8.503 0.850 0.034

80M 14 13069 10.502 0.750 0.036 640M 14 99607 11.200 0.800 0.030

80M 20 10109 13.578 0.679 0.033 640M 20 77222 14.447 0.722 0.028

80M 28 8636 15.893 0.568 0.035 640M 28 63372 17.604 0.629 0.028

80M 40 7374 18.614 0.465 0.035 640M 40 53195 20.972 0.524 0.029

C6910_23.indd 380C6910_23.indd 380 1/26/09 8:16:37 AM1/26/09 8:16:37 AM

381

C H A P T E R 24
in which we measure how long it takes to send a message from one processor to

another; we derive a mathematical model for communication time; and we consider

the implications for cluster parallel program design

Measuring Communication
Overhead

C6910_24 381C6910_24 381 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

C H A P T E R24 Measuring Communication Overhead

24.1 Measuring the Time to Send a Message
To determine how much time the MandelbrotSetClu2 program—or any cluster parallel program—spends
doing message passing, we need a formula that can predict how long it takes to send all the messages in
the program, given the number of messages and the number of data elements in each message. To derive
such a formula, we first must measure the time required to send a message. Is there a way to do that with-
out resorting to cumbersome low-level network analyzers or packet sniffers?

A typical technique uses ping-pong messages. The ping-pong program runs in two processes on the
cluster parallel computer being measured. Figure 24.1 is a space-time diagram showing the two processes
across the top (the space dimension) and showing time t increasing down the page. Process 0 sends a
message of a certain size n to process 1. As soon as it finishes receiving the message, process 1 sends
the same message back to process 0. Process 0 measures how much time elapses from when it started
sending the message until it finished receiving the reply; this is the message’s round-trip time RTT. The
message’s one-way time T is then RTT/2; this is the quantity we are interested in. By measuring T for
messages of various sizes n, we can map out T as a function of n, namely T(n).

Because T might be just a few microseconds, but the system clock’s resolution is typically on the
order of milliseconds, it’s difficult to measure T for just one message. Instead, the ping-pong program
sends and receives the message repeatedly and measures the time to do all the repetitions. If the total of
all the round-trip times is TRTT and the number of repetitions is R, then a single round trip takes RTT =
TRTT/R, and the message one-way time is T = TRTT/2R. By doing, say, R = 10,000 repetitions, we can
get a reasonably accurate measurement for T.

C6910_24 Sec1:382C6910_24 Sec1:382 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

 24.1 Measuring the Time to Send a Message 383

ping

pong

ping

pong

ping

pong

ping

pong

ping

pong

Process 0

t

Process 1

t

T

RTT

TRTT

 Figure 24.1 Measuring message time with ping-pong messages

Class edu.rit.clu.timing.TimeSendByte is a ping-pong program that sends messages with data items of
type byte. The command-line arguments are the number of repetitions R followed by one or more values for
the message size n, where n is the number of byte data items in the message. Here is the source code.

package edu.rit.clu.timing;

import edu.rit.mp.ByteBuf;

import edu.rit.pj.Comm;

C6910_24 Sec1:383C6910_24 Sec1:383 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

384 CHAPTER 24 Measuring Communication Overhead

Process 0 sends, and then receives messages and measures the one-way time T for each value of n.

import java.io.IOException;

import java.text.DecimalFormat;

import java.util.Date;

public class TimeSendByte

 {

 private static final DecimalFormat FMT3 =

 new DecimalFormat ("0.00E0");

 static Comm world;

 static int size;

 static int rank;

 static int reps;

 static int numn;

 static int[] n;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Initialize PJ.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Parse command line arguments.

 if (args.length < 2) usage();

 reps = Integer.parseInt (args[0]);

 numn = args.length - 1;

 n = new int [numn];

 for (int i = 0; i < numn; ++ i)

 {

 n[i] = Integer.parseInt (args[i+1]);

 }

 // Process 0.

 if (rank == 0)

 {

 System.out.println

C6910_24 Sec1:384C6910_24 Sec1:384 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

 24.1 Measuring the Time to Send a Message 385

Each message contains data values of 0, 1, 2, and so on. Here, we measure the time it takes to do R repeti-
tions of just filling in the data source array, without sending or receiving any messages. (The code to do this
is in a subroutine.) Later, we subtract this overhead time (time1) from the running-time measurement.

And here we measure the time it takes to do R repetitions of filling in the data source array, sending the
message to process 1, and receiving the message back from process 1 (time2).

The message one-way time T is TRTT/2R, where TRTT is the difference between time2 and time1. The
result is divided by a further factor of 1,000 to convert T from units of milliseconds to units of seconds.

 ("java -Dpj.np=2 edu.rit.clu.timing.TimeSendByte " +

 reps);

 System.out.println (new Date());

 System.out.println ("n\ttime1\ttime2\tSend time (sec)");

 // Test each value of n.

 for (int i = 0; i < numn; ++ i)

 {

 // Create message buffer.

 int n_i = n[i];

 byte[] bufarray = new byte [n_i];

 ByteBuf buf = ByteBuf.buffer (bufarray);

 // Time repetitions without sending messages.

 long time1 = -System.currentTimeMillis();

 for (int j = 0; j < reps; ++ j)

 {

 fill (n_i, bufarray, buf);

 }

 time1 += System.currentTimeMillis();

 // Print results.

 double sendtime =

 ((double)(time2-time1)) / ((double) reps) / 2000.0;

 System.out.print (n_i);

 // Time repetitions with sending messages.

 long time2 = -System.currentTimeMillis();

 for (int j = 0; j < reps; ++ j)

 {

 fillSendReceive (n_i, bufarray, buf);

 }

 time2 += System.currentTimeMillis();

C6910_24 Sec1:385C6910_24 Sec1:385 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

386 CHAPTER 24 Measuring Communication Overhead

Here is the code executed in process 1. It is almost identical to the code for process 0, except process 1
first receives each message, and then sends it back.

Finally, here are the three subroutines the prior code calls.

 System.out.print ('\t');

 System.out.print (time1);

 System.out.print ('\t');

 System.out.print (time2);

 System.out.print ('\t');

 System.out.print (FMT3.format (sendtime));

 System.out.println();

 }

 }

 // Process 1.

 else if (rank == 1)

 {

 // Test each value of n.

 for (int i = 0; i < numn; ++ i)

 {

 // Create message buffer.

 int n_i = n[i];

 byte[] bufarray = new byte [n_i];

 ByteBuf buf = ByteBuf.buffer (bufarray);

 // Do repetitions without receiving messages.

 for (int j = 0; j < reps; ++ j)

 {

 fill (n_i, bufarray, buf);

 }

 // Do repetitions with receiving messages.

 for (int j = 0; j < reps; ++ j)

 {

 fillReceiveSend (n_i, bufarray, buf);

 }

 }

 }

 }

 /**

 * Fill the buffer.

 */

C6910_24 Sec1:386C6910_24 Sec1:386 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

 24.1 Measuring the Time to Send a Message 387

 private static void fill

 (int n_i,

 byte[] bufarray,

 ByteBuf buf)

 {

 for (int k = 0; k < n_i; ++ k)

 {

 bufarray[k] = (byte) k;

 }

 }

 /**

 * Fill the buffer, send a message, receive a message.

 */

 private static void fillSendReceive

 (int n_i,

 byte[] bufarray,

 ByteBuf buf)

 throws IOException

 {

 for (int k = 0; k < n_i; ++ k)

 {

 bufarray[k] = (byte) k;

 }

 world.send (1, buf);

 world.receive (1, buf);

 }

 /**

 * Fill the buffer, receive a message, send a message.

 */

 private static void fillReceiveSend

 (int n_i,

 byte[] bufarray,

 ByteBuf buf)

 throws IOException

 {

 for (int k = 0; k < n_i; ++ k)

 {

 bufarray[k] = (byte) k;

 }

 world.receive (0, buf);

 world.send (0, buf);

 }

 }

C6910_24 Sec1:387C6910_24 Sec1:387 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

388 CHAPTER 24 Measuring Communication Overhead

The Parallel Java Library also includes the classes TimeSendInt and TimeSendDouble, which are
identical to class TimeSendByte, except that they send messages consisting of type int and double,
respectively.

24.2 Message Send-Time Model
Here is what the TimeSendByte program printed for one run on two processors of the “tardis” hybrid
parallel computer:

$ java -Dpj.np=2 edu.rit.clu.timing.TimeSendByte 10000 \

 1000 1000 1000 100 100 100 200 200 200 500 500 500 1000 1000 1000 \

 2000 2000 2000 5000 5000 5000 10000 10000 10000 20000 20000 20000 \

 50000 50000 50000 100000 100000 100000 200000 200000 200000 \

 500000 500000 500000 1000000 1000000 1000000

Job 1, dr01, dr02

java -Dpj.np=2 edu.rit.clu.timing.TimeSendByte 10000

Wed Dec 26 14:59:42 EST 2007

n time1 time2 Send time (sec)

1000 65 3169 1.55E-4

1000 8 3042 1.52E-4

1000 8 3036 1.51E-4

100 0 2295 1.15E-4

100 1 2673 1.34E-4

100 0 2673 1.34E-4

. . .

1000000 8700 185052 8.82E-3

1000000 8695 185046 8.82E-3

1000000 8699 185035 8.82E-3

(The first three n values are included to “warm up” the JVM. Notice how the measured times decrease
as the JIT compiler works its magic. We will disregard these first three measurements.) Table 24.1 (at
the end of the chapter) gives the complete list of measurements, along with measurements from the
TimeSendInt and TimeSendDouble programs.

Figure 24.2 plots the data in Table 24.1. The horizontal axis is the message size B in units of bits. For
the TimeSendByte program, B ranged from 800 to 8,000,000 bits; for TimeSendInt, 3,200 to 32,000,000
bits; for TimeSendDouble, 6,400 to 64,000,000 bits. The vertical axis is the message send time T in units
of seconds. The two plots in Figure 24.2 show the same data on two different scales. The first plot is for
B ≤ 800,000 bits; the second plot is for B ≤ 64,000,000 bits.

Figure 24.2 also plots the linear regression of the data. The regression formula is the following:

 (24.1)

C6910_24 Sec1:388C6910_24 Sec1:388 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

 24.2 Message Send-Time Model 389

Equation 24.1 is the message send-time model—a formula for T (in seconds) as a function of B (in bits)—
for the “tardis” computer. The correlation coefficient is 0.999973, evincing good agreement between the
model and the data. The constant term in Equation 24.1 is apparent in the first plot in Figure 24.2 as the
nonzero intercept of the regression line; because of the vertical scale, the nonzero intercept is difficult to see
in the second plot.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0E0

2.0E−4

4.0E−4

6.0E−4

8.0E−4

1.0E−3

1.2E−3

1.4E−3

1.6E−3

Message Send Time vs. Message Size

Message size B (M bits)

M
e

ss
a

g
e

 s
e

n
d

 t
im

e
 T

 (
se

c)

0 8 1 6 2 4 3 2 4 0 4 8 5 6 6 4
0.0E0

1.0E−2

2.0E−2

3.0E−2

4.0E−2

5.0E−2

6.0E−2

7.0E−2

8.0E−2

Message Send Time vs. Message Size

Message size B (M bits)

M
e

ss
a

g
e

 s
e

n
d

 t
im

e
 T

 (
se

c)

Figure 24.2 Message send-time data and model—smaller message sizes, larger message sizes

Let’s consider the two terms in the message send-time model. The constant term, 2.08×10–4 sec
(208 μsec), represents the message latency. This includes items such as the time needed to execute the
code in the Parallel Java communication layer to initiate sending the message, and the backend net-
work’s latency. The message latency is incurred on every message sent, no matter how large or small
the message.

The O(B) term, 1.07×10–9 B sec, represents the message transmission time. Once past the fixed
message latency, it takes 1.07×10–9 sec to send each bit of message data. The message bandwidth in
bits per second is the reciprocal of the coefficient of B: 0.937 Gbps. But the “tardis” computer’s backend
network bandwidth is 1 Gbps. Why is the message bandwidth less than the network bandwidth?

The diminished bandwidth is partly due to the protocol overhead from the Ethernet, IP, TCP,
and application-layer protocols Parallel Java uses to send messages. Figure 24.3 shows the bytes that
actually go out over the wire when a message is transmitted. First comes the inter-frame interval, dur-
ing which time (12 bytes’ worth) the Ethernet interface does not transmit anything; this is to let the
communication medium recover from the previous transmission. Then comes the Ethernet preamble
(8 bytes), used to synchronize the Ethernet transmitter’s and receiver’s clocks. After that come the
Ethernet header (14 bytes), IP header (20 bytes), TCP header (20 bytes), and Parallel Java message
header (13 bytes). At this point, finally, the message data is transmitted. The maximum amount of
information allowed in an Ethernet frame—the maximum transmission unit (MTU)—is 1,500 bytes.
This includes the IP header, TCP header, and Parallel Java message (header plus data). If the message

C6910_24 Sec1:389C6910_24 Sec1:389 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

390 CHAPTER 24 Measuring Communication Overhead

is too long to fit into a single Ethernet frame, it is the TCP layer’s job to break the message into segments
and transmit each segment in a separate Ethernet frame. The maximum amount of data in a TCP
segment—the maximum segment size (MSS)—is 1,460 bytes, namely the MTU minus the IP and
TCP headers. Thus, the largest message that can fit in an Ethernet frame is 1,460 bytes long—13 bytes
of header plus 1,447 bytes of data. After the message comes the Ethernet frame check sequence
(4 bytes) used to detect transmission errors, and that concludes the frame.

Ethernet
preamble

Ethernet
header

IP
header

TCP
header

PJ
header PJ message data

Ethernet
FCS

Inter−frame
interval

Figure 24.3 Protocol overhead in a Parallel Java message

To send an MSS’s worth of message data necessitates 91 bytes of protocol overhead. For a single-
frame message, the effective message bandwidth is 1,447/(1,447+91) times the raw network band-
width—0.941 Gbps. The protocol overhead alone causes a 5.9 percent reduction in the rate at which we
can send data.

Other factors besides the protocol overhead reduce the effective message bandwidth. These include:
the time needed for the sending process to copy the message data from the message’s source buffer to
the outgoing TCP buffer; any time the sending TCP layer has to wait to receive an acknowledgment for
a TCP segment from the receiving TCP layer; any time the sending TCP layer has to stop sending data
temporarily because the receiving TCP layer’s incoming buffer is full (flow control); and the time needed
for the receiving process to copy the message data from the incoming TCP buffer to the message’s
destination buffer. These factors increase the amount of time needed to send one byte, thus decreasing
the effective message bandwidth still further. We measured an overall message bandwidth reduction of
6.3 percent—0.937 Gbps instead of 1 Gbps.

From the message send-time model, Equation 24.1, we can gain two important insights regarding
cluster parallel program design. First, to get good parallel performance, the program must have much
more computation than communication. With today’s CPU clock speeds, a program can do a lot of com-
putation in the time it takes to send a single message, even on a high-bandwidth cluster backend network.
Unless the program does a lot of computation between each message, a large portion of the program’s
running time will be occupied with sending messages; this communication time—not present in the
sequential version—will decrease the parallel ver sion’s speedups and efficiencies.

It’s best if the program’s asymptotic communication time as a function of the problem size parameter
n is of a smaller order than the program’s asymptotic computation time. If, for example, the computation
time is O(n3) while the communication time is only O(n2), as the problem size scales up, the computa-
tion time eventually dominates the communication time, the sequential fraction due to communication is
small, and the parallel performance is good. This is another manifestation of the surface-to-volume effect
we saw in Chapter 16 (“surface” being the communication and “volume” the computation).

On the other hand, if the program’s asymptotic communication time is of the same order as the
asymptotic computation time, there will be no surface-to-volume effect. In this case the amount of time

C6910_24 Sec1:390C6910_24 Sec1:390 1/26/09 11:26:06 AM1/26/09 11:26:06 AM

 24.3 Applying the Model 391

spent computing must be much larger than the amount of time spent communicating to get a small
sequential fraction and good parallel performance.

The second insight regarding cluster parallel program design is that a few large messages are better
than many small messages. This is because the message latency, the constant coefficient in the message
send-time model, is typically several orders of magnitude larger than the linear term’s coefficient. If the
messages are small, most of the message send time is spent on the message latency rather than on useful
data transmission; the more messages there are, the more times the message latency is incurred. If pos-
sible, it is better to store data temporarily and send the data all at once in a single large message than to
send the data piecemeal in several small messages. The trade-off, however, is that storing data temporar-
ily might increase the program’s memory requirements.

24.3 Applying the Model
Now that we have a message send-time model for the “tardis” computer, let’s use the model to analyze
the MandelbrotSetClu2 program’s running time measurements from Chapter 23. The sequential version’s
running time to compute a 40M pixel image was the following:

$ java edu.rit.clu.fractal.MandelbrotSetSeq 6400 6400 -0.75 0.0 2400 \

 1000 0.4 image.pjg

655 msec pre

68992 msec calc

437 msec post

70084 msec total

The parallel version’s running time on two processors, using a dynamic schedule with a chunk size of 10,
was the following:

$ java -Dpj.np=2 -Dpj.schedule="dynamic(10)" \

 edu.rit.clu.fractal.MandelbrotSetClu2 6400 6400 -0.75 0.0 2400 \

 1000 0.4 image.pjg

287 chunks 1

10 msec pre 1

35726 msec calc 1

0 msec post 1

35736 msec total 1

353 chunks 0

11 msec pre 0

35721 msec calc 0

450 msec post 0

36182 msec total 0

Whereas chunks computed by process 0 require no message passing over the network between the
master thread and the worker thread, chunks computed by process 1 do require message passing over the
network. For each chunk, the master thread in process 0 sends a message containing one Range object to

C6910_24 Sec1:391C6910_24 Sec1:391 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

392 CHAPTER 24 Measuring Communication Overhead

the worker thread in process 1; the worker sends a message containing one Range object back to the mas-
ter; and the worker sends a message containing 64,000 integers (10 rows times 6,400 columns of pixel
values) to the master thread. According to the preceding printout, process 1 computed 287 chunks.

To estimate how much time the program spent doing message passing, we use the message send-time
model. A serialized Range object occupies 54 bytes, or B = 432 bits. A message with 64,000 integers
contains B = 2,048,000 bits. Thus, the model predicts that the time to send all the messages was the
following:

 287⋅(2.08×10–4 + 1.07×10–9⋅432 +
 2.08×10–4 + 1.07×10–9⋅432 +
 2.08×10–4 + 1.07×10–9⋅2,048,000)
 = 808 msec

On one processor, the MandelbrotSetSeq program took 655+437 = 1,092 msec for the sequential
portion and 68,992 msec for the parallelizable portion. On two processors, assume that doing 353 chunks
in process 0 and 287 chunks in process 1 resulted in a balanced load. Then, on two processors, the
MandelbrotSetClu2 program should have taken the same amount of time for the sequential portion,
1,092 msec, plus half as much time for the parallelizable portion, 68,992÷2 = 34,496 msec. However,
the latter time was increased by the message-passing time of 808 msec. Thus, the whole thing should
have taken 1,092+34,496+808 = 36,396 msec. This estimate is within 0.6 percent of the measured value,
36,182 msec.

Let’s consider how the message passing affected the program’s sequential fraction. From the sequen-
tial version’s running-time measurements, we would have expected a sequential fraction of (655+437)/
(655+437+68,992) = 0.016. But because of the message passing, the sequential fraction actually was
(655+437+808)/(655+437+808+68,992) = 0.027—nearly twice as much! Without message passing, we
would have expected a maximum speedup of 1/0.016 = 64; with message passing, the actual maximum
speedup was 1/0.027 = 37.

The master-worker pattern improves the Mandelbrot Set program’s performance by balancing the
load. However, the additional message passing reduces the Mandelbrot Set program’s performance by
increasing the sequential fraction. Might there be a way to achieve a balanced load without incurring such
a high performance penalty?

24.4 Design with Reduced Message Passing
In the MandelbrotSetClu2 program, the messages conveying pixel data from the workers to the master
occupy most of the message-passing time. If we want a significant reduction in the message passing,
we have to get rid of these messages. But these messages are needed to collect all the pixel data in one
matrix, so the master process can write the PJG image file. What can we do differently?

One alternative is for each worker to write a separate image file, instead of having the master write a
single image file. That is, each worker writes the row slices it computes directly to its own image file, in
parallel with all the other workers writing their image files. With this design, there’s no longer any need
for the workers to send pixel data messages to the master. To balance the load, the master must still send
row slices (Range objects) to the workers, and each worker must still notify the master when the worker
has finished computing a slice. (The latter messages need not carry any data.) Figure 24.4 shows this

C6910_24 Sec1:392C6910_24 Sec1:392 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

 24.4 Design with Reduced Message Passing 393

design’s overall execution timeline. It is similar to Figure 23.8, except that after notifying the master, a
worker writes the just-computed slice to its image file while waiting for the master to send the next slice.

w
r

co
m

p
u

te
 p

ixe
l d

a
ta

w
r

co
m

p
u

te
 p

ixe
l d

a
ta

w
r

co
m

p
u

te
 p

ixe
l d

a
ta

w
r

co
m

p
u

te
 p

ixe
l d

a
ta

w
r

co
m

p
u

te
 p

ixe
l d

a
ta

w
r

co
m

p
u

te
 p

ixe
l d

a
ta

w
r

co
m

p
u

te
 p

ixe
l d

a
ta w

r
co

m
p

u
te

 p
ixe

l d
a

ta

in
it

in
it

in
it

in
it

in
it

Range

Range

Range

Range

(empty)

Range

(empty)

Range

(empty)

Range

(empty)

Range

(empty)

null

(empty)

null

(empty)

null

(empty)

null

Master Worker

Proc 0 Proc 1
Worker

Proc 2
Worker

Proc 3
Worker

Image
_0

Image
_1

Image
_2

Image
_3

 Figure 24.4 Master-worker program execution timeline with reduced message passing

C6910_24 Sec1:393C6910_24 Sec1:393 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

394 CHAPTER 24 Measuring Communication Overhead

For this design to work, the image file format must support writing the image in multiple chunks, where
the chunks may be noncontiguous, and not all chunks of the image may be present in any one file. The PJG
image file format supports images with multiple chunks scattered among separate files. The PJG image
viewer program can take several PJG files containing parts of an image and display the resulting combined
image. The PJG image viewer program can also store the combined image in a single PJG file if desired.

Eliminating the pixel data messages also improves the program’s memory scalability. No longer does
the master process need to allocate storage for the entire pixel matrix. Each process needs to allocate stor-
age for only one slice, and can reuse this storage to compute each slice.

Furthermore, eliminating the pixel data messages improves the pro gram’s scalability in another
way. In both the previous design and the new design, the computation time is O(n2) for an n×n-pixel
image—each pix el’s value has to be computed. In the previous design, the message-passing time is also
O(n2)—each pixel’s value has to be sent to the master. But in the new design, the message-passing time
is only O(n); the number of messages is proportional to the number of rows (not pixels) in the image,
and each message carries a constant amount of data. Thus, in the new design, the ratio of computation
to communication is O(n). As the problem size scales up, the sequential fraction occupied by message
passing should decrease and the parallel performance should improve—a manifestation of the surface-to-
volume effect. The ratio of computation to communication in the previous design is O(1), so its sequential
fraction and parallel performance do not change much as the problem size scales up (as is apparent in
Figure 23.10).

This new Mandelbrot Set program’s design is an example of a general pattern—the parallel output
files pattern. The program stores its results in multiple output files in parallel, rather than in one output
file sequentially; the multiple output files are combined or post-processed later. The parallel output files
pattern’s benefits are typically improved performance and scalability. In later chapters, we will see addi-
tional examples of the parallel output files pattern.

24.5 Program with Reduced Message Passing
Here is the source code for class MandelbrotSetClu3 using the master-worker pattern for load balancing
along with the parallel output files pattern.

package edu.rit.clu.fractal;

import edu.rit.color.HSB;

import edu.rit.image.PJGColorImage;

import edu.rit.image.PJGImage;

import edu.rit.io.Files;

import edu.rit.mp.IntegerBuf;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommRequest;

import edu.rit.pj.CommStatus;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

C6910_24 Sec1:394C6910_24 Sec1:394 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

 24.5 Program with Reduced Message Passing 395

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

public class MandelbrotSetClu3

 {

 // Communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static double gamma;

 static File filename;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Image matrix.

 static int[][] matrix;

 static PJGColorImage image;

 static PJGImage.Writer writer;

 // Table of hues.

 static int[] huetable;

 // Message tags.

 static final int WORKER_MSG = 0;

 static final int MASTER_MSG = 1;

 // Number of chunks the worker computed.

 static int chunkCount;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

C6910_24 Sec1:395C6910_24 Sec1:395 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

396 CHAPTER 24 Measuring Communication Overhead

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize middleware.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Validate command line arguments.

 if (args.length != 8) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 gamma = Double.parseDouble (args[6]);

 filename = new File (args[7]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

To write the worker’s PJG image file, we still need a pixel data matrix of type int[][]. However,
because we will never write the entire image, we don’t need to allocate storage for both dimensions of the
matrix; we need to allocate storage only for the first dimension (the row references).

 // Allocate storage for pixel matrix row references only.

 matrix = new int [height] [];

 // Prepare to write image row slices to per-worker PJG image

 // file.

 image = new PJGColorImage (height, width, matrix);

 writer =

 image.prepareToWrite

 (new BufferedOutputStream

Each process sets up a writer for its own PJG image file. The Files.fileforRank() method takes the file
name from the command line and appends the process’s rank. For example, if the file name is specified on the
command line as image.pjg, the workers will write files named image_0.pjg, image_1.pjg, and so on.

C6910_24 Sec1:396C6910_24 Sec1:396 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

 24.5 Program with Reduced Message Passing 397

 (new FileOutputStream

 (Files.fileForRank (filename, rank))));

 // Create table of hues for different iteration counts.

 huetable = new int [maxiter+1];

 for (int i = 0; i < maxiter; ++ i)

 {

 huetable[i] = HSB.pack

 (/*hue*/ (float)

 Math.pow (((double)i)/((double)maxiter),gamma),

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 huetable[maxiter] = HSB.pack (1.0f, 1.0f, 0.0f);

 long t2 = System.currentTimeMillis();

 // In master process, run master section and worker section

 // in parallel.

 if (rank == 0)

 {

 new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (new ParallelSection()

 {

 public void run() throws Exception

 {

 masterSection();

 }

 },

 new ParallelSection()

 {

 public void run() throws Exception

 {

 workerSection();

 }

 });

 }

 });

 }

 // In worker process, run only worker section.

 else

 {

C6910_24 Sec1:397C6910_24 Sec1:397 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

398 CHAPTER 24 Measuring Communication Overhead

 workerSection();

 }

 long t3 = System.currentTimeMillis();

 // Close image file.

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println (chunkCount + " chunks " + rank);

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

 /**

 * Perform the master section.

 */

 private static void masterSection()

 throws IOException

 {

 int worker;

 Range range;

 // Set up a schedule object to divide the row range into

 // chunks.

 IntegerSchedule schedule = IntegerSchedule.runtime();

 schedule.start (size, new Range (0, height-1));

 // Send initial chunk range to each worker. If range is null,

 // no more work for that worker. Keep count of active workers.

 int activeWorkers = size;

 for (worker = 0; worker < size; ++ worker)

 {

 range = schedule.next (worker);

 world.send (worker, WORKER_MSG, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

The master section is similar to the one in the MandelbrotSetClu2 program, except the master receives an
empty message from any worker to detect when a worker has finished computing a slice, and the master
does not receive pixel data from the worker.

C6910_24 Sec1:398C6910_24 Sec1:398 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

 24.5 Program with Reduced Message Passing 399

 // Repeat until all workers have finished.

 while (activeWorkers > 0)

 {

 // Receive an empty message from any worker.

 CommStatus status =

 world.receive

 (null, MASTER_MSG, IntegerBuf.emptyBuffer());

 worker = status.fromRank;

 // Send next chunk range to that specific worker. If null,

 // no more work.

 range = schedule.next (worker);

 world.send (worker, WORKER_MSG, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

 }

 /**

 * Perform the worker section.

 */

 private static void workerSection()

 throws IOException

 {

 // Storage for matrix row slice.

 int[][] slice = null;

 // Process chunks from master.

 for (;;)

 {

 // Receive chunk range from master. If null, no more work.

 ObjectItemBuf<Range> rangeBuf = ObjectBuf.buffer();

 world.receive (0, WORKER_MSG, rangeBuf);

 Range range = rangeBuf.item;

 if (range == null) break;

 int lb = range.lb();

 int ub = range.ub();

 int len = range.length();

 ++ chunkCount;

 // Allocate storage for matrix row slice if necessary.

 if (slice == null || slice.length < len)

 {

The worker section starts out the same as the one in the MandelbrotSetClu2 program.

C6910_24 Sec1:399C6910_24 Sec1:399 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

400 CHAPTER 24 Measuring Communication Overhead

 slice = new int [len] [width];

 }

 // Compute all rows and columns in slice.

 for (int r = lb; r <= ub; ++ r)

 {

 int[] slice_r = slice[r-lb];

 double y = ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x = xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Record number of iterations for pixel.

 slice_r[c] = huetable[i];

 }

 }

 // Report completion of slice to master.

 world.send (0, MASTER_MSG, IntegerBuf.emptyBuffer());

At this point, the worker sends an empty message to the master to report completion of its computations.
While this message is traversing the network and the master’s reply is returning, the worker is busy writ-
ing its slice to its own PJG image file. Thus, the file I/O is overlapped with the message passing.

To get the proper row indexes written into the PJG image file, the just-computed slice must occupy
the proper row indexes in the full pixel data matrix. We set this up by copying the row references from
the slice variable to the matrix variable. (There’s no need to copy the row elements.)

C6910_24 Sec1:400C6910_24 Sec1:400 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

 24.5 Program with Reduced Message Passing 401

 // Set full pixel matrix rows to refer to slice rows.

 System.arraycopy (slice, 0, matrix, lb, len);

 // Write row slice of full pixel matrix to image file.

 writer.writeRowSlice (range);

 }

 }

 }

Table 24.2 (at the end of the chapter) lists, and Figure 24.5 plots, the MandelbrotSetClu3 program’s run-
ning-time metrics. Because of the surface-to-volume effect, the speedups and efficiencies become better and
better as the problem size scales up. For a 640M-pixel image, the efficiencies remain above 98 percent, even
as the number of processors increases to 40. Likewise, the EDSF values decrease as the problem size increases.

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 20M
N = 40M
N = 80M

N = 160M

N = 320M

N = 640M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

N = 20M

N = 40M

N = 80M

N = 160M
N = 320M
N = 640M

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 20M

N = 40M

N = 80M

N = 160M
N = 320MN = 640M

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 20M

N = 40M

N = 80M

N = 160M
N = 320MN = 640M

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

Figure 24.5 MandelbrotSetSeq/MandelbrotSetClu3 running-time metrics

C6910_24 Sec1:401C6910_24 Sec1:401 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

402 CHAPTER 24 Measuring Communication Overhead

That the EDSF curves increase as K increases is due to the JIT compiler. For a small problem size
and a large number of processors, the program runs only for a few seconds. This is not enough time for
the JIT compiler to detect hot spots and compile them to machine code. The program thus takes longer
to finish than it would otherwise, and this increases the measured EDSFs. For a large problem size or a
small number of processors, the program runs long enough for the JIT compiler to do its optimizations,
letting the program’s performance achieve its full potential.

24.6 Message Scatter and Gather Time Models
Equation 24.1 models the time to send and receive a point-to-point message. This suffices to analyze the
master-worker Mandelbrot Set program’s running time. But we are also interested in modeling the time
needed for collective communication operations, such as scatter and gather. To do that, we need to know
how Parallel Java implements scatter and gather.

In a cluster parallel program with K processes, a scatter operation transfers the contents of K source
buffers in the root process to one destination buffer in each of the K processes. In the root process, the scat-
ter just copies the source buffer to the destination buffer without sending a message. (If the source buffer
and the destination buffer are the same, the scatter does nothing at all in the root process.) For the other
source buf fers, the scatter sends a message from the root process to each destination process in sequence
(Figure 24.6). Assuming each source buffer has the same number of data items, the time to do a scatter is
(K–1) times the time to send a message. For the “tardis” computer, the message scatter-time model is

 (24.2)

where B is the number of data bits in one source buffer, K is the number of processes, and T is the scatter
time in seconds.

A gather is merely a scatter in reverse (Figure 24.7). Therefore, the message gather time model is
the same as the message scatter time model.

Any message-passing library’s goal is to implement collective communication operations, such as
scatter and gather, so as to minimize the communication time. However, the message pattern that mini-
mizes the communication time might be platform dependent; in particular, it might depend on the cluster
parallel computer’s backend network interconnection technology. Thus, different message passing librar-
ies might implement the same collective communication operation in different ways.

C6910_24 Sec1:402C6910_24 Sec1:402 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

 24.7 Intra-Node Message Passing 403

Proc
0

Proc
1

Proc
2

Proc
3

Figure 24.6 Messages for a scatter

Proc
0

Proc
1

Proc
2

Proc
3

Figure 24.7 Messages for a gather

The Parallel Java Library is targeted primarily for commodity clusters, in which each backend node
has one Ethernet network interface. With that kind of interconnect, the individual messages in the scatter
or gather have to traverse the source or destination node’s single network interface one at a time, leading
to the message patterns in Figures 24.6 and 24.7.

Alternatively, a cluster parallel computer using an interconnection technology other than commod-
ity off-the-shelf Ethernet might have more than one network interface on each node. A platform-specific
message-passing library targeted for that interconnect can then send some or all of the messages simulta-
neously, thus reducing the communication time.

Consequently, any collective communication operation’s message-time model is implementation
dependent. Equation 24.2 pertains specifically to the Parallel Java implementation of scatter and gather.
Message-time models for other collective communication operations discussed in later chapters will like-
wise pertain specifically to the Parallel Java implementation. When analyzing the communication time of
a cluster parallel program with collective communication operations, be sure to use message-time models
that correspond to the message-passing library implementation you are using.

24.7 Intra-Node Message Passing
When a process at one rank sends a message to a process at a different rank in a cluster parallel program,
we’ve tacitly assumed that the destination process is located in a backend node different from the source
process, and that the message must therefore go across the backend network. The data used to derive the
message send-time model (Table 24.1) was in fact obtained by running the two ping-pong processes on
different backend nodes. Equation 24.1 thus represents an inter-node message send-time model for the
“tardis” computer.

C6910_24 Sec1:403C6910_24 Sec1:403 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

404 CHAPTER 24 Measuring Communication Overhead

On a regular cluster parallel computer, where each backend node has just one CPU, every process
automatically runs on a different backend node. But on a hybrid parallel computer, it is possible to run
more than one process on the same node. Figure 24.8 shows how the processes of the Mandelbrot Set
program were assigned to the ten nodes of the “tardis” computer for K=10 and K=14 processes. For K=10
(and below), each process was assigned to a different node, and the program used only one of the four
CPUs on each node. For K=14 (and K=20), two processes were assigned to each node, and the program
used two of the four CPUs on each node. For K=28 and K=40, four processes were assigned to each
node, and the program used all four CPUs on each node.

0 1 2 3 4 5 6 7 8 9

K=10 processes

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

K=14 processes

Figure 24.8 Mandelbrot Set program process allocation and message passing on the “tardis” computer

Figure 24.8 also shows the messages sent back and forth between the master process (rank 0) and the
worker processes (ranks 1 through K–1). For K=10 and below, all inter-process messages are also inter-
node messages that travel over the backend network. (We are not considering messages a process sends to
itself, such as messages between the master and the worker in process 0.) But for K=14 and above, some
inter-process messages are intra-node messages—messages between different processes on the same
node. These messages do not travel over the backend network; rather, they go from the source process to
the node’s operating system kernel, and from there to the destination process. Thus, the inter-node mes-
sage send-time model (Equation 24.1) does not apply to these intra-node messages.

C6910_24 Sec1:404C6910_24 Sec1:404 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

 24.7 Intra-Node Message Passing 405

We need a model for the time needed to send a message between different processes on the same
backend node. Table 24.3 (at the end of the chapter) gives the measurements from the TimeSendByte,
TimeSendInt, and TimeSendDouble programs running with two processes on the same backend node. A
linear regression yields the intra-node message send-time model for the “tardis” computer,

 (24.3)

where T is the message send time in seconds and B is the message data size in bits. The correlation
coefficient is 0.998666. Compared to the inter-node message send-time model, note the smaller latency
(78.9 msec instead of 208 msec) and higher bandwidth (4.423 Gbps instead of 0.937 Gbps) when sending
messages between processes in the same node.

We will use both the inter-node and intra-node message send-time models again in later chapters
when we analyze the running times of our cluster parallel programs.

C6910_24 Sec1:405C6910_24 Sec1:405 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

406 CHAPTER 24 Measuring Communication Overhead

Table 24.1 Message send-time data for the “tardis” computer, inter-node

Bytes N (bits) T (sec) Ints N (bits) T (sec) Doubles N (bits) T (sec)

100 800 1.15E-4 100 3200 1.34E-4 100 6400 1.50E-4

100 800 1.34E-4 100 3200 1.39E-4 100 6400 1.37E-4

100 800 1.34E-4 100 3200 1.34E-4 100 6400 1.36E-4

200 1600 1.34E-4 200 6400 1.35E-4 200 12800 1.69E-4

200 1600 1.15E-4 200 6400 1.34E-4 200 12800 1.99E-4

200 1600 8.70E-5 200 6400 1.34E-4 200 12800 2.01E-4

500 4000 1.35E-4 500 16000 1.50E-4 500 32000 2.01E-4

500 4000 1.33E-4 500 16000 2.01E-4 500 32000 2.00E-4

500 4000 1.34E-4 500 16000 2.01E-4 500 32000 1.95E-4

1000 8000 1.36E-4 1000 32000 1.90E-4 1000 64000 2.67E-4

1000 8000 1.45E-4 1000 32000 1.77E-4 1000 64000 2.57E-4

1000 8000 1.58E-4 1000 32000 1.87E-4 1000 64000 2.60E-4

2000 16000 1.62E-4 2000 64000 2.33E-4 2000 128000 3.33E-4

2000 16000 1.35E-4 2000 64000 2.34E-4 2000 128000 3.35E-4

2000 16000 1.79E-4 2000 64000 2.68E-4 2000 128000 3.35E-4

5000 40000 2.00E-4 5000 160000 3.81E-4 5000 320000 5.62E-4

5000 40000 2.14E-4 5000 160000 3.80E-4 5000 320000 5.66E-4

5000 40000 2.06E-4 5000 160000 3.80E-4 5000 320000 5.64E-4

10000 80000 2.64E-4 10000 320000 5.82E-4 10000 640000 8.85E-4

10000 80000 2.64E-4 10000 320000 5.83E-4 10000 640000 8.88E-4

10000 80000 2.64E-4 10000 320000 5.84E-4 10000 640000 8.83E-4

20000 160000 3.74E-4 20000 640000 9.12E-4 20000 1280000 1.60E-3

20000 160000 3.72E-4 20000 640000 9.00E-4 20000 1280000 1.61E-3

20000 160000 3.73E-4 20000 640000 9.12E-4 20000 1280000 1.61E-3

50000 400000 6.52E-4 50000 1600000 1.98E-3 50000 3200000 3.67E-3

50000 400000 6.52E-4 50000 1600000 1.97E-3 50000 3200000 3.69E-3

50000 400000 6.52E-4 50000 1600000 1.97E-3 50000 3200000 3.69E-3

100000 800000 1.08E-3 100000 3200000 3.73E-3 100000 6400000 7.19E-3

100000 800000 1.08E-3 100000 3200000 3.73E-3 100000 6400000 7.17E-3

100000 800000 1.08E-3 100000 3200000 3.73E-3 100000 6400000 7.19E-3

200000 1600000 1.95E-3 200000 6400000 7.21E-3 200000 12800000 1.39E-2

200000 1600000 1.95E-3 200000 6400000 7.21E-3 200000 12800000 1.38E-2

200000 1600000 1.95E-3 200000 6400000 7.20E-3 200000 12800000 1.40E-2

500000 4000000 4.50E-3 500000 16000000 1.76E-2 500000 32000000 3.41E-2

500000 4000000 4.49E-3 500000 16000000 1.77E-2 500000 32000000 3.42E-2

500000 4000000 4.50E-3 500000 16000000 1.75E-2 500000 32000000 3.42E-2

1000000 8000000 8.82E-3 1000000 32000000 3.46E-2 1000000 64000000 6.84E-2

1000000 8000000 8.82E-3 1000000 32000000 3.43E-2 1000000 64000000 6.85E-2

1000000 8000000 8.82E-3 1000000 32000000 3.47E-2 1000000 64000000 6.84E-2

C6910_24 Sec1:406C6910_24 Sec1:406 1/26/09 11:26:07 AM1/26/09 11:26:07 AM

 24.7 Intra-Node Message Passing 407

 Table 24.2 MandelbrotSetSeq/MandelbrotSetClu3 running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

20M seq 34468 160M seq 279753

20M 1 34157 1.009 1.009 160M 1 277358 1.009 1.009

20M 2 17113 2.014 1.007 0.002 160M 2 138820 2.015 1.008 0.001

20M 3 11457 3.008 1.003 0.003 160M 3 92589 3.021 1.007 0.001

20M 4 8634 3.992 0.998 0.004 160M 4 69475 4.027 1.007 0.001

20M 5 6938 4.968 0.994 0.004 160M 5 55621 5.030 1.006 0.001

20M 6 5810 5.933 0.989 0.004 160M 6 46379 6.032 1.005 0.001

20M 8 4408 7.819 0.977 0.005 160M 8 34843 8.029 1.004 0.001

20M 10 3633 9.487 0.949 0.007 160M 10 27973 10.001 1.000 0.001

20M 14 2729 12.630 0.902 0.009 160M 14 20140 13.890 0.992 0.001

20M 20 2043 16.871 0.844 0.010 160M 20 14234 19.654 0.983 0.001

20M 28 1725 19.981 0.714 0.015 160M 28 10487 26.676 0.953 0.002

20M 40 1440 23.936 0.598 0.018 160M 40 7516 37.221 0.931 0.002

40M seq 70089 320M seq 547530

40M 1 69494 1.009 1.009 320M 1 543269 1.008 1.008

40M 2 34828 2.012 1.006 0.002 320M 2 271814 2.014 1.007 0.001

40M 3 23247 3.015 1.005 0.002 320M 3 181341 3.019 1.006 0.001

40M 4 17470 4.012 1.003 0.002 320M 4 136012 4.026 1.006 0.000

40M 5 13999 5.007 1.001 0.002 320M 5 108803 5.032 1.006 0.000

40M 6 11710 5.985 0.998 0.002 320M 6 90762 6.033 1.005 0.000

40M 8 8835 7.933 0.992 0.002 320M 8 68127 8.037 1.005 0.000

40M 10 7165 9.782 0.978 0.003 320M 10 54593 10.029 1.003 0.001

40M 14 5262 13.320 0.951 0.005 320M 14 39169 13.979 0.998 0.001

40M 20 3821 18.343 0.917 0.005 320M 20 27561 19.866 0.993 0.001

40M 28 2999 23.371 0.835 0.008 320M 28 19929 27.474 0.981 0.001

40M 40 2359 29.711 0.743 0.009 320M 40 14225 38.491 0.962 0.001

80M seq 137280 640M seq 1115408

80M 1 135954 1.010 1.010 640M 1 1108042 1.007 1.007

80M 2 68049 2.017 1.009 0.001 640M 2 554404 2.012 1.006 0.001

80M 3 45442 3.021 1.007 0.001 640M 3 369763 3.017 1.006 0.001

80M 4 34123 4.023 1.006 0.001 640M 4 277406 4.021 1.005 0.000

80M 5 27324 5.024 1.005 0.001 640M 5 221917 5.026 1.005 0.000

80M 6 22806 6.019 1.003 0.001 640M 6 181632 6.141 1.024 -0.003

80M 8 17157 8.001 1.000 0.001 640M 8 138794 8.036 1.005 0.000

80M 10 13825 9.930 0.993 0.002 640M 10 111127 10.037 1.004 0.000

80M 14 10032 13.684 0.977 0.003 640M 14 79567 14.018 1.001 0.000

80M 20 7121 19.278 0.964 0.003 640M 20 55856 19.969 0.998 0.000

80M 28 5381 25.512 0.911 0.004 640M 28 40136 27.791 0.993 0.001

80M 40 4035 34.022 0.851 0.005 640M 40 28336 39.364 0.984 0.001

C6910_24 Sec1:407C6910_24 Sec1:407 1/26/09 11:26:08 AM1/26/09 11:26:08 AM

408 CHAPTER 24 Measuring Communication Overhead

Table 24.3 Message send-time data for the “tardis” computer, intra-node

Bytes N (bits) T (sec) Ints N (bits) T (sec) Doubles N (bits) T (sec)

100 800 3.36E-5 100 3200 3.47E-5 100 6400 3.56E-5

100 800 3.30E-5 100 3200 3.50E-5 100 6400 3.54E-5

100 800 3.28E-5 100 3200 3.54E-5 100 6400 3.66E-5

200 1600 3.26E-5 200 6400 3.66E-5 200 12800 3.90E-5

200 1600 3.26E-5 200 6400 3.67E-5 200 12800 3.79E-5

200 1600 3.45E-5 200 6400 3.62E-5 200 12800 3.88E-5

500 4000 3.35E-5 500 16000 4.02E-5 500 32000 4.78E-5

500 4000 3.40E-5 500 16000 4.00E-5 500 32000 4.76E-5

500 4000 3.40E-5 500 16000 3.91E-5 500 32000 4.68E-5

1000 8000 3.52E-5 1000 32000 4.58E-5 1000 64000 6.21E-5

1000 8000 3.60E-5 1000 32000 4.73E-5 1000 64000 6.35E-5

1000 8000 3.70E-5 1000 32000 4.58E-5 1000 64000 6.17E-5

2000 16000 3.74E-5 2000 64000 6.06E-5 2000 128000 9.18E-5

2000 16000 3.74E-5 2000 64000 6.06E-5 2000 128000 8.94E-5

2000 16000 3.68E-5 2000 64000 6.12E-5 2000 128000 9.32E-5

5000 40000 4.49E-5 5000 160000 1.02E-4 5000 320000 1.65E-4

5000 40000 4.68E-5 5000 160000 1.03E-4 5000 320000 1.68E-4

5000 40000 4.54E-5 5000 160000 1.04E-4 5000 320000 1.72E-4

10000 80000 5.73E-5 10000 320000 1.64E-4 10000 640000 2.54E-4

10000 80000 5.72E-5 10000 320000 1.62E-4 10000 640000 2.64E-4

10000 80000 5.58E-5 10000 320000 1.64E-4 10000 640000 2.59E-4

20000 160000 8.28E-5 20000 640000 2.55E-4 20000 1280000 4.50E-4

20000 160000 8.60E-5 20000 640000 2.52E-4 20000 1280000 4.28E-4

20000 160000 8.13E-5 20000 640000 2.66E-4 20000 1280000 4.43E-4

50000 400000 1.45E-4 50000 1600000 5.30E-4 50000 3200000 9.94E-4

50000 400000 1.46E-4 50000 1600000 5.26E-4 50000 3200000 9.72E-4

50000 400000 1.48E-4 50000 1600000 5.61E-4 50000 3200000 9.69E-4

100000 800000 2.46E-4 100000 3200000 9.95E-4 100000 6400000 1.61E-3

100000 800000 2.41E-4 100000 3200000 1.01E-3 100000 6400000 1.63E-3

100000 800000 2.42E-4 100000 3200000 9.80E-4 100000 6400000 1.64E-3

200000 1600000 4.29E-4 200000 6400000 1.62E-3 200000 12800000 2.93E-3

200000 1600000 4.34E-4 200000 6400000 1.64E-3 200000 12800000 2.83E-3

200000 1600000 4.35E-4 200000 6400000 1.63E-3 200000 12800000 2.88E-3

500000 4000000 1.02E-3 500000 16000000 3.60E-3 500000 32000000 7.44E-3

500000 4000000 1.00E-3 500000 16000000 3.54E-3 500000 32000000 6.92E-3

500000 4000000 1.01E-3 500000 16000000 3.85E-3 500000 32000000 6.82E-3

1000000 8000000 1.84E-3 1000000 32000000 7.76E-3 1000000 64000000 1.50E-2

1000000 8000000 1.84E-3 1000000 32000000 7.83E-3 1000000 64000000 1.45E-2

1000000 8000000 1.80E-3 1000000 32000000 7.76E-3 1000000 64000000 1.38E-2

C6910_24 Sec1:408C6910_24 Sec1:408 1/26/09 11:26:08 AM1/26/09 11:26:08 AM

409

C H A P T E R 25
in which we design a cluster parallel program that requires broadcasting messages;

we learn how a broadcast is performed; we derive a mathematical model for the

program’s computation plus communication time; and we consider the implications for

cluster parallel program design

Broadcast

C6910_25.indd 409C6910_25.indd 409 2/2/09 12:37:52 PM2/2/09 12:37:52 PM

C H A P T E R25 Broadcast

25.1 Floyd’s Algorithm on a Cluster
Recall the all-pairs shortest-paths problem from Chapter 16. We are given an input n×n distance matrix
d representing a graph with n vertices, and we are to compute an output distance matrix giving the length
of the shortest path between each pair of vertices using Floyd’s Algorithm:
 for i = 0 to n–1
 for r = 0 to n–1
 for c = 0 to n–1
 drc ← min (drc, dri + dic)

We can design the cluster parallel version of Floyd’s Algorithm the same way we designed the
first cluster parallel version of the Mandelbrot Set program in Chapter 23 (class edu.rit.clu.fractal.
MandelbrotSetClu). The distance matrix is divided into row slices. Each process in the parallel program
allocates storage for, and computes, its own slice. This time, the initial distance matrix comes from a file.
One process, say process 0, reads the input file and scatters the row slices to all the processes. After run-
ning Floyd’s Algorithm, the row slices are gathered back into process 0, which writes the result into the
output file. Figure 25.1 shows this design’s execution timeline.

However, as we saw in Chapter 24, this design has too much message passing. We can use the
parallel output files pattern to eliminate the final gather and reduce the program’s running time. Each
process writes its slice of the final distance matrix into a separate output file in parallel with the other
processes; these partial output files can later be combined into a single complete output file, if desired.

Furthermore, there’s no need to do the initial scatter. We can use the parallel input file pattern—
the counterpart of the parallel output files pattern, but on the input side. Each process reads only its
own slice of the initial distance matrix from the input file in parallel with the other processes. To do so,
each process must skip over the unneeded distance matrix elements and commence reading elements at
the proper position in the input file. Skipping data can be done efficiently; most operating systems let
you “seek” directly to a given position in a file without reading all the intervening data. Class edu.rit.
io.DoubleMatrixFile provides operations for reading slices of a matrix from a file as well as for reading
the entire matrix.

Figure 25.2 shows the overall execution timeline of the cluster parallel Floyd’s Algorithm program.
This timeline assumes all the backend nodes can access the input file—as is possible, for example, if the
input file is stored on a shared file server. If the nodes cannot access shared file storage, the input file
must be copied to each node before the program starts.

C6910_25.indd 410C6910_25.indd 410 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

 25.1 Floyd’s Algorithm on a Cluster 411

in
it

co
m

p
u

te
 d

ista
n

ce
 m

a
trix

Proc
0

in
it

co
m

p
u

te
 d

ista
n

ce
 m

a
trix

Proc
1

in
it

co
m

p
u

te
 d

ista
n

ce
 m

a
trix

Proc
2

in
it

co
m

p
u

te
 d

ista
n

ce
 m

a
trix

Proc
3

re
a

d

scatter
distance
matrix

w
rite

gather
distance
matrix

input

output

Figure 25.1 Parallel program execution timeline with scatter/gather
in

it
rd

co
m

p
u

te
 d

ista
n

ce
 m

a
trix

w
r

output
_0

Proc
0

in
it

rd
co

m
p

u
te

 d
ista

n
ce

 m
a

trix
w

r

output
_1

Proc
1

in
it

rd
co

m
p

u
te

 d
ista

n
ce

 m
a

trix
w

r

output
_2

Proc
2

in
it

rd
co

m
p

u
te

 d
ista

n
ce

 m
a

trix
w

r

output
_3

Proc
3

input

Figure 25.2 Parallel program execution timeline with
parallel input file and parallel output files

C6910_25.indd 411C6910_25.indd 411 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

412 CHAPTER 25 Broadcast

25.2 Collective Communication: Broadcast
Now that we’ve dealt with reading the input and writing the output, let’s turn our attention to the compu-
tational heart of Floyd’s Algorithm.

Suppose we are computing a small, 8×8-element distance matrix (d) in a cluster parallel program
with four processes (Figure 25.3). Process 0 has rows 0–1; process 1, rows 2–3; process 2, rows 4–5; and
process 3, rows 6–7. Consider what has to happen on the first outer loop iteration, where i = 0. Every
process has to execute the following statement for all rows r in the process’s slice and for all columns c:

 drc ← min (drc, dr0 + d0c)
That is, every process needs to access elements in row 0. This is no problem for process 0. But processes
1, 2, and 3 don’t have row 0. How can they get it? Process 0 must send it to them in a message. Because
every process needs to access row 0, process 0 sends row 0 using the broadcast collective communication
operation. After the broadcast, all the processes execute the middle and inner loops. Then, at the begin-
ning of the second outer loop iteration, where i = 1, process 0 broadcasts row 1. In general, at the begin-
ning of outer loop iteration i, the process that owns row i broadcasts row i. The cluster parallel algorithm
is the following:
 for i = 0 to n–1
 Broadcast row i of d
 parallel for r = 0 to n–1
 for c = 0 to n–1
 drc ← min (drc, dri + dic)

The outer loop is not a parallel loop, so every process executes every outer loop iteration, beginning
with the broadcast. The process that owns row i acts as the root of the broadcast and sets up a source buf-
fer referring to row i. The other processes set up a destination buffer for the broadcast (row_i_buf) that
refers to an extra row’s worth of storage (row_i). After the broadcast, each destination process uses a ref-
erence to this extra storage in lieu of a reference to (nonexistent) row i in the matrix. The source process,
of course, can use a reference to the actual row i. Figure 25.3 shows the source and destination buffers for
the broadcast as well as the reference to row i (d_i) in each process.

To execute the middle loop in a parallel fashion, the loop iterations are partitioned among the pro-
cesses, just as the matrix row storage is partitioned. Each process computes its own subrange of the rows
in parallel with the other processes. In the inner loop, another nonparallel loop, every process computes
all the matrix columns.

Besides communicating row i, the broadcast operation acts as a synchronization point that enforces
the sequential dependencies in Floyd’s Algorithm. The broadcast operation blocks until all the processes
have reached the top of the outer loop and have called the communicator’s broadcast() method, and
then the broadcast takes place and the broadcast() method returns. None of the processes commence
the next outer loop iteration until all the processes have finished the previous outer loop iteration.

C6910_25.indd 412C6910_25.indd 412 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

 25.2 Collective Communication: Broadcast 413

d

Process 0

null

nul l

nul l

nul l

nul l

nul l

0.0 2.5 7.9 4.9 7.6 8.6 4.4 0.8

6.2 1.5 2.7 0.9 2.1 4.2 7.4 1.1

d_i

DoubleBuf

d

Process 1

null

nul l

nul l

nul l

nul l

nul l

2.2 8.7 8.4 8.9 3.3 1.9 7.1 4.0

3.2 3.9 4.3 6.1 9.6 3.6 1.4 4.8

d_i

row_i

DoubleBuf

row_i_buf

broadcast

d

Process 2

null

nul l

nul l

nul l

nul l

nul l

9.0 4.5 4.1 9.5 7.2 1.2 1.6 4.1

2.8 4.0 7.2 7.9 4.3 5.9 1.9 2.4

d_i

row_i

DoubleBuf

row_i_buf

broadcast

d

Process 3

null

nul l

nul l

nul l

nul l

nul l

2.3 1.3 5.4 5.1 1.5 0.9 5.2 7.3

7.1 5.4 9.4 5.6 9.1 1.9 6.4 3.1

d_i

row_i

DoubleBuf

row_i_buf

broadcast

broadcast

Figure 25.3 Distance matrix sliced among K=4 processes, with process 0 broadcasting row 0

C6910_25.indd 413C6910_25.indd 413 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

414 CHAPTER 25 Broadcast

25.3 Parallel Floyd’s Algorithm Program
Taking the foregoing design considerations into account, here is the code for the cluster parallel version
of the Floyd’s Algorithm program, class edu.rit.clu.network.FloydClu.

package edu.rit.clu.network;

import edu.rit.io.DoubleMatrixFile;

import edu.rit.io.Files;

import edu.rit.mp.DoubleBuf;

import edu.rit.pj.Comm;

import edu.rit.util.Range;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

public class FloydClu

 {

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 // Number of nodes.

 static int n;

 // Distance matrix.

 static double[][] d;

 // Row broadcast from another process.

 static double[] row_i;

 static DoubleBuf row_i_buf;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Throwable

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

C6910_25.indd 414C6910_25.indd 414 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

 25.3 Parallel Floyd’s Algorithm Program 415

 size = world.size();

 rank = world.rank();

 // Parse command line arguments.

 if (args.length != 2) usage();

 File infile = new File (args[0]);

 File outfile = new File (args[1]);

 // Prepare to read distance matrix from input file; determine

 // matrix dimensions.

 DoubleMatrixFile in = new DoubleMatrixFile();

 DoubleMatrixFile.Reader reader =

 in.prepareToRead

 (new BufferedInputStream

 (new FileInputStream (infile)));

 d = in.getMatrix();

 n = d.length;

 // Divide distance matrix into equal row slices.

 Range[] ranges = new Range (0, n-1) .subranges (size);

 Range myrange = ranges[rank];

 int mylb = myrange.lb();

 int myub = myrange.ub();

 // Read just this process’s row slice of the distance matrix.

 reader.readRowSlice (myrange);

 reader.close();

 // Allocate storage for row broadcast from another process.

 row_i = new double [n];

 row_i_buf = DoubleBuf.buffer (row_i);

 long t2 = System.currentTimeMillis();

 // Run Floyd’s Algorithm.

 // for i = 0 to N-1

 // for r = 0 to N-1

 // for c = 0 to N-1

 // D[r,c] = min (D[r,c], D[r,i] + D[i,c])

 int i_root = 0;

 for (int i = 0; i < n; ++ i)

 {

 double[] d_i = d[i];

C6910_25.indd 415C6910_25.indd 415 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

416 CHAPTER 25 Broadcast

The variable i_root keeps track of which process owns row i of the matrix and hence is the root of the
broadcast. Whenever i goes outside the range of the current root’s row slice, the root advances to the next
process.

 // Determine which process owns row i.

 if (! ranges[i_root].contains (i)) ++ i_root;

 // Broadcast row i from owner process to all processes.

 if (rank == i_root)

 {

 world.broadcast (i_root, DoubleBuf.buffer (d_i));

 }

 else

 {

 world.broadcast (i_root, row_i_buf);

 d_i = row_i;

 }

 // Inner loops over rows in my slice and over all columns.

 for (int r = mylb; r <= myub; ++ r)

 {

 double[] d_r = d[r];

 for (int c = 0; c < n; ++ c)

 {

 d_r[c] = Math.min (d_r[c], d_r[i] + d_i[c]);

 }

 }

 }

 long t3 = System.currentTimeMillis();

 // Write distance matrix slice to a separate output file in

 // each process.

 DoubleMatrixFile out = new DoubleMatrixFile (n, n, d);

 DoubleMatrixFile.Writer writer =

 out.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream

 (Files.fileForRank (outfile, rank))));

 writer.writeRowSlice (myrange);

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

C6910_25.indd 416C6910_25.indd 416 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

 25.4 Message Broadcast Time Model 417

25.4 Message Broadcast Time Model
Before looking at the running-time measurements for the FloydClu program, let’s derive a model to
predict the running time for the computation portion (omitting the file I/O). To do that, we need to derive
a model to predict the time needed to broadcast a message, analogous to the message send time model
in Chapter 24. To do that, we need to understand how the Parallel Java Library implements message
broadcasting.

Suppose there are K=8 processes in the parallel program and process 0 is the root of the broadcast.
The naive way to broadcast would be for process 0 to send a copy of the message to each process in turn
(Figure 25.4). Done this way, broadcasting a message takes (K–1) times as long as sending a message to
one process.

But broadcasting this way fails to take advantage of the cluster’s ability to do several things at once
in separate processors. The Parallel Java Library accomplishes the broadcast in less time by sending mes-
sages in parallel (Figure 25.5). First, process 0 sends the message to process 1. Because process 1 now
has a copy of the message, process 1 can send the message to process 3 while at the same time process
0 sends the message to process 2. Now processes 0–3 all have a copy of the message, and to finish the
broadcast, processes 0–3 simultaneously send the message to processes 4–7, respectively.

Done this way, broadcasting a message takes (log2 K) times as long as sending a message to one pro-
cess. In other words, a broadcast takes O(log K) time instead of O(K) time. A broadcast remains efficient
even as the program scales up to many processes. However, note that in the final round, half the processes
are sending messages to the other half at the same time. To avoid diminishing the program’s performance,
the cluster backend network must have a high bisection bandwidth, as stated in Chapter 2.

Figure 25.6 shows the pattern of messages sent from process to process during a broadcast. Because
the graph of communicating processes is a tree, this pattern is called a broadcast tree. The process at the
root of the tree, naturally, is the root of the broadcast. The message pattern can be drawn to emphasize the
levels in the broadcast tree (the first view in Figure 25.6) or to depict the processes occupying the corners
of a hypercube (the second view). In the latter view, each round of messages is sent along a different
dimension of the hypercube.

Now we can derive a formula for the time to do a broadcast: it is the time to send a message multi-
plied by the number of levels in the broadcast tree. The former quantity is given by the message send-
time model, such as Equation 24.1 for the “tardis” computer. The number of levels is ceil(log2 K), where
ceil is the ceiling function (the smallest integer greater than or equal to the argument). Putting the two
together gives the message broadcast time model for the “tardis” computer,

 (25.1)

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

 }

C6910_25.indd 417C6910_25.indd 417 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

418 CHAPTER 25 Broadcast

where T is the broadcast time in seconds, N is the message size in bits, and K is the number of processes.
This formula assumes an ideal bisection bandwidth, so that no matter how many messages are sent during
a round, the round takes the same time as sending one message.

Proc
0

Proc
1

Proc
2

Proc
3

Proc
4

Proc
5

Proc
6

Proc
7

Figure 25.4 Broadcast by sending one message at a time

Proc
0

Proc
1

Proc
2

Proc
3

Proc
4

Proc
5

Proc
6

Proc
7

Figure 25.5 Broadcast by sending multiple messages in parallel

C6910_25.indd 418C6910_25.indd 418 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

 25.5 Computation Time Model 419

0

1

2 3

4 56 7

0 1

2 3

4 5

6 7

Figure 25.6 Broadcast message pattern for K = 8 processes with root process 0, drawn as a three-level tree and
as a three-dimensional hypercube

25.5 Computation Time Model
Now we can derive a model for the running time of the computation portion of the cluster parallel Floyd’s
Algorithm program. The running time consists of the time to calculate the distance matrix plus the time
to do all the broadcasts.

We can determine the time to calculate the distance matrix by measuring the sequential version’s
running time. For an n×n distance matrix, the sequential version’s running time is proportional to n3; this
includes the loop control statements and the assignment statements in the inner loop. We will assume
that the running times for the loop control statements in the middle and outer loops, which are propor-
tional to n2 and n respectively, are negligible compared to the inner loop’s running time. Table 25.1 gives
the running-time measurements for the sequential version on the “tardis” computer. If we fit the data to
the power function model Tcalc(n,1) = a·n3, we find the coefficient a = 8.86×10–9 gives the best fit. (See
Appendix C for further information about fitting to a power function model.) Table 25.1 also shows the
Tcalc(n,1) values computed by the model.

Table 25.1 Sequential version running times

n Measured Tcalc(n,1) (sec) Model Tcalc(n,1) (sec)

2000 67.942 70.889

2520 136.506 141.805

3180 269.528 284.952

4000 589.131 567.115

5040 1182.404 1134.443

6360 2474.565 2279.619

C6910_25.indd 419C6910_25.indd 419 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

420 CHAPTER 25 Broadcast

1 1 0 100 1000
1E−1

1E0

1E1

Communication Calculation

Total

Running Time vs. Processors (n=1000)

Processors, K

R
u

n
n

in
g

 T
im

e
,

T
(n

,K
)

(s
ec

)

Figure 25.7 T(n,K) predicted by computation time model

When we run the parallel program on K processors, the calculation speeds up by a factor of K. The paral-
lel program’s calculation time therefore is the following:

 (25.2)

For an n×n distance matrix, the parallel version does n broadcasts. Each broadcast consists of n
double values, or 64n bits. Plugging this into Equation 25.1, the parallel program’s broadcast time is the
following:

 (25.3)

Adding Equations 25.2 and 25.3 together gives the computation time model for the parallel program,

 (25.4)

where n is the number of vertices in the network (the number of rows and columns in the distance
matrix), K is the number of processors, and T is the running time in seconds.

Consider what the computation time model tells us about the pro gram’s performance as the number
of processors K scales up. The model has one term proportional to (1/K) and one term proportional to

C6910_25.indd 420C6910_25.indd 420 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

 25.5 Computation Time Model 421

(log K); that is, the model has one term that diminishes and one term that increases as K increases, as
plotted in Figure 25.7 for n = 1,000. (The second term goes up by steps because of the ceiling function.)
For small K, the first term dominates, and the running time decreases as K increases. But at some point
the second term becomes larger than the first term. After that, the running time starts going up again.

0 100 200 300 400 500 600 700 800 900 1000
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

n=1000

n=2000

n=4000

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p(
n

,K
)

Figure 25.8 Speedup(n,K) predicted by computation

0 100 200 300 400 500 600 700 800 900 1000
0

2 5

5 0

7 5

100

125

150

175

200

225

250

T= 1 0 0

T= 2 0 0

T= 5 0 0

Sizeup vs. Processors

Processors, K

S
iz

e
u

p(
T

,K
)

Figure 25.9 Sizeup(T,K) predicted by computation
time model time model

The speedup predicted by the computation time model is the following:

 (25.5)

As shown in Figure 25.8, the speedup starts out increasing as K increases, but at some point the speedup
starts going back down. (The vertical scale is exaggerated to make the speedup reduction visible.) Unlike
Amdahl’s Law, the computation time model for the Floyd’s Algorithm cluster parallel program predicts
that the speedup can achieve only a certain maximum value, after which adding more processors causes
a slowdown rather than a further speedup. The slowdown, of course, is due to the always-increasing
communication time. Not only does message passing in a cluster parallel program limit the speedup by
increasing the sequential fraction, message passing can sometimes turn a speedup into a slowdown. This
is another reason to design cluster parallel programs to use the fewest possible messages.

What is the maximum speedup the program can achieve? To find out, we need the value of K that
results in the minimum running time. To find that value, we differentiate T(n,K) with respect to K, set the
derivative equal to 0, and solve for K. To simplify finding the derivative, we approximate ceil(log2 K) as
just (log2 K), which is (log K/log 2). Then the derivative is the following:

 (25.6)

C6910_25.indd 421C6910_25.indd 421 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

422 CHAPTER 25 Broadcast

Set the derivative equal to 0 and multiply both sides by K2:

 (25.7)

Now solve for K:

 (25.8)

For a certain number of vertices n, Equation 25.8 gives an estimate for the number of processors K that
yields the smallest running time, hence the largest speedup. We refer to this value as Kbest. For n = 1,000
vertices, the maximum speedup comes at Kbest ≈ 22. We can get the actual maximum speedup value by
plugging Kbest into Equation 25.5; for example, Speedup(1,000, 22) = 4.963. Notice what Equation 25.8
says about the program’s performance as the number of vertices n increases. Because Kbest is O(n), as the
number of vertices increases we can scale up to more processors before hitting the slowdown.

What about sizeup? The problem size N is the number of calculations the program has to do, N = n3.
The sizeup is the following:

 (25.9)

To compute the sizeup, we must first compute the number of vertices n in the graph that can be solved in
time T on K processors, n(T,K). For a given T and K, Equation 25.4 becomes a cubic equation in n, and
solving the cubic equation yields the value of n. (See Appendix C for how to solve a cubic equation.)
Figure 25.9 plots the sizeups predicted for the cluster parallel Floyd’s Algorithm program. While less than
ideal, the sizeups scale up much better than the speedups as K increases. Consider a 4,000-vertex graph,
which takes about 500 seconds to run on one processor. On 1,000 processors, the sizeup for this running
time is about 200, but the speedup for this problem size is only about 30. Once again, we see that going for
sizeup is preferable to going for speedup.

25.6 Parallel Floyd’s Algorithm Performance
Table 25.2 (at the end of the chapter) lists, and Figure 25.10 plots, the FloydClu program’s perfor-

mance on the “tardis” parallel computer. The running times are for the calculation portion only, and do
not include the distance matrix file I/O. The program was run on distance matrices with the following
listed numbers of vertices n and problem sizes N = n3.

C6910_25.indd 422C6910_25.indd 422 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

 25.6 Parallel Floyd’s Algorithm Performance 423

n N
2,000 8,000,000,000 (8G)

2,520 16,003,008,000 (16G)

3,180 32,157,432,000 (32G)

4,000 64,000,000,000 (64G)

5,040 128,024,064,000 (128G)

6,360 257,259,456,000 (256G)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 8G

N = 16G
N = 32G

N = 64G
N = 128G
N = 256G

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

N = 8G

N = 16G

N = 32G

N = 64G
N = 128G

N = 256G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 8G
N = 16G

N = 32G
N = 64G

N = 128G

N = 256G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 8G

N = 16G
N = 32G

N = 64G
N = 128G
N = 256G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

 Figure 25.10 FloydSeq/FloydClu running-time metrics

C6910_25.indd 423C6910_25.indd 423 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

424 CHAPTER 25 Broadcast

Each distance matrix input file was created with the following command, where $n stands for one of the
preceding n values:

$ java edu.rit.smp.network.FloydRandom 142857 0.25 $n in$n.dat

The effect of the message broadcasts on the speedups, efficiencies, and EDSFs is clearly visible in
the plots. The program scales up well until about 10 processors, and then the metrics rapidly get worse.
We don’t see the slowdown predicted by the computation time model because the “tardis” computer lacks
enough processors to scale up to the point where the slowdown starts. (For n = 2,000, Equation 25.8 says
Kbest ≈ 71, but the “tardis” computer only has 40 processors.)

How well does the computation time model predict the FloydClu pro gram’s running time? Equation
25.4 assumes all messages are inter-node messages. Thus, Equation 25.4 is applicable when each process
runs on a different node, as is the case for K=10 and below. But for K=14 and 20, each node runs two
processes (Figure 25.11). In this case, the first round of the broadcast is an intra-node message, and the
other rounds are inter-node. The broadcast time is therefore the time to send one intra-node message plus
the time to send ceil(log2 K)–1 inter-node messages:

 (25.10)

For K=28 and 40, each node runs four processes. In this case, the first two message rounds are
intra-node, and the remaining rounds are inter-node. The broadcast time is therefore the time to send two
intra-node messages plus the time to send ceil(log2 K)–2 inter-node messages:

 (25.11)

Figure 25.12 plots the measured running times, and the running times predicted by Equation 25.4,
25.10, or 25.11, as appropriate, for a graph with n = 2,000 vertices (N = 8G). The predicted time is within
8 percent of the actual time for the majority of the data points and is within 15 percent for all the data
points.

To sum up, the Floyd’s Algorithm program’s running time measurements reinforce what we said
in Chapter 24: To get good parallel performance, the program must have much more computation than
communication. Unfortunately, the cluster parallel version of Floyd’s Algorithm doesn’t have enough
computation relative to communication, at least not for the problem sizes we measured. A modern CPU
can execute the statement “drc ← min (drc, dri + dic)” in almost no time at all; broadcasting a message
takes forever, comparatively speaking. Floyd’s Algorithm is just not well suited to run on a cluster
parallel computer.

C6910_25.indd 424C6910_25.indd 424 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

 25.6 Parallel Floyd’s Algorithm Performance 425

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

0 1

2 3

4 5

6 7

8 9

1 0 1 1

1 2 1 3

1 4 1 5

1 6 1 7

1 8 1 9

2 0 2 1

2 2 2 3

2 4 2 5

2 6 2 7

Figure 25.11 Floyd’s Algorithm program process allocation and message broadcasting on the “tardis” computer

1 1 0 100
1E0

1E1

1E2

N = 8G

Actual
Model

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

Figure 25.12 FloydClu predicted and actual running times

C6910_25.indd 425C6910_25.indd 425 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

426 CHAPTER 25 Broadcast

Table 25.2 FloydSeq/FloydClu running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

8G seq 67942 64G seq 589131

8G 1 68971 0.985 0.985 64G 1 552104 1.067 1.067

8G 2 35478 1.915 0.958 0.029 64G 2 280431 2.101 1.050 0.016

8G 3 23767 2.859 0.953 0.017 64G 3 187085 3.149 1.050 0.008

8G 4 17920 3.791 0.948 0.013 64G 4 142842 4.124 1.031 0.012

8G 5 14764 4.602 0.920 0.018 64G 5 114086 5.164 1.033 0.008

8G 6 12421 5.470 0.912 0.016 64G 6 96536 6.103 1.017 0.010

8G 8 9470 7.174 0.897 0.014 64G 8 72898 8.082 1.010 0.008

8G 10 9712 6.996 0.700 0.045 64G 10 61058 9.649 0.965 0.012

8G 14 7634 8.900 0.636 0.042 64G 14 45288 13.009 0.929 0.011

8G 20 6021 11.284 0.564 0.039 64G 20 33180 17.756 0.888 0.011

8G 28 5497 12.360 0.441 0.046 64G 28 31699 18.585 0.664 0.023

8G 40 5232 12.986 0.325 0.052 64G 40 25090 23.481 0.587 0.021

16G seq 136506 128G seq 1182404

16G 1 135688 1.006 1.006 128G 1 1093355 1.081 1.081

16G 2 69217 1.972 0.986 0.020 128G 2 564624 2.094 1.047 0.033

16G 3 48065 2.840 0.947 0.031 128G 3 377108 3.135 1.045 0.017

16G 4 35832 3.810 0.952 0.019 128G 4 286107 4.133 1.033 0.016

16G 5 28916 4.721 0.944 0.016 128G 5 260432 4.540 0.908 0.048

16G 6 24558 5.559 0.926 0.017 128G 6 218056 5.422 0.904 0.039

16G 8 18719 7.292 0.912 0.015 128G 8 163085 7.250 0.906 0.028

16G 10 17245 7.916 0.792 0.030 128G 10 133669 8.846 0.885 0.025

16G 14 12993 10.506 0.750 0.026 128G 14 98180 12.043 0.860 0.020

16G 20 10324 13.222 0.661 0.027 128G 20 69919 16.911 0.846 0.015

16G 28 9604 14.213 0.508 0.036 128G 28 60279 19.616 0.701 0.020

16G 40 8330 16.387 0.410 0.037 128G 40 46541 25.406 0.635 0.018

32G seq 269528 256G seq 2474565

32G 1 273386 0.986 0.986 256G 1 2598537 0.952 0.952

32G 2 140863 1.913 0.957 0.031 256G 2 1301244 1.902 0.951 0.002

32G 3 94860 2.841 0.947 0.020 256G 3 865066 2.861 0.954 -0.001

32G 4 71861 3.751 0.938 0.017 256G 4 650250 3.806 0.951 0.000

32G 5 58229 4.629 0.926 0.016 256G 5 522983 4.732 0.946 0.002

32G 6 48270 5.584 0.931 0.012 256G 6 464837 5.324 0.887 0.015

32G 8 36806 7.323 0.915 0.011 256G 8 350066 7.069 0.884 0.011

32G 10 32171 8.378 0.838 0.020 256G 10 284977 8.683 0.868 0.011

32G 14 23892 11.281 0.806 0.017 256G 14 206371 11.991 0.856 0.009

32G 20 17960 15.007 0.750 0.017 256G 20 147288 16.801 0.840 0.007

32G 28 17314 15.567 0.556 0.029 256G 28 116903 21.168 0.756 0.010

32G 40 14668 18.375 0.459 0.029 256G 40 89872 27.534 0.688 0.010

C6910_25.indd 426C6910_25.indd 426 2/2/09 12:37:53 PM2/2/09 12:37:53 PM

427

C H A P T E R 26
in which we learn how to implement the reduction pattern in a cluster parallel

program; we learn how to reduce single variables and arrays; and we see how

reduction is performed efficiently on a cluster

Reduction, Part 3

C6910_26.indd 427C6910_26.indd 427 2/2/09 11:32:59 AM2/2/09 11:32:59 AM

C H A P T E R26 Reduction, Part 3

26.1 Estimating pi on a Cluster
In Chapter 13, we used this Monte Carlo algorithm to compute an estimate for π (Figure 26.1):

C ← 0
Repeat N times:

x ← random (0, 1)
y ← random (0, 1)
If x2 + y2 ≤ 1: C ← C + 1

Print 4C/N as the estimate for π

Figure 26.1 A dartboard for estimating π

To run this algorithm on a cluster parallel computer, we will do as we did on the SMP parallel com-
puter. We will partition the N iterations among the K processes, each process doing N/K iterations. Also,
each process will update its own local counter. After all the iterations, the processes’ local counters will
be reduced into one counter using addition as the reduction operator. That counter will then be used to
calculate π.

In the SMP parallel version, we had a choice between two designs. In one, all the threads updated a
global shared counter variable directly. In the other, each thread updated its own local counter variable,
and then the local counters were reduced into a shared global counter. We chose the second alternative
because it gave better performance.

C6910_26.indd 428C6910_26.indd 428 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

 26.2 Collective Communication: Reduction 429

In the cluster parallel version, we have a similar choice. We could choose to have one global counter
variable in one of the processes, process 0, say. But because variables can’t be shared between processes
on a cluster, the other processes would have to send a message to process 0 each time they needed to
increment the counter. All this message passing would kill the cluster program’s performance—just as
all the thread synchronization on the global shared variable decreased the SMP program’s performance.
Instead, we will go with the reduction pattern for the cluster program. That way, only one round of mes-
sage passing has to happen, and the pro gram’s performance should be decreased only a little.

Likewise, each process will have its own local pseudorandom number generator (PRNG) rather than
using a shared global PRNG. To ensure that the cluster parallel version computes the same answer as the
sequential version, we will use the sequence splitting technique. Each process will initialize its PRNG
with the same seed, and then skip its PRNG ahead the proper amount.

26.2 Collective Communication: Reduction
Before looking at the code for the cluster parallel π program, let’s consider how a cluster parallel pro-
gram sends messages among the processes to do a reduction.

Reduction is the opposite of broadcast. Instead of disseminating data from one process to all K pro-
cesses, reduction concentrates data from all K processes into one process. Consequently, like a broadcast,
a reduction can be done with ceil(log2 K) rounds of messages (Figure 26.2). For a reduction with K = 8
processes into root process 0, processes 4–7 first send messages to processes 0–3; then processes 2 and 3
send messages to processes 0 and 1; and, finally, process 1 sends a message to process 0. As each process
receives a message, it combines the data in the message with the data in the process’s own buffer using
the reduction operator.

Proc
0

Proc
1

Proc
2

Proc
3

Proc
4

Proc
5

Proc
6

Proc
7

Figure 26.2 Reduction by sending multiple messages in parallel

C6910_26.indd 429C6910_26.indd 429 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

430 CHAPTER 26 Reduction, Part 3

0

1

2 3

4 56 7

0 1

2 3

4 5

6 7

Figure 26.3 Reduction message pattern for K = 8 processes with root process 0, drawn as a
three-level tree and as a three-dimensional hypercube

Figure 26.3 shows the pattern of messages sent from process to process during a reduction—the
reduction tree. The process at the root of the tree is the root of the reduction. Figure 26.4 shows what
happens to the data buffers during a reduction operation among K = 8 processes into root process 0 using
addition as the reduction operator. Each buffer has an initial value. During the first round of message
passing, process 4 sends its buffer value, 46, to process 0; process 0 feeds its buffer value, 56, along with
the 46 from process 4 into the reduction operator; process 0 stores the result, 102, back into its buffer.
The same happens in parallel between processes 5 and 1, 6 and 2, and 7 and 3. In the second round of
message passing, process 2’s buffer (which holds a reduction result from the first round) is reduced into
process 0’s buffer; in parallel, process 3’s buffer is reduced into process 1’s buffer. In the third and final
message round, process 1’s buffer is reduced into process 0’s buffer, which ends up holding the sum
of all the initial buffer values. The other processes’ buffers end up holding intermediate values in the
reduction.

C6910_26.indd 430C6910_26.indd 430 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

 26.2 Collective Communication: Reduction 431

0
5 6

1
7 5

2
8 5

3
2 7

4
4 6

5
6 9

6
7 0

7
8 2

0
102

1
144

2
155

3
109

4
4 6

5
6 9

6
7 0

7
8 2

 Initial data buffer contents After first round of messages

0
257

1
253

2
155

3
109

4
4 6

5
6 9

6
7 0

7
8 2

0
510

1
253

2
155

3
109

4
4 6

5
6 9

6
7 0

7
8 2

 After second round of messages After third round of messages

Figure 26.4 Contents of the data buffers during a reduction operation with addition as the
reduction operator

You don’t need to code all this message passing yourself. All you have to code is this statement in
each process.

 world.reduce (0, buf, IntegerOp.SUM);

The Parallel Java message passing layer then sends and receives all the messages and invokes the reduc-
tion operator. However, it’s important to understand what’s going on under the hood in the reduce()
method.

C6910_26.indd 431C6910_26.indd 431 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

432 CHAPTER 26 Reduction, Part 3

26.3 Parallel pi Program with Reduction
Here is the code for the cluster parallel version of the Monte Carlo π program, class edu.rit.clu.
monte.PiClu.

package edu.rit.clu.monte;

import edu.rit.mp.buf.LongItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.reduction.LongOp;

import edu.rit.util.LongRange;

import edu.rit.util.Random;

public class PiClu

 {

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static long seed;

 static long N;

 // Pseudorandom number generator.

 static Random prng;

 // Number of points within the unit circle.

 static long count;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long time = -System.currentTimeMillis();

 // Initialize middleware.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Validate command line arguments.

 if (args.length != 2) usage();

C6910_26.indd 432C6910_26.indd 432 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

 26.3 Parallel pi Program with Reduction 433

Here is the key statement in the parallel program: the reduction into root process 0. After the reduction,
only process 0 prints the answer.

 seed = Long.parseLong (args[0]);

 N = Long.parseLong (args[1]);

 // Determine range of iterations for this process.

 LongRange range =

 new LongRange (0, N-1) .subrange (size, rank);

 long my_N = range.length();

 // Set up PRNG and skip ahead over the random numbers the

 // lower-ranked processes will generate.

 prng = Random.getInstance (seed);

 prng.skip (2 * range.lb());

 // Generate random points in the unit square, count how many

 // are in the unit circle.

 count = 0L;

 for (long i = 0L; i < my_N; ++ i)

 {

 double x = prng.nextDouble();

 double y = prng.nextDouble();

 if (x*x + y*y <= 1.0) ++ count;

 }

 // Reduce all processes’ counts together into process 0.

 LongItemBuf buf = new LongItemBuf();

 buf.item = count;

 world.reduce (0, buf, LongOp.SUM);

 count = buf.item;

 // Stop timing.

 time += System.currentTimeMillis();

 // Print results.

 System.out.println (time + " msec total " + rank);

 if (rank == 0)

 {

 System.out.println

 ("pi = 4 * " + count + " / " + N + " = " +

 (4.0 * count / N));

 }

 }

 }

C6910_26.indd 433C6910_26.indd 433 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

434 CHAPTER 26 Reduction, Part 3

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 1G

N = 2G

N = 5G

N = 10G

N = 20G

N = 50G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

−5

0

5

1 0

1 5

2 0

2 5

3 0

3 5

N = 1G
N = 2G
N = 5GN = 10GN = 20GN = 50G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 1G

N = 2G
N = 5GN = 10GN = 20GN = 50G

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 1G

N = 2G
N = 5GN = 10GN = 20GN = 50G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 26.5 PiSeq/PiClu running-time metrics

Table 26.1 (at the end of the chapter) lists, and Figure 26.5 plots, the PiClu program’s performance
on the “tardis” parallel computer for problem sizes from 1 billion to 50 billion random points. Due to the
small amount of message passing needed for the final reduction, the program achieves good speedups
and efficiencies.

26.4 Mandelbrot Set Histogram Program
Let’s revisit Chapter 15’s program to compute a histogram of the Mandelbrot Set and write a cluster par-
allel version. Recall that the program computed a histogram variable, an int[] array, where the array
index is the pixel value, and the array element is the number of pixels with that value.

Because dividing the pixels equally among the processes results in an unbalanced load, the cluster
parallel Mandelbrot Set Histogram program must use the master-worker pattern for load balancing. The
program also uses the reduction pattern, as did the SMP version. Each process updates its own histogram
array based on the pixel values the process computes. Afterward, the per-process histogram arrays are
reduced together into process 0 using addition as the reduction operator.

C6910_26.indd 434C6910_26.indd 434 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

 26.4 Mandelbrot Set Histogram Program 435

0
9 8

4 3

1 6

9 1

1
2 4

4 5

8

2

2
8 7

8 2

5 9

6 4

3
2 8

3 4

3 8

5 9

4
1 7

7 8

8 6

1 7

5
7 9

3 7

2 7

9 4

6
7 3

6 1

1 4

1 7

7
4 6

2 7

3

2 1

0
115

121

102

108

1
103

8 2

3 5

9 6

2
160

143

7 3

8 1

3
7 4

6 1

4 1

8 0

4
1 7

7 8

8 6

1 7

5
7 9

3 7

2 7

9 4

6
7 3

6 1

1 4

1 7

7
4 6

2 7

3

2 1

 Initial data buffer contents After first round of messages

0
275

264

175

189

1
177

143

7 6

176

2
160

143

7 3

8 1

3
7 4

6 1

4 1

8 0

4
1 7

7 8

8 6

1 7

5
7 9

3 7

2 7

9 4

6
7 3

6 1

1 4

1 7

7
4 6

2 7

3

2 1

0
452

407

251

365

1
177

143

7 6

176

2
160

143

7 3

8 1

3
7 4

6 1

4 1

8 0

4
1 7

7 8

8 6

1 7

5
7 9

3 7

2 7

9 4

6
7 3

6 1

1 4

1 7

7
4 6

2 7

3

2 1

 After second round of messages After third round of messages

Figure 26.6 Contents of the data buffers during an array reduction operation
with addition as the reduction operator

C6910_26.indd 435C6910_26.indd 435 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

436 CHAPTER 26 Reduction, Part 3

To reduce the array variables together into process 0, each process executes these statements.

 int[] histogram = new int [maxiter + 1];

 . . .

 world.reduce (0, IntegerBuf.buffer (histogram), IntegerOp.SUM);

The reduction buffer encompasses all the elements in the histogram array. The histogram[0] ele-
ments from all the processes are combined using IntegerOp.SUM as the reduction operator, and the sum
is placed in histogram[0] in the root process (process 0). Similarly, the sum of all the histogram[1]
elements is placed in histogram[1] in process 0, and so on for every array index. Figure 26.6 shows
the messages sent between processes to accomplish the reduction; in this example, each message contains
four integers.

Here is the source code for the cluster parallel version of the Mandelbrot Set histogram program,
class edu.rit.clu.fractal.MSHistogramClu.

package edu.rit.clu.fractal;

import edu.rit.mp.IntegerBuf;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommStatus;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.pj.reduction.IntegerOp;

import edu.rit.util.Range;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

public class MSHistogramClu

 {

 // Communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

C6910_26.indd 436C6910_26.indd 436 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

 26.4 Mandelbrot Set Histogram Program 437

 static double ycenter;

 static double resolution;

 static int maxiter;

 static File outfile;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Histogram (array of counters indexed by pixel value).

 static int[] histogram;

As in the master-worker Mandelbrot Set programs, we use message tags to distinguish different kinds of
messages: messages sent from master to worker containing a chunk for the worker to compute, empty
messages sent from worker to master saying the worker has finished a chunk, and messages to perform
the reduction on the histogram array.

 // Message tags.

 static final int WORKER_MSG = 0;

 static final int MASTER_MSG = 1;

 static final int HISTOGRAM_DATA_MSG = 2;

 // Number of chunks the worker computed.

 static int chunkCount;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize middleware.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Validate command line arguments.

 if (args.length != 7) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

C6910_26.indd 437C6910_26.indd 437 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

438 CHAPTER 26 Reduction, Part 3

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 outfile = new File (args[6]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Create histogram.

 histogram = new int [maxiter + 1];

 long t2 = System.currentTimeMillis();

 // In master process, run master section and worker section

 // in parallel.

 if (rank == 0)

 {

 new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (new ParallelSection()

 {

 public void run() throws Exception

 {

 masterSection();

 }

 },

 new ParallelSection()

 {

 public void run() throws Exception

 {

 workerSection();

 }

 });

 }

 });

 }

 // In worker process, run only worker section.

 else

 {

 workerSection();

 }

C6910_26.indd 438C6910_26.indd 438 2/2/09 11:33:00 AM2/2/09 11:33:00 AM

 26.4 Mandelbrot Set Histogram Program 439

Here is the reduction. We tag the reduction messages with HISTOGRAM_DATA_MSG so the master will not
confuse them with the chunk-finished messages from the workers.

 // Reduce histogram into process 0.

 world.reduce

 (0,

 HISTOGRAM_DATA_MSG,

 IntegerBuf.buffer (histogram),

 IntegerOp.SUM);

 long t3 = System.currentTimeMillis();

 // Process 0 prints histogram.

 if (rank == 0)

 {

 PrintWriter out =

 new PrintWriter

 (new BufferedWriter

 (new FileWriter (outfile)));

 for (int i = 0; i <= maxiter; ++ i)

 {

 out.print (i);

 out.print (‘\t’);

 out.print (histogram[i]);

 out.println();

 }

 out.close();

 }

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println (chunkCount + " chunks " + rank);

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

 /**

 * Perform the master section.

 */

 private static void masterSection()

 throws IOException

 {

C6910_26.indd 439C6910_26.indd 439 2/2/09 11:33:01 AM2/2/09 11:33:01 AM

440 CHAPTER 26 Reduction, Part 3

 int worker;

 Range range;

 // Set up a schedule object to divide the row range into

 // chunks.

 IntegerSchedule schedule = IntegerSchedule.runtime();

 schedule.start (size, new Range (0, height-1));

 // Send initial chunk range to each worker. If range is null,

 // no more work for that worker. Keep count of active workers.

 int activeWorkers = size;

 for (worker = 0; worker < size; ++ worker)

 {

 range = schedule.next (worker);

 world.send (worker, WORKER_MSG, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

 // Repeat until all workers have finished.

 while (activeWorkers > 0)

 {

 // Receive an empty message from any worker.

 CommStatus status =

 world.receive

 (null, MASTER_MSG, IntegerBuf.emptyBuffer());

 worker = status.fromRank;

 // Send next chunk range to that specific worker. If null,

 // no more work.

 range = schedule.next (worker);

 world.send (worker, WORKER_MSG, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

 }

 /**

 * Perform the worker section.

 */

 private static void workerSection()

 throws IOException

 {

 // Process chunks from master.

 for (;;)

 {

C6910_26.indd 440C6910_26.indd 440 2/2/09 11:33:01 AM2/2/09 11:33:01 AM

 26.4 Mandelbrot Set Histogram Program 441

 // Receive chunk range from master. If null, no more work.

 ObjectItemBuf<Range> rangeBuf = ObjectBuf.buffer();

 world.receive (0, WORKER_MSG, rangeBuf);

 Range range = rangeBuf.item;

 if (range == null) break;

 int lb = range.lb();

 int ub = range.ub();

 ++ chunkCount;

 // Compute all rows and columns in slice.

 for (int r = lb; r <= ub; ++ r)

 {

 double y = ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x = xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Increment histogram counter for pixel value.

 ++ histogram[i];

 }

 }

C6910_26.indd 441C6910_26.indd 441 2/2/09 11:33:01 AM2/2/09 11:33:01 AM

442 CHAPTER 26 Reduction, Part 3

We tag the chunk-finished messages with MASTER_MSG so the master will not confuse them with the
reduction messages.

 // Report completion of slice to master.

 world.send (0, MASTER_MSG, IntegerBuf.emptyBuffer());

 }

 };

 }

Table 26.2 (at the end of the chapter) lists, and Figure 26.7 plots, the MSHistogramClu program’s
performance on the “tardis” parallel computer, using a dynamic schedule with a chunk size of 10. As did
the PiClu program, the MSHistogramClu program achieves excellent speedups and efficiencies.

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 40M
N = 80M

N = 160M

N = 320M

N = 640M

N = 1.3G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

1 0

2 0

N = 40M
N = 80MN = 160MN = 320MN = 640MN = 1.3G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

N = 40M

N = 80M

N = 160M

N = 320M
N = 640MN = 1.3G

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N = 40M

N = 80M

N = 160M

N = 320M
N = 640MN = 1.3G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 26.7 MSHistogramSeq/MSHistogramClu running-time metrics

C6910_26.indd 442C6910_26.indd 442 2/2/09 11:33:01 AM2/2/09 11:33:01 AM

 26.4 Mandelbrot Set Histogram Program 443

Table 26.1 PiSeq/PiClu running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

1G seq 67170 10G seq 671429

1G 1 67193 1.000 1.000 10G 1 671445 1.000 1.000

1G 2 33612 1.998 0.999 0.000 10G 2 335764 2.000 1.000 0.000

1G 3 22432 2.994 0.998 0.001 10G 3 223864 2.999 1.000 0.000

1G 4 16838 3.989 0.997 0.001 10G 4 167979 3.997 0.999 0.000

1G 5 13483 4.982 0.996 0.001 10G 5 134389 4.996 0.999 0.000

1G 6 11243 5.974 0.996 0.001 10G 6 112008 5.994 0.999 0.000

1G 8 8188 8.203 1.025 -0.004 10G 8 81343 8.254 1.032 -0.004

1G 10 6590 10.193 1.019 -0.002 10G 10 65027 10.325 1.033 -0.004

1G 14 4779 14.055 1.004 0.000 10G 14 46559 14.421 1.030 -0.002

1G 20 3378 19.885 0.994 0.000 10G 20 32647 20.566 1.028 -0.001

1G 28 2481 27.074 0.967 0.001 10G 28 23555 28.505 1.018 -0.001

1G 40 1934 34.731 0.868 0.004 10G 40 16654 40.316 1.008 0.000

2G seq 134305 20G seq 1342783

2G 1 130043 1.033 1.033 20G 1 1342811 1.000 1.000

2G 2 67186 1.999 1.000 0.033 20G 2 671459 2.000 1.000 0.000

2G 3 44831 2.996 0.999 0.017 20G 3 447905 2.998 0.999 0.000

2G 4 33627 3.994 0.998 0.011 20G 4 335765 3.999 1.000 0.000

2G 5 26922 4.989 0.998 0.009 20G 5 268751 4.996 0.999 0.000

2G 6 22438 5.986 0.998 0.007 20G 6 223844 5.999 1.000 0.000

2G 8 16323 8.228 1.028 0.001 20G 8 162631 8.257 1.032 -0.004

2G 10 13085 10.264 1.026 0.001 20G 10 129967 10.332 1.033 -0.004

2G 14 9421 14.256 1.018 0.001 20G 14 93048 14.431 1.031 -0.002

2G 20 6599 20.352 1.018 0.001 20G 20 65273 20.572 1.029 -0.001

2G 28 4892 27.454 0.981 0.002 20G 28 46850 28.661 1.024 -0.001

2G 40 3575 37.568 0.939 0.003 20G 40 33092 40.577 1.014 0.000

5G seq 335714 50G seq 3356877

5G 1 327927 1.024 1.024 50G 1 3358537 1.000 1.000

5G 2 167948 1.999 0.999 0.024 50G 2 1678521 2.000 1.000 0.000

5G 3 112003 2.997 0.999 0.012 50G 3 1119616 2.998 0.999 0.000

5G 4 84004 3.996 0.999 0.008 50G 4 839794 3.997 0.999 0.000

5G 5 67219 4.994 0.999 0.006 50G 5 671848 4.996 0.999 0.000

5G 6 56026 5.992 0.999 0.005 50G 6 559840 5.996 0.999 0.000

5G 8 40696 8.249 1.031 -0.001 50G 8 406491 8.258 1.032 -0.005

5G 10 32525 10.322 1.032 -0.001 50G 10 325256 10.321 1.032 -0.004

5G 14 23356 14.374 1.027 0.000 50G 14 232447 14.441 1.032 -0.002

5G 20 16361 20.519 1.026 0.000 50G 20 162812 20.618 1.031 -0.002

5G 28 11841 28.352 1.013 0.000 50G 28 116786 28.744 1.027 -0.001

5G 40 8417 39.885 0.997 0.001 50G 40 81987 40.944 1.024 -0.001

C6910_26.indd 443C6910_26.indd 443 2/2/09 11:33:01 AM2/2/09 11:33:01 AM

444 CHAPTER 26 Reduction, Part 3

Table 26.2 MSHistogramSeq/MSHistogramClu running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

40M seq 69004 320M seq 540741

40M 1 69121 0.998 0.998 320M 1 540456 1.001 1.001

40M 2 31137 2.216 1.108 -0.099 320M 2 243135 2.224 1.112 -0.100

40M 3 21516 3.207 1.069 -0.033 320M 3 162213 3.334 1.111 -0.050

40M 4 16456 4.193 1.048 -0.016 320M 4 121759 4.441 1.110 -0.033

40M 5 12804 5.389 1.078 -0.018 320M 5 103687 5.215 1.043 -0.010

40M 6 10685 6.458 1.076 -0.014 320M 6 85554 6.320 1.053 -0.010

40M 8 8131 8.487 1.061 -0.008 320M 8 62598 8.638 1.080 -0.010

40M 10 6574 10.497 1.050 -0.005 320M 10 49885 10.840 1.084 -0.009

40M 14 4991 13.826 0.988 0.001 320M 14 36152 14.957 1.068 -0.005

40M 20 3706 18.620 0.931 0.004 320M 20 25551 21.163 1.058 -0.003

40M 28 2981 23.148 0.827 0.008 320M 28 18462 29.289 1.046 -0.002

40M 40 2468 27.959 0.699 0.011 320M 40 13228 40.879 1.022 -0.001

80M seq 135252 640M seq 1102720

80M 1 135335 0.999 0.999 640M 1 1102994 1.000 1.000

80M 2 60920 2.220 1.110 -0.100 640M 2 495872 2.224 1.112 -0.101

80M 3 40644 3.328 1.109 -0.050 640M 3 330761 3.334 1.111 -0.050

80M 4 30540 4.429 1.107 -0.032 640M 4 248224 4.442 1.111 -0.033

80M 5 24447 5.532 1.106 -0.024 640M 5 198555 5.554 1.111 -0.025

80M 6 20744 6.520 1.087 -0.016 640M 6 165537 6.661 1.110 -0.020

80M 8 15386 8.791 1.099 -0.013 640M 8 124202 8.878 1.110 -0.014

80M 10 12529 10.795 1.080 -0.008 640M 10 99457 11.087 1.109 -0.011

80M 14 9165 14.757 1.054 -0.004 640M 14 71220 15.483 1.106 -0.007

80M 20 6580 20.555 1.028 -0.001 640M 20 50053 22.031 1.102 -0.005

80M 28 5070 26.677 0.953 0.002 640M 28 36204 30.459 1.088 -0.003

80M 40 3967 34.094 0.852 0.004 640M 40 25873 42.620 1.066 -0.002

160M seq 276031 1.3G seq 2163755

160M 1 275835 1.001 1.001 1.3G 1 2161902 1.001 1.001

160M 2 124171 2.223 1.111 -0.100 1.3G 2 971695 2.227 1.113 -0.101

160M 3 82831 3.332 1.111 -0.050 1.3G 3 647868 3.340 1.113 -0.050

160M 4 62227 4.436 1.109 -0.033 1.3G 4 486099 4.451 1.113 -0.034

160M 5 51853 5.323 1.065 -0.015 1.3G 5 388923 5.563 1.113 -0.025

160M 6 43716 6.314 1.052 -0.010 1.3G 6 329667 6.563 1.094 -0.017

160M 8 33314 8.286 1.036 -0.005 1.3G 8 252850 8.557 1.070 -0.009

160M 10 26105 10.574 1.057 -0.006 1.3G 10 207235 10.441 1.044 -0.005

160M 14 18882 14.619 1.044 -0.003 1.3G 14 147804 14.639 1.046 -0.003

160M 20 13198 20.915 1.046 -0.002 1.3G 20 104506 20.705 1.035 -0.002

160M 28 9739 28.343 1.012 0.000 1.3G 28 73890 29.283 1.046 -0.002

160M 40 7369 37.458 0.936 0.002 1.3G 40 51168 42.287 1.057 -0.001

C6910_26.indd 444C6910_26.indd 444 2/2/09 11:33:01 AM2/2/09 11:33:01 AM

445

C H A P T E R 27
in which we simulate the motion of antimatter particles; we encounter a program

that needs the all-gather message passing operation; and we observe the all-gather

operation’s effect on a cluster parallel program’s performance

All-Gather

C6910_27.indd 445C6910_27.indd 445 2/2/09 12:38:04 PM2/2/09 12:38:04 PM

C H A P T E R27 All-Gather

27.1 Antiproton Motion
Once the stuff of theoretical physics and science fiction, antimatter is becoming a practical reality. For each
particle of normal matter, there is an antiparticle of antimatter. The negatively charged electron’s counterpart
is the positively charged positron. The positively charged proton’s antimatter twin is the antiproton, which
has the same mass as the proton, but the opposite (negative) charge. Particle accelerators, used in particle
physics research, produce antimatter routinely. Using the accelerator to generate a high-energy beam of
protons and smashing them into a tungsten or copper target liberates a flood of elementary particles, some
of which are antiprotons. The antiprotons can then be captured, stored, and used.

You might have heard of positron emission tomography (PET) scanning, a medical imaging
technique that uses antimatter (positrons rather than antiprotons). Other applications for antimatter
include cancer therapy and space propulsion—not by powering the starship Enterprise’s warp drive, but
by using the antimatter to heat propellant in a conventional rocket.

When an antiproton encounters a normal proton, the two particles instantly annihilate each other,
converting their mass completely to energy according to Einstein’s formula E = mc2. One therefore cannot
simply put antiprotons in a bottle like one would with normal matter; the antiprotons would annihilate the
protons in the bottle and would quickly vanish. An effective antiproton trap consists of a high-vacuum vessel
(so antiprotons and air molecules will not annihilate each other) plus magnetic fields to confine the antiprotons.

Antiprotons

Magnetic field

Figure 27.1 Antiproton trap

0 1 2 3 4 5 6 7 8 9 1 0
0

1

2

3

4

5

6

7

8

9

1 0

Figure 27.2 Antiproton track

C6910_27.indd 446C6910_27.indd 446 2/2/09 12:38:04 PM2/2/09 12:38:04 PM

 27.1 Antiproton Motion 447

As a simplified example of an antiproton trap, suppose the antiprotons lie in a two-dimensional plane
(Figure 27.1). A uniform magnetic field is applied perpendicular to the plane. The antiprotons, having
like charges, repel each other, causing them to move outward in the plane. But as they move, the mag-
netic field causes their paths to bend back toward the center. Each antiproton follows a complicated jig-
gling path, alternately being repelled by close encounters with other antiprotons and circling back due to
the magnetic field (Figure 27.2). If the magnetic field is strong enough, the antiprotons never get far from
the center of the trap and never get the chance to annihilate the protons in the trap walls.

We are going to write a program to simulate the motion of several antiprotons in an antiproton trap,
under the influence of their mutual repulsion and the magnetic field. The program places the antiprotons
at random starting positions, and then calculates the antiprotons’ tracks as a function of time. Figure 27.2
shows the final positions of 20 antiprotons after a certain amount of simulated time has elapsed, as well
as the track of one antiproton.

To avoid getting into the quantum mechanical formulas that are needed for a realistic antiproton
simulation, we will treat the antiprotons as idealized charged point particles. We begin with a review of
the physics of charged particle motion. Our formulas use two-dimensional (2-D) vectors. A vector is
written with a bold symbol, such as a. A 2-D vector consists of an x component and a y component. The
vector a can be written as a pair of components (ax, ay).

We need to do arithmetic with vectors. Let a = (ax, ay) and b = (bx, by) be vectors, and c be a scalar
value. Here are the formulas for vector arithmetic as well as the magnitude of a vector:

 Vector sum (27.1)

 Vector difference (27.2)

 Scalar product (27.3)

 Vector magnitude (27.4)

A particle’s position as a function of time is represented as a 2-D vector p(t), whose x and y compo-
nents are px(t) and py(t):

 (27.5)

The position vector is drawn as an arrow from the origin to the particle’s position (Figure 27.3). The
components px and py are the projections of the vector onto the x and y axes.

The time derivative of p(t) is the particle’s velocity vector v(t):

 (27.6)

C6910_27.indd 447C6910_27.indd 447 2/2/09 12:38:04 PM2/2/09 12:38:04 PM

448 CHAPTER 27 All-Gather

x

y

p

p

p

v

v

v

a

a

a

 Figure 27.3 Particle position, velocity, and acceleration vectors

The time derivative of v(t), which is the second time derivative of p(t), is the particle’s acceleration
vector a(t):

 (27.7)

The acceleration is determined by the force acting on the particle, according to Newton’s Second Law of
Motion,

 (27.8)

where f(t) is the force vector and m is the particle’s mass. To simplify the program, we use m = 1; then
the acceleration is equal to the force. (Or, if you prefer, we use a system of units in which the particle’s
mass is 1.)

Suppose we know the particle’s position at a certain time t, and suppose we can determine the particle’s
acceleration at time t. (Soon, we will see how to calculate the force on the particle, that is, the acceleration.)
Then a Taylor series expansion lets us calculate the position at time t plus a small increment d :

 (27.9)

The O(d 3) represents all the remaining terms in the Taylor series. If d is small, then these terms (being
proportional to d 3 , d 4 , and so on) are much smaller than the first three terms, and we can neglect them.
Substituting (27.6) and (27.7) into (27.9) gives the following:

 (27.10)

C6910_27.indd 448C6910_27.indd 448 2/2/09 12:38:04 PM2/2/09 12:38:04 PM

 27.1 Antiproton Motion 449

Similarly, a Taylor series expansion for the velocity (omitting the O(d 2) and higher terms) is the
following:

 (27.11)

These formulas are the basis for an algorithm that calculates the parti cle’s position as a function of
time:

 p ← Initial position
 v ← Initial velocity
 for t = 1 to steps:
 a ← Calculate acceleration from p and v
 p ← p + dv + 0.5d 2 a
 v ← v + da

The algorithm initializes the particle’s position and velocity to their values at t = 0. The algorithm then
does a sequence of time steps, calculating the acceleration and updating the position and velocity.
Figure 27.4 shows what happens during one time step. At the beginning of time step t1, p(t1) and v(t1)
are the particle’s position and velocity. From these, the particle’s acceleration at the beginning of the
time step, a(t1), is calculated. After the update, p(t2) and v(t2) are the position and velocity at the end of
the time step, that is, the beginning of the next time step t2 = t1 + d. From these, the particle’s accelera-
tion at the beginning of the next time step, a(t2), is calculated. The algorithm thus determines p(t) at
the discrete time values t = 0, d , 2d, 3d, and so on, stopping after a total of steps time steps.

The preceding algorithm is an example of a numerical integration algorithm. Essentially, it solves
the differential equation for p(t), Equation 27.7, by integrating the right side in a discrete fashion.

x

y

p(t)

v(t)

a(t)

p(t)

v(t)
a(t)

 Figure 27.4 One time step

C6910_27.indd 449C6910_27.indd 449 2/2/09 12:38:04 PM2/2/09 12:38:04 PM

450 CHAPTER 27 All-Gather

This algorithm incurs truncation errors because of the high-order terms in the Taylor series that are
omitted (truncated) from Equations 27.10 and 27.11. To keep the truncation errors small and to determine
the positions and velocities accurately, this algorithm must use a very small value for d. Consequently,
this algorithm must take many, many time steps to calculate the particle’s motion for an appreciable
length of time.

This algorithm is called a second-order integration algorithm, because the formula for updating p
includes terms of order up to and including d to the second power. The algorithm is only first order for
the velocities. Higher-order integration algorithms do exist. Because their formulas include higher pow-
ers of d, these algorithms can achieve the same truncation error level with a larger value of d, and can
therefore calculate the particle’s motion for the same time span with fewer steps. However, in this book,
we will stick with the simple second-order integration algorithm.

So far, we have calculated the motion of just one particle. Let’s generalize and calculate the motion
of n particles simultaneously. Now we need arrays of particle positions, velocities, and accelerations,
indexed from 0 to n–1:

for i = 0 to n–1:
 p[i] ← Initial position of particle i
 v[i] ← Initial velocity of particle i
 for t = 1 to steps:
 for i = 0 to n–1:
 a[i] ← Calculate acceleration of particle i from all ps and vs
 for i = 0 to n–1:
 p[i] ← p[i] + dv [i] + 0.5d 2 a[i]
 v[i] ← v[i] + da [i]

Note that we must calculate all the accelerations first, and only then go back and update all the positions
and velocities. This is because the accelerations depend on the positions and velocities, and we don’t
want the positions and velocities to change until after we’ve finished calculating the accelerations.

All we need to do now is calculate the acceleration of each particle, which, according to Equation
27.8, is the same as the net force on the particle. The forces on particle i include an electrostatic force
from every other particle j (j ≠ i) and a magnetic force due to the perpendicular magnetic field. Because
force is a vector quantity, we must consider both the direction and the magnitude of each individual force.

Consider first fe[i,j], the electrostatic force on particle i from particle j (Figure 27.5). Because the
particles repel each other, the direction of this force is along the line joining particles i and j, pointing away
from particle j. A vector pointing in this direction is the difference between the two position vectors; thus,
the force is proportional to the difference vector:

 (27.12)

Let’s convert that difference vector to a unit vector (a vector of length 1) pointing in the same direction.
Divide the difference vector by its own magnitude. The force is now proportional to the unit vector:

 (27.13)

C6910_27.indd 450C6910_27.indd 450 2/2/09 12:38:04 PM2/2/09 12:38:04 PM

 27.1 Antiproton Motion 451

x

y

p[i]

p[j]

f [i,j]

 Figure 27.5 Electrostatic force on particle i due to particle j

The actual vector force is that unit vector times the magnitude of the force. The magnitude of the force is
equal to the so-called “Coulomb constant,” times the product of the two particles’ charges, divided by the
square of the distance between the two particles—an inverse square law. Because the particles all have
the same charge, the product of the Coulomb constant and the particle charges is just another constant
that we will call Q. The distance between the particles is the magnitude of the difference vector. Thus:

 (27.14)

The magnetic force on particle i due to the external magnetic field, fm[i] (Figure 27.6), is always
perpendicular to the particle’s velocity. If the only force on the particle is the magnetic force, then the
particle moves in a circle. Let the velocity vector be (vx[i], vy[i]). Then the perpendicular vector is
(vy[i], –vx[i]), and the magnetic force is proportional to this vector. The magnitude of the force is equal to
the magnetic field strength, times the particle’s charge, times the magnitude of the particle’s velocity. The
product of the magnetic field strength and the particle charge is a constant that we will call B. Thus:

 (27.15)

C6910_27.indd 451C6910_27.indd 451 2/2/09 12:38:04 PM2/2/09 12:38:04 PM

452 CHAPTER 27 All-Gather

x

y

p[i]

v[i]

f [i]

Figure 27.6 Magnetic force on particle i

Whenever a charged particle moves, it creates its own little magnetic field. We will assume that the
magnetic fields due to the particle motion are negligible compared to the external magnetic field. We will
also assume that the particles never collide; because of their like charges, they repel each other if they
come too close.

The net force, and therefore the acceleration, of particle i is the vector sum of the electrostatic forces
from all other particles j, plus the magnetic force. Putting it all together, the algorithm for calculating the
particle motions is the following:

for i = 0 to n–1:
 p[i] ← Initial position of particle i
 v[i] ← Initial velocity of particle i
 for t = 1 to steps:
 for i = 0 to n–1:
 a[i] ← 0
 for j = 0 to n–1, j ≠ i:
 d ← p[i] – p[j]
 a[i] ← a[i] + d · Q / |d|3

 a[i] ← a[i] + B · (vy[i], –vx[i])
 for i = 0 to n–1:
 p[i] ← p[i] + d v [i] + 0.5d 2 a[i]
 v[i] ← v[i] + da [i]

Now that the basic algorithm is in place, we will rearrange a few things and add some features. First,
we initialize the particle positions to random locations in the central portion of the square from 0 to R (a

C6910_27.indd 452C6910_27.indd 452 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.1 Antiproton Motion 453

parameter) in the x and y directions, and we initialize the particle velocities to zero so the particles are
initially at rest:

for i = 0 to n – 1:
 p[i] ← (random (R/4 .. 3R/4), random (R/4 .. 3R/4))
 v[i] ← 0
 for t = 1 to steps:
 for i = 0 to n–1:
 a[i] ← 0
 for j = 0 to n–1, j ≠ i:
 d ← p[i] – p[j]
 a[i] ← a[i] + d · Q / |d|3

 a[i] ← a[i] + B · (vy[i], –vx[i])
 for i = 0 to n–1:
 p[i] ← p[i] + dv [i] + 0.5d 2 a[i]
 v[i] ← v[i] + da [i]

Next, we move the initialization of the acceleration and the computation of the magnetic force from
the second loop to the third loop, so that the second loop contains only the electrostatic force calcula-
tions. As we will see, this makes it easier to parallelize the program:

for i = 0 to n–1:
 p[i] ← (random (0 .. R), random (0 .. R))
 v[i] ← 0
 a[i] ← 0
 for t = 1 to steps:
 for i = 0 to n–1:
 for j = 0 to n–1, j ≠ i:
 d ← p[i] – p[j]
 a[i] ← a[i] + d · Q / |d|3

 for i = 0 to n–1:
 a[i] ← a[i] + B · (vy[i], –vx[i])
 p[i] ← p[i] + dv [i] + 0.5d 2 a[i]
 v[i] ← v[i] + da [i]
 a[i] ← 0

Let’s think about outputting the program’s results. For displaying or plotting the particles’ motion,
we don’t have to record the particle positions after each and every time step. Because the second-order
integration algorithm requires tiny time steps to achieve acceptable accuracy, the positions change by
only minuscule amounts on each time step. Rather, we should take a “snapshot” of the positions only
after a certain number of time steps, 1000, say. The algorithm will be controlled by two parameters: we

C6910_27.indd 453C6910_27.indd 453 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

454 CHAPTER 27 All-Gather

will take snaps snapshots, and each snapshot will take place after steps time steps. The snapshots will go
into an output file:

for i = 0 to n–1:
 p[i] ← (random (0 .. R), random (0 .. R))
 v[i] ← 0
 a[i] ← 0
 Write snapshot of positions to output file
 for s = 1 to snaps:
 for t = 1 to steps:
 for i = 0 to n–1:
 for j = 0 to n–1, j ≠ i:
 d ← p[i] – p[j]
 a[i] ← a[i] + d · Q / |d|3

 for i = 0 to n–1:
 a[i] ← a[i] + B · (vy[i], –vx[i])
 p[i] ← p[i] + dv [i] + 0.5d 2 a[i]
 v[i] ← v[i] + da [i]
 a[i] ← 0
 Write snapshot of positions to output file

We need a way to monitor the effects of truncation error in the integration algorithm. One way is to
keep track of a conserved quantity. One such quantity is the total momentum. A particle’s momen-
tum is its mass times its velocity; thus, momentum is a vector. Because each particle’s mass is 1, in
this program, the total momentum is just the vector sum of the velocities. The Law of Conservation of
Momentum says that the total momentum of a closed system (one in which there are no external forces)
is constant. Because the velocities were all initially zero, the total momentum begins at zero and should
stay at zero. At each snapshot, we will compute the total momentum of the system and write that to the
output file along with the particle positions. Due to truncation errors in the integration algorithm, as well
as roundoff errors from inexact floating point arithmetic, the total momentum will not stay precisely at
zero. However, as long as the total momentum is insignificant relative to the particles’ velocities, the
program’s results are acceptably accurate. If the total momentum becomes too large, it’s a signal that the
program’s results are becoming inaccurate. Adding computation of the total momentum m to our pseudo-
code gives the final algorithm that we will implement:

for i = 0 to n–1:
 p[i] ← (random (0 .. R), random (0 .. R))
 v[i] ← 0
 a[i] ← 0
 m ← 0
 Write snapshot of positions and m to output file
 for s = 1 to snaps:
 for t = 1 to steps:
 for i = 0 to n–1:

C6910_27.indd 454C6910_27.indd 454 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.2 Sequential Antiproton Program 455

 for j = 0 to n–1, j ≠ i:
 d ← p[i] – p[j]
 [i] ← a[i] + d · Q / |d|3

 for i = 0 to n–1:
 a[i] ← a[i] + B · (vy[i], –vx[i])
 p[i] ← p[i] + dv [i] + 0.5d 2 a[i]
 v[i] ← v[i] + da [i]
 a[i] ← 0
 m ← 0
 for i = 0 to n–1:
 m ← m + v[i]
 Write snapshot of positions and m to output file

27.2 Sequential Antiproton Program
Class edu.rit.clu.antimatter.AntiprotonSeq in the Parallel Java Library is a sequential version of the par-
ticle motion algorithm. The program takes the following parameters from the command line:

seed• —PRNG seed for initializing the particle positions.

R• —Side of the square within which the particles are initially positioned.

dt• —Size of the time step, d.

steps• —Number of time steps in each snapshot.

snaps• —Number of snapshots.

n• —Number of particles.

outfile• —Output file name.

The data used for Figure 27.2 was generated by the following command:

$ java edu.rit.clu.antimatter.AntiprotonSeq \

 142857890 10 0.00001 1000 1000 20 plot_a.dat

The output file records the particle position and total momentum snapshots in a binary format. A
separate class, class edu.rit.clu.antimatter.AntiprotonFile, handles all the file I/O. Visualization programs
can easily be written to display the stored particle motion data in different ways. As an example, Figure
27.2 was generated by this command:

$ java edu.rit.clu.antimatter.AntiprotonPlot plot_a.dat

The AntiprotonPlot program plots the final positions of all the particles in the file, as well as the track
(sequence of positions) of the first particle in the file.

The AntiprotonSeq program makes extensive use of 2-D vectors. Class edu.rit.vector.Vector2D
encapsulates a 2-D vector and provides methods for vector arithmetic, vector magnitude, and other
operations.

C6910_27.indd 455C6910_27.indd 455 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

456 CHAPTER 27 All-Gather

Here is the source code for the AntiprotonSeq program.

package edu.rit.clu.antimatter;

import edu.rit.util.Random;

import edu.rit.util.Range;

import edu.rit.vector.Vector2D;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class AntiprotonSeq

 {

 // Charge on an antiproton.

 static final double QP = 3.0;

 // Magnetic field strength.

 static final double B = 3.0;

 static final double QP_QP = QP * QP;

 static final double QP_B = QP * B;

 // Command line arguments.

 static long seed;

 static double R;

 static double dt;

 static int steps;

 static int snaps;

 static int N;

 static File outfile;

 static double one_half_dt_sqr;

 // Acceleration, velocity, and position vector arrays.

 static Vector2D[] a;

 static Vector2D[] v;

 static Vector2D[] p;

 // Total momentum.

 static Vector2D totalMV = new Vector2D();

 // Temporary storage.

 static Vector2D temp = new Vector2D();

 /**

 * Main program.

 */

 public static void main

C6910_27.indd 456C6910_27.indd 456 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.2 Sequential Antiproton Program 457

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length != 7) usage();

 seed = Long.parseLong (args[0]);

 R = Double.parseDouble (args[1]);

 dt = Double.parseDouble (args[2]);

 steps = Integer.parseInt (args[3]);

 snaps = Integer.parseInt (args[4]);

 N = Integer.parseInt (args[5]);

 outfile = new File (args[6]);

To reduce the running time, we’ll compute 0.5δ2 once here, instead of repeatedly in the loop later on.

 one_half_dt_sqr = 0.5 * dt * dt;

 // Create pseudorandom number generator.

 Random prng = Random.getInstance (seed);

 // Initialize acceleration, velocity, and position vector

 // arrays.

 a = new Vector2D [N];

 v = new Vector2D [N];

 p = new Vector2D [N];

 for (int i = 0; i < N; ++ i)

 {

 a[i] = new Vector2D();

 v[i] = new Vector2D();

 p[i] = new Vector2D

 (prng.nextDouble()*R/2+R/4, prng.nextDouble()*R/2+R/4);

 }

 // Set up output file and write initial snapshot.

 AntiprotonFile out =

 new AntiprotonFile (seed, R, dt, steps, snaps+1, N, 0, N);

 AntiprotonFile.Writer writer =

 out.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (outfile)));

 writer.writeSnapshot (p, 0, totalMV);

C6910_27.indd 457C6910_27.indd 457 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

458 CHAPTER 27 All-Gather

 long t2 = System.currentTimeMillis();

 // Do <snaps> snapshots.

 for (int s = 0; s < snaps; ++ s)

 {

 // Advance time by <steps> steps.

 for (int t = 0; t < steps; ++ t)

 {

 computeAcceleration();

 step();

 }

 // Compute total momentum.

 computeTotalMomentum();

 // Write snapshot.

 writer.writeSnapshot (p, 0, totalMV);

 }

 // Close output file.

 writer.close();

 // Stop timing.

 long t3 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t3-t1) + " msec total");

 }

 /**

 * Compute the antiproton accelerations due to the repulsive

 * forces from all the antiprotons.

 */

 private static void computeAcceleration()

 {

 // Accumulate forces between each pair of antiprotons, but

 // not between an antiproton and itself.

 for (int i = 0; i < N; ++ i)

 {

 Vector2D a_i = a[i];

 Vector2D p_i = p[i];

We must not try to compute the repulsive force between a particle and itself; that is, we must omit the
inner loop iteration where j = i. It will save time to split the inner loop over j into two parts, one from 0
to i–1 and one from i+1 to n–1. If we wrote a single loop with a test to ensure j ≠ i, all those tests would

C6910_27.indd 458C6910_27.indd 458 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.2 Sequential Antiproton Program 459

increase the running time. Also, note how we compute d3 in the denominator of the force expression,
where d is the distance between particles i and j. First, we compute d2, and then we compute ;
this requires one square root and one multiplication. We could have computed , and then d·d·d,
but that requires one square root and two multiplications, which takes longer.

 for (int j = 0; j < i; ++ j)

 {

 temp.assign (p_i);

 temp.sub (p[j]);

 double dsqr = temp.sqrMag();

 temp.mul (QP_QP / (dsqr * Math.sqrt(dsqr)));

 a_i.add (temp);

 }

 for (int j = i+1; j < N; ++ j)

 {

 temp.assign (p_i);

 temp.sub (p[j]);

 double dsqr = temp.sqrMag();

 temp.mul (QP_QP / (dsqr * Math.sqrt(dsqr)));

 a_i.add (temp);

 }

 }

 }

 /**

 * Take one time step.

 */

 private static void step()

 {

 // Move all antiprotons.

 for (int i = 0; i < N; ++ i)

 {

 Vector2D a_i = a[i];

 Vector2D v_i = v[i];

 Vector2D p_i = p[i];

 // Accumulate acceleration on antiproton from magnetic

 // field.

 temp.assign (v_i) .mul (QP_B) .rotate270();

 a_i.add (temp);

 // Update antiproton’s position and velocity.

 temp.assign (v_i);

 p_i.add (temp.mul (dt));

 temp.assign (a_i);

 p_i.add (temp.mul (one_half_dt_sqr));

C6910_27.indd 459C6910_27.indd 459 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

460 CHAPTER 27 All-Gather

27.3 Collective Communication: All-Gather
Let’s now design a cluster parallel version of the particle motion program. Most of the program’s running
time is spent calculating the electrostatic forces between each pair of particles; this portion’s running time
is O(n2) for n particles. The magnetic force calculations, and the position and velocity updates, are only
O(n). As the problem size scales up, the latter calculations occupy a diminishing fraction of the total run-
ning time. So we will concentrate our attention on the electrostatic force calculations.

We can partition the particles among the K parallel processes, so that each process calculates the posi-
tions for n/K particles. Because the calculations take the same amount of time for each particle, this fixed
partitioning should result in a balanced load. Let a process’s particle index subrange be lb through ub. The
pseudocode for calculating the forces and updating the positions and velocities in that subrange is:

 for i = lb to ub:
 for j = 0 to n–1, j ≠ i:
 d ← p[i] – p[j]
 a[i] ← a[i] + d · Q / |d|3

 for i = lb to ub:
 a[i] ← a[i] + B · (vy[i], –vx[i])
 p[i] ← p[i] + dv[i] + 0.5d 2 a[i]
 v[i] ← v[i] + da [i]
 a[i] ← 0

 temp.assign (a_i);

 v_i.add (temp.mul (dt));

 // Clear antiproton’s acceleration for the next step.

 a_i.clear();

 }

 }

 /**

 * Compute the total momentum for all the antiprotons. The

 * answer is stored in totalMV.

 */

 private static void computeTotalMomentum()

 {

 totalMV.clear();

 for (int i = 0; i < N; ++ i)

 {

 totalMV.add (v[i]);

 }

 }

 }

C6910_27.indd 460C6910_27.indd 460 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.3 Collective Communication: All-Gather 461

While the two outer loops over i now range from lb to ub, the inner loop over j still ranges from 0 to
n–1. Each particle in the process’s subrange must still be paired with every other particle to calculate the
electrostatic forces.

This has two implications for the cluster parallel program design. First, each process need only set
aside storage for its own slice of the velocity array and its own slice of the acceleration array. However,
each process must set aside storage for the entire position array (Figure 27.7). During one time step, each
process reads the entire position array while calculating the electrostatic forces; each process updates
only its own slice of the position array with the new particle positions.

p v a
Process 0

p

v a

Process 1
p

v a

Process 2
p

v a

Process 3

updates

reads

Figure 27.7 Storage allocation in each process

Second, after updating its own position array slice and before going on to the next time step, each
process must fill out the rest of the position array with the new position array slices the other processes have
computed. To do so, each process must send its own slice to every other process and must receive a slice
from every other process (Figure 27.8). This is precisely the all-gather collective communication operation.
(Only the positions need to be communicated, not the velocities or accelerations.) The all-gather operation
also acts as a synchronization point to enforce the sequential dependency from one time step to the next.
The processes will not go on to the next time step until the all-gather has finished and the new particle posi-
tions have been disseminated.

C6910_27.indd 461C6910_27.indd 461 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

462 CHAPTER 27 All-Gather

p v a
Process 0

p

v a

Process 1
p

v a

Process 2
p

v a

Process 3

Figure 27.8 All-gathering the position array slices

Let’s consider how long it will take to do an all-gather operation among K processes. Figure 27.9
shows the actual messages the all-gather operation sends, as implemented in the Parallel Java Library
(which is targeted at commodity clusters where each backend node has one network interface). During each
message round, each process simultaneously sends one data buffer (position array slice) to its predecessor
and receives another data buffer from its successor. After K–1 message rounds, every process has every
slice. Therefore, the time to do an all-gather is the time to send one message multiplied by K–1. Using the
message send time model (Equation 24.1), the all-gather time model for the “tardis” computer is

 (27.16)

where T is the all-gather time in seconds, B is the message size in bits (assumed to be the same for every
process), and K is the number of processes.

One final design detail is that the cluster parallel version uses the parallel output files pattern to
improve performance. While one process could write snapshots of all the particle positions into a single
output file (because the program has to all-gather the positions into every process anyway), doing so
would increase the sequential fraction. Instead, each process writes snapshots of just its own slice into
its own separate output file, in parallel with the other processes. Class AntiprotonFile supports writing
snapshots of just one slice of the position array.

C6910_27.indd 462C6910_27.indd 462 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.3 Collective Communication: All-Gather 463

Process 0
1
2
3
4

Process 1

5
6
7
8

Process 2

9
1 0
1 1
1 2

Process 3

1 3
1 4
1 5
1 6

Initial data buffer contents

Process 0
1
2
3
4
5
6
7
8

Process 1

5
6
7
8
9

1 0
1 1
1 2

Process 2

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6

Process 3

1 3
1 4
1 5
1 6

1
2
3
4

 After first round of messages

Process 0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2

Process 1

5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

Process 2

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6

1
2
3
4

Process 3

1 3
1 4
1 5
1 6

1
2
3
4
5
6
7
8

 After second round of messages

Process 0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

Process 1

5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

1
2
3
4

Process 2

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6

1
2
3
4
5
6
7
8

Process 3

1 3
1 4
1 5
1 6

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2

After third round of messages

 Figure 27.9 Contents of the data buffers during an all-gather operation

C6910_27.indd 463C6910_27.indd 463 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

464 CHAPTER 27 All-Gather

27.4 Parallel Antiproton Program
Here is the source code for class edu.rit.clu.antimatter.AntiprotonClu, the cluster parallel particle motion
program.

package edu.rit.clu.antimatter;

import edu.rit.io.Files;

import edu.rit.mp.DoubleBuf;

import edu.rit.pj.Comm;

import edu.rit.util.Random;

import edu.rit.util.Range;

import edu.rit.vector.Vector2D;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class AntiprotonClu

 {

 // Charge on an antiproton.

 static final double QP = 3.0;

 // Magnetic field strength.

 static final double B = 3.0;

 static final double QP_QP = QP * QP;

 static final double QP_B = QP * B;

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static long seed;

 static double R;

 static double dt;

 static int steps;

 static int snaps;

 static int N;

 static File outfile;

 static double one_half_dt_sqr;

 // Antiproton slices.

 static Range[] slices;

 static Range mySlice;

C6910_27.indd 464C6910_27.indd 464 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.4 Parallel Antiproton Program 465

 static int myLb;

 static int myLen;

 // Acceleration, velocity, and position vector arrays.

 static Vector2D[] a;

 static Vector2D[] v;

 static Vector2D[] p;

 // Total momentum.

 static Vector2D totalMV = new Vector2D();

 // Position array communication buffers.

 static DoubleBuf[] buffers;

 static DoubleBuf myBuffer;

 // Temporary storage.

 static Vector2D temp = new Vector2D();

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Parse command line arguments.

 if (args.length != 7) usage();

 seed = Long.parseLong (args[0]);

 R = Double.parseDouble (args[1]);

 dt = Double.parseDouble (args[2]);

 steps = Integer.parseInt (args[3]);

 snaps = Integer.parseInt (args[4]);

 N = Integer.parseInt (args[5]);

 outfile = new File (args[6]);

 one_half_dt_sqr = 0.5 * dt * dt;

C6910_27.indd 465C6910_27.indd 465 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

466 CHAPTER 27 All-Gather

We partition the particle index range among the processes.

 // Set up antiproton slices.

 slices = new Range (0, N-1) .subranges (size);

 mySlice = slices[rank];

 myLb = mySlice.lb();

 myLen = mySlice.length();

 // Create pseudorandom number generator.

 Random prng = Random.getInstance (seed);

In each process, we allocate storage for the entire position array, and we generate the same random initial
positions (because the PRNG is seeded the same in every process).

 // Initialize position vector array with all antiprotons.

 p = new Vector2D [N];

 for (int i = 0; i < N; ++ i)

 {

 p[i] = new Vector2D

 (prng.nextDouble()*R/2+R/4, prng.nextDouble()*R/2+R/4);

 }

However, we allocate storage for only one slice of the velocity and acceleration arrays.

 // Initialize acceleration and velocity vector arrays with a

 // slice of antiprotons.

 a = new Vector2D [myLen];

 v = new Vector2D [myLen];

 for (int i = 0; i < myLen; ++ i)

 {

 a[i] = new Vector2D();

 v[i] = new Vector2D();

 }

Here are the communication buffers for the all-gather operation (Figure 27.10). myBuffer is the source
buffer for the data this process sends; it refers to this process’s slice of the position array. buffers is the
array of destination buffers for the data this process receives; each buffer in this array refers to a slice of
the position array corresponding to one of the other processes.

 // Set up position array communication buffers.

 buffers = Vector2D.doubleSliceBuffers (p, slices);

 myBuffer = buffers[rank];

 // Set up output file and write initial snapshot.

C6910_27.indd 466C6910_27.indd 466 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.4 Parallel Antiproton Program 467

p

buffers

myBuffer

Process 0
p

buffers

myBuffer

Process 1
p

buffers

myBuffer

Process 2
p

buffers

myBuffer

Process 3

Figure 27.10 Communication buffers for the all-gather

 AntiprotonFile out =

 new AntiprotonFile

 (seed, R, dt, steps, snaps+1, N, myLb, myLen);

 AntiprotonFile.Writer writer =

 out.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream

 (Files.fileForRank (outfile, rank))));

 writer.writeSnapshot (p, myLb, totalMV);

 long t2 = System.currentTimeMillis();

 // Do <snaps> snapshots.

 for (int s = 0; s < snaps; ++ s)

 {

 // Advance time by <steps> steps.

 for (int t = 0; t < steps; ++ t)

 {

 computeAcceleration();

 step();

 // All-gather the new antiproton positions.

 world.allGather (myBuffer, buffers);

 }

 // Compute total momentum.

Here is the all-gather operation at the end of the time step.

C6910_27.indd 467C6910_27.indd 467 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

468 CHAPTER 27 All-Gather

 computeTotalMomentum();

 // Write snapshot.

 writer.writeSnapshot (p, myLb, totalMV);

 }

 // Close output file.

 writer.close();

 // Stop timing.

 long t3 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t3-t1) + " msec total " + rank);

 }

 /**

 * Compute this process’s slice of the antiproton accelerations

 * due to the repulsive forces from all the antiprotons.

 */

 private static void computeAcceleration()

 {

 // Accumulate forces between each pair of antiprotons, but

 // not between an antiproton and itself.

The outer loop goes over just the particles in this process’s slice.

 for (int i = 0; i < myLen; ++ i)

 {

 Vector2D a_i = a[i];

 int index = i + myLb;

 Vector2D p_i = p[index];

The inner loop goes over all the particles (except particle i).

 for (int j = 0; j < index; ++ j)

 {

 temp.assign (p_i);

 temp.sub (p[j]);

 double dsqr = temp.sqrMag();

 temp.mul (QP_QP / (dsqr * Math.sqrt(dsqr)));

 a_i.add (temp);

 }

 for (int j = index+1; j < N; ++ j)

C6910_27.indd 468C6910_27.indd 468 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.4 Parallel Antiproton Program 469

 {

 temp.assign (p_i);

 temp.sub (p[j]);

 double dsqr = temp.sqrMag();

 temp.mul (QP_QP / (dsqr * Math.sqrt(dsqr)));

 a_i.add (temp);

 }

 }

 }

 /**

 * Take one time step.

 */

 private static void step()

 {

 // Move all antiprotons in this slice.

 for (int i = 0; i < myLen; ++ i)

 {

 Vector2D a_i = a[i];

 Vector2D v_i = v[i];

 Vector2D p_i = p[i+myLb];

 // Accumulate acceleration on antiproton from magnetic

 // field.

 temp.assign (v_i) .mul (QP_B) .rotate270();

 a_i.add (temp);

 // Update antiproton’s position and velocity.

 temp.assign (v_i);

 p_i.add (temp.mul (dt));

 temp.assign (a_i);

 p_i.add (temp.mul (one_half_dt_sqr));

 temp.assign (a_i);

 v_i.add (temp.mul (dt));

 // Clear antiproton’s acceleration for the next step.

 a_i.clear();

 }

 }

 /**

 * Compute the total momentum for this process’s slice of the

 * antiprotons. The answer is stored in totalMV.

 */

 private static void computeTotalMomentum()

 {

C6910_27.indd 469C6910_27.indd 469 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

470 CHAPTER 27 All-Gather

27.5 Computation Time Model
Before measuring the cluster parallel particle motion program’s performance, let’s derive a model for the
program’s running time. The running time consists of the time to calculate the integration steps plus the
time to do all the all-gather operations.

We can determine the time to calculate the integration steps by measuring the sequential version’s run-
ning time. For n particles and s steps, the sequential version’s running time is proportional to sn2. Table 27.1
gives the running-time measurements for the sequential version on the “tardis” computer with s = 5,000. If
we fit the data to the power function model Tcalc(s,n,1)= a·sn2, we find that a·s = 1.02 × 10–4 gives the best fit;
thus, a = 2.04 × 10–8. Table 27.1 also shows the Tcalc(s,n,1) values computed by the model.

Table 27.1 Sequential version running times

n Measured Tcalc (s,n,1) (sec) Model Tcalc (s,n,1) (sec)

1000 100.685 102.170

1400 200.576 200.253

2000 408.967 408.680

2800 801.269 801.012

4000 1634.195 1634.719

5600 3201.878 3204.049

When we run the parallel program on K processors, the calculation speeds up by a factor of K. The paral-
lel program’s calculation time therefore is the following:

 (27.17)

For s steps, the parallel version does s all-gathers. Each message in the all-gather consists of one pro-
cess’s slice of the particle position array, that is, n/K position vectors. Each vector consists of two double
values, or 128 bits. Plugging this into Equation 27.16, the parallel program’s communication time is the
following:

 (27.18)

 totalMV.clear();

 for (int i = 0; i < myLen; ++ i)

 {

 totalMV.add (v[i]);

 }

 }

 }

C6910_27.indd 470C6910_27.indd 470 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.5 Computation Time Model 471

Adding Equations 27.17 and 27.18 together and rearranging terms gives the computation time model
for the parallel program,

 (27.19)

where s is the number of steps, n is the number of particles, K is the number of processors, and T is the
running time in seconds. Figure 27.11 plots the calculation time, communication time, and total computa-
tion time as a function of K for s = 5,000 and n = 2,000.

1 1 0 100 1000
1E0

1E1

1E2

1E3

Communication Calculation

Total

Running Time vs. Processors (s=5000, n=2000)

Processors, K

R
u

n
n

in
g

 T
im

e
,

T
(s

,n
,K

)
(s

ec
)

Figure 27.11 T(s,n,K) predicted by computation time model

Consider what the computation time model tells us about the pro gram’s performance as the number
of processors K scales up. The model has one term proportional to 1/K, one term proportional to K, and
one term that is constant with respect to K. For small K, the first term dominates, and the running time
decreases as K increases. But at some point the second term becomes larger than the first term. After that,
the running time starts going up again. This behavior is the same as we observed in the cluster parallel
Floyd’s Algorithm program in Chapter 25. There, however, the second term was only O(log K). Here, the
second term is O(K), resulting in a much more severe performance reduction as K increases.

The speedup predicted by the computation time model is the following:

 (27.20)

As shown in Figure 27.12, the speedup starts out increasing as K increases, but at some point the speedup
starts going back down. Like the Floyd’s Algorithm program, the computation time model for the cluster
parallel particle motion program predicts that the speedup can achieve only a certain maximum value,
after which adding more processors causes a slowdown rather than a further speedup. This time, however,

C6910_27.indd 471C6910_27.indd 471 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

472 CHAPTER 27 All-Gather

the slowdown is much more severe. When running this program, we want to use just enough processors
to get the maximum speedup.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

n=1000

n=2000

n=4000

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p(
5

0
0

0
,n

,K
)

Figure 27.12 Speedup(5000,n,K) predicted by

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

T= 1 0 0

T= 4 0 0

T=1600

Sizeup vs. Processors

Processors, K

S
iz

e
u

p(
5

0
0

0
,T

,K
)

Figure 27.13 Sizeup(5000,T,K) predicted by
computation time model computation time model

This point is worth reemphasizing. It’s important to run a cluster parallel program with a lot of com-
munication (like this one) on the correct number of processors, so as to achieve the smallest possible run-
ning time. Running on the full number of processors in the cluster is not necessarily the right thing to do.
Depending on the cluster size and the problem size, this might put you past the “hump” in the speedup
curve and cause you to experience a larger running time and a smaller speedup than the optimum. You
don’t want to run a program for a week on the full cluster, only to discover that you could have had the
answer in three days using just part of the cluster. A running-time model is the only way to estimate the
performance you’ll get, before you actually run the program.

To find the maximum speedup, we’ll do what we did in Chapter 25: differentiate T(s,n,K) with
respect to K, set the derivative equal to 0, and solve for K. The derivative is the following:

 (27.21)

Set the derivative equal to 0 and multiply both sides by K2:

 (27.22)

Now solve for K:

 (27.23)

C6910_27.indd 472C6910_27.indd 472 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

 27.6 Parallel Program Performance 473

For a certain number of particles n, Equation 27.23 gives the number of processors Kbest that yields the
smallest running time, hence the largest speedup. For n = 2,000 particles, the maximum speedup comes
at Kbest ≈ 20. We can get the actual maximum speedup value by plugging Kbest into Equation 27.20. For
example, Speedup(5,000, 2,000, 20) = 9.891. Notice what Equation 27.23 says about the program’s
performance as the number of particles n increases. Because Kbest is O(n), as the number of particles
increases we can scale up to more processors before hitting the slowdown.

What about sizeup? The problem size N is defined so that the amount of computation is proportional
to N. We’ll define N to be the number of electrostatic force calculations, N = n2, neglecting the magnetic
force calculations and the position and velocity updates, which are only O(n). Then the sizeup is the
following:

 (27.24)

To compute the sizeup, we must first compute the number of particles n that can be solved in time T on
K processors with s time steps, n(s,T,K). For a given s, T, and K, Equation 27.19 becomes a quadratic
equation in n, and solving the quadratic equation yields the value of n. (See Appendix C for how to solve
a quadratic equation.) Figure 27.13 plots the sizeups predicted for the cluster parallel particle motion pro-
gram. While less than ideal, the sizeups scale up much better than the speedups as K increases. Consider
a problem size of 2,000 particles, which takes about 400 seconds to run on one processor. On 100 proces-
sors the sizeup for this running time is about 70, but the speedup for this problem size is only about 4.
Once again we see that going for sizeup is preferable to going for speedup. Also notice that for a given
running time there is a certain number of processors that gives the maximum sizeup, just as we saw with
the speedups.

27.6 Parallel Program Performance
Table 27.2 (at the end of the chapter) lists, and Figure 27.14 plots, the AntiprotonClu pro gram’s perfor-
mance on the “tardis” parallel computer. The program was run with the following command,

$ java -Dpj.np=$K edu.rit.clu.antimatter.AntiprotonClu 142857 7 \

 0.00001 1000 $SNAPS 1000 outfile.dat

where the number of particles was fixed at 1,000, the number of time steps between snapshots was 1,000,
and the number of snapshots ($SNAPS) was 5, 10, 20, 40, 80, or 160. Thus, the total number of time
steps varied from 5,000 to 160,000. The shape of the running-time curves is as the running-time model
predicts—inversely proportional to K initially, and then becoming directly proportional to K. The speed-
ups, efficiencies, and EDSFs are the same regardless of the number of snapshots, because the quantity s
in the numerator and denominator of the speedup formula (Equation 27.20) cancels out. Thus, speedup,
efficiency, and EDSF are independent of s. The only effect of increasing s is to shift the running-time
curves upward, because T is directly proportional to s (Equation 27.19).

C6910_27.indd 473C6910_27.indd 473 2/2/09 12:38:05 PM2/2/09 12:38:05 PM

474 CHAPTER 27 All-Gather

1 1 0 100
1E1

1E2

1E3

1E4

s = 5K

s = 10K

s = 20K

s = 40K

s = 80K

s = 160K

Running Time vs. Processors

Processors, K

T
 (

s,
1

0
0

0
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5 0

100

150

200

250

300

350

400

450

500

s = 5Ks = 10Ks = 20Ks = 40Ks = 80Ks = 160K

EDSF vs. Processors

Processors, K
ED

SF
 (

s,
1

0
0

0
,K

)
(/

1
0

0
0

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

s = 5Ks = 10Ks = 20Ks = 40Ks = 80Ks = 160K

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(s

,1
0

0
0

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

s = 5Ks = 10Ks = 20Ks = 40Ks = 80Ks = 160K

Efficiency vs. Processors

Processors, K

E
ff

(s
,1

0
0

0
,K

)

Figure 27.14 AntiprotonSeq/AntiprotonClu running-time metrics with s varying and n = 1,000

Table 27.3 (at the end of the chapter) lists, and Figure 27.15 plots, the AntiprotonClu program’s per-
formance on the “tardis” parallel computer under a different set of conditions. The program was run with
the following command,

$ java -Dpj.np=$K edu.rit.clu.antimatter.AntiprotonClu 142857 7 \

 0.00001 1000 5 $N outfile.dat

where the number of particles ($N) was 1,000, 1,400, 2,000, 2,800, 4,000, or 5,600, the number of time
steps between snapshots was 1,000, and the number of snapshots was 5, for a total of 5,000 time steps.

C6910_27.indd 474C6910_27.indd 474 2/2/09 12:38:06 PM2/2/09 12:38:06 PM

 27.6 Parallel Program Performance 475

This time, as the problem size increases, the program’s performance gets better—a manifestation of
the surface-to-volume effect. Considering just the number of particles n, the computation time is O(n2),
but the communication time is only O(n). Larger problem sizes lead to diminishing fractions spent on
communication.

1 1 0 100
1E1

1E2

1E3

1E4

n = 1000n = 1400
n = 2000
n = 2800

n = 4000

n = 5600

Running Time vs. Processors

Processors, K

T
 (

5
0

0
0

,n
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5 0

100

150

200

250

300

350

400

450

500

n = 1000

n = 1400

n = 2000
n = 2800
n = 4000n = 5600

EDSF vs. Processors

Processors, K

ED
SF

 (
5

0
0

0
,n

,K
)

(/
1

0
0

0
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

n = 1000

n = 1400

n = 2000

n = 2800

n = 4000

n = 5600

Efficiency vs. Processors

Processors, K

E
ff

(5
0

0
0

,n
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

n = 1000

n = 1400

n = 2000

n = 2800

n = 4000

n = 5600

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(5

0
0

0
,n

,K
)

Figure 27.15 AntiprotonSeq/AntiprotonClu running-time metrics with s = 5,000 and n varying

How well does the model predict the AntiprotonClu program’s running time? The communication
time model of Equation 27.18 applies when K is 10 processes or fewer, there is one process per node, and
all messages are inter-node. When K is 14 or 20, there are two processes on each node, half the messages
are between processes on the same node, and half the messages are between processes on different nodes.

C6910_27.indd 475C6910_27.indd 475 2/2/09 12:38:06 PM2/2/09 12:38:06 PM

476 CHAPTER 27 All-Gather

In this case, the communication time model is a half-and-half combination of the inter-node message
send time model (Equation 24.1) and the intra-node message send time model (Equation 24.2):

 (27.25)

Likewise, when K is 28 or 40, there are four processes on each node, one-quarter of the messages are
inter-node, and three-quarters of the messages are intra-node:

 (27.26)

1 1 0 100
1E1

1E2

1E3

n = 2000

Actual
Model

Running Time vs. Processors

Processors, K

T
 (

5
0

0
0

,n
,K

)
(s

ec
)

 Figure 27.16 AntiprotonClu predicted and actual running times

Figure 27.16 plots the measured running times, and the predicted running times using the appropriate
communication time model, for n = 2,000 particles and s = 5,000 time steps. The predicted time is within
1 percent of the actual time for the majority of the data points and is within 6 percent for all the data
points.

To sum up, the particle motion program’s running time measurements reinforce what we said in
Chapter 24: To get good parallel performance, the program must have much more computation than
communication. The particle motion program gives better performance than the Floyd’s Algorithm
program in Chapter 25 because of the particle motion program’s more extensive computations. If we
increased the problem size by a few more factors beyond what we measured here, we’d expect to see
quite reasonable speedups and sizeups.

However, there’s still room for improvement. In the next two chapters, we’ll change two aspects of
the particle motion program’s design. First, we’ll improve its memory scalability, and then we’ll improve
(that is, reduce) the time it spends on communication.

C6910_27.indd 476C6910_27.indd 476 2/2/09 5:39:39 PM2/2/09 5:39:39 PM

 27.7 The Gravitational N-Body Problem 477

27.7 The Gravitational N-Body Problem
The particle motion program is an example of what physicists call an N-body problem. While no
physicist would actually be interested in calculating the motion of antimatter particles, astrophysicists are
interested in a similar problem, the gravitational N-body problem. In this problem, we are calculating
the motion of astronomical bodies, such as planets or stars, due to their mutual gravitational attraction.

When Sir Isaac Newton formulated his laws of gravitation in the seventeenth century, he showed
how the motion of two orbiting bodies, like the Sun and the Earth, could be expressed as the formula for
a circle, ellipse, parabola, or hyperbola. No such analytic formula exists for a system of three or more
bodies. The only way to solve the problem for N ≥ 3 is to do a numerical integration.

Astronomers have been solving gravitational N-body problems for centuries. Before the advent of
electronic computing machines, a “computer” was a human being who did computation, with pencil and
paper, or aided by a mechanical calculating device. There were even flesh-and-blood parallel computers.
One of the first gravitational N-body computations—and perhaps the first recorded parallel computa-
tion—took place starting in the spring of 1758. Attempting to predict the exact date of Comet Halley’s
expected 1759 return, French mathematician Alexis-Claude Clairaut enlisted the help of his two friends,
Joseph Lalande and Nicole Lepaute, to compute the comet’s orbit as influenced by the gravitational
attraction of Jupiter, Saturn, and the sun. Mr. Lalande and Ms. Lepaute calculated the positions of Jupiter
and Saturn in their orbits around the sun as a function of time. Mr. Clairaut then took their results and
calculated the comet’s position as a function of time. In November 1758, after six months of pen-and-
paper computations, Mr. Clairaut announced the result: the comet would reach perihelion (the point
closest to the sun) on April 15, 1759, plus or minus one month. The comet actually reached perihelion
on March 13, 1759. Why the discrepancy? The computers failed to take into account the gravitational
influence of Uranus and Neptune—understandably so, because in 1758 those planets had not yet been
discovered.

More recently, computational astrophysicists solve gravitational N-body problems (on electronic par-
allel computers) to model the motion of stars in star clusters or galaxies, where N may be on the order of
105 or 106. As mentioned in Chapter 1, they use special hardware accelerator chips to do the gravitational
force calculations at very high speed.

A gravitational N-body program is more complicated than our simple particle motion program. The
chief complicating factor is that gravitational forces are attractive rather than repulsive. When two like-
charged particles come close, they repel each other and move farther away again. But when two stars
come close, they attract each other, move closer still, and start to orbit around each other, forming a so-
called “tight binary.” The tight binary stars move much more quickly than the other far-apart stars, neces-
sitating small time steps to calculate their motion accurately. However, it would be a waste of processing
power to do the force calculations for the far-apart stars on the same tiny time scale as the tight binary
stars. Instead, gravitational N-body programs use “individual time steps”—a different d for each star.
Also, to be able to take larger time steps while maintaining acceptable accuracy, gravitational N-body
programs use much more sophisticated, higher-order integration algorithms than the particle motion
program’s simple second-order algorithm. A gravitational N-body program typically monitors the total
energy of the system (gravitational potential energy plus kinetic energy), which is a conserved quantity
according to the Law of Conservation of Energy.

C6910_27.indd 477C6910_27.indd 477 2/2/09 12:38:06 PM2/2/09 12:38:06 PM

478 CHAPTER 27 All-Gather

Although simplified, the particle motion program does illustrate the features needed in a parallel
N-body program—the O(N2) force calculations, the communication of the particle positions at each time
step, and computing a conserved quantity to monitor truncation error.

27.8 For Further Information
On antimatter and its applications:

R. Forward. • Indistinguishable from Magic: Speculations and Visions of the
Future. Baen Publishing Enterprises, 1995.

R. Forward and J. Davis. • Mirror Matter: Pioneering Antimatter Physics. John
Wiley & Sons, 1988.

On the gravitational N-body problem:

P. Hut and J. Makino. The art of computational science.•
http://www.artcompsci.org/

S. Aarseth. • Gravitational N-Body Simulations: Tools and Algorithms.
Cambridge University Press, 2003.

On solving very large N-body problems with gravitational supercomputers:

J. Makino, T. Fukushige, M. Koga, and K. Namura. GRAPE-6: massively-•
parallel special-purpose computer for astrophysical particle simulations.
Publications of the Astronomical Society of Japan, 55(6):1163–1187,
December 2003.

S. Harfst, A. Gualandris, D. Merritt, R. Spurzem, S. Portegies Zwart, and P. •
Berczik. Performance analysis of direct N-body algorithms on special-purpose
supercomputers. New Astronomy, 12(5):357–377, July 2007.

On numerical integration methods for solving differential equations:

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. • Numerical Recipes:
The Art of Scientific Computing, Third Edition. Cambridge University Press,
2008, Chapter 17.

On Clairaut’s, Lalande’s, and Lepaute’s 1758 calculation of Comet Halley’s orbit:

C. Wilson. Clairaut’s calculation of the eighteenth-century return of Halley’s •
Comet. Journal for the History of Astronomy, 24:1–14, 1993.

D. Grier. • When Computers Were Human. Princeton University Press, 2005.

C6910_27.indd 478C6910_27.indd 478 2/2/09 12:38:06 PM2/2/09 12:38:06 PM

http://www.artcompsci.org/S
http://www.artcompsci.org/S

 27.8 For Further Information 479

Table 27.2 AntiprotonSeq/AntiprotonClu running-time metrics with s varying and n = 1,000

s K T Spdup Eff EDSF s K T Spdup Eff EDSF

5000 seq 100685 40000 seq 805411

5000 1 102854 0.979 0.979 40000 1 822318 0.979 0.979

5000 2 52639 1.913 0.956 0.024 40000 2 418841 1.923 0.961 0.019

5000 3 36744 2.740 0.913 0.036 40000 3 290964 2.768 0.923 0.031

5000 4 29036 3.468 0.867 0.043 40000 4 229015 3.517 0.879 0.038

5000 5 24858 4.050 0.810 0.052 40000 5 195166 4.127 0.825 0.047

5000 6 22186 4.538 0.756 0.059 40000 6 174232 4.623 0.770 0.054

5000 8 19517 5.159 0.645 0.074 40000 8 151980 5.299 0.662 0.068

5000 10 18575 5.420 0.542 0.090 40000 10 145182 5.548 0.555 0.085

5000 14 15604 6.453 0.461 0.086 40000 14 119814 6.722 0.480 0.080

5000 20 16535 6.089 0.304 0.117 40000 20 126315 6.376 0.319 0.109

5000 28 18828 5.348 0.191 0.153 40000 28 140010 5.753 0.205 0.140

5000 40 23815 4.228 0.106 0.212 40000 40 177037 4.549 0.114 0.195

10000 seq 201274 80000 seq 1611066

10000 1 205608 0.979 0.979 80000 1 1644748 0.980 0.980

10000 2 105050 1.916 0.958 0.022 80000 2 837394 1.924 0.962 0.018

10000 3 73118 2.753 0.918 0.033 80000 3 581141 2.772 0.924 0.030

10000 4 57641 3.492 0.873 0.040 80000 4 457623 3.521 0.880 0.038

10000 5 49296 4.083 0.817 0.050 80000 5 389744 4.134 0.827 0.046

10000 6 43842 4.591 0.765 0.056 80000 6 347309 4.639 0.773 0.053

10000 8 38407 5.241 0.655 0.071 80000 8 303623 5.306 0.663 0.068

10000 10 36612 5.497 0.550 0.087 80000 10 289196 5.571 0.557 0.084

10000 14 30349 6.632 0.474 0.082 80000 14 237999 6.769 0.484 0.079

10000 20 32071 6.276 0.314 0.112 80000 20 251060 6.417 0.321 0.108

10000 28 36187 5.562 0.199 0.145 80000 28 275171 5.855 0.209 0.136

10000 40 45641 4.410 0.110 0.202 80000 40 353901 4.552 0.114 0.195

20000 seq 402599 160000 seq 3222247

20000 1 411155 0.979 0.979 160000 1 3289273 0.980 0.980

20000 2 209709 1.920 0.960 0.020 160000 2 1677124 1.921 0.961 0.020

20000 3 145852 2.760 0.920 0.032 160000 3 1162156 2.773 0.924 0.030

20000 4 114716 3.510 0.877 0.039 160000 4 912233 3.532 0.883 0.036

20000 5 97814 4.116 0.823 0.047 160000 5 778920 4.137 0.827 0.046

20000 6 86984 4.628 0.771 0.054 160000 6 692904 4.650 0.775 0.053

20000 8 76198 5.284 0.660 0.069 160000 8 607018 5.308 0.664 0.068

20000 10 72707 5.537 0.554 0.085 160000 10 578111 5.574 0.557 0.084

20000 14 60222 6.685 0.478 0.081 160000 14 473992 6.798 0.486 0.078

20000 20 63555 6.335 0.317 0.110 160000 20 501503 6.425 0.321 0.108

20000 28 70979 5.672 0.203 0.142 160000 28 548945 5.870 0.210 0.136

20000 40 89909 4.478 0.112 0.199 160000 40 701408 4.594 0.115 0.193

C6910_27.indd 479C6910_27.indd 479 2/2/09 12:38:06 PM2/2/09 12:38:06 PM

480 CHAPTER 27 All-Gather

Table 27.3 AntiprotonSeq/AntiprotonClu running-time metrics with s = 5,000 and n varying

n K T Spdup Eff EDSF n K T Spdup Eff EDSF

1000 seq 100685 2800 seq 801269

1000 1 102854 0.979 0.979 2800 1 809229 0.990 0.990

1000 2 52639 1.913 0.956 0.024 2800 2 410400 1.952 0.976 0.014

1000 3 36744 2.740 0.913 0.036 2800 3 275302 2.911 0.970 0.010

1000 4 29036 3.468 0.867 0.043 2800 4 207113 3.869 0.967 0.008

1000 5 24858 4.050 0.810 0.052 2800 5 166798 4.804 0.961 0.008

1000 6 22186 4.538 0.756 0.059 2800 6 142222 5.634 0.939 0.011

1000 8 19517 5.159 0.645 0.074 2800 8 109660 7.307 0.913 0.012

1000 10 18575 5.420 0.542 0.090 2800 10 90965 8.809 0.881 0.014

1000 14 15604 6.453 0.461 0.086 2800 14 68671 11.668 0.833 0.014

1000 20 16535 6.089 0.304 0.117 2800 20 54368 14.738 0.737 0.018

1000 28 18828 5.348 0.191 0.153 2800 28 48407 16.553 0.591 0.025

1000 40 23815 4.228 0.106 0.212 2800 40 45669 17.545 0.439 0.032

1400 seq 200576 4000 seq 1634195

1400 1 201381 0.996 0.996 4000 1 1659920 0.985 0.985

1400 2 102207 1.962 0.981 0.015 4000 2 844169 1.936 0.968 0.017

1400 3 69723 2.877 0.959 0.019 4000 3 565780 2.888 0.963 0.011

1400 4 54082 3.709 0.927 0.025 4000 4 425581 3.840 0.960 0.009

1400 5 44872 4.470 0.894 0.029 4000 5 342431 4.772 0.954 0.008

1400 6 39045 5.137 0.856 0.033 4000 6 288294 5.669 0.945 0.008

1400 8 32254 6.219 0.777 0.040 4000 8 220023 7.427 0.928 0.009

1400 10 28744 6.978 0.698 0.047 4000 10 179766 9.091 0.909 0.009

1400 14 23383 8.578 0.613 0.048 4000 14 131921 12.388 0.885 0.009

1400 20 22171 9.047 0.452 0.063 4000 20 99536 16.418 0.821 0.010

1400 28 23100 8.683 0.310 0.082 4000 28 81020 20.170 0.720 0.014

1400 40 27096 7.402 0.185 0.112 4000 40 70798 23.083 0.577 0.018

2000 seq 408967 5600 seq 3201878

2000 1 410678 0.996 0.996 5600 1 3254822 0.984 0.984

2000 2 207915 1.967 0.983 0.013 5600 2 1621172 1.975 0.988 -0.004

2000 3 139849 2.924 0.975 0.011 5600 3 1079498 2.966 0.989 -0.003

2000 4 106687 3.833 0.958 0.013 5600 4 816549 3.921 0.980 0.001

2000 5 87143 4.693 0.939 0.015 5600 5 657699 4.868 0.974 0.003

2000 6 74657 5.478 0.913 0.018 5600 6 553896 5.781 0.963 0.004

2000 8 59171 6.912 0.864 0.022 5600 8 419712 7.629 0.954 0.005

2000 10 50759 8.057 0.806 0.026 5600 10 340806 9.395 0.940 0.005

2000 14 38993 10.488 0.749 0.025 5600 14 247764 12.923 0.923 0.005

2000 20 33737 12.122 0.606 0.034 5600 20 181130 17.677 0.884 0.006

2000 28 32054 12.759 0.456 0.044 5600 28 141759 22.587 0.807 0.008

2000 40 33138 12.341 0.309 0.057 5600 40 113055 28.321 0.708 0.010

C6910_27.indd 480C6910_27.indd 480 2/2/09 12:38:06 PM2/2/09 12:38:06 PM

481

C H A P T E R 28
in which we characterize a parallel program’s ability to scale up to more processors;

we consider the memory scalability of the antiproton motion program; we devise a

design pattern that improves the memory scalability of cluster parallel programs; and

we apply the design pattern

Scalability and Pipelining

C6910_28.indd 481C6910_28.indd 481 2/2/09 12:37:46 PM2/2/09 12:37:46 PM

C H A P T E R28 Scalability and Pipelining

28.1 Scalability
In Chapter 27, we developed a cluster parallel program to compute the motion of antiprotons. Let’s
contemplate running the program on more parallel processors, so that we can calculate the motion of
more particles. The term scalability refers to the ability of a parallel program to calculate larger problems
as the number of processors scales up (increases). What is the cluster parallel particle motion program’s
scalability? And are there any limits to its scalability?

One way to approach this question is to see what happens to the problem size N as the number of
processors K increases, keeping everything else the same. One metric often cited is the “isoefficiency func-
tion,” which gives a formula for N as a function of K such that the parallel program’s efficiency, and hence
its speedup, is held the same as K increases. However, as discussed in Chapter 10, a more meaningful metric
gives N as a function of K when the running time is held the same—namely, the program’s sizeup. For a
fixed running-time budget, the sizeup tells exactly how much larger a problem can be computed with more
processors. Thus, sizeup is one measure of scalability.

Another way to approach a program’s scalability is to see what happens to the input size n, rather than
the problem size N, as the number of processors increases. While the amount of computation is proportional
to N by definition, the relationship between the amount of computation and the input size depends on
the algorithm’s complexity. For the AES key search program, the amount of computation is O(2n), where n
is the number of missing key bits. For Floyd’s Algorithm, the amount of computation is O(n3), where n is
the number of vertices in the graph. For the particle motion program, the amount of computation is O(n2),
where n is the number of particles. Thus, we defined N to be 2n, n3, and n2, respectively, for these programs.
Let f(n) be the function that maps input size to problem size; then the inverse function f –1(N) maps problem
size to input size. For the AES key search program, f –1(N) = log2 N; for Floyd’s Algorithm, f –1(N) = N1/3; for
the particle motion program, f –1(N) = N1/2. A general formula for input size n as a function of running time T
and number of processors K is the following:

 (28.1)

For example, let’s say the particle motion program running for time T can solve a problem size of N
on K processors. Suppose we scale up to 2K processors. If the program’s sizeup is ideal, then the pro-
gram can solve a problem size of 2N in time T on 2K processors. This, in turn, means the input size can
increase from n to f –1(2N) = (2N)1/2 = 1.414n. Nonideal sizeups result in smaller input size increases.
If the program’s sizeup efficiency is 90 percent, for example, the program can solve a problem size of
0.9·2N in time T on 2K processors. This, in turn, means the input size can increase from n to
f –1(0.9·2N) = (0.9·2N)1/2 = 1.342n.

C6910_28.indd 482C6910_28.indd 482 2/2/09 12:37:46 PM2/2/09 12:37:46 PM

 28.1 Scalability 483

However, there might be a limit on how far we can scale up, because the program’s memory usage
in each process might depend on n, hence on N and K. Consider the cluster parallel particle motion
program’s memory usage (Figure 28.1). Because each process keeps only one slice of the velocity and
acceleration arrays, the amount of memory needed for these arrays is proportional to n/K. With an ideal
sizeup, n is proportional to K1/2. Thus, the amount of memory needed for these arrays is proportional
to K–1/2. That is, the amount of memory in each process for the velocity and acceleration arrays goes down
as the number of processors goes up (while keeping the running time the same).

p v a
Process 0

p

v a

Process 1
p

v a

Process 2
p

v a

Process 3

Figure 28.1 AntiprotonClu program storage allocation in each process

However, each process has to keep the entire position array, and the amount of memory needed for
this array is proportional to n—not n/K. Thus, the amount of memory for this array is proportional to K1/2.
That is, the amount of memory in each process for the position array goes up as the number of processors
goes up. Eventually, each process consumes all the available memory in each processor, after which we
cannot go to a larger problem size by adding more processors (while keeping the running time the same).

When we speak of “memory,” we are referring to physical memory—the number of bytes in the
RAM chips in the processor. A program can use virtual memory to access more storage than the physi-
cal RAM chips. However, a program whose virtual memory usage exceeds physical memory experiences
a severe performance reduction as the operating system swaps virtual memory pages back and forth
between RAM and disk. Such a performance reduction is anathema in a parallel program. Never run a
parallel program on a problem too large to fit in physical memory.

Let Mem(n) denote the memory needed in each process as a function of the input size. Then by
Equation 28.1, the formula

 (28.2)

gives the memory usage as a function of the number of processors K for a certain running time T. If the
memory usage is a constant or a decreasing function of K, the program will not run out of memory when
scaling up (while keeping T the same). If the memory usage is an increasing function of K, then there is a
limit on how far the program can scale up. Setting Equation 28.2 equal to the available physical memory
in each processor and solving for K yields the maximum number of processors that can be utilized.

C6910_28.indd 483C6910_28.indd 483 2/2/09 12:37:46 PM2/2/09 12:37:46 PM

484 CHAPTER 28 Scalability and Pipelining

Not all programs require more memory as the problem size increases. For example, the AES key
search program allocates storage for one plaintext, one ciphertext, one trial key, one cipher object, and
so on—no matter how many missing key bits there are. Thus, the AES key search program can solve any
size problem without hitting a memory limit.

A particle motion program that does not hit a memory limit would be preferable to the program
we have now. To achieve this, we need each process to store only one slice of the position array as well
as one slice of the velocity and acceleration arrays (Figure 28.2). Then all the arrays will occupy stor-
age proportional to n/K, that is, storage proportional to K–1/2. We can then scale up the computation to
as many particles as we please, and still get the answer in the same time, by increasing the number of
processors appropriately, without worrying about running out of memory.

p v a
Process 0

p v a

Process 1

p v a

Process 2

p v a

Process 3

Figure 28.2 Desired storage allocation in each process

28.2 Pipelined Message Passing
To compute the electrostatic forces, each process must pair its own particles’ positions with every other
process’s particles’ positions. But if each process stores only its own slice of the position array, the pro-
cess does not have all the data it needs to compute the electrostatic forces.

To solve this problem, we must rearrange the program’s computation and communication. Instead
of computing all the electrostatic forces followed by communicating all the particle positions (with an
all-gather), we must intersperse computing a slice of the electrostatic forces with communicating a slice
of the particle positions. For example, suppose there are 10,000 particles, and suppose the program is
divided among four parallel processes. Here’s what each process would do:

Compute the forces between all pairs of particles with both particles in the 1.
process’s own slice, accumulating the forces into the acceleration array slice.

C6910_28.indd 484C6910_28.indd 484 2/2/09 12:37:46 PM2/2/09 12:37:46 PM

 28.2 Pipelined Message Passing 485

p
0−
2499 f

a
0−
2499

Process 0

p
2500−
4999 f

a
2500−
4999

Process 1

p
5000−
7499 f

a
5000−
7499

Process 2

p
7500−
9999 f

a
7500−
9999

Process 3

Figure 28.3 First round of computation

Send the process’s slice of the position array to the previous process. 2.
Simultaneously, receive the next process’s slice of the position array into an
auxiliary buffer. (There is also another auxiliary buffer that will be used later.)

p
0−
2499

a
0−
2499

2500−
4999

Process 0

p
2500−
4999

a
2500−
4999

5000−
7499

Process 1

p
5000−
7499

a
5000−
7499

7500−
9999

Process 2

p
7500−
9999

a
7500−
9999

0−
2499

Process 3

Figure 28.4 First round of communication

Swap the auxiliary buffers, and then compute the forces between all pairs of 3.
particles with one particle in the process’s own slice and the other particle in
the just-received slice (which contains particle positions from the process one
rank ahead).

p
0−
2499 f

a
0−
2499

2500−
4999

Process 0

p
2500−
4999 f

a
2500−
4999

5000−
7499

Process 1

p
5000−
7499 f

a
5000−
7499

7500−
9999

Process 2

p
7500−
9999 f

a
7500−
9999

0−
2499

Process 3

Figure 28.5 Second round of computation

Send the position array slice from the first auxiliary buffer to the previous pro-4.
cess. Simultaneously, receive a position array slice into the second auxiliary
buffer from the next process.

C6910_28.indd 485C6910_28.indd 485 2/2/09 12:37:46 PM2/2/09 12:37:46 PM

486 CHAPTER 28 Scalability and Pipelining

p
0−
2499

a
0−
2499

2500−
4999

5000−
7499

Process 0

p
2500−
4999

a
2500−
4999

5000−
7499

7500−
9999

Process 1

p
5000−
7499

a
5000−
7499

7500−
9999

0−
2499

Process 2

p
7500−
9999

a
7500−
9999

0−
2499

2500−
4999

Process 3

Figure 28.6 Second round of communication

Swap the auxiliary buffers, and then compute the forces between all pairs of 5.
particles with one particle in the process’s own slice and the other particle in
the just-received slice (which contains particle positions from the process two
ranks ahead).

p
0−
2499 f

a
0−
2499

5000−
7499

2500−
4999

Process 0

p
2500−
4999 f

a
2500−
4999

7500−
9999

5000−
7499

Process 1

p
5000−
7499 f

a
5000−
7499

0−
2499

7500−
9999

Process 2

p
7500−
9999 f

a
7500−
9999

2500−
4999

0−
2499

Process 3

Figure 28.7 Third round of computation

Send the position array slice from the first auxiliary buffer to the previous pro-6.
cess. Simultaneously, receive a position array slice into the second auxiliary
buffer from the next process.

p
0−
2499

a
0−
2499

5000−
7499

7500−
9999

Process 0

p
2500−
4999

a
2500−
4999

7500−
9999

0−
2499

Process 1

p
5000−
7499

a
5000−
7499

0−
2499

2500−
4999

Process 2

p
7500−
9999

a
7500−
9999

2500−
4999

5000−
7499

Process 3

Figure 28.8 Third round of communication

Swap the auxiliary buffers, and then compute the forces between all pairs of 7.
particles with one particle in the process’s own slice and the other particle
in the just-received slice (which contains particle positions from the process
three ranks ahead).

C6910_28.indd 486C6910_28.indd 486 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

 28.3 Point-to-Point Communication: Send-Receive 487

p
0−
2499 f

a
0−
2499

7500−
9999

5000−
7499

Process 0

p
2500−
4999 f

a
2500−
4999

0−
2499

7500−
9999

Process 1

p
5000−
7499 f

a
5000−
7499

2500−
4999

0−
2499

Process 2

p
7500−
9999 f

a
7500−
9999

5000−
7499

2500−
4999

Process 3

Figure 28.9 Fourth round of computation

This concludes the calculation of the electrostatic forces. The rest of the time step’s computations—
calculating the magnetic forces and updating the positions and velocities—are the same as in the
AntiprotonClu program.

The new particle motion program follows the pipelined message passing pattern. From any indi-
vidual process’s point of view, the other processes’ slices of the particle position array arrive in a steady
stream, like oil from a pipeline. Each process pumps the slices in, the process does some computation
with them, and then it pumps them out again.

28.3 Point-to-Point Communication: Send-Receive
At each communication step in the pipelined message passing pattern, each process both sends a message
to another process and receives a message from a third process. We could write the program so each pro-
cess sends the outgoing message first, and then goes back and receives the incoming message. However,
if all the processes are sending and none are receiving, and if the network buffers inside each processor’s
operating system kernel fill up, then flow control in the network transport protocol would halt transmis-
sion in all the processes, the sends would never finish, and the program would go into a deadlock. To
avoid the deadlock, we could write the program so half the processes send the outgoing message while
the other half receive the incoming message, and then switch and communicate the other way round. But
this would require some tricky coding.

We can avoid the deadlock and simplify the coding by employing the send-receive operation. With a
single method call, each process simultaneously sends one message and receives another message.

The sendReceive() method’s first argument is the rank of the process to which to send the outgoing
message. In the pipelined particle motion program, this is always the process at the next lower rank. The
variable toRank is set to this process’s rank minus 1, wrapping around to rank size-1 if this process’s
rank is 0. The second argument is the buffer from which to obtain the outgoing message data. The third
argument is the rank of the process from which to receive the incoming message. In the pipelined particle
motion program, this is always the process at the next higher rank. The variable fromRank is set to this
process’s rank plus 1, wrapping around to rank 0 if this process’s rank is size-1. The fourth argument is
the buffer in which to store the incoming message data. The incoming data must be stored in a different
place from the outgoing data, so as not to wipe out the outgoing data before it can be sent.

 int toRank = (rank – 1 + size) % size;

 int fromRank = (rank + 1) % size;

 world.sendReceive (toRank, outBuf, fromRank, inBuf);

C6910_28.indd 487C6910_28.indd 487 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

488 CHAPTER 28 Scalability and Pipelining

Under the hood, the sendReceive() method sends the outgoing message and receives the incoming
message simultaneously in separate threads. If the network interface supports full duplex operation, both
the outgoing and the incoming messages can traverse the network at the same time, resulting in a smaller
communication time than if the messages had to travel sequentially. Because the receive is happening at the
same time as the send, a deadlock will not occur (as it might if the receive happened after the send).

How much time will the pipelined particle motion program’s message passing take? With K pro-
cesses, there are K–1 rounds of message passing during each time step. During one round, each process
simultaneously sends one message and receives one message. Each message consists of one slice of the
particle position array, or n/K position vectors. These are exactly the same messages the original pro-
gram’s all-gather operation does all at once. Thus, the pipelined program’s communication time is the
same as the original program’s. Because the pipelined program does the same computations, its calcula-
tion time is also the same as the original pro gram’s. Thus, the pipelined program should exhibit the same
performance as the original program, including the slowdown as K increases.

We went to a pipelined design not to reduce the program’s running time, but to improve the pro-
gram’s memory scalability. In the pipelined program, all the arrays—including the two auxiliary buffers
used for communication—have n/K elements.

28.4 Pipelined Antiproton Program
Here is the source code for class edu.rit.clu.antimatter.AntiprotonClu2, the cluster parallel particle motion
program with pipelined message passing.

package edu.rit.clu.antimatter;

import edu.rit.io.Files;

import edu.rit.mp.DoubleBuf;

import edu.rit.pj.Comm;

import edu.rit.util.Random;

import edu.rit.util.Range;

import edu.rit.vector.Vector2D;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class AntiprotonClu2

 {

 // Charge on an antiproton.

 static final double QP = 3.0;

 // Magnetic field strength.

 static final double B = 3.0;

 static final double QP_QP = QP * QP;

 static final double QP_B = QP * B;

 // World communicator.

 static Comm world;

C6910_28.indd 488C6910_28.indd 488 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

 28.4 Pipelined Antiproton Program 489

 static int size;

 static int rank;

 static int predRank;

 static int succRank;

 // Command line arguments.

 static long seed;

 static double R;

 static double dt;

 static int steps;

 static int snaps;

 static int N;

 static File outfile;

 static double one_half_dt_sqr;

 // Antiproton slices.

 static Range[] slices;

 static Range mySlice;

 static int myLb;

 static int myLen;

 // Acceleration, velocity, and position vector arrays.

 static Vector2D[] a;

 static Vector2D[] v;

 static Vector2D[] p;

 // Position vector arrays to use for pipelined message passing.

 static Vector2D[] p2;

 static Vector2D[] p3;

 // Position vector array communication buffers.

 static DoubleBuf pbuf;

 static DoubleBuf p2buf;

 static DoubleBuf p3buf;

 // Temporary storage.

 static Vector2D temp = new Vector2D();

 // Total momentum.

 static Vector2D totalMV = new Vector2D();

 /**

 * Main program.

 */

C6910_28.indd 489C6910_28.indd 489 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

490 CHAPTER 28 Scalability and Pipelining

Here, we determine the ranks of the two processes with which this process will be communicating.

Each process is aware of the index range for every process’s slice of the acceleration, velocity, and posi-
tion vector arrays.

Because this process is going to initialize only its own slice of the position vector array, this process must
skip the pseudorandom number generator over the preceding processes’ random numbers. This is the
sequence splitting pattern.

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 predRank = (rank - 1 + size) % size;

 succRank = (rank + 1) % size;

 // Parse command line arguments.

 if (args.length != 7) usage();

 seed = Long.parseLong (args[0]);

 R = Double.parseDouble (args[1]);

 dt = Double.parseDouble (args[2]);

 steps = Integer.parseInt (args[3]);

 snaps = Integer.parseInt (args[4]);

 N = Integer.parseInt (args[5]);

 outfile = new File (args[6]);

 one_half_dt_sqr = 0.5 * dt * dt;

 // Set up antiproton slices.

 slices = new Range (0, N-1) .subranges (size);

 mySlice = slices[rank];

 myLb = mySlice.lb();

 myLen = mySlice.length();

C6910_28.indd 490C6910_28.indd 490 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

 28.4 Pipelined Antiproton Program 491

The auxiliary arrays p2 and p3 are used to hold the outgoing and incoming slices of the position vec-
tor array, respectively. One minor detail is that these arrays are allocated to hold the same number of
elements as this pro cess’s slice, plus one. This is necessary because another process’s slice might be
one larger than this process’s slice, if the number of particles is not evenly divisible by the number of
processes.

 // Create pseudorandom number generator.

 Random prng = Random.getInstance (seed);

 prng.skip (2 * myLb);

 // Initialize acceleration, velocity, and position vector

 // arrays with this process’s slice of antiprotons.

 a = new Vector2D [myLen];

 v = new Vector2D [myLen];

 p = new Vector2D [myLen];

 for (int i = 0; i < myLen; ++ i)

 {

 a[i] = new Vector2D();

 v[i] = new Vector2D();

 p[i] = new Vector2D

 (prng.nextDouble()*R/2+R/4, prng.nextDouble()*R/2+R/4);

 }

 // Initialize position vector arrays for pipelined message

 // passing.

 p2 = new Vector2D [myLen+1];

 p3 = new Vector2D [myLen+1];

 for (int i = 0; i <= myLen; ++ i)

 {

 p2[i] = new Vector2D();

 p3[i] = new Vector2D();

 }

 // Set up position array communication buffers.

 pbuf = Vector2D.doubleBuffer (p);

 p2buf = Vector2D.doubleBuffer (p2);

 p3buf = Vector2D.doubleBuffer (p3);

 // Set up output file and write initial snapshot.

 AntiprotonFile out =

 new AntiprotonFile

 (seed, R, dt, steps, snaps+1, N, myLb, myLen);

 AntiprotonFile.Writer writer =

 out.prepareToWrite

C6910_28.indd 491C6910_28.indd 491 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

492 CHAPTER 28 Scalability and Pipelining

Here is the first round of computation within one time step (Figure 28.3).

Here is a round of communication within one time step. The first time, outbuf refers to this process’s slice of
particle positions, p (Figure 28.4). After that, outbuf refers to the auxiliary array p2 (Figures 28.6 and 28.8).
inbuf always refers to the auxiliary array p3.

 (new BufferedOutputStream

 (new FileOutputStream

 (Files.fileForRank (outfile, rank))));

 writer.writeSnapshot (p, 0, totalMV);

 long t2 = System.currentTimeMillis();

 // Do <snaps> snapshots.

 for (int s = 0; s < snaps; ++ s)

 {

 // Advance time by <steps> steps.

 for (int t = 0; t < steps; ++ t)

 {

 // Compute accelerations due to this process’s

 // antiprotons.

 computeAccelerationThisSlice();

 // Do <size>-1 rounds of pipelined message passing.

 DoubleBuf outbuf = pbuf;

 DoubleBuf inbuf = p3buf;

 for (int k = 1; k < size; ++ k)

 {

 // Shift position slices through the pipeline.

 world.sendReceive

 (predRank, outbuf, succRank, inbuf);

 // Swap outgoing and incoming position slices and

 // buffers.

 Vector2D[] ptmp = p2;

 p2 = p3;

 p3 = ptmp;

 DoubleBuf tmpbuf = p2buf;

 p2buf = p3buf;

C6910_28.indd 492C6910_28.indd 492 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

 28.4 Pipelined Antiproton Program 493

 p3buf = tmpbuf;

 outbuf = p2buf;

 inbuf = p3buf;

 // Compute accelerations due to other process’s

 // antiprotons.

 computeAccelerationOtherSlice ((rank + k) % size);

 }

 // Move this process’s antiprotons.

 step();

 }

 // Compute total momentum.

 computeTotalMomentum();

 // Write snapshot.

 writer.writeSnapshot (p, 0, totalMV);

 }

 // Close output file.

 writer.close();

 // Stop timing.

 long t3 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t3-t1) + " msec total " + rank);

 }

 /**

 * Compute this process’s slice of the antiproton accelerations

 * due to the repulsive forces from this process’s slice of the

 * antiprotons.

 */

 private static void computeAccelerationThisSlice()

 {

 // Accumulate forces between each pair of antiprotons, but

 // not between an antiproton and itself.

Here are the second and subsequent rounds of computation within one time step (Figures 28.5, 28.7, and 28.9).
Note that the other process’s rank must be specified when calling computeAccelerationOtherSlice();
this is needed to determine the length of the other process’s slice. The other pro cess’s particle positions are
located in the auxiliary array p2.

C6910_28.indd 493C6910_28.indd 493 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

494 CHAPTER 28 Scalability and Pipelining

 for (int i = 0; i < myLen; ++ i)

 {

 Vector2D a_i = a[i];

 Vector2D p_i = p[i];

 for (int j = 0; j < i; ++ j)

 {

 temp.assign (p_i);

 temp.sub (p[j]);

 double dsqr = temp.sqrMag();

 temp.mul (QP_QP / (dsqr * Math.sqrt(dsqr)));

 a_i.add (temp);

 }

 for (int j = i+1; j < myLen; ++ j)

 {

 temp.assign (p_i);

 temp.sub (p[j]);

 double dsqr = temp.sqrMag();

 temp.mul (QP_QP / (dsqr * Math.sqrt(dsqr)));

 a_i.add (temp);

 }

 }

 }

 /**

 * Compute this process’s slice of the antiproton accelerations

 * due to the repulsive forces from another process’s slice of

 * the antiprotons (located in p2).

 *

 * @param fromRank Other process’s rank.

 */

 private static void computeAccelerationOtherSlice

 (int fromRank)

 {

 int otherLen = slices[fromRank].length();

 // Accumulate forces between each pair of antiprotons.

 for (int i = 0; i < myLen; ++ i)

 {

 Vector2D a_i = a[i];

 Vector2D p_i = p[i];

 for (int j = 0; j < otherLen; ++ j)

 {

 temp.assign (p_i);

 temp.sub (p2[j]);

C6910_28.indd 494C6910_28.indd 494 2/2/09 12:37:47 PM2/2/09 12:37:47 PM

 28.4 Pipelined Antiproton Program 495

 double dsqr = temp.sqrMag();

 temp.mul (QP_QP / (dsqr * Math.sqrt(dsqr)));

 a_i.add (temp);

 }

 }

 }

 /**

 * Take one time step.

 */

 private static void step()

 {

 // Move all antiprotons in this slice.

 for (int i = 0; i < myLen; ++ i)

 {

 Vector2D a_i = a[i];

 Vector2D v_i = v[i];

 Vector2D p_i = p[i];

 // Accumulate acceleration on antiproton from magnetic

 // field.

 temp.assign (v_i) .mul (QP_B) .rotate270();

 a_i.add (temp);

 // Update antiproton’s position and velocity.

 temp.assign (v_i);

 p_i.add (temp.mul (dt));

 temp.assign (a_i);

 p_i.add (temp.mul (one_half_dt_sqr));

 temp.assign (a_i);

 v_i.add (temp.mul (dt));

 // Clear antiproton’s acceleration for the next step.

 a_i.clear();

 }

 }

 /**

 * Compute the total momentum for this process’s slice of the

 * antiprotons. The answer is stored in totalMV.

 */

 private static void computeTotalMomentum()

 {

 totalMV.clear();

 for (int i = 0; i < myLen; ++ i)

C6910_28.indd 495C6910_28.indd 495 2/2/09 12:37:48 PM2/2/09 12:37:48 PM

496 CHAPTER 28 Scalability and Pipelining

 {

 totalMV.add (v[i]);

 }

 }

 }

$ java -Dpj.np=$K edu.rit.clu.antimatter.AntiprotonClu2 \

 142857 7 0.00001 1000 5 $N outfile.dat

28.5 Pipelined Program Performance
Table 28.1 (at the end of the chapter) lists, and Figure 28.10 plots, the AntiprotonClu2 program’s perfor-
mance on the “tardis” parallel computer. The program was run with the following command,

where the number of particles ($N) was 1,000, 1,400, 2,000, 2,800, 4,000, or 5,600, the number of time
steps between snapshots was 1,000, and the number of snapshots was 5, for a total of 5,000 time steps.
Comparing Table 28.1 to Table 27.3, the pipelined program’s running times are about the same as the
nonpipelined program’s running times, as expected.

While the pipelined message passing improved the particle motion pro gram’s memory scalability, it did
not alter the program’s performance. However, the pipelined message passing does make possible another
design change that will improve the program’s performance. This will be the subject of the next chapter.

C6910_28.indd 496C6910_28.indd 496 2/2/09 12:37:48 PM2/2/09 12:37:48 PM

 28.5 Pipelined Program Performance 497

1 1 0 100
1E1

1E2

1E3

1E4

n = 1000n = 1400
n = 2000
n = 2800

n = 4000

n = 5600

Running Time vs. Processors

Processors, K

T
 (

5
0

0
0

,n
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5 0

100

150

200

250

300

350

400

450

500

n = 1000

n = 1400

n = 2000
n = 2800
n = 4000n = 5600

EDSF vs. Processors

Processors, K

ED
SF

 (
5

0
0

0
,n

,K
)

(/
1

0
0

0
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

n = 1000

n = 1400

n = 2000

n = 2800

n = 4000

n = 5600

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(5

0
0

0
,n

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

n = 1000

n = 1400

n = 2000

n = 2800

n = 4000

n = 5600

Efficiency vs. Processors

Processors, K

E
ff

(5
0

0
0

,n
,K

)

Figure 28.10 AntiprotonSeq/AntiprotonClu2 running-time metrics with s = 5,000 and n varying

C6910_28.indd 497C6910_28.indd 497 2/2/09 12:37:48 PM2/2/09 12:37:48 PM

498 CHAPTER 28 Scalability and Pipelining

Table 28.1 AntiprotonSeq/AntiprotonClu2 running-time metrics with s = 5000 and n varying

n K T Spdup Eff EDSF n K T Spdup Eff EDSF

1000 seq 100692 2800 seq 801121

1000 1 100861 0.998 0.998 2800 1 801882 0.999 0.999

1000 2 51944 1.938 0.969 0.030 2800 2 401528 1.995 0.998 0.001

1000 3 36321 2.772 0.924 0.040 2800 3 266748 3.003 1.001 -0.001

1000 4 28935 3.480 0.870 0.049 2800 4 202300 3.960 0.990 0.003

1000 5 24636 4.087 0.817 0.055 2800 5 164384 4.873 0.975 0.006

1000 6 22783 4.420 0.737 0.071 2800 6 139652 5.737 0.956 0.009

1000 8 19935 5.051 0.631 0.083 2800 8 107908 7.424 0.928 0.011

1000 10 19130 5.264 0.526 0.100 2800 10 90082 8.893 0.889 0.014

1000 14 16324 6.168 0.441 0.097 2800 14 67222 11.918 0.851 0.013

1000 20 16772 6.004 0.300 0.122 2800 20 55216 14.509 0.725 0.020

1000 28 19489 5.167 0.185 0.163 2800 28 50207 15.956 0.570 0.028

1000 40 24584 4.096 0.102 0.224 2800 40 46316 17.297 0.432 0.034

1400 seq 200671 4000 seq 1634275

1400 1 200862 0.999 0.999 4000 1 1635910 0.999 0.999

1400 2 100317 2.000 1.000 -0.001 4000 2 822769 1.986 0.993 0.006

1400 3 69172 2.901 0.967 0.017 4000 3 546088 2.993 0.998 0.001

1400 4 53220 3.771 0.943 0.020 4000 4 408822 3.998 0.999 0.000

1400 5 44543 4.505 0.901 0.027 4000 5 329310 4.963 0.993 0.002

1400 6 38514 5.210 0.868 0.030 4000 6 276772 5.905 0.984 0.003

1400 8 32032 6.265 0.783 0.039 4000 8 212301 7.698 0.962 0.005

1400 10 29689 6.759 0.676 0.053 4000 10 173365 9.427 0.943 0.007

1400 14 24535 8.179 0.584 0.055 4000 14 127725 12.795 0.914 0.007

1400 20 22547 8.900 0.445 0.066 4000 20 96985 16.851 0.843 0.010

1400 28 23842 8.417 0.301 0.086 4000 28 81167 20.135 0.719 0.014

1400 40 28033 7.158 0.179 0.118 4000 40 71845 22.747 0.569 0.019

2000 seq 408964 5600 seq 3202221

2000 1 409399 0.999 0.999 5600 1 3204736 0.999 0.999

2000 2 203655 2.008 1.004 -0.005 5600 2 1606363 1.993 0.997 0.002

2000 3 137529 2.974 0.991 0.004 5600 3 1079674 2.966 0.989 0.005

2000 4 105541 3.875 0.969 0.010 5600 4 801837 3.994 0.998 0.000

2000 5 86207 4.744 0.949 0.013 5600 5 641054 4.995 0.999 0.000

2000 6 73826 5.540 0.923 0.016 5600 6 535393 5.981 0.997 0.000

2000 8 58415 7.001 0.875 0.020 5600 8 406158 7.884 0.986 0.002

2000 10 49946 8.188 0.819 0.024 5600 10 330193 9.698 0.970 0.003

2000 14 38749 10.554 0.754 0.025 5600 14 239381 13.377 0.956 0.004

2000 20 35202 11.618 0.581 0.038 5600 20 177816 18.009 0.900 0.006

2000 28 33470 12.219 0.436 0.048 5600 28 140946 22.719 0.811 0.009

2000 40 34403 11.887 0.297 0.061 5600 40 116001 27.605 0.690 0.011

C6910_28.indd 498C6910_28.indd 498 2/2/09 12:37:48 PM2/2/09 12:37:48 PM

499

C H A P T E R 29
in which we combine two design patterns, pipelining and overlapping, to improve both

the antiproton motion program’s memory scalability and its performance

Overlapping, Part 2

C6910_29.indd 499C6910_29.indd 499 2/2/09 12:37:58 PM2/2/09 12:37:58 PM

C H A P T E R29 Overlapping, Part 2

29.1 Overlapped Computation and Communication
The pipelined antiproton motion program in Chapter 28 improved the memory scalability by storing just
one slice of the position vector array in each process. Consequently, the program had to intersperse com-
putation with communication (Figure 29.1).

p
0−
2499 f

a
0−
2499

Process 0

p
2500−
4999 f

a
2500−
4999

Process 1

p
5000−
7499 f

a
5000−
7499

Process 2

p
7500−
9999 f

a
7500−
9999

Process 3

p
0−
2499

a
0−
2499

2500−
4999

Process 0

p
2500−
4999

a
2500−
4999

5000−
7499

Process 1

p
5000−
7499

a
5000−
7499

7500−
9999

Process 2

p
7500−
9999

a
7500−
9999

0−
2499

Process 3

Figure 29.1 First round of computation followed by communication

During the communication phase, the CPU initiates the send-receive operation, and then sits around twid-
dling its transistors until the outgoing and incoming messages have finished traveling across the compara-
tively slow network. That is a waste of CPU time. It would be better if the CPU were doing useful work
while the messages traverse the network.

Instead of doing a round of communication after doing a round of computation, suppose we do the
computation and the communication at the same time. We saw a similar pattern in Chapter 18, where we
did overlapped computation and I/O in an SMP parallel program—computation of the cellular automaton’s
state, output of the CA image to a file. Now, in the cluster parallel antiproton motion program, we will do
overlapped computation and communication. For example, suppose there are 10,000 antiprotons, and
suppose the program is divided among four parallel processes. Here’s what each process would do:

C6910_29.indd 500C6910_29.indd 500 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

 29.1 Overlapped Computation and Communication 501

Compute the forces between all pairs of antiprotons with both antiprotons in 1.
the process’s own slice, accumulating the forces into the acceleration array
slice; send the process’s slice of the position array to the previous process; and
receive the next process’s slice of the position array into an auxiliary buffer.
(There is also another auxiliary buffer that will be used later.)

p
0−
2499 f

a
0−
2499

2500−
4999

Process 0

p
2500−
4999 f

a
2500−
4999

5000−
7499

Process 1

p
5000−
7499 f

a
5000−
7499

7500−
9999

Process 2

p
7500−
9999 f

a
7500−
9999

0−
2499

Process 3

Figure 29.2 First round of overlapped computation and communication

Swap the auxiliary buffers. Then, compute the forces between all pairs of anti-2.
protons with one antiproton in the process’s own slice and the other antiproton
in the just-received slice (which contains antiproton positions from the process
one rank ahead); send the position array slice from the first auxiliary buffer to
the previous process; and receive a position array slice into the second auxil-
iary buffer from the next process.

p
0−
2499 f

a
0−
2499

2500−
4999

5000−
7499

Process 0

p
2500−
4999 f

a
2500−
4999

5000−
7499

7500−
9999

Process 1

p
5000−
7499 f

a
5000−
7499

7500−
9999

0−
2499

Process 2

p
7500−
9999 f

a
7500−
9999

0−
2499

2500−
4999

Process 3

Figure 29.3 Second round of overlapped computation and communication

Swap the auxiliary buffers. Then, compute the forces between all pairs of 3.
antiprotons with one antiproton in the process’s own slice and the other
antiproton in the just-received slice (which contains antiproton positions from
the process two ranks ahead); send the position array slice from the first auxiliary
buffer to the previous process; and receive a position array slice into the second
auxiliary buffer from the next process.

p
0−
2499 f

a
0−
2499

5000−
7499

7500−
9999

Process 0

p
2500−
4999 f

a
2500−
4999

7500−
9999

0−
2499

Process 1

p
5000−
7499 f

a
5000−
7499

0−
2499

2500−
4999

Process 2

p
7500−
9999 f

a
7500−
9999

2500−
4999

5000−
7499

Process 3

Figure 29.4 Third round of overlapped computation and communication

C6910_29.indd 501C6910_29.indd 501 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

502 CHAPTER 29 Overlapping, Part 2

Swap the auxiliary buffers. Then, compute the forces between all pairs of 4.
antiprotons with one antiproton in the process’s own slice and the other
antiproton in the just-received slice (which contains antiproton positions from
the process three ranks ahead). The final round does only computation, not
communication.

p
0−
2499 f

a
0−
2499

7500−
9999

5000−
7499

Process 0

p
2500−
4999 f

a
2500−
4999

0−
2499

7500−
9999

Process 1

p
5000−
7499 f

a
5000−
7499

2500−
4999

0−
2499

Process 2

p
7500−
9999 f

a
7500−
9999

5000−
7499

2500−
4999

Process 3

Figure 29.5 Fourth round of computation

29.2 Non-Blocking Send-Receive
To implement the overlapped computation and communication, we will employ a non-blocking
send-receive operation.

This is the same sendReceive() method call as in Chapter 28, except it has an additional argument, a
communication request object (request), which is an instance of class edu.rit.pj.CommRequest. The
sendReceive() method initiates the communication and returns immediately, without waiting for the
communication to finish. The main program thread then performs the computations. Under the hood,
separate threads send and receive the outgoing and incoming messages and block waiting for the messages
to finish. When the main program thread has finished the round of computations, the main program thread
must not proceed until the messages have also finished. The main program thread calls the communication
request ob ject’s waitForFinish() method; this call blocks until the outgoing and incoming messages
have finished. When the waitForFinish() method returns, the main program thread goes on to the
next round.

29.3 Pipelined Overlapped Antiproton Program
Here is the source code for class edu.rit.clu.antimatter.AntiprotonClu3, the cluster parallel antiproton
motion program with pipelined message passing and overlapped computation and communication.

 int toRank = (rank – 1 + size) % size;

 int fromRank = (rank + 1) % size;

 CommRequest request = new CommRequest();

 world.sendReceive (toRank, outBuf, fromRank, inBuf, request);

 // Perform computation

 req.waitForFinish();

C6910_29.indd 502C6910_29.indd 502 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

 29.3 Pipelined Overlapped Antiproton Program 503

package edu.rit.clu.antimatter;

import edu.rit.io.Files;

import edu.rit.mp.DoubleBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommRequest;

import edu.rit.util.Random;

import edu.rit.util.Range;

import edu.rit.vector.Vector2D;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class AntiprotonClu3

 {

 // Charge on an antiproton.

 static final double QP = 3.0;

 // Magnetic field strength.

 static final double B = 3.0;

 static final double QP_QP = QP * QP;

 static final double QP_B = QP * B;

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 static int predRank;

 static int succRank;

 // Command line arguments.

 static long seed;

 static double R;

 static double dt;

 static int steps;

 static int snaps;

 static int N;

 static File outfile;

 static double one_half_dt_sqr;

 // Antiproton slices.

 static Range[] slices;

 static Range mySlice;

 static int myLb;

 static int myLen;

C6910_29.indd 503C6910_29.indd 503 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

504 CHAPTER 29 Overlapping, Part 2

 // Acceleration, velocity, and position vector arrays.

 static Vector2D[] a;

 static Vector2D[] v;

 static Vector2D[] p;

 // Position vector arrays to use for pipelined message passing.

 static Vector2D[] p2;

 static Vector2D[] p3;

 // Position vector array communication buffers.

 static DoubleBuf pbuf;

 static DoubleBuf p2buf;

 static DoubleBuf p3buf;

 static CommRequest request;

 // Temporary storage.

 static Vector2D temp = new Vector2D();

 // Total momentum.

 static Vector2D totalMV = new Vector2D();

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 predRank = (rank - 1 + size) % size;

 succRank = (rank + 1) % size;

 // Parse command line arguments.

 if (args.length != 7) usage();

 seed = Long.parseLong (args[0]);

 R = Double.parseDouble (args[1]);

 dt = Double.parseDouble (args[2]);

 steps = Integer.parseInt (args[3]);

 snaps = Integer.parseInt (args[4]);

C6910_29.indd 504C6910_29.indd 504 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

 29.3 Pipelined Overlapped Antiproton Program 505

 N = Integer.parseInt (args[5]);

 outfile = new File (args[6]);

 one_half_dt_sqr = 0.5 * dt * dt;

 // Set up antiproton slices.

 slices = new Range (0, N-1) .subranges (size);

 mySlice = slices[rank];

 myLb = mySlice.lb();

 myLen = mySlice.length();

 // Create pseudorandom number generator.

 Random prng = Random.getInstance (seed);

 prng.skip (2 * myLb);

 // Initialize acceleration, velocity, and position vector

 // arrays with this process’s slice of antiprotons.

 a = new Vector2D [myLen];

 v = new Vector2D [myLen];

 p = new Vector2D [myLen];

 for (int i = 0; i < myLen; ++ i)

 {

 a[i] = new Vector2D();

 v[i] = new Vector2D();

 p[i] = new Vector2D

 (prng.nextDouble()*R/2+R/4, prng.nextDouble()*R/2+R/4);

 }

 // Initialize position vector arrays for pipelined message

 // passing.

 p2 = new Vector2D [myLen+1];

 p3 = new Vector2D [myLen+1];

 for (int i = 0; i <= myLen; ++ i)

 {

 p2[i] = new Vector2D();

 p3[i] = new Vector2D();

 }

 // Set up position array communication buffers.

 pbuf = Vector2D.doubleBuffer (p);

 p2buf = Vector2D.doubleBuffer (p2);

 p3buf = Vector2D.doubleBuffer (p3);

 request = new CommRequest();

C6910_29.indd 505C6910_29.indd 505 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

506 CHAPTER 29 Overlapping, Part 2

This initiates the first round of overlapped communication, except if there is only one process, then there
is no communication.

Here is the first round of overlapped computation.

 // Set up output file and write initial snapshot.

 AntiprotonFile out =

 new AntiprotonFile

 (seed, R, dt, steps, snaps+1, N, myLb, myLen);

 AntiprotonFile.Writer writer =

 out.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream

 (Files.fileForRank (outfile, rank))));

 writer.writeSnapshot (p, 0, totalMV);

 long t2 = System.currentTimeMillis();

 // Do <snaps> snapshots.

 for (int s = 0; s < snaps; ++ s)

 {

 // Advance time by <steps> steps.

 for (int t = 0; t < steps; ++ t)

 {

 // Initiate first round of pipelined message passing if

 // any.

 DoubleBuf outbuf = pbuf;

 DoubleBuf inbuf = p3buf;

 if (size > 1)

 {

 world.sendReceive

 (predRank, outbuf, succRank, inbuf, request);

 }

 // Compute accelerations due to this process’s

 // antiprotons, overlapped with communication.

 computeAccelerationThisSlice();

 // Do <size>-1 rounds of pipelined message passing.

 for (int k = 1; k < size; ++ k)

 {

C6910_29.indd 506C6910_29.indd 506 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

 29.3 Pipelined Overlapped Antiproton Program 507

 // Wait for current round to finish.

 request.waitForFinish();

 // Swap outgoing and incoming position slices and

 // buffers.

 Vector2D[] ptmp = p2;

 p2 = p3;

 p3 = ptmp;

 DoubleBuf tmpbuf = p2buf;

 p2buf = p3buf;

 p3buf = tmpbuf;

 outbuf = p2buf;

 inbuf = p3buf;

 // Initiate next round if any.

 if (k < size-1)

 {

 world.sendReceive

 (predRank, outbuf, succRank, inbuf, request);

 }

 // Compute accelerations due to other process’s

 // antiprotons, overlapped with communication.

 computeAccelerationOtherSlice ((rank + k) % size);

 }

 // Move this process’s antiprotons.

 step();

 }

 // Compute total momentum.

 computeTotalMomentum();

 // Write snapshot.

 writer.writeSnapshot (p, 0, totalMV);

 }

Here is the end of the previous round of overlapped computation and communication.

This initiates the next round of overlapped communication, except there is no communication during the
final round.

Here is the next round of overlapped computation.

C6910_29.indd 507C6910_29.indd 507 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

508 CHAPTER 29 Overlapping, Part 2

 // Close output file.

 writer.close();

 // Stop timing.

 long t3 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t3-t1) + " msec total " + rank);

 }

 }

The subroutines for computing the accelerations due to electrostatic forces, updating the positions and veloci-
ties, and calculating the total momentum are the same as in the AntiprotonClu2 program in Chapter 28.

29.4 Computation Time Model
Before measuring the pipelined overlapped antiproton motion program’s performance, let’s derive a
model for the program’s running time. The AntiprotonClu3 program’s calculation time is the same as the
AntiprotonClu program in Chapter 27,

 (29.1)

where s is the number of time steps, n is the number of antiprotons, K is the number of parallel proces-
sors, and Tcalc is the calculation time in seconds. Because the AntiprotonClu3 program sends the same
messages as the AntiprotonClu and AntiprotonClu2 programs, the AntiprotonClu3 pro gram’s communi-
cation time is also the same:

 (29.2)

But because the computation and communication are overlapped, the total running time is the larger of
Tcalc and Tcomm, and not the sum:

 (29.3)

Figure 29.6 plots the calculation time, communication time, and total computation time as a function of
K for s = 5,000 and n = 2,000. Figure 29.7 plots the speedup as a function of K. The smallest running time,
hence the largest speedup, occurs when Tcalc equals Tcomm. Setting Equation 29.1 equal to Equation 29.2
yields a quadratic equation for K whose solution gives the number of processors for the maximum speedup.
For example, with n = 2,000 antiprotons, the maximum speedup comes at Kbest ≈ 20. Unlike the original

C6910_29.indd 508C6910_29.indd 508 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

 29.5 Pipelined Overlapped Program Performance 509

program in Chapter 27, when computation and communication are overlapped, the speedup remains linear
right up until K = Kbest, and then the speedup decreases again. With overlapping, the maximum speedup for
n = 2,000 is 20; without overlapping, the maximum speedup was only 9.891.

This computation time model assumes that all messages are inter-processor messages and would
have to be modified if some messages are intra-processor messages.

1 1 0 100 1000
1E0

1E1

1E2

1E3

Communication Calculation

Total

Running Time vs. Processors (s=5000, n=2000)

Processors, K

R
u

n
n

in
g

 T
im

e
,

T
(s

,n
,K

)
(s

ec
)

 Figure 29.6 T(s,n,K) predicted by computation

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
0

4

8

1 2

1 6

2 0

2 4

2 8

3 2

3 6

4 0

n=1000

n=2000

n=4000

Speedup vs. Processors

Processors, K
S

p
e

e
d

u
p(

5
0

0
0

,n
,K

)

Figure 29.7 Speedup(5000,n,K) predicted
 time model by computation time model

29.5 Pipelined Overlapped Program Performance
Table 29.1 (at the end of the chapter) lists the AntiprotonClu3 program’s performance on the “tardis”
parallel computer. The program was run with the following command,

$ java -Dpj.np=$K edu.rit.clu.antimatter.AntiprotonClu3 \

 142857 7 0.00001 1000 5 $N outfile.dat

where the number of antiprotons ($N) was 1,000, 1,400, 2,000, 2,800, 4,000, or 5,600, the number
of time steps between snapshots was 1,000, and the number of snapshots was 5, for a total of 5,000
time steps. For comparison, Figure 29.8 plots the pipelined nonoverlapped AntiprotonClu2 program’s
performance, and Figure 29.9 plots the pipelined overlapped AntiprotonClu3 program’s perfor-
mance. Overlapping the computation with the communication has definitely improved the program’s
performance.

We’ve taken the antiproton motion program’s design about as far as we can. Further improvements
in the program’s performance would have to come from switching to a different algorithm, such as a
higher-order integration algorithm.

C6910_29.indd 509C6910_29.indd 509 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

510 CHAPTER 29 Overlapping, Part 2

1 1 0 100
1E1

1E2

1E3

1E4

n = 1000n = 1400
n = 2000
n = 2800

n = 4000

n = 5600

Running Time vs. Processors

Processors, K

T
 (

5
0

0
0

,n
,K

)

1 1 0 100
1E1

1E2

1E3

1E4

n = 1000n = 1400
n = 2000
n = 2800

n = 4000

n = 5600

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

n = 1000

n = 1400

n = 2000

n = 2800

n = 4000

n = 5600

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

n = 1000

n = 1400

n = 2000

n = 2800

n = 4000

n = 5600

Efficiency vs. Processors

Processors, K

E
ff

(5
0

0
0

,n
,K

)

 Figure 29.8 AntiprotonSeq/Anti protonClu Figure 29.9 AntiprotonSeq/Anti protonClu3
 running-time metrics, running-time metrics, with
 without overlapping overlapping

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

n = 1000

n = 1400

n = 2000

n = 2800

n = 4000

n = 5600

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

n = 1000

n = 1400

n = 2000

n = 2800

n = 4000

n = 5600

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(5

0
0

0
,n

,K
)

C6910_29.indd 510C6910_29.indd 510 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

 29.5 Pipelined Overlapped Program Performance 511

Table 28.1 AntiprotonSeq/AntiprotonClu3 running-time metrics with s = 5000 and n varying

n K T Spdup Eff EDSF n K T Spdup Eff EDSF

1000 seq 100699 2800 seq 801136

1000 1 100772 0.999 0.999 2800 1 801086 1.000 1.000

1000 2 50646 1.988 0.994 0.005 2800 2 399121 2.007 1.004 -0.004

1000 3 33806 2.979 0.993 0.003 2800 3 262751 3.049 1.016 -0.008

1000 4 25743 3.912 0.978 0.007 2800 4 197063 4.065 1.016 -0.005

1000 5 20838 4.832 0.966 0.008 2800 5 158012 5.070 1.014 -0.003

1000 6 18553 5.428 0.905 0.021 2800 6 132258 6.057 1.010 -0.002

1000 8 14494 6.948 0.868 0.022 2800 8 99543 8.048 1.006 -0.001

1000 10 12375 8.137 0.814 0.025 2800 10 80574 9.943 0.994 0.001

1000 14 10120 9.950 0.711 0.031 2800 14 59230 13.526 0.966 0.003

1000 20 11847 8.500 0.425 0.071 2800 20 45190 17.728 0.886 0.007

1000 28 16205 6.214 0.222 0.130 2800 28 42453 18.871 0.674 0.018

1000 40 21452 4.694 0.117 0.193 2800 40 37451 21.392 0.535 0.022

1400 seq 200554 4000 seq 1634482

1400 1 200671 0.999 0.999 4000 1 1634533 1.000 1.000

1400 2 98362 2.039 1.019 -0.020 4000 2 818556 1.997 0.998 0.002

1400 3 66209 3.029 1.010 -0.005 4000 3 540408 3.025 1.008 -0.004

1400 4 49612 4.042 1.011 -0.004 4000 4 418105 3.909 0.977 0.008

1400 5 40143 4.996 0.999 0.000 4000 5 322183 5.073 1.015 -0.004

1400 6 33851 5.925 0.987 0.002 4000 6 268354 6.091 1.015 -0.003

1400 8 25930 7.734 0.967 0.005 4000 8 202298 8.080 1.010 -0.001

1400 10 22423 8.944 0.894 0.013 4000 10 162374 10.066 1.007 -0.001

1400 14 17522 11.446 0.818 0.017 4000 14 117502 13.910 0.994 0.000

1400 20 13926 14.401 0.720 0.020 4000 20 84345 19.379 0.969 0.002

1400 28 19311 10.385 0.371 0.063 4000 28 71653 22.811 0.815 0.008

1400 40 22535 8.900 0.222 0.090 4000 40 60005 27.239 0.681 0.012

2000 seq 408964 5600 seq 3202070

2000 1 409467 0.999 0.999 5600 1 3201937 1.000 1.000

2000 2 201393 2.031 1.015 -0.016 5600 2 1610633 1.988 0.994 0.006

2000 3 134042 3.051 1.017 -0.009 5600 3 1094020 2.927 0.976 0.013

2000 4 101121 4.044 1.011 -0.004 5600 4 794416 4.031 1.008 -0.003

2000 5 80853 5.058 1.012 -0.003 5600 5 634043 5.050 1.010 -0.002

2000 6 67803 6.032 1.005 -0.001 5600 6 525467 6.094 1.016 -0.003

2000 8 51657 7.917 0.990 0.001 5600 8 394446 8.118 1.015 -0.002

2000 10 42072 9.721 0.972 0.003 5600 10 316965 10.102 1.010 -0.001

2000 14 31583 12.949 0.925 0.006 5600 14 228354 14.022 1.002 0.000

2000 20 24923 16.409 0.820 0.011 5600 20 161926 19.775 0.989 0.001

2000 28 27596 14.820 0.529 0.033 5600 28 128298 24.958 0.891 0.005

2000 40 27592 14.822 0.371 0.043 5600 40 100859 31.748 0.794 0.007

C6910_29.indd 511C6910_29.indd 511 2/2/09 12:37:59 PM2/2/09 12:37:59 PM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

513

C H A P T E R 3 0
in which we calculate the temperature throughout a metal plate; we encounter a

program that needs the all-reduce message passing operation; and we learn one way

to solve partial differential equations in parallel

All-Reduce

C6910_30.indd 513C6910_30.indd 513 2/2/09 5:45:33 PM2/2/09 5:45:33 PM

C H A P T E R3 0 All-Reduce

30.1 A Heat Distribution Problem
A thin metal plate has a temperature of 0 °C along each edge. At certain points in the interior of the plate,
the temperature is a given value larger than 0 °C; these points are called “hot spots” (not to be confused
with the HotSpot JIT compiler!). Question: What is the temperature everywhere else in the plate?

Figure 30.1 shows an example. At three interior points, and in a rectangular region near the bot-
tom, the plate’s temperature is 100 °C, while the edges are 0 °C. Points at 100 °C are white in the image;
points at 0 °C are black; points at intermediate temperatures are shades of gray.

Figure 30.1 A metal plate with hot spots

Let h(x,y) be the temperature at point (x,y). The function h(x,y) satisfies the following partial differ-
ential equation, known as Laplace’s equation, at all points except the boundary and the hot spots:

 (30.1)

C6910_30.indd 514C6910_30.indd 514 2/2/09 5:45:34 PM2/2/09 5:45:34 PM

 30.1 A Heat Distribution Problem 515

We will write a program that solves the partial differential equation, that is, a program that finds h(x,y)
that satisfies Equation 30.1.

First, we’ll divide the plate into a mesh of equally spaced points with H points in the y direction and
W points in the x direction (Figure 30.2). In other words, h is an H×W-element matrix. We will solve for
h only at these mesh points. By changing H and W, we can make the mesh resolution as coarse or as fine
as we want. Instead of h(x,y), we’ll use the notation h[r,c], where r and c are the row and column indexes
of a certain mesh point, 1 ≤ r ≤ H, 1 ≤ c ≤ W(r corresponds to the y direction, c to the x direction).

h[r,
c]

h[r c]

h[r+ 1 ,c]

h[r,c

h[r,c+ 1]

Figure 30.2 Mesh points

Next, we need formulas for the second partial derivatives of h with respect to x and y at the mesh
points. Consider the x direction. Let be the distance between adjacent mesh points. Then the first
partial derivative of h with respect to x between h[r,c–1] and h[r,c] is the slope of h between those two
points:

 (30.2)

Likewise, the first partial derivative of h with respect to x between h[r,c] and h[r,c+1] is the slope of h
between those two points:

 (30.3)

C6910_30.indd 515C6910_30.indd 515 2/2/09 5:45:34 PM2/2/09 5:45:34 PM

516 CHAPTER 30 All-Reduce

The second partial derivative of h with respect to x at h[r,c] is the slope of those two first partial
derivatives:

 (30.4)

A similar calculation gives the second partial derivative of h with respect to y at h[r,c]:

 (30.5)

 (30.6)

 (30.7)

Plugging (30.4) and (30.7) into (30.1) and multiplying both sides by 2 gives the following:

 (30.8)

And a little bit of algebra gives the following:

 (30.9)

Thus, the solution of the partial differential equation has every mesh point (except the boundaries and hot
spots) at a temperature equal to the average of the four neighboring mesh points’ temperatures.

Initial program. Our program will be based on (30.9). We begin by setting up the temperature
matrix h with H+2 rows and W+2 columns, and every element initially 0. The elements in row 0, row
H+1, column 0, and column W+1 are the boundary elements, which stay at 0. The hot spot elements are
set to their given values. We update all the interior points in rows 1 through H and columns 1 through
W using (30.9), leaving the boundary and hot spot points unchanged, and storing the new values in a
separate matrix so as not to wipe out the old values before we’re done using them. Then, we replace the
old values with the new values, and repeat until a suitable termination criterion (to be specified later) is
achieved. This is called a relaxation algorithm—as it iterates, the interior points gradually “relax” from
the initial state and converge on the solution.

C6910_30.indd 516C6910_30.indd 516 2/2/09 5:45:34 PM2/2/09 5:45:34 PM

 30.1 A Heat Distribution Problem 517

For all points (r,c):
 h[r,c] = 0
For all hot spot points (r,c):
 h[r,c] = hot spot temperature
Do:
 For all points (r,c) = (1,1) to (H,W):
 If (r,c) is not a hot spot point:

hnew[r,c] = (h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1])/4
 h = hnew

 Until done

Termination using residuals. Let’s do some more algebra on the update formula (30.9):

 (30.10)

Define a mesh point’s residual [r,c] as the term in the numerator:

 (30.11)

Then the update formula becomes the following:

 (30.12)

Thus, the residual (when scaled by 1/4) represents the difference between the old and the new values of
the mesh point.

We define the update formula as (30.12) instead of (30.9) because the residual gives us an especially
convenient termination criterion. Let the total absolute residual | | be the sum of the absolute values of
the residuals for all the interior points (except hot spots):

 (30.13)

Then | | tells how far the current solution is from the ultimate solution. At the beginning, | | is a
large value. As we do more iterations, | | decreases. If we continued iterating forever, | | would go to
zero. Instead of iterating forever, we will stop when | | reaches some fraction e of its initial value, for
example, e = 0.001.

One further practical consideration is that we should put an upper limit on the number of iterations,
to make sure the program stops even if | | is not converging. If the program ever hits this limit, it aborts

C6910_30.indd 517C6910_30.indd 517 2/2/09 5:45:34 PM2/2/09 5:45:34 PM

518 CHAPTER 30 All-Reduce

and reports it did not converge to a solution. For the moment, we will leave the upper limit unspecified.
Putting it all together:

MAX = t.b.d.
EPS = 0.001
For all points (r,c):

 h[r,c] = 0
For all hot spot points (r,c):
 h[r,c] = hot spot temperature
initialTotalAbsXi = 0
For all points (r,c) = (1,1) to (H,W):
 If (r,c) is not a hot spot point:
 xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
 initialTotalAbsXi += abs(xi)
iterations = 0
Do:
 totalAbsXi = 0
 For all points (r,c) = (1,1) to (H,W):
 If (r,c) is not a hot spot point:
 xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
 totalAbsXi += abs(xi)
 hnew[r,c] += xi/4
 h = hnew
 ++ iterations
Until iterations == MAX or totalAbsXi < EPS*initialTotalAbsXi
If iterations == MAX:
 Abort (“Did not converge”)

Red-Black Mesh Updating. Imagine that the mesh points are colored alternating red and black, like a
checkerboard (Figure 30.3). In terms of indexes, h[r,c] is a red point if r+c is odd, and h[r,c] is a black
point if r+c is even.

Then, to compute the new value of a red point, we need only look at the current values of the four
surrounding black points, and vice versa to compute the new value of a black point. This suggests that
we can do away with the separate mesh holding the new values. Instead, we can do one half-sweep over
the mesh, updating the red points in place using the current values of the black points. Then we can do
another half-sweep over the mesh, updating the black points in place using the just-computed values of
the red points.

C6910_30.indd 518C6910_30.indd 518 2/2/09 5:45:34 PM2/2/09 5:45:34 PM

 30.1 A Heat Distribution Problem 519

0

1

2

H

H+ 1

0 1 2 W W+ 1

Figure 30.3 Red-black mesh points

During each half-sweep, we still iterate over all the rows from r = 1 to H, but we only iterate over
half the columns. For the red half-sweep, the column iteration starts at c = 1 for an even-numbered row
or c = 2 for an odd-numbered row (see Figure 30.3). An expression for the initial index is c = 1 + (r&1),
where & is the bitwise Boolean and operator. (r&1) is 0 if r is even and 1 if r is odd, and adding 1 to that
gives 1 if r is even and 2 if r is odd. For the black half-sweep, the column iteration starts at c = 2 for an
even-numbered row or c = 1 for an odd-numbered row. An expression for the initial index is
c = 2 – (r&1). In both cases, the column stride is 2.

MAX = t.b.d.
EPS = 0.001
For all points (r,c):

h[r,c] = 0
For all hot spot points (r,c):

h[r,c] = hot spot temperature
initialTotalAbsXi = 0
For all points (r,c) = (1,1) to (H,W):

If (r,c) is not a hot spot point:
xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
initialTotalAbsXi += abs(xi)

iterations = 0
Do:

totalAbsXi = 0
// Red half-sweep

C6910_30.indd 519C6910_30.indd 519 2/2/09 5:45:34 PM2/2/09 5:45:34 PM

520 CHAPTER 30 All-Reduce

 For r = 1 to H:
 For c = 1 + (r&1) to W stride 2:

If (r,c) is not a hot spot point:
xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
totalAbsXi += abs(xi)
h[r,c] += xi/4

 // Black half-sweep
 For r = 1 to H:

For c = 2 – (r&1) to W stride 2:
If (r,c) is not a hot spot point:

xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
totalAbsXi += abs(xi)
h[r,c] += xi/4

 ++ iterations
Until iterations == MAX or totalAbsXi < EPS*initialTotalAbsXi
If iterations == MAX:

 Abort (“Did not converge”)

Successive overrelaxation. As stated so far, the relaxation algorithm takes a long time to converge on
the solution. In fact, with an n×n mesh, the number of iterations required is O(n2), and with each iteration
requiring O(n2) operations, the whole algorithm’s running time is O(n4). The problem is that with update
rule (30.12), only a small correction [r,c]/4 is added to each mesh point h[r,c] at each iteration, so it
takes many iterations to achieve convergence.

To address this problem, suppose we overcorrect each mesh point at each iteration,

 (30.14)

using a relaxation parameter w greater than 1. In effect, we are anticipating several iterations’ worth of
corrections and adding them in all at once. This should reduce the total number of iterations required to
reach convergence.

The next question is what value of w > 1 to use. If ω is too small, it won’t reduce the number of
iterations very much. If w is too large, each mesh point will overshoot the solution, requiring more itera-
tions to bring it back to convergence. Somewhere in there is an optimum value for w—not too small, not
too large.

The optimum relaxation parameter is related to the spectral radius . The spectral radius is a char-
acteristic of the relaxation algorithm that tells how quickly the mesh points relax to the final solution. For
an H×W mesh, the spectral radius is the following:

 (30.15)

C6910_30.indd 520C6910_30.indd 520 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

 30.1 A Heat Distribution Problem 521

And the optimum relaxation parameter is the following:

 (30.16)

With this value of w, the relaxation algorithm—now called a successive overrelaxation (SOR)
algorithm—requires only O(n) iterations to reach convergence instead of O(n2), for a total running time
of O(n3) instead of O(n4). Now we can set the maximum number of iterations to be O(n); a value of
2(H+W) works well.

MAX = 2*(H+W)
EPS = 0.001
rho_s = (cos(π/H) + cos(π/W))/2
omega = 2 / (1 + sqrt(1 – rho_s2))
For all points (r,c):

h[r,c] = 0
For all hot spot points (r,c):

h[r,c] = hot spot temperature
initialTotalAbsXi = 0
For all points (r,c) = (1,1) to (H,W):

If (r,c) is not a hot spot point:
xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
initialTotalAbsXi += abs(xi)

iterations = 0
Do:

totalAbsXi = 0
// Red half-sweep
For r = 1 to H:

For c = 1 + (r&1) to W stride 2:
If (r,c) is not a hot spot point:

xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
totalAbsXi += abs(xi)
h[r,c] += omega*xi/4

 // Black half-sweep
 For r = 1 to H:

For c = 2 – (r&1) to W stride 2:
If (r,c) is not a hot spot point:

xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
 totalAbsXi += abs(xi)

h[r,c] += omega*xi/4
 ++ iterations

Until iterations == MAX or totalAbsXi < EPS*initialTotalAbsXi
If iterations == MAX:
 Abort (“Did not converge”)

C6910_30.indd 521C6910_30.indd 521 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

522 CHAPTER 30 All-Reduce

Chebyshev acceleration. One last improvement reduces the number of iterations still further. It turns
out that fewer iterations are needed if the relaxation parameter is allowed to change as the algorithm
progresses. w should start out at 1 and gradually increase according to the following rules. For the first
iteration, red half-sweep:

 (30.17)

For the first iteration, black half-sweep:

 (30.18)

Thereafter, the new value of ω is computed from the old value of ω using this formula:

 (30.19)

As the number of iterations increases, ω approaches its optimum value (30.16). Adding this to our
pseudocode, we get our final algorithm—successive overrelaxation with Chebyshev acceleration.

MAX = 2*(H+W)
EPS = 0.001
rho_s = (cos(π/H) + cos(π/W))/2
omega = 1
For all points (r,c):
 h[r,c] = 0
For all hot spot points (r,c):
 h[r,c] = hot spot temperature
initialTotalAbsXi = 0
For all points (r,c) = (1,1) to (H,W):

If (r,c) is not a hot spot point:
xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
initialTotalAbsXi += abs(xi)

iterations = 0
Do:

totalAbsXi = 0
// Red half-sweep
For r = 1 to H:

For c = 1 + (r&1) to W stride 2:
If (r,c) is not a hot spot point:

xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
totalAbsXi += abs(xi)
h[r,c] += omega*xi/4

C6910_30.indd 522C6910_30.indd 522 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

 30.2 Sequential Heat Distribution Program 523

If iterations == 0:
omega = 1 / (1 – rho_s2/2)

Else:
omega = 1 / (1 – rho_s2*omega/4)

// Black half-sweep
For r = 1 to H:

For c = 2 – (r&1) to W stride 2:
If (r,c) is not a hot spot point:

xi = h[r–1,c] + h[r+1,c] + h[r,c–1] + h[r,c+1] – 4*h[r,c]
totalAbsXi += abs(xi)
h[r,c] += omega*xi/4

omega = 1 / (1 – rho_s2*omega/4)
++ iterations

Until iterations == MAX or totalAbsXi < EPS*initialTotalAbsXi
If iterations == MAX:

Abort (“Did not converge”)

30.2 Sequential Heat Distribution Program
Class edu.rit.clu.heat.HotSpotSeq is a sequential program that solves the heat distribution problem. The
command-line arguments are the following:

imagefile,• the output PJG image file name.

H• , the number of mesh rows (not including the boundaries).

W• , the number of mesh columns (not including the boundaries).

rl• , the lower row index of a hot spot.

cl• , the lower column index of a hot spot.

ru• , the upper row index of a hot spot.

cu• , the upper column index of a hot spot.

temp• , the temperature of a hot spot.

Every mesh element in the rectangular region from [rl, cl] through [ru, cu] is part of a hot spot with tem-
perature temp. Multiple hot spots may be specified by giving rl, cl, ru, cu, and temp for each hot spot.

Class HotSpotSeq produces a color image where each pixel’s hue is proportional to the plate’s tem-
perature, with 0 °C being blue and 100 °C being red. Figure 30.1 was produced by class HotSpotGray,
which produces a grayscale image but is otherwise identical to class HotSpotSeq. The command that
produced Figure 30.1 (compare to Figure 30.4) was the following:

$ java edu.rit.clu.heat.HotSpotGray fig_a.pjg 200 200 \

 59 59 61 61 100 59 139 61 141 100 99 99 101 101 100 \

 149 75 151 125 100

C6910_30.indd 523C6910_30.indd 523 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

524 CHAPTER 30 All-Reduce

[1,1]

[200,200]

[59,59]

[61,61]

[59,139]

[61,141]

[99,99]

[101,101]

[149,75]

[151,125]

Figure 30.4 Hot spot coordinates in Figure 30.1

Here is the source code for class edu.rit.clu.heat.HotSpotSeq.

package edu.rit.clu.heat;

import edu.rit.color.HSB;

import edu.rit.image.ColorImageRow;

import edu.rit.image.PJGHueImage;

import edu.rit.image.PJGImage;

import edu.rit.pj.Comm;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class HotSpotSeq

 {

 private static final double MIN_TEMP = 0.0;

 private static final double MAX_TEMP = 100.0;

 private static final double DELTA_TEMP = MAX_TEMP - MIN_TEMP;

 private static final double MIN_HUE = 4.0/6.0;

 private static final double MAX_HUE = 0.0;

 private static final double DELTA_HUE = MAX_HUE - MIN_HUE;

 private static final double EPS = 1.0e-3;

 // Command line arguments.

 static File imagefile;

 static int H;

 static int W;

package edu.rit.clu.heat;

import edu.rit.color.HSB;

import edu.rit.image.ColorImageRow;

import edu.rit.image.PJGHueImage;

import edu.rit.image.PJGImage;

import edu.rit.pj.Comm;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class HotSpotSeq

 {

 private static final double MIN_TEMP = 0.0;

 private static final double MAX_TEMP = 100.0;

 private static final double DELTA_TEMP = MAX_TEMP - MIN_TEMP;

 private static final double MIN_HUE = 4.0/6.0;

 private static final double MAX_HUE = 0.0;

 private static final double DELTA_HUE = MAX_HUE - MIN_HUE;

 private static final double EPS = 1.0e-3;

 // Command line arguments.

 static File imagefile;

 static int H;

 static int W;

C6910_30.indd 524C6910_30.indd 524 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

 30.2 Sequential Heat Distribution Program 525

h[r][c] holds the temperature of mesh point h[r,c]. hotspot[r][c] is true if h[r,c] is part of a hot
spot, and is false otherwise.

 // Temperature mesh.

 static double[][] h;

 // Mesh of hot spot locations.

 static boolean[][] hotspot;

 // Variables for total absolute residual.

 static double EPS_initialTotalAbsXi;

 static double totalAbsXi;

 // Other variables used in the successive overrrelaxation

 // algorithm.

 static int MAX;

 static double rho_s_sqr;

 static double omega_over_4;

 static int iterations;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length < 8 || (args.length % 5) != 3) usage();

 imagefile = new File (args[0]);

 H = Integer.parseInt (args[1]);

 W = Integer.parseInt (args[2]);

 if (H < 1) usage();

 if (W < 1) usage();

 // Initialize temperature and hot spot meshes.

 h = new double [H+2] [W+2];

 hotspot = new boolean [H+2] [W+2];

 // Temperature mesh.

 static double[][] h;

 // Mesh of hot spot locations.

 static boolean[][] hotspot;

 // Variables for total absolute residual.

 static double EPS_initialTotalAbsXi;

 static double totalAbsXi;

 // Other variables used in the successive overrrelaxation

 // algorithm.

 static int MAX;

 static double rho_s_sqr;

 static double omega_over_4;

 static int iterations;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length < 8 || (args.length % 5) != 3) usage();

 imagefile = new File (args[0]);

 H = Integer.parseInt (args[1]);

 W = Integer.parseInt (args[2]);

 if (H < 1) usage();

 if (W < 1) usage();

 // Initialize temperature and hot spot meshes.

 h = new double [H+2] [W+2];

 hotspot = new boolean [H+2] [W+2];

C6910_30.indd 525C6910_30.indd 525 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

526 CHAPTER 30 All-Reduce

Each element of h is initialized to 0 by default. Each element of hotspot is initialized to false by
default. Here, we set each hot spot element of h to the proper temperature and set each hot spot element
of hotspot to true.

 // Record hot spot coordinates and temperatures.

 int n = (args.length - 3) / 5;

 for (int i = 0; i < n; ++ i)

 {

 int rl = Integer.parseInt (args[3+5*i]);

 int cl = Integer.parseInt (args[4+5*i]);

 int ru = Integer.parseInt (args[5+5*i]);

 int cu = Integer.parseInt (args[6+5*i]);

 double temp = Double.parseDouble (args[7+5*i]);

 if (1 > rl || rl > W) usage();

 if (1 > cl || cl > H) usage();

 if (1 > ru || ru > W) usage();

 if (1 > cu || cu > H) usage();

 if (MIN_TEMP > temp || temp > MAX_TEMP) usage();

 for (int r = rl; r <= ru; ++ r)

 {

 double[] h_r = h[r];

 boolean[] hotspot_r = hotspot[r];

 for (int c = cl; c <= cu; ++ c)

 {

 h_r[c] = temp;

 hotspot_r[c] = true;

 }

 }

 }

By including extra boundary rows and columns in h and hotspot, we can loop r from 1 to H and simply
refer to rows r-1 and r+1 without needing special cases for the boundaries; and similarly for c.

 // Compute initial total absolute residual, then multiply by

 // EPS.

 totalAbsXi = 0.0;

 double xi;

 for (int r = 1; r <= H; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 1; c <= W; ++ c)

 {

 // Record hot spot coordinates and temperatures.

 int n = (args.length - 3) / 5;

 for (int i = 0; i < n; ++ i)

 {

 int rl = Integer.parseInt (args[3+5*i]);

 int cl = Integer.parseInt (args[4+5*i]);

 int ru = Integer.parseInt (args[5+5*i]);

 int cu = Integer.parseInt (args[6+5*i]);

 double temp = Double.parseDouble (args[7+5*i]);

 if (1 > rl || rl > W) usage();

 if (1 > cl || cl > H) usage();

 if (1 > ru || ru > W) usage();

 if (1 > cu || cu > H) usage();

 if (MIN_TEMP > temp || temp > MAX_TEMP) usage();

 for (int r = rl; r <= ru; ++ r)

 {

 double[] h_r = h[r];

 boolean[] hotspot_r = hotspot[r];

 for (int c = cl; c <= cu; ++ c)

 {

 h_r[c] = temp;

 hotspot_r[c] = true;

 }

 }

 }

 // Compute initial total absolute residual, then multiply by

 // EPS.

 totalAbsXi = 0.0;

 double xi;

 for (int r = 1; r <= H; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 1; c <= W; ++ c)

 {

C6910_30.indd 526C6910_30.indd 526 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

 30.2 Sequential Heat Distribution Program 527

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 }

 }

 EPS_initialTotalAbsXi = EPS * totalAbsXi;

 // Initialize other variables.

 MAX = 2 * (W + H);

 rho_s_sqr = 0.5 * (Math.cos(Math.PI/W)+Math.cos(Math.PI/H));

 rho_s_sqr = rho_s_sqr * rho_s_sqr;

 omega_over_4 = 0.25;

 iterations = 0;

 long t2 = System.currentTimeMillis();

 // Perform successive overrelaxation.

 do

 {

 totalAbsXi = 0.0;

 // Red half-sweep.

 for (int r = 1; r <= H; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 1 + (r&1); c <= W; c += 2)

 {

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 h_r[c] += omega_over_4 * xi;

 }

 }

 omega_over_4 = 0.25 /

 (1.0-rho_s_sqr*(iterations==0 ? 0.5 : omega_over_4));

 // Black half-sweep.

 for (int r = 1; r <= H; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 }

 }

 EPS_initialTotalAbsXi = EPS * totalAbsXi;

 // Initialize other variables.

 MAX = 2 * (W + H);

 rho_s_sqr = 0.5 * (Math.cos(Math.PI/W)+Math.cos(Math.PI/H));

 rho_s_sqr = rho_s_sqr * rho_s_sqr;

 omega_over_4 = 0.25;

 iterations = 0;

 long t2 = System.currentTimeMillis();

 // Perform successive overrelaxation.

 do

 {

 totalAbsXi = 0.0;

 // Red half-sweep.

 for (int r = 1; r <= H; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 1 + (r&1); c <= W; c += 2)

 {

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 h_r[c] += omega_over_4 * xi;

 }

 }

 omega_over_4 = 0.25 /

 (1.0-rho_s_sqr*(iterations==0 ? 0.5 : omega_over_4));

 // Black half-sweep.

 for (int r = 1; r <= H; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

C6910_30.indd 527C6910_30.indd 527 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

528 CHAPTER 30 All-Reduce

 boolean[] hotspot_r = hotspot[r];

 for (int c = 2 - (r&1); c <= W; c += 2)

 {

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 h_r[c] += omega_over_4 * xi;

 }

 }

 omega_over_4 = 0.25 / (1.0-rho_s_sqr*omega_over_4);

 ++ iterations;

 }

 while (iterations < MAX &&

 totalAbsXi >= EPS_initialTotalAbsXi);

 // Check for convergence.

 if (iterations == MAX)

 {

 System.err.println ("HotSpotSeq: Did not converge");

 System.exit (1);

 }

 long t3 = System.currentTimeMillis();

We calculate each pixel’s hue and store the results in an integer matrix. Then, we write the pixel data to
a PJG image file using class edu.rit.image.PJGHueImage. Class PJGHueImage uses a different compres-
sion algorithm from class PJGColorImage. The former is better suited for color images with a continuous
range of hues; the latter is better suited for color images with a small number of discrete colors.

 // Generate image.

 int[][] matrix = new int [H+2] [W+2];

 ColorImageRow matrix_r = new ColorImageRow (matrix[0]);

 for (int r = 0; r <= H+1; ++ r)

 {

 double[] h_r = h[r];

 matrix_r.setArray (matrix[r]);

 for (int c = 0; c <= W+1; ++ c)

 {

 matrix_r.setPixelHSB

 (/*c */ c,

 /*hue*/ (float)

 ((h_r[c]-MIN_TEMP)/DELTA_TEMP*DELTA_HUE+MIN_HUE),

 /*sat*/ 1.0f,

 // Generate image.

 int[][] matrix = new int [H+2] [W+2];

 ColorImageRow matrix_r = new ColorImageRow (matrix[0]);

 for (int r = 0; r <= H+1; ++ r)

 {

 double[] h_r = h[r];

 matrix_r.setArray (matrix[r]);

 for (int c = 0; c <= W+1; ++ c)

 {

 matrix_r.setPixelHSB

 (/*c */ c,

 /*hue*/ (float)

 ((h_r[c]-MIN_TEMP)/DELTA_TEMP*DELTA_HUE+MIN_HUE),

 /*sat*/ 1.0f,

C6910_30.indd 528C6910_30.indd 528 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

 30.3 Collective Communication: All-Reduce 529

 /*bri*/ 1.0f);

 }

 }

 PJGHueImage image = new PJGHueImage (H+2, W+2, matrix);

 PJGImage.Writer writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (imagefile)));

 writer.write();

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println (iterations + " iterations");

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

 }

30.3 Collective Communication: All-Reduce
Our first task in designing a cluster parallel version of the heat distribution program is to partition the
computation among the K parallel processes. As we have done with all the other cluster parallel programs
that calculate a matrix, we will slice the h and hotspot matrices into K slices by rows. Each process will
calculate the mesh points in a subrange of the rows and all the columns. Because the calculations take the
same time in every loop iteration, dividing the matrices into equal-sized slices will yield a balanced load.

Consider the calculation of the initial total absolute residual | |. Each process calculates | | for its
own slice of the matrix. But each process needs to know | | for the entire matrix to know when to termi-
nate the iterations. The partial values of | | from each process must be combined; this is a reduction with
addition as the reduction operator. But the result of the reduction must end up in all the processes, not in
just one root process. This is the all-reduce collective communication operation.

 world.allReduce (buf, op);

The allReduce() method’s first argument is a buffer referring to the value or values from each process
that are to be reduced together. The second argument is the reduction operator to use, such as
DoubleOp.SUM. After the allReduce() method returns, the contents of the buffer in every process
have been replaced with the results of the reduction.

 /*bri*/ 1.0f);

 }

 }

 PJGHueImage image = new PJGHueImage (H+2, W+2, matrix);

 PJGImage.Writer writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream (imagefile)));

 writer.write();

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println (iterations + " iterations");

 System.out.println ((t2-t1) + " msec pre");

 System.out.println ((t3-t2) + " msec calc");

 System.out.println ((t4-t3) + " msec post");

 System.out.println ((t4-t1) + " msec total");

 }

 }

 world.allReduce (buf, op);

C6910_30.indd 529C6910_30.indd 529 2/2/09 5:45:35 PM2/2/09 5:45:35 PM

530 CHAPTER 30 All-Reduce

The cluster parallel heat distribution program needs to do an all-reduce operation in two places: to
determine the initial value of | |; and to determine the value of | | after each pair of half-sweeps to decide
whether to stop iterating.

An all-reduce is equivalent to a reduction followed by a broadcast. If implemented that way, an all-
reduce would require (2 log2 K) message rounds, where K is the number of processes. However, an all-
reduce can be done in only (log2 K) message rounds (Figure 30.5). In each round, each process exchanges
its data buffer with another process, and then it combines its own data with the incoming data using the
reduction operator. In the first round, processes one rank apart exchange data; in the second round, pro-
cesses two ranks apart exchange data; in the third round, processes four ranks apart exchange data; and so
on. This message pattern is called a “butterfly” because of the crisscrossing pattern the messages make.

9 3 4 5 4 0 8 8 7 6 7 2 4 9 5

+ + + + + + + +

138 138 4 8 4 8 154 154 119 119

+ ++ + + ++ +

186 186 186 186 273 273 273 273

+ ++ ++ ++ +

459 459 459 459 459 459 459 459

Proc
0

Proc
1

Proc
2

Proc
3

Proc
4

Proc
5

Proc
6

Proc
7

Figure 30.5 All-reduce among eight processes, sum as the reduction operator

30.4 Mesh Element Allocation and Communication
As already mentioned, each process in the cluster parallel program “owns” one slice of the h matrix. But,
to update the mesh elements in its own slice, the process must refer to the mesh elements in the last row
of the previous process’s slice and to the mesh elements in the first row of the next pro cess’s slice. This
suggests that each process should allocate the rows in its own slice of the h matrix, plus two additional
rows, one at the top and one at the bottom. These additional rows will hold copies of the mesh elements
from the last row of the previous process’s slice and from the first row of the next process’s slice.

C6910_30.indd 530C6910_30.indd 530 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

 30.4 Mesh Element Allocation and Communication 531

Figure 30.6 shows an example with a mesh of H = 8 rows and W = 8 columns, sliced among K = 4
processes. The h matrix actually comprises 10 rows and 10 columns, with boundary elements of value
0 in row 0, row 9, column 0, and column 9. Process 0 allocates its slice consisting of rows 1–2, with
the extra rows 0 and 3. Process 1 allocates its slice consisting of rows 3–4, with the extra rows 2 and 5.
Process 2 allocates its slice consisting of rows 5–6, with the extra rows 4 and 7. Process 3 allocates its
slice consisting of rows 7–8, with the extra rows 6 and 9. (In Figures 30.6–30.9, the mesh elements’ val-
ues are for illustration only and do not represent the actual values the program would compute.)

After each process has performed the red half-sweep, the newly computed red element values must
be communicated to the adjacent processes in preparation for the upcoming black half-sweep. This is
done with two rounds of communication. The first round sends data forward (Figure 30.6). Each pro-
cess sends the red elements in the last row of its slice to the next process; simultaneously, each process
receives the red elements from the last row of the previous process’s slice, and stores them in the extra
row before the process’s own slice. These two transfers are done with one send-receive operation.

h

Process 0

3 5 4 2 9 0 8 0 4 7 8 1 6 1 2

6 9 1 7 8 5 5 8 2 4 2 1 9 3 9

DoubleBufhbuf_bottom_red

h

Process 1

8 1 9 0 9 5 7 8 2 1 1 7 6 7 5

9 8 9 7 8 4 3 9 8 1 8 0 7 8 5 5

DoubleBufhbuf_pred_red

DoubleBufhbuf_bottom_red

h

Process 2

9 9 8 6 8 9 3 6 8 1 1 4 3 2 2

4 5 5 4 8 2 5 6 2 0 6 5 4 1 3 2

DoubleBufhbuf_pred_red

DoubleBufhbuf_bottom_red

h

Process 3

3 2 9 2 4 8 5 7 1 5 9 2 8 2 8

2 2 9 9 9 2 4 4 6 1 7 3 4 9 7

DoubleBufhbuf_pred_red

send

receive

send

receive

send

receive

Figure 30.6 First round of communication after red half-sweep

C6910_30.indd 531C6910_30.indd 531 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

532 CHAPTER 30 All-Reduce

(However, process 0 only sends, and process K–1 only receives.) The second round sends data backward
(Figure 30.7). Each process sends the red elements in the first row of its slice to the previous process;
simultaneously, each process receives the red elements from the first row of the next process’s slice, and
stores them in the extra row after the process’s own slice. Again, these two transfers are done with one
send-receive operation. (However, process 0 only receives, and process K–1 only sends.)

h

Process 0

3 5 4 2 9 0 8 0 4 7 8 1 6 1 2

6 9 1 7 8 5 5 8 2 4 2 1 9 3 9

DoubleBufhbuf_succ_red

h

Process 1

8 1 9 0 9 5 7 8 2 1 1 7 6 7 5

9 8 9 7 8 4 3 9 8 1 8 0 7 8 5 5

6 9 8 5 2 4 9

DoubleBufhbuf_top_red

DoubleBufhbuf_succ_red

h

Process 2

9 9 8 6 8 9 3 6 8 1 1 4 3 2 2

4 5 5 4 8 2 5 6 2 0 6 5 4 1 3 2

9 8 8 4 8 1 7 8

DoubleBufhbuf_top_red

DoubleBufhbuf_succ_red

h

Process 3

3 2 9 2 4 8 5 7 1 5 9 2 8 2 8

2 2 9 9 9 2 4 4 6 1 7 3 4 9 7

4 5 8 2 2 0 4 1

DoubleBufhbuf_top_red

receive

send

receive

send

receive

send

Figure 30.7 Second round of communication after red half-sweep

Note that the buffers for these communication operations refer to noncontiguous elements in one row
of the h matrix, namely the red elements. To send the entire row would unnecessarily increase the com-
munication time. To create a buffer referring to just the red elements in row r of the h matrix, specify a
range with a stride of 2.

 DoubleBuf.sliceBuffer (h[r], new Range (1+(r&1), W, 2)); DoubleBuf.sliceBuffer (h[r], new Range (1+(r&1), W, 2));

C6910_30.indd 532C6910_30.indd 532 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

 30.4 Mesh Element Allocation and Communication 533

Once the red elements have been transferred, the black half-sweep can commence. After each
process has performed the black half-sweep, the newly computed black element values must be commu-
nicated to the adjacent processes in preparation for the upcoming red half-sweep. Again, this is done with
two rounds of communication. The first round sends data forward (Figure 30.8); the second round sends
data backward (Figure 30.9). The only difference is that this time, the buffers refer to the black elements.

 DoubleBuf.sliceBuffer (h[r], new Range (2-(r&1), W, 2));

h

Process 0

3 5 4 2 9 0 8 0 4 7 8 1 6 1 2

6 9 1 7 8 5 5 8 2 4 2 1 9 3 9

9 0 7 1 1 7 5

DoubleBufhbuf_bottom_black

h

Process 1

8 1 9 0 9 5 7 8 2 1 1 7 6 7 5

9 8 9 7 8 4 3 9 8 1 8 0 7 8 5 5

6 9 8 5 2 4 9

DoubleBufhbuf_pred_black

8 6 3 6 1 4 2

DoubleBufhbuf_bottom_black

h

Process 2

9 9 8 6 8 9 3 6 8 1 1 4 3 2 2

4 5 5 4 8 2 5 6 2 0 6 5 4 1 3 2

9 8 8 4 8 1 7 8

DoubleBufhbuf_pred_black

9 2 5 5 9 2 8

DoubleBufhbuf_bottom_black

h

Process 3

3 2 9 2 4 8 5 7 1 5 9 2 8 2 8

2 2 9 9 9 2 4 4 6 1 7 3 4 9 7

4 5 8 2 2 0 4 1

DoubleBufhbuf_pred_black

send

receive

send

receive

send

receive

Figure 30.8 First round of communication after black half-sweep

 DoubleBuf.sliceBuffer (h[r], new Range (2-(r&1), W, 2));

C6910_30.indd 533C6910_30.indd 533 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

h

Process 0

3 5 4 2 9 0 8 0 4 7 8 1 6 1 2

6 9 1 7 8 5 5 8 2 4 2 1 9 3 9

9 0 7 1 1 7 5

DoubleBufhbuf_succ_black

h

Process 1

8 1 9 0 9 5 7 8 2 1 1 7 6 7 5

9 8 9 7 8 4 3 9 8 1 8 0 7 8 5 5

6 9 1 7 8 5 5 8 2 4 2 1 9 3 9

DoubleBufhbuf_top_black

8 6 3 6 1 4 2

DoubleBufhbuf_succ_black

h

Process 2

9 9 8 6 8 9 3 6 8 1 1 4 3 2 2

4 5 5 4 8 2 5 6 2 0 6 5 4 1 3 2

9 8 9 7 8 4 3 9 8 1 8 0 7 8 5 5

DoubleBufhbuf_top_black

9 2 5 5 9 2 8

DoubleBufhbuf_succ_black

h

Process 3

3 2 9 2 4 8 5 7 1 5 9 2 8 2 8

2 2 9 9 9 2 4 4 6 1 7 3 4 9 7

4 5 5 4 8 2 5 6 2 0 6 5 4 1 3 2

DoubleBufhbuf_top_black

receive

send

receive

send

receive

send

Figure 30.9 Second round of communication after black half-sweep

30.5 Parallel Heat Distribution Program
Here is the source code for class edu.rit.clu.heat.HotSpotClu, the cluster parallel version of the heat dis-
tribution program. The command-line arguments are the same as the sequential version.

package edu.rit.clu.heat;

import edu.rit.color.HSB;

import edu.rit.image.ColorImageRow;

import edu.rit.image.PJGHueImage;

import edu.rit.image.PJGImage;

import edu.rit.io.Files;

import edu.rit.mp.DoubleBuf;

import edu.rit.mp.buf.DoubleItemBuf;

import edu.rit.pj.Comm;

package edu.rit.clu.heat;

import edu.rit.color.HSB;

import edu.rit.image.ColorImageRow;

import edu.rit.image.PJGHueImage;

import edu.rit.image.PJGImage;

import edu.rit.io.Files;

import edu.rit.mp.DoubleBuf;

import edu.rit.mp.buf.DoubleItemBuf;

import edu.rit.pj.Comm;

C6910_30.indd 534C6910_30.indd 534 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

 30.5 Parallel Heat Distribution Program 535

import edu.rit.pj.reduction.DoubleOp;

import edu.rit.util.Arrays;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

public class HotSpotClu

 {

 private static final double MIN_TEMP = 0.0;

 private static final double MAX_TEMP = 100.0;

 private static final double DELTA_TEMP = MAX_TEMP - MIN_TEMP;

 private static final double MIN_HUE = 4.0/6.0;

 private static final double MAX_HUE = 0.0;

 private static final double DELTA_HUE = MAX_HUE - MIN_HUE;

 private static final double EPS = 1.0e-3;

The following constants are used to decide which message passing operations the process will do.

 private static final int FIRST = 0;

 private static final int MIDDLE = 1;

 private static final int LAST = 2;

 private static final int SINGLE = 3;

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 static int position;

 static int predRank;

 static int succRank;

 // Command line arguments.

 static File imagefile;

 static int H;

 static int W;

The following variables store the bounds of this process’s slice of the h matrix.

 // Row slice index ranges.

 static Range[] slices;

 static Range mySlice;

 static int myLb;

 static int myUb;

 static int myLen;

 // Row slice index ranges.

 static Range[] slices;

 static Range mySlice;

 static int myLb;

 static int myUb;

 static int myLen;

 private static final int FIRST = 0;

 private static final int MIDDLE = 1;

 private static final int LAST = 2;

 private static final int SINGLE = 3;

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 static int position;

 static int predRank;

 static int succRank;

 // Command line arguments.

 static File imagefile;

 static int H;

 static int W;

C6910_30.indd 535C6910_30.indd 535 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

536 CHAPTER 30 All-Reduce

 // Temperature grid.

 static double[][] h;

 // Mesh of hot spot locations.

 static boolean[][] hotspot;

 // Variables for total absolute residual.

 static double EPS_initialTotalAbsXi;

 static double totalAbsXi;

 // Other variables used in the successive overrrelaxation

 // algorithm.

 static int MAX;

 static double rho_s_sqr;

 static double omega_over_4;

 static int iterations;

Here are the buffers used for message passing. The first one is used to all-gather the total absolute
residual. The others are used to transfer elements of the h matrix (see Figures 30.6–30.9).

 // Communication buffers.

 static DoubleItemBuf xibuf;

 static DoubleBuf hbuf_pred_red;

 static DoubleBuf hbuf_pred_black;

 static DoubleBuf hbuf_top_red;

 static DoubleBuf hbuf_top_black;

 static DoubleBuf hbuf_bottom_red;

 static DoubleBuf hbuf_bottom_black;

 static DoubleBuf hbuf_succ_red;

 static DoubleBuf hbuf_succ_black;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Temperature grid.

 static double[][] h;

 // Mesh of hot spot locations.

 static boolean[][] hotspot;

 // Variables for total absolute residual.

 static double EPS_initialTotalAbsXi;

 static double totalAbsXi;

 // Other variables used in the successive overrrelaxation

 // algorithm.

 static int MAX;

 static double rho_s_sqr;

 static double omega_over_4;

 static int iterations;

 // Communication buffers.

 static DoubleItemBuf xibuf;

 static DoubleBuf hbuf_pred_red;

 static DoubleBuf hbuf_pred_black;

 static DoubleBuf hbuf_top_red;

 static DoubleBuf hbuf_top_black;

 static DoubleBuf hbuf_bottom_red;

 static DoubleBuf hbuf_bottom_black;

 static DoubleBuf hbuf_succ_red;

 static DoubleBuf hbuf_succ_black;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

C6910_30.indd 536C6910_30.indd 536 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

 30.5 Parallel Heat Distribution Program 537

We determine if this process is the only process (SINGLE), if it is the first process (FIRST), if it is the
last process (LAST), or if it is neither the first nor the last (MIDDLE). We also determine the rank of the
previous process and the rank of the next process.

 if (size == 1) position = SINGLE;

 else if (rank == 0) position = FIRST;

 else if (rank < size-1) position = MIDDLE;

 else position = LAST;

 predRank = rank - 1;

 succRank = rank + 1;

 // Parse command line arguments.

 if (args.length < 8 || (args.length % 5) != 3) usage();

 imagefile = new File (args[0]);

 H = Integer.parseInt (args[1]);

 W = Integer.parseInt (args[2]);

 if (H < 1) usage();

 if (W < 1) usage();

We determine the lower and upper bounds of this process’s slice of the h matrix.

 // Determine row slice index ranges.

 slices = new Range (1, H) .subranges (size);

 mySlice = slices[rank];

 myLb = mySlice.lb();

 myUb = mySlice.ub();

 myLen = mySlice.length();

We allocate storage just for the rows within those bounds, plus the extra rows above and below, in the h
and hotspot matrices.

 // Initialize temperature and hot spot meshes.

 h = new double [H+2] [];

 Arrays.allocate (h, new Range (myLb-1, myUb+1), W+2);

 hotspot = new boolean [H+2] [];

 Arrays.allocate (hotspot, new Range (myLb-1, myUb+1), W+2);

 // Record hot spot coordinates and temperatures.

 int n = (args.length - 3) / 5;

 for (int i = 0; i < n; ++ i)

 {

 if (size == 1) position = SINGLE;

 else if (rank == 0) position = FIRST;

 else if (rank < size-1) position = MIDDLE;

 else position = LAST;

 predRank = rank - 1;

 succRank = rank + 1;

 // Parse command line arguments.

 if (args.length < 8 || (args.length % 5) != 3) usage();

 imagefile = new File (args[0]);

 H = Integer.parseInt (args[1]);

 W = Integer.parseInt (args[2]);

 if (H < 1) usage();

 if (W < 1) usage();

 // Determine row slice index ranges.

 slices = new Range (1, H) .subranges (size);

 mySlice = slices[rank];

 myLb = mySlice.lb();

 myUb = mySlice.ub();

 myLen = mySlice.length();

 // Initialize temperature and hot spot meshes.

 h = new double [H+2] [];

 Arrays.allocate (h, new Range (myLb-1, myUb+1), W+2);

 hotspot = new boolean [H+2] [];

 Arrays.allocate (hotspot, new Range (myLb-1, myUb+1), W+2);

 // Record hot spot coordinates and temperatures.

 int n = (args.length - 3) / 5;

 for (int i = 0; i < n; ++ i)

 {

C6910_30.indd 537C6910_30.indd 537 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

538 CHAPTER 30 All-Reduce

 int rl = Integer.parseInt (args[3+5*i]);

 int cl = Integer.parseInt (args[4+5*i]);

 int ru = Integer.parseInt (args[5+5*i]);

 int cu = Integer.parseInt (args[6+5*i]);

 double temp = Double.parseDouble (args[7+5*i]);

 if (1 > rl || rl > W) usage();

 if (1 > cl || cl > H) usage();

 if (1 > ru || ru > W) usage();

 if (1 > cu || cu > H) usage();

 if (MIN_TEMP > temp || temp > MAX_TEMP) usage();

 for (int r = rl; r <= ru; ++ r)

 {

 double[] h_r = h[r];

 boolean[] hotspot_r = hotspot[r];

 if (h_r != null)

 {

 for (int c = cl; c <= cu; ++ c)

 {

 h_r[c] = temp;

 hotspot_r[c] = true;

 }

 }

 }

 }

The redBuffer() and blackBuffer() subroutines create buffers for noncontiguous elements of the
given row of the h matrix.

 // Initialize communication buffers.

 xibuf = DoubleBuf.buffer();

 hbuf_pred_red = redBuffer (myLb-1);

 hbuf_pred_black = blackBuffer (myLb-1);

 hbuf_top_red = redBuffer (myLb);

 hbuf_top_black = blackBuffer (myLb);

 hbuf_bottom_red = redBuffer (myUb);

 hbuf_bottom_black = blackBuffer (myUb);

 hbuf_succ_red = redBuffer (myUb+1);

 hbuf_succ_black = blackBuffer (myUb+1);

 // Compute initial total absolute residual, then multiply by

 // EPS.

 totalAbsXi = 0.0;

 double xi;

 int rl = Integer.parseInt (args[3+5*i]);

 int cl = Integer.parseInt (args[4+5*i]);

 int ru = Integer.parseInt (args[5+5*i]);

 int cu = Integer.parseInt (args[6+5*i]);

 double temp = Double.parseDouble (args[7+5*i]);

 if (1 > rl || rl > W) usage();

 if (1 > cl || cl > H) usage();

 if (1 > ru || ru > W) usage();

 if (1 > cu || cu > H) usage();

 if (MIN_TEMP > temp || temp > MAX_TEMP) usage();

 for (int r = rl; r <= ru; ++ r)

 {

 double[] h_r = h[r];

 boolean[] hotspot_r = hotspot[r];

 if (h_r != null)

 {

 for (int c = cl; c <= cu; ++ c)

 {

 h_r[c] = temp;

 hotspot_r[c] = true;

 }

 }

 }

 }

 // Initialize communication buffers.

 xibuf = DoubleBuf.buffer();

 hbuf_pred_red = redBuffer (myLb-1);

 hbuf_pred_black = blackBuffer (myLb-1);

 hbuf_top_red = redBuffer (myLb);

 hbuf_top_black = blackBuffer (myLb);

 hbuf_bottom_red = redBuffer (myUb);

 hbuf_bottom_black = blackBuffer (myUb);

 hbuf_succ_red = redBuffer (myUb+1);

 hbuf_succ_black = blackBuffer (myUb+1);

 // Compute initial total absolute residual, then multiply by

 // EPS.

 totalAbsXi = 0.0;

 double xi;

C6910_30.indd 538C6910_30.indd 538 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

 30.5 Parallel Heat Distribution Program 539

To compute the initial partial | | value, we loop over only the rows in this process’s slice.

 for (int r = myLb; r <= myUb; ++ r)

 {
 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 1; c <= W; ++ c)

 {

 xi =

 hotspot_r[c] ?

 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 }

 }

Here is the all-reduce operation that adds up the initial partial | | values from all the processes and returns
the initial total | | to all the processes.

 xibuf.item = totalAbsXi;

 world.allReduce (xibuf, DoubleOp.SUM);

 totalAbsXi = xibuf.item;

 EPS_initialTotalAbsXi = EPS * totalAbsXi;

 // Initialize other variables.

 MAX = 2 * (W + H);

 rho_s_sqr = 0.5 * (Math.cos(Math.PI/W)+Math.cos(Math.PI/H));

 rho_s_sqr = rho_s_sqr * rho_s_sqr;

 omega_over_4 = 0.25;

 iterations = 0;

 long t2 = System.currentTimeMillis();

 // Perform successive overrelaxation.

 do

 {

 totalAbsXi = 0.0;

 for (int r = myLb; r <= myUb; ++ r)

 {
 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 1; c <= W; ++ c)

 {

 xi =

 hotspot_r[c] ?

 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 }

 }

 xibuf.item = totalAbsXi;

 world.allReduce (xibuf, DoubleOp.SUM);

 totalAbsXi = xibuf.item;

 EPS_initialTotalAbsXi = EPS * totalAbsXi;

 // Initialize other variables.

 MAX = 2 * (W + H);

 rho_s_sqr = 0.5 * (Math.cos(Math.PI/W)+Math.cos(Math.PI/H));

 rho_s_sqr = rho_s_sqr * rho_s_sqr;

 omega_over_4 = 0.25;

 iterations = 0;

 long t2 = System.currentTimeMillis();

 // Perform successive overrelaxation.

 do

 {

 totalAbsXi = 0.0;

C6910_30.indd 539C6910_30.indd 539 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

540 CHAPTER 30 All-Reduce

To do the red half-sweep, we loop over only the rows in this process’s slice.

 // Red half-sweep.

 for (int r = myLb; r <= myUb; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 1 + (r&1); c <= W; c += 2)

 {

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 h_r[c] += omega_over_4 * xi;

 }

 }

 omega_over_4 = 0.25 /

 (1.0-rho_s_sqr*(iterations==0 ? 0.5 : omega_over_4));

Here are the two rounds of communication after the red half-sweep (Figures 30.6 and 30.7). If there
is only one process (case SINGLE), then no communication occurs. Otherwise, the first process (case
FIRST) sends, and then receives; the last process (case LAST) receives, and then sends; the other pro-
cesses (case MIDDLE) do two send-receives.

 // Exchange boundary row red cells with neighboring

 // processes.

 switch (position)

 {

 case FIRST:

 world.send (succRank, hbuf_bottom_red);

 world.receive (succRank, hbuf_succ_red);

 break;

 case MIDDLE:

 world.sendReceive

 (succRank, hbuf_bottom_red,

 predRank, hbuf_pred_red);

 world.sendReceive

 (predRank, hbuf_top_red,

 succRank, hbuf_succ_red);

 break;

 case LAST:

 world.receive (predRank, hbuf_pred_red);

 world.send (predRank, hbuf_top_red);

 break;

 }

 // Red half-sweep.

 for (int r = myLb; r <= myUb; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 1 + (r&1); c <= W; c += 2)

 {

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 h_r[c] += omega_over_4 * xi;

 }

 }

 omega_over_4 = 0.25 /

 (1.0-rho_s_sqr*(iterations==0 ? 0.5 : omega_over_4));

 // Exchange boundary row red cells with neighboring

 // processes.

 switch (position)

 {

 case FIRST:

 world.send (succRank, hbuf_bottom_red);

 world.receive (succRank, hbuf_succ_red);

 break;

 case MIDDLE:

 world.sendReceive

 (succRank, hbuf_bottom_red,

 predRank, hbuf_pred_red);

 world.sendReceive

 (predRank, hbuf_top_red,

 succRank, hbuf_succ_red);

 break;

 case LAST:

 world.receive (predRank, hbuf_pred_red);

 world.send (predRank, hbuf_top_red);

 break;

 }

C6910_30.indd 540C6910_30.indd 540 2/2/09 5:45:36 PM2/2/09 5:45:36 PM

 30.5 Parallel Heat Distribution Program 541

The black half-sweep mirrors the red half-sweep.

 // Black half-sweep.

 for (int r = myLb; r <= myUb; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 2 - (r&1); c <= W; c += 2)

 {

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 h_r[c] += omega_over_4 * xi;

 }

 }

 omega_over_4 = 0.25 / (1.0 - rho_s_sqr * omega_over_4);

 // Exchange boundary row black cells with neighboring

 // processes.

 switch (position)

 {

 case FIRST:

 world.send (succRank, hbuf_bottom_black);

 world.receive (succRank, hbuf_succ_black);

 break;

 case MIDDLE:

 world.sendReceive

 (succRank, hbuf_bottom_black,

 predRank, hbuf_pred_black);

 world.sendReceive

 (predRank, hbuf_top_black,

 succRank, hbuf_succ_black);

 break;

 case LAST:

 world.receive (predRank, hbuf_pred_black);

 world.send (predRank, hbuf_top_black);

 break;

 }

 // Black half-sweep.

 for (int r = myLb; r <= myUb; ++ r)

 {

 double[] h_rm1 = h[r-1];

 double[] h_r = h[r];

 double[] h_rp1 = h[r+1];

 boolean[] hotspot_r = hotspot[r];

 for (int c = 2 - (r&1); c <= W; c += 2)

 {

 xi = hotspot_r[c] ? 0.0 :

 h_rm1[c]+h_rp1[c]+h_r[c-1]+h_r[c+1]-4.0*h_r[c];

 totalAbsXi += Math.abs (xi);

 h_r[c] += omega_over_4 * xi;

 }

 }

 omega_over_4 = 0.25 / (1.0 - rho_s_sqr * omega_over_4);

 // Exchange boundary row black cells with neighboring

 // processes.

 switch (position)

 {

 case FIRST:

 world.send (succRank, hbuf_bottom_black);

 world.receive (succRank, hbuf_succ_black);

 break;

 case MIDDLE:

 world.sendReceive

 (succRank, hbuf_bottom_black,

 predRank, hbuf_pred_black);

 world.sendReceive

 (predRank, hbuf_top_black,

 succRank, hbuf_succ_black);

 break;

 case LAST:

 world.receive (predRank, hbuf_pred_black);

 world.send (predRank, hbuf_top_black);

 break;

 }

C6910_30.indd 541C6910_30.indd 541 2/2/09 5:45:37 PM2/2/09 5:45:37 PM

542 CHAPTER 30 All-Reduce

Here is the other all-reduce operation that adds up the partial | | values from all the processes and returns
the total | | to all the processes.

 // Determine total absolute residual from all processes.

 xibuf.item = totalAbsXi;

 world.allReduce (xibuf, DoubleOp.SUM);

 totalAbsXi = xibuf.item;

 ++ iterations;

 }

 while (iterations < MAX &&

 totalAbsXi >= EPS_initialTotalAbsXi);

 // Check for convergence.

 if (iterations == MAX)

 {

 System.err.println ("HotSpotClu: Did not converge");

 System.exit (1);

 }

 long t3 = System.currentTimeMillis();

Class HotSpotClu uses the parallel output files pattern to store just the process’s own slice of the image
in the output PJG file. The separate image file slices can later be combined into a single image, if desired.

 // Generate image.

 int[][] matrix = new int [H+2] [];

 int rlb = rank == 0 ? myLb-1 : myLb;

 int rub = rank == size-1 ? myUb+1 : myUb;

 Arrays.allocate (matrix, new Range (rlb, rub), W+2);

 ColorImageRow matrix_r = new ColorImageRow (matrix[rlb]);

 for (int r = rlb; r <= rub; ++ r)

 {

 double[] h_r = h[r];

 matrix_r.setArray (matrix[r]);

 for (int c = 0; c <= W+1; ++ c)

 {

 matrix_r.setPixelHSB

 (/*c */ c,

 /*hue*/ (float)

 ((h_r[c]-MIN_TEMP)/DELTA_TEMP*DELTA_HUE+MIN_HUE),

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 }

 // Determine total absolute residual from all processes.

 xibuf.item = totalAbsXi;

 world.allReduce (xibuf, DoubleOp.SUM);

 totalAbsXi = xibuf.item;

 ++ iterations;

 }

 while (iterations < MAX &&

 totalAbsXi >= EPS_initialTotalAbsXi);

 // Check for convergence.

 if (iterations == MAX)

 {

 System.err.println ("HotSpotClu: Did not converge");

 System.exit (1);

 }

 long t3 = System.currentTimeMillis();

 // Generate image.

 int[][] matrix = new int [H+2] [];

 int rlb = rank == 0 ? myLb-1 : myLb;

 int rub = rank == size-1 ? myUb+1 : myUb;

 Arrays.allocate (matrix, new Range (rlb, rub), W+2);

 ColorImageRow matrix_r = new ColorImageRow (matrix[rlb]);

 for (int r = rlb; r <= rub; ++ r)

 {

 double[] h_r = h[r];

 matrix_r.setArray (matrix[r]);

 for (int c = 0; c <= W+1; ++ c)

 {

 matrix_r.setPixelHSB

 (/*c */ c,

 /*hue*/ (float)

 ((h_r[c]-MIN_TEMP)/DELTA_TEMP*DELTA_HUE+MIN_HUE),

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 }

C6910_30.indd 542C6910_30.indd 542 2/2/09 5:45:37 PM2/2/09 5:45:37 PM

 30.5 Parallel Heat Distribution Program 543

 PJGHueImage image = new PJGHueImage (H+2, W+2, matrix);

 PJGImage.Writer writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream

 (Files.fileForRank (imagefile, rank))));

 writer.writeRowSlice (new Range (rlb, rub));

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println (iterations + " iterations " + rank);

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

 /**

 * Returns a communication buffer for the red columns of the

 * given row of the h matrix.

 */

 private static DoubleBuf redBuffer (int r)

 {

 return DoubleBuf.sliceBuffer

 (h[r], new Range (1+(r&1), W, 2));

 }

 /**

 * Returns a communication buffer for the black columns of the

 * given row of the h matrix.

 */

 private static DoubleBuf blackBuffer (int r)

 {

 return DoubleBuf.sliceBuffer

 (h[r], new Range (2-(r&1), W, 2));

 }

 }

C6910_30.indd 543C6910_30.indd 543 2/2/09 5:45:37 PM2/2/09 5:45:37 PM

544 CHAPTER 30 All-Reduce

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 2G
N = 4G

N = 8G

N = 16G
N = 32G

N = 64G

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 2G
N = 4G

N = 8G

N = 16G
N = 32G

N = 64G

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

2 5

5 0

7 5

100

125

150

175

200

225

250

N = 2G

N = 4G

N = 8G

N = 16G
N = 32G
N = 64G

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

1 1 0 100
1E1

1E2

1E3

1E4

N = 2G
N = 4G
N = 8G

N = 16G

N = 32G

N = 64G

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

Figure 30.10 HotSpotSeq/HotSpotClu running-time metrics

30.6 Parallel Program Performance
Table 30.1 (at the end of the chapter) lists, and Figure 30.10 plots, the HotSpotClu program’s perfor-
mance on the “tardis” parallel computer. The program was run with the following command:

$ java -Dpj.np=$K edu.rit.clu.heat.HotSpotClu out.pjg $n $n \

 $L $L $U $U 100

The program calculated an n×n-element mesh with one central hot spot at a temperature of 100 °C
occupying coordinates (L,L) to (U,U). Because the successive overrelaxation algorithm’s running time is
O(n3), the problem size N = n3. The following values of n, N, L, and U were used:

n N L U
1260 2G 614 646

1590 4G 775 815

2000 8G 975 1025

2520 16G 1228 1292

3180 32G 1550 1630

4000 64G 1950 2050

C6910_30.indd 544C6910_30.indd 544 2/2/09 5:45:37 PM2/2/09 5:45:37 PM

 30.7 For Further Information 545

Unlike the last few cluster parallel programs we’ve studied, the running-time metrics show that the
HotSpotClu program does not experience a slowdown as the number of processes K increases. Rather, for
a given problem size, the speedup approaches a limit as K increases, as predicted by Amdahl’s Law for a
constant sequential fraction.

It’s fairly easy to see where the constant sequential fraction comes from. During each outer loop
iteration of the successive overrelaxation algorithm, each process sends two rows’ worth of data to other
processes and simultaneously receives two rows’ worth of data from other processes. While the time
to send this data depends on the problem size (specifically, on the mesh width W), the time to send this
data is the same no matter how many processes there are, because all the processes are sending at the
same time. Although the time needed to do the all-reduce does increase as K increases, the all-reduce is
communicating only one value. Because the row element transfers are communicating several thousand
values, the additional time to do the all-reduce is nearly unnoticeable. Therefore, the sequential fraction
appears constant.

The EDSF curves also show that the sequential fraction decreases as the problem size increases. This
is due to the surface-to-volume effect. During each outer loop iteration, the computation time is O(n2),
but the communication time is only O(n), so the sequential fraction is O(n–1). As the problem size scales
up, the sequential fraction goes down; consequently, the speedups and efficiencies improve. However,
to achieve good speedups and efficiencies all the way out to 40 processors, we would have to run the
program with problem sizes several times larger than the ones measured here.

30.7 For Further Information
On numerical solution of partial differential equations using SOR:

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. • Numerical Recipes:
The Art of Scientific Computing, Third Edition. Cambridge University Press,
2008, Chapter 20 and Section 20.5.

C6910_30.indd 545C6910_30.indd 545 2/2/09 5:45:37 PM2/2/09 5:45:37 PM

546 CHAPTER 30 All-Reduce

Table 30.1 HotSpotSeq/HotSpotClu running-time metrics

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

2G seq 61469 16G seq 565595

2G 1 59649 1.031 1.031 16G 1 521585 1.084 1.084

2G 2 33681 1.825 0.913 0.129 16G 2 266921 2.119 2.119 0.023

2G 3 24311 1.528 0.843 0.111 16G 3 180901 3.127 3.127 0.020

2G 4 19747 3.113 0.778 0.108 16G 4 143278 3.948 3.948 0.033

2G 5 16706 3.679 0.736 0.100 16G 5 115414 4.901 4.091 0.027

2G 6 14722 4.161 0.694 0.097 16G 6 101370 5.580 5.580 0.033

2G 8 13799 4.455 0.557 0.122 16G 8 82999 6.814 6.814 0.039

2G 10 13157 4.672 0.467 0.134 16G 10 69883 8.093 8.093 0.038

2G 14 15081 4.076 0.291 0.195 16G 14 64108 8.823 8.823 0.055

2G 20 13757 4.468 0.223 0.190 16G 20 50661 11.164 11.164 0.050

2G 28 13780 4.461 0.159 0.203 16G 28 47328 11.951 11.951 0.057

2G 40 13143 4.677 0.117 0.200 16G 40 42005 13.465 13.465 0.057

4G seq 123205 32G seq 995382

4G 1 122052 1.009 1.009 32G 1 1007863 0.988 0.988

4G 2 67687 1.820 0.910 0.109 32G 2 520348 1.913 1.913 0.033

4G 3 45465 2.542 0.847 0.096 32G 3 349967 2.844 2.844 0.021

4G 4 37821 3.258 0.814 0.080 32G 4 275552 3.612 3.612 0.031

4G 5 32108 3.837 0.767 0.079 32G 5 225254 4.419 4.419 0.029

4G 6 29035 4.243 0.707 0.085 32G 6 190789 5.217 5.217 0.027

4G 8 23599 5.221 0.653 0.078 32G 8 148995 6.681 6.681 0.026

4G 10 21271 5.792 0.579 0.083 32G 10 128594 7.741 7.741 0.031

4G 14 22805 5.403 0.386 0.124 32G 14 113284 8.787 8.787 0.044

4G 20 20910 5.892 0.295 0.128 32G 20 90178 11.038 11.038 0.042

4G 28 19708 6.252 0.223 0.130 32G 28 79897 12.458 12.458 0.045

4G 40 13143 4.677 0.117 0.134 32G 40 66457 14.978 14.978 0.042

8G seq 267691 64G seq 267691

8G 1 249316 1.074 1.074 64G 1 2077124 0.987 0.987

8G 2 132748 2.017 1.008 0.065 64G 2 1079537 1.900 1.900 0.039

8G 3 93288 2.870 0.957 0.061 64G 3 735966 2.783 2.783 0.032

8G 4 71619 3.738 0.934 0.050 64G 4 547380 3.747 3.747 0.018

8G 5 62352 4.293 0.859 0.063 64G 5 452957 4.528 4.528 0.023

8G 6 55389 4.833 0.805 0.067 64G 6 390011 5.259 5.259 0.025

8G 8 44251 6.049 0.756 0.060 64G 8 299199 6.855 6.855 0.022

8G 10 38590 6.937 0.694 0.061 64G 10 247331 8.292 8.292 0.021

8G 14 36757 7.283 0.520 0.082 64G 14 208810 9.822 9.822 0.031

8G 20 31959 8.376 0.419 0.082 64G 20 161101 12.731 12.731 0.029

8G 28 28827 9.286 0.332 0.083 64G 28 145454 14.101 14.101 0.036

8G 40 13143 4.677 0.117 0.083 64G 40 155433 17.768 17.768 0.031

C6910_30.indd 546C6910_30.indd 546 2/2/09 5:45:37 PM2/2/09 5:45:37 PM

547

C H A P T E R31
in which we learn about the Kolmogorov-Smirnov statistical test of randomness;

we see how a block cipher can become a pseudorandom number generator; we

develop a program to apply the Kolmogorov-Smirnov test to the AES block cipher;

and we encounter a parallel program that needs the all-to-all and scan collective

communication operations

All-to-All and Scan

C6910_31.indd 547C6910_31.indd 547 2/2/09 12:38:00 PM2/2/09 12:38:00 PM

C H A P T E R31 All-to-All and Scan

31.1 The Kolmogorov-Smirnov Test
In Chapter 14, we introduced the notion of a statistical test of a pseudorandom number generator
(PRNG). A statistical test usually goes like this:

Generate a large sample of random numbers.1.

Calculate a “statistic” from the sampled numbers. Let 2. D be the value of the
statistic.

Determine the statistic’s “3. p value.” This is the probability that the statistic’s
value would be greater than or equal to D if the sampled numbers came from a
truly random source.

If 4. p is too small or too large, the PRNG fails the test, otherwise the PRNG
passes the test.

Various statistical tests differ in the statistics they calculate and in the probability distributions of their
statistics. Figure 31.1 shows an example of a probability density function for a statistic; the more likely
statistic values have higher probability densities. For a given statistic value D, p is the area under the
probability density function to the right of D. As D increases, p starts at 1 and decreases to 0. If p is too
small (Figure 31.1) or too large (Figure 31.2), it indicates that D is not a likely value for the statistic; the
probability of D occurring is too low, if the samples are drawn from a truly random source. Therefore, we
can conclude that the source is not truly random, and the PRNG fails the test. A typical failure criterion is
p < 0.001 or p > 0.999 (the Crush test suite uses these limits).

Statistic

P
r[

S
ta

tis
tic

]

D

p

Figure 31.1 Statistical test with p too small

Statistic

P
r[

S
ta

tis
tic

]

D

p

Figure 31.2 Statistical test with p too large

C6910_31.indd 548C6910_31.indd 548 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.1 The Kolmogorov-Smirnov Test 549

In this chapter, we will focus on a particular statistical test, the Kolmogorov-Smirnov (K-S) test,
defined by Russian mathematician Andrei Nikolaevich Kolmogorov in 1933 and refined by Nikolai
Vasilievich Smir nov in 1939. Rather than describe the K-S test in all its generality, we will define it for the
case of a random number source with a uniform distribution between 0 and 1, such as a PRNG algorithm.

Following the usual procedure for a statistical test, the first step is to generate some random numbers
from the PRNG under test. For example, here are n = 10 random numbers from class edu.rit.util.Random.
(Normally, we would generate millions or billions of random numbers.)

0.35612 0.42731 0.90112 0.80018 0.47976
0.81107 0.61478 0.02314 0.69704 0.17270

The second step is to compute the K-S statistic D. Figure 31.3 shows how D is calculated. First we
sort the random numbers into ascending order:

0.02314 0.17270 0.35612 0.42731 0.47976
0.61478 0.69704 0.80018 0.81107 0.90112

Next, we determine the cumulative distribution function for the random sample (the black curve in
Figure 31.3). This starts at 0 and jumps up by 1/n at each sampled number.

Random Numbers

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

0 1
0

1

D

Figure 31.3 Computing the K-S statistic D for a uniform PRNG

We compare the random sample’s cumulative distribution function to the cumulative distribution func-
tion for a uniform random variable. The latter is just a straight line from (0, 0) to (1, 1) (the gray curve
in Figure 31.3). The K-S statistic D is the maximum absolute difference between the two cumulative
distribution functions. Specifically, for each random number xi, 0 ≤ i ≤ n–1 (with the random numbers
sorted), define the lower and upper differences as the following:

 (31.1)

C6910_31.indd 549C6910_31.indd 549 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

550 CHAPTER 31 All-to-All and Scan

 (31.2)

Then D is the largest of all the lower and upper differences. In our example, D = 0.15612 and it occurs as
the lower difference for the third random number.

The third step in the K-S test is to calculate the p value. This is given by the following formula:

 (31.3)

where the function PKS is defined as the following:

 (31.4)

In our example, p = 0.95136.
The fourth and final step is to decide if the PRNG failed the test. According to the failure criterion

(p < 0.001 or p > 0.999), class edu.rit.util.Random passes the K-S test for this tiny sample.

31.2 Block Ciphers as PRNGs
In Chapter 14, we saw one way to design a PRNG: feed a counter through a hash function. The hash
function acts as a random mapping, converting a series of successive counter values to a series of random
numbers. Any function that performs a random mapping ought to be usable in a PRNG.

A block cipher, such as the Advanced Encryption Standard (AES) we saw in Chapters 5–7, is sup-
posed to act as a random mapping. AES converts a 128-bit plaintext into a 128-bit ciphertext that looks
like random gibberish. Lacking the key, it is infeasible to go backward from the ciphertext to the plain-
text; there is no nonrandomness in AES’s output that gives any clue about AES’s input. This suggests that
AES, or any block cipher, can be used as a PRNG’s hash function.

Figure 31.4 shows how a block-cipher-based PRNG works. The PRNG is initialized by using the
seed as the encryption key and setting a 64-bit counter (type long in Java) to 0. To generate a random
number: increment the counter; set the least significant 64 bits of the plaintext block to the counter and
set the remaining bits of the plaintext block to 0; encrypt the plaintext block yielding a ciphertext block;
take the most significant 64 bits of the ciphertext block as a long value; and divide that by 264 to get a
double value in the range 0.0 to 1.0.

C6910_31.indd 550C6910_31.indd 550 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.3 Sequential K-S Test Program 551

Counter

0 0 0 0 0 0 0 0

AES
Encrypt

Key (seed)

÷ 2

Random Number

 Figure 31.4 Block-cipher-based PRNG using AES

While much slower than a typical PRNG (such as those described in Chapter 14), a block-cipher-based
PRNG is much more secure. With a typical PRNG, if an adversary obtains some of the output random
numbers, the adversary might be able to deduce the PRNG’s internal state and thereby discover numbers the
PRNG generated in the past, or discover numbers the PRNG will generate in the future. This would breach the
security of an application that used the PRNG. With a block-cipher-based PRNG, such an attack is practically
impossible. Determining the PRNG’s internal state (encryption key or counter value) from the output random
numbers would entail breaking the cipher. For this reason, secure applications often use a block-cipher-based
PRNG to generate random numbers. Scientific applications, which don’t need the security, use the simpler and
faster PRNG algorithms.

A block-cipher-based PRNG might be secure, but is it random? To find out, we will perform the K-S
test on a counter-mode PRNG using AES as the hash function. Because millions or billions of random
numbers are required for a meaningful test, and because AES is slow compared to other PRNG hash
functions, we want a program that can do the K-S test in parallel.

31.3 Sequential K-S Test Program
Here is the source code for class edu.rit.clu.monte.AesTestSeq. The command-line arguments are the
encryption key (a 64-digit hexadecimal number) and n, the number of random numbers to generate. Use
class edu.rit.clu.keysearch.MakeKey to create a key. The program prints n, the K-S statistic D, and the p
value, as well as the running time.

$ java edu.rit.clu.monte.AesTestSeq $KEY 60000000

N = 60000000

D = 9.070410274467089E-5

P = 0.7068995841396919

66211 msec

C6910_31.indd 551C6910_31.indd 551 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

552 CHAPTER 31 All-to-All and Scan

package edu.rit.clu.monte;

import edu.rit.crypto.blockcipher.AES256Cipher;

import edu.rit.numeric.Statistics;

import edu.rit.pj.Comm;

import edu.rit.util.Hex;

import java.util.Arrays;

public class AesTestSeq

 {

 // Command line arguments.

 static byte[] key = new byte [32];

 static int N;

 // AES block cipher.

 static AES256Cipher cipher;

 // Plaintext and ciphertext blocks.

 static byte[] plaintext = new byte [16];

 static byte[] ciphertext = new byte [16];

 // Random data values.

 static double[] data;

 // 2^64.

 static double TWO_SUP_64;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long time = -System.currentTimeMillis();

 // Validate command line arguments.

 if (args.length != 2) usage();

 Hex.toByteArray (args[0], key);

 N = Integer.parseInt (args[1]);

 // Set up AES block cipher.

 cipher = new AES256Cipher (key);

 // Allocate storage for random data values.

 data = new double [N];

C6910_31.indd 552C6910_31.indd 552 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.3 Sequential K-S Test Program 553

Here is step 1 of the statistical test procedure, to generate n random numbers. Because the K-S statistic
requires the random numbers to be in ascending order, we have no choice except to store the random
numbers we generate in an array and sort them.

Here is step 2 of the statistical test procedure, to compute the K-S statistic D. It saves time to store the
random numbers in the data array as they are generated and sort them all at once, rather than store the
numbers in the data array in sorted order as they are generated. The former can be done in O(n log n)
time using Quicksort (implemented by Arrays.sort()). The latter is essentially an insertion sort,
which requires O(n2) time.

 // Compute 2^64.

 TWO_SUP_64 = 2.0; // 2^1

 TWO_SUP_64 *= TWO_SUP_64; // 2^2

 TWO_SUP_64 *= TWO_SUP_64; // 2^4

 TWO_SUP_64 *= TWO_SUP_64; // 2^8

 TWO_SUP_64 *= TWO_SUP_64; // 2^16

 TWO_SUP_64 *= TWO_SUP_64; // 2^32

 TWO_SUP_64 *= TWO_SUP_64; // 2^64

 // Generate N random data values.

 for (int i = 0; i < N; ++ i)

 {

 longToBytes (i, plaintext, 8);

 cipher.encrypt (plaintext, ciphertext);

 data[i] = bytesToDouble (ciphertext, 0);

 }

 // Compute the K-S statistic, D.

 Arrays.sort (data);

 double N_double = N;

 double D = 0.0;

 double F_lower = 0.0;

 double F_upper;

 double x;

 for (int i = 0; i < N; ++ i)

 {

 F_upper = (i+1) / N_double;

 x = data[i];

 D = Math.max (D, Math.abs (x - F_lower));

 D = Math.max (D, Math.abs (x - F_upper));

 F_lower = F_upper;

 }

C6910_31.indd 553C6910_31.indd 553 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

554 CHAPTER 31 All-to-All and Scan

Here is step 3 of the statistical test procedure, to compute the p value. The static ksPvalue() method in
class edu.rit.numeric.Statistics implements Equations 31.3–31.4.

 // Compute the p-value, P.

 double P = Statistics.ksPvalue (N, D);

 // Stop timing.

 time += System.currentTimeMillis();

 // Print results.

 System.out.println ("N = " + N);

 System.out.println ("D = " + D);

 System.out.println ("P = " + P);

 System.out.println (time + " msec”);

 }

 /**

 * Convert the given long value to eight bytes stored starting at

 * block[i].

 */

 private static void longToBytes

 (long value,

 byte[] block,

 int i)

 {

 for (int j = 7; j >= 0; — j)

 {

 block[i+j] = (byte) (value & 0xFF);

 value >>>= 8;

 }

 }

 /**

 * Convert the eight bytes starting at block[i] to a double

 * value.

 */

 private static double bytesToDouble

 (byte[] block,

 int i)

 {

 long result = 0L;

 for (int j = 0; j < 8; ++ j)

 {

C6910_31.indd 554C6910_31.indd 554 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.4 Parallel K-S Test Design 555

Step 4 of the statistical test procedure, to decide whether the p value is too small or too large, is done by the user.

31.4 Parallel K-S Test Design
The K-S test program has three major time-consuming sections: generate n random numbers; sort them;
and scan them to calculate D. Let’s consider how to parallelize each section.

Generating n random numbers in parallel is straightforward. Instead of one process with an
n-element array, we have K processes, each with an n/K-element array slice. We use type long for n, so
we can scale up the program to more than two billion random numbers (the maximum possible with type
int). We use a LongRange object to partition the index range 0 through n–1 into K subranges. Each pro-
cess generates random numbers, starting with a counter value equal to the lower bound of the process’s
own subrange, and stores the random numbers in its own array slice. As an example, Figure 31.5 shows
40 random numbers partitioned among four processes.

.813 .723 .452 .263 .910 .438 .428 .204 .463 .685Process 0

.028 .158 .588 .736 .698 .815 .975 .402 .234 .078Process 1

.492 .284 .406 .695 .553 .424 .047 .224 .877 .582Process 2

.346 .202 .439 .056 .095 .708 .497 .190 .572 .023Process 3

 Figure 31.5 Random data generated in each process

Note the memory scalability of this design. We can scale up n as large as we please, as long as we
also scale up K so that each process’s array slice has at most about 268 million elements. The JVM puts a
limit of 231–1 bytes on the size of each object’s or array’s storage block, including storage for the object’s
fields or the array’s elements, plus storage for JVM internal data about the object or array. With a double
occupying 8 bytes, this translates into slightly fewer than 228 elements in a double array. Of course, each
node in the cluster must have enough physical memory to store the n/K array elements.

Next comes sorting the data. Figure 31.6 shows what happens if each process sorts its own slice.

.204 .263 .428 .438 .452 .463 .685 .723 .813 .910Process 0

.028 .078 .158 .234 .402 .588 .698 .736 .815 .975Process 1

.047 .224 .284 .406 .424 .492 .553 .582 .695 .877Process 2

.023 .056 .095 .190 .202 .346 .439 .497 .572 .708Process 3

 Figure 31.6 Random data after sorting in each process

 result = (result << 8) | (block[i+j] & 0xFF);

 }

 return result / TWO_SUP_64 + 0.5;

 }

 }

C6910_31.indd 555C6910_31.indd 555 2/2/09 5:42:06 PM2/2/09 5:42:06 PM

556 CHAPTER 31 All-to-All and Scan

But this is not quite what we want. After sorting, we want the entire sorted array to be partitioned among
the processes. That is, process 0 should have all the smallest numbers, process 1 should have all the next-
smallest numbers, and so on, with the numbers divided evenly or close to evenly among the processes.
Specifically, let’s partition the random numbers x in the range 0 ≤ x < 1, such that process k has all the
random numbers in the range k/K ≤ x < (k+1)/K. In our example, process 0 has the range 0.00 ≤ x < 0.25;
process 1, 0.25 ≤ x < 0.50; process 2, 0.50 ≤ x < 0.75; and process 3, 0.75 ≤ x < 1.00.

Because each process’s slice is sorted, we can scan the slice from lowest to highest index to identify
a sub-slice that is supposed to be located in each of the other processes, as shown in Figure 31.7.

.204

Pr. 0

.263 .428 .438 .452 .463

Pr. 1

.685 .723

Pr. 2

.813 .910

Pr. 3

Process 0

for

.028 .078 .158 .234

Pr. 0

.402

Pr. 1

.588 .698 .736

Pr. 2

.815 .975

Pr. 3

Process 1

for

.047 .224

Pr. 0

.284 .406 .424 .492

Pr. 1

.553 .582 .695

Pr. 2

.877

Pr. 3

Process 2

for

.023 .056 .095 .190 .202

Pr. 0

.346 .439 .497

Pr. 1

.572

Pr. 2

.708

Pr. 3

Process 3

for

 Figure 31.7 Sub-slices to be located in each process

And we can identify the length of each sub-slice destined for each process, as shown in Figure 31.8.

1 5 2 2Process 0

4 1 3 2Process 1

2 4 3 1Process 2

5 3 1 1Process 3

 Figure 31.8 Lengths of sub-slices to be located in each process

We want to send the sub-slices from process to process so that process 0 ends up with all the data in the
range 0.00 ≤ x < 0.25, process 1 ends up with all the data in the range 0.25 ≤ x < 0.50, and so on. At this
point every process knows the index range and length of the sub-slice the process will send to every other
process. However, every process does not know the index range and length of the sub-slice the process
will receive from every other process. To find this out, the processes do an all-to-all collective communi-
cation operation on the length information, yielding the lengths shown in Figure 31.9.

C6910_31.indd 556C6910_31.indd 556 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.4 Parallel K-S Test Design 557

1 4 2 5Process 0

5 1 4 3Process 1

2 3 3 1Process 2

2 2 1 1Process 3

 Figure 31.9 Lengths of sub-slices to be received from each process

Each process adds up the sub-slice lengths to determine its total sorted slice length and allocates storage
for its sorted slice. The processes then do another all-to-all operation to distribute the random numbers
(Figure 31.10).

.204

Pr. 0

.028 .078 .158 .234

Pr. 1

.047 .224

Pr. 2

.023 .056 .095 .190 .202

Pr. 3

Process 0

f rom

.263 .428 .438 .452 .463

Pr. 0

.402

Pr. 1

.284 .406 .424 .492

Pr. 2

.346 .439 .497

Pr. 3

Process 1

f rom

.685 .723

Pr. 0

.588 .698 .736

Pr. 1

.553 .582 .695

Pr. 2

.572

Pr. 3

Process 2

f rom

.813 .910

Pr. 0

.815 .975

Pr. 1

.877

Pr. 2

.708

Pr. 3

Process 3

f rom

 Figure 31.10 Random data after all-to-all operation

And once each process sorts its incoming array, we have the sorted data partitioned among the processes
the way we want it (Figure 31.11).

.023 .028 .047 .056 .078 .095 .158 .190 .202 .204 .224 .234Process 0

.263 .284 .346 .402 .406 .424 .428 .438 .439 .452 .463 .492 .497Process 1

.553 .572 .582 .588 .685 .695 .698 .723 .736Process 2

.708 .813 .815 .877 .910 .975Process 3

 Figure 31.11 Random data after final sort in each process

Every process will not necessarily end up with the same quantity of sorted data. But if the PRNG obeys
a uniform probability distribution, and the program generates a large quantity of random numbers, the
processes’ array lengths should be nearly balanced.

C6910_31.indd 557C6910_31.indd 557 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

558 CHAPTER 31 All-to-All and Scan

Now that we have the random data sorted and partitioned among the processes, we can calculate D
in parallel. In process 0, for the random number at index 0, the lower and upper values of the cumula-
tive distribution function are 0/40 and 1/40; for index 1, 1/40 and 2/40; and so on. But in process 1, the
random number at index 0 is not the first number in the cumulative distribution; it is the thirteenth. So in
process 1, for the random number at index 0, the lower and upper values of the cumulative distribution
function are 12/40 and 13/40; for index 1, 13/40 and 14/40; and so on. The cumulative distribution func-
tion starts at 0/40 in process 0, 12/40 in process 1, 25/40 in process 2, and 34/40 in process 3. Note the
relation between the cumulative distribution function numerators and the slice lengths: the numerator in
process k starts at the sum of the slice lengths in processes 0 through k–1. To determine these numerators,
the processes do an exclusive-scan collective communication operation on the partitioned sorted slice
lengths with sum as the reduction operator. A scan is necessary because the slice lengths might be differ-
ent in every process.

Starting at the proper value for the cumulative distribution function, each process computes the
maximum D for its own slice. In the example, the results are 0.066, 0.128, 0.137, and 0.167. The overall
D value is then the maximum of the processes’ individual D values, namely 0.167. The processes do a
reduce collective communication operation, with maximum as the reduction operator, to put the overall
D value into process 0. Process 0 then calculates the p value, 0.19459 in this example.

31.5 Parallel K-S Test Program
Here is the source code for the cluster parallel version, class edu.rit.clu.monte.AesTestSeq.

package edu.rit.clu.monte;

import edu.rit.crypto.blockcipher.AES256Cipher;

import edu.rit.mp.DoubleBuf;

import edu.rit.mp.IntegerBuf;

import edu.rit.mp.LongBuf;

import edu.rit.mp.buf.DoubleItemBuf;

import edu.rit.mp.buf.LongItemBuf;

import edu.rit.numeric.Statistics;

import edu.rit.pj.Comm;

import edu.rit.pj.reduction.DoubleOp;

import edu.rit.pj.reduction.LongOp;

import edu.rit.util.Hex;

import edu.rit.util.LongRange;

import edu.rit.util.Range;

import java.util.Arrays;

public class AesTestClu

 {

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

C6910_31.indd 558C6910_31.indd 558 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.5 Parallel K-S Test Program 559

 // Command line arguments.

 static byte[] key = new byte [32];

 static long N;

 // AES block cipher.

 static AES256Cipher cipher;

 // Plaintext and ciphertext blocks.

 static byte[] plaintext = new byte [16];

 static byte[] ciphertext = new byte [16];

 // Random data values, partitioned to be sent to all processes.

 static double[] sendData;

 // Number of data values sent from this process to each process,

 // plus total.

 static int[] sendLength;

 static int sendN;

 // Number of data values received by this process from each

 // process, plus total.

 static int[] recvLength;

 static int recvN;

 // Index ranges in the sendData array from which to obtain data

 // values sent to each process.

 static Range[] sendRanges;

 // Index ranges in the data array in which to store data values

 // received from each process.

 static Range[] recvRanges;

 // Random data values received by this process.

 static double[] data;

 // Number of data values in lower-ranked processes.

 static long lowerN;

 // 2^64.

 static double TWO_SUP_64;

 /**

 * Main program.

 */

C6910_31.indd 559C6910_31.indd 559 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

560 CHAPTER 31 All-to-All and Scan

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long time = -System.currentTimeMillis();

 // Initialize middleware.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Validate command line arguments.

 if (args.length != 2) usage();

 Hex.toByteArray (args[0], key);

 N = Long.parseLong (args[1]);

 // Set up AES block cipher.

 cipher = new AES256Cipher (key);

 // Compute 2^64.

 TWO_SUP_64 = 2.0; // 2^1

 TWO_SUP_64 *= TWO_SUP_64; // 2^2

 TWO_SUP_64 *= TWO_SUP_64; // 2^4

 TWO_SUP_64 *= TWO_SUP_64; // 2^8

 TWO_SUP_64 *= TWO_SUP_64; // 2^16

 TWO_SUP_64 *= TWO_SUP_64; // 2^32

 TWO_SUP_64 *= TWO_SUP_64; // 2^64

 // Generate this process’s subset of the N random data

 // values.

 LongRange indexRange =

 new LongRange(0,N-1).subrange (size, rank);

 long lb = indexRange.lb();

 long len = indexRange.length();

 sendData = new double [(int) len];

 for (long i = 0; i < len; ++ i)

 {

 longToBytes (lb+i, plaintext, 8);

 cipher.encrypt (plaintext, ciphertext);

 sendData[(int) i] = bytesToDouble (ciphertext, 0);

 }

C6910_31.indd 560C6910_31.indd 560 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.5 Parallel K-S Test Program 561

 // If there’s more than one process, do message passing.

 if (size > 1)

 {

 // Determine how many data values will be going to each

 // process.

 Arrays.sort (sendData);

 sendLength = new int [size];

 int prevj = 0;

 int j = 0;

 for (int i = 0; i < size; ++ i)

 {

 double threshold = ((double) (i+1)) / ((double) size);

 while (j < len && sendData[j] < threshold) ++ j;

 sendLength[i] = j - prevj;

 prevj = j;

 }

 // Determine how many data values will be coming from each

 // process.

 recvLength = new int [size];

 world.allToAll

 (IntegerBuf.sliceBuffers

 (sendLength, new Range(0,size-1).subranges (size)),

 IntegerBuf.sliceBuffers

 (recvLength, new Range(0,size-1).subranges (size)));

 // Transfer data values.

 sendRanges = new Range [size];

 sendN = 0;

 recvRanges = new Range [size];

 recvN = 0;

 for (int i = 0; i < size; ++ i)

 {

 sendRanges[i] = new Range(sendN,sendN+sendLength[i]-1);

 sendN += sendLength[i];

 recvRanges[i] = new Range(recvN,recvN+recvLength[i]-1);

 recvN += recvLength[i];

 }

 data = new double [recvN];

 world.allToAll

 (DoubleBuf.sliceBuffers (sendData, sendRanges),

 DoubleBuf.sliceBuffers (data, recvRanges));

 // Release storage for sent data values.

 sendData = null;

C6910_31.indd 561C6910_31.indd 561 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

562 CHAPTER 31 All-to-All and Scan

 // Determine how many data values ended up in lower-ranked

 // processes.

 LongItemBuf lowerNbuf = LongBuf.buffer (recvN);

 world.exclusiveScan (lowerNbuf, LongOp.SUM, 0L);

 lowerN = lowerNbuf.item;

 }

 // If there’s only one process, don’t bother with message

 // passing.

 else

 {

 data = sendData;

 sendData = null;

 recvN = (int) len;

 lowerN = 0;

 }

 // Compute the K-S statistic, D, for this process’s random

 // data values.

 Arrays.sort (data);

 double N_double = N;

 double D = 0.0;

 double F_lower = lowerN / N_double;

 double F_upper;

 double x;

 for (int i = 0; i < recvN; ++ i)

 {

 F_upper = (lowerN+i+1) / N_double;

 x = data[i];

 D = Math.max (D, Math.abs (x - F_lower));

 D = Math.max (D, Math.abs (x - F_upper));

 F_lower = F_upper;

 }

 // Put the maximum of all processes’ D values into process 0.

 DoubleItemBuf Dbuf = DoubleBuf.buffer (D);

 world.reduce (0, Dbuf, DoubleOp.MAXIMUM);

 D = Dbuf.item;

 // Compute the p-value, P.

 double P = Statistics.ksPvalue (N, D);

 // Stop timing.

 time += System.currentTimeMillis();

C6910_31.indd 562C6910_31.indd 562 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.5 Parallel K-S Test Program 563

 // Print results in process 0.

 if (rank == 0)

 {

 System.out.println ("N = " + N);

 System.out.println ("D = " + D);

 System.out.println ("P = " + P);

 }

 System.out.println (time + " msec " + rank);

 }

 /**

 * Convert the given long value to eight bytes stored starting at

 * block[i]</TT>.

 */

 private static void longToBytes

 (long value,

 byte[] block,

 int i)

 {

 for (int j = 7; j >= 0; — j)

 {

 block[i+j] = (byte) (value & 0xFF);

 value >>>= 8;

 }

 }

 /**

 * Convert the eight bytes starting at block[i] to a double

 * value.

 */

 private static double bytesToDouble

 (byte[] block,

 int i)

 {

 long result = 0L;

 for (int j = 0; j < 8; ++ j)

 {

 result = (result << 8) | (block[i+j] & 0xFF);

 }

 return result / TWO_SUP_64 + 0.5;

 }

 }

C6910_31.indd 563C6910_31.indd 563 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

564 CHAPTER 31 All-to-All and Scan

31.6 Parallel K-S Test Program Performance
To collect running-time data for measuring the AesTestClu program’s performance, we’re going to do
something a little different. Because the JVM puts a limit on the number of elements in an array, we can
only go up to about n = 268 million and still measure the program’s running time on a single processor.
We want to try problem sizes larger than that. So instead of collecting data for speedup, we will collect
data for sizeup. As we go to more processors, we will also increase n to keep the running time the same
(assuming an ideal sizeup).

As n scales up, the running time is dominated by the O(n log n)-time sorting steps. Therefore, we
will take the problem size N to be n log2 n. Here are four sets of n values, chosen so that N(K) = K·N(1).
Because the “tardis” cluster nodes lack sufficient main memory to run more than one process with these
problem sizes, we can scale up only to K=10 processes.

K Set 1, n Set 2, n Set 3, n Set 4, n
1 60M 116M 170M 224M

2 116M 224M 329M 432M

3 170M 329M 484M 636M

4 224M 432M 636M 837M

5 276M 535M 787M 1035M

6 329M 636M 936M 1232M

7 381M 738M 1084M 1430M

8 432M 837M 1232M 1622M

9 484M 938M 1378M 1818M

10 535M 1035M 1525M 2007M

Table 31.1 (at the end of the chapter) lists, and Figure 31.12 plots, the problem-size data for the
AesTestClu program (derived from the running-time data in Table 31.2). The sizeups and sizeup efficien-
cies drop to 80–85 percent as we go to two processes because of the extra sorting and message passing
the parallel version has to do. But, as the problem size and the number of processors continue to scale up,
the sizeup efficiencies stay nearly constant, evincing good scalability.

C6910_31.indd Sec1:564C6910_31.indd Sec1:564 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.7 Collective Communication: All-to-All and Scan 565

1 1 0
1E9

1E10

1E11

T = 100 sec

T = 140 sec

T = 200 sec

T = 280 sec

Problem Size vs. Processors

Processors, K

N
 (

T
,K

)

Figure 31.12 AesTestSeq/AesTestClu problem-size metrics

0 1 2 3 4 5 6 7 8 9 1 0
0

1

2

3

4

5

6

7

8

9

1 0

T = 100 secT = 140 secT = 200 secT = 280 sec

Sizeup vs. Processors

Processors, K

S
iz

e
u

p
(T

,K
)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

T = 100 secT = 140 secT = 200 secT = 280 sec

Sizeup Efficiency vs. Processors

Processors, K

S
iz

e
u

p
E

ff
(T

,K
)

Does the AES block-cipher-based PRNG pass the K-S test? Yes, it does. For the sample sizes just
listed, the p values ranged from 0.11367 to 0.96589. An AES-based PRNG is secure and random (accord-
ing to this one statistical test).

31.7 Collective Communication: All-to-All and Scan
In an all-to-all operation, every process sends one source buffer to every other process, and every process
receives one destination buffer from every other process. In the first round of message passing, each
process sends a message to the process one rank ahead and receives a message from the process one rank
behind (Figure 31.13). In the second round of message passing, each process sends a message to the
process two ranks ahead and receives a message from the process two ranks behind, and so on. Thus, the
time required for an all-to-all is (K–1) times the time to send one message.

C6910_31.indd Sec1:565C6910_31.indd Sec1:565 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

566 CHAPTER 31 All-to-All and Scan

Proc
0

Proc
1

Proc
2

Proc
3

Proc
4

Proc
5

Proc
6

Proc
7

Figure 31.13 All-to-all among eight processes

In a scan operation, the processes send messages to higher-ranked processes, which then combine the
incoming data with the data in their buffers using the reduction operator (Figure 31.14). In the first round
of message passing, each process sends a message to the process one rank ahead; in the second round,
two ranks ahead; in the third round, four ranks ahead; and so on. Thus, the time required for a scan is
(log2 K) times the time to send one message.

C6910_31.indd Sec1:566C6910_31.indd Sec1:566 2/2/09 12:38:01 PM2/2/09 12:38:01 PM

 31.7 Collective Communication: All-to-All and Scan 567

9 3 4 5 4 0 8 8 7 6 7 2 4 9 5

+ + + + + + +

9 3 138 8 5 4 8 9 5 154 9 1 119

+ + + + + +

9 3 138 178 186 180 202 186 273

+ + + +

9 3 138 178 186 273 340 364 459

Proc
0

Proc
1

Proc
2

Proc
3

Proc
4

Proc
5

Proc
6

Proc
7

Figure 31.14 Scan among eight processes, sum as the reduction operator

An exclusive-scan operation begins with each process sending its data to the process one rank ahead.
Process 0 replaces the contents of its buffer with the given initial value. After that, an exclusive-scan is
the same as a scan, except process 0 does not participate (Figure 31.15). Thus, the time required for an
exclusive-scan is (log2 K)+1 times the time to send one message.

C6910_31.indd Sec1:567C6910_31.indd Sec1:567 2/2/09 12:38:02 PM2/2/09 12:38:02 PM

568 CHAPTER 31 All-to-All and Scan

9 3 4 5 4 0 8 8 7 6 7 2 4 9 5

0 9 3 4 5 4 0 8 8 7 6 7 2 4

+ + + + + +

0 9 3 138 8 5 4 8 9 5 154 9 1

+ + + + +

0 9 3 138 178 186 180 202 186

+ + +

0 9 3 138 178 186 273 340 364

Proc
0

Proc
1

Proc
2

Proc
3

Proc
4

Proc
5

Proc
6

Proc
7

Figure 31.15 Exclusive-scan among eight processes, sum as the reduction operator, initial value 0

Recapping the previous chapters, the collective communication operations fall into two categories:
those that require O(log K) time—broadcast, flood, reduce, all-reduce, scan, exclusive-scan, and bar-
rier; and those that require O(K) time—scatter, gather, all-gather, and all-to-all—when implemented on a
cluster parallel computer with one network interface on each node. Because of the fixed latency on each
message, any program that uses collective communication operations eventually experiences a slowdown
as the number of processors K increases. The slowdown is more severe with the O(K) operations than
with the O(log K) operations. As we have seen in the previous chapters, a running-time model is essential
for choosing the number of processors to get the maximum possible performance.

In Part II and Part III, we studied programming for SMP parallel computers and for cluster parallel
computers. Now it’s time to combine both sets of techniques and study programming for hybrid parallel
computers—clusters of SMP machines—in Part IV.

C6910_31.indd Sec1:568C6910_31.indd Sec1:568 2/2/09 12:38:02 PM2/2/09 12:38:02 PM

 31.8 For Further Information 569

31.8 For Further Information
On the K-S test:

D. Knuth. • The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Third Edition. Addison-Wesley, 1998, Chapter 3.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. • Numerical Recipes:
The Art of Scientific Computing, Third Edition. Cambridge University Press,
2008, Chapter 14.

On cryptographically secure PRNGs:

J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-160: notes on the design and anal-•
ysis of the Yarrow cryptographic pseudorandom number generator. In Proceedings
of the 6th Annual Workshop on Selected Areas in Cryptography, 1999.

N. Ferguson and B. Schneier. • Practical Cryptography. Wiley Publishing,
2003, Chapter 10.

Table 31.1 AesTestSeq/AesTestClu problem-size metrics

T K N Sizeup SzEff T K N Sizeup SzEff

100000 0 2374144913 200000 0 4846968362

100000 1 2387102067 1.005 1.005 200000 1 4861143692 1.003 1.003

100000 2 4003334897 1.686 0.843 200000 2 7822263600 1.614 0.807

100000 3 6078956821 2.560 0.853 200000 3 11873458208 2.450 0.817

100000 4 8076651477 3.402 0.850 200000 4 15809249069 3.262 0.815

100000 5 10184523114 4.290 0.858 200000 5 19807528172 4.087 0.817

100000 6 12297315619 5.180 0.863 200000 6 23771639442 4.904 0.817

100000 7 14340403512 6.040 0.863 200000 7 28009266637 5.779 0.826

100000 8 15887837575 6.692 0.837 200000 8 30732768162 6.341 0.793

100000 9 18142668927 7.642 0.849 200000 9 35410687500 7.306 0.812

100000 10 20296395586 8.549 0.855 200000 10 40045459980 8.262 0.826

140000 0 3358824912 280000 0 6825397549

140000 1 3372463372 1.004 1.004 280000 1 6852090005 1.004 1.004

140000 2 5577652131 1.661 0.830 280000 2 10811994174 1.584 0.792

140000 3 8447269461 2.515 0.838 280000 3 16481614874 2.415 0.805

140000 4 11273790241 3.356 0.839 280000 4 21911340436 3.210 0.803

140000 5 14109658443 4.201 0.840 280000 5 27286609188 3.998 0.800

140000 6 16980408785 5.055 0.843 280000 6 33013374000 4.837 0.806

140000 7 19873081771 5.917 0.845 280000 7 38852280313 5.692 0.813

140000 8 22152637595 6.595 0.824 280000 8 42823913752 6.274 0.784

140000 9 24997519962 7.442 0.827 280000 9 49700039351 7.282 0.809

140000 10 27931394043 8.316 0.832 280000 10 55502306729 8.132 0.813

C6910_31 Sec1:569C6910_31 Sec1:569 2/2/09 4:28:44 PM2/2/09 4:28:44 PM

570 CHAPTER 31 All-to-All and Scan

Ta

Table 31.2 AesTestSeq/AesTestClu running-time metrics

K T N K T N K T N

seq 66443 1550307550 4 76690 6213518862 8 77683 12392549023

seq 129875 3107587749 4 153997 12392549023 8 156962 24809226044

seq 191953 4647963116 4 237568 18599471170 8 247020 37204373496

seq 255258 6213518862 4 317128 24809226044 8 319916 49625295464

1 65948 1550307550 5 75079 7739065675 9 75614 13963608994

1 129319 3107587749 5 154294 15512305553 9 157270 27957101896

1 191434 4647963116 5 236709 23257257467 9 236835 41835981806

1 254341 6213518862 5 319844 30995128049 9 314147 55921143787

2 77241 3107587749 6 74472 9308565560 10 74936 15512305553

2 156156 6213518862 6 153829 18599471170 10 156051 30995128049

2 240507 9308565560 6 236805 27894609558 10 231450 46521897197

2 321519 12392549023 6 315366 37204373496 10 315242 62021103696

3 75831 4647963116 7 74841 10860487203

3 154547 9308565560 7 153503 21740775635

3 237040 13963608994 7 233569 32534869890

3 316133 18599471170 7 314094 43491116241

C6910_31 Sec1:570C6910_31 Sec1:570 2/2/09 4:28:45 PM2/2/09 4:28:45 PM

571

P A R T I I I
Change the Program1Clu program in Chapter 19 so the start 1.
and finish times always print in rank order, for example, as
in the following:

$ java -Dpj.np=4 Program1Clu

Job 13, thug05, thug06, thug07, thug08

x = 1 call start = 25 msec

x = 2 call start = 54 msec

x = 3 call start = 34 msec

x = 4 call start = 60 msec

x = 1 call finish = 1219 msec

x = 2 call finish = 1219 msec

x = 3 call finish = 1198 msec

x = 4 call finish = 1226 msec

Run the original and the modified Program1Clu programs 2.
on your cluster parallel computer. Compare the running
times, speedups, and efficiencies of the two versions. What
is causing the discrepancy, if any?

Exercises 3–4. Here is a cluster parallel program written using Parallel Java.

Exercises

public class Foo

 {

 public static void main

 (String[] args)

C6910_Part3Exercises.indd 571C6910_Part3Exercises.indd 571 2/2/09 11:34:31 AM2/2/09 11:34:31 AM

572 PART III Exercises

What does the program print when run on eight processes?3.

In general, what function of 4. K, the number of processes, does the program
compute? Explain how the program computes this function.

A cluster parallel program runs on four processes and does the following. 5.
The program gets a double-precision floating-point number x from the first
command-line argument and calculates four mathematical functions of x,
namely sin x, cos x, tan x, and ln x. Each process computes a different function
of x in parallel. The program prints four lines on the standard output with the
computed values of sin x, cos x, tan x, and ln x, one per line, in that order. The
program does no error handling. Write the Parallel Java code for this program.

Exercises 6–10. A cluster parallel program has six data items of type long that must be transferred from
process 0 to process 1. Write Parallel Java code fragments for process 0 and process 1 to create the com-
munication buffers and transfer the data for each of the following scenarios:

The data items are in separate local variables of the 6. main() method.

The data items are the elements of an array.7.

The data items are the fields of a serializable object.8.

Discuss the pros and cons of the preceding three scenarios regarding coding effort.9.

Discuss the pros and cons of the preceding three scenarios regarding message 10.
send time.

Exercises 11–12. A cluster parallel program consisting of 12 processes broadcasts a message from root
process 2 to all the processes. The time to send the message from one process to one other process is T.

How much time does it take to broadcast the message?11.

Draw a diagram showing the pattern of point-to-point messages that are sent 12.
to broadcast the message to all processes. Show the processes along the hori-
zontal axis and time increasing downward along the vertical axis.

 throws Exception

 {

 Comm.init (args);

 Comm world = Comm.world();

 int size = world.size();

 int rank = world.rank();

 IntegerItemBuf buf = IntegerBuf.buffer();

 buf.item = rank+1;

 world.reduce (0, buf, IntegerOp.PRODUCT);

 if (rank == 0) System.out.println (buf.item);

 }

 }

C6910_Part3Exercises.indd 572C6910_Part3Exercises.indd 572 2/2/09 11:34:31 AM2/2/09 11:34:31 AM

 573

Exercises 13–14. A cluster parallel program consists of eight processes. Each process has a buffer con-
taining an integer. In processes 0 through 7, the buffers contain the values 18, 19, 95, 19, 66, 99, 41, and
75, respectively. A reduction is performed into process 0, using addition as the reduction operator. The
time to send a message containing one integer is 4 milliseconds. The time to perform the reduction opera-
tor is negligible.

How much time does it take to do the reduction?13.

Draw a diagram showing the pattern of point-to-point messages that are sent 14.
to perform the reduction. Show the processes along the horizontal axis and
time increasing downward along the vertical axis. Show the value that is sent
in each message and the final value stored in process 0’s buffer.

Exercises 15–16. A cluster parallel program consists of 16 processes. Each process has a buffer contain-
ing an integer. In processes 0 through 15, the buffers contain the values 7, 4, 31, 90, 18, 9, 95, 58, 64, 92,
20, 46, 78, 8, 59, and 3, respectively. An all-reduce operation is performed, using addition as the reduc-
tion operator. The time to send a message containing one integer is 4 milliseconds. The time to perform
the reduction operator is negligible.

How much time does it take to do the all-reduce?15.

Draw a diagram showing the pattern of point-to-point messages that are sent 16.
to perform the all-reduce. Show the processes along the horizontal axis and
time increasing downward along the vertical axis. Show the value that is sent
in each message and the final value stored in each process’s buffer.

Exercises 17–18. A cluster parallel program consists of 16 processes. Each process has a buffer contain-
ing an integer. In processes 0 through 15, the buffers contain the values 7, 4, 31, 90, 18, 9, 95, 58, 64,
92, 20, 46, 78, 8, 59, and 3, respectively. A scan operation is performed, using addition as the reduction
operator. The time to send a message containing one integer is 4 milliseconds. The time to perform the
reduction operator is negligible.

How much time does it take to do the scan?17.

Draw a diagram showing the pattern of point-to-point messages that are sent 18.
to perform the scan. Show the processes along the horizontal axis and time
increasing downward along the vertical axis. Show the value that is sent in
each message and the final value stored in each process’s buffer.

Exercises 19–20. A cluster parallel program consists of 16 processes. Each process has a buffer contain-
ing an integer. In processes 0 through 15, the buffers contain the values 7, 4, 31, 90, 18, 9, 95, 58, 64,
92, 20, 46, 78, 8, 59, and 3, respectively. An exclusive-scan operation is performed, using addition as
the reduction operator. The time to send a message containing one integer is 4 milliseconds. The time to
perform the reduction operator is negligible.

How much time does it take to do the exclusive-scan?19.

Draw a diagram showing the pattern of point-to-point messages that are sent 20.
to perform the exclusive-scan. Show the processes along the horizontal axis

C6910_Part3Exercises.indd 573C6910_Part3Exercises.indd 573 2/2/09 11:34:31 AM2/2/09 11:34:31 AM

574 PART III Exercises

and time increasing downward along the vertical axis. Show the value that is
sent in each message and the final value stored in each process’s buffer.

Exercises 21–26. Here is a cluster parallel version of Floyd’s Algorithm for computing all shortest paths
in an n-vertex graph whose distance matrix is d, an n-by-n matrix. Each element in d is a Java double-
precision floating-point number. This version uses the scatter-gather pattern rather than the parallel input/
output files pattern. The sequential version of Floyd’s Algorithm is the same, without the communication
operations.

1 Scatter row slices of D from process 0 to each process

2 For i in 0 .. N-1

3 Broadcast row i of D to all processes

4 For r in this process’s subrange of 0 .. N-1

5 For c in 0 .. N-1

6 D[r,c] = min (D[r,c], D[r,i] + D[i,c])

7 Gather row slices of D from each process into process 0

d is divided into equal-sized row slices. Measurements show that executing the statement on line 6 takes
0.01 microseconds. Also, measurements show that sending a message from one process to another takes
(400 + 0.8B) microseconds, where B is the number of bits of data in the message.

Give an expression for the running time 21. T1 in microseconds of the sequential
version of Floyd’s Algorithm as a function of n, the number of nodes. Ignore
the loop overhead time.

Give an expression for the time 22. T2 in microseconds needed to send all the
messages for the scatter operation on line 1 as a function of n, the number of
nodes, and K, the number of parallel processes.

Give an expression for the time 23. T3 in microseconds needed to send all the mes-
sages for the broadcast operation on line 3 as a function of n, the number of
nodes, and K, the number of parallel processes.

Give an expression for the running time 24. T4 in microseconds of the cluster par-
allel version of Floyd’s Algorithm as a function of n, the number of nodes, and
K, the number of parallel processes. Ignore the loop overhead time.

How many parallel processes should be used to obtain the smallest running 25.
time for a 1,000-vertex graph? (Note that the number of parallel processes
must be an integer.)

What is the largest speedup that can be obtained for a 1000-vertex graph?26.

Exercises 27–29. A two-dimensional grayscale image is stored in a file. Each pixel’s value is an integer
from 0 (white) to 255 (black). Each pixel value is stored in one byte of the file. The pixels are stored in
the following order: the first row of pixels from left to right, then the second row of pixels from left to
right, and so on. An image-processing program performs a thresholding operation on the image. The

C6910_Part3Exercises.indd 574C6910_Part3Exercises.indd 574 2/2/09 11:34:31 AM2/2/09 11:34:31 AM

 575

program calculates M, the average of all the pixel values. Then, the program changes each pixel as fol-
lows: if the pixel value is less than or equal to M, the pixel is set to white; otherwise, the pixel is set to
black. The program reads the image from a given input file, performs the thresholding operation, and
writes the result into a given output file. The program runs on a cluster parallel computer to get a speedup
when processing large images. Process 0 is the only process allowed to read or write files.

Describe how the image should be partitioned among the parallel processes to 27.
achieve a balanced load.

Give a pseudocode description of the cluster parallel program. Be especially 28.
clear in your description of any message passing operations needed. Describe
what the message passing operations are; describe from which process and
from which data structure the data comes; and describe into which process and
into which data structure the data goes.

Considering only computation and communication (omitting file I/O), 29.
describe how close to the ideal speedup you expect the parallel program to
achieve as the number of parallel processes increases.

Exercises 30–34. In the image-processing cluster parallel program from Exercises 27–29, it takes
0.4 microseconds per pixel to calculate the average pixel value, and it takes 0.5 microseconds per pixel
to compare the pixels to the average and set the pixels to white or black. Sending a message takes (200 +
0.01B) microseconds, where B is the number of bits of data in the message. The image contains n rows
and n columns of pixels. Assume n is a large number. The parallel program runs in K parallel processes.

Give an expression in terms of 30. n for T1, the running time of a sequential ver-
sion of the program. Consider only computation (omit file I/O). You may
leave certain terms out of the expression if they have a negligible effect on the
running time; if so, give a justification for omitting these terms.

Give an expression in terms of 31. n and K for T2, the time needed to do all the
communication in the parallel program (omit file I/O). You may leave certain
terms out of the expression if they have a negligible effect on the running
time; if so, give a justification for omitting these terms.

Give an expression in terms of 32. n and K for T3, the running time of the parallel
program. Consider only computation and communication (omit file I/O). You
may leave certain terms out of the expression if they have a negligible effect
on the running time; if so, give a justification for omitting these terms.

Give an expression in terms of 33. n for the number of processes that would yield
the best performance for the parallel program.

For a 1000 × 1000-pixel image, how many processes should be used to get the 34.
best performance, and what would the speedup be for this number of pro-
cesses? (Note that the number of parallel processes must be an integer.)

C6910_Part3Exercises.indd 575C6910_Part3Exercises.indd 575 2/2/09 11:34:31 AM2/2/09 11:34:31 AM

576 PART III Exercises

Exercises 35–36. Alice, the biologist, does an experiment to measure the mutation rate of a certain spe-
cies of bacterium. She takes one bacterium and clones it. From one clone, she extracts the DNA and
determines the bacterium’s complete genome (DNA sequence). She puts the other clone in a Petri dish,
where it starts to multiply. Once an hour, Alice takes a number of bacteria out of the Petri dish, extracts
their DNA, and determines each bacterium’s complete genome. At the end of her experiment, Alice has
a large number of DNA sequence files; a DNA sequence is just a very long character string. One file
contains the original bacterium’s genome. Every other file contains one descendant bacterium’s genome;
the time (number of hours since the start of the experiment) at which the bacterium was sampled is also
recorded in the file. Alice needs to analyze her files to produce the following table:

Time Mutations
1 1.14

2 2.30

3 3.97

4 8.75

⋮ ⋮

where Time is the number of hours since the start of the experiment and Mutations is the average number
of mutations per bacterium sampled at that time. Each position at which a sampled bacterium’s DNA
sequence differs from the original bacterium’s DNA sequence counts as one mutation. All the DNA
sequences are the same length.

You are designing a cluster parallel program to analyze Alice’s DNA sequence files and produce the
preceding table. Assume that any process can read any file directly.

Describe how the computation should be partitioned among the parallel pro-35.
cesses to achieve a balanced load.

Give a pseudocode description of the cluster parallel program. The pseudo-36.
code must show the variables the program uses and the processing steps the
program executes. Be especially clear in your description of any message
passing operations needed. Describe what the message passing operations are,
describe from which process and from which data structure the data comes,
and describe into which process and into which data structure the data goes.

Exercises 37–40. In the cluster parallel program from Exercises 35–36, it takes 0.01 microseconds per
character position to calculate the number of mutations in a DNA sequence. Sending a message takes
(200 + 0.01B) microseconds, where B is the number of bits of data in the message. Every DNA sequence
is L characters long. There are N DNA sequences (not counting the original bacterium’s DNA sequence).
There are S sample times (each sample time occurring some number of hours after the start of the experi-
ment). The program runs in K parallel processes.

Give an expression for the running time of a sequential version of the program 37.
in terms of the variables L, N, S, and K (whichever variables are necessary).
Consider only computation (omit file I/O). You may leave certain terms out of

C6910_Part3Exercises.indd 576C6910_Part3Exercises.indd 576 2/2/09 11:34:31 AM2/2/09 11:34:31 AM

 577

the expression if they have a negligible effect on the running time; if so, give a
justification for omitting these terms.

Give an expression for the time needed to do all the communication in the par-38.
allel program (omit file I/O) in terms of the variables L, N, S, and K (which-
ever variables are necessary). Consider only computation (omit file I/O). You
may leave certain terms out of the expression if they have a negligible effect
on the running time; if so, give a justification for omitting these terms.

Give an expression for the running time of the parallel program in terms of the 39.
variables L, N, S, and K (whichever variables are necessary). Consider only
computation (omit file I/O). You may leave certain terms out of the expression
if they have a negligible effect on the running time; if so, give a justification
for omitting these terms.

Alice runs her experiment for 24 hours. Each hour she samples 5 bacteria. 40.
Each bacterium’s DNA sequence is 10,000 characters long. She can analyze
her data on a 32-processor cluster or on a 64-processor cluster. Which cluster
should she use?

Exercises 41–44. Given an integer i > 0, consider the following procedure:
 x ← i
 While x > 1:
 If x is even:
 x ← x/2
 Else:
 x ← 3x+1

The Collatz Conjecture, proposed by Lothar Collatz in 1937, states that for every i > 0, the preced-
ing procedure terminates; that is, x eventually becomes 1. While mathematicians believe the Collatz
Conjecture is true, no one has been able to prove it.

Write a sequential program to investigate whether the Collatz Conjecture is 41.
true for all values of i from 1 through N, where N is a command-line argu-
ment. Use type long so N can be as large as 263–1. The program also has a
command-line argument MaxIter (type long). In the preceding procedure,
for a certain value of i, if x reaches 1 before the number of while loop itera-
tions reaches MaxIter, then the Collatz Conjecture is true for i. If the number
of while loop iterations reaches MaxIter before x reaches 1, then the Collatz
Conjecture may be false for i. (The Collatz Conjecture is not definitely false
for i because x might reach 1 with further iterations, but the program has to
stop somewhere.) The program prints the values of i for which the Collatz
Conjecture may be false.

Describe the sequential dependencies, if any, in the program. Is it possible to 42.
parallelize the program?

C6910_Part3Exercises.indd 577C6910_Part3Exercises.indd 577 2/2/09 11:34:31 AM2/2/09 11:34:31 AM

578 PART III Exercises

If possible, write a cluster parallel program to investigate the Collatz 43.
Conjecture. The parallel program has the same command-line arguments and
the same output as the sequential program. Measure the parallel program’s
running times as a function of N and K, calculate the program’s running-time
metrics, and improve the program’s design if necessary.

Do you have to do anything to achieve load balance in the parallel program? If 44.
so, describe how to balance the load. If not, explain why not.

Exercises 45–49. A three-dimensional random walk is defined as follows. A particle is initially posi-
tioned at (0, 0, 0) in the X-Y-Z coordinate space. The particle does a sequence of N steps. At each step,
the particle chooses one of the six directions left, right, ahead, back, up, or down at random, then moves
one unit in that direction. Specifically, if the particle is at (x, y, z):

With probability 1/6 the particle moves left to (x–1, y, z).
With probability 1/6 the particle moves right to (x+1, y, z).
With probability 1/6 the particle moves back to (x, y–1, z).
With probability 1/6 the particle moves ahead to (x, y+1, z).
With probability 1/6 the particle moves down to (x, y, z–1).
With probability 1/6 the particle moves up to (x, y, z+1).

Write a sequential program to calculate the particle’s final position. The 45.
program’s command-line arguments are the random seed and the number of
steps N. The program prints the particle’s final position (x, y, z) as well as the
particle’s final distance from the origin.

Describe the sequential dependencies, if any, in the program. Is it possible to 46.
parallelize the program?

If possible, write a cluster parallel program to calculate the particle’s final 47.
position. The parallel program has the same command-line arguments and
the same output as the sequential program. Measure the parallel program’s
running times as a function of N and K, calculate the program’s running time
metrics, and improve the program’s design if necessary.

What is the particle’s expected final distance from the origin as a function of 48.
the number of steps N?

Run your program for a large number of steps and a variety of different ran-49.
dom seeds. Do the particle’s computed final distances from the origin agree
with the expected final distance?

C6910_Part3Exercises.indd 578C6910_Part3Exercises.indd 578 2/2/09 11:34:32 AM2/2/09 11:34:32 AM

 579

Exercises 50–54. Measurements on the sequential heat distribution program in Chapter 30 (class edu.rit.
clu.heat.HotSpotSeq) running on the “tardis” cluster show that the running time of the calculation section
Tcalc, and the number of iterations, for an n × n-element mesh for various mesh sizes are the following:

n Tcalc (msec) Iterations
1260 60950 2539

1590 122652 3233

2000 266850 4099

2520 564505 5204

3180 993789 6618

4000 2048529 8388

Derive a formula for the calculation time for one iteration as a function of 50. n,
the mesh size.

For the parallel version of the program, derive a formula for the communica-51.
tion time for one iteration as a function of n, the mesh size, and K, the number
of processors. Use the message send time model for the “tardis” cluster.
Assume each process runs on a different processor.

Taking into account the calculation and the communication, derive formulas 52.
for the speedup and efficiency of the parallel version as a function of n, the
mesh size, and K, the number of processors.

What does the preceding model tell you about the program’s scalability?53.

Compare the speedups and efficiencies predicted by the preceding model with 54.
those measured in Table 30.1. What is causing the discrepancy if any? (Hint:
The running times in Table 30.1 are for the entire program.)

C6910_Part3Exercises.indd 579C6910_Part3Exercises.indd 579 2/2/09 11:34:32 AM2/2/09 11:34:32 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

581

P A R T IV
Chapter 32
Massively Parallel Problems, Part 4 . . . 583

Chapter 33
Load Balancing, Part 3 595

Chapter 34
Partitioning and Broadcast, Part 2 621

Chapter 35
Parallel Data-Set Querying 633

Part IV Exercises 657

Hybrid SMP Clusters

C6910_32.indd 581C6910_32.indd 581 2/2/09 11:32:33 AM2/2/09 11:32:33 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

583

C H A P T E R 32
in which we learn how to use both SMP parallel programming techniques and

cluster parallel programming techniques to develop hybrid parallel programs; and we

implement a massively parallel cryptographic problem one last time as a hybrid parallel

program

Massively Parallel Problems,
Part 4

C6910_32.indd 583C6910_32.indd 583 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

C H A P T E R32 Massively Parallel Problems, Part 4

32.1 Hybrid Parallel Program Design
To a certain extent, the SMP parallel programming techniques we studied in Part II and the cluster paral-
lel programming techniques we studied in Part III have been just a prelude to real parallel programming.
As mentioned in Chapter 2, an SMP parallel program can scale up only so far before hitting limits on a
single SMP parallel computer—limited memory, limited number of CPUs. Scaling up to larger problem
sizes or more processors requires a cluster parallel computer. Nowadays, the individual nodes of a cluster
parallel computer are likely to be SMP (multicore) machines; single-core machines are becoming hard
to find. To take full advantage of a hybrid parallel computer—a cluster of SMPs—requires using both
SMP and cluster parallel programming techniques in the same program: message passing between nodes;
shared memory and multithreading within each node. We’ve already got the techniques; now we just need
to see how to combine them.

As we did in Part II and Part III, we’ll begin our study of hybrid parallel programming with the
simplest kind of parallel program, a massively parallel program. As our example, we’ll revisit the AES
partial key search program from Chapter 7 (SMP version) and Chapter 21 (cluster version). Recall that
the program takes four arguments: a 128-bit plaintext block; a 128-bit ciphertext block; a 256-bit key
with a certain number of low-order bits missing; and n, the number of missing key bits. The ciphertext
was produced by encrypting the plaintext using the (complete) key. The pro gram’s job is to find the
correct key by trying to encrypt the plaintext using all 2n possible keys. The program prints the key that
successfully reconstructs the ciphertext.

The sequential version of the program tried every possible value of the least significant key bits from
0 to 2n–1 in a regular loop.

 for (int cntr = 0; cntr < maxcounter; ++ cntr)

 {

 // Try key

 }

The SMP parallel version of the program used a parallel loop to try every possible value of the least
significant key bits from 0 to 2n–1.

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

C6910_32.indd 584C6910_32.indd 584 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

 32.1 Hybrid Parallel Program Design 585

The parallel loop partitioned the keys equally among the parallel team threads. For example, with n = 10
missing key bits, N = 2n = 1,024 keys to try, and K = 4 threads, here are the keys each thread tried:

Thread Keys

0 0 – 255

1 256 – 511

2 512 – 767

3 768 – 1,023

In the cluster parallel version, each process used a Range object to partition the range of key values
into equal subranges and to pick the subrange corresponding to the process’s rank. Each process then
used a regular loop to try every key from the lower bound to the upper bound of that subrange.

 {

 execute (0, maxcounter, new IntegerForLoop()

 {

 public void run (int first, int last)

 {

 for (int cntr = first; cntr <= last; ++ cntr)

 {

 // Try key

 }

 }

 });

 }

 });

 Range chunk = new Range(0,maxcounter-1) .subrange(size,rank);

 int lb = chunk.lb();

 int ub = chunk.ub();

 for (int cntr = lb; cntr <= ub; ++ cntr)

 {

 // Try key

 }

The subrange() method partitioned the keys equally among the parallel processes. Each process in the
cluster parallel version tried the same keys as each thread in the SMP parallel version:

Process Keys

0 0 – 255

1 256 – 511

2 512 – 767

3 768 – 1,023

To make a hybrid parallel version, we use both techniques. We use a Range object to divide the key
search space among the processes. Within each process, we use a parallel loop to further subdivide the

C6910_32.indd 585C6910_32.indd 585 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

586 CHAPTER 32 Massively Parallel Problems, Part 4

process’s key search space among the threads. Specifically, we replace the regular loop of the cluster
parallel version with a parallel loop from the lower bound to the upper bound of the process’s subrange.

 Range chunk = new Range(0,maxcounter-1) .subrange(size,rank);

 int lb = chunk.lb();

 int ub = chunk.ub();

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (lb, ub, new IntegerForLoop()

 {

 public void run (int first, int last)

 {

 for (int cntr = first; cntr <= last; ++ cntr)

 {

 // Try key

 }

 }

 });

 }

 });

Here are the keys each process and each thread tries in the hybrid parallel version with Kp = 4 processes
and Kt = 4 threads per process, a total of K = Kp⋅Kt = 16 processors:

Process Keys Thread Keys

0 0 – 255 0 0 – 63

1 64 – 127

2 128 – 191

3 192 – 255

1 256 – 511 0 256 – 319

1 320 – 383

2 384 – 447

3 448 – 511

2 512 – 767 0 512 – 575

1 576 – 639

2 640 – 703

3 704 – 767

3 768 – 1,023 0 768 – 831

1 832 – 895

2 896 – 959

3 960 – 1,023

C6910_32.indd 586C6910_32.indd 586 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

 32.2 Parallel Key Search Program 587

Because each loop iteration takes the same amount of time, using the subrange() method to partition
the keys equally among the processes and using the parallel loop’s default fixed schedule to partition each
process’s subrange equally among the threads results in a balanced load.

32.2 Parallel Key Search Program
Here is the code for the hybrid parallel version of the AES key search program, class edu.rit.hyb.key-
search.FindKeyHyb.

package edu.rit.hyb.keysearch;

import edu.rit.crypto.blockcipher.AES256CipherSmp;

import edu.rit.pj.Comm;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Hex;

import edu.rit.util.Range;

public class FindKeyHyb

 {

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static byte[] plaintext;

 static byte[] ciphertext;

 static byte[] partialkey;

 static int n;

 // The least significant 32 bits of the partial key.

 static int keylsbs;

 // The maximum value for the missing key bits counter.

 static int maxcounter;

 // The complete key.

 static byte[] foundkey;

 // Chunk of the search space this process will do.

 static Range chunk;

 /**

 * AES partial key search main program.

 */

C6910_32.indd 587C6910_32.indd 587 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

588 CHAPTER 32 Massively Parallel Problems, Part 4

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize PJ middleware.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Parse command line arguments.

 if (args.length != 4) usage();

 plaintext = Hex.toByteArray (args[0]);

 ciphertext = Hex.toByteArray (args[1]);

 partialkey = Hex.toByteArray (args[2]);

 n = Integer.parseInt (args[3]);

 // Make sure n is not too small or too large.

 if (n < 0)

 {

 System.err.println ("n = " + n + " is too small");

 System.exit (1);

 }

 if (n > 30)

 {

 System.err.println ("n = " + n + " is too large");

 System.exit (1);

 }

 // Set up program shared variables for doing trial

 // encryptions.

 keylsbs =

 ((partialkey[28] & 0xFF) << 24) |

 ((partialkey[29] & 0xFF) << 16) |

 ((partialkey[30] & 0xFF) << 8) |

 ((partialkey[31] & 0xFF));

 maxcounter = (1 << n) - 1;

 // Determine which chunk of the search space this process

 // will do.

 chunk = new Range (0, maxcounter) .subrange (size, rank);

 // Do trial encryptions in parallel threads.

C6910_32.indd 588C6910_32.indd 588 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

 32.2 Parallel Key Search Program 589

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (chunk.lb(), chunk.ub(), new IntegerForLoop()

 {

 // Thread local variables.

 byte[] trialkey;

 byte[] trialciphertext;

 AES256CipherSmp cipher;

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

 // Set up thread local variables. Extra padding to

 // avert cache interference.

 public void start()

 {

 trialkey = new byte [32+128];

 System.arraycopy

 (partialkey, 0, trialkey, 0, 32);

 trialciphertext = new byte [16+128];

 cipher = new AES256CipherSmp (trialkey);

 }

 // Try every possible combination of low-order key

 // bits.

 public void run (int first, int last)

 {

 for (int counter = first; counter <= last;

 ++ counter)

 {

 // Fill in low-order key bits.

 int lsbs = keylsbs | counter;

 trialkey[28] = (byte) (lsbs >>> 24);

 trialkey[29] = (byte) (lsbs >>> 16);

 trialkey[30] = (byte) (lsbs >>> 8);

 trialkey[31] = (byte) (lsbs);

 // Try the key.

 cipher.setKey (trialkey);

 cipher.encrypt (plaintext, trialciphertext);

 // If the result equals the ciphertext, we

 // found the key.

 if (match (ciphertext, trialciphertext))

C6910_32.indd 589C6910_32.indd 589 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

590 CHAPTER 32 Massively Parallel Problems, Part 4

32.3 Parallel Program Performance
In Part IV, we measure our hybrid parallel programs’ running times on the “tardis” computer, the same
40-processor hybrid parallel computer we used in Part III. Each of this computer’s ten backend machines
has two 2.6-GHz AMD Opteron 2218 dual-core CPU chips and 8 GB of main memory. The backend
machines are connected by a 1-Gbps switched Ethernet. Unlike our cluster parallel programs where we

 {

 foundkey = new byte [32];

 System.arraycopy

 (trialkey, 0, foundkey, 0, 32);

 }

 }

 }

 });

 }

 });

 // If we found the key, print it.

 if (foundkey != null)

 {

 System.out.println (Hex.toString (foundkey));

 }

 // Stop timing.

 long t2 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec " + rank);

 }

 /**

 * Returns true if the two byte arrays match.

 */

 private static boolean match

 (byte[] a,

 byte[] b)

 {

 boolean matchsofar = true;

 int n = a.length;

 for (int i = 0; i < n; ++ i)

 {

 matchsofar = matchsofar && a[i] == b[i];

 }

 return matchsofar;

 }

 }

C6910_32.indd 590C6910_32.indd 590 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

 32.3 Parallel Program Performance 591

ran as many as four processes on each node, for our hybrid parallel programs, we will run only one pro-
cess on each node. However, we will run as many as four threads in each process. Specifically, we will
measure the running time for every combination of Kp processes and Kt threads per process, where Kp
varies from 1 to 10, and Kt varies from 1 to 4. Thus, the number of processors K varies from 1 to 40. To
get a certain number of processes and threads, we include both the -Dpj.np and -Dpj.nt flags on the
java command line:

$ java -Dpj.np=10 -Dpj.nt=4 . . .

Of course, we will measure the running time of the sequential version as well, to calculate the speedups
and efficiencies.

Each process in the parallel program reports its own running time. We’ll take the program’s overall
running time to be the largest of the individual processes’ running times.

We’ll run the hybrid parallel program on two problem sizes, a small problem and a large prob-
lem. For each problem size, we’ll do seven program runs and record the minimum of the running time
measurements.

To plot the running-time data, we’ll do something a little different. Hitherto, our plots have shown
one dependent variable on the vertical axis—running time, speedup, efficiency, or EDSF—and two
independent variables—the number of processors K on the horizontal axis and the problem size N with
separate curves. For our hybrid parallel programs, we have three independent variables to consider: the
number of processes Kp; the number of threads per process Kt; and the problem size N. That’s too many
independent variables to show on one plot. So, our plots will show metrics versus Kp and Kt, with sepa-
rate plots for different problem sizes.

Table 32.1 (at the end of the chapter) lists, and Figure 32.1 plots, the running time data for the
FindKeyHyb program for problem sizes of 128M keys (27 missing key bits) and 1G keys (30 missing key
bits). The program experiences efficiencies of 90 percent or more all the way out to 40 processors.

Note that the ideal speedup depends on the number of processors, which is the number of processes
times the number of threads per process. With one thread per process, the ideal speedup goes up to 10 as
the number of processes goes up to 10; with two threads per process, the ideal speedup goes up to 20 as
the number of processes goes up to 10; and so on. The ideal efficiency is 1, no matter how many threads
or processes there are.

C6910_32.indd 591C6910_32.indd 591 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

592 CHAPTER 32 Massively Parallel Problems, Part 4

1 1 0
1E0

1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3
Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

1 1 0
1E0

1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3
Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Kt = 1
Kt = 2
Kt = 3Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Kt = 1Kt = 2

Kt = 3Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

 Figure 32.1 FindKeySeq/FindKeyHyb running-time metrics

 N = 128M N = 1G

C6910_32.indd 592C6910_32.indd 592 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

 32.3 Parallel Program Performance 593

Table 32.1 FindKeySeq/FindKeyHyb running-time metrics

N = 128M N = 1G

Kp Kt T Spdup Eff EDSF Kp Kt T Spdup Eff EDSF

seq seq 223352 seq seq 1772921

1 1 220199 1.014 1.014 1 1 1760625 1.007 1.007

1 2 110768 2.016 1.008 0.006 1 2 891467 1.989 0.994 0.013

1 3 74518 2.997 0.999 0.008 1 3 590218 3.004 1.001 0.003

1 4 58180 3.839 0.960 0.019 1 4 462374 3.834 0.959 0.017

2 1 110364 2.024 1.012 0.002 2 1 883002 2.008 1.004 0.003

2 2 55906 3.995 0.999 0.005 2 2 445174 3.983 0.996 0.004

2 3 37536 5.950 0.992 0.005 2 3 301088 5.888 0.981 0.005

2 4 28219 7.915 0.989 0.004 2 4 233107 7.606 0.951 0.008

3 1 73706 3.030 1.010 0.002 3 1 592109 2.994 0.998 0.004

3 2 37764 5.914 0.986 0.006 3 2 302549 5.860 0.977 0.006

3 3 24973 8.944 0.994 0.003 3 3 198612 8.927 0.992 0.002

3 4 19761 11.303 0.942 0.007 3 4 150571 11.775 0.981 0.002

4 1 55289 4.040 1.010 0.001 4 1 445779 3.977 0.994 0.004

4 2 28255 7.905 0.988 0.004 4 2 226695 7.821 0.978 0.004

4 3 19782 11.291 0.941 0.007 4 3 149219 11.881 0.990 0.002

4 4 14653 15.243 0.953 0.004 4 4 118349 14.980 0.936 0.005

5 1 45193 4.942 0.988 0.007 5 1 355331 4.989 0.998 0.002

5 2 22652 9.860 0.986 0.003 5 2 179434 9.881 0.988 0.002

5 3 15742 14.188 0.946 0.005 5 3 121203 14.628 0.975 0.002

5 4 11929 18.723 0.936 0.004 5 4 95645 18.536 0.927 0.005

6 1 37277 5.992 0.999 0.003 6 1 297760 5.954 0.992 0.003

6 2 19136 11.672 0.973 0.004 6 2 150823 11.755 0.980 0.003

6 3 13204 16.915 0.940 0.005 6 3 102978 17.217 0.956 0.003

6 4 10027 22.275 0.928 0.004 6 4 79237 22.375 0.932 0.003

7 1 32421 6.889 0.984 0.005 7 1 254176 6.975 0.996 0.002

7 2 16286 13.714 0.980 0.003 7 2 127720 13.881 0.992 0.001

7 3 11361 19.660 0.936 0.004 7 3 89579 19.792 0.942 0.003

7 4 8611 25.938 0.926 0.004 7 4 68908 25.729 0.919 0.004

8 1 28620 7.804 0.976 0.006 8 1 229222 7.735 0.967 0.006

8 2 14123 15.815 0.988 0.002 8 2 111791 15.859 0.991 0.001

8 3 10163 21.977 0.916 0.005 8 3 80546 22.011 0.917 0.004

8 4 7751 28.816 0.900 0.004 8 4 61240 28.950 0.905 0.004

9 1 25589 8.728 0.970 0.006 9 1 203978 8.692 0.966 0.005

9 2 12586 17.746 0.986 0.002 9 2 99504 17.818 0.990 0.001

9 3 9024 24.751 0.917 0.004 9 3 71863 24.671 0.914 0.004

9 4 6948 32.146 0.893 0.004 9 4 51999 34.095 0.947 0.002

10 1 23036 9.696 0.970 0.005 10 1 183908 9.640 0.964 0.005

10 2 11306 19.755 0.988 0.001 10 2 89464 19.817 0.991 0.001

10 3 8206 27.218 0.907 0.004 10 3 63169 28.066 0.936 0.003

10 4 5992 37.275 0.932 0.002 10 4 48670 36.427 0.911 0.003

C6910_32.indd 593C6910_32.indd 593 2/2/09 11:32:34 AM2/2/09 11:32:34 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

595

C H A P T E R 33
in which we learn how to do load balancing in a hybrid parallel program using the

master-worker pattern; we see how to combine the master-worker pattern and the

parallel loop pattern to do two-level load balancing; and we consider how these

alternatives affect the program’s performance

Load Balancing, Part 3

C6910_33.indd 595C6910_33.indd 595 2/2/09 11:33:11 AM2/2/09 11:33:11 AM

C H A P T E R33 Load Balancing, Part 3

33.1 Load Balancing with One-Level Scheduling
Having looked at a hybrid parallel program for a massively parallel problem that required neither mes-
sage passing nor load balancing, we now turn our attention to a massively parallel problem that does
require message passing for load balancing. We’ll write a hybrid parallel version of the Mandelbrot
Set program from Chapters 11–12 (SMP version) and Chapters 23–24 (cluster version). This program
computes the color of each pixel in an image of the Mandelbrot Set and stores the pixel data in an integer
matrix. The program then writes the pixel data to a PJG image file.

After several iterations of the design, the cluster parallel Mandelbrot Set program ended up using the
master-worker pattern for load balancing and the parallel output files pattern to reduce the amount of
message passing. We will continue to use both patterns in the hybrid parallel program. However, we need
to reconsider the manner in which the hybrid parallel program partitions the work among the multiple
processes and the multiple threads in each process.

In the cluster parallel program, every process had a single worker thread that ran on the single CPU in
each node of the cluster parallel computer (Figure 33.1). Process 0 also had a master thread that shared the
CPU with process 0’s worker thread. The master used a schedule object to divide the image into chunks
(row ranges) to be computed in parallel so as to achieve a balanced load. The master sent messages to
the workers with chunks for the workers to compute. The workers sent messages to the master when they
finished their chunks. The workers also wrote their chunks of the Mandelbrot Set image to separate output
files. However, the workers did not share data with each other or send messages to each other.

C6910_33.indd 596C6910_33.indd 596 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.1 Load Balancing with One-Level Scheduling 597

W0

Image chunk

Process 0

W1

Image chunk

Process 1

W2

Image chunk

Process 2

W3

Image chunk

Process 3

M

 Figure 33.1 Cluster parallel master-worker program

For a hybrid parallel computer with several CPUs in each node, a straightforward extension of this
design is to put several worker threads in each process, one worker for each CPU (Figure 33.2). However,
the workers still operate independently of one another, neither sharing data with each other nor sending
messages to each other. In addition, process 0 has a master thread that uses a schedule object to partition
the image, exactly as in the cluster parallel program. This is the master-worker pattern with one-level
scheduling, so called because there is just one schedule—the one in the master thread—that determines
which chunks each worker thread will compute.

C6910_33.indd 597C6910_33.indd 597 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

598 CHAPTER 33 Load Balancing, Part 3

W0 W1 W2 W3

Image chunks

Process 0

W4 W5 W6 W7

Image chunks

Process 1

W8 W9 W10 W11

Image chunks

Process 2

W12 W13 W14 W15

Image chunks

Process 3

M

 Figure 33.2 Hybrid parallel master-worker program, one-level scheduling

33.2 Hybrid Program with One-Level Scheduling
Here is the source code for class edu.rit.hyb.fractal.MandelbrotSetHyb, the hybrid parallel Mandelbrot
Set program with one-level load balancing. It is derived from class edu.rit.clu.fractal.MandelbrotSetClu3,
the cluster parallel version.

package edu.rit.hyb.fractal;

import edu.rit.color.HSB;

import edu.rit.image.PJGColorImage;

import edu.rit.image.PJGImage;

import edu.rit.io.Files;

import edu.rit.mp.IntegerBuf;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommStatus;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

C6910_33.indd 598C6910_33.indd 598 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.2 Hybrid Program with One-Level Scheduling 599

The program needs to know the number of processes Kp with which it is running, the number of threads
per process Kt (which must be the same in all processes), and the number of processors K = Kp·Kt.

import edu.rit.pj.PJProperties;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

public class MandelbrotSetHyb

 {

 // Communicator.

 static Comm world;

 static int Kp;

 static int rank;

 static int Kt;

 static int K;

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static double gamma;

 static File filename;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Table of hues.

 static int[] huetable;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

C6910_33.indd 599C6910_33.indd 599 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

600 CHAPTER 33 Load Balancing, Part 3

 // Initialize middleware.

 Comm.init (args);

 world = Comm.world();

 Kp = world.size();

 rank = world.rank();

 Kt = PJProperties.getPjNt();

 if (Kt == 0)

 {

 System.err.println

 ("MandelbrotSetHyb: -Dpj.nt must be specified");

 System.exit (1);

 }

 K = Kp * Kt;

 // Validate command line arguments.

 if (args.length != 8) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 gamma = Double.parseDouble (args[6]);

 filename = new File (args[7]);

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Create table of hues for different iteration counts.

 huetable = new int [maxiter+1];

 for (int i = 0; i < maxiter; ++ i)

 {

 huetable[i] = HSB.pack

 (/*hue*/ (float)

 Math.pow (((double)i)/((double)maxiter),gamma),

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 huetable[maxiter] = HSB.pack (1.0f, 1.0f, 0.0f);

 long t2 = System.currentTimeMillis();

C6910_33.indd 600C6910_33.indd 600 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.2 Hybrid Program with One-Level Scheduling 601

To get multiple threads in each process, we set up a parallel team with Kt threads. Each team thread,
when it calls the parallel region’s run() method, executes the workerSection() subroutine in parallel,
thus acting as a worker thread. Each worker thread has a unique worker index, starting with worker index
0 for the first team thread in the first process and going up to worker index K–1 for the last team thread
in the last process. The worker index is passed in as the workerSection() subroutine’s argument. In
process 0, the parallel team gets one extra thread. This team thread, when it calls the parallel region’s
run() method, executes the masterSection() subroutine, thus acting as the master thread in parallel
with the worker threads.

 // Set up parallel team: Kt+1 threads in process 0, Kt

 // threads in processes 1 and up.

 ParallelTeam team = new ParallelTeam (rank == 0 ? Kt+1 : Kt);

 // Every parallel team thread runs the worker section, except

 // thread Kt (which exists only in process 0) runs the master

 // section.

 team.execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 if (getThreadIndex() == Kt)

 {

 masterSection();

 }

 else

 {

 workerSection (rank * Kt + getThreadIndex());

 }

 }

 });

 long t3 = System.currentTimeMillis();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

Here is the code for the master thread. It is nearly the same as the cluster parallel version, with a few
changes.

C6910_33.indd 601C6910_33.indd 601 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

602 CHAPTER 33 Load Balancing, Part 3

The master needs to send messages to each worker thread. However, the communicator only lets us send
a message to a process at a certain rank. To direct the message to a specific thread within the process, we
will specify the worker index as the message tag.

The master now waits to receive a message from any process (rank = null, or wildcard) and any worker
thread within the process (tag = null, or wildcard). The actual process (rank) and worker index (tag) that
sent the message are obtained from the CommStatus object the receive() method returns. The master
then directs its reply to the same process and worker index.

 /**

 * Perform the master section.

 */

 private static void masterSection()

 throws IOException

 {

 int process, thread, worker;

 Range range;

 // Set up a schedule object to divide the row range into

 // chunks.

 IntegerSchedule schedule = IntegerSchedule.runtime();

 schedule.start (K, new Range (0, height-1));

 // Send initial chunk range to each worker. If range is null,

 // no more work for that worker. Keep count of active workers.

 int activeWorkers = K;

 for (process = 0; process < Kp; ++ process)

 {

 for (thread = 0; thread < Kt; ++ thread)

 {

 worker = process * Kt + thread;

 range = schedule.next (worker);

 world.send (process, worker, ObjectBuf.buffer (range));

 if (range == null) — activeWorkers;

 }

 }

 // Repeat until all workers have finished.

 while (activeWorkers > 0)

 {

 // Receive an empty message from any worker.

C6910_33.indd 602C6910_33.indd 602 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.2 Hybrid Program with One-Level Scheduling 603

Here is the code for the worker threads. The argument is the worker index. This code also is nearly the
same as the cluster parallel version, with a few changes.

Each worker gets its own per-thread variables: the pixel matrix row references; the PJG image and writer
objects; and the storage for the current pixel matrix row slice. These are now local variables of the
workerSection() method instead of static global variables.

 CommStatus status =

 world.receive (null, null, IntegerBuf.emptyBuffer());

 process = status.fromRank;

 worker = status.tag;

 // Send next chunk range to that specific worker. If null,

 // no more work.

 range = schedule.next (worker);

 world.send (process, worker, ObjectBuf.buffer (range));

 if (range == null) — activeWorkers;

 }

 }

 /**

 * Perform the worker section.

 */

 private static void workerSection

 (int worker)

 throws IOException

 {

 // Image matrix. Allocate storage for pixel matrix row

 // references only.

 int[][] matrix = new int [height] [];

 // Prepare to write image row slices to per-worker PJG image

 // file.

 PJGColorImage image =

 new PJGColorImage (height, width, matrix);

 PJGImage.Writer writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream

 (Files.fileForRank (filename, worker))));

 // Storage for matrix row slice.

 int[][] slice = null;

C6910_33.indd 603C6910_33.indd 603 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

604 CHAPTER 33 Load Balancing, Part 3

Here is where we ensure each message from the master ends up in the proper worker. In the receive()
method call, the worker specifies rank 0 as the source process and the worker’s own index as the message
tag. The worker will therefore receive only those messages tagged with its own worker index, not mes-
sages tagged with the other worker threads’ indexes.

 // Process chunks from master.

 for (;;)

 {

 // Receive chunk range from master. If null, no more work.

 ObjectItemBuf<Range> rangeBuf = ObjectBuf.buffer();

 world.receive (0, worker, rangeBuf);

 Range range = rangeBuf.item;

 if (range == null) break;

 int lb = range.lb();

 int ub = range.ub();

 int len = range.length();

 // Allocate storage for matrix row slice if necessary.

 if (slice == null || slice.length < len)

 {

 slice = new int [len] [width];

 }

 // Compute all rows and columns in slice.

 for (int r = lb; r <= ub; ++ r)

 {

 int[] slice_r = slice[r-lb];

 double y = ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x = xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

C6910_33.indd 604C6910_33.indd 604 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.3 Program Performance with One-Level Scheduling 605

And, when the worker replies to the master, it tags the message with its own worker index to let the mas-
ter know which worker replied.

33.3 Program Performance with One-Level Scheduling
Table 33.1 (at the end of the chapter) lists, and Figure 33.3 plots, the MandelbrotSetHyb program’s
running-time metrics on the “tardis” hybrid parallel computer for two problem sizes: an 8,960 × 8,960-pixel
image (N = 80M pixels) and a 25,600 × 25,600-pixel image (N = 160M pixels). To balance the load, the
master used a dynamic schedule with a chunk size of 10. The commands for the two problem sizes were

$ java -Dpj.np=$KP -Dpj.nt=$KT -Dpj.schedule="dynamic(10)" \

 edu.rit.hyb.fractal.MandelbrotSetHyb 8960 8960 -0.75 0.0 3360 \

 1000 0.4 image.pjg

$ java -Dpj.np=$KP -Dpj.nt=$KT -Dpj.schedule="dynamic(10)" \

 edu.rit.hyb.fractal.MandelbrotSetHyb 25600 25600 -0.75 0.0 9600 \

 1000 0.4 image.pjg

where $KP and $KT are the number of processes and the number of threads per process.

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Record number of iterations for pixel.

 slice_r[c] = huetable[i];

 }

 }

 // Report completion of slice to master.

 world.send (0, worker, IntegerBuf.emptyBuffer());

 // Set full pixel matrix rows to refer to slice rows.

 System.arraycopy (slice, 0, matrix, lb, len);

 // Write row slice of full pixel matrix to image file.

 writer.writeRowSlice (range);

 }

 // Close image file.

 writer.close();

 }

 }

C6910_33.indd 605C6910_33.indd 605 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

606 CHAPTER 33 Load Balancing, Part 3

1 1 0
1E0

1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3
Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

N = 80M

 1 1 0
1E0

1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3
Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

N = 640M

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Kt = 1

Kt = 2Kt = 3
Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Kt = 1
Kt = 2
Kt = 3Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

Figure 33.3 MandelbrotSetSeq/MandelbrotSetHyb running-time metrics

C6910_33.indd 606C6910_33.indd 606 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.4 Load Balancing with Two-Level Scheduling 607

Comparing the hybrid parallel MandelbrotSetHyb program’s running times to those of the cluster
parallel MandelbrotSetClu3 program in Chapter 24, we see that the hybrid program’s running times are a
few seconds shorter—enough shorter to push the speedups over the line into superlinear territory for the
larger problem size. The reduced running times are due to the JIT compiler effect. With as many as four
threads executing the code in each process, the JVM can optimize the machine code more quickly than in
the cluster version, which has only one thread executing in each process.

33.4 Load Balancing with Two-Level Scheduling
Another way to utilize the multiple CPUs in each node of a hybrid parallel computer is to go back to one
worker in each process, like the cluster parallel version. The master still divides the image into chunks
(row slices) according to some schedule and sends the chunks to the workers. But then each worker uses
a parallel team to calculate the rows of the slice in parallel in multiple threads (Figure 33.4). The parallel
team uses its own schedule (not necessarily the same as the master’s schedule) to divide the rows of the
slice among the team threads. This is the master-worker pattern with two-level scheduling—the master
schedule that determines which chunks each worker will compute and the parallel team schedule that
determines which rows of the chunk each team thread will compute.

ParallelTeam

Thr
0

Thr
1

Thr
2

Thr
3

Image chunk

W0
Process 0

ParallelTeam

Thr
0

Thr
1

Thr
2

Thr
3

Image chunk

W1
Process 1

ParallelTeam

Thr
0

Thr
1

Thr
2

Thr
3

Image chunk

W2
Process 2

ParallelTeam

Thr
0

Thr
1

Thr
2

Thr
3

Image chunk

W3
Process 3

M

Figure 33.4 Hybrid parallel master-worker program, two-level scheduling

C6910_33.indd 607C6910_33.indd 607 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

608 CHAPTER 33 Load Balancing, Part 3

Why contemplate a two-level scheduling scheme, when the one-level scheduling scheme already
gives great performance? With one-level sched uling, we had to make the chunks rather small (10 rows)
to ensure there would be enough short-running-time chunks to balance the long-running-time chunks.
For each chunk, the master had to send a message and the worker had to send back a reply. Consequently,
the program had to send 1,792 messages to compute the 8,960-row image, and the program had to send
5,120 messages to compute the 25,600-row image. On the “tardis” computer, the message latency alone
consumed 0.4 seconds and 1.1 seconds, respectively—or, putting it another way, 10 percent and 4 percent
of the running time on 40 processors. That’s a fairly hefty message-passing overhead for a massively
parallel problem, which doesn’t need to send messages at all except to do load balancing. We want to cut
down that overhead, if possible.

With two-level scheduling, we don’t have to be so concerned about making the chunks small,
because the parallel team does a second level of load balancing within each chunk. Indeed, the chunks
have to be somewhat larger to ensure there are enough short-running-time rows to balance the long-
running-time rows in each chunk. If we use, say, 100-row chunks instead of 10-row chunks, we can cut
down the message-passing overhead by a factor of 10. On the other hand, with larger chunks, the workers
will spend more time writing each chunk to the output file, file I/O might become the bottleneck instead
of message passing, and the performance might show no improvement, or might even get worse. The
only way to know whether one-level or two-level scheduling performs better is to implement and mea-
sure both alternatives.

33.5 Hybrid Program with Two-Level Scheduling
Here is the source code for class edu.rit.hyb.fractal.MandelbrotSetHyb2, the hybrid parallel Mandelbrot
Set program with two-level load balancing. The master schedule is specified by the -Dpj.schedule
flag. The parallel team schedule is specified by the last command-line argument; if omitted, the parallel
team uses a fixed schedule.

package edu.rit.hyb.fractal;

import edu.rit.color.HSB;

import edu.rit.image.PJGColorImage;

import edu.rit.image.PJGImage;

import edu.rit.io.Files;

import edu.rit.mp.IntegerBuf;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommStatus;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

import java.io.BufferedOutputStream;

C6910_33.indd 608C6910_33.indd 608 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.5 Hybrid Program with Two-Level Scheduling 609

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

public class MandelbrotSetHyb2

 {

 // Communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static int width;

 static int height;

 static double xcenter;

 static double ycenter;

 static double resolution;

 static int maxiter;

 static double gamma;

 static File filename;

 static IntegerSchedule thrschedule;

 // Initial pixel offsets from center.

 static int xoffset;

 static int yoffset;

 // Image matrix.

 static int[][] matrix;

 static PJGColorImage image;

 static PJGImage.Writer writer;

 // Storage for matrix row slice.

 static int[][] slice;

 // Table of hues.

 static int[] huetable;

 /**

 * Mandelbrot Set main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

C6910_33.indd 609C6910_33.indd 609 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

610 CHAPTER 33 Load Balancing, Part 3

 // Initialize middleware.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Validate command line arguments.

 if (args.length < 8 || args.length > 9) usage();

 width = Integer.parseInt (args[0]);

 height = Integer.parseInt (args[1]);

 xcenter = Double.parseDouble (args[2]);

 ycenter = Double.parseDouble (args[3]);

 resolution = Double.parseDouble (args[4]);

 maxiter = Integer.parseInt (args[5]);

 gamma = Double.parseDouble (args[6]);

 filename = new File (args[7]);

 thrschedule =

 args.length == 9 ?

 IntegerSchedule.parse (args[8]) :

 IntegerSchedule.fixed();

 // Initial pixel offsets from center.

 xoffset = -(width - 1) / 2;

 yoffset = (height - 1) / 2;

 // Allocate storage for pixel matrix row references only.

 matrix = new int [height] [];

 // Prepare to write image row slices to per-worker PJG image

 // file.

 image = new PJGColorImage (height, width, matrix);

 writer =

 image.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream

 (Files.fileForRank (filename, rank))));

 // Create table of hues for different iteration counts.

 huetable = new int [maxiter+1];

 for (int i = 0; i < maxiter; ++ i)

 {

 huetable[i] = HSB.pack

 (/*hue*/ (float)

 Math.pow (((double)i)/((double)maxiter),gamma),

C6910_33.indd 610C6910_33.indd 610 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.5 Hybrid Program with Two-Level Scheduling 611

We’re back to the design of the cluster parallel version, with a parallel team of two threads executing
the master section and the worker section (which are located in subroutines). Only process 0, the master
process, sets up this team. The other processes just execute the worker section.

 /*sat*/ 1.0f,

 /*bri*/ 1.0f);

 }

 huetable[maxiter] = HSB.pack (1.0f, 1.0f, 0.0f);

 long t2 = System.currentTimeMillis();

 // In master process, run master section and worker section

 // in parallel.

 if (rank == 0)

 {

 new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (new ParallelSection()

 {

 public void run() throws Exception

 {

 masterSection();

 }

 },

 new ParallelSection()

 {

 public void run() throws Exception

 {

 workerSection();

 }

 });

 }

 });

 }

 // In worker process, run only worker section.

 else

 {

 workerSection();

 }

 long t3 = System.currentTimeMillis();

C6910_33.indd 611C6910_33.indd 611 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

612 CHAPTER 33 Load Balancing, Part 3

 // Close image file.

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

 /**

 * Perform the master section.

 */

 private static void masterSection()

 throws IOException

 {

 int worker;

 Range range;

 // Set up a schedule object to divide the row range into

 // chunks.

 IntegerSchedule schedule = IntegerSchedule.runtime();

 schedule.start (size, new Range (0, height-1));

 // Send initial chunk range to each worker. If range is null,

 // no more work for that worker. Keep count of active workers.

 int activeWorkers = size;

 for (worker = 0; worker < size; ++ worker)

 {

 range = schedule.next (worker);

 world.send (worker, ObjectBuf.buffer (range));

 if (range == null) — activeWorkers;

 }

 // Repeat until all workers have finished.

 while (activeWorkers > 0)

 {

 // Receive an empty message from any worker.

 CommStatus status =

The master section is identical to that of the cluster parallel version. Unlike the first hybrid parallel ver-
sion, we don’t need to use message tags to direct messages to specific worker threads, because there is
only one worker in each process.

C6910_33.indd 612C6910_33.indd 612 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.5 Hybrid Program with Two-Level Scheduling 613

 world.receive (null, IntegerBuf.emptyBuffer());

 worker = status.fromRank;

 // Send next chunk range to that specific worker. If null,

 // no more work.

 range = schedule.next (worker);

 world.send (worker, ObjectBuf.buffer (range));

 if (range == null) — activeWorkers;

 }

 }

 /**

 * Perform the worker section.

 */

 private static void workerSection()

 throws Exception

 {

 // Process chunks from master.

 for (;;)

 {

 // Receive chunk range from master. If null, no more work.

 ObjectItemBuf<Range> rangeBuf = ObjectBuf.buffer();

 world.receive (0, rangeBuf);

 Range range = rangeBuf.item;

 if (range == null) break;

 final int lb = range.lb();

 final int ub = range.ub();

 final int len = range.length();

 // Allocate storage for matrix row slice if necessary.

 if (slice == null || slice.length < len)

 {

 slice = new int [len] [width];

 }

 // Parallel team to calculate each slice in multiple threads.

 ParallelTeam team = new ParallelTeam();

The worker begins by setting up the parallel team that will be used later to calculate the rows of each chunk.

At this point, the one worker thread is running. It receives a chunk from the master and allocates storage
to hold the row slice.

C6910_33.indd 613C6910_33.indd 613 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

614 CHAPTER 33 Load Balancing, Part 3

Now the parallel team takes over to calculate the rows of the chunk.

The parallel team uses the schedule specified as the last command-line argument.

 // Compute rows of slice in parallel threads.

 team.execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (lb, ub, new IntegerForLoop()

 {

 // Use the thread-level loop schedule.

 public IntegerSchedule schedule()

 {

 return thrschedule;

 }

 // Compute all rows and columns in slice.

 public void run (int first, int last)

 {

 for (int r = first; r <= last; ++ r)

 {

 int[] slice_r = slice[r-lb];

 double y =

 ycenter + (yoffset - r) / resolution;

 for (int c = 0; c < width; ++ c)

 {

 double x =

 xcenter + (xoffset + c) / resolution;

 // Iterate until convergence.

 int i = 0;

 double aold = 0.0;

 double bold = 0.0;

 double a = 0.0;

 double b = 0.0;

 double zmagsqr = 0.0;

 while (i < maxiter && zmagsqr <= 4.0)

 {

 ++ i;

 a = aold*aold - bold*bold + x;

 b = 2.0*aold*bold + y;

C6910_33.indd 614C6910_33.indd 614 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.6 Program Performance with Two-Level Scheduling 615

Here we are back in the single worker thread again.

33.6 Program Performance with Two-Level Scheduling
Table 33.2 (at the end of the chapter) lists, and Figure 33.5 plots, the MandelbrotSetHyb2 program’s
running-time metrics on the “tardis” hybrid parallel computer for two problem sizes, an
8,960 × 8,960-pixel image (N = 80M pixels) and a 25,600 × 25,600-pixel image (N = 160M pixels).
To balance the load, the master used a dynamic schedule with a chunk size of 100, and the parallel
teams used a dynamic schedule with a chunk size of 1. The commands for the two problem sizes were

$ java -Dpj.np=$KP -Dpj.nt=$KT -Dpj.schedule="dynamic(100)" \

 edu.rit.hyb.fractal.MandelbrotSetHyb2 8960 8960 -0.75 0.0 3360 \

 1000 0.4 image.pjg "dynamic(1)"

$ java -Dpj.np=$KP -Dpj.nt=$KT -Dpj.schedule="dynamic(100)" \

 edu.rit.hyb.fractal.MandelbrotSetHyb2 25600 25600 -0.75 0.0 9600 \

 1000 0.4 image.pjg "dynamic(1)"

where $KP and $KT are the number of processes and the number of threads per process.

 zmagsqr = a*a + b*b;

 aold = a;

 bold = b;

 }

 // Record number of iterations for

 // pixel.

 slice_r[c] = huetable[i];

 }

 }

 }

 });

 }

 });

 // Report completion of slice to master.

 world.send (0, IntegerBuf.emptyBuffer());

 // Set full pixel matrix rows to refer to slice rows.

 System.arraycopy (slice, 0, matrix, lb, len);

 // Write row slice of full pixel matrix to image file.

 writer.writeRowSlice (range);

 }

 }

 }

C6910_33.indd 615C6910_33.indd 615 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

616 CHAPTER 33 Load Balancing, Part 3

1 1 0
1E0

1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3
Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

N = 80M

1 1 0
1E0

1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3
Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

N = 640M

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4
Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Kt = 1
Kt = 2
Kt = 3
Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
Kt = 1Kt = 2Kt = 3Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

Figure 33.5 MandelbrotSetSeq/MandelbrotSetHyb2 running-time metrics

C6910_33.indd 616C6910_33.indd 616 2/2/09 11:33:12 AM2/2/09 11:33:12 AM

 33.6 Program Performance with Two-Level Scheduling 617

Compared to the hybrid parallel version with one-level scheduling, the version with two-level sched-
uling is about 15–20 percent faster on 40 processors. This confirms our hypothesis that the two-level
scheduling would improve the program’s performance.

Compared to the cluster parallel version in Chapter 24, the hybrid parallel version with two-level
scheduling is faster still—about 25 percent faster on 40 processors. Running a plain cluster program on
a hybrid parallel computer, with multiple processes on each node, does not take full advantage of the
hybrid parallel computer’s capabilities. To get the best performance on a hybrid parallel computer, a
parallel program should run with one process per node and multiple threads per process, using message
passing parallel programming techniques between the processes and shared memory multithreaded paral-
lel programming techniques within each process.

C6910_33.indd 617C6910_33.indd 617 2/2/09 11:33:13 AM2/2/09 11:33:13 AM

618 CHAPTER 33 Load Balancing, Part 3

Table 33.1 MandelbrotSetSeq/MandelbrotSetHyb running-time metrics
 N = 80M N = 640M

Kp Kt T Spdup Eff EDSF Kp Kt T Spdup Eff EDSF

seq seq 137268 seq seq 1131678

1 1 135965 1.010 1.010 1 1 1109374 1.020 1.020

1 2 68124 2.015 1.007 0.002 1 2 554599 2.041 1.020 0.000

1 3 45494 3.017 1.006 0.002 1 3 369562 3.062 1.021 0.000

1 4 34238 4.009 1.002 0.002 1 4 249960 4.527 1.132 -0.033

2 1 61316 2.239 1.119 -0.098 2 1 498782 2.269 1.134 -0.101

2 2 32384 4.239 1.060 -0.016 2 2 250129 4.524 1.131 -0.033

2 3 21684 6.330 1.055 -0.009 2 3 166686 6.789 1.132 -0.020

2 4 16404 8.368 1.046 -0.005 2 4 125299 9.032 1.129 -0.014

3 1 40956 3.352 1.117 -0.048 3 1 332758 3.401 1.134 -0.050

3 2 21299 6.445 1.074 -0.012 3 2 172324 6.567 1.095 -0.014

3 3 14286 9.609 1.068 -0.007 3 3 111230 10.174 1.130 -0.012

3 4 11211 12.244 1.020 -0.001 3 4 83666 13.526 1.127 -0.009

4 1 32347 4.244 1.061 -0.016 4 1 249672 4.533 1.133 -0.033

4 2 15877 8.646 1.081 -0.009 4 2 131538 8.603 1.075 -0.007

4 3 11247 12.205 1.017 -0.001 4 3 85508 13.235 1.103 -0.007

4 4 8376 16.388 1.024 -0.001 4 4 62795 18.022 1.126 -0.006

5 1 25186 5.450 1.090 -0.018 5 1 199704 5.667 1.133 -0.025

5 2 13213 10.389 1.039 -0.003 5 2 106386 10.637 1.064 -0.005

5 3 9096 15.091 1.006 0.000 5 3 66823 16.935 1.129 -0.007

5 4 6808 20.163 1.008 0.000 5 4 50309 22.495 1.125 -0.005

6 1 20562 6.676 1.113 -0.019 6 1 166446 6.799 1.133 -0.020

6 2 11327 12.119 1.010 0.000 6 2 87793 12.890 1.074 -0.005

6 3 7636 17.976 0.999 0.001 6 3 56647 19.978 1.110 -0.005

6 4 5778 23.757 0.990 0.001 6 4 41988 26.952 1.123 -0.004

7 1 17931 7.655 1.094 -0.013 7 1 142871 7.921 1.132 -0.016

7 2 9511 14.433 1.031 -0.002 7 2 73651 15.365 1.098 -0.005

7 3 6550 20.957 0.998 0.001 7 3 49242 22.982 1.094 -0.003

7 4 5018 27.355 0.977 0.001 7 4 36052 31.390 1.121 -0.003

8 1 15711 8.737 1.092 -0.011 8 1 124862 9.063 1.133 -0.014

8 2 8612 15.939 0.996 0.001 8 2 66814 16.938 1.059 -0.002

8 3 5740 23.914 0.996 0.001 8 3 41838 27.049 1.127 -0.004

8 4 4447 30.868 0.965 0.002 8 4 31574 35.842 1.120 -0.003

9 1 13960 9.833 1.093 -0.009 9 1 111064 10.189 1.132 -0.012

9 2 7725 17.769 0.987 0.001 9 2 58263 19.424 1.079 -0.003

9 3 5183 26.484 0.981 0.001 9 3 37248 30.382 1.125 -0.004

9 4 4007 34.257 0.952 0.002 9 4 28167 40.177 1.116 -0.002

10 1 12739 10.775 1.078 -0.007 10 1 101003 11.204 1.120 -0.010

10 2 6934 19.796 0.990 0.001 10 2 53353 21.211 1.061 -0.002

 10 3 4672 29.381 0.979 0.001 10 3 33550 33.731 1.124 -0.003

10 4 3670 37.403 0.935 0.002 10 4 25408 44.540 1.114 -0.002

C6910_33.indd 618C6910_33.indd 618 2/2/09 11:33:13 AM2/2/09 11:33:13 AM

 33.6 Program Performance with Two-Level Scheduling 619

T

Table 33.2 MandelbrotSetSeq/MandelbrotSetHyb2 running-time metrics
 N=80M N=640M

Kp Kt T Spdup Eff EDSF Kp Kt T Spdup Eff EDSF

seq seq 137614 seq seq 1114794

1 1 103960 1.324 1.324 1 1 846007 1.318 1.318

1 2 52450 2.624 1.312 0.009 1 2 425098 2.622 1.311 0.005

1 3 35847 3.839 1.280 0.017 1 3 290275 3.840 1.280 0.015

1 4 26691 5.156 1.289 0.009 1 4 214850 5.189 1.297 0.005

2 1 52078 2.642 1.321 0.002 2 1 423494 2.632 1.316 0.001

2 2 26290 5.234 1.309 0.004 2 2 213088 5.232 1.308 0.002

2 3 18040 7.628 1.271 0.008 2 3 145526 7.660 1.277 0.006

2 4 13442 10.238 1.280 0.005 2 4 107950 10.327 1.291 0.003

3 1 34759 3.959 1.320 0.002 3 1 282357 3.948 1.316 0.001

3 2 17596 7.821 1.303 0.003 3 2 142136 7.843 1.307 0.002

3 3 12095 11.378 1.264 0.006 3 3 97123 11.478 1.275 0.004

3 4 9047 15.211 1.268 0.004 3 4 72086 15.465 1.289 0.002

4 1 26123 5.268 1.317 0.002 4 1 211714 5.266 1.316 0.000

4 2 13250 10.386 1.298 0.003 4 2 106578 10.460 1.307 0.001

4 3 9113 15.101 1.258 0.005 4 3 72852 15.302 1.275 0.003

4 4 6831 20.146 1.259 0.003 4 4 54066 20.619 1.289 0.002

5 1 20952 6.568 1.314 0.002 5 1 169448 6.579 1.316 0.000

5 2 10650 12.922 1.292 0.003 5 2 85283 13.072 1.307 0.001

5 3 7346 18.733 1.249 0.004 5 3 58352 19.105 1.274 0.002

5 4 5539 24.845 1.242 0.003 5 4 43299 25.746 1.287 0.001

6 1 17505 7.861 1.310 0.002 6 1 141240 7.893 1.315 0.000

6 2 8928 15.414 1.284 0.003 6 2 71169 15.664 1.305 0.001

6 3 6178 22.275 1.237 0.004 6 3 48673 22.904 1.272 0.002

6 4 4675 29.436 1.227 0.003 6 4 36146 30.841 1.285 0.001

7 1 15071 9.131 1.304 0.002 7 1 121097 9.206 1.315 0.000

7 2 7683 17.911 1.279 0.003 7 2 61071 18.254 1.304 0.001

7 3 5345 25.746 1.226 0.004 7 3 41774 26.686 1.271 0.002

7 4 4061 33.887 1.210 0.003 7 4 31067 35.884 1.282 0.001

8 1 13265 10.374 1.297 0.003 8 1 106028 10.514 1.314 0.000

8 2 6768 20.333 1.271 0.003 8 2 53461 20.852 1.303 0.001

8 3 4709 29.224 1.218 0.004 8 3 36575 30.480 1.270 0.002

8 4 3567 38.580 1.206 0.003 8 4 27238 40.928 1.279 0.001

9 1 11830 11.633 1.293 0.003 9 1 94321 11.819 1.313 0.000

9 2 6078 22.641 1.258 0.003 9 2 47572 23.434 1.302 0.001

9 3 4230 32.533 1.205 0.004 9 3 32577 34.220 1.267 0.002

9 4 3205 42.937 1.193 0.003 9 4 24278 45.918 1.275 0.001

10 1 10679 12.886 1.289 0.003 10 1 84938 13.125 1.312 0.000

10 2 5511 24.971 1.249 0.003 10 2 42884 25.996 1.300 0.001

10 3 3856 35.688 1.190 0.004 10 3 29345 37.989 1.266 0.001

10 4 2984 46.117 1.153 0.004 10 4 21876 50.960 1.274 0.001

C6910_33.indd 619C6910_33.indd 619 2/2/09 11:33:13 AM2/2/09 11:33:13 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

621

C H A P T E R 34
in which we design a hybrid parallel program that requires broadcasting messages;

we learn how to mingle message passing code with multithreaded code; we derive a

mathematical model for the program’s computation plus communication time; and we

consider the implications for hybrid parallel program design

Partitioning and Broadcast, Part 2

C6910_34.indd 621C6910_34.indd 621 2/2/09 12:53:55 PM2/2/09 12:53:55 PM

C H A P T E R34 Partitioning and Broadcast, Part 2

34.1 Floyd’s Algorithm on a Hybrid
Recall the all-pairs shortest-paths problem. We are given an input n × n distance matrix d representing
a graph with n vertices, and we are to compute an output distance matrix giving the length of the shortest
path between each pair of vertices using Floyd’s Algorithm. The sequential version was the following:

 for i = 0 to n–1
 for r = 0 to n–1
 for c = 0 to n–1
 drc ← min (drc, dri + dic)

When we designed the SMP parallel version in Chapter 16, we realized there was a sequential
dependency from each outer loop iteration to the next. Accordingly, we left the outer loop as a sequential
loop and made the middle loop a parallel loop. The parallel loop partitioned the distance matrix rows 0
through n–1 among the team threads.

 for i = 0 to n–1
 parallel for r = 0 to n–1
 for c = 0 to n–1
 drc ← min (drc, dri + dic)

The cluster parallel version in Chapter 25 used a Range object to partition the distance matrix
rows among the processes. Each process allocated storage only for its own slice of the distance matrix.
Consequently, at the beginning of each outer loop iteration, the program had to broadcast row i from the
process that owned row i to the other processes. Each process did all the outer loop iterations, a subrange
of the middle loop iterations, and all the inner loop iterations.

 lb ← This process’s row slice lower bound
 ub ← This process’s row slice upper bound
 Allocate storage for rows lb to ub of d
 for i = 0 to n–1
 Broadcast row i of d
 for r = lb to ub
 for c = 0 to n–1
 drc ← min (drc, dri + dic)

The hybrid parallel version will be the same as the cluster version, except we’ll use a parallel team
to execute the middle loop iterations in multiple threads, like the SMP version. Thus, the computation is

C6910_34.indd 622C6910_34.indd 622 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

 34.2 Hybrid Parallel Floyd’s Algorithm Program 623

partitioned among the processes and threads in the same manner as the hybrid parallel AES key search
program in Chapter 32.

 lb ← This process’s row slice lower bound
 ub ← This process’s row slice upper bound
 Allocate storage for rows lb to ub of d
 for i = 0 to n–1
 Broadcast row i of d
 parallel for r = lb to ub
 for c = 0 to n–1
 drc ← min (drc, dri + dic)

Thread coordination and synchronization is needed at three points in the hybrid version. We must make
sure that only one thread in each process performs the broadcast at the top of the outer loop. If multiple
threads tried to broadcast at the same time, there would be chaos. In addition, we must ensure that the
threads do not start the middle parallel for loop until the broadcast has finished, and that the program does
not go on to the next outer loop iteration until all the threads have finished the middle loop iterations.

Like the cluster parallel version, the hybrid parallel version uses the parallel input files pattern to
reduce the time spent reading the input file. The hybrid parallel version also uses the parallel output files
pattern to reduce the time spent writing the output file. The file I/O must be done by a single thread.
Figure 34.1 shows the program’s overall execution timeline.

in
it

r d
co

m
p

u
te

co
m

p
u

te

co
m

p
u

te

co
m

p
u

te

w
r

output
_0

Proc
0

in
it

rd
co

m
p

u
te

co
m

p
u

te

co
m

p
u

te

co
m

p
u

te

w
r

output
_1

Proc
1

in
it

rd
co

m
p

u
te

co
m

p
u

te

co
m

p
u

te

co
m

p
u

te

w
r

output
_2

Proc
2

in
it

rd
co

m
p

u
te

co
m

p
u

te

co
m

p
u

te

co
m

p
u

te

w
r

output
_3

Proc
3

input

 Figure 34.1 Hybrid parallel program execution timeline

34.2 Hybrid Parallel Floyd’s Algorithm Program
Here is the code for the hybrid parallel version of the Floyd’s Algorithm program, class edu.rit.hyb.network.
FloydHyb. It is mostly the same as the cluster parallel version, except for the parallel team in the middle.

package edu.rit.hyb.network;

import edu.rit.io.DoubleMatrixFile;

import edu.rit.io.Files;

C6910_34.indd 623C6910_34.indd 623 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

624 CHAPTER 34 Partitioning and Broadcast, Part 2

The program starts out running in a single thread—the main program thread. The initialization and read-
ing of the input file are done in this one thread.

import edu.rit.mp.DoubleBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

public class FloydHyb

 {

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 // Number of nodes.

 static int n;

 // Distance matrix.

 static double[][] d;

 // Slices of distance matrix.

 static Range[] ranges;

 static Range myrange;

 static int mylb;

 static int myub;

 // Row broadcast from another process.

 static double[] row_i;

 static DoubleBuf row_i_buf;

 // Outer loop index i.

 static int i;

 // Reference to row i.

 static double[] d_i;

 /**

 * Main program.

C6910_34.indd 624C6910_34.indd 624 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

 34.2 Hybrid Parallel Floyd’s Algorithm Program 625

 */

 public static void main

 (String[] args)

 throws Throwable

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Parse command line arguments.

 if (args.length != 2) usage();

 File infile = new File (args[0]);

 File outfile = new File (args[1]);

 // Prepare to read distance matrix from input file; determine

 // matrix dimensions.

 DoubleMatrixFile in = new DoubleMatrixFile();

 DoubleMatrixFile.Reader reader =

 in.prepareToRead

 (new BufferedInputStream

 (new FileInputStream (infile)));

 d = in.getMatrix();

 n = d.length;

 // Divide distance matrix into equal row slices.

 ranges = new Range (0, n-1) .subranges (size);

 myrange = ranges[rank];

 mylb = myrange.lb();

 myub = myrange.ub();

 // Read just this process’s row slice of the distance matrix.

 reader.readRowSlice (myrange);

 reader.close();

 // Allocate storage for row broadcast from another process.

 row_i = new double [n];

 row_i_buf = DoubleBuf.buffer (row_i);

 long t2 = System.currentTimeMillis();

 // Run Floyd’s Algorithm.

C6910_34.indd 625C6910_34.indd 625 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

626 CHAPTER 34 Partitioning and Broadcast, Part 2

 // for i = 0 to N-1

 // for r = 0 to N-1

 // for c = 0 to N-1

 // D[r,c] = min (D[r,c], D[r,i] + D[i,c])

 int i_root = 0;

Now comes the computation section. We create a parallel team for later use in the middle loop. Because
we don’t want to create new threads continually, we create the parallel team just once, before beginning
the outer loop. However, the parallel team does not execute any code yet. Rather, the one main program
thread does the outer loop iterations and performs the broadcasts of row i.

 ParallelTeam team = new ParallelTeam();

 for (i = 0; i < n; ++ i)

 {

 d_i = d[i];

 // Determine which process owns row i.

 if (! ranges[i_root].contains (i)) ++ i_root;

 // Broadcast row i from owner process to all processes.

 if (rank == i_root)

 {

 world.broadcast (i_root, DoubleBuf.buffer (d_i));

 }

 else

 {

 world.broadcast (i_root, row_i_buf);

 d_i = row_i;

 }

We’ve arrived at the middle loop, to be executed in parallel. We tell the parallel team to execute the paral-
lel for loop. (We use the same parallel team each time through the outer loop.) Because the broadcast was
performed by a single thread, the middle loop iterations do not begin until after the broadcast has finished
and the broadcast() method has returned. Because the team threads wait for each other at a barrier
at the end of the parallel for loop, the next outer loop iteration does not begin until all the threads have
finished the middle loop iterations.

 // Inner loops over rows in my slice and over all columns.

 team.execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (mylb, myub, new IntegerForLoop()

 {

C6910_34.indd 626C6910_34.indd 626 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

 34.2 Hybrid Parallel Floyd’s Algorithm Program 627

After the computations, we’re back in the single main program thread to write the output file and finish
the program.

 public void run (int first, int last)

 throws Exception

 {

 for (int r = first; r <= last; ++ r)

 {

 double[] d_r = d[r];

 for (int c = 0; c < n; ++ c)

 {

 d_r[c] = Math.min(d_r[c],d_r[i]+d_i[c]);

 }

 }

 }

 });

 }

 });

 }

 long t3 = System.currentTimeMillis();

 // Write distance matrix slice to a separate output file in

 // each process.

 DoubleMatrixFile out = new DoubleMatrixFile (n, n, d);

 DoubleMatrixFile.Writer writer =

 out.prepareToWrite

 (new BufferedOutputStream

 (new FileOutputStream

 (Files.fileForRank (outfile, rank))));

 writer.writeRowSlice (myrange);

 writer.close();

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1) + " msec pre " + rank);

 System.out.println ((t3-t2) + " msec calc " + rank);

 System.out.println ((t4-t3) + " msec post " + rank);

 System.out.println ((t4-t1) + " msec total " + rank);

 }

 }

C6910_34.indd 627C6910_34.indd 627 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

628 CHAPTER 34 Partitioning and Broadcast, Part 2

34.3 Computation-Time Model
To gain some insight into how the hybrid parallel version’s performance differs from the cluster parallel version,
let’s derive a computation-time model. Instead of depending on the number of vertices n and the number of pro-
cessors K, the model depends on n, the number of processes Kp, and the number of threads per process Kt.

The hybrid version’s calculation time is the same as the cluster version (Equation 25.2), substituting
Kp · Kt for K:

 (34.1)

The hybrid version does the same broadcasts as the cluster version (Equation 25.3), except the mes-
sages only go to Kp processes rather than K processors. The hybrid version’s broadcast time therefore is
the following:

 (34.2)

Adding Equations 34.1 and 34.2 together gives the computation-time model for the hybrid version:

 (34.3)

The chief difference between the cluster version’s computation-time model and the hybrid version’s
computation-time model is that in the latter, the broadcast time increases only as the logarithm of the number of
processes, not the logarithm of the number of processors. Thus, the hybrid version has less message passing over-
head than the cluster version. For example, on the 40 processors of the “tardis” computer, the cluster version requires
six message rounds to do a broadcast, but the hybrid version requires only four message rounds—33 percent less
message passing. This translates into reduced running times and better performance for the hybrid version.

However, the hybrid version’s computation-time model still has a term that increases as the number of pro-
cesses increases. Thus, the hybrid version will still experience a slowdown above a certain number of processes,
and we must be careful not to run the hybrid version on too many nodes of the hybrid parallel computer.

34.4 Hybrid Floyd’s Algorithm Performance
Table 34.1 (at the end of the chapter) lists, and Figure 34.2 plots, the FloydHyb program’s performance
on the “tardis” parallel computer. The running times are for the calculation portion only, not including the
distance matrix file I/O. The program was run on two problem sizes: n = 3,180 vertices (N = n3 = 32G)
and n = 6,360 vertices (N = 256G).

Comparing the data to Chapter 25, most of the hybrid parallel ver sion’s running times are smaller
than the cluster parallel version’s. This is partially because of the reduced number of messages needed to
do the broadcasts, as the computation time model predicts. The reduced running times are also due to the
effect we saw with the SMP parallel version in Chapter 16. As we go to more threads on each node, the
slice of the distance matrix accessed by each thread becomes smaller, more of the distance matrix slice

C6910_34.indd 628C6910_34.indd 628 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

 34.4 Hybrid Floyd’s Algorithm Performance 629

fits in the CPU’s cache memory, the number of cache line replacements goes down, and the program’s
speed goes up relative to the sequential version.

1 1 0
1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

N = 32G

1 1 0
1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

N = 256G

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3
Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Kt = 1

Kt = 2

Kt = 3

Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

Figure 34.2 FloydSeq/FloydHyb running-time metrics

C6910_34.indd 629C6910_34.indd 629 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

630 CHAPTER 34 Partitioning and Broadcast, Part 2

Despite the program’s cache behavior, the computation time model predicts that eventually the speed-
ups will flatten out and then decrease as the number of processors increases, due to the increasing com-
munication time. This effect is apparent in the speedup curves, which are far from ideal on larger numbers
of processes. In fact, with 10 processes, the program is not much faster running on four threads per process
than three threads per process. While Floyd’s Algorithm does somewhat better on a hybrid parallel computer
than on a cluster parallel computer, the program still has too much message passing to scale up well.

C6910_34.indd 630C6910_34.indd 630 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

 34.4 Hybrid Floyd’s Algorithm Performance 631

Table 34.1 FloydSeq/FloydHyb running-time metrics
N = 32G N = 256G

Kp Kt T Spdup Eff EDSF Kp Kt T Spdup Eff EDSF

seq seq 269235 seq seq 2375802

1 1 277854 0.969 0.969 1 1 2191148 1.084 1.084

1 2 145158 1.855 0.927 0.045 1 2 1089687 2.180 1.090 -0.005

1 3 102073 2.638 0.879 0.051 1 3 764827 3.106 1.035 0.024

1 4 80152 3.359 0.840 0.051 1 4 644102 3.689 0.922 0.059

2 1 130833 2.058 1.029 -0.058 2 1 1093020 2.174 1.087 -0.002

2 2 73890 3.644 0.911 0.021 2 2 553076 4.296 1.074 0.003

2 3 52328 5.145 0.858 0.026 2 3 403962 5.881 0.980 0.021

2 4 44303 6.077 0.760 0.039 2 4 327721 7.249 0.906 0.028

3 1 94110 2.861 0.954 0.008 3 1 724724 3.278 1.093 -0.004

3 2 49152 5.478 0.913 0.012 3 2 383887 6.189 1.031 0.010

3 3 35478 7.589 0.843 0.019 3 3 274392 8.658 0.962 0.016

3 4 31148 8.644 0.720 0.031 3 4 221541 10.724 0.894 0.019

4 1 71035 3.790 0.948 0.008 4 1 558817 4.251 1.063 0.007

4 2 38513 6.991 0.874 0.016 4 2 284569 8.349 1.044 0.006

4 3 28624 9.406 0.784 0.021 4 3 203019 11.702 0.975 0.010

4 4 24282 11.088 0.693 0.027 4 4 175907 13.506 0.844 0.019

5 1 57422 4.689 0.938 0.008 5 1 444609 5.344 1.069 0.004

5 2 31153 8.642 0.864 0.013 5 2 226994 10.466 1.047 0.004

5 3 23212 11.599 0.773 0.018 5 3 167650 14.171 0.945 0.011

5 4 20449 13.166 0.658 0.025 5 4 143370 16.571 0.829 0.016

6 1 48042 5.604 0.934 0.007 6 1 379760 6.256 1.043 0.008

6 2 26304 10.236 0.853 0.012 6 2 196074 12.117 1.010 0.007

6 3 20099 13.395 0.744 0.018 6 3 141571 16.782 0.932 0.010

6 4 18223 14.774 0.616 0.025 6 4 119661 19.854 0.827 0.014

7 1 41813 6.439 0.920 0.009 7 1 319794 7.429 1.061 0.004

7 2 23173 11.618 0.830 0.013 7 2 170173 13.961 0.997 0.007

7 3 17212 15.642 0.745 0.015 7 3 122031 19.469 0.927 0.008

7 4 14746 18.258 0.652 0.018 7 4 103875 22.872 0.817 0.012

8 1 36472 7.382 0.923 0.007 8 1 281256 8.447 1.056 0.004

8 2 20367 13.219 0.826 0.012 8 2 149683 15.872 0.992 0.006

8 3 15488 17.383 0.724 0.015 8 3 109221 21.752 0.906 0.009

8 4 14432 18.655 0.583 0.021 8 4 97899 24.268 0.758 0.014

9 1 32729 8.226 0.914 0.008 9 1 252813 9.397 1.044 0.005

9 2 18570 14.498 0.805 0.012 9 2 133828 17.753 0.986 0.006

9 3 13821 19.480 0.721 0.013 9 3 97383 24.396 0.904 0.008

9 4 13789 19.525 0.542 0.022 9 4 92406 25.710 0.714 0.015

10 1 30107 8.943 0.894 0.009 10 1 226459 10.491 1.049 0.004

10 2 17082 15.761 0.788 0.012 10 2 121887 19.492 0.975 0.006

10 3 13144 20.483 0.683 0.014 10 3 89356 26.588 0.886 0.008

10 4 12923 20.834 0.521 0.022 10 4 83968 28.294 0.707 0.014

C6910_34.indd 631C6910_34.indd 631 2/2/09 12:53:56 PM2/2/09 12:53:56 PM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

633

C H A P T E R 35
in which we are introduced to problems that involve extracting answers from massive

data sets; we examine strategies for solving such problems on a parallel computer; and

we design a hybrid parallel program to query a data set in the domain of number theory

Parallel Data-Set Querying

C6910_35.indd 633C6910_35.indd 633 2/2/09 11:33:15 AM2/2/09 11:33:15 AM

C H A P T E R35 Parallel Data-Set Querying

35.1 Data Sets and Queries
All the parallel programs we’ve studied so far have been designed to solve an instance of some problem
from scratch. The problem’s parameters have been specified as command-line arguments. In some cases,
input data for the problem came from a file, such as the distance matrix file for Floyd’s Algorithm. The
command-line arguments and input files were unique for that instance of the problem.

However, some users are interested in a different kind of problem. There is a preexisting set of data;
the data could consist of experimental measurements, or the data could be the result of a prior computa-
tion. The user wants to answer some question by analyzing the data. We will use the term data set to
refer to this preexisting data. The data set may be stored in a file, or in a group of files, or even in a tradi-
tional database. We will call the question a query. The query may involve simply looking up some infor-
mation in the data set, or the query may require extensive computations on the contents of the data set.
The process of finding the answer is data-set querying. Rather than solving different, unique instances
of a problem, a data-set querying program answers different questions about the same data set.

Here’s an example of a data-set querying problem, from the domain of computational biology. The
biologist has a data set of protein sequences, including information about each protein’s function. The
biologist also has a query, which is the sequence of an unknown protein. The data-set querying problem
is to find the protein or proteins in the data set that most closely match the query. The matching known
proteins then yield clues to the unknown protein’s function. Solving this data-set querying problem
requires lengthy computations to “align” the query protein sequence with each protein sequence in the
data set. The Basic Local Alignment Search Tool (BLAST) is a program widely used to solve this data-
set querying problem for protein and DNA sequences.

35.2 Parallel Data-Set Querying Strategies
When the data set is large, or when the query computations are lengthy, or both, a parallel program can
speed up solving the data-set querying problem. To get a speedup, the problem must be partitioned into
pieces that can be computed in parallel. There are two basic strategies for partitioning a data-set querying
problem.

The first strategy is applicable when the data set is relatively small—small enough to fit completely
in the memory of each parallel computer node. In this case, we can replicate the data set in each node
and partition the query computations among the nodes (Figure 35.1). Each node performs part of the
query computations using the entire data set. The nodes then use reduction of some kind to combine their
partial answers into the overall answer.

C6910_35.indd 634C6910_35.indd 634 2/2/09 11:33:15 AM2/2/09 11:33:15 AM

 35.2 Parallel Data-Set Querying Strategies 635

Data set
Query
part 0

Compute

Data set
Query
part 1

Compute

Data set
Query
part 2

Compute

Data set
Query
part 3

Compute

Data set Query

Reduce

Answer

Figure 35.1 Parallel data-set querying strategy 1—replicate the data set, partition the query

The second strategy is applicable when the data set is too large to fit in the memory of one node. In this
case, we can partition the data set among the nodes and replicate the query in each node (Figure 35.2).
Each node performs all of the query computations on its own portion of the data set. Again, the nodes use
reduction to get the overall answer.

Data set
part 0

Query

Compute

Data set
part 1

Query

Compute

Data set
part 2

Query

Compute

Data set
part 3

Query

Compute

QueryData set

Reduce

Answer

Figure 35.2 Parallel data-set querying strategy 2—partition the data set, replicate the query

C6910_35.indd 635C6910_35.indd 635 2/2/09 11:33:15 AM2/2/09 11:33:15 AM

636 CHAPTER 35 Parallel Data-Set Querying

In this chapter, we will look at an example of the first parallel data-set querying strategy. In Chapter 37,
we will look at an example of the second strategy.

35.3 The Prime Counting Function
A prime is an integer whose only factors are itself and 1. The first few primes are 2, 3, 5, 7, 11, 13, 17,
19, 23, and 29. (0 and 1 are not considered to be prime.) All primes except 2 are odd numbers. A number
that is not a prime is called composite.

The prime counting function π(x) is the number of primes less than or equal to x. This function has
nothing to do with the constant π, the ratio of a circle’s circumference to its diameter. If you’re confused,
blame number theorist Edmund Landau, who invented this now-standard notation for the prime counting
function in 1909. The prime counting function itself has been studied since antiquity.

The prime counting function touches on some of today’s most widely used computer applications.
Every time your Web browser sets up an HTTPS connection to a secure Web site, it’s likely that the
RSA public key cryptosystem is being used to protect your credit card number from prying eyes on
the Internet. Invented by Ronald Rivest, Adi Shamir, and Leonard Adleman in 1978, the RSA algorithm
uses large primes. How large? Cryptographers Niels Ferguson and Bruce Schneier recommend that RSA
primes should be at least 1,024 bits long when expressed in binary. That is, an RSA prime x should fall
in the range 21,023 < x < 21,024. How many primes are there in this range? If there are only a few, then RSA
won’t be very useful. But if there are many, there will be plenty of primes to let everyone in the world
have their own unique RSA public keys. The number of primes in this range is π(21,024) – π(21,023). Hence,
we are interested in evaluating π(x).

The prime number theorem gives an estimate for π(x). Many variations of the prime number
theorem have been proven over the years. One version says that π(x) is approximately x/(ln x). Using that
formula, the number of 1,024-bit primes is approximately 1.27 × 10305. We are in no danger of running
out of RSA primes any time soon.

To illustrate parallel data set querying techniques, we will design a program to find the exact value of π(x),
not just an estimate. To do that, we simply will list all the primes less than or equal to x, and then count them.

35.4 Sieving
To list primes, we use the Sieve of Eratosthenes. A Greek mathematician and astronomer who lived in
the third century BCE, Eratosthenes was the first person to calculate the circumference of the earth. He
also invented the sieving algorithm for listing prime numbers that bears his name. While modern sieving
algorithms are faster, Eratosthenes’s sieve is still the simplest.

An example illustrates how Eratosthenes’s sieve works. Let’s say we want to find all the primes from
100 to 149. We start by making a sieve, which is a list of all those numbers.

100 101 102 103 104 105 106 107 108 109

110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129

130 131 132 133 134 135 136 137 138 139

140 141 142 143 144 145 146 147 148 149

C6910_35.indd 636C6910_35.indd 636 2/2/09 11:33:15 AM2/2/09 11:33:15 AM

 35.4 Sieving 637

Next, we need a list of primes, in ascending order. (For the moment, we won’t worry about where this list
comes from.) We take the first prime from the list of primes, 2, and remove all multiples of 2 from the
sieve, starting with the first multiple of 2 greater than or equal to 100. These numbers cannot be prime,
because they have 2 as a factor.

101 103 105 107 109

111 113 115 117 119

121 123 125 127 129

131 133 135 137 139

141 143 145 147 149

We take the next prime from the list of primes, 3, and remove all multiples of 3 from the sieve, starting
with the first multiple of 3 greater than or equal to 100. However, notice we can save a bit of work by
striking out only the odd multiples of 3. (The even multiples were already removed.) The first odd mul-
tiple of 3 greater than or equal to 100 is 105, and to get successive odd multiples of 3, we go up in steps
of 6: 105, 111, 117, 123, 129, 135, 141, 147.

101 103 107 109

113 115 119

121 125 127

131 133 137 139

143 145 149

For the next prime, 5, we remove 105, 115, 125, 135, and 145. (Some of these were already removed.)

101 103 107 109

113 119

121 127

131 133 137 139

143 149

For the next prime, 7, we remove 105, 119, 133, and 147.

101 103 107 109

113

121 127

131 137 139

143 149

For the next prime, 11, we remove 121 and 143.

101 103 107 109

113

127

131 137 139

149

C6910_35.indd 637C6910_35.indd 637 2/2/09 11:33:15 AM2/2/09 11:33:15 AM

638 CHAPTER 35 Parallel Data-Set Querying

For the next prime, 13, we normally would start removing numbers at 9·13, or 117. However, we already
removed all multiples of 9, back when we removed multiples of 3. In fact, all multiples of 13 less than
13·13 have already been removed. So we can start removing numbers at 132, or 169. But 169 is past the
end of the sieve, so we’re done. The numbers left in the sieve are the primes falling between the original
bounds (100 to 149).

Here is the source code for class edu.rit.hyb.prime.Sieve, which encapsulates the preceding algo-
rithm. A Sieve object operates on a block of numbers of a given length (len) starting at a given lower
bound (lb). The sieve itself is stored as an array of boolean flags; to put a number in the sieve or
remove a number from the sieve, just set the corresponding flag true or false.

package edu.rit.hyb.prime;

import java.io.IOException;

public class Sieve

 {

 private boolean[] isPrime;

 private long lb;

 private int len;

 // Padding to avert cache interference.

 private long p0, p1, p2, p3, p4, p5, p6, p7;

 private long p8, p9, pa, pb, pc, pd, pe, pf;

 /**

 * Construct a new sieve object.

 *

 * @param lb Lower bound index. Assumed to be a nonnegative

 * even number.

 * @param len Length. Assumed to be a nonnegative even number.

 */

 public Sieve

 (long lb,

 int len)

 {

 this.isPrime = new boolean [len+128]; // Padding

 this.lb = lb;

 this.len = len;

 }

 /**

 * Get this sieve’s lower bound index.

 *

 * @return Lower bound index.

 */

 public long lb()

 {

C6910_35.indd 638C6910_35.indd 638 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

 35.4 Sieving 639

 return this.lb;

 }

 /**

 * Set this sieve’s lower bound index.

 *

 * @param lb Lower bound index. Assumed to be a nonnegative

 * even number.

 */

 public void lb

 (long lb)

 {

 this.lb = lb;

 }

 /**

 * Get this sieve’s length.

 *

 * @return Length.

 */

 public long length()

 {

 return this.len;

 }

 /**

 * Set this sieve’s length.

 *

 * @param len Length. Assumed to be a nonnegative even number.

 */

 public void len

 (int len)

 {

 this.isPrime = new boolean [len+128]; // Padding

 this.len = len;

 }

 /**

 * Initialize this sieve. Afterwards, all even-numbered flags are

 * false and all odd-numbered flags are true.

 */

 public void initialize()

 {

 for (int i = 1; i < len; i += 2) isPrime[i] = true;

 if (lb == 0) isPrime[1] = false; // 1 is not a prime

 }

C6910_35.indd 639C6910_35.indd 639 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

640 CHAPTER 35 Parallel Data-Set Querying

 /**

 * Sieve out the given prime. Afterwards, all flags corresponding

 * to multiples of the given prime are false. It is assumed that

 * p is an odd prime and that all multiples of smaller primes

 * have previously been sieved out.

 *

 * @param p Prime to sieve out.

 *

 * @return True if sieving with further primes is required,

 * false otherwise.

 */

 public boolean sieveOut

 (long p)

 {

 // If p^2 is beyond the end of the array, report that further

 // sieving is not required.

 long psqr = p*p;

 if (psqr - lb >= len) return false;

 // Find the first odd multiple of p greater than or equal to

 // lb.

 long m = (lb + p - 1) / p;

 if ((m & 1) == 0) ++ m;

 long mp = m*p;

 // Sieving begins at p^2 or mp, whichever is larger.

 mp = Math.max (mp, psqr);

 // Set all odd multiples of p to false and report that

 // further sieving is required.

 long two_p = 2*p;

 for (long i = mp - lb; i < len; i += two_p)

 {

 isPrime[(int) i] = false;

 }

 return true;

 }

 /**

 * Sieve out all primes returned by the given iterator. It is

 * assumed that the iterator returns a sequence of the odd

 * primes in ascending order (3, 5, 7, 11, . . .). Sieving

 * continues until no further sieving is required or until the

 * end of the iterator’s sequence of primes, whichever comes

 * first.

 *

C6910_35.indd 640C6910_35.indd 640 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

 35.4 Sieving 641

 * @param iterator Iterator for a sequence of odd primes.

 *

 * @exception IOException

 * Thrown if an I/O error occurred.

 */

 public void sieveOut

 (LongIterator iterator)

 throws IOException

 {

 long p;

 initialize();

 while ((p = iterator.next()) != 0 && sieveOut (p));

 }

 /**

 * Determine if the given number is prime. It is assumed that all

 * primes smaller than p have been sieved out.

 *

 * @param p Number to test.

 *

 * @return True if p is prime, false otherwise.

 */

 public boolean isPrime

 (long p)

 {

 return isPrime[(int)(p - lb)];

 }

 /**

 * Obtain an iterator for the primes in this sieve. The iterator

 * returns a sequence of the numbers whose flags are true in this

 * sieve.

 *

 * @return Iterator.

 */

 public LongIterator iterator()

 {

 return new LongIterator()

 {

 private int i = 0;

 // Padding to avert cache interference.

 private long p0, p1, p2, p3, p4, p5, p6, p7;

 private long p8, p9, pa, pb, pc, pd, pe, pf;

C6910_35.indd 641C6910_35.indd 641 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

642 CHAPTER 35 Parallel Data-Set Querying

 public long next()

 {

 do ++ i; while (i < len && ! isPrime[i]);

 return i < len ? lb + i : 0;

 }

 public void close()

 {

 }

 };

 }

 }

package edu.rit.hyb.prime;

import java.io.IOException;

public interface LongIterator

 {

 /**

 * Returns the next number in the sequence.

 *

 * @return Number, or 0 if there are no more numbers.

 *

 * @exception IOException

 * Thrown if an I/O error occurred.

 */

 public long next()

 throws IOException;

 /**

 * Close this iterator. Call close() when done using this

 * iterator, to release resources.

 *

 * @exception IOException

 * Thrown if an I/O error occurred.

 */

 public void close()

 throws IOException;

 }

Class Sieve’s iterator() method returns an iterator that returns a sequence of numbers, which are
the primes in the sieve. The iterator implements interface LongIterator.

C6910_35.indd 642C6910_35.indd 642 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

 35.4 Sieving 643

Given the Sieve class, we can cast the prime counting function as a data-set querying problem. The
data set is a list of odd primes. The query is to count the number of primes less than or equal to some
number x. The calculation is simply the following:

Create a sieve starting at 0 of length x
Initialize the sieve (i.e., remove all even numbers)
For each prime p in the list of odd primes, until p2 > x:
 Remove multiples of p from the sieve
Count the primes left in the sieve

Note that because sieving stops when p2 > x, the list of odd primes only has to go up to the square root of
x. For example, if the list contains all odd primes less than 232, we can calculate π(x) for x up to 264; that
is, for all values x of type long. We can use the same data set to calculate π(x) for any value of x.

However, there’s a problem. A sieve of length x requires x bytes of storage to hold the array of booleans.
Therefore, the computer’s main memory size puts a limit on the length of the sieve we can compute.

To overcome this problem and calculate π(x) for x larger than the computer’s main memory, we can
sieve the range of numbers in multiple chunks that are small enough to fit in memory. Suppose we choose a
chunk size of one million numbers. We will count the primes from 0–999,999, from 1,000,000–1,999,999,
and so on, and total the counts:

L ← 1,000,000
count ← 0
For lb = 0 to x in steps of L:
 Create a sieve starting at lb of length L
 Initialize the sieve (i.e., remove all even numbers)
 For each prime p in the list of odd primes, until p2 > lb + L:
 Remove multiples of p from the sieve
 count ← count + number of primes ≤ x in the sieve

The only question remaining is where the list of odd primes comes from. We can use the same sieve
algorithm, slightly modified, to find the odd primes. After initializing the sieve, the smallest odd number
in the sieve is 3, so that is the first odd prime. After removing all multiples of 3 from the sieve, the smallest
number in the sieve greater than 3 is 5, so that is the second odd prime. After removing all multiples of 5
from the sieve, the smallest number in the sieve greater than 5 is 7, so that is the third odd prime. Continuing
this process, we enumerate all the odd primes.

We would like to have a data set with all the odd primes less than 232. There happen to be
203,280,220 of them. If we stored each of them in a file as an eight-byte long, the file would occupy
over 1.5 gigabytes. We can make the file smaller—and reduce the time the prime counting program takes
to read it—by storing the differences between consecutive odd primes, rather than the primes them-
selves. Among the odd primes less than 232, the largest difference is 336; it occurs in two places, between
3,842,610,773 and 3,842,611,109 and between 4,275,912,661 and 4,275,912,997. Furthermore, because
the primes are all odd numbers, the differences are all even numbers, and we can save a bit more by stor-
ing the differences divided by 2 instead of the actual differences. The largest half-difference is 168; thus,
each half-difference can be stored in a single byte, and the file occupies only 194 megabytes instead of
1.5 gigabytes.

C6910_35.indd 643C6910_35.indd 643 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

644 CHAPTER 35 Parallel Data-Set Querying

Class edu.rit.hyb.prime.Prime32File in the Parallel Java Library uses sieving to find all the odd
primes less than 232 and store the half-differences between consecutive odd primes in a file. Because this
program runs fairly quickly—it takes only 60 seconds on one of the “tardis” computer’s nodes—it’s not
worth the effort to make it a parallel program. Class edu.rit.hyb.prime.Prime32List provides an object
that reads the prime data set (file) and creates a LongIterator that returns the sequence of odd primes.

35.5 Sequential Prime Counting Program
Putting it all together, here is the source code for class edu.rit.hyb.prime.PrimeCountFunctionSeq, a
sequential program that computes π(x). It uses class Prime32List to get the list of odd primes and class
Sieve to do the sieving.

package edu.rit.hyb.prime;

import java.io.File;

public class PrimeCountFunctionSeq

 {

 // Sieve in one-million-number chunks.

 static final int CHUNK = 1000000;

 // Command line arguments.

 static long x;

 static File primefile;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length != 2) usage();

 x = Long.parseLong (args[0]);

 if (x < 0) usage();

 primefile = new File (args[1]);

 // Set up sieve.

 Sieve sieve = new Sieve (0, CHUNK);

 // Set up list of 32-bit primes.

 Prime32List primeList = new Prime32List (primefile);

C6910_35.indd 644C6910_35.indd 644 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

 35.6 Hybrid Parallel Prime Counting Program 645

Each time we sieve a new chunk of numbers, we create a new iterator for the data set of odd primes. The
new iterator rereads the prime file from the beginning. This is not as inefficient as it sounds. Most operat-
ing systems will save the contents of files read from disk in a kernel cache in main memory. If the same
file is reread, the contents will come from the kernel cache, taking much less time than rereading the
contents from disk.

35.6 Hybrid Parallel Prime Counting Program
To design a parallel version of the prime counting program, we must first decide which parallel data-set
querying strategy to use. Although the data set occupies 194 megabytes, the prime counting program
typically needs to read only a fraction of it, up to the square root of x. However, the program has to
calculate sieves all the way up to x. Therefore, the first querying strategy makes the most sense: replicate
the data set—each parallel processor reads the whole prime file; partition the query—the one-million-
number sieves are divided among the parallel processors. Each processor counts the primes for a subset
of the sieves, and at the end, the processors do a reduction to add all the counts together.

 // For counting primes. Initially 1 to count prime number 2.

 long primeCount = 1;

 // Do all chunks.

 for (long lb = 0; lb >= 0 && lb <= x; lb += CHUNK)

 {

 // Get an iterator for the odd primes.

 LongIterator iter = primeList.iterator();

 // Sieve the chunk.

 sieve.lb (lb);

 sieve.initialize();

 sieve.sieveOut (iter);

 // Count primes <= x left in the chunk.

 iter = sieve.iterator();

 long p;

 while ((p = iter.next()) != 0 && p <= x) ++ primeCount;

 }

 // Stop timing.

 long t2 = System.currentTimeMillis();

 // Print the answer.

 System.out.println ("pi("+x+") = "+primeCount);

 System.out.println ((t2-t1)+" msec");

 }

 }

C6910_35.indd 645C6910_35.indd 645 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

646 CHAPTER 35 Parallel Data-Set Querying

The next decision is how to partition the sieves among the processors. Sieves containing larger
numbers take longer to calculate, because the program has to go through more primes p until p2 is past
the end of the sieve. Therefore, load balancing is required. We use the same master-worker pattern
with two-level scheduling as we used for the hybrid parallel Mandelbrot Set program in Chapter 33.

Here is the source code for class edu.rit.hyb.prime.PrimeCountFunctionHyb, the hybrid parallel version.

We use a parallel thread team to calculate multiple sieves in parallel on the multiple processors of each
hybrid parallel computer node.

package edu.rit.hyb.prime;

import edu.rit.mp.IntegerBuf;

import edu.rit.mp.LongBuf;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.LongItemBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommStatus;

import edu.rit.pj.LongForLoop;

import edu.rit.pj.LongSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.pj.reduction.LongOp;

import edu.rit.pj.reduction.SharedLong;

import edu.rit.util.LongRange;

import java.io.File;

public class PrimeCountFunctionHyb

 {

 // Sieve in one-million-number chunks.

 static final int CHUNK = 1000000;

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static long x;

 static File primefile;

 static LongSchedule thrschedule;

 // Parallel team.

 static ParallelTeam team;

C6910_35.indd 646C6910_35.indd 646 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

 35.6 Hybrid Parallel Prime Counting Program 647

 // Per-thread sieves.

 static Sieve[] sieves;

 // List of 32-bit primes.

 static Prime32List primeList;

 // For counting primes.

 static SharedLong primeCount = new SharedLong (0);

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // World communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Parse command line arguments.

 if (args.length < 2 || args.length > 3) usage();

 x = Long.parseLong (args[0]);

 if (x < 0) usage();

 primefile = new File (args[1]);

 thrschedule =

 args.length == 3 ?

 LongSchedule.parse (args[2]) :

 LongSchedule.fixed();

Each parallel team thread needs its own sieve object. However, we don’t want to be continually creating
sieve objects, each with a one-million-element boolean array. Instead, we create the per-thread sieve
objects just once and reuse them.

However, the threads can all share the same object to access the data set of odd primes.

There also must be a shared reduction variable to hold the sum of the prime counts computed by
the threads. To synchronize the threads, this variable is an instance of the multiple thread safe class
SharedLong.

C6910_35.indd 647C6910_35.indd 647 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

648 CHAPTER 35 Parallel Data-Set Querying

 // Set up parallel team and per-thread sieves.

 team = new ParallelTeam();

 sieves = new Sieve [team.getThreadCount()];

 for (int i = 0; i < sieves.length; ++ i)

 {

 sieves[i] = new Sieve (0, CHUNK);

 }

 // Set up list of 32-bit primes.

 primeList = new Prime32List (primefile);

 // In master process, run master section and worker section

 // in parallel.

 if (rank == 0)

 {

 new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (new ParallelSection()

 {

 public void run() throws Exception

 {

 masterSection();

 }

 },

 new ParallelSection()

 {

 public void run() throws Exception

 {

 workerSection();

 }

 });

 }

 });

 }

 // In worker process, run only worker section.

 else

 {

 workerSection();

 }

C6910_35.indd 648C6910_35.indd 648 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

 35.6 Hybrid Parallel Prime Counting Program 649

 // Reduce prime counts into process 0.

 LongItemBuf buf = LongBuf.buffer (primeCount.longValue());

 world.reduce (0, buf, LongOp.SUM);

 // Stop timing.

 long t2 = System.currentTimeMillis();

 // Print the answer. (Add 1 because 2 is a prime.)

 if (rank == 0)

 {

 System.out.println ("pi("+x+") = "+(buf.item+1));

 }

 System.out.println ((t2-t1)+" msec "+rank);

 }

 /**

 * Perform the master section.

 */

 private static void masterSection()

 throws Exception

 {

 int worker;

 LongRange range;

 // Determine number of sieves to calculate.

 long ns = (x + CHUNK - 1) / CHUNK;

 // Set up a schedule object.

 LongSchedule schedule = LongSchedule.runtime();

 schedule.start (size, new LongRange (0, ns-1));

 // Send initial sieve range to each worker. If range is null,

 // no more work for that worker. Keep count of active workers.

 int activeWorkers = size;

 for (worker = 0; worker < size; ++ worker)

 {

 range = schedule.next (worker);

 world.send (worker, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

After all the calculations have concluded, the processes of the parallel program do a message-passing
reduction to add up the prime counts, leaving the total in process 0. Process 0 then prints the answer.

The master uses the -Dpj.schedule flag to partition the sieves among the parallel processes.

C6910_35.indd 649C6910_35.indd 649 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

650 CHAPTER 35 Parallel Data-Set Querying

 // Repeat until all workers have finished.

 while (activeWorkers > 0)

 {

 // Receive an empty message from any worker.

 CommStatus status =

 world.receive (null, IntegerBuf.emptyBuffer());

 worker = status.fromRank;

 // Send next chunk range to that specific worker. If null,

 // no more work.

 range = schedule.next (worker);

 world.send (worker, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

 }

 /**

 * Perform the worker section.

 */

 private static void workerSection()

 throws Exception

 {

 // Process chunks from master.

 for (;;)

 {

 // Receive sieve range from master. If null, no more work.

 ObjectItemBuf<LongRange> rangeBuf = ObjectBuf.buffer();

 world.receive (0, rangeBuf);

 LongRange range = rangeBuf.item;

 if (range == null) break;

 final long lb = range.lb();

 final long ub = range.ub();

 // Calculate sieves in parallel threads.

 team.execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (lb, ub, new LongForLoop()

 {

 // Per-thread variables plus extra padding.

Each time the worker receives a block of work from the master, the worker reuses the same parallel
thread team to do the calculations.

C6910_35.indd 650C6910_35.indd 650 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

 35.6 Hybrid Parallel Prime Counting Program 651

 Sieve thrSieve;

 long thrPrimeCount;

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

 // Use the thread-level loop schedule.

 public LongSchedule schedule()

 {

 return thrschedule;

 }

 // Initialize per-thread variables.

 public void start()

 {

 thrSieve = sieves[getThreadIndex()];

 thrPrimeCount = 0;

 }

 // Calculate all sieves.

 public void run (long first, long last)

 throws Exception

 {

 for (long lb = first; lb <= last; ++ lb)

 {

 // Get an iterator for the odd primes.

 LongIterator iter = primeList.iterator();

 // Calculate the sieve.

 thrSieve.lb (lb*CHUNK);

 thrSieve.initialize();

 thrSieve.sieveOut (iter);

 // Count primes <= x left in the sieve.

 iter = thrSieve.iterator();

 long p;

 while ((p = iter.next()) != 0 && p <= x)

 {

The worker uses the final command-line argument to partition the sieves among the parallel threads.

Each thread reuses its own per-thread sieve object created back in the main program.

C6910_35.indd 651C6910_35.indd 651 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

652 CHAPTER 35 Parallel Data-Set Querying

 ++ thrPrimeCount;

 }

 }

 }

 // Reduce per-thread prime count into global

 // prime count.

 public void finish()

 {

 primeCount.addAndGet (thrPrimeCount);

 }

 });

 }

 });

 // Report completion of sieve range to master.

 world.send (0, IntegerBuf.emptyBuffer());

 }

 };

 }

The threads follow the SMP parallel reduction pattern. Each thread updates its own per-thread prime
count. At the end of the parallel loop, each thread adds its per-thread prime count into the global reduc-
tion variable.

Table 35.1 (at the end of the chapter) lists, and Figure 35.3 plots, the PrimeCountFunctionHyb pro-
gram’s performance on the “tardis” parallel computer. The program used a guided schedule for load bal-
ancing, both among the processes and among the threads. For the first set of runs, the program computed
π(2 × 1010) = 882,206,716. For the second set of runs, the program computed π(2 × 1011) = 8,007,105,059.

We’ve now finished our study of parallel programming techniques on SMP, cluster, and hybrid paral-
lel computers. In Part V, we’ll put these techniques to use on three real-world, computation-intensive
problems: spin relaxometry analysis of MRI images, protein sequence querying, and maximum parsi-
mony phylogenetic tree construction.

C6910_35.indd 652C6910_35.indd 652 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

 35.6 Hybrid Parallel Prime Counting Program 653

 π(2 × 10
10

) π(2 × 10
11

)

1 1 0
1E0

1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3
Kt = 4

Running Time vs. Processors

T
 (

N
,K

)
(s

e
c)

 1 1 0
1E0

1E1

1E2

1E3

1E4

Kt = 1

Kt = 2
Kt = 3
Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4
Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

Figure 35.3 PrimeCountFunctionSeq/Hyb running-time metrics

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Kt = 1Kt = 2Kt = 3Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Kt = 1Kt = 2Kt = 3
Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

C6910_35.indd 653C6910_35.indd 653 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

654 CHAPTER 35 Parallel Data-Set Querying

35.7 For Further Information
On the prime counting function:

J. Derbyshire. • Prime Obsession: Bernhard Riemann and the Greatest
Unsolved Problem in Mathematics. Plume, 2003.

E. Weisstein. “Prime Counting Function.” From • MathWorld—A Wolfram Web
Resource. http://mathworld.wolfram.com/PrimeCountingFunction.html

E. Weisstein. “Prime Number Theorem.” From • MathWorld—A Wolfram Web
Resource. http://mathworld.wolfram.com/PrimeNumberTheorem.html

On the RSA public key cryptosystem:

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-•
tures and public-key cryptosystems. Communications of the ACM, 21(2):
120–126, February 1978.

N. Ferguson and B. Schneier. • Practical Cryptography. Wiley Publishing, 2003.

C6910_35.indd 654C6910_35.indd 654 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

http://mathworld.wolfram.com/PrimeCountingFunction.html
http://mathworld.wolfram.com/PrimeNumberTheorem.html

 35.7 For Further Information 655

Table 35.1 PrimeCountFunctionSeq/Hyb running-time metrics

π(2×1010) π(2×1011)

Kp Kt T Spdup Eff EDSF Kp Kt T Spdup Eff EDSF

seq seq 189997 seq seq 2378300

1 1 231003 0.822 0.822 1 1 2280435 1.043 1.043

1 2 106624 1.782 0.891 -0.077 1 2 1145290 2.077 1.038 0.004

1 3 61506 3.089 1.030 -0.101 1 3 765341 3.108 1.036 0.003

1 4 46900 4.051 1.013 -0.063 1 4 580524 4.097 1.024 0.006

2 1 103984 1.827 0.914 -0.100 2 1 1276921 1.863 0.931 0.120

2 2 45647 4.162 1.041 -0.070 2 2 566810 4.196 1.049 -0.002

2 3 34030 5.583 0.931 -0.023 2 3 386697 6.150 1.025 0.003

2 4 23731 8.006 1.001 -0.025 2 4 291897 8.148 1.018 0.003

3 1 67005 2.836 0.945 -0.065 3 1 818917 2.904 0.968 0.039

3 2 31362 6.058 1.010 -0.037 3 2 374672 6.348 1.058 -0.003

3 3 21417 8.871 0.986 -0.021 3 3 257072 9.251 1.028 0.002

3 4 16485 11.525 0.960 -0.013 3 4 192681 12.343 1.029 0.001

4 1 49344 3.850 0.963 -0.049 4 1 612509 3.883 0.971 0.025

4 2 23333 8.143 1.018 -0.027 4 2 288260 8.251 1.031 0.002

4 3 16574 11.464 0.955 -0.013 4 3 192543 12.352 1.029 0.001

4 4 12347 15.388 0.962 -0.010 4 4 144477 16.461 1.029 0.001

5 1 39425 4.819 0.964 -0.037 5 1 485892 4.895 0.979 0.016

5 2 18905 10.050 1.005 -0.020 5 2 237433 10.017 1.002 0.005

5 3 12792 14.853 0.990 -0.012 5 3 155750 15.270 1.018 0.002

5 4 9845 19.299 0.965 -0.008 5 4 116748 20.371 1.019 0.001

6 1 32462 5.853 0.975 -0.031 6 1 395173 6.018 1.003 0.008

6 2 16276 11.673 0.973 -0.014 6 2 199424 11.926 0.994 0.004

6 3 10920 17.399 0.967 -0.009 6 3 130662 18.202 1.011 0.002

6 4 8361 22.724 0.947 -0.006 6 4 96220 24.717 1.030 0.001

7 1 27780 6.839 0.977 -0.026 7 1 337203 7.053 1.008 0.006

7 2 13545 14.027 1.002 -0.014 7 2 169645 14.019 1.001 0.003

7 3 9541 19.914 0.948 -0.007 7 3 112019 21.231 1.011 0.002

7 4 7349 25.853 0.923 -0.004 7 4 83658 28.429 1.015 0.001

8 1 24218 7.845 0.981 -0.023 8 1 301769 7.881 0.985 0.008

8 2 12139 15.652 0.978 -0.011 8 2 147287 16.147 1.009 0.002

8 3 8168 23.261 0.969 -0.007 8 3 97480 24.398 1.017 0.001

8 4 6346 29.940 0.936 -0.004 8 4 74263 32.025 1.001 0.001

9 1 21721 8.747 0.972 -0.019 9 1 267280 8.898 0.989 0.007

9 2 10732 17.704 0.984 -0.010 9 2 131985 18.019 1.001 0.002

9 3 7263 26.160 0.969 -0.006 9 3 86812 27.396 1.015 0.001

9 4 5730 33.158 0.921 -0.003 9 4 66096 35.983 1.000 0.001

10 1 19464 9.761 0.976 -0.017 10 1 237365 10.020 1.002 0.005

10 2 9770 19.447 0.972 -0.008 10 2 119011 19.984 0.999 0.002

10 3 6666 28.502 0.950 -0.005 10 3 78649 30.239 1.008 0.001

10 4 5194 36.580 0.915 -0.003 10 4 59264 40.131 1.003 0.001

C6910_35.indd 655C6910_35.indd 655 2/2/09 11:33:16 AM2/2/09 11:33:16 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

657

P A R T IV
Exercises 1–8. Here is a hybrid parallel version of Floyd’s Algorithm for computing all
shortest paths in an n-vertex graph whose distance matrix is d, an n-by-n matrix. Each
element in d is a Java double-precision floating-point number. The middle and inner
loops are executed by a parallel thread team. This version uses the scatter-gather pat-
tern rather than the parallel input/output files pattern. The sequential version of Floyd’s
Algorithm is the same, without the communication operations or parallel team.

The distance matrix d is divided into equal-sized row slices among the processes.
In each process, the slice is subdivided equally among the parallel team threads.
Measurements show that executing the statement on line 6 takes 0.01 microseconds.
Also, measurements show that sending a message from one process to another takes
(400 + 0.8B) microseconds, where B is the number of bits of data in the message.

Give an expression for the running time 1. T1 in microseconds
of the sequential version of Floyd’s Algorithm as a function
of n, the number of nodes. Ignore the loop overhead time.

Exercises

1 Scatter row slices of D from process 0 to each process

2 For i in 0 .. N-1

3 Broadcast row i of D to all processes

4 Parallel for r in this process’s subrange of 0 .. N-1

5 For c in 0 .. N-1

6 D[r,c] = min (D[r,c], D[r,i] + D[i,c])

7 Gather row slices of D from each process into process 0

C6910_Part4Exercises.indd 657C6910_Part4Exercises.indd 657 2/2/09 11:34:33 AM2/2/09 11:34:33 AM

658 PART IV Exercises

Give an expression for the time 2. T2 in microseconds needed to send all the
messages for the scatter operation on line 1 as a function of n, the number of
nodes, Kp, the number of parallel processes, and Kt, the number of parallel
threads per process (whichever variables are necessary).

Give an expression for the time 3. T3 in microseconds needed to send all the
messages for the broadcast operation on line 3 as a function of n, the number
of nodes, Kp, the number of parallel processes, and Kt, the number of parallel
threads per process (whichever variables are necessary).

Give an expression for the running time 4. T4 in microseconds of the hybrid par-
allel version of Floyd’s Algorithm as a function of n, the number of nodes, Kp,
the number of parallel processes, and Kt, the number of parallel threads per
process (whichever variables are necessary). Ignore the loop overhead time.

On a hybrid parallel computer where each node is a dual-core PC, how many 5.
parallel processes should be used to obtain the smallest running time for a
2,000-vertex graph? (Note that the number of parallel processes must be an
integer.)

On a hybrid parallel computer where each node is a dual-core PC, what is the 6.
largest speedup that can be obtained for a 2,000-vertex graph?

On a hybrid parallel computer where each node is an 8-CPU SMP server, how 7.
many parallel processes should be used to obtain the smallest running time for a
2,000-vertex graph? (Note that the number of parallel processes must be
an integer.)

On a hybrid parallel computer where each node is an 8-CPU SMP server, what 8.
is the largest speedup that can be obtained for a 2,000-vertex graph?

Exercises 9–15. Given an integer i > 0, consider the following procedure:

x ← i
While x > 1:
 If x is even:
 x ← x/2
 Else:
 x ← 3x+1

The Collatz Conjecture, proposed by Lothar Collatz in 1937, states that for every i > 0, the preced-
ing procedure terminates; that is, x eventually becomes 1. Although mathematicians believe the Collatz
Conjecture is true, no one has been able to prove it yet.

Write a sequential program to investigate whether the Collatz Conjecture is 9.
true for all values of i from 1 through N, where N is a command line argu-
ment. Use type long so N can be as large as 2

63
–1. The program also has a

command-line argument MaxIter (type long). In the preceding procedure,

C6910_Part4Exercises.indd 658C6910_Part4Exercises.indd 658 2/2/09 11:34:33 AM2/2/09 11:34:33 AM

 659

for a certain value of i, if x reaches 1 before the number of while loop itera-
tions reaches MaxIter, then the Collatz Conjecture is true for i. If the number
of while loop iterations reaches MaxIter before x reaches 1, then the Collatz
Conjecture may be false for i. (The Collatz Conjecture is not definitely false
for i because x might reach 1 with further iterations, but the program has to
stop somewhere.) The program prints the values of i for which the Collatz
Conjecture may be false.

Write a hybrid parallel program to investigate the Collatz Conjecture. The 10.
parallel program has the same command-line arguments and the same output
as the sequential program. The parallel program uses one-level scheduling.

Write a hybrid parallel program to investigate the Collatz Conjecture. The 11.
parallel program has the same command-line arguments and the same output
as the sequential program. The parallel program uses two-level scheduling; the
thread-level schedule is specified as an additional command-line argument.

Measure the two parallel programs’ running times as a function of 12. N, Kp
(number of processes), and Kt (number of threads per process), using a fixed
schedule for the processes and the threads. Calculate the program’s running-
time metrics.

Measure the two parallel programs’ running times as a function of 13. N, Kp
(number of processes), and Kt (number of threads per process), using a
dynamic schedule of an appropriate size for the processes and the threads.
Calculate the program’s running-time metrics.

Measure the two parallel programs’ running times as a function of 14. N, Kp
(number of processes), and Kt (number of threads per process), using a guided
schedule for the processes and the threads. Calculate the program’s running-
time metrics.

Based on your data, which schedule gives the best performance? Explain why.15.

Exercises 16–20. A three-dimensional random walk is defined as follows. A particle is initially posi-
tioned at (0, 0, 0) in the X-Y-Z coordinate space. The particle does a sequence of N steps. At each step,
the particle chooses one of the six directions left, right, ahead, back, up, or down at random, then moves
one unit in that direction. Specifically, if the particle is at (x, y, z):

With probability 1/6 the particle moves left to (x–1, y, z).
With probability 1/6 the particle moves right to (x+1, y, z).
With probability 1/6 the particle moves back to (x, y–1, z).
With probability 1/6 the particle moves ahead to (x, y+1, z).
With probability 1/6 the particle moves down to (x, y, z–1).
With probability 1/6 the particle moves up to (x, y, z+1).

C6910_Part4Exercises.indd 659C6910_Part4Exercises.indd 659 2/2/09 11:34:33 AM2/2/09 11:34:33 AM

660 PART IV Exercises

Write a sequential program to calculate the particle’s final position. The 16.
program’s command-line arguments are the random seed and the number of
steps N. The program prints the particle’s final position (x, y, z) as well as the
particle’s final distance from the origin.

Describe the sequential dependencies, if any, in the program. Is it possible to 17.
parallelize the program?

If possible, write a hybrid parallel program to calculate the particle’s final 18.
position. The parallel program has the same command-line arguments and
the same output as the sequential program. Measure the parallel program’s
running times as a function of N, Kp (number of processes), and Kt (number
of threads per process), calculate the pro gram’s running-time metrics, and
improve the program’s design, if necessary.

What is the particle’s expected final distance from the origin as a function of 19.
the number of steps N?

Run your program for a large number of steps and a variety of different ran-20.
dom seeds. Do the particle’s computed final distances from the origin agree
with the expected final distance?

Exercises 21–25. In 1955, the RAND Corporation produced a book titled A Million Random Digits with
100,000 Normal Deviates. The first part of the book was just as the title says, one million random digits
(0–9), printed in groups of five for readability. The digits were generated by a hardware electronic simu-
lation of a roulette wheel using an environmental noise source for randomness.

Write a sequential program to produce a file of random digits. The program 21.
must take three command-line arguments: a random seed (type long); the num-
ber of digits to produce, N (type long); and the output file name. The program
must initialize a pseudorandom number generator with the given seed; generate
N random numbers each uniformly distributed between 0 and 9 inclusive; and
write the numbers into a plain text file with the given output file name. There are
to be no spaces or newlines in the output file, just the numbers.

Design a hybrid parallel version of this program. The program must be designed 22.
so that if run with Kp parallel processes and Kt parallel threads per process, the
speedup will be as close to Kp·Kt as possible. The program must be designed
so that for a given seed and N, the output file produced is always the same as
the sequential version, regardless of what Kp and Kt are. The program must be
designed so that only one process writes the output file. Describe your design in
detail. Be especially clear in your description of any message passing operations
needed: describe what the message passing operations are; describe which pro-
cess and which data structure the data comes from; and describe which process
and which data structure the data goes into. Also, be especially clear in your
description of how the program generates the random numbers.

C6910_Part4Exercises.indd 660C6910_Part4Exercises.indd 660 2/2/09 11:34:33 AM2/2/09 11:34:33 AM

 661

Design another hybrid parallel version of this program with the same require-23.
ments as Exercise 22, except that each process writes its own section of the out-
put file. (Assume all processors can access the same output file.) Describe your
design in detail. Be especially clear in your description of any message passing
operations needed: describe what the message passing operations are; describe
which process and which data structure the data comes from; and describe
which process and which data structure the data goes into. Also, be especially
clear in your description of how the program generates the random numbers.

Without actually measuring the running times, which hybrid parallel version 24.
do you expect will have better performance? Explain why.

Implement the sequential and the two hybrid parallel versions using Parallel 25.
Java. Measure the running times as a function of N, Kp, and Kt, and calculate
the running-time metrics. Do your measurements support your hypothesis
from Exercise 24? If not, explain why not.

Write a hybrid parallel program to calculate 26. π2(x), the number of twin primes
less than or equal to x. The value of x is given as a command-line argument. If
p is a prime and p+2 is a prime, then (p, p+2) are called twin primes. The first
few twin primes are (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), and (41, 43).
Caution: If p is a member of more than one pair of twin primes—like p=5—
then p is counted only once when computing π

2
(x).

Caution: If your program uses sieving in multiple chunks like the
PrimeCountFunctionHyb program, keep in mind that the two primes of a pair
may be split across two chunks; furthermore, these chunks may be calculated
in different processors.

Write a hybrid parallel program to calculate 27. πi(x), the number of primes less
than or equal to x such that p and p+i are both prime. The values of x and i are
given as command-line arguments. For i=2, (p, p+2) are called twin primes.
For i=4, (p, p+4) are called cousin primes. For i=6, (p, p+6) are called sexy
primes (from the Latin word for “six,” of course!).

Exercises 28–29. Alice, the computational astrophysicist, ran a gravitational N-body program to
compute the motion of 10,000 stars in a star cluster. The program generated an output file consisting
of 1,000,000 snapshots at equal time intervals. Each snapshot consists of the position and velocity of
each star in the star cluster. Each position and velocity consists of the X, Y, and Z coordinates. Each
coordinate is stored as a 4-byte float.

What is the output file’s length in bytes?28.

Alice wants to analyze the program’s results to detect whether any stars 29.
escaped from the cluster. A star escapes from the cluster if the magnitude of
the star’s velocity ever exceeds a specified threshold (the escape velocity of
the cluster). Every star that escaped is to be reported, along with the time at

C6910_Part4Exercises.indd 661C6910_Part4Exercises.indd 661 2/2/09 11:34:33 AM2/2/09 11:34:33 AM

662 PART IV Exercises

which it exceeded the escape velocity. Alice wants to use a parallel program
to speed up the analysis. Which parallel data-set querying strategy should she
use? Justify your answer.

Exercises 30–31. Barbara, the computational biologist, has a group of 2,000 protein sequences. Each
sequence is a string of characters; each character stands for one amino acid. The average length of the
protein sequences is 500 characters. Each character is stored in one byte.

What is the data set’s size in bytes?30.

Barbara wants to discover which proteins are the most similar to each other. 31.
To compute the similarity of two proteins, run a “local alignment” algorithm
on the two proteins, which yields a score (a single number). The local align-
ment algorithm’s running time is O(m·n), where m and n are the lengths of the
two sequences being compared. Higher scores indicate more similar proteins.
All pairs of proteins with a similarity score above a specified threshold are to
be reported. Barbara wants to use a parallel program to speed up the analysis.
Which parallel data-set querying strategy should she use? Justify your answer.

Exercises 32–33. Up until now, we’ve assumed that a hybrid parallel computer is homogeneous: each
backend node has the same number of CPUs, and all the CPUs on all the nodes run at the same speed. Let’s
change the first part of this assumption: different backend nodes have different numbers of CPUs; however,
all the CPUs on all the nodes still run at the same speed. Keep in mind that when writing a hybrid parallel
program, you don’t know how many CPUs there will be on each node when you run the program.

Under the new assumptions, do you expect the AES key search hybrid parallel 32.
program in Chapter 32 still to experience good speedups as the number of
processors scales up? If so, explain why. If not, explain why not, and describe
how you would change the program’s design to get good speedups.

Under the new assumptions, do you expect the Mandelbrot Set hybrid parallel 33.
program in Chapter 33 still to experience good speedups as the number of
processors scales up? If so, explain why. If not, explain why not, and describe
how you would change the program’s design to get good speedups.

C6910_Part4Exercises.indd 662C6910_Part4Exercises.indd 662 2/2/09 11:34:33 AM2/2/09 11:34:33 AM

663

Chapter 36
MRI Spin Relaxometry 665

Chapter 37
Protein Sequence Querying 703

Chapter 38
Phylogenetic Tree Construction 753

Applications

P A R T V

C6910_36.indd 663C6910_36.indd 663 2/2/09 12:37:49 PM2/2/09 12:37:49 PM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

665

C H A P T E R 36
in which we learn a bit about how an MRI scanner works; we state the problem of

analyzing MRI signals to determine spin relaxation rates; we derive an algorithm to

perform the analysis; we implement the algorithm as a cluster parallel program; and

we speculate how the results could help diagnose disease

MRI Spin Relaxometry

C6910_36.indd 665C6910_36.indd 665 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

C H A P T E R36 MRI Spin Relaxometry

36.1 MRI Scanning
A magnetic resonance image (MRI) scanner, like the one in Figure 36.1, can be used to take pictures
of a person’s insides. Although the pictures are similar to those obtained using X-rays, an MRI scanner
does not use high-energy radiation and is therefore potentially less harmful than an X-ray machine. In
addition, MR images can be analyzed to yield information about the chemical composition of the tissues
being scanned. The analysis requires lengthy computations; however, the computations can be done in a
massively parallel fashion. In this chapter, we are going to design a parallel program to carry out such an
analysis. Before we can do that, we need some background about the physics and mathematics of
MRI scanning.

 Courtesy of NASA. http://rst.gsfc.nasa.gov/Intro/mri.jpg

 Figure 36.1 An MRI scanner

An MRI scanner uses the spins of atomic nuclei, primarily the nuclei of hydrogen atoms, which
are abundant in the body. Spin is a quantum mechanical property that makes the atomic nucleus behave
like a tiny magnet. If a bunch of atoms are placed in a strong magnetic field, the atoms’ spins tend to
align themselves with the field. The preferred spin alignment is in the same direction as the field, like a
compass needle pointing north; in this case, the atom is in a low-energy state. However, the spin can also
align in the direction opposite to the field, like a compass needle pointing south; in this case, the atom is
in a high-energy state.

Consider a large number of atoms in a region of the body under the influence of an external magnetic
field. Some of the spins will be aligned with the field, others against the field. Assign a number called the
magnet ization to each atom. The magnetization is positive if the spin is aligned with the field; it is nega-
tive if the spin is aligned against the field. Now add up the magnetizations of all the atoms in the region
to get the net magnetization. If most of the spins are aligned against the field, the net magnetization will
be negative; if most of the spins are aligned with the field, the net magnetization will be positive; if equal
numbers are aligned with and against the field, the net magnetization will be zero.

C6910_36.indd Sec1:666C6910_36.indd Sec1:666 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

http://rst.gsfc.nasa.gov/Intro/mri.jpg

 36.1 MRI Scanning 667

Suppose we impose such an external magnetic field on a region of the body. Most of the atoms will go
into the low-energy state, with spins aligned with the field, resulting in a positive net magnetization. Now
suppose we send a pulse of energy through the region—energy of just the right frequency to flip the atoms’
spins to the high-energy state. The frequency required depends on the type of atom and the strength of the
external magnetic field. For hydrogen atoms in a 1-Tesla field, the frequency is 42.6 megahertz—a radio
frequency (RF), far lower than X-ray frequencies. The region’s net magnetization is now negative. However,
as time passes, the atoms tend to flip back to the low-energy state. The net magnetization increases from
a negative value toward zero. As more time passes, more atoms flip to the low-energy state, and the net
magnetization becomes positive. Eventually, the net magnetization returns to its original value. A plot of net
magnetization versus time looks like Figure 36.2.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
−100

−80

−60

−40

−20

0

2 0

4 0

6 0

8 0

100

Net Magnetization vs. Time

Time, t (sec)

N
e

t
m

a
g

n
e

ti
za

ti
o

n

 Figure 36.2 Net magnetization versus time for inversion recovery sequence

An MRI scanner uses massive superconducting magnets to impose a strong external magnetic field
along the axis of the scanner, through the cavity in the center where the patient lies (see Figure 36.1). The
MRI scanner then emits a pulse of RF energy. The RF pulse flips, or “inverts,” the spins of the atoms in
the patient. As the spins flip back, or “recover” to their original states, the MRI scanner measures the net
magnetization within a thin slice perpendicular to the axis (Figure 36.3). The slice’s position is selected
to pass through a section of the brain, or knee, or whatever part of the anatomy the doctor wants to exam-
ine. This measurement procedure is called the inversion recovery sequence. (MRI scanners can also
perform other measurement sequences that we will not discuss.)

C6910_36.indd Sec1:667C6910_36.indd Sec1:667 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

668 CHAPTER 36 MRI Spin Relaxometry

Slice

 Figure 36.3 MRI scan of a salami, illustrating a slice, voxels, and pixels

Rather than just measure the net magnetization signal, or spin signal, for the entire slice, the MRI
scanner subdivides the slice into a rectangular grid. Each grid element, or voxel, corresponds to a small
volume inside the patient. The MRI scanner measures the spin signal separately for each voxel and
records the data as a two-dimensional image. Each pixel in the image corresponds to a voxel in the slice.

The MRI scanner takes a series of snapshots of the slice’s spin signals. Soon after the RF pulse
that inverts the spins, when the net magnetizations are mostly negative, the MRI scanner takes the first
snapshot. The MRI scanner continues taking snapshots at certain time intervals as the spins relax back to
their original states and the net magnetizations become positive again. For example, Figure 36.4 depicts a
series of spin signal measurements of a slice through someone’s brain. Each snapshot is shown as a
64 × 64-pixel image. Each pixel’s gray level corresponds to the measured spin signal of a voxel at that
time, with negative values being dark and positive values being light.

t = 0.0365 t = 0.6245 t = 1.4125 t = 3.1405 t = 17.0905
Figure 36.4 Sequence of spin signal MR images

To extract the spin signal as a function of time for a particular voxel, we have to take the correspond-
ing pixel’s measurement from each of the images (Figure 36.5). This gives a series of spin signal values
taken at a series of time values. Figure 36.6 shows the spin signal for the pixel in row 32, column 46
(pixel number 2,094) of the example data set. This data set consists of 64 images; thus, each pixel’s spin
signal series is 64 elements long, as is the time series.

Voxel

Pixel

C6910_36.indd Sec1:668C6910_36.indd Sec1:668 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.1 MRI Scanning 669

t = 0.0365

t = 0.6245

t = 1.4125

t = 3.1405

t = 17.0905

Pixel
spin
signal
S (t)

Figure 36.5 Extracting the spin signal for one pixel

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
−2.0E4

−1.6E4

−1.2E4

−8.0E3

−4.0E3

0.0E0

4.0E3

8.0E3

1.2E4

1.6E4

2.0E4

Spin Signal vs. Time for Pixel 2094

Time, t (sec)

S
p

in
 s

ig
n

a
l,

 S
 (

t)

Figure 36.6 Spin signal for pixel 2,094

The series of images we have examined is for one slice through the patient. In a typical MRI scan,
however, the scanner takes images of many slices through the patient, each slice at a slightly different
location along the axis (Figure 36.7). Stacking up the slices yields a three-dimensional image of the
patient’s insides. If we have a 64 × 64 × 64-voxel MR image, and each voxel has a spin signal series with
64 elements, there are nearly 17 million spin signal values to analyze—and this is a rather small MRI

C6910_36.indd Sec1:669C6910_36.indd Sec1:669 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

670 CHAPTER 36 MRI Spin Relaxometry

scan. An MRI scanner typically takes image snapshots of 256 × 256 pixels. Perhaps you’re starting to get
an idea of the amount of computation it takes to analyze an MR image.

Slices

Figure 36.7 Three-dimensional MRI scan

36.2 Spin Relaxometry Analysis
The inversion recovery sequence spin signal for a voxel, S(t), obeys this formula,

 (36.1)

where r is the spin density and R1 is the spin-lattice relaxation rate. The spin signal relaxes from –r at
t=0 to + r at t=∞. R1 determines the rate at which the spin signal relaxes. If R1 is small, S relaxes slowly
and takes a long time to reach its asymptotic value. If R1 is large, S relaxes quickly. The spin-lattice
relaxation time T1 is 1/R1; if R1 is large, T1 is small, and vice versa. T1 is measured in seconds (sec) or
milliseconds (msec). R1 is measured in sec–1.

The spin density and spin-lattice relaxation rate depend on the type of tissue in the voxel. r depends
on the abundance of hydrogen atoms in the tissue. R1 depends on the kinds of molecules in the tissue; the
spins of hydrogen atoms in different molecules relax at different rates. Here are the characteristic spin-
lattice relaxation times and rates of six types of tissues found in the brain (from the paper “A multispec-
tral analysis of brain tissues” by Fletcher et al.):

Tissue T1 (sec) R1 (sec–1)

Cerebrospinal fluid 0.80 – 20.0 0.05 – 1.25

White matter 0.76 – 1.08 0.93 – 1.32

Gray matter 1.09 – 2.15 0.47 – 0.92

Meninges 0.50 – 2.20 0.45 – 2.00

Muscle 0.95 – 1.82 0.55 – 1.05

Adipose 0.20 – 0.75 1.33 – 5.00

At this point, we change the notation slightly from what MRI physicists use. R1 has a subscript “1”
because there is another relaxation rate, the spin-spin relaxation rate, symbolized as R2. The spin-spin
relaxation rate doesn’t appear in the inversion recovery sequence. To avoid a confusing multiplicity

C6910_36.indd Sec1:670C6910_36.indd Sec1:670 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.2 Spin Relaxometry Analysis 671

of subscripts in the formulas we are about to study, we will use just the symbol R for the spin-lattice
relaxation rate.

Each voxel typically encompasses more than one kind of tissue. The measured spin signal is then the
superposition, or sum, of several individual spin signals,

 (36.2)

where N is the number of tissues, rj is the spin density for the j-th tissue, and Rj is the spin-lattice relax-
ation rate for the j-th tissue.

Spin relaxometry is the process of analyzing the spin signal for a voxel, like Figure 36.6, to deter-
mine the spin densities and spin-lattice relaxation rates of the tissues in the voxel, rj and Rj. The relax-
ation rates in particular give clues about the tissues’ molecular composition. In healthy tissue, normal R
values are observed. In diseased tissue, abnormal chemicals may be present and abnormal R values may
be observed. Thus, a doctor can use a spin relaxometry analysis of an MRI scan to detect disease.

We are facing a curve-fitting problem. We need to find the number of tissues N and the parameters
rj and Rj for 1 ≤ j ≤ N so that the theoretical model for the signal, the right side of Equation 36.2, best
matches the actual measured signal S(t) on the left side. We will use the usual least-squares criterion and
find the parameters that minimize the sum of the squares of the differences between the measured values
and the model values.

Because the model is a nonlinear function of the Rj parameters, we must use a nonlinear least-squares
curve-fitting procedure. However, the nonlinear least-squares algorithm requires an initial estimate of the
solution; we must know how many tissues there are (N) and roughly what their parameters are (rj and Rj).
The algorithm then adjusts the parameters to yield the best curve fit. If we start the algorithm with the
wrong number of tissues, or with initial parameter estimates that are too far off, the algorithm cannot find a
good solution.

We can use a linear least-squares curve-fitting procedure to solve the problem partway and come up
with an initial estimate to feed into the nonlinear least-squares algorithm. Define the model function f to
be the following:

 (36.3)

Then, the theoretical spin signal for the i-th time sample ti is the following:

 (36.4)

Note that (36.4) is a linear function of the f values. Let there be M time samples t1 through tM and M spin
signal samples S1 through SM, where Si = S(ti). Repeating (36.4) for the M time samples and equating
these to the M signal samples gives the following:

 (36.5)

C6910_36.indd Sec1:671C6910_36.indd Sec1:671 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

672 CHAPTER 36 MRI Spin Relaxometry

Or, expressed more compactly in matrix notation,

 (36.6)

where F, known as the design matrix of the linear least-squares problem, is an M × N-element matrix
with Fij = f (Rj, ti), r is an N-element vector of spin density values, and S is an M-element vector of mea-
sured signal values.

Suppose we pick a series of N relaxation rates Rj, 1 ≤ j ≤ N, that span the range of relaxation rates we
expect to find in the tissues. For example, we might pick 200 relaxation rates from R1 = 0.01 to R200 = 10.0.
We also know the M time values ti, 1 ≤ i ≤ M. From this information, we can calculate F. We then can solve
the linear system of equations (36.6) for the unknown r, given the known F and S. One further property of
our model turns out to be crucial for a successful solution. The spin densities must all be nonnegative (rj ≥ 0).
We therefore use a nonnegative linear least-squares algorithm to find the spin densities that give the best
fit between the model and the measured spin signal for the chosen relaxation rates. Class edu.rit.numeric.
NonNegativeLeastSquares in the Parallel Java Library implements the algorithm. It is a translation into Java of
the public domain Fortran subroutine NNLS by Charles Lawson and Richard Hanson.

Figure 36.8 shows the nonnegative linear least-squares solution of (36.6) for pixel 2,094 of the example
data set using 200 relaxation rates logarithmically spaced from 0.01 to 10.0. Each dot plots rj on the vertical
axis versus Rj on the horizontal axis. All but a few of the spin densities are zero. Specifically, of the 200
potential tissues (relaxation rates), only the following are actually present (have nonzero spin densities):

rj Rj

796 0.285

6332 0.631

8291 0.653

770 10.000

1.0E−2 1.0E−1 1.0E0 1.0E1
0.0E0

1.0E3

2.0E3

3.0E3

4.0E3

5.0E3

6.0E3

7.0E3

8.0E3

9.0E3

1.0E4

Spin Density vs. Spin−Lattice Relaxation Rate for Pixel 2094

Spin−lattice relaxation rate (sec)

S
p

in
 d

e
n

si
ty

 Figure 36.8 Nonnegative linear least-squares solution for pixel 2,094

C6910_36.indd Sec1:672C6910_36.indd Sec1:672 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.2 Spin Relaxometry Analysis 673

There are three peaks in the linear least-squares solution, indicating that pixel 2,094 has three tissues.
(A peak occurs at index j if rj > rj-1 and rj > rj+1.) The first tissue has a relaxation rate somewhere around
0.285. The second tissue has a relaxation rate somewhere around 0.631–0.653. The third tissue has a
relaxation rate of 10.0 or greater.

The linear least-squares solution gives the model (Equation 36.2) for the nonlinear least-squares
curve fit. The number of tissues N is number of peaks. The peaks’ densities and relaxation rates are the
initial estimates for the parameters rj and Rj. For pixel 2,094, the initial estimates are the following:

rj Rj

796 0.285

8291 0.653

770 10.000

To do the nonlinear least-squares curve fit, we use the Levenberg-Marquardt algorithm. This algorithm
finds the minimum of the sum of the squares of a series of functions. For the spin relaxometry analysis,
the functions are the differences between the theoretical spin signal and the actual spin signal for the M
time samples, namely the following:

 (36.7)

Starting from the initial estimates for the parameters rj and Rj, the algorithm adjusts the parameter values
to minimize the sum of the squares of the functions (36.7). That is, the algorithm does a least-squares
curve fit of the model spin signal to the measured spin signal. The algorithm does not require the model
to be a linear function of the parameters, and, in fact, the algorithm is designed especially for nonlinear
functions.

To do its job, the Levenberg-Marquardt algorithm needs to calculate the partial derivatives of the
model functions (36.7) with respect to the parameters rj and Rj. The partial derivatives are the following:

 (36.8)

 (36.9)

C6910_36.indd Sec1:673C6910_36.indd Sec1:673 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

674 CHAPTER 36 MRI Spin Relaxometry

For a given set of parameter values, the Levenberg-Marquardt algorithm uses the partial deriva-
tives to calculate the gradient, or slope, of the sum of the squares of the functions (36.7). Adjusting the
parameters in the direction of decreasing gradient makes the sum-of-squares smaller. By adjusting the
parameters iteratively in a series of small steps, the algorithm eventually finds a spot in parameter space
where the gradient is zero and any changes in the parameters cause the sum-of-squares to increase—that
is, a minimum of the sum-of-squares. When the algorithm finishes, the final parameter values give the
nonlinear least-squares curve fit.

More precisely, the Levenberg-Marquardt algorithm finds the spot in parameter space closest to
the initial parameter estimates where the gradient is zero; that is, a “local minimum.” To yield good
results, the algorithm must start with initial parameter estimates close to the final solution. The purpose
of the linear least-squares algorithm is to find this nearby starting point for the nonlinear least-squares
algorithm.

Details of how the Levenberg-Marquardt algorithm operates are beyond the scope of this book. Class
edu.rit.numeric.NonLinearLeastSquares in the Parallel Java Library implements the algorithm. It is a
translation into Java of the public domain Fortran subroutine LMDER, part of the MINPACK Library, by
Jorge Moré, Burt Garbow, and Ken Hillstrom.

For pixel 2,094 in the example data set, here are the final parameter values after the nonlinear least-
squares curve fit:

rj Rj

1049 0.262

14437 0.659

697 17.289

Figure 36.9 plots the fitted curve for pixel 2,094 with the preceding parameters, along with the original
measured spin signal data points.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
−2.0E4

−1.6E4

−1.2E4

−8.0E3

−4.0E3

0.0E0

4.0E3

8.0E3

1.2E4

1.6E4

2.0E4

Spin Signal vs. Time for Pixel 2094

Time, t (sec)

S
p

in
 s

ig
n

a
l,

 S
 (

t)

 Figure 36.9 Nonlinear least-squares solution for pixel 2,094

C6910_36.indd Sec1:674C6910_36.indd Sec1:674 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.3 Sequential Spin Relaxometry Program 675

The symbol χ2 denotes the sum over all the data points of the squares of the differences between
the fitted curve and the measured signal. The smaller the χ2, the closer the fit. After the linear least-
squares curve fit for pixel 2,094, χ2 was 9.19×106. After the nonlinear least-squares curve fit, χ2 was
9.06×106. By adjusting the tissue parameter values found by the linear algorithm, the nonlinear algo-
rithm came up with a better fit.

36.3 Sequential Spin Relaxometry Program
Now that we have a technique for analyzing one pixel, we can write a program to do a spin relaxometry
analysis of an entire MRI scan. We’ll begin with a sequential version. Figure 36.10 shows the overall
analysis workflow. The first step is to convert the raw MR image data produced by the MRI scanner to
a standard format stored in a group of spin signal data set files. Each file holds the time series t

i
 and the

pixels’ spin signal series S
i
 for one slice of the MRI scan. CreateSignalDataSet is a program that does this

conversion for the example MR image we’ve been using. Because this program doesn’t do any lengthy
processing—it just shuffles the data around—it’s not worth the effort to make it a parallel program.

Raw MR
image data

Slice 0

CreateSignal
DataSet

Spin signal
data set file

Tissues
data set file

Display
results

Raw MR
image data

Slice 1

CreateSignal
DataSet

Spin signal
data set file

Tissues
data set file

Display
results

Raw MR
image data

Slice 2

CreateSignal
DataSet

Spin signal
data set file

Tissues
data set file

Display
results

Raw MR
image data

Slice 3

CreateSignal
DataSet

Spin signal
data set file

Tissues
data set file

Display
results

Spin
Relaxometry

Seq

Figure 36.10 MRI spin relaxometry analysis workflow

C6910_36.indd Sec1:675C6910_36.indd Sec1:675 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

676 CHAPTER 36 MRI Spin Relaxometry

The second step is to do the spin relaxometry analysis for every pixel of every slice of the MRI scan.
This is where all the time-consuming calculations happen, and this is the part we will parallelize. Class
SpinRelaxometrySeq is the sequential version of the analysis program. For each spin signal data set file,
the program writes a tissues data set file consisting of the number of tissues and the rj and Rj values for
each pixel.

Once the analysis is complete, other (non-parallel) programs postprocess and display the results
stored in the tissues data set files. We will look at examples of these postprocessing programs later.

Figure 36.11 shows the classes from which the sequential spin relaxometry analysis program is built and
their “uses” relationships. (A → B means class A uses class B.) Unless otherwise noted, these classes are in
package edu.rit.mri. We’ll describe what every class does, but study the code for only a few key classes.

SpinRelaxometrySeq

SignalDataSetReader

PixelSignal

SpinSignal

PixelAnalysis

NonNegativeLeastSquares

NonLinearLeastSquares

VectorFunction

SpinSignalDifference

TissuesDataSetWriter

PixelTissues

Externalizable

CreateSignalDataSet

SignalDataSetWriter

PlotPixel

TissuesDataSetReader

Figure 36.11 Spin relaxometry analysis programs’ class relationships

Classes SignalDataSetReader and SignalDataSetWriter provide objects that •
read and write, respectively, a spin signal data set file for one slice of an MRI
scan (one MR image). The file contains the series of time values at which the
MRI scanner took its measurements as well as the series of spin signal values
for each pixel in the image. The file also has an index that gives the offset of
each pixel’s spin signal series. Given a pixel index, the SignalDataSetReader

C6910_36.indd Sec1:676C6910_36.indd Sec1:676 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.3 Sequential Spin Relaxometry Program 677

object reads the offset at that index, and then seeks directly to that offset to
read the spin signal. This allows the program to quickly read an arbitrary
pixel’s spin signal.

Class PixelSignal provides an object containing the series of spin signal •
values for one pixel, along with the pixel index and an index designating the
MR image. Class SignalDataSetReader reads the spin signal data set file and
returns PixelSignal objects. Class SignalData Set Writer takes PixelSignal
objects and writes them to the file.

As already mentioned, class CreateSignalDataSet is a main program that takes •
raw MR image data and writes it to a file using a SignalDataSetWriter, so the
other programs can read the data using a SignalDataSetReader.

Classes TissuesDataSetReader and TissuesDataSetWriter provide objects that •
read and write, respectively, a tissues data set file for one slice of an MRI scan
(one MR image). For each pixel in the image, the file contains the number
of tissues and the spin density and spin-lattice relaxation rate for each tissue.
Like the spin signal data set file, the tissues data set file also has an index that
gives the offset of each pixel’s tissues data.

Class PixelTissues provides an object containing the tissue parameters •
for one pixel, along with the pixel index and an index designating the MR
image. Class TissuesDataSetReader reads the tissues data set file and returns
PixelTissues objects. Class TissuesData Set Writer takes PixelTissues objects
and writes them to the file.

Class PlotPixel is one of several main programs that displays the results of a •
spin relaxometry analysis. This program generated the plot in Figure 36.9.

Class SpinSignal provides methods for calculating the spin signal formulas •
(36.1), (36.3), (36.8), and (36.9).

Class edu.rit.numeric.NonNegativeLeastSquares provides an object that finds •
the solution to a nonnegative linear least-squares problem.

Class edu.rit.numeric.NonLinearLeastSquares provides an object that finds the •
solution to a nonlinear least-squares problem using the Levenberg-Marquardt
method. This class finds a minimum of the sum of the squares of any series of
functions; the functions are defined by a class implementing interface edu.rit.
numeric.VectorFunction.

Class SpinSignalDifference implements interface VectorFunction and pro-•
vides methods for calculating the spin signal functions (36.7) and their partial
derivatives (36.8–36.9) to be solved by class NonLinearLeastSquares.

Class PixelAnalysis provides a static • analyze() method that carries out the MRI
spin relaxometry analysis procedure on one pixel, as described in Section 36.2.

C6910_36.indd Sec1:677C6910_36.indd Sec1:677 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

678 CHAPTER 36 MRI Spin Relaxometry

package edu.rit.mri;

import edu.rit.mri.SpinSignal;

import edu.rit.mri.SpinSignalDifference;

import edu.rit.numeric.NonLinearLeastSquares;

import edu.rit.numeric.NonNegativeLeastSquares;

import edu.rit.numeric.Series;

import edu.rit.numeric.TooManyIterationsException;

import java.util.ArrayList;

import java.util.List;

public class PixelAnalysis

 {

 /**

 * Do a spin relaxometry analysis.

 *

 * @param t_series

 * Series of measured time values, of length M (input).

 * @param S_series

 * Series of measured spin signal values, of length M

 * (input).

 * @param R1_series

 * Series of fixed spin-lattice relaxation rates for the

 * linear part of the analysis, of length N (input).

 * @param A

 * Design matrix for the linear part of the analysis (input).

 * This must be an MxN-element matrix such that A[i][j] =

 * 1 – 2*exp(-R1[j]*t[i]). (The design matrix is supplied as

 * an argument because the same design matrix is typically

 * used for every pixel in an image, and calculating the

 * design matrix just once outside this routine saves time.)

 * @param rho_list

 * List in which to store the computed spin densities

 * (output). The size of the list is the number of tissues.

 * If the routine could not find a solution, the size of the

 * list is 0.

 * @param R1_list

 * List in which to store the computed spin-lattice

 * relaxation rates (output). The size of the list is the

 * number of tissues. If the routine could not find a

 * solution, the size of the list is 0.

 */

 public static void analyze

 (Series t_series,

 Series S_series,

 Series R1_series,

 double[][] A,

 List<Double> rho_list,

C6910_36.indd Sec1:678C6910_36.indd Sec1:678 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.3 Sequential Spin Relaxometry Program 679

 List<Double> R1_list)

 {

 int M = t_series.length();

 int N = R1_series.length();

 // Do a spin relaxometry analysis using nonnegative linear

 // least squares.

 // Create nonnegative linear least squares solver.

 NonNegativeLeastSquares linsolver =

 new NonNegativeLeastSquares (M, N);

 // Find the solution.

 for (int i = 0; i < M; ++ i)

 {

 System.arraycopy (A[i], 0, linsolver.a[i], 0, N);

 linsolver.b[i] = S_series.x(i);

 }

 linsolver.solve();

 double[] rho_series = linsolver.x;

 // Find peaks in the solution. A peak occurs at index i if

 // rho[i] > rho[i-1] and rho[i] > rho[i+1].

 ArrayList<Double> approx_rho_list = new ArrayList<Double>();

 ArrayList<Double> approx_R1_list = new ArrayList<Double>();

 for (int j = 0; j < N; ++ j)

 {

 if (rho_series[j] > (j == 0 ? 0.0 : rho_series[j-1]) &&

 rho_series[j] > (j == N-1 ? 0.0 : rho_series[j+1]))

 {

 approx_rho_list.add (rho_series[j]);

 approx_R1_list.add (R1_series.x(j));

 }

 }

 // Do a spin relaxometry analysis using nonlinear least

 // squares. Peaks in the linear analysis give the initial

 // vector of densities and rates.

 // Repeat until the solution is plausible.

 boolean plausible = false;

 int L = approx_rho_list.size();

 rho_list.clear();

 R1_list.clear();

 while (L > 0 && ! plausible)

 {

C6910_36.indd Sec1:679C6910_36.indd Sec1:679 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

680 CHAPTER 36 MRI Spin Relaxometry

 // Create spin signal difference function. L = number of

 // tissues.

 SpinSignalDifference fcn =

 new SpinSignalDifference (t_series, S_series, L);

 // Create nonlinear least squares solver.

 NonLinearLeastSquares nonlinsolver =

 new NonLinearLeastSquares (fcn);

 // Find the solution.

 for (int i = 0; i < L; ++ i)

 {

 nonlinsolver.x[(i<<1)] = approx_rho_list.get(i);

 nonlinsolver.x[(i<<1)+1] = approx_R1_list.get(i);

 }

 try

 {

 nonlinsolver.solve();

 for (int i = 0; i < L; ++ i)

 {

 rho_list.add (nonlinsolver.x[(i<<1)]);

 R1_list.add (nonlinsolver.x[(i<<1)+1]);

 }

 // Decide if solution is plausible.

 plausible =

 checkPlausibility (S_series, rho_list, R1_list);

 }

 // Couldn’t find a solution.

 catch (TooManyIterationsException exc)

 {

 plausible = false;

 }

 // If solution is not plausible, eliminate tissue with

 // smallest density and try again.

 if (! plausible)

 {

 double minrho = Double.MAX_VALUE;

 int mini = 0;

 for (int i = 0; i < L; ++ i)

 {

 if (approx_rho_list.get(i) < minrho)

 {

 minrho = approx_rho_list.get(i);

C6910_36.indd Sec1:680C6910_36.indd Sec1:680 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.3 Sequential Spin Relaxometry Program 681

 mini = i;

 }

 }

 approx_rho_list.remove (mini);

 approx_R1_list.remove (mini);

 L = approx_rho_list.size();

 rho_list.clear();

 R1_list.clear();

 }

 }

 }

 /**

 * Decide if the given solution is plausible.

 */

 private static boolean checkPlausibility

 (Series S_series,

 List<Double> rho_list,

The analyze() method has to deal with a practical issue that doesn’t rear its head until you start analyz-
ing actual MR image data: Sometimes the nonlinear least-squares algorithm comes up with a nonsensical
solution. Therefore, the analyze() method checks the nonlinear least-squares fit for plausibility. To be
plausible, the following must be true:

All spin densities and spin-lattice relaxation rates must be positive. If this is •
not the case, it’s likely the nonlinear least-squares algorithm is trying to fit the
data to too many parameters, resulting in nonsensical parameter values.

All the spin-lattice relaxation rates must be sufficiently far apart. Specifically, •
the relative difference between any two rates must be greater than 0.001. If the
rates are closer together than that, it’s likely they represent the same tissue.

The sum of the spin densities must agree with the asymptotic spin signal for •
large values of t. (In Equation 36.2, if t is large, then the exponential func-
tion is nearly zero, and S(t) becomes the sum of the r

i
 values.) Specifically,

the sum of the spin densities must be within 20 percent of the average of the
last seven spin signal values. If this is not the case, it’s likely that two spuri-
ous “tissues,” one with a very large relaxation rate and one with a very small
relaxation rate, are canceling each other out, and there really should be only
one tissue.

If the nonlinear least-squares fit is not plausible, the analyze() method decides it is trying to fit too
many tissues. The analyze() method eliminates the tissue with the smallest spin density and repeats
the nonlinear least-squares fit. This continues until the fit is plausible or until all the tissues have been
eliminated, in which case the analyze() method reports that it could not find a solution.

C6910_36.indd Sec1:681C6910_36.indd Sec1:681 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

682 CHAPTER 36 MRI Spin Relaxometry

 List<Double> R1_list)

 {

 int M = S_series.length();

 int L = rho_list.size();

 // If any density or rate is negative, solution is not

 // plausible.

 for (int i = 0; i < L; ++ i)

 {

 if (rho_list.get(i) < 0.0)

 {

 return false;

 }

 if (R1_list.get(i) < 0.0)

 {

 return false;

 }

 }

 // If relative difference between any two rates is too small,

 // solution is not plausible.

 for (int i = 0; i < L-1; ++ i)

 {

 double R_i = R1_list.get(i);

 for (int j = i+1; j < L; ++ j)

 {

 double R_j = R1_list.get(j);

 double reldiff =

 2.0*Math.abs(R_i-R_j)/Math.abs(R_i+R_j);

 if (reldiff <= 0.001)

 {

 return false;

 }

 }

 }

 // If sum of densities is too far from asymptotic measurement

 // for large t, solution is not plausible.

 double sumrho = 0.0;

 for (int i = 0; i < L; ++ i)

 {

 sumrho += rho_list.get(i);

 }

 double S_last = 0.0;

 int n = 0;

 for (int i = M-1; i >=0 && n < 7; -- i)

C6910_36.indd Sec1:682C6910_36.indd Sec1:682 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.3 Sequential Spin Relaxometry Program 683

 {

 S_last += S_series.x(i);

 ++ n;

 }

 S_last /= n;

 double reldiff = Math.abs(sumrho-S_last)/Math.abs(S_last);

 if (reldiff >= 0.2)

 {

 return false;

 }

 // Solution is plausible.

 return true;

 }

 }

package edu.rit.mri;

import edu.rit.io.Files;

import edu.rit.numeric.ArraySeries;

import edu.rit.numeric.Series;

import java.io.File;

import java.util.ArrayList;

public class SpinRelaxometrySeq

 {

 public static void main

 (String[] args)

 throws Exception

 {

Finally, class SpinRelaxometrySeq is the main program class for the sequential version of the spin
relaxometry analysis program. The command-line arguments are the following:

Lower spin-lattice relaxation rate, • R
L
.

Upper spin-lattice relaxation rate, • R
U
.

Number of spin-lattice relaxation rate intervals, • N. For the nonnegative linear
least-squares portion of the analysis, the program uses N+1 relaxation rates
logarithmically spaced from R

L
 to R

U
.

One or more input spin signal data set file names. If an input file name is, say, •
“signal01.dat”, then the corresponding output tissues data set file name is
“tissues_signal01.dat”.

Here is the source code for class SpinRelaxometrySeq.

C6910_36.indd Sec1:683C6910_36.indd Sec1:683 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

684 CHAPTER 36 MRI Spin Relaxometry

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length < 4) usage();

 double R1_lower = Double.parseDouble (args[0]);

 double R1_upper = Double.parseDouble (args[1]);

 int N = Integer.parseInt (args[2]);

 String[] signalfilename = new String [args.length-3];

 System.arraycopy (args, 3, signalfilename, 0, args.length-3);

 // Compute spin relaxation rates.

 double[] R1 = new double [N+1];

 double log_R1_lower = Math.log (R1_lower);

 double log_R1_upper = Math.log (R1_upper);

 double interval = (log_R1_upper – log_R1_lower)/N;

 for (int j = 0; j <= N; ++ j)

 {

 R1[j] = Math.exp (log_R1_lower + j*interval);

 }

 ArraySeries R1_series = new ArraySeries (R1);

 // Set up lists to receive analysis results.

 ArrayList<Double> rho_list = new ArrayList<Double>();

 ArrayList<Double> R1_list = new ArrayList<Double>();

 // Analyze each input spin signal data set file.

 for (int f = 0; f < signalfilename.length; ++ f)

 {

 File signalfile = new File (signalfilename[f]);

 File tissuesfile = new File

 (Files.fileNamePrepend

 (signalfilename[f], "tissues_"));

 // Set up data set reader and writer.

 SignalDataSetReader reader =

 new SignalDataSetReader (signalfile);

 int H = reader.getHeight();

 int W = reader.getWidth();

 TissuesDataSetWriter writer =

 new TissuesDataSetWriter (tissuesfile, H, W);

The program uses the same time series and design matrix, calculated here, for each pixel in the spin
signal data set.

C6910_36.indd Sec1:684C6910_36.indd Sec1:684 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

 36.3 Sequential Spin Relaxometry Program 685

 // Do the spin relaxometry analysis.

 PixelAnalysis.analyze

 (t_series, signal.S_measured(), R1_series, A,

 rho_list, R1_list);

 // Get time series.

 Series t_series = reader.getTimeSeries();

 int M = t_series.length();

 // Compute design matrix.

 double[][] A = new double [M] [N+1];

 for (int i = 0; i < M; ++ i)

 {

 double[] A_i = A[i];

 double t_i = t_series.x(i);

 for (int j = 0; j <= N; ++ j)

 {

 A_i[j] = SpinSignal.S (R1[j], t_i);

 }

 }

 // Analyze all pixels.

 int P = reader.getPixelCount();

 for (int i = 0; i < P; ++ i)

 {

 PixelSignal signal = reader.getPixelSignal (i);

 if (signal != null)

 {

To do the analysis, the program uses the analyze() method in class PixelAnalysis, which we studied
previously.

The program bundles the pixel’s analysis results into an instance of class PixelTissues, which contains
the index of the spin signal data set file, the index of the pixel within the file, the r j values, and the Rj
values. The tissues data set writer then writes the information in the PixelTissues object to the file. While
this auxiliary PixelTissues object is not really necessary in the sequential version, it will be crucial in the
parallel version.

 // Write results to data set.

 writer.addPixelTissues

 (new PixelTissues (f, i, rho_list, R1_list));

 }

 }

C6910_36.indd Sec1:685C6910_36.indd Sec1:685 2/2/09 12:37:50 PM2/2/09 12:37:50 PM

686 CHAPTER 36 MRI Spin Relaxometry

36.4 Cluster Parallel Program Design
To do an MRI spin relaxometry analysis on a cluster parallel computer, we’ll use the same workflow
as in Figure 36.10, except we’ll replace the sequential analysis program with a cluster parallel analysis
program.

The first design decision is how to partition the computation among the parallel processors. Because
the Levenberg-Marquardt nonlinear least-squares algorithm is an iterative algorithm, different pixels, in gen-
eral, require different numbers of iterations. Also, different pixels have different numbers of tissues, and the
more tissues there are, the longer it takes to calculate the model functions (36.7) and their partial derivatives
(36.8–36.9). Therefore, different pixels’ computations will different amounts of time, and load balancing is
required. As we have done with other cluster parallel programs, we will use the master-worker pattern to
balance the load.

The master divides the computation into chunks and sends the chunks to the workers. However,
this time, the chunk is not simply a Range object. For this program, a chunk of computation consists of
the file index (designating one of the spin signal data set files on the command line), the index of the
first pixel to analyze within that file, and the number of consecutive pixels to analyze. Class PixelChunk
encapsulates this information in an object; the master sends pixel chunk objects to the workers. To do the
partitioning, the master uses an instance of class PixelSchedule. The master initializes the pixel schedule
object with the names of the input spin signal data set files from the command line. The pixel schedule
object reads the files (using class SignalDataSetReader) to determine the number of pixels in each data
set. The master repeatedly calls the pixel schedule’s next() method, which returns a sequence of pixel
chunks, each chunk consisting of 100 pixels from one of the spin signal data sets.

The second design decision is how the workers will obtain the spin signal data for the pixels the
master tells the workers to analyze. We will use the parallel input files pattern. Each worker can read all
of the spin signal data set files. When told by the master to analyze a series of pixels in a certain file, the
worker uses class SignalDataSetReader to read the file directly.

The third design decision is how the program will write the output tissues data set files. We will let
the master do all the output file writing. After analyzing a chunk of pixels, the worker sends a group of
PixelTissues objects to the master. As we have seen already, the PixelTissues object contains the index
of the spin signal data set file, the index of the pixel within the file, the r j values, and the Rj values. The
master uses the file index to select the proper output file, and then writes the tissues data to that file.
Although this approach does require communicating the analysis results from the workers to the master,
the amount of communication is minor compared to the amount of computation.

 // All done.

 reader.close();

 writer.close();

 }

 // Stop timing.

 long t2 = System.currentTimeMillis();

 System.out.println ((t2-t1)+" msec");

 }

 }

C6910_36.indd Sec1:686C6910_36.indd Sec1:686 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

 36.4 Cluster Parallel Program Design 687

Even though the master is doing somewhat more work (writing the output files) than in other
master-worker programs we have studied, typically the master is still not doing enough work to keep its
CPU fully occupied. Therefore, we still want both a master thread and a worker thread in process 0. The
worker thread can utilize the CPU to analyze pixels while the master thread is waiting to receive the next
group of analysis results.

Figure 36.12 shows the overall execution timeline of the cluster parallel MRI spin relaxometry
analysis program.

re
a

d
 &

 a
n

a
lyze

 p
ixe

ls

re
a

d
 &

 a
n

a
lyze

 p
ixe

ls

re
a

d
 &

 a
n

a
lyze

 p
ixe

ls

re
a

d
 &

 a
n

a
lyze

 p
ixe

ls

re
a

d
 &

 a
n

a
lyze

 p
ixe

ls

re
a

d
 &

 a
n

a
lyze

 p
ixe

ls

re
a

d
 &

 a
n

a
lyze

 p
ixe

ls

re
a

d
 &

 a
n

a
lyze

 p
ixe

ls

in
it

in
it

in
it

in
it

in
it

Spin
signal

rd PixelChunk

PixelChunk

PixelChunk

PixelChunk

PixelTissues[]

PixelChunkw
r

PixelTissues[]

PixelChunkw
r

PixelTissues[]

PixelChunkw
r

PixelTissues[]

PixelChunkw
r

PixelTissues[]

nul lw
r

PixelTissues[]

nul lw
r

PixelTissues[]

nul lw
r

PixelTissues[]

nul lw
r

Master Worker

Proc 0 Proc 1
Worker

Proc 2
Worker

Proc 3
Worker

Tissues

Figure 36.12 Cluster parallel MRI spin relaxometry analysis program execution timeline

C6910_36.indd Sec1:687C6910_36.indd Sec1:687 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

688 CHAPTER 36 MRI Spin Relaxometry

36.5 Parallel Spin Relaxometry Program
Before looking at the parallel version of the MRI spin relaxometry analysis program, let’s look at class
PixelChunk, which the master uses to send chunks of work to the workers. As discussed in Chapter 22,
because this is an object to be sent in a message, we must make its class serializable. There are two ways to
make a class serializable. One way is simply to declare that the class implements interface java.io.Serializable.
The other way is to declare that the class implements interface java.io.Externalizable. For a Serializable class,
we don’t have to do anything further; the Java platform automatically converts the object to and from a stream
of bytes when necessary. For an Externalizable class, the Java platform does not do this automatically, and
we must write the serialization and deserialization code ourselves. On the other hand, the number of bytes in
the serialized form of a Serializable object is typically more than—sometimes several times as many as—the
number of bytes in the serialized form of an Externalizable object. To minimize the time required to send
messages containing objects, we usually want to make the objects’ classes Externalizable. Here is the code for
class PixelChunk.

package edu.rit.mri;

import java.io.Externalizable;

import java.io.IOException;

import java.io.ObjectInput;

import java.io.ObjectOutput;

public class PixelChunk

 implements Externalizable

 {

 private int fileIndex;

 private int pixelIndex;

 private int pixelCount;

 /**

 * Construct a new, uninitialized pixel chunk object. This

 * constructor is for use only by object deserialization.

 */

 public PixelChunk()

 {

 }

 /**

 * Construct a new pixel chunk object.

 */

 public PixelChunk

 (int fileIndex,

 int pixelIndex,

 int pixelCount)

 {

C6910_36.indd Sec1:688C6910_36.indd Sec1:688 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

 36.5 Parallel Spin Relaxometry Program 689

 this.fileIndex = fileIndex;

 this.pixelIndex = pixelIndex;

 this.pixelCount = pixelCount;

 }

 /**

 * Get the file index.

 */

 public int fileIndex()

 {

 return fileIndex;

 }

 /**

 * Get the pixel index of the first pixel to analyze.

 */

 public int pixelIndex()

 {

 return pixelIndex;

 }

 /**

 * Get the number of pixels to analyze.

 */

 public int pixelCount()

 {

 return pixelCount;

 }

 /**

 * Write this pixel chunk object to the given object output

 * stream.

 */

 public void writeExternal

 (ObjectOutput out)

 throws IOException

 {

 out.writeInt (fileIndex);

 out.writeInt (pixelIndex);

 out.writeInt (pixelCount);

 }

The writeExternal() method converts an instance of class PixelChunk to its serialized representation
by writing each field to the object output stream as a four-byte integer.

C6910_36.indd Sec1:689C6910_36.indd Sec1:689 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

690 CHAPTER 36 MRI Spin Relaxometry

 /**

 * Read this pixel chunk object from the given object input

 * stream.

 */

 public void readExternal

 (ObjectInput in)

 throws IOException

 {

 fileIndex = in.readInt();

 pixelIndex = in.readInt();

 pixelCount = in.readInt();

 }

 }

package edu.rit.mri;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.numeric.ArraySeries;

import edu.rit.numeric.Series;

import edu.rit.pj.Comm;

import edu.rit.pj.CommStatus;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

public class SpinRelaxometryClu

 {

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

The readExternal() method sets the state of an instance of class PixelChunk from its serialized repre-
sentation by reading each field from the object input stream as a four-byte integer.

Similarly, class PixelTissues, which the workers use to send the analysis results back to the master,
implements interface Externalizable and provides the writeExternal() and readExternal() methods.

Here is the source code for class SpinRelaxometryClu, the cluster parallel MRI spin relaxometry
analysis program. Its command-line arguments are the same as the sequential version.

C6910_36.indd Sec1:690C6910_36.indd Sec1:690 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

 36.5 Parallel Spin Relaxometry Program 691

 // Command line arguments.

 static double R1_lower;

 static double R1_upper;

 static int N;

 static String[] signalfilename;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Parse command line arguments.

 if (args.length < 4) usage();

 R1_lower = Double.parseDouble (args[0]);

 R1_upper = Double.parseDouble (args[1]);

 N = Integer.parseInt (args[2]);

 signalfilename = new String [args.length-3];

 System.arraycopy (args, 3, signalfilename, 0, args.length-3);

 // Process 0 executes the master section and the worker

 // section in parallel threads.

 if (rank == 0)

 {

 new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (new ParallelSection()

 {

 public void run() throws Exception

The main program follows the standard pattern of a two-thread parallel team executing the master and
worker sections in process 0, and a single thread executing just the worker section in processes 1 and up.

C6910_36.indd Sec1:691C6910_36.indd Sec1:691 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

692 CHAPTER 36 MRI Spin Relaxometry

 {

 masterSection();

 }

 },

 new ParallelSection()

 {

 public void run() throws Exception

 {

 workerSection();

 }

 });

 }

 });

 }

 // Processes 1 and up execute just the worker section.

 else

 {

 workerSection();

 }

 // Stop timing.

 long t2 = System.currentTimeMillis();

 System.out.println ((t2-t1)+" msec "+rank);

 }

 /**

 * Execute the master section.

 */

 private static void masterSection()

 throws IOException

 {

 int worker;

 PixelChunk chunk;

Here is the master section.

The master section begins by creating a tissues data set writer for every output file. Because the workers
could return analysis results for the various data sets in any order, the master must be prepared to write
analysis results to any of the output files.

C6910_36.indd Sec1:692C6910_36.indd Sec1:692 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

 36.5 Parallel Spin Relaxometry Program 693

 // Set up array of writers for output tissues data sets.

 TissuesDataSetWriter[] writer =

 new TissuesDataSetWriter [signalfilename.length];

 for (int f = 0; f < writer.length; ++ f)

 {

 SignalDataSetReader reader =

 new SignalDataSetReader (new File (signalfilename[f]));

 int H = reader.getHeight();

 int W = reader.getWidth();

 reader.close();

 writer[f] =

 new TissuesDataSetWriter

 (new File (“tissues.”+signalfilename[f]), H, W);

 }

 // Set up schedule to analyze pixels in chunks of 100.

 PixelSchedule schedule =

 new PixelSchedule (100, signalfilename);

 // Send initial chunk to each worker. If null, no more work

 // for that worker. Keep count of active workers.

 int activeWorkers = size;

 for (worker = 0; worker < size; ++ worker)

 {

 chunk = schedule.next();

 world.send (worker, ObjectBuf.buffer (chunk));

 if (chunk == null) -- activeWorkers;

 }

 // Repeat until all workers have finished.

 while (activeWorkers > 0)

 {

 // Receive a chunk of pixel tissues from any worker.

 ObjectItemBuf<PixelTissues[]> buf = ObjectBuf.buffer();

 CommStatus status = world.receive (null, buf);

 worker = status.fromRank;

The master uses an instance of class PixelSchedule to partition the computation into chunks.

To receive analysis results from a worker, any worker, the master sets up a buffer for a single object of
type “array of pixel tissues” (PixelTissues[]). This lets the master receive an array of any length
without needing to know ahead of time how many array elements the worker will send.

C6910_36.indd Sec1:693C6910_36.indd Sec1:693 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

694 CHAPTER 36 MRI Spin Relaxometry

 // Send next chunk to that specific worker. If null, no

 // more work.

 chunk = schedule.next();

 world.send (worker, ObjectBuf.buffer (chunk));

 if (chunk == null) -- activeWorkers;

 /**

 * Execute the worker section.

 */

 private static void workerSection()

 throws IOException

 {

 int fileIndex = -1;

 SignalDataSetReader reader = null;

 Series t_series = null;

 int M = 0;

 double[][] A = null;

 // Compute spin relaxation rates.

 double[] R1 = new double [N+1];

 double log_R1_lower = Math.log (R1_lower);

 // Record pixel tissues in output tissues data set.

 for (PixelTissues tissues : buf.item)

 {

 if (tissues != null)

 {

 writer[tissues.fileIndex()]

 .addPixelTissues (tissues);

 }

 }

 }

 // All done.

 for (int f = 0; f < writer.length; ++ f)

 {

 writer[f].close();

 }

 }

The master takes however many pixel tissues objects the worker sent and writes each one of them to the
appropriate output file. The file index comes from the pixel tissues object itself.

Here is the worker section.

C6910_36.indd Sec1:694C6910_36.indd Sec1:694 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

 36.5 Parallel Spin Relaxometry Program 695

 double log_R1_upper = Math.log (R1_upper);

 double interval = (log_R1_upper - log_R1_lower)/N;

 for (int j = 0; j <= N; ++ j)

 {

 R1[j] = Math.exp (log_R1_lower + j*interval);

 }

 ArraySeries R1_series = new ArraySeries (R1);

 // Set up lists to receive analysis results.

 ArrayList<Double> rho_list = new ArrayList<Double>();

 ArrayList<Double> R1_list = new ArrayList<Double>();

 // Repeat until no more work.

 workerloop: for (;;)

 {

 // Receive a chunk of pixel indexes from the master. If

 // null, no more work.

 ObjectItemBuf<PixelChunk> buf = ObjectBuf.buffer();

 world.receive (0, buf);

 PixelChunk chunk = buf.item;

 if (chunk == null) break workerloop;

 int f = chunk.fileIndex();

 int lb = chunk.pixelIndex();

 int len = chunk.pixelCount();

 // If we are now working on a different file:

 if (f != fileIndex)

 {

 // Close old file.

 if (reader != null) reader.close();

 // Open new file.

 fileIndex = f;

 reader =

 new SignalDataSetReader

 (new File (signalfilename[f]));

 // Get time series.

 t_series = reader.getTimeSeries();

 M = t_series.length();

The worker must be prepared to analyze pixels in any of the input files, as directed by the master. The
worker uses the fileIndex variable to remember which input file the worker is currently reading. If the
next pixel chunk refers to a different file index, the worker switches to the new input file.

C6910_36.indd Sec1:695C6910_36.indd Sec1:695 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

696 CHAPTER 36 MRI Spin Relaxometry

 // Compute design matrix.

 A = new double [M] [N+1];

 for (int i = 0; i < M; ++ i)

 {

 double[] A_i = A[i];

 double t_i = t_series.x(i);

 for (int j = 0; j <= N; ++ j)

 {

 A_i[j] = SpinSignal.S (R1[j], t_i);

 }

 }

 }

 // Set up array of pixel tissues to hold analysis results.

 PixelTissues[] tissues = new PixelTissues [len];

 // Process all pixels in chunk.

 for (int i = 0; i < len; ++ i)

 {

 int index = lb + i;

 PixelSignal signal_i = reader.getPixelSignal (index);

 if (signal_i != null)

 {

 // Get measured spin signal.

 Series S_series = signal_i.S_measured();

 // Do the spin relaxometry analysis.

 PixelAnalysis.analyze

 (t_series, S_series, R1_series, A,

 rho_list, R1_list);

 // Record analysis results.

 tissues[i] =

 new PixelTissues (f, index, rho_list, R1_list);

 }

 }

At this point, the tissues variable is an array of the analysis results for the pixels in the chunk. The
worker must send this array as a single object of type “array of pixel tissues,” because that is what the
master expects to receive. To set up the proper source buffer, the worker calls the objectBuffer()
method of class ObjectBuf; this method returns a buffer that sends the entire array as a single object. (In
contrast, the buffer() method of class ObjectBuf returns a buffer that sends the array elements indi-
vidually, as separate objects. If the worker did that, the master would need to know the number of array
elements ahead of time.)

C6910_36.indd Sec1:696C6910_36.indd Sec1:696 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

 36.6 Parallel Program Performance 697

36.6 Parallel Program Performance
Table 36.1 lists, and Figure 36.13 plots, the SpinRelaxometryClu pro gram’s performance on the

“tardis” parallel computer. The input was a 64 × 64 × 64-voxel (a 256K-voxel) MR image with 64 spin
signal samples for each voxel. Each slice was a copy of the 64 × 64-pixel example image we’ve been using.
For the nonnegative linear least-squares curve fit, the program used 200 relaxation rates logarithmically
spaced from 0.01 to 10.0. The program experienced efficiencies of 90 percent or better, out to 14 processes.

Table 36.1 SpinRelaxometrySeq/Clu running-time metrics

N K T Spdup Eff EDSF

256K seq 829842

256K 1 781801 1.061 1.061

256K 2 403596 2.056 1.028 0.032

256K 3 272539 3.045 1.015 0.023

256K 4 211635 3.921 0.980 0.028

256K 5 170687 4.862 0.972 0.023

256K 6 144597 5.739 0.956 0.022

256K 8 109578 7.573 0.947 0.017

256K 10 89517 9.270 0.927 0.016

256K 14 65088 12.750 0.911 0.013

256K 20 47133 17.606 0.880 0.011

256K 28 38299 21.667 0.774 0.014

256K 40 31301 26.512 0.663 0.015

 // Send chunk of pixel tissues to the master.

 world.send (0, ObjectBuf.objectBuffer (tissues));

 }

 if (reader != null) reader.close();

 }

 }

C6910_36.indd Sec1:697C6910_36.indd Sec1:697 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

698 CHAPTER 36 MRI Spin Relaxometry

1 1 0 100
1E1

1E2

1E3

N = 256K

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

N = 256K

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 256K

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 256K

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 36.13 SpinRelaxometrySeq/Clu running-time metrics

One impediment to widespread usage of MRI spin relaxometry has been the amount of computer time
needed to do the analysis. However, because the computations for each pixel are independent, spin relax-
ometry analysis is an ideal candidate for speedup on a parallel computer. With 64 × 64-voxel slices, the
SpinRelaxometryClu program took half a minute to analyze the MR image on 40 processors—about 5 mil-
liseconds per voxel. If we scaled each slice’s size up by a factor of 16 and analyzed a 256 × 256 × 64-voxel
MR image, we’d expect the program to take 8 minutes on 40 processors, or even less time on more proces-
sors. That ought to be fast enough to make MRI spin relaxometry analysis a useful diagnostic tool.

36.7 Displaying the Results
The last stage of the MRI spin relaxometry analysis workflow (Figure 36.10) is to display the results.
We’ve already seen one example: a plot of the measured spin signal and the fitted curve for a certain pixel
(Figure 36.9). Program edu.rit.mri.PlotPixel generated this plot.

C6910_36.indd Sec1:698C6910_36.indd Sec1:698 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

 36.7 Displaying the Results 699

More interesting would be a summary of the results for the whole MR image, not just one pixel.
Because the spin-lattice relaxation rates reflect the chemical composition of the tissues imaged, a useful
summary display is a histogram of the relaxation rates (Figure 36.14). Program edu.rit.mri. R1Histogram
generated these plots from the computed tissues data set for one slice of the example MR image. The first
plot has 100 histogram bins of width 0.01 from R = 0.0 to 1.0. That is, the first bin counts the number of
pixels having a tissue with relaxation rate 0.00 ≤ R < 0.01; the second bin counts the number of pixels
having a tissue with relaxation rate 0.01 ≤ R < 0.02; and so on. The second plot has 100 histogram bins of
width 0.01 from R = 1.0 to 2.0. A peak in the histogram at a relaxation rate not normally encountered in
healthy tissue may indicate the presence of abnormal chemicals and lead to a diagnosis of disease.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

R Histogram

Spin−lattice relaxation rate, R (sec)

C
o

u
n

t

1 .00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

R Histogram

Spin−lattice relaxation rate, R (sec)

C
o

u
n

t

Figure 36.14 Histograms of the spin-lattice relaxation rates

C6910_36.indd Sec1:699C6910_36.indd Sec1:699 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

700 CHAPTER 36 MRI Spin Relaxometry

Also of interest are the locations of tissues having certain spin-lattice relaxation rates. If the doctor
notices a spike in the histogram at an abnormal relaxation rate, the location of the possibly diseased tis-
sues that engendered the spike may help the doctor diagnose the illness.

Figure 36.15 shows some examples of images depicting tissues with certain spin-lattice relaxation
rates. Program edu.rit.mri.R1Image generated these images from the computed tissues data set for one
slice of the example MR image. A pixel with no tissues with R in the given range is colored dark gray. A
pixel with one or more tissues with R in the given range is colored medium gray to white, with medium
gray corresponding to a small spin density and white corresponding to a large spin density. Thus, the
brighter the pixel, the higher the concentration of atoms with R in the given range. The first image depicts
the range of R values expected for gray matter (glial cells and neuron cell bodies in the brain). The gray
matter is distributed throughout the brain, except for certain regions in the middle, and except for the
bones of the cranium (the thin gray region around the periphery). The second image depicts the range of
R values expected for white matter (primarily axons, the fibers that interconnect neurons). The white mat-
ter has a high concentration in the regions where the gray matter has a low concentration. There’s a hump
in the histogram at about R=0.15–0.30; this is probably an accumulation of cerebrospinal fluid. The third
image shows that these tissues are located mainly in the center of the brain, in the fissure between the two
cerebral hemispheres.

Figure 36.15 Locations of tissues with certain spin-lattice relaxation rates

These postprocessing programs all follow the data-set querying pattern. Each program examines
the information in a data set—namely, the spin signal input files and the tissues output files for the MR
image—to answer a query. Because these particular queries do not require a lot of computation, the post-
processing programs all run quickly, and there is no point in designing them as parallel programs. Other,
more complicated queries may be able to take advantage of parallel data-set querying programs.

36.8 Acknowledgments
I would like to thank Joseph Hornak in the Chester F. Carlson Center for Imaging Science at the
Rochester Institute of Technology for drawing my attention to the MRI spin relaxometry analysis prob-
lem. The spin signal data set used as an example in this chapter is courtesy of C. Springer and X. Li in
the Department of Chemistry at the State University of New York, Stony Brook.

0.47 ≤ R < 0.92 0.93 ≤ R < 0.32 0.15 ≤ R < 0.30

C6910_36.indd Sec1:700C6910_36.indd Sec1:700 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

 36.9 For Further Information 701

36.9 For Further Information
On magnetic resonance imaging:

J. Hornak. • The Basics of MRI. 2007.
http://www.cis.rit.edu/htbooks/mri/index.html

On MR imaging of brain tissues, including identifying brain tissues by their characteristic spin-lattice
relaxation rates, spin-spin relaxation rates, and spin densities:

L. Fletcher, J. Barsotti, and J. Hornak. A multispectral analysis of brain •
tissues. Magnetic Resonance in Medicine, 29:623–630, 1993.

On the nonnegative linear least-squares algorithm:

C. Lawson and R. Hanson. • Solving Least Squares Problems. Society for
Industrial and Applied Mathematics, 1995.

Netlib Repository. http://www.netlib.org/•

NNLS program. http://www.netlib.org/lawson-hanson/all•

On the Levenberg-Marquardt nonlinear least-squares algorithm:

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. • Numerical Recipes:
The Art of Scientific Computing, Third Edition. Cambridge University Press,
2008, Chapter 15.5.

Netlib Repository. http://www.netlib.org/•

MINPACK. http://www.netlib.org/minpack/•

On parallel programs for MRI spin relaxometry analysis:

A. Bak, J. Hornak, and N. Schaller. From impractical to practical: solving an •
MRI problem using parallelism. In Rochester Institute of Technology
B. Thomas Golisano College of Computing and Information Sciences 2005
Conference on Computing and Information Sciences, 2005.
http://hdl.handle.net/1850/423

C6910_36.indd Sec1:701C6910_36.indd Sec1:701 2/2/09 12:37:51 PM2/2/09 12:37:51 PM

http://www.cis.rit.edu/htbooks/mri/index.html
http://www.netlib.org/�
http://www.netlib.org/�
http://www.netlib.org/lawson-hanson/all
http://www.netlib.org/�
http://www.netlib.org/�
http://www.netlib.org/minpack/�
http://www.netlib.org/minpack/�
http://hdl.handle.net/1850/423

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

703

C H A P T E R 37
in which we encounter protein sequences and databases thereof; we learn an

algorithm for local alignment of protein sequences; we design two versions of a

parallel protein sequence data-set querying program; and we observe the performance

implications of each design

Protein Sequence Querying

C6910_37.indd 703C6910_37.indd 703 2/2/09 12:53:51 PM2/2/09 12:53:51 PM

C H A P T E R37 Protein Sequence Querying

37.1 Protein Sequences
Proteins are the fundamental building blocks of living organisms. They perform numerous and diverse
functions. For example, actin is a component of the cytoskeleton that maintains each cell’s shape.
Insulin is a hormone that triggers cells to absorb glucose from the bloodstream. Pepsin is an enzyme
that takes part in digesting food. Rhodopsin, found in the rod cells of the eye, enables vision in low light
conditions.

A protein molecule consists of a number of amino acids chemically bonded into a long string. Here
are the 20 amino acids and the letters that symbolize each one:

A Alanine M Methionine

C Cysteine N Asparagine

D Aspartic acid P Proline

E Glutamic acid Q Glutamine

F Phenylalanine R Arginine

G Glycine S Serine

H Histidine T Threonine

I Isoleucine V Valine

K Lysine W Tryptophan

L Leucine Y Tyrosine

A protein sequence is just a string of the preceding 20 letters that gives the sequence
of amino acids in the protein. For example, here is the sequence of human insulin:
FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTSICSLYQLENYCN. Insulin has 51 amino
acids—there are 51 letters in the sequence.

A protein “folds” into a specific three-dimensional shape that depends on the exact sequence of the
amino acids. The protein’s shape in turn determines the protein’s function. Thus, biologists are keenly
interested in analyzing and comparing protein sequences as a means to understand proteins’ functions.
The advent of automated techniques for determining proteins’ sequences, computer databases to store
protein sequences, and computer algorithms to find proteins with similar sequences has revolutionized
the field and has given biologists new tools for their study of life.

In this chapter, we will attack the problem of finding all proteins in a database that are similar to
a given protein. This is a data-set querying problem, as we studied in Chapter 35. However, the query

C6910_37.indd 704C6910_37.indd 704 2/2/09 12:53:52 PM2/2/09 12:53:52 PM

 37.2 Protein Sequence Alignment 705

can be performed in parallel. We are going to develop two parallel data-set querying programs embody-
ing two different approaches to the problem. Before we can do that, we need to look at how to compare
protein sequences for similarity.

37.2 Protein Sequence Alignment
When comparing two protein sequences, one sequence is called the subject sequence; this typically is
one sequence from a protein sequence database. The other sequence is called the query sequence; this
is typically the sequence we are trying to find in the database. Figure 37.1 shows an example of a (very
short) query sequence and subject sequence.

X

F

A

F

R

A

K

R

M

K

I

Q

R

M

K

I

C

K

W

B

D

W L X

Query

Subject

Figure 37.1 Query sequence and subject sequence

To determine the similarity between two proteins, we will align the protein sequences. A global
alignment aligns the entire query sequence with the entire subject sequence. A local alignment aligns a
piece of the query sequence with a piece of the subject sequence. For our protein sequence
database-querying problem, we are interested in local alignments. If a large enough piece of the query
sequence aligns with a large enough piece of the subject sequence, that is still an interesting result,
even if the entire sequences don’t align. Figure 37.2 shows an example of a local alignment. The query
sequence has been shifted relative to the subject sequence to align three letters. (The dimmed letters are
not part of the alignment.)

F

X

F

A

A

R

R

K

K

M

Q

I

M

R

I

K

K

C

B

W

W

D

L X

Query

Subject

Figure 37.2 A local alignment

An alignment has a score to indicate how good or bad the alignment is. For now, we will use the fol-
lowing simple scoring function. (Later, we will switch to a more complicated scoring function.) For each
matching position, a quantity a > 0 is added to the score. For each mismatched position, a quantity b < 0
is added to the score. For the alignment in Figure 37.2, with a = +2 and b = –1, the score is +6.

It may be possible to increase the alignment score by introducing gaps. For each gap position, a
quantity g < 0 is added to the score as a gap penalty. Figure 37.3 shows another local alignment of the
two example sequences including one gap; with g = –1, the score is +9.

F

X

F

A

A

R

R

K

K Q

M

M

I

I

R

K

K

B

C

W

W

L

D

X

Query

Subject

Figure 37.3 A local alignment with a gap

C6910_37.indd 705C6910_37.indd 705 2/2/09 12:53:52 PM2/2/09 12:53:52 PM

706 CHAPTER 37 Protein Sequence Querying

Some combination of shifts and gaps will result in the largest possible alignment score. Figure 37.4
shows the best possible—the highest-scoring—local alignment of the two example sequences. With seven
matching positions, one mismatched position, and two gap positions, the score is +11.

F

X

F

A

A

R

R

K

K Q

M

M

I

I

R K

K

C

B

W

W

D

L X

Query

Subject

Figure 37.4 Best possible local alignment

Now we need a way to find the best possible local alignment, given the query sequence, the subject
sequence, and the scoring parameters (a, b, g) . In 1981, Temple Smith and Michael Waterman published
an algorithm to do just that. The Smith-Waterman algorithm is based on the following observation. Let
A be the query sequence, ai be the i-th letter in the query sequence, B be the subject sequence, bj be the
j-th letter in the subject sequence, and S[i, j] be the best possible alignment score when ai is aligned with
bj. Suppose that we have already found the best local alignment up through, but not including, letters ai
and bj. Then we have four choices for extending the alignment:

We can align query letter • ai with subject letter bj. If we do, the score becomes
S[i, j] = S[i–1, j–1] + d (ai, bj), where d (ai, bj) = a if ai = bj (a match) and
d (ai, bj) = b if ai ≠ bj (a mismatch).

We can align query letter • ai with a gap in B. If we do, the score becomes
S[i, j] = S[i–1, j] + g .

We can align subject letter • bj with a gap in A. If we do, the score becomes
S[i, j] = S[i, j–1] + g .

We can decide that • ai and bj are not part of the local alignment. If we do, the
score becomes S[i, j] = 0.

We make the choice that results in the highest value for S[i, j].
To find the best possible local alignment, we must compute S[i, j] for all i and j. The easiest way

to do this is to set up a matrix of S values, with i indexing the rows and j indexing the columns, and fill
in the matrix entries. When we need a prior S value, we simply look it up in the matrix. If we fill in the
matrix by rows from top to bottom, and within each row by columns from left to right, all the matrix
entries we need will already be filled in when we get to entry S[i, j]. The pseudocode follows:

A[1..M] ← Query sequence
B[1..N] ← Subject sequence
Create scoring matrix S[0..M, 0..N]
(All elements in row 0 of S) ← 0
(All elements in column 0 of S) ← 0
For i = 1 to M:
 For j = 1 to N:
 If ai = bj:
 d ← a

C6910_37.indd 706C6910_37.indd 706 2/2/09 12:53:52 PM2/2/09 12:53:52 PM

 37.2 Protein Sequence Alignment 707

 Else:
 d ← b
 S[i, j] ← max (S[i–1, j–1] + d, S[i–1, j] + g, S[i, j–1] + g, 0)

Figure 37.5 shows the filled-in scoring matrix for the example sequences with scoring parameters
(a, b, g) = (+2, –1, –1).

X

A

R

K

M

I

R

K

C

W

D

Q
uery S

equence

F F A R K Q M I K B W L X

Subject Sequence

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 2 1 0 0 0 0 0 0 0 0 1

0 0 0 1 4 3 2 1 0 0 0 0 0 0

0 0 0 0 3 6 5 4 3 2 1 0 0 0

0 0 0 0 2 5 5 7 6 5 4 3 2 1

0 0 0 0 1 4 4 6 9 8 7 6 5 4

0 0 0 0 2 3 3 5 8 8 7 6 5 4

0 0 0 0 1 4 3 4 7 1 0 9 8 7 6

0 0 0 0 0 3 3 3 6 9 9 8 7 6

0 0 0 0 0 2 2 2 5 8 8 1 1 1 0 9

0 0 0 0 0 1 1 1 4 7 7 1 0 1 0 9

0

1

2

3

4

5

6

7

8

9

1 0

1 1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

Figure 37.5 Scoring matrix

The largest entry in the scoring matrix gives the score of the best local alignment. In Figure 37.5,
the best score is +11, and it happens when query letter a10 is aligned with subject letter b11. Now we need
to figure out the rest of the alignment—which query letters are aligned with which subject letters, and
where the gaps are, if any. To do that, we will do a traceback and work our way from the end of the
alignment to the beginning. At each step, we check which alignment choice resulted in the scoring matrix
entry at the current position, and then we move backward based on that choice, stopping when we reach a
zero entry. The pseudocode follows:

(i, j) ← (row, column) of largest entry in S
While S[i, j] ≠ 0:

 If ai = bj:
 d ← a
 Else:
 d ← b
 If S[i, j] = S[i–1, j–1] + d :
 Query letter ai is aligned with subject letter bj

 (i, j) ← (i–1, j–1)
 Else if S[i, j] = S[i–1, j] + g :
 Query letter ai is aligned with a gap in B
 (i, j) ← (i–1, j)

C6910_37.indd 707C6910_37.indd 707 2/2/09 12:53:52 PM2/2/09 12:53:52 PM

708 CHAPTER 37 Protein Sequence Querying

 Else:
 Subject letter bj is aligned with a gap in A
 (i, j) ← (i, j–1)

Figure 37.6 depicts the traceback for the example sequences, along with the resulting local alignment.

X

A

R

K

M

I

R

K

C

W

D

Q
uery S

equence

F F A R K Q M I K B W L X

Subject Sequence

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 2 1 0 0 0 0 0 0 0 0 1

0 0 0 1 4 3 2 1 0 0 0 0 0 0

0 0 0 0 3 6 5 4 3 2 1 0 0 0

0 0 0 0 2 5 5 7 6 5 4 3 2 1

0 0 0 0 1 4 4 6 9 8 7 6 5 4

0 0 0 0 2 3 3 5 8 8 7 6 5 4

0 0 0 0 1 4 3 4 7 1 0 9 8 7 6

0 0 0 0 0 3 3 3 6 9 9 8 7 6

0 0 0 0 0 2 2 2 5 8 8 1 1 1 0 9

0 0 0 0 0 1 1 1 4 7 7 1 0 1 0 9

0

1

2

3

4

5

6

7

8

9

1 0

1 1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

F

X

F

A

A

R

R

K

K Q

M

M

I

I

R K

K

C

B

W

W

D

L X

Query

Subject

Figure 37.6 Traceback with resulting local alignment

Now that we have the basic Smith-Waterman local alignment algorithm, we’re going to add three
features: substitution matrices, affine gap penalties, and scoring statistics.

Substitution matrices. So far, the scoring function gives a fixed score of a to every matching position
and a fixed score of b to every mismatched position, no matter what the amino acids are. However, muta-
tions often substitute one amino acid for another. Sometimes the mutated protein’s shape, and thus its
function, are similar to the unmutated protein’s shape and function. Therefore, penalizing each mismatch
the same, or rewarding each match the same, regardless of the amino acids involved, does not accurately
reflect the proteins’ biological properties. Instead, d (ai, bj) should yield different scores for different
pairs of amino acids (ai, bj).

A substitution matrix is a table listing the alignment score when query letter ai is aligned with
subject letter bj for every possible pair (ai, bj). Various protein substitution matrices are commonly used,
including the Point Accepted Mutation (PAM) family of matrices and the Block Substitution Matrix
(BLOSUM) family of matrices. We will use the BLOSUM-62 matrix (Table 37.1). This is the default
substitution matrix in the Basic Local Alignment Search Tool (BLAST), the popular protein sequence
database-querying program.

C6910_37.indd 708C6910_37.indd 708 2/2/09 12:53:52 PM2/2/09 12:53:52 PM

 37.2 Protein Sequence Alignment 709

Table 37.1 The BLOSUM-62 substitution matrix

A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 1

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62

Figure 37.7 shows the scoring matrix for the two example sequences when the BLOSUM-62 sub-
stitution matrix is used. The gap penalty is still g = –1. This time, the best alignment score is +35. The
resulting local alignment is slightly different from Figure 37.6.

C6910_37.indd 709C6910_37.indd 709 2/2/09 12:53:52 PM2/2/09 12:53:52 PM

710 CHAPTER 37 Protein Sequence Querying

X

A

R

K

M

I

R

K

C

W

D

Q
ue

ry S
e

q
uence

F F A R K Q M I K B W L X

Subject Sequence

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 4 3 2 1 0 0 0 0 0 0 0

0 0 0 3 9 8 7 6 5 4 3 2 1 0

0 0 0 2 8 1 4 1 3 1 2 1 1 1 0 9 8 7 6

0 0 0 1 7 1 3 1 4 1 8 1 7 1 6 1 5 1 4 1 3 1 2

0 0 0 0 6 1 2 1 3 1 7 2 2 2 1 2 0 1 9 1 8 1 7

0 0 0 0 5 1 1 1 3 1 6 2 1 2 4 2 3 2 2 2 1 2 0

0 0 0 0 4 1 0 1 2 1 5 2 0 2 6 2 5 2 4 2 3 2 2

0 0 0 0 3 9 1 1 1 4 1 9 2 5 2 4 2 3 2 3 2 2

0 1 1 0 2 8 1 0 1 3 1 8 2 4 2 3 3 5 3 4 3 3

0 0 0 0 1 7 9 1 2 1 7 2 3 2 8 3 4 3 3 3 3

0

1

2

3

4

5

6

7

8

9

1 0

1 1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

F

X

F

A

A

R

R

K

K Q

M

M

I

I

R K

K B

C W

W

D

L X

Query

Subject

Figure 37.7 Local alignment using BLOSUM-62

Affine gap penalties. A single mutation sometimes inserts or deletes multiple consecutive amino acids
in a protein. If the mutated protein sequence is aligned with the original protein sequence, the mutation
shows up as a multiple-position gap. So far, the scoring function deducts a fixed penalty g for each gap
position, so that the penalty is proportional to the gap length. But if a single mutation can result in a
multiple-position gap, this is too harsh a penalty. A more realistic gap scoring function is

 (37.1)

where g open < 0 is the gap opening penalty (the score for starting, or “opening,” a gap), g ext < 0 is the
gap extension penalty (the score for extending a gap), and L is the length of the gap (the number of
gap positions). g ext is usually considerably less than g open. Because (37.1) is an affine function of the gap
length, this gap scoring function is called an affine gap penalty.

Rewriting (37.1) slightly gives the gap scoring function,

 (37.2)

where g exist = g open + g ext is the gap existence penalty. g exist is the score for the first position of a gap;
g ext is the score for the second and subsequent positions of a gap. The BLAST program uses g exist = –11
 and g ext = –1 by default.

C6910_37.indd 710C6910_37.indd 710 2/2/09 12:53:52 PM2/2/09 12:53:52 PM

 37.2 Protein Sequence Alignment 711

To incorporate affine gap penalties into the Smith-Waterman algorithm, we must use two additional
scoring matrices. GA[i, j] is the alignment score if query letter ai is aligned with a gap at position j in
subject sequence B. We have two choices for extending GA:

Query letter • ai–1 is not aligned with a gap in B, and we start a gap. If so,
GA[i, j] = S[i–1, j] + g exist.

Query letter • ai–1 is aligned with a gap in B, and we extend the gap. If so,
GA[i, j] = GA[i–1, j] + g ext.

We make the choice that results in the highest value for GA[i, j]. Likewise, GB[i, j] is the alignment score
if subject letter bj is aligned with a gap at position i in query sequence A. We have two choices for extend-
ing GB:

Subject letter • bj–1 is not aligned with a gap in A, and we start a gap. If so,
GB[i, j] = S[i, j–1] + g exist.

Subject letter • bj–1 is aligned with a gap in A, and we extend the gap. If so,
GB[i, j] = GB[i, j–1] + g ext.

We make the choice that results in the highest value for GB[i, j]. We then use GA[i, j] and GB[i, j] to
choose the value for S[i, j]. The pseudocode follows:

A[1..M] ← Query sequence
B[1..N] ← Subject sequence
Create scoring matrices S[0..M, 0..N], GA[0..M, 0..N], GB[0..M, 0..N]
(All elements in row 0 of S, GA, GB) ← 0
(All elements in column 0 of S, GA, GB) ← 0
For i = 1 to M:
 For j = 1 to N:
 GA[i, j] ← max (S[i–1, j] + g exist, GA[i–1, j] + g ext)
 GB[i, j] ← max (S[i, j–1] + g exist, GB[i, j–1] + g ext)
 S[i, j] ← max (S[i–1, j–1] + d (ai, bj), GA[i, j], GB[i, j], 0)

We must also modify the traceback. We start with the largest entry in the S matrix, as before. But as we
follow the S matrix backward, if we decide that query letter ai is aligned with a gap in B, we switch to
following the GA matrix; when we decide that query letter ai starts a gap, we switch back to the S matrix.
Likewise, if we decide that subject letter bj is aligned with a gap in A, we switch to following the GB
matrix; when we decide that subject letter bj starts a gap, we switch back to the S matrix. The pseudocode
follows:

(i, j) ← (row, column) of largest entry in S
Follow S matrix
While S[i, j] ≠ 0:
 If following S matrix:
 If S[i, j] = S[i–1, j–1] + d (ai, bj):
 Query letter ai is aligned with subject letter bj

 (i, j) ← (i–1, j–1)

C6910_37.indd 711C6910_37.indd 711 2/2/09 12:53:52 PM2/2/09 12:53:52 PM

712 CHAPTER 37 Protein Sequence Querying

 Else if S[i, j] = GA[i, j]:
 Follow GA matrix
 Else:
 Follow GB matrix
 Else if following GA matrix:
 Query letter ai is aligned with a gap in B
 If GA[i, j] = S[i–1, j] + g exist:
 Follow S matrix
 (i, j) ← (i–1, j)
 Else:
 Subject letter bj is aligned with a gap in A
 If GB[i, j] = S[i, j–1] + g exist:
 Follow S matrix
 (i, j) ← (i, j–1)

Figure 37.8 shows the scoring matrix for the two example sequences when the BLOSUM-62 sub-
stitution matrix is used along with the affine gap penalty parameters (g exist, g ext) = (–11, –1). This time,
due to the large gap existence penalty, the highest-scoring alignment has no gaps. The alignment also
illustrates a position with mismatched amino acids, I and M, that nonetheless contributes a positive score
(+1) according to the BLOSUM-62 substitution matrix.

C6910_37.indd 712C6910_37.indd 712 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.2 Protein Sequence Alignment 713

GA

X

A

R

K

M

I

R

K

C

W

D

Q
u

e
ry S

eq
u

e
n

ce

F F A R K Q M I K B W L X

Subject Sequence

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

0 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3

0 −4 −4 −4 −2 −4 −4 −4 −4 −4 −4 −4 −4 −4

0 −5 −5 −5 −3 3 −5 −5 −5 −5 −5 −5 −5 −5

0 −6 −6 −6 −4 2 3 −3 −6 −6 −6 −6 −6 −6

0 −7 −7 −7 −5 1 2 4 1 −7 −7 −7 −7 −7

0 −8 −8 −8 −6 0 1 3 1 3 −8 −8 −8 −8

0 −9 −9 −9 −7 −1 0 2 0 6 3 −6 −7 −8

0 −10 −10 −10 −8 −2 −1 1 −1 5 3 1 −7 −9

0 −10 −10 −11 −9 −3 −2 0 −2 4 2 1 4 3 2

0

1

2

3

4

5

6

7

8

9

1 0

1 1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

GB

X

A

R

K

M

I

R

K

C

W

D
Q

uery S
equence

F F A R K Q M I K B W L X

Subject Sequence

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −11 −11

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −11 −11

0 −1 −2 −3 −4 −2 −3 −4 −5 −6 −7 −8 −9 −10

0 −1 −2 −3 −4 −5 3 2 1 0 −1 −2 −3 −4

0 −1 −2 −3 −4 −5 −6 3 2 1 0 −1 −2 −3

0 −1 −2 −3 −4 −5 −6 −7 4 3 2 1 0 −1

0 −1 −2 −3 −4 −5 −6 −7 −7 1 3 2 1 0

0 −1 −2 −3 −4 −5 −1 −2 −3 −4 6 5 4 3

0 −1 −2 −3 −4 −5 −6 −4 −5 −6 −5 3 2 1

0 −1 −2 −3 −4 −5 −6 −7 −5 −6 −6 −7 1 4 1 3

0 −1 −2 −3 −4 −5 −6 −7 −8 −8 −7 −2 3 1 0

0

1

2

3

4

5

6

7

8

9

1 0

1 1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

S

X

A

R

K

M

I

R

K

C

W

D

Q
u

ery S
e

que
n

ce

F F A R K Q M I K B W L X

Subject Sequence

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 9 2 1 0 0 2 0 0 0 0

0 0 0 0 2 1 4 3 2 1 5 2 0 0 0

0 0 0 0 0 3 1 4 8 3 1 2 1 2 0

0 0 0 0 0 2 3 1 5 1 2 3 2 1 3 1

0 0 0 0 5 2 3 4 1 2 1 4 3 2 1 2

0 0 0 0 2 1 0 3 3 1 1 7 1 4 5 4 3

0 0 0 0 0 0 7 2 2 6 1 4 1 2 4 2

0 1 1 0 0 0 0 6 0 5 3 2 5 1 4 1 3

0 0 0 0 0 0 0 0 3 4 9 1 4 2 1 1 3

0

1

2

3

4

5

6

7

8

9

1 0

1 1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

F

X

F

A

A

R

R

K

K

M

Q

I

M

R

I

K

K

C

B

W

W

D

L X

Query

Subject

Figure 37.8 Local alignment using BLOSUM-62 and affine gap penalties

C6910_37.indd 713C6910_37.indd 713 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

714 CHAPTER 37 Protein Sequence Querying

Scoring statistics. If we tried aligning a protein’s query sequence against the subject sequences in a large
protein sequence database, we’d expect to see a large alignment score when the query protein was closely
related to the database protein. However, we’d also expect to see a small but nonzero alignment score
where a piece of the query sequence just happened to match a piece of the subject sequence by chance,
although the proteins in question had nothing to do with each other. How can we tell which is which?
How large does the score have to be for the alignment to be biologically relevant?

Protein database-querying programs like BLAST use the E-value to answer this question. Given
a certain query sequence, a certain database of subject sequences, and a certain alignment score S, the
E-value is the expected number of alignments with a score of S or greater that will be encountered purely
by chance. The smaller the E-value of an alignment’s score, the more statistically significant, and,
therefore, the more biologically relevant the alignment is.

The formula for the E-value is

 (37.3)

where M is the query sequence length, N is the sum of the subject sequences’ lengths in the database, and
S is the alignment score. Note that as S increases, E decreases (and becomes more statistically signifi-
cant). K and λ are parameters that depend on the alignment algorithm. For local alignments using the
BLOSUM-62 substitution matrix along with the affine gap penalties (g exist, g ext) = (–11, –1), the param-
eters have been determined empirically to be K = 0.035 and λ = 0.252.

Protein database querying programs like BLAST also report the alignment score as a bit score. The
formula for the bit score is the following:

 (37.4)

In terms of the bit score, the E-value is the following:

 (37.5)

Formula (37.4) normalizes the algorithm-dependent raw alignment score to an algorithm-independent bit
score. Formula (37.5) for the E-value then holds true for any alignment algorithm. Thus, an alignment
with a higher bit score is better than an alignment with a lower bit score, even if different algorithms were
used to produce the alignments.

37.3 A Protein Sequence Query Example
Before starting our software design, let’s look at an example of a protein database query. To do that,

we need a protein sequence database. The Universal Protein Resource (UniProt), a collaboration between
the European Bioinformatics Institute in Cambridge, UK, the Swiss Institute of Bioinformatics, and
the Protein Information Resource at Georgetown University, provides several Web-accessible protein

C6910_37.indd 714C6910_37.indd 714 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.3 A Protein Sequence Query Example 715

sequence databases. We’ll use the Swiss-Prot database. You can download a file containing the sequences
of all the proteins in the database. Here are a few sequences from the file:

>Q43495|108_SOLLC Protein 108 precursor - Solanum lycopersicum (Tomato) (Lyc

MASVKSSSSSSSSSFISLLLLILLVIVLQSQVIECQPQQSCTASLTGLNVCAPFLVPGSP

TASTECCNAVQSINHDCMCNTMRIAAQIPAQCNLPPLSCSAN

>P18646|10KD_VIGUN 10 kDa protein precursor - Vigna unguiculata (Cowpea)

MEKKSIAGLCFLFLVLFVAQEVVVQSEAKTCENLVDTYRGPCFTTGSCDDHCKNKEHLLS

GRCRDDVRCWCTRNC

>P13813|110KD_PLAKN 110 kDa antigen - Plasmodium knowlesi

FNSNMLRGSVCEEDVSLMTSIDNMIEEIDFYEKEIYKGSHSGGVIKGMDYDLEDDENDED

EMTEQMVEEVADHITQDMIDEVAHHVLDNITHDMAHMEEIVHGLSGDVTQIKEIVQKVNV

AVEKVKHIVETEETQKTVEPEQIEETQNTVEPEQTEETQKTVEPEQTEETQNTVEPEQIE

ETQKTVEPEQTEEAQKTVEPEQTEETQKTVEPEQTEETQKTVEPEQTEETQKTVEPEQTE

ETQKTVEPEQTEETQKTVEPEQTEETQKTVEPEQTEETQNTVEPEPTQETQNTVEP

>Q9XHP0|11S2_SESIN 11S globulin seed storage protein 2 precursor – Sesamum i

MVAFKFLLALSLSLLVSAAIAQTREPRLTQGQQCRFQRISGAQPSLRIQSEGGTTELWDE

RQEQFQCAGIVAMRSTIRPNGLSLPNYHPSPRLVYIERGQGLISIMVPGCAETYQVHRSQ

RTMERTEASEQQDRGSVRDLHQKVHRLRQGDIVAIPSGAAHWCYNDGSEDLVAVSINDVN

HLSNQLDQKFRAFYLAGGVPRSGEQEQQARQTFHNIFRAFDAELLSEAFNVPQETIRRMQ

SEEEERGLIVMARERMTFVRPDEEEGEQEHRGRQLDNGLEETFCTMKFRTNVESRREADI

FSRQAGRVHVVDRNKLPILKYMDLSAEKGNLYSNALVSPDWSMTGHTIVYVTRGDAQVQV

VDHNGQALMNDRVNQGEMFVVPQYYTSTARAGNNGFEWVAFKTTGSPMRSPLAGYTSVIR

AMPLQVITNSYQISPNQAQALKMNRGSQSFLLSPGGRRS

The database is a plain text file in FASTA format. FASTA is a protein sequence analysis program
developed by David Lipman and William Pearson, originally published in 1985; the format in which the
FASTA program stores sequences has become the de facto standard. A line beginning with a ‘>’ charac-
ter marks the start of a protein. This first line is the protein’s description. By convention in the Swiss-Prot
database, the description begins with the protein’s “accession number,” or ID. You can search for the
accession number on the UniProt Web site and find full details about the protein. The lines following the
description contain the protein’s amino acid sequence. (Line breaks are not significant.)

To query the database, we must supply a file with a query sequence in FASTA format. Here is the
query sequence for human insulin:

>Human insulin (B chain 1..30, A chain 31..51) - Homo sapiens (Human)

FVNQHLCGSHLVEALYLVCGERGFFYTPKT

GIVEQCCTSICSLYQLENYCN

Here is what the protein database-querying program from later in the chapter printed when told to
run the preceding query against the Swiss-Prot database. The printout begins with the query sequence
description.

Query Description:

>Human insulin (B chain 1..30, A chain 31..51) - Homo sapiens (Human)

Length = 51

C6910_37.indd 715C6910_37.indd 715 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

716 CHAPTER 37 Protein Sequence Querying

The program ran the Smith-Waterman algorithm for the query sequence and each database sequence,
computing the local alignments, the bit scores, and the E-values. The next part of the printout lists the
descriptions of the proteins in the database that matched the query. A match is defined to be a local
alignment with an E-value less than or equal to 10. (The E-value threshold can be specified on the com-
mand line.) The matching proteins are listed in ascending order of E-value, so that the most biologically
relevant matches appear first. The program found 143 matches.

 Bit E-

Subject Description Score Value

>P67973|INS_BALPH Insulin [Contains: Insulin B chain; Ins... 108 2e-23

>P01316|INS_ELEMA Insulin [Contains: Insulin B chain; Ins... 108 2e-23

>P67974|INS_PHYCA Insulin [Contains: Insulin B chain; Ins... 108 2e-23

>P01324|INS_ACOCA Insulin [Contains: Insulin B chain; Ins... 106 7e-23

>P01314|INS_BALBO Insulin [Contains: Insulin B chain; Ins... 104 3e-22

. . .

>P26726|BXA3_BOMMO Bombyxin A-3 precursor - Bombyx mori (... 30.3 5.4

>Q17192|BXA1_BOMMO Bombyxin A-1 precursor - Bombyx mori (... 29.9 6.9

>P26727|BXA4_BOMMO Bombyxin A-4 precursor - Bombyx mori (... 29.9 6.9

>P26729|BXA6_BOMMO Bombyxin A-6 precursor - Bombyx mori (... 29.9 6.9

>P26730|BXA7_BOMMO Bombyxin A-7 precursor - Bombyx mori (... 29.9 6.9

Next, the printout gives the details of each alignment, again in order from lowest E-value to highest. Here
is the first.

>P67973|INS_BALPH Insulin [Contains: Insulin B chain; Insulin A chain] -

Balaenoptera physalus (Finback whale) (Common rorqual)

Length = 51

Score = 108 bits (284), Expect = 2e-23

Identities = 50/51 (98%), Positives = 50/51 (98%), Gaps = 0/51 (0%)

Query 1 FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTSICSLYQLENYCN 51

 FVNQHLCGSHLVEALYLVCGERGFFYTPK GIVEQCCTSICSLYQLENYCN

Sbjct 1 FVNQHLCGSHLVEALYLVCGERGFFYTPKAGIVEQCCTSICSLYQLENYCN 51

The line labeled “Query” gives the starting and ending indexes (1 and 51) of the query sequence in the
alignment, along with the actual amino acids. The line labeled “Sbjct” does the same for the subject
sequence. The line in between shows matches and mismatches. A matching position echoes the amino
acid letter; a space denotes a mismatched position. Finback whale insulin is the same as human insulin,
except for one amino acid.

Here is the second alignment.

>P01316|INS_ELEMA Insulin [Contains: Insulin B chain; Insulin A chain] -

Elephas maximus (Indian elephant)

Length = 51

Score = 108 bits (284), Expect = 2e-23

Identities = 49/51 (96%), Positives = 50/51 (98%), Gaps = 0/51 (0%)

C6910_37.indd 716C6910_37.indd 716 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.3 A Protein Sequence Query Example 717

Query 1 FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTSICSLYQLENYCN 51

 FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCT +CSLYQLENYCN

Sbjct 1 FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTGVCSLYQLENYCN 51

Indian elephant insulin is the same as human insulin, except for two amino acids. For one of the mis-
matched positions, though, the BLOSUM-62 substitution matrix yielded a positive score. This is denoted
by a “+” sign.

You may be wondering why human insulin, which ought to be an exact match for the query
sequence, does not show up first in the list. Here is the alignment for human insulin; it shows up as
the 21st:

>P01308|INS_HUMAN Insulin precursor [Contains: Insulin B chain; Insulin A

chain] - Homo sapiens (Human)

Length = 110

Score = 93.5 bits (244), Expect = 5e-19

Identities = 51/86 (59%), Positives = 51/86 (59%), Gaps = 35/86 (41%)

Query 1 FVNQHLCGSHLVEALYLVCGERGFFYTPKT------------------------------ 30

 FVNQHLCGSHLVEALYLVCGERGFFYTPKT

Sbjct 25 FVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEG 84

Query 31 -----GIVEQCCTSICSLYQLENYCN 51

 GIVEQCCTSICSLYQLENYCN

Sbjct 85 SLQKRGIVEQCCTSICSLYQLENYCN 110

Note the large gap in the alignment from positions 55–89 in the subject sequence. Also note that positions
1–24 in the subject sequence are not part of the alignment. This is because what’s in the database is the
human insulin precursor protein, not human insulin itself. To synthesize insulin, the body first assembles
the precursor protein as a single 110-amino-acid chain. Special enzymes cleave the precursor protein into
the B chain (positions 25–54) and the A chain (positions 90–110). The A and B chains are attached by
two sulfur atoms, each sulfur atom joining a certain position on the A chain with a certain position on the
B chain (disulfide bonds). There is also a third disulfide bond between two positions on the A chain. The
overall protein’s shape is determined by the individual chains’ shapes and the disulfide bonds’ locations.

When the query sequence for human insulin is aligned with the subject sequence for the human insu-
lin precursor protein, the large gap between the A and B chains reduces the alignment score compared to
a subject sequence that is just insulin. Disregarding the gap, the query sequence is identical to the subject
sequence.

As fodder for your next trivia party, you may be interested in what the printout reveals about the
degree of similarity (number of differing amino acids) between human insulin and other animals’ insulin:

Identical: green monkey, gorilla, crab-eating macaque, chimpanzee, orangutan•

One amino acid different: finback whale, sperm whale, pig, rabbit, ground •
squirrel, dog

Two amino acids different: Indian elephant, hamster, horse, fat sand rat, •
Norway rat

C6910_37.indd 717C6910_37.indd 717 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

718 CHAPTER 37 Protein Sequence Querying

Three amino acids different: Egyptian spiny mouse, pollack whale, cow, mouse•

Four amino acids different: dromedary, goat, opossum, sheep, cat•

Based on their insulin, humans have a greater affinity to rats than to cats.

37.4 Sequential Program
Figure 37.9 shows the classes from which the sequential protein sequence database-querying program is
built and their “uses” relationships. (A→B means class A uses class B.) These classes are in package
edu.rit.compbio.seq. The main program is class FindProteinSeq. We’ll describe what every class does,
but study the code for only a few key classes.

FindProteinSeq

ProteinDatabase

ProteinLocalAlignment

ProteinLocalAlignmentSeq

Sequence

ProteinSequence

Blosum62

Alignment

Comparable Externalizable

AlignmentPrinter

AlignmentStats

DefaultAlignmentStats

Figure 37.9 FindProteinSeq class relationships

Class Sequence is the abstract base class for a biological sequence, including •
the description, the characters in the sequence, and a sequence ID.

Class ProteinSequence, a subclass of class Sequence, provides a protein sequence. •
Constructors are provided to read a protein sequence from a FASTA format file

C6910_37.indd 718C6910_37.indd 718 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.4 Sequential Program 719

or from a string. (Another subclass of class Sequence, not presently implemented,
could provide the other kind of biological sequence, a DNA sequence.)

Class ProteinDatabase is used to read protein sequences from a protein data-•
base file in FASTA format. An index file that gives the offset of each protein
in the database file is associated with the database file. Given a protein index,
the ProteinDatabase object reads the offset at that index from the index file,
reads the protein sequence at that offset from the database file, and returns a
ProteinSequence object. This allows the program to quickly read an arbitrary
protein sequence from the database. Class ProteinDatabase also includes a
main program that creates the index file, given the database file.

Class Blosum62 encapsulates the BLOSUM-62 substitution matrix.•

Class Alignment stores the result of an alignment algorithm between a query •
sequence and a subject sequence. It includes the database indexes of both sequences,
the starting and ending positions of the alignment in both sequences, the state of
each alignment position (query letter aligned with subject letter, query letter aligned
with gap, or subject letter aligned with gap), and the alignment’s raw score. Class
Alignment implements interface java.lang.Comparable so that alignment objects can
be sorted into descending order of alignment score. Class Alignment also imple-
ments interface java.io.Externalizable so that alignment objects can be serialized and
sent in messages between the processes of a parallel program.

Class AlignmentPrinter has a method to print a summary of an alignment (descrip-•
tion, bit score, E-value) and a method to print the details of an alignment.

Interface AlignmentStats specifies methods to calculate an align ment’s bit •
score and E-value.

Class DefaultAlignmentStats implements interface AlignmentStats with the •
formulas and parameters we are using for the bit score (37.4) and E-value
(37.3). (A program that used a different alignment algorithm would have to
implement interface AlignmentStats differently.)

Class ProteinLocalAlignment is the abstract base class for the Smith-•
Waterman local alignment algorithm using a substitution matrix and affine gap
penalties. The base class has fields and setter methods for several alignment
parameters, an abstract align() method to be implemented in a subclass, and
a private method for doing the traceback.

package edu.rit.compbio.seq;

import java.io.ByteArrayOutputStream;

public abstract class ProteinLocalAlignment

 {

 // Substitution matrix.

 int[][] delta = Blosum62.matrix;

C6910_37.indd 719C6910_37.indd 719 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

720 CHAPTER 37 Protein Sequence Querying

 // Gap existence and extension penalties.

 int g = -11;

 int h = -1;

 // Query sequence, ID, length.

 byte[] A;

 long myQueryId;

 int myQueryLength;

 // Subject sequence, ID, length.

 byte[] B;

 long mySubjectId;

 int mySubjectLength;

 // Score matrix.

 int[][] S;

 // Gap score matrices.

 int[][] GA;

 int[][] GB;

 // Extra padding to avert cache interference.

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

 /**

 * Construct a new protein sequence local alignment object.

 */

 public ProteinLocalAlignment()

 {

 }

 /**

 * Set the protein substitution matrix. If not set, the default

 * is the BLOSUM-62 substitution matrix.

 */

 public void setSubstitutionMatrix

 (int[][] matrix)

 {

 this.delta = matrix;

 }

 /**

 * Set the gap existence penalty. If not set, the default is

 * -11.

 */

C6910_37.indd 720C6910_37.indd 720 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.4 Sequential Program 721

 public void setGapExistencePenalty

 (int g)

 {

 this.g = g;

 }

 /**

 * Set the gap extension penalty. If not set, the default is -1.

 */

 public void setGapExtensionPenalty

 (int h)

 {

 this.h = h;

 }

 /**

 * Set the query sequence.

 */

 public void setQuerySequence

 (ProteinSequence theSequence,

 long theId)

 {

 A = theSequence.sequence();

 myQueryId = theId;

 myQueryLength = theSequence.length();

 int M = A.length;

 if (S == null || S.length < M+32) // Extra padding

 {

 S = new int [M+32] [];

 GA = new int [M+32] [];

 GB = new int [M+32] [];

 }

 }

 /**

 * Set the subject sequence.

 */

 public void setSubjectSequence

 (ProteinSequence theSequence,

 long theId)

 {

 if (A == null)

 {

 throw new IllegalStateException

 ("ProteinLocalAlignment.setSubjectSequence(): Query "+

 "sequence not set");

C6910_37.indd 721C6910_37.indd 721 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

722 CHAPTER 37 Protein Sequence Querying

 }

 B = theSequence.sequence();

 mySubjectId = theId;

 mySubjectLength = theSequence.length();

 int N = B.length;

 if (S[0] == null || S[0].length < N+32) // Extra padding

 {

 int M = S.length-32;

 for (int i = 0; i < M; ++ i)

 {

 S[i] = new int [N+32];

 GA[i] = new int [N+32];

 GB[i] = new int [N+32];

 }

 }

 }

 /**

 * Align the query sequence and the subject sequence.

 */

 public abstract Alignment align()

 throws Exception;

 /**

 * Compute the traceback and return the resulting alignment.

 */

 Alignment computeTraceback

 (int theScore,

 int theQueryFinish,

 int theSubjectFinish)

 {

 // Set up alignment object.

 Alignment alignment = new Alignment();

 alignment.myQueryId = this.myQueryId;

 alignment.mySubjectId = this.mySubjectId;

 alignment.myQueryLength = this.myQueryLength;

 alignment.mySubjectLength = this.mySubjectLength;

 // Special case: No alignment found.

 if (theScore == 0)

 {

 alignment.myTraceback = new byte [0];

 return alignment;

 }

 // For recording alignment state at each position.

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

C6910_37.indd 722C6910_37.indd 722 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.4 Sequential Program 723

 // Trace backwards until we reach a score of 0.

 int i = theQueryFinish;

 int j = theSubjectFinish;

 int theQueryStart = i;

 int theSubjectStart = j;

 int state = 0;

 while (S[i][j] != 0)

 {

 switch (state)

 {

 case 0: // Tracing back through table S

 if (S[i][j] == S[i-1][j-1] + delta[A[i]][B[j]])

 {

 baos.write

 (Alignment.QUERY_ALIGNED_WITH_SUBJECT);

 theQueryStart = i;

 theSubjectStart = j;

 -- i;

 -- j;

 }

 else if (S[i][j] == GA[i][j])

 {

 state = 1;

 }

 else

 {

 state = 2;

 }

 break;

 case 1: // Tracing back through table GA

 baos.write (Alignment.QUERY_ALIGNED_WITH_GAP);

 if (GA[i][j] == S[i-1][j] + g) state = 0;

 theQueryStart = i;

 -- i;

 break;

 case 2: // Tracing back through table GB

 baos.write (Alignment.SUBJECT_ALIGNED_WITH_GAP);

 if (GB[i][j] == S[i][j-1] + g) state = 0;

 theSubjectStart = j;

 -- j;

 break;

 }

 }

 // Record results.

 alignment.myScore = theScore;

C6910_37.indd 723C6910_37.indd 723 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

724 CHAPTER 37 Protein Sequence Querying

Class ProteinLocalAlignmentSeq extends class ProteinLocalAlignment with •
a sequential implementation of the align() method. (Later, we will see
another subclass with an SMP parallel implementation.)

 alignment.myQueryStart = theQueryStart;

 alignment.mySubjectStart = theSubjectStart;

 alignment.myQueryFinish = theQueryFinish;

 alignment.mySubjectFinish = theSubjectFinish;

 alignment.myTraceback = baos.toByteArray();

 return alignment;

 }

 }

package edu.rit.compbio.seq;

public class ProteinLocalAlignmentSeq

 extends ProteinLocalAlignment

 {

 /**

 * Construct a new protein sequence local alignment object.

 */

 public ProteinLocalAlignmentSeq()

 {

 super();

 }

 /**

 * Align the query sequence and the subject sequence.

 */

 public Alignment align()

 {

 // Verify preconditions.

 if (A == null)

 {

 throw new IllegalStateException

 ("ProteinLocalAlignmentSeq.align(): Query sequence "+

 "not set");

 }

 if (B == null)

 {

 throw new IllegalStateException

 ("ProteinLocalAlignmentSeq.align(): Subject sequence "+

 "not set");

 }

 int M = A.length - 1;

 int N = B.length - 1;

C6910_37.indd 724C6910_37.indd 724 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.4 Sequential Program 725

 // Do the Smith-Waterman algorithm in a single thread.

 int maxScore = 0;

 int theQueryFinish = 0;

 int theSubjectFinish = 0;

 for (int i = 1; i <= M; ++ i)

 {

 int A_i = A[i];

 int[] delta_A_i = delta[A_i];

 int[] S_im1 = S[i-1];

 int[] S_i = S[i];

 int[] GA_im1 = GA[i-1];

 int[] GA_i = GA[i];

 int[] GB_i = GB[i];

 int B_j, S_i_j, GA_i_j, GB_i_j;

 for (int j = 1; j <= N; ++ j)

 {

 B_j = B[j];

 GA_i_j = S_im1[j] + g;

 GA_i_j = Math.max (GA_i_j, GA_im1[j] + h);

 GB_i_j = S_i[j-1] + g;

 GB_i_j = Math.max (GB_i_j, GB_i[j-1] + h);

 S_i_j = S_im1[j-1] + delta_A_i[B_j];

 S_i_j = Math.max (S_i_j, GA_i_j);

 S_i_j = Math.max (S_i_j, GB_i_j);

 S_i_j = Math.max (S_i_j, 0);

 if (S_i_j > maxScore)

 {

 maxScore = S_i_j;

 theQueryFinish = i;

 theSubjectFinish = j;

 }

 S_i[j] = S_i_j;

 GA_i[j] = GA_i_j;

 GB_i[j] = GB_i_j;

 }

 }

 // Do the traceback.

 return computeTraceback

 (maxScore, theQueryFinish, theSubjectFinish);

 }

 }

C6910_37.indd 725C6910_37.indd 725 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

726 CHAPTER 37 Protein Sequence Querying

Finally, class FindProteinSeq is the main program class for the sequential version of the protein
sequence database-querying program. The command-line arguments are the following:

Name of the file containing the query sequence in FASTA format.•

Name of the file containing the protein sequence database in FASTA format.•

Name of the database index file.•

E• -value threshold for reporting a match. If omitted, the default is 10.

package edu.rit.compbio.seq;

import java.io.File;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

public class FindProteinSeq

 {

 // Command line arguments.

 static File queryfile;

 static File databasefile;

 static File indexfile;

 static double expect;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (3 > args.length || args.length > 4) usage();

 queryfile = new File (args[0]);

 databasefile = new File (args[1]);

 indexfile = new File (args[2]);

 expect = 10.0;

 if (args.length == 4) expect = Double.parseDouble (args[3]);

 // Set up query sequence.

 ProteinSequence query = new ProteinSequence (queryfile);

 // Set up protein sequence database.

 ProteinDatabase database =

 new ProteinDatabase (databasefile, indexfile);

C6910_37.indd 726C6910_37.indd 726 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.4 Sequential Program 727

 // Set up object to compute alignment statistics.

 AlignmentStats stats =

 new DefaultAlignmentStats (database.getDatabaseLength());

 // Set up list to hold alignments.

 List<Alignment> alignments = new ArrayList<Alignment>();

 // Set up object to perform alignments.

 ProteinLocalAlignment aligner =

 new ProteinLocalAlignmentSeq();

 aligner.setQuerySequence (query, 0);

 long t2 = System.currentTimeMillis();

 // Align query sequence against every subject sequence.

 for (long id = 0; id < database.getProteinCount(); ++ id)

 {

 ProteinSequence subject =

 database.getProteinSequence (id);

 aligner.setSubjectSequence (subject, id);

 Alignment a = aligner.align();

 if (stats.eValue (a) <= expect)

 {

 alignments.add (a);

 }

 }

 long t3 = System.currentTimeMillis();

 // Sort alignments into descending order of score.

 Collections.sort (alignments);

 // Set up alignment printer.

 AlignmentPrinter printer =

 new AlignmentPrinter (System.out, stats);

 // Print query sequence.

 System.out.println ("Query Description:");

 System.out.println (query.description());

 System.out.println ("Length = "+query.length());

 System.out.println();

 // Print summary of each alignment.

 for (Alignment a : alignments)

 {

 printer.printSummary

C6910_37.indd 727C6910_37.indd 727 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

728 CHAPTER 37 Protein Sequence Querying

37.5 Parallel Program, Version 1
Now that we have a sequential version of the protein sequence database-querying program, we can
turn our attention to a parallel version. Recall the two design strategies for a parallel data-set querying
program: replicate the data set and partition the query, or partition the data set and replicate the query.
The first design decision is which strategy to use. In this application the data set is large and the query is
comparatively small, so the second strategy makes the most sense. Each parallel processor will align the
query sequence with a subset of the database sequences.

 (a, database.getProteinSequence (a.getSubjectId()));

 }

 System.out.println();

 // Print details of each alignment.

 for (Alignment a : alignments)

 {

 printer.printDetails

 (a, query,

 database.getProteinSequence (a.getSubjectId()));

 }

 // Print various information about the alignment procedure.

 System.out.println ("Query file: "+queryfile);

 System.out.println ("Database file: "+databasefile);

 System.out.println ("Database index file: "+indexfile);

 System.out.println ("Number of sequences: "+

 database.getProteinCount());

 System.out.println ("Number of matches: "+alignments.size());

 System.out.println ("Query length: "+query.length());

 System.out.println ("Database length: "+

 database.getDatabaseLength());

 stats.print (System.out);

 System.out.println();

 // All done.

 database.close();

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1)+" msec pre");

 System.out.println ((t3-t2)+" msec calc");

 System.out.println ((t4-t3)+" msec post");

 System.out.println ((t4-t1)+" msec total");

 }

 }

C6910_37.indd 728C6910_37.indd 728 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.5 Parallel Program, Version 1 729

In a hybrid parallel program, each process running on one backend node has multiple threads; each
thread runs on one CPU of the node and can access the node’s shared memory. The second design deci-
sion is what the threads of each process will do. We could go in either of two directions:

All the threads cooperate to align the query sequence with one subject •
sequence in an SMP parallel fashion, each thread computing a subset of the
alignment.

Each thread does the complete alignment of the query sequence with one •
subject sequence. Different threads do alignments with different subject
sequences in parallel.

We’ll develop two parallel programs; each will use one of the preceding design approaches. It will prove
instructive to compare the two programs’ performance.

Figure 37.10 shows the overall design of the first parallel program. Each process works on one
subject sequence at a time from the protein sequence database. Within each process, all the threads work
in parallel to compute the alignment between the subject sequence and the query sequence. The process
then goes to the next subject sequence. Once all the alignments have been computed, one process prints a
list of the matching proteins (those with alignment scores below the E-value threshold).

Process 0

Thr
0

Thr
1

Thr
2

Thr
3

Subject
sequence

Query
sequence

Alignment
Process 1

Thr
0

Thr
1

Thr
2

Thr
3

Subject
sequence

Query
sequence

Alignment

List of
matching proteins

Protein sequence
database

Query
sequence

Figure 37.10 First hybrid parallel program design with two processes and four threads per process

C6910_37.indd 729C6910_37.indd 729 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

730 CHAPTER 37 Protein Sequence Querying

We need an SMP parallel version of the Smith-Waterman local alignment algorithm that we can use
as a building block in the hybrid parallel program. To compute the correct answer, the SMP parallel ver-
sion must obey the Smith-Waterman algorithm’s sequential dependencies. Each element of the scoring
matrix S[i, j] depends on the element above, S[i–1, j]; the element to the left, S[i, j–1]; and the element
above and to the left, S[i–1, j–1] (Figure 37.11).

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10 1,11 1,12

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2,11 2,12

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10 3,11 3,12

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,10 4,11 4,12

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,10 5,11 5,12

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,10 6,11 6,12

Figure 37.11 Sequential dependencies in Smith-Waterman

Suppose we partition the columns of S among the parallel threads. Lumping each thread’s columns in one
row into a block results in the inter-block sequential dependencies shown in Figure 37.12.

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10 1,11 1,12

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2,11 2,12

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10 3,11 3,12

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,10 4,11 4,12

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,10 5,11 5,12

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,10 6,11 6,12

Thread 0 Thread 1 Thread 2 Thread 3

Figure 37.12 Inter-block sequential dependencies in Smith-Waterman

C6910_37.indd 730C6910_37.indd 730 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.5 Parallel Program, Version 1 731

Where is the parallelism? It still looks as though the columns in each row must be computed from left to
right, so it doesn’t seem possible that the threads can compute their blocks of columns simultaneously.
However, suppose we shift the picture just a little (Figure 37.13).

1,1 1,2 1,3

2,1 2,2 2,3 1,4 1,5 1,6

3,1 3,2 3,3 2,4 2,5 2,6 1,7 1,8 1,9

4,1 4,2 4,3 3,4 3,5 3,6 2,7 2,8 2,9 1,10 1,11 1,12

5,1 5,2 5,3 4,4 4,5 4,6 3,7 3,8 3,9 2,10 2,11 2,12

6,1 6,2 6,3 5,4 5,5 5,6 4,7 4,8 4,9 3,10 3,11 3,12

6,4 6,5 6,6 5,7 5,8 5,9 4,10 4,11 4,12

6,7 6,8 6,9 5,10 5,11 5,12

6,10 6,11 6,12

Thread 0 Thread 1 Thread 2 Thread 3

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Figure 37.13 Rounds of parallel computation in Smith-Waterman

There are M+K–1 rounds of computation, where M is the query sequence length (scoring matrix height)
and K is the number of threads. In round i, thread k computes its own block of columns, from left to right,
in row i–k; except if i–k < 1 or i–k > M, thread k does nothing in round i. With the computation arranged
this way, there are inter-block sequential dependencies between rounds, but there are no inter-block
sequential dependencies within a round. Therefore, the threads can compute their blocks in parallel in
each round. To enforce the sequential dependency between rounds, the threads must do a barrier wait at
the end of each round.

Here is the source code for class ProteinLocalAlignmentSmp, another subclass of abstract base class
ProteinLocalAlignment. This subclass implements the align() method in the SMP parallel fashion
described earlier. The parallel thread team is created in the main program, is supplied as a constructor
argument, and is reused each time the align() method is called.

package edu.rit.compbio.seq;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

public class ProteinLocalAlignmentSmp

C6910_37.indd 731C6910_37.indd 731 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

732 CHAPTER 37 Protein Sequence Querying

Each parallel team thread keeps track of the alignment finish point—that is, the row and column of the
largest element—in the thread’s own slice of the scoring matrix. After the threads have finished filling in

 extends ProteinLocalAlignment

 {

 private ParallelTeam team;

 /**

 * Construct a new protein sequence local alignment object.

 */

 public ProteinLocalAlignmentSmp

 (ParallelTeam team)

 {

 super();

 if (team == null)

 {

 throw new NullPointerException

 ("ProteinLocalAlignmentSmp(): team is null");

 }

 this.team = team;

 }

 /**

 * Align the query sequence and the subject sequence.

 */

 public Alignment align()

 throws Exception

 {

 // Verify preconditions.

 if (A == null)

 {

 throw new IllegalStateException

 ("ProteinLocalAlignmentSmp.align(): Query sequence "+

 "not set");

 }

 if (B == null)

 {

 throw new IllegalStateException

 ("ProteinLocalAlignmentSmp.align(): Subject sequence "+

 "not set");

 }

 final int M = A.length - 1;

 final int N = B.length - 1;

 final int K = team.getThreadCount();

 final int lastRound = M + K - 1;

C6910_37.indd 732C6910_37.indd 732 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.5 Parallel Program, Version 1 733

the scoring matrix, the per-thread finish points must be reduced together. Here is the finish point shared
reduction variable. It is an instance of class FinishPoint, a small helper class that is defined later.

 // Initialize global finish point reduction variable.

 final FinishPoint gblfp = new FinishPoint();

 gblfp.maxScore = 0;

 gblfp.theQueryFinish = 0;

 gblfp.theSubjectFinish = 0;

 // Do the Smith-Waterman algorithm in the parallel thread

 // team.

 team.execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 int threadIndex = getThreadIndex();

 // Determine range of columns for this thread.

 Range range =

 new Range (1, N) .subrange (K, threadIndex);

 int jlb = range.lb();

 int jub = range.ub();

 // Initialize per-thread finish point.

 int maxScore = 0;

 int theQueryFinish = 0;

 int theSubjectFinish = 0;

 // Do all rounds.

 for (int round = 1; round <= lastRound; ++ round)

 {

 // Row for this thread in this round is round number

 // offset by thread index. If row is out of bounds,

 // do nothing this round.

 int i = round - threadIndex;

 if (1 <= i && i <= M)

 {

 int A_i = A[i];

 int[] delta_A_i = delta[A_i];

 int[] S_im1 = S[i-1];

 int[] S_i = S[i];

 int[] GA_im1 = GA[i-1];

 int[] GA_i = GA[i];

 int[] GB_i = GB[i];

 int B_j, S_i_j, GA_i_j, GB_i_j;

C6910_37.indd 733C6910_37.indd 733 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

734 CHAPTER 37 Protein Sequence Querying

Here, the thread updates its own per-thread alignment finish point.

Here, the thread reduces its per-thread alignment finish point into the shared reduction variable, by call-
ing a method on the gblfp object.

Because the traceback takes much less time than filling in the scoring matrix, the traceback is done out-
side the parallel region in a single thread.

 // Do only this thread’s columns.

 for (int j = jlb; j <= jub; ++ j)

 {

 B_j = B[j];

 GA_i_j = S_im1[j] + g;

 GA_i_j = Math.max (GA_i_j, GA_im1[j] + h);

 GB_i_j = S_i[j-1] + g;

 GB_i_j = Math.max (GB_i_j, GB_i[j-1] + h);

 S_i_j = S_im1[j-1] + delta_A_i[B_j];

 S_i_j = Math.max (S_i_j, GA_i_j);

 S_i_j = Math.max (S_i_j, GB_i_j);

 S_i_j = Math.max (S_i_j, 0);

 if (S_i_j > maxScore)

 {

 maxScore = S_i_j;

 theQueryFinish = i;

 theSubjectFinish = j;

 }

 S_i[j] = S_i_j;

 GA_i[j] = GA_i_j;

 GB_i[j] = GB_i_j;

 }

 }

 // Wait for all threads to complete this round.

 barrier();

 }

 // After all rounds, reduce per-thread finish point

 // into global finish point.

 gblfp.setToBest

 (maxScore, theQueryFinish, theSubjectFinish);

 }

 });

C6910_37.indd 734C6910_37.indd 734 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.5 Parallel Program, Version 1 735

Here is the helper class FinishPoint. The setToBest() method is a reduction method called by each
thread. Because multiple threads are updating the shared finish point object, the threads must synchronize
with each other. We accomplish this by making the setToBest() method a synchronized method, which
ensures that only one thread at a time will execute the method. This method remembers the finish point
with the highest score; if more than one finish point has the same highest score, then this method remem-
bers the finish point in the smallest row; if more than one finish point has the same highest score in the
same smallest row, then this method remembers the finish point in the smallest column. This behavior
yields the same finish point as the sequential version.

 // Do the traceback in a single thread, starting from global

 // finish point.

 return computeTraceback

 (gblfp.maxScore,

 gblfp.theQueryFinish,

 gblfp.theSubjectFinish);

 }

 private static class FinishPoint

 {

 // Alignment score.

 public int maxScore;

 // Query sequence index.

 public int theQueryFinish;

 // Subject sequence index.

 public int theSubjectFinish;

 // Set this finish point to the best of itself and the given

 // finish point. Multiple thread safe method.

 public synchronized void setToBest

 (int maxScore,

 int theQueryFinish,

 int theSubjectFinish)

 {

 if ((maxScore > this.maxScore) ||

 (maxScore == this.maxScore &&

 theQueryFinish < this.theQueryFinish) ||

 (maxScore == this.maxScore &&

 theQueryFinish == this.theQueryFinish &&

 theSubjectFinish < this.theSubjectFinish))

 {

 this.maxScore = maxScore;

 this.theQueryFinish = theQueryFinish;

C6910_37.indd 735C6910_37.indd 735 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

736 CHAPTER 37 Protein Sequence Querying

Now that we have class ProteinLocalAlignmentSmp that can harness all the CPUs in one SMP node
to do one alignment in parallel, we need a main program to partition the subject sequences from the
protein database among the nodes of the hybrid parallel computer. Because the scoring matrix size, and
therefore the time needed to fill it in, depends on the subject sequence length, and because the protein
database has sequences of different lengths, different alignments take different amounts of time to com-
pute, and load balancing is required. As usual, we will use the master-worker pattern for load balancing.
The master in process 0 sends ranges of protein indexes to the workers. Following the parallel input files
pattern, the worker reads each subject sequence from the protein database file, computes each alignment
in an SMP parallel fashion, accumulates a list of Alignment objects having an E-value below the speci-
fied threshold, and sends the list back to the master. Because we designed class Alignment to be serializ-
able, and because the class we are using for the list (java.util.ArrayList) is also serializable, the program
has no trouble sending and receiving messages containing a list of alignments. Once all the workers have
finished, process 0 sorts the alignments and prints the results.

Here is the source code for class FindProteinHyb, the first hybrid parallel version. Its command-line
arguments are the same as the sequential version. Every backend node must be able to read the same
query sequence file, protein database file, and database index file. The Java property -Dpj.schedule
controls how the master apportions chunks of protein indexes among the workers.

 this.theSubjectFinish = theSubjectFinish;

 }

 }

 }

 }

package edu.rit.compbio.seq;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommStatus;

import edu.rit.pj.LongSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.LongRange;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

public class FindProteinHyb

 {

 // World communicator.

 static Comm world;

C6910_37.indd 736C6910_37.indd 736 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.5 Parallel Program, Version 1 737

 static int size;

 static int rank;

 // Command line arguments.

 static File queryfile;

 static File databasefile;

 static File indexfile;

 static double expect;

 // Query sequence.

 static ProteinSequence query;

 // Protein sequence database.

 static ProteinDatabase database;

 // Object to compute alignment statistics.

 static AlignmentStats stats;

 // List of alignments found.

 static List<Alignment> alignmentsFound;

 /**

 * Main program.

 */

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Initialize world communicator.

 Comm.init (args);

 world = Comm.world();

 size = world.size();

 rank = world.rank();

 // Parse command line arguments.

 if (3 > args.length || args.length > 4) usage();

 queryfile = new File (args[0]);

 databasefile = new File (args[1]);

 indexfile = new File (args[2]);

 expect = 10.0;

 if (args.length == 4) expect = Double.parseDouble (args[3]);

C6910_37.indd 737C6910_37.indd 737 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

738 CHAPTER 37 Protein Sequence Querying

 // Set up query sequence.

 query = new ProteinSequence (queryfile);

 // Set up protein sequence database.

 database = new ProteinDatabase (databasefile, indexfile);

 // Set up object to compute alignment statistics.

 stats = new DefaultAlignmentStats

 (database.getDatabaseLength());

 // Set up list of alignments found.

 alignmentsFound = new ArrayList<Alignment>();

 long t2 = System.currentTimeMillis();

 // In process 0, run the master and the worker in separate

 // threads.

 if (rank == 0)

 {

 new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (new ParallelSection()

 {

 public void run() throws Exception

 {

 masterSection();

 }

 },

 new ParallelSection()

 {

 public void run() throws Exception

 {

 workerSection();

 }

 });

 }

 });

 }

 // In processes 1 and up, run just the worker section.

 else

 {

 workerSection();

 }

C6910_37.indd 738C6910_37.indd 738 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.5 Parallel Program, Version 1 739

 long t3 = System.currentTimeMillis();

 // Process 0 does the postprocessing.

 if (rank == 0)

 {

 // Sort alignments into descending order of score.

 Collections.sort (alignmentsFound);

 // Set up alignment printer.

 AlignmentPrinter printer =

 new AlignmentPrinter (System.out, stats);

 // Print query sequence.

 System.out.println ("Query Description:");

 System.out.println (query.description());

 System.out.println ("Length = "+query.length());

 System.out.println();

 // Print summary of each alignment.

 for (Alignment a : alignmentsFound)

 {

 printer.printSummary

 (a, database.getProteinSequence (a.getSubjectId()));

 }

 System.out.println();

 // Print details of each alignment.

 for (Alignment a : alignmentsFound)

 {

 printer.printDetails

 (a, query,

 database.getProteinSequence (a.getSubjectId()));

 }

 // Print various information about the alignment procedure.

 System.out.println

 ("Query file: "+queryfile);

 System.out.println

 ("Database file: "+databasefile);

 System.out.println

 ("Database index file: "+indexfile);

 System.out.println

 ("Number of sequences: "+database.getProteinCount());

 System.out.println

 ("Number of matches: "+alignmentsFound.size());

C6910_37.indd 739C6910_37.indd 739 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

740 CHAPTER 37 Protein Sequence Querying

 System.out.println

 ("Query length: "+query.length());

 System.out.println

 ("Database length: "+database.getDatabaseLength());

 stats.print (System.out);

 System.out.println();

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1)+" msec pre");

 System.out.println ((t3-t2)+" msec calc");

 System.out.println ((t4-t3)+" msec post");

 System.out.println ((t4-t1)+" msec total");

 }

 // Done using the protein sequence database.

 database.close();

 }

 /**

 * Perform the master section.

 */

 private static void masterSection()

 throws IOException

 {

 int worker;

 LongRange range;

 long t2 = System.currentTimeMillis();

 // Set up a schedule object.

 LongSchedule schedule = LongSchedule.runtime();

 schedule.start

 (size, new LongRange (0, database.getProteinCount()-1));

 // Send initial database index range to each worker. If range

 // is null, no more work for that worker. Keep count of

 // active workers.

 int activeWorkers = size;

 for (worker = 0; worker < size; ++ worker)

 {

 range = schedule.next (worker);

 world.send (worker, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 }

 // Repeat until all workers have finished.

C6910_37.indd 740C6910_37.indd 740 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.5 Parallel Program, Version 1 741

 while (activeWorkers > 0)

 {

 // Receive a message containing a list of zero or more

 // alignments from any worker.

 ObjectItemBuf<List<Alignment>> buf = ObjectBuf.buffer();

 CommStatus status = world.receive (null, buf);

 worker = status.fromRank;

 // Send next database index range to that specific worker.

 // If null, no more work.

 range = schedule.next (worker);

 world.send (worker, ObjectBuf.buffer (range));

 if (range == null) -- activeWorkers;

 // Add alignments to list.

 alignmentsFound.addAll (buf.item);

 }

 }

 /**

 * Perform the worker section.

 */

 private static void workerSection()

 throws Exception

 {

 // Set up object to perform alignments in multiple threads.

 ProteinLocalAlignment aligner =

 new ProteinLocalAlignmentSmp (new ParallelTeam());

 aligner.setQuerySequence (query, 0);

 // Process chunks from master.

 for (;;)

 {

 // Receive database index range from master. If null, no

 // more work.

 ObjectItemBuf<LongRange> rangeBuf = ObjectBuf.buffer();

 world.receive (0, rangeBuf);

 LongRange range = rangeBuf.item;

 if (range == null) break;

 long lb = range.lb();

 long ub = range.ub();

 // Set up list to hold alignments.

 List<Alignment> alignments = new ArrayList<Alignment>();

 // Align query sequence against every subject sequence.

C6910_37.indd 741C6910_37.indd 741 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

742 CHAPTER 37 Protein Sequence Querying

We will put off examining the FindProteinHyb program’s performance until we have developed the
second parallel version and can compare the two.

37.6 Parallel Program, Version 2
For the second version of the hybrid parallel protein sequence database-querying program (Figure 37.14), we
will retain the parallel data-set querying strategy: partition the data set, replicate the query. But this time, each
thread of each process computes the complete alignment with one subject sequence. The thread then goes to
the next subject sequence. Once all the alignments have been computed, one process prints a list of the match-
ing proteins (those with alignment scores below the E-value threshold). To balance the load among the threads
as well as the processes, we will use the master-worker pattern with two-level scheduling.

Process 0

Subject
sequence

Thr
0

Alignment

Subject
sequence

Thr
1

Alignment

Subject
sequence

Thr
2

Alignment

Subject
sequence

Thr
3

Alignment

Query
sequence

Process 1

Subject
sequence

Thr
0

Alignment

Subject
sequence

Thr
1

Alignment

Subject
sequence

Thr
2

Alignment

Subject
sequence

Thr
3

Alignment

Query
sequence

List of
matching proteins

Protein sequence
database

Query
sequence

Figure 37.14 Second hybrid parallel program design with two processes and four threads per process

 for (long id = lb; id <= ub; ++ id)

 {

 ProteinSequence subject =

 database.getProteinSequence (id);

 aligner.setSubjectSequence (subject, id);

 Alignment a = aligner.align();

 if (stats.eValue (a) <= expect)

 {

 alignments.add (a);

 }

 }

 // Send alignments back to master.

 world.send (0, ObjectBuf.buffer (alignments));

 }

 }

 }

C6910_37.indd 742C6910_37.indd 742 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

 37.6 Parallel Program, Version 2 743

The program’s command-line arguments are the same as the sequential version, with one additional
argument for the load-balancing schedule:

Name of the file containing the query sequence in FASTA format.•

Name of the file containing the protein sequence database in FASTA format.•

Name of the database index file.•

Thread-level load-balancing schedule. If omitted, the default is a fixed •
schedule.

E• -value threshold for reporting a match. If omitted, the default is 10.

The Java property -Dpj.schedule gives the process-level load-balancing schedule.
Here is the source code for class FindProteinHyb2.

package edu.rit.compbio.seq;

import edu.rit.mp.ObjectBuf;

import edu.rit.mp.buf.ObjectItemBuf;

import edu.rit.pj.Comm;

import edu.rit.pj.CommStatus;

import edu.rit.pj.LongForLoop;

import edu.rit.pj.LongSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.util.LongRange;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

public class FindProteinHyb2

 {

 // World communicator.

 static Comm world;

 static int size;

 static int rank;

 // Command line arguments.

 static File queryfile;

 static File databasefile;

 static File indexfile;

 static LongSchedule thrschedule;

 static double expect;

 // Query sequence.

 static ProteinSequence query;

C6910_37.indd 743C6910_37.indd 743 2/2/09 12:53:53 PM2/2/09 12:53:53 PM

744 CHAPTER 37 Protein Sequence Querying

The main program and masterSection() method are omitted because they are almost identical to the
FindProteinHyb program. The only differences between the two programs are in parsing the thread-level
schedule (thrschedule) from the fourth command-line argument, and in the workerSection() method.

 // Protein sequence database.

 static ProteinDatabase database;

 // Object to compute alignment statistics.

 static AlignmentStats stats;

 // List of alignments found.

 static List<Alignment> alignmentsFound;

 private static void workerSection()

 throws Exception

 {

 // Set up parallel team.

 ParallelTeam team = new ParallelTeam();

 int K = team.getThreadCount();

 // Set up per-thread objects to perform alignments.

 final ProteinLocalAlignment[] aligner =

 new ProteinLocalAlignment [K];

 for (int i = 0; i < K; ++ i)

 {

 aligner[i] = new ProteinLocalAlignmentSeq();

 aligner[i].setQuerySequence (query, 0);

 }

 // Process chunks from master.

 for (;;)

 {

 // Receive database index range from master. If null, no

 // more work.

 ObjectItemBuf<LongRange> rangeBuf = ObjectBuf.buffer();

 world.receive (0, rangeBuf);

 LongRange range = rangeBuf.item;

 if (range == null) break;

 final long lb = range.lb();

 final long ub = range.ub();

 // Set up list to hold alignments.

 final List<Alignment> alignments =

 new ArrayList<Alignment>();

C6910_37.indd 744C6910_37.indd 744 2/2/09 12:53:54 PM2/2/09 12:53:54 PM

 37.6 Parallel Program, Version 2 745

 // Align query sequence against every subject sequence.

 team.execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 execute (lb, ub, new LongForLoop()

 {

 // Per-thread variables plus padding.

 ProteinLocalAlignment thrAligner;

 List<Alignment> thrAlignments;

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

 // Initialize per-thread variables.

 public void start()

 {

 thrAligner = aligner[getThreadIndex()];

 thrAlignments = new ArrayList<Alignment>();

 }

 // Use thread-level loop schedule.

 public LongSchedule schedule()

 {

 return thrschedule;

 }

 // Do alignments.

 public void run (long first, long last)

 throws Exception

 {

 for (long id = first; id <= last; ++ id)

 {

 ProteinSequence subject =

 database.getProteinSequence (id);

 thrAligner.setSubjectSequence

 (subject, id);

 Alignment a = thrAligner.align();

 if (stats.eValue (a) <= expect)

 {

 thrAlignments.add (a);

 }

 }

 }

C6910_37.indd 745C6910_37.indd 745 2/2/09 12:53:54 PM2/2/09 12:53:54 PM

746 CHAPTER 37 Protein Sequence Querying

 // Reduce per-thread alignments into global

 // alignments.

 public void finish() throws Exception

 {

 region().critical (new ParallelSection()

 {

 public void run()

 {

 alignments.addAll (thrAlignments);

 }

 });

 }

 });

 }

 });

 // Send alignments back to master.

 world.send (0, ObjectBuf.buffer (alignments));

 }

 };

 }

37.7 Parallel Program Performance
Both hybrid parallel protein sequence database-querying programs were run on the “tardis” computer
to compare their performance. The data set was the 385,721-sequence Swiss-Prot database, with a total
of 138,434,015 amino acids. The query sequence was protein accession number P0C5C4, a 270-amino-
acid protein from the tuberculosis bacterium. For both programs, a guided schedule was used to partition
the database among the parallel processes. For the second program, the thread-level schedule was also a
guided schedule.

C6910_37.indd 746C6910_37.indd 746 2/2/09 12:53:54 PM2/2/09 12:53:54 PM

 37.7 Parallel Program Performance 747

1 1 0
1E1

1E2

1E3

Kt = 1

Kt = 2
Kt = 3Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

 1 1 0
1E1

1E2

1E3

Kt = 1

Kt = 2

Kt = 3
Kt = 4

Running Time vs. Processors

Processes, Kp

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8 9 1 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8 9 1 0

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Kt = 1

Kt = 2

Kt = 3
Kt = 4

Speedup vs. Processors

Processes, Kp

S
p

e
e

d
u

p
(N

,K
)

Figure 37.15 Protein database-querying program running-time metrics

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Kt = 1Kt = 2Kt = 3
Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8 9 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Kt = 1

Kt = 2

Kt = 3

Kt = 4

Efficiency vs. Processors

Processes, Kp

E
ff

(N
,K

)

 FindProteinSeq/Hyb FindProteinSeq/Hyb2

C6910_37.indd 747C6910_37.indd 747 2/2/09 12:53:54 PM2/2/09 12:53:54 PM

748 CHAPTER 37 Protein Sequence Querying

Table 37.2 (at the end of the chapter) lists, and Figure 37.15 plots, the two programs’ running-time
metrics for Kp = 1 to 10 processes and Kt = 1 to 4 threads per process. The metrics include the time to
read all the subject sequences from the protein database file and to compute all the alignments, but do not
include the time to sort the matching alignments and print the results (a matter of only a few seconds).

Both programs scale well as the number of processes increases. But only the second program scales
well as the number of threads per process increases. The first program, where the threads in each process all
work on the same alignment simultaneously, performs poorly with more than one thread per process—
81 percent efficiency with two threads, 66 percent efficiency with three, 52 percent efficiency with four.

To gain some insight into the reason for this poor scalability, let’s derive a rough model for the first
program’s running time in one process. We’ll assume that all of the parallel version’s extra time is due to
thread synchronization, namely, the barrier waits in the SMP parallel align() method. The program does
one barrier wait for every element of the query sequence (every row of the scoring matrix) and every subject
sequence (every alignment). Therefore, the number of barrier waits was 270 × 385,721 = 1.04 × 108. We’ll
further assume that the time to do a barrier wait is proportional to the number of threads in the parallel team
Kt. Then the running time model is

 (37.6)

where Tpar is the parallel version’s running time, Tseq is the sequential ver sion’s running time, and Tbarrier is
the time per thread to do a barrier wait. A bit of algebra tells us the following:

 (37.7)

Plugging the first program's running-time data in one process into (37.7) gives these estimates for Tbarrier:

Tseq (sec) Kt Tpar (sec) T barrier (sec)

9.70×102 1 9.98×102 2.69×10–7

2 5.88×102 4.95×10–7

3 4.81×102 5.05×10–7

4 4.45×102 4.87×10–7

The number of scoring matrix elements the program filled out was 270 × 138,434,015 = 3.74 × 1010, and
the sequential version took 9.70 × 102 seconds to do it, so the time per matrix element was 9.70 × 102

sec ÷ 3.74 × 1010 = 2.59 × 10–8 sec. Dropping the scientific notation, it takes 500 nanoseconds (nsec) per
thread to do a barrier wait for Kt ≥ 2, but only 25 nsec to calculate a scoring matrix element on the “tar-
dis” computer. For a median-length 300-amino-acid subject sequence in the protein database, one scoring
matrix row with one thread takes 7,500 nsec to calculate the matrix elements plus 269 nsec to do the bar-
rier wait. But with four threads, one scoring matrix row takes 1,875 nsec to calculate the matrix elements
plus 2,000 nsec to do the barrier wait. The thread synchronization takes longer than the computation! It’s
no wonder the efficiencies are so low.

C6910_37.indd 748C6910_37.indd 748 2/2/09 12:53:54 PM2/2/09 12:53:54 PM

 37.9 For Further Information 749

When we studied cluster parallel programming, we said that to get good performance, there must be much
more computation than communication. For SMP parallel programming, the analogous assertion is that there
must be much more computation than synchronization. The subject sequence lengths in the Swiss-Prot
database are just too short to get good SMP parallel performance; they don’t result in enough computation
relative to synchronization. On the other hand, the SMP parallel local alignment algorithm would scale better
if the subject sequences were longer, say a median of 30,000 amino acids instead of 300.

37.8 Smith-Waterman vs. FASTA and BLAST
The FindProteinHyb program we have developed uses the Smith-Waterman local alignment algorithm.
Published in 1981, the Smith-Waterman algorithm is guaranteed to find the optimal alignment between
two sequences. However, its major drawback—especially when run on computers of 1980s vintage—is
that it requires O(n2) time to fill out the complete scoring matrix, where n is the length of the sequences
being aligned, as well as O(n2) memory to store the scoring matrix.

Alternatives to Smith-Waterman, such as FASTA (first published in 1985) and BLAST (first pub-
lished in 1990), addressed this drawback by using heuristic algorithms instead of an exact algorithm.
Although not guaranteed to find optimal alignments, the FASTA and BLAST heuristics only require O(n)
time, and therefore run much faster than Smith-Waterman—especially on large protein sequence data-
bases. While FASTA and BLAST have been refined and improved since their introduction, they are still
essentially heuristic programs.

It’s been nearly 30 years since Smith and Waterman published their algorithm. With parallel comput-
ers now becoming widespread and large main memories the norm, protein database-querying programs
that find optimal alignments have become viable again and may start to see more use.

37.9 For Further Information
On biological sequence alignment algorithms in general:

B. Jackson and S. Aluru. Pairwise sequence alignment. In S. Aluru, editor. •
Handbook of Computational Molecular Biology. Chapman & Hall/CRC, 2006,
Chapter 1.

On the Smith-Waterman local alignment algorithm, in particular:

T. Smith and M. Waterman. Identification of common molecular subse-•
quences. Journal of Molecular Biology, 147:195–197, 1981.

On the Point Accepted Mutation (PAM) family of substitution matrices:

M. Dayhoff, R. Schwartz, and B. Orcutt. A model of evolutionary change •
in proteins. In M. Dayhoff, editor. Atlas of Protein Sequence and Structure.
National Biomedical Research Foundation, 1979, pages 345–352.

C6910_37.indd 749C6910_37.indd 749 2/2/09 12:53:54 PM2/2/09 12:53:54 PM

750 CHAPTER 37 Protein Sequence Querying

M. Dayhoff and R. Schwartz. Matrices for detecting distant relationships. •
In M. Dayhoff, editor. Atlas of Protein Sequence and Structure. National
Biomedical Research Foundation, 1979, pages 353–358.

The PAM matrices: ftp://ftp.ncbi.nih.gov/blast/matrices/•

On the Block Substitution Matrix (BLOSUM) family of substitution matrices:

S. Henikoff and J. Henikoff. Amino acid substitution matrices from pro-•
tein blocks. Proceedings of the National Academy of Sciences of the USA,
89(22):10915–10919, November 15, 1992.

The BLOSUM matrices: ftp://ftp.ncbi.nih.gov/blast/matrices/•

On the formulas for the E-value and bit score:

S. Karlin and S. Altschul. Methods for assessing the statistical significance of •
molecular sequence features by using general scoring schemes. Proceedings of
the National Academy of Sciences of the USA, 87(6):2264–2268, March 1987.

S. Altschul and W. Gish. Local alignment statistics. • Methods in Enzymology,
266:460–480, 1996.

National Center for Biotechnology Information. The statistics of sequence simi-•
larity scores. http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

National Center for Biotechnology Information. The statistics of PSI-BLAST •
scores. http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-3.html

On the Universal Protein Resource (UniProt):

UniProt Home Page. http://www.uniprot.org/•

On FASTA:

D. Lipman and W. Pearson. Rapid and sensitive protein similarity searches. •
Science, 227(4693):1435–1441, March 22, 1985.

W. Pearson and D. Lipman. Improved tools for biological sequence com-•
parison. Proceedings of the National Academy of Sciences of the USA,
85(8):2444–2448, April 1988.

FASTA Sequence Comparison at the U. of Virginia. http://fasta.bioch.virginia.edu/•

On BLAST:

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment •
search tool. Journal of Molecular Biology, 215(3):403–410, October 5, 1990.

S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. •
Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research, 25(17):3389–3402,
September 1, 1997.

C6910_37.indd 750C6910_37.indd 750 2/2/09 12:53:54 PM2/2/09 12:53:54 PM

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-3.html
http://www.uniprot.org/�
http://www.uniprot.org/�
http://fasta.bioch.virginia.edu/�
http://fasta.bioch.virginia.edu/�

 37.9 For Further Information 751

National Center for Biotechnology Information BLAST Home Page.•
http://blast.ncbi.nlm.nih.gov/

Table 37.2 Protein database-querying program running-time metrics

 FindProteinSeq/FindProteinHyb FindProteinSeq/FindProteinHyb2

Kp Kt T Spdup Eff EDSF Kp Kt T Spdup Eff EDSF

seq seq 970139 seq seq 975370

1 1 997795 0.972 0.972 1 1 976808 0.999 0.999

1 2 587690 1.651 0.825 0.178 1 2 490235 1.990 0.995 0.004

1 3 480622 2.019 0.673 0.223 1 3 330219 2.954 0.985 0.007

1 4 444599 2.182 0.546 0.261 1 4 249502 3.909 0.977 0.007

2 1 493996 1.964 0.982 -0.010 2 1 484903 2.011 1.006 -0.007

2 2 296681 3.270 0.817 0.063 2 2 243550 4.005 1.001 -0.001

2 3 241678 4.014 0.669 0.091 2 3 165055 5.909 0.985 0.003

2 4 227324 4.268 0.533 0.118 2 4 126327 7.721 0.965 0.005

3 1 334046 2.904 0.968 0.002 3 1 324920 3.002 1.001 -0.001

3 2 199334 4.867 0.811 0.040 3 2 164494 5.930 0.988 0.002

3 3 161244 6.017 0.669 0.057 3 3 112554 8.666 0.963 0.005

3 4 154256 6.289 0.524 0.078 3 4 84815 11.500 0.958 0.004

4 1 251721 3.854 0.964 0.003 4 1 243966 3.998 0.999 0.000

4 2 149544 6.487 0.811 0.028 4 2 123192 7.917 0.990 0.001

4 3 121774 7.967 0.664 0.042 4 3 83596 11.668 0.972 0.002

4 4 114707 8.458 0.529 0.056 4 4 63906 15.263 0.954 0.003

5 1 199959 4.852 0.970 0.001 5 1 194959 5.003 1.001 -0.001

5 2 118233 8.205 0.821 0.021 5 2 99162 9.836 0.984 0.002

5 3 96057 10.100 0.673 0.032 5 3 66742 14.614 0.974 0.002

5 4 91985 10.547 0.527 0.044 5 4 52164 18.698 0.935 0.004

6 1 166516 5.826 0.971 0.000 6 1 161343 6.045 1.008 -0.002

6 2 99059 9.794 0.816 0.017 6 2 82364 11.842 0.987 0.001

6 3 81099 11.962 0.665 0.027 6 3 55914 17.444 0.969 0.002

6 4 76788 12.634 0.526 0.037 6 4 43501 22.422 0.934 0.003

7 1 142332 6.816 0.974 0.000 7 1 139384 6.998 1.000 0.000

7 2 84518 11.478 0.820 0.014 7 2 70753 13.786 0.985 0.001

7 3 69122 14.035 0.668 0.023 7 3 47946 20.343 0.969 0.002

7 4 65856 14.731 0.526 0.031 7 4 36817 26.492 0.946 0.002

8 1 125712 7.717 0.965 0.001 8 1 121569 8.023 1.003 -0.001

8 2 74759 12.977 0.811 0.013 8 2 62165 15.690 0.981 0.001

8 3 61029 15.896 0.662 0.020 8 3 42404 23.002 0.958 0.002

8 4 57301 16.931 0.529 0.027 8 4 32828 29.712 0.928 0.002

9 1 112107 8.654 0.962 0.001 9 1 108715 8.972 0.997 0.000

9 2 66362 14.619 0.812 0.012 9 2 55142 17.688 0.983 0.001

9 3 54093 17.935 0.664 0.018 9 3 37360 26.107 0.967 0.001

9 4 51488 18.842 0.523 0.025 9 4 29037 33.591 0.933 0.002

10 1 100693 9.635 0.963 0.001 10 1 97422 10.012 1.001 0.000

10 2 59768 16.232 0.812 0.010 10 2 49861 19.562 0.978 0.001

10 3 48707 19.918 0.664 0.016 10 3 33996 28.691 0.956 0.002

10 4 46407 20.905 0.523 0.022 10 4 26340 37.030 0.926 0.002

C6910_37.indd 751C6910_37.indd 751 2/2/09 12:53:54 PM2/2/09 12:53:54 PM

http://blast.ncbi.nlm.nih.gov/Table
http://blast.ncbi.nlm.nih.gov/Table

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

753

C H A P T E R 38
in which we consider how to determine organisms’ evolutionary relationships; we learn

a technique for constructing a tree of relationships with the fewest number of mutations

in the organism’s DNA; we design an SMP parallel program to compute the tree; and we

observe how some problems can become too big—even for parallel computers

Phylogenetic Tree Construction

C6910_38.indd 753C6910_38.indd 753 2/2/09 12:37:55 PM2/2/09 12:37:55 PM

C H A P T E R38 Phylogenetic Tree Construction

38.1 Phylogeny
In addition to studying the characteristics of protein molecules, as we saw in Chapter 37, biologists clas-
sify whole organisms and study the organisms’ interrelationships. Biologists use a multilevel taxonomy
to classify organisms, giving the category at each level in the taxonomy an abstruse Greek or Latin name.
Here is the classification of the chinchilla (Figure 38.1), a small rodent native to the Andes Mountains of
South America:

Level Name

Kingdom Animalia

Phylum Chordata

Class Mammalia

Order Rodentia

Family Chinchillidae

Genus Chinchilla

Species lanigera

Courtesy of Trurl66. http://commmons.wikimedia.org/wiki/Image:Chinchilla_lanigeral.jpg

Figure 38.1 Chinchilla

The scientific name of this species is Chinchilla lanigera, abbreviated C. lanigera, which just means
“woolly chinchilla” in Latin.

C6910_38.indd 754C6910_38.indd 754 2/2/09 12:37:55 PM2/2/09 12:37:55 PM

http://commmons.wikimedia.org/wiki/Image:Chinchilla_lanigeral.jpg

 38.1 Phylogeny 755

Consider four species: the chinchilla, the viscacha, the agouti, and the human. The viscacha is
another South American rodent resembling a chinchilla; the agouti, also a rodent, lives in Central
America and looks somewhat like a chinchilla; the human is not a rodent, lives all over the world, and
only faintly resembles a chinchilla. Displaying these species’ classifications all at once, we get a tree
(Figure 38.2). Species with a closer physical resemblance to each other end up closer together in the tree.

lanigera
(chinchilla)

viscacia
(viscacha)

punctata
(agouti)

sapiens
(human)

Chinchilla Lagidium Dasyprocta Homo

Chinchillidae Dasyproctidae Hominidae

Rodentia Primata

Mammalia

Chordata

Animalia

Species

Genus

Family

Order

Class

Phylum

Kingdom

Figure 38.2 Taxonomic tree of four mammalian species

Where taxonomy classifies species based on their physical characteristics, habitats, and other such exter-
nal features, phylogeny classifies species based on their evolutionary ancestry. Because biologists have seldom
been able to observe the evolutionary history directly, biologists usually infer the evolutionary history instead.
Here’s an oversimplified example: Because chinchillas and viscachas are physically very similar and live in
nearby habitats in the Andes, we can infer that both rodents evolved from a common ancestor species
sometime in the past. Because agoutis are somewhat different from chinchillas and viscachas physically, and
they live in different habitats, we can infer that agoutis and the chinchilla/viscacha ancestor evolved from a
more distant common ancestor. Although humans have some of the same characteristics as the other three (all
four are hirsute, mammiferous, and viviparous, for example), but otherwise are rather dissimilar, we can infer
that humans and the chinchilla/viscacha/agouti ancestor evolved from a common ancestor even further back.
We can draw these inferred evolutionary relationships in a phylogenetic tree (Figure 38.3).

C. lanigera

L. viscacia

D. punctata

H. sapiens

Figure 38.3 Phylogenetic tree of four mammalian species

C6910_38.indd 755C6910_38.indd 755 2/2/09 12:37:55 PM2/2/09 12:37:55 PM

756 CHAPTER 38 Phylogenetic Tree Construction

We’ll draw the root of the tree at the left. As we move to the right, each interior node (where the tree splits
into two branches) denotes a common ancestor. The tip nodes at the right are the extant species. The precise
shape of the tree—the pattern of branches connecting the nodes—is called the tree’s topology.

Biologists have long inferred phylogeny using the same data as for taxonomy—physical characteris-
tics, habitat, and so on. However, evolution is driven by changes in an organism’s genes. An altered gene
may change the organism’s physical characteristics, increasing or decreasing the organism’s chances of
survival. Organisms more likely to survive are more likely to pass on their altered genes to their off-
spring. Eventually, enough genetic changes accumulate to establish a new species. By studying the organ-
isms’ genes, the biologist can get a clearer picture of how the organisms evolved. Studying genes means,
in turn, studying DNA.

Deoxyribonucleic acid (DNA) has been known since 1869, when Friedrich Miescher discovered
the molecule in cell nuclei. Few suspected DNA’s role as the carrier of genetic information until Oswald
Avery, Colin MacLeod, and Maclyn McCarty showed in 1944 that chromosomes are made of DNA. In
1952, Martha Chase and Alfred Hershey proved that the DNA of the T2 bacteriophage virus carried the
virus’s genetic material. During this period, Rosalind Franklin and Maurice Wilkins used X-ray diffrac-
tion to amass data about DNA’s structure. In 1953, Francis Crick and James Watson, basing their work
in part on Franklin’s and Wilkins’s investigations, discovered the stereochemical structure of DNA—the
famed double helix (Figure 38.4).

G
C

C
G

T
A

G
C A

T
T
A

G
C

A
T C

G
G
C

A
T

C
G T

A
A
T

C
G

T
A

Base pair

Backbone

Backbone
Gene

Figure 38.4 Schematic representation of a DNA molecule

Each strand of a DNA molecule is composed of a long sequence of nucleotides, each nucleotide
consisting of a base and a sugar (deoxyribose). A phosphorus atom binds every two adjacent nucle-
otides’ sugars together, forming the DNA strand’s helical sugar-phosphate backbone. The four bases
found in DNA are adenine, cytosine, guanine, and thymine—A, C, G, and T. Each base on one strand
binds to a base on the opposite strand, forming a base pair. A always binds to T, and C always binds
to G, which explains Erwin Chargaff’s 1950 discovery that DNA molecules contain equal amounts of
adenine and thymine and equal amounts of cytosine and guanine.

A gene is a section of a DNA molecule that carries the information the cell needs to make one spe-
cific protein. The sequence of bases in the gene determines the sequence of amino acids in the protein;
every three bases encode one amino acid. The mapping from base triplets to amino acids—the genetic
code—was worked out by many researchers in the years following the discovery of the double helix.

C6910_38.indd Sec1:756C6910_38.indd Sec1:756 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.2 Distances 757

Modern methods for deriving phylogenies use DNA sequences—strings of the letters A, C, G, and
T. Like protein sequences, the DNA sequences of many genes are now known, including the complete
genomes—all the genetic material—for some organisms. DNA sequence databases are readily available
on the Web.

A phylogenetic tree construction method starts with a group of DNA sequences, with one sequence
for each species at the tip nodes. For example, each sequence could be a different species’ gene for a
certain protein. The methods fall into three categories:

A • likelihood method finds a tree topology with the highest probability of
occurring, given the sequences. We will not look at any likelihood methods.

A • distance method finds a tree topology, and assigns a length to each
branch of the tree, such that the total length of the branches between any two
sequences most closely matches the actual distance between the sequences.
We will look at one simple distance method.

A • parsimony method finds a tree topology such that the number of genetic
changes from the root of the tree to the tips is as small as possible, while still
accounting for all the differences among the sequences. We will look at one
parsimony method and use it as the basis for a parallel phylogenetic tree con-
struction program.

38.2 Distances
Distance methods and parsimony methods both use distances. Before we can study these methods, we
have to pin down the notion of distance.

The distance between two DNA sequences is a measure of the degree of difference between the
sequences. Perhaps the simplest measure of distance was invented by Richard Hamming in 1950. The
Hamming distance between two strings—in our case, between two DNA sequences—is the number
of positions, or sites, at which the sequences differ. (Throughout this chapter, we’ll assume that all the
sequences are the same length.)

As an example, consider the DNA sequences for the insulin genes for our four mammalian species:

4 156

Chinchilla TTTGTCAACA AACATCTGTG CGGCTCACAC TTAGTGGATG CGCTATACCT

Viscacha ATTGTCAACA AGCATCTGTG CGGCTCACAC TTAGTGGAGG CGCTATACAT

Agouti TTTGTCAACC AGCATCTGTG CGGCTCCCAC TTAGTGGAGG CACTGTATAT

Human TTTGTGAACC AACACCTGTG CGGCTCACAC CTGGTGGAAG CTCTCTACCT

GGTGTGTGGG GACAGAGGCT TCTTCTATAC ACCCATGGCC GGCATTGTGG ATCAGTGCTG

GGTGTGCAGG GATAAAGGCT TCTTCTATAC ACCCATGGAC GGCATTGTGG ATCAGTGCTG

GGCATGTGGG GACAAAGGCT TCTTCTATAC ACCGAAGGAC GGCATTGTGG ATCAGTGCTG

AGTGTGCGGG GAACGAGGCT TCTTCTACAC ACCCAAGACC GGCATTGTGG AACAATGCTG

C6910_38.indd Sec1:757C6910_38.indd Sec1:757 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

758 CHAPTER 38 Phylogenetic Tree Construction

TACCAGCATC TGCACACTCT ACCAGCTGGA GAACTACTGC AATTAG

TACCAGCATC TGCACACTTT ACCAGCTGGA GAACTACTGC AATTAG

TAACGGCATC TGCACATTCT ACCAGCTGCA GAGCTACTGC AACTAG

TACCAGCATC TGCTCCCTCT ACCAGCTGGA GAACTACTGC AACTAG

These sequences are in PHYLIP format. Joseph Felsenstein’s Phylogeny Inference Package (PHYLIP)
is a widely used set of programs for constructing phylogenetic trees and doing other kinds of analysis
on genetic sequences. The first line gives the number of species and the sequence length. The next four
lines give the name of each species (limited to 10 characters) and the initial section of each sequence.
(Whitespace within the sequence is irrelevant.) Every remaining group of four lines gives the next section
of each sequence.

The differences between the sequences become apparent when the sequences are represented this way:

4 156

Chinchilla TTTGTCAACA AACATCTGTG CGGCTCACAC TTAGTGGATG CGCTATACCT

Viscacha A......... .G........G.A.

Agouti C .G........C...G. .A..G..TA.

Human G...CC..... C.G.....A. .T..C.....

GGTGTGTGGG GACAGAGGCT TCTTCTATAC ACCCATGGCC GGCATTGTGG ATCAGTGCTG

......CA.. ..T.A.....A.

..CA......A.....G.A..A.

A.....C... ..AC......C..A.A..A..A.....

TACCAGCATC TGCACACTCT ACCAGCTGGA GAACTACTGC AATTAG

..........T.

..A.G.....T...C. ..G....... ..C...

.......... ...T.C....C...

Here, a period stands for “the same character as the first sequence.” The Hamming distances among the
four example species’ insulin sequences are listed in the following distance matrix:

Chinchilla Viscacha Agouti Human

Chinchilla 0 10 20 20

Viscacha 10 0 20 26

Agouti 20 20 0 31

Human 20 26 31 0

When inferring a phylogeny using a distance method, we want to assign a branch length to each
branch of the tree. The branch length is supposed to represent the “amount of evolution” that has
occurred between the ancestor species at one end of the branch and the descendant species at the other
end. Specifically, the branch length should be the number of state changes that occurred along the
branch. A state change is a genetic event that changed one base (A, C, G, or T) into a different base.
However, the Hamming distance between two sequences is not necessarily the number of state changes
that intervened between those two species during the course of evolution. Consider two species descend-
ing from a common ancestor. Along one branch, suppose one site experienced a state change from A to

C6910_38.indd Sec1:758C6910_38.indd Sec1:758 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.3 A Distance Method: UPGMA 759

C, and then later experienced another state change from C back to A. Along the other branch, suppose
the same site experienced a state change from A to G. Then the Hamming distance ends up being 1, but
the actual distance (number of state changes) was 3. In general, the Hamming distance between two
sequences must be corrected to give the actual distance.

To do the corrections requires a model describing how states change. In 1969, Jukes and Cantor
published a model in which state changes occur at random, but at a constant average rate at every site in
every species, and each state changes to every other state with equal probability. Under the Jukes-Cantor
model, the corrected distance (expected number of state changes) between two sequences is computed as

 (38.1)

where DJC is the Jukes-Cantor corrected distance, DH is the Hamming distance, and L is the sequence
length. For the four example sequences, with L = 156, the corrected distances are the following:

Chinchilla Viscacha Agouti Human

Chinchilla 0.00 10.45 21.93 21.93

Viscacha 10.45 0.00 21.93 29.40

Agouti 21.93 21.93 0.00 36.02

Human 21.93 29.40 36.02 0.00

Many, more complicated, models of state change have been published, but we will stick with the simple
Jukes-Cantor model.

38.3 A Distance Method: UPGMA
Now that we can compute distances between sequences, let’s use the distances to construct a phyloge-
netic tree using a distance method. The goal is to find a tree topology and branch lengths such that the
total length of the branches between any two sequences most closely matches the actual distance between
the sequences.

If we know the tree topology, then finding the branch lengths is easy. Here’s how to do it. Suppose
we use the following topology for the four example sequences. The tree branches are labeled 1 through 6.

Chinchilla
3

Viscacha
4

2

Agouti
5

1

Human
6

C6910_38.indd Sec1:759C6910_38.indd Sec1:759 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

760 CHAPTER 38 Phylogenetic Tree Construction

Consider the first pair of sequences, chinchilla and viscacha. The Jukes-Cantor corrected distance
between them is 10.45. Then, ideally, the following equation should hold,

 (38.2)

where x3 is the length of branch 3 and x4 is the length of branch 4. Repeating this for every pair of
sequences gives the following system of equations:

0 0 1 1 0 0 10 45

0 1 1
1 2 3 4 5 6

1 2

⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅
x x x x x x

x x

.

xx x x x

x x x x x
3 4 5 6

1 2 3 4

0 1 0 21 93

1 1 1 0 0

+ ⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ + ⋅ + ⋅

.

55 6

1 2 3 4 5 6

1 21 93

0 1 0 1 1 0 21 9

+ ⋅ =
⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

x

x x x x x x

.

. 33

1 1 0 1 0 1 29 40

1 0
1 2 3 4 5 6

1 2

⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =
⋅ + ⋅ +
x x x x x x

x x

.

00 0 1 1 36 023 4 5 6⋅ + ⋅ + ⋅ + ⋅ =x x x x .

 (38.3)

Expressing Equation 38.3 in matrix notation gives

 (38.4)

where A is a matrix of 0s and 1s indicating which branches lie on the path between each pair of
sequences, d is a vector of the inter-sequence distances, and x is a vector of the branch lengths. Now
all we have to do is find the vector x that minimizes the sum of the squared differences between the left
and right sides of (38.4)—a least-squares solution. Furthermore, because it makes no sense for a branch
length to be negative, we want to find a nonnegative least-squares solution. As we saw in Chapter 36, the
Parallel Java Library provides class edu.rit.numeric.NonNegativeLeastSquares to do just that. The least-
squares branch lengths for the example tree topology are shown in the following example; the squared
error in the solution is 13.95:

Chinchilla
3.36

Viscacha
7.09

0.57

Agouti
16.14

0.00

Human
19.88

The preceding procedure finds the least-squares branch lengths, given the tree topology. But the tree
we really want is the one that, of all possible tree topologies, gives the smallest squared error. We could
try every topology and report the best, but, as we will see when we study parsimony methods, this can
take a prohibitively long time.

As an alternative, we can use a heuristic algorithm that finds a solution without examining every
topology. On the one hand, a heuristic algorithm is not guaranteed to find the tree with the smallest
squared error. On the other hand, a heuristic algorithm typically takes much less time than finding the

C6910_38.indd Sec1:760C6910_38.indd Sec1:760 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.3 A Distance Method: UPGMA 761

exact solution. As an example of a heuristic algorithm, we’ll look at the Unweighted Pair Group Method
with Arithmetic mean (UPGMA), published by Sokal and Michener in 1958.

UPGMA works by clustering the species into groups based on their distances. The algorithm keeps
track of the number of species in each group. Initially, each species is by itself in a separate group. Here’s
how UPGMA constructs a tree for the four example species:

Find the two groups with the smallest distance—chinchilla and viscacha.1.

Join those groups into a new group; let’s call it “CV.” The new group has 2.
ni + nj members, where ni and nj are the sizes of the groups that were joined.
In this case ni + nj = 2.

Construct a three-node tree of chinchilla, viscacha, and their common ancestor 3.
CV. Each branch’s length is half the distance between chinchilla and viscacha.

Chinchilla
5.23

Viscacha
5.23CV

Compute the distance between CV and the remaining groups, agouti and 4.
human. The formula is

 (38.5)

where D is the distance matrix, i and j are the indexes of the two groups that
were joined, (ij) refers to the new group, k is the index of one of the remain-
ing groups, and ni and nj are the sizes of the original groups. In this case, the
distance between CV and agouti is one-half the distance between chinchilla
and agouti plus one-half the distance between viscacha and agouti, or 21.93.
The distance between CV and human is 25.67.

Replace the two original groups in the distance matrix with the new group:5.

CV Agouti Human

CV 0.00 21.93 25.67

Agouti 21.93 0.00 36.02

Human 25.67 36.02 0.00

Repeat Steps 1–5. This time, CV and agouti are the closest, resulting in a new 6.
common ancestor CVA. The branch length between CVA and agouti is one-
half the distance between CV and agouti, namely 10.97. The branch length
between CVA and the species contained in CV is also 10.97. But because

C6910_38.indd Sec1:761C6910_38.indd Sec1:761 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

762 CHAPTER 38 Phylogenetic Tree Construction

CV is already a branch length of 5.23 from chinchilla and viscacha, CVA is a
branch length of 10.97 – 5.23 = 5.74 from CV.

Chinchilla
5.23

Viscacha
5.23CV

5.74

Agouti
10.97

CVA

The distance between CVA and human is two-thirds the distance between CV
and human plus one-third the distance between agouti and human, or 29.12.

CVA Human

CVA 0.00 29.12

Human 29.12 0.00

Repeat Steps 1–5. Afterward, there’s only one group left, so we’re done. The 7.
final tree is the following:

Chinchilla
5.23

Viscacha
5.23CV

5.74

Agouti
10.97

CVA
3.59

Human
14.56

CVAH

Note that UPGMA produces branch lengths such that for each interior node, the total distance from
the interior node to any tip node along one branch is the same as the total distance from the interior node
to any tip node along the other branch. A tree with this property is called ultrametric.

How closely did the UPGMA tree reproduce the distances between the species? Here are the tree
distances if you follow the branches:

Chinchilla Viscacha Agouti Human

Chinchilla 0.00 10.46 21.94 29.12

Viscacha 10.46 0.00 21.94 29.12

Agouti 21.94 21.94 0.00 29.12

Human 29.12 29.12 29.12 0.00

UPGMA didn’t manage to reproduce the original distances exactly. Also, the squared error in the branch
lengths UPGMA computed is 99.28, which is larger than the least-squares branch lengths for this topol-
ogy. Despite these shortcomings, UPGMA finds both a topology and branch lengths very quickly, and
we’ll use UPGMA as part of the parsimony methods we’ll study next.

C6910_38.indd Sec1:762C6910_38.indd Sec1:762 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.4 Maximum Parsimony Method 763

38.4 Maximum Parsimony Method
The maximum parsimony method for constructing a phylogenetic tree assumes that the tree that requires
the fewest state changes to account for all the differences among the sequences—the most parsimonious
tree—is the tree that best represents the species’ evolutionary ancestry. In concept, the maximum parsimony
method generates every possible tree topology, determines the minimum number of state changes—the
parsimony score—for each tree, and reports the tree or trees with the smallest score.

Generating all possible tree topologies is done by building up the trees one species at a time and
adding each species at every possible position. Here’s how it goes with our four example species. There’s
only one possible tree with one species:

Chinchilla

There’s only one possible place in the preceding tree to add viscacha, as the sibling of chinchilla:

Chinchilla

Viscacha

Now there are three places to add agouti—as the sibling of chinchilla, as the sibling of the chinchilla-
viscacha ancestor, and as the sibling of viscacha—giving rise to three possible tree topologies of three
species:

Chinchilla

Agouti

Viscacha

Chinchilla

Viscacha

Agouti

Chinchilla

Viscacha

Agouti

In each of the above preceding trees, there are five places to add human. We end up with 15 possible tree
topologies of four species:

Chinchilla

Human

Agouti

Viscacha

Chinchilla

Agouti

Viscacha

Human

Chinchilla

Agouti

Viscacha

Human

Chinchilla

Agouti

Human

Viscacha

Chinchilla

Agouti

Human

Viscacha

Chinchilla

Human

Viscacha

Agouti

Chinchilla

Viscacha

Human

Agouti

Chinchilla

Viscacha

Human

Agouti

Chinchilla

Viscacha

Agouti

Human

Chinchilla

Viscacha

Agouti

Human

Chinchilla

Human

Viscacha

Agouti

Chinchilla

Viscacha

Agouti

Human

Chinchilla

Viscacha

Human

Agouti

Chinchilla

Viscacha

Agouti

Human

Chinchilla

Viscacha

Agouti

Human

C6910_38.indd Sec1:763C6910_38.indd Sec1:763 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

764 CHAPTER 38 Phylogenetic Tree Construction

A pattern is starting to emerge. With 3 species, there are 3 possible topologies. With 4 species, there are 3·5
topologies. With 5 species, there are 3·5·7 topologies. With 6 species, there are 3·5·7·9 topologies. In general, with
N species, there are (2N – 3)!! topologies. The “!!” stands for “double factorial,” which is defined as follows:

 (38.6)

The double factorial is like the regular factorial, except successive terms differ by 2 instead of by 1. (Note
that “!!” does not mean “factorial of the factorial.”)

The double-factorial function becomes enormous very quickly. Here are the numbers of possible tree
topologies for 1 to 20 species:

N (2N – 3)!! N (2N – 3)!!

1 1.00 × 100 11 6.55 × 108

2 1.00 × 100 12 1.37 × 1010

3 3.00 × 100 13 3.16 × 1011

4 1.50 × 101 14 7.91 × 1012

5 1.05 × 102 15 2.13 × 1014

6 9.45 × 102 16 6.19 × 1015

7 1.04 × 104 17 1.92 × 1017

8 1.35 × 105 18 6.33 × 1018

9 2.03 × 106 19 2.22 × 1020

10 3.45 × 107 20 8.20 × 1021

Clearly, finding the maximum parsimony tree for more than a dozen or so species is going to require a lot
of computation just to go through all the possible topologies.

For a given tree topology, we need a way to determine the parsimony score—the minimum number
of state changes to account for the differences among the sequences. Because of the enormous number of
topologies we have to examine, it is crucial to determine the parsimony score as quickly as possible.

In 1971, Walter Fitch published an algorithm to compute a tree’s parsimony score. The algorithm
works its way from the tip nodes up to the root, associating a set of states with each site. At the tip nodes,
the set of states contains just one element. For example, here is one topology with the four example spe-
cies, looking at just the tenth site in each sequence:

{A} Chinchilla

{A} Viscacha

{C} Agouti

{C} Human

C6910_38.indd Sec1:764C6910_38.indd Sec1:764 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.4 Maximum Parsimony Method 765

For each interior node, the state set is the intersection of the two child nodes’ state sets; but if the inter-
section is empty, then the state set is the union of the two child nodes’ state sets, and the parsimony score
is increased by 1. Here’s what we get for the example:

{A} Chinchilla

{A} Viscacha

{C} Agouti
{AC} 1

{A} 0

{C} Human

{AC} 1

The total parsimony score is 2, meaning 2 state changes are required when going from the root to the tips.
The Fitch algorithm doesn’t tell us what the actual states are in each common ancestor (interior node), it
just tells us how many state changes there are. Typically, multiple evolutionary histories compatible with
the parsimony score are possible. One possible history assigns a state of A to each ancestor, and then
agouti and human each require one state change. Another possible history assigns a state of C to each
ancestor, and then chinchilla and viscacha each require one state change. To find the maximum parsi-
mony tree, however, we only need to know the number of state changes, not their locations in the tree.

For the same species, different topologies may yield different parsimony scores. Here is another
topology for the four example species, also looking at just the tenth site. This time the score is 1. A pos-
sible evolutionary history with one state change is C, C, A at the interior nodes.

{A} Chinchilla

{A} Viscacha
{A} 0

{C} Agouti

{AC} 1

{C} Human

{C} 0

The preceding example was for just one site. To compute the tree’s complete parsimony score, we run the
Fitch algorithm for each individual site and add up the results. The computation time is proportional to the num-
ber of tree nodes (2N – 1, where N is the number of species) times the number of sites (L, the sequence length).

As pointed out by Andrey Zharkikh, we can reduce that time by being smarter about which sites we
include in the parsimony score computation. Consider our four example species. Most of the sites have
the same state in all four sequences. Because these sites experienced no state changes, they contribute
zero to the parsimony score, and eliminating them from consideration saves computation time. Here are
the four example species with the unvarying sites omitted:

Chinchilla TCAATATATGACCGTGTGCAGTCTGCTGCAAACCAT

Viscacha ACAGTATAGGACAGTGCATAATCTGATGCAAACTAT

Agouti TCCGTCTAGAGTAGCATGCAATGAGATGAGAATCGC

Human TGCACACGATCCCATGCGACGCCAACAACATCCCAC

We only have to look at 36 sites, not all 156—a 77 percent savings.
We can be smarter still. Consider the first site, with states of T, A, T, and T. Somewhere in the tree, this

site must switch from T to A; everywhere else, this site stays at T. Therefore, this site will contribute 1 to
the parsimony score no matter what the tree topology is. Also, consider the tenth site, with states of G, G, A,

C6910_38.indd Sec1:765C6910_38.indd Sec1:765 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

766 CHAPTER 38 Phylogenetic Tree Construction

and T. Somewhere this site must switch from G to A; somewhere else, from G to T. Therefore, this site will
contribute 2 to the score in every tree topology. To yield different scores in different topologies, a site must
have at least two different states, and each state must appear in at least two different sequences—such as the
site with states A, A, C, and C that we saw earlier. Such sites are called informative sites; the other sites
are called uninformative sites. We can eliminate the uninformative sites from consideration, as long as we
remember the number of state changes the uninformative sites contribute to the score (each uninformative
site contributes S–1 state changes, where S is the number of unique states at the site). Here are the uninfor-
mative sites in the four example species, along with the amounts they contribute:

Chinchilla TCAATATATGACCGTGTGCAGTCTGCTGCAAACCAT

Viscacha ACAGTATAGGACAGTGCATAATCTGATGCAAACTAT

Agouti TCCGTCTAGAGTAGCATGCAATGAGATGAGAATCGC

Human TGCACACGATCCCATGCGACGCCAACAACATCCCAC

 11 11112221 111 121 11 1 111111111 ← Uninformative sites

The uninformative sites contribute a total of 32 to every possible tree’s parsimony score. When scoring
trees, then, we only have to look at the 8 remaining informative sites, not all 156—a 95 percent savings in
the computation time.

38.5 Maximum Parsimony with Exhaustive Search
We can now design a sequential program to find the maximum parsimony phylogenetic tree or trees for a
series of DNA sequences using exhaustive search. The search is called “exhaustive” because it considers all
(2N – 3)!! possible tree topologies. (It is also called exhaustive because when N gets larger than a dozen or so
species, our patience gets exhausted waiting for the program to finish!) Figure 38.5 shows the classes from
which the sequential phylogeny program is built and their “uses” relationships. (A→B means class A uses
class B.) Unless otherwise stated, these classes are in package edu.rit.compbio.phyl. The main program is class
PhylogenyParsExhSeq. We’ll describe what every class does, but study the code for only a few key classes.

C6910_38.indd Sec1:766C6910_38.indd Sec1:766 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.5 Maximum Parsimony with Exhaustive Search 767

PhylogenyParsExhSeq

MaximumParsimony

MaximumParsimonyExhSeq

DnaSequenceList

DnaSequenceTree

DnaSequence

FitchParsimony

Results

Distance

HammingDistance

Distance

JukesCantorDistance

LeastSquaresBranchLength

NonNegativeLeastSquares

TreeDrawing

Drawing

Figure 38.5 PhylogenyParsExhSeq class relationships

Class DnaSequence provides a sequence of sites, each site being a set of the •
states A, C, G, and T. This is used to represent the original DNA sequences at
the tip nodes, as well as the state sets at the interior nodes in the Fitch parsi-
mony scoring algorithm.

Class DnaSequenceList provides a list of DnaSequences. A method is pro-•
vided to read a list of DNA sequences from a file in PHYLIP format.

Class DnaSequenceTree provides a phylogenetic tree of DnaSequences. The •
class is designed for building a tree by adding DNA sequences (tip nodes) one
at a time. The add() method adds a new interior node with two child nodes.
One child node is the node at a given position in the tree. The other child
node is a new tip node with a given DNA sequence. Thus, the new tip node
becomes the sibling of the existing node.

Class FitchParsimony has a • computeScore() method for computing a tree’s
parsimony score. It also has an updateScore() method for updating a tree’s

C6910_38.indd Sec1:767C6910_38.indd Sec1:767 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

768 CHAPTER 38 Phylogenetic Tree Construction

package edu.rit.compbio.phyl;

import java.util.List;

public abstract class MaximumParsimony

 {

 /**

 * List of DNA sequences. Input to the last findTrees() method

 * call.

 */

 public DnaSequenceList seqList;

 /**

 * Limit on the number of phylogenetic trees to store. Input to

 * the last findTrees() method call. The findTrees() method will

 * store at most this many maximum parsimony phylogenetic trees.

 */

 public int treeStoreLimit;

 /**

 * Initial bound for branch-and-bound search. Input to the last

 * findTrees() method call. The findTrees() method will only find

 * trees whose parsimony scores are less than or equal to the

 * bound.

 */

 public int initialBound;

 /**

 * List of maximum parsimony phylogenetic trees. Output from the

 * last findTrees() method call. Contains one or more tree

 * signatures representing the phylogenetic trees, all of which

 * have the same maximum parsimony score.

 */

 public List<int[]> treeList;

parsimony score after a new DNA sequence has been added. The parsimony
score can be updated by recalculating just the interior nodes along the path from
the new tip node to the root; this takes less time than calculating all the nodes.

Class MaximumParsimony is the abstract base class for an object that finds the •
most parsimonious tree or trees of the sequences in a DnaSequenceList. The
base class has common fields and methods, as well as an abstract findTrees()
method that can implemented in different ways. Here is the source code.

We will look at branch-and-bound search after we’ve looked at exhaustive search.

C6910_38.indd Sec1:768C6910_38.indd Sec1:768 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.5 Maximum Parsimony with Exhaustive Search 769

A tree signature is a compact way to designate a particular tree topology. The signature is an array of
N positions, where N is the number of species. The signature at index i gives the position in the tree at
which the i-th species is to be added. By adding the species, in order, to an empty tree at the positions
given in the signature, the tree can be reconstructed. Later, we will use a tree signature to keep track of
our place when generating all possible tree topologies.

 /**

 * Maximum parsimony score. Output from the last findTrees()

 * method call. Contains the Fitch parsimony score of the

 * phylogenetic trees in treelist.

 */

 public int score;

 /**

 * Construct a new maximum parsimony phylogenetic tree

 * construction algorithm object.

 */

 public MaximumParsimony()

 {

 }

 /**

 * Find the maximum parsimony phylogenetic tree(s) for the given

 * DNA sequence list. The results are stored in the fields of

 * this object. The findTrees() method will store at most

 * treeStoreLimit maximum parsimony phylogenetic trees. The

 * findTrees() method will only find trees whose parsimony scores

 * are less than or equal to the initialBound.

 *

 * @param seqList DNA sequence list.

 * @param treeStoreLimit Maximum number of trees to store.

 * @param initialBound Initial bound for branch-and-bound

 * search.

 */

 public abstract void findTrees

 (DnaSequenceList seqList,

 int treeStoreLimit,

 int initialBound)

 throws Exception;

 /**

 * Returns the number of phylogenetic trees found by the last

 * findTrees() method call.

 *

 * @return Number of trees.

C6910_38.indd Sec1:769C6910_38.indd Sec1:769 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

770 CHAPTER 38 Phylogenetic Tree Construction

package edu.rit.compbio.phyl;

import java.util.ArrayList;

public class MaximumParsimonyExhSeq

 extends MaximumParsimony

 {

 /**

 * Construct a new maximum parsimony phylogenetic tree

 * construction algorithm object.

 */

 public MaximumParsimonyExhSeq()

 {

 }

 /**

 * Find the maximum parsimony phylogenetic tree(s) for the given

 * DNA sequence list. The results are stored in the fields of

 * this object. The findTrees() method will store at most

 * treeStoreLimit maximum parsimony phylogenetic trees. For

 */

 public int length()

 {

 return treeList.size();

 }

 /**

 * Returns the phylogenetic tree found by the last findTrees()

 * method call corresponding to the given index. The returned

 * tree is newly created based on the tree signature.

 *

 * @param i Index in the range 0 .. length()-1.

 *

 * @return Phylogenetic tree.

 */

 public DnaSequenceTree tree

 (int i)

 {

 return seqList.toTree (treeList.get (i));

 }

 }

Class MaximumParsimonyExhSeq extends base class MaximumParsimony •
with the algorithm for an exhaustive search executed sequentially in a single
thread. Here is the source code.

C6910_38.indd Sec1:770C6910_38.indd Sec1:770 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.5 Maximum Parsimony with Exhaustive Search 771

 * exhaustive search, the initialBound argument is ignored.

 *

 * @param seqList DNA sequence list.

 * @param treeStoreLimit Maximum number of trees to store.

 * @param initialBound Initial bound for branch-and-bound

 * search.

 */

 public void findTrees

 (DnaSequenceList seqList,

 int treeStoreLimit,

 int initialBound)

 {

 // Initialize.

 this.seqList = seqList;

 this.treeStoreLimit = treeStoreLimit;

 this.initialBound = initialBound;

 this.treeList = new ArrayList<int[]> (treeStoreLimit);

 this.score = Integer.MAX_VALUE;

 int L = seqList.seq(0).length();

 int N = seqList.length();

 int C = 2*N + 1;

 // Set up stack of DNA sequence trees.

 DnaSequenceTree[] treeStack = new DnaSequenceTree [N];

 for (int i = 0; i < N; ++ i)

 {

 treeStack[i] = new DnaSequenceTree (C);

 }

 // Set up stack of auxiliary DNA sequence arrays.

 DnaSequence[][] seqArrayStack = new DnaSequence [N] [];

 for (int i = 0; i < N; ++ i)

 {

 DnaSequence[] seqArray = new DnaSequence [i];

 seqArrayStack[i] = seqArray;

To generate all possible tree topologies, we will add the DNA sequences one at a time. After adding each
sequence at a certain position, we will save the resulting tree in the treeStack variable. treeStack[0]
holds the tree after adding the first sequence to an empty tree, treeStack[1] holds the tree after adding
the second sequence to treeStack[0], treeStack[2] holds the tree after adding the third sequence to
treeStack[1], and so on.

Each tree in treeStack is paired with an auxiliary array of DNA sequence objects in seqArrayStack.
These objects are used to hold the interior nodes’ state sets during the Fitch parsimony scoring algorithm.

C6910_38.indd Sec1:771C6910_38.indd Sec1:771 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

772 CHAPTER 38 Phylogenetic Tree Construction

The signature variable holds the signature of the tree under construction. signature[0] gives the
position in treeStack[0] at which the first sequence was added, signature[1] gives the position in
treeStack[1] at which the second sequence was added, and so on. The positions are all initialized to
–1 because of the way the tree construction works, as will be seen.

 // Set up tree signature.

 int[] signature = new int [N];

 for (int i = 1; i < N; ++ i)

 {

 signature[i] = -1;

 }

 for (int j = 0; j < i; ++ j)

 {

 seqArray[j] = new DnaSequence (L);

 }

 }

Now comes the actual search. Conceptually, the program is searching a graph of all possible tree topolo-
gies (Figure 38.6). The search graph is organized into N levels. At level 0, each graph vertex corresponds
to a topology with the first sequence added; at level 1, each vertex corresponds to a topology with the
second sequence added; and so on. Each vertex at one level is joined to vertices at the next level corre-
sponding to the different positions at which the next sequence can be added. The graph is searched in a
depth-first fashion. The level variable keeps track of the search’s current level. The signature vari-
able keeps track of the position at which each sequence is added to the growing tree at the current level.

C6910_38.indd Sec1:772C6910_38.indd Sec1:772 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.5 Maximum Parsimony with Exhaustive Search 773

C
H2 0

A
1 7

V
8

4 5

(0, 0, 0, 0)

C
A2 0

V
5

H
2 3

4 8

(0, 0, 0, 1)

C
A2 0

V
H2 6

2
4 8

(0, 0, 0, 2)

C
A2 0

H
1 7

V
1 1

4 8

(0, 0, 0, 3)

C
A
H3 1

6

V
9

4 6

(0, 0, 0, 4)

C
H2 0

V
9

A
1 6

4 5

(0, 0, 1, 0)

C
V1 0

H
1 9

A
1 7

4 6

(0, 0, 1, 1)

C
V
H2 6

3

A
1 9

4 8

(0, 0, 1, 2)

C
V1 0

A
1 5

H
2 1

4 6

(0, 0, 1, 3)

C
V1 0

A
H3 1

5
4 6

(0, 0, 1, 4)

C
H2 0

V
A2 0

5
4 5

(0, 0, 2, 0)

C
V
A2 0

5

H
2 0

4 5

(0, 0, 2, 1)

C
V
H2 6

A
1 4

8
4 8

(0, 0, 2, 2)

C
V
A2 0

H
2 0

5
4 5

(0, 0, 2, 3)

C
V
A
H3 1

9
6

4 6

(0, 0, 2, 4)

C
A2 0

V
5

2 5

(0, 0, 0, −1)

C
V1 0

A
1 5

2 5

(0, 0, 1, −1)

C
V
A2 0

5
2 5

(0, 0, 2, −1)

C
V1 0

1 0

(0, 0, −1, −1)

C
0

(0, −1, −1, −1)

Figure 38.6 Search graph for example sequences; each vertex shows tree, overall parsimony score,
score at each interior node, and tree signature

C6910_38.indd Sec1:773C6910_38.indd Sec1:773 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

774 CHAPTER 38 Phylogenetic Tree Construction

 // Initialize DNA sequence tree at level 0 of the search

 // graph.

 treeStack[0].add (0, seqList.seq(0));

 // Traverse levels 1 .. N-1 of the search graph.

 int level = 1;

 while (level > 0)

 {

 DnaSequenceTree prevTree = treeStack[level-1];

 // If we have reached the bottom of the search graph, we

 // have a tentative solution.

 if (level == N)

 {

 int tentativeScore =

 prevTree.seq (prevTree.root()) .score();

 // If tentative solution’s score is better than the

 // best solution’s score, discard previous solutions.

 if (tentativeScore < score)

 {

 treeList.clear();

 score = tentativeScore;

 }

 // If tentative solution’s score is the same as the

 // best solution’s score, record tentative solution.

 if (tentativeScore == score &&

 treeList.size() < treeStoreLimit)

 {

 treeList.add ((int[]) signature.clone());

 }

 // Go to previous level.

 -- level;

 }

 // If there are no more positions to try at this level,

 // reset position at this level and go to previous level.

 else if (signature[level] == 2*(level - 1))

 {

 signature[level] = -1;

 -- level;

 }

C6910_38.indd Sec1:774C6910_38.indd Sec1:774 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.5 Maximum Parsimony with Exhaustive Search 775

 // If there are more positions to try at this level, add

 // the DNA sequence to the tree at the next position and

 // go to the next level.

 else

 {

 ++ signature[level];

 DnaSequenceTree currTree = treeStack[level];

 currTree.copy (prevTree);

 int tip = currTree.add

 (signature[level], seqList.seq(level));

 FitchParsimony.updateScore

 (currTree, tip, seqArrayStack[level]);

 ++ level;

 }

 }

 }

 }

We could have coded the depth-first graph search using recursion, with a search method calling itself
recursively to go to the next level and returning to go to the previous level. Instead, we coded the depth-
first graph search using iteration, with a while loop and a level variable incrementing and decrementing.
This reduces the running time; it takes less time to go back to the top of a loop than to call a method. To
reduce the running time further, we save the partially constructed trees in an explicit stack, so we can
instantly backtrack to the tree at the previous level. To reduce the running time still further, we allocate
all the necessary tree objects in advance rather than continually constructing new objects, which elimi-
nates the time needed to execute constructors.

Class Results has a method to output the results of the search. The results are •
stored in an HTML file and can be viewed with a Web browser. The results
include the input DNA sequences; distance matrices of the Hamming dis-
tances and the Jukes-Cantor corrected distances; and the most parsimonious
trees (those with the smallest parsimony score) displayed textually and graphi-
cally. Each tree is annotated with the least-squares branch lengths computed
for that topology as well as the squared error in the branch lengths.

Class HammingDistance, which implements interface Distance, computes the •
Hamming distance between two sequences.

Class JukesCantorDistance, which also implements interface Distance, com-•
putes the Jukes-Cantor corrected distance between two sequences.

Class LeastSquaresBranchLength solves Equation 38.4 to find the least-•
squares branch lengths for a given topology and sequences. It uses class edu.
rit.numeric.NonNegativeLeastSquares to do the calculations.

C6910_38.indd Sec1:775C6910_38.indd Sec1:775 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

776 CHAPTER 38 Phylogenetic Tree Construction

package edu.rit.compbio.phyl;

import edu.rit.pj.Comm;

import java.io.File;

import java.util.HashMap;

public class PhylogenyParsExhSeq

 {

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length < 2 || args.length > 4) usage();

 File infile = new File (args[0]);

 File outdir = new File (args[1]);

 int T = 100;

 if (args.length >= 4) T = Integer.parseInt (args[3]);

 // Read DNA sequence list from file and truncate to N

 // sequences if necessary.

 DnaSequenceList seqList = DnaSequenceList.read (infile);

 int N = seqList.length();

 if (args.length >= 3) N = Integer.parseInt (args[2]);

 seqList.truncate (N);

Class edu.rit.draw.Drawing lets a program create drawings (like the figures in this •
chapter) and save them in files of various formats, including PostScript and PNG.

Class TreeDrawing makes a drawing of a DNA sequence tree.•

Finally, class PhylogenyParsExhSeq is the main program for sequential maximum parsimony phyloge-
netic tree construction. The command-line arguments are the following:

The name of the input file containing the DNA sequences in PHYLIP format.•

The name of the directory in which to store the output HTML file containing •
the results, the PNG files containing the tree graphics, and other output files.

N• , the number of DNA sequences from the input file to include in the search.
If N is specified, then only the first N sequences are included. If N is not speci-
fied, then all are included.

T• , the maximum number of phylogenetic trees to report. If not specified, then
T = 100 is used. This is to prevent running out of memory if many topologies
all have the same smallest parsimony score.

C6910_38.indd Sec1:776C6910_38.indd Sec1:776 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.5 Maximum Parsimony with Exhaustive Search 777

 // Excise uninformative sites.

 DnaSequenceList excisedList = new DnaSequenceList (seqList);

 int uninformativeScore =

 excisedList.exciseUninformativeSites();

 // Map each excised DNA sequence to its original DNA

 // sequence.

 HashMap<DnaSequence,DnaSequence> seqMap =

 new HashMap<DnaSequence,DnaSequence>();

 for (int i = 0; i < N; ++ i)

 {

 seqMap.put (excisedList.seq (i), seqList.seq (i));

 }

 long t2 = System.currentTimeMillis();

 // Run the exhaustive search.

 MaximumParsimony searcher = new MaximumParsimonyExhSeq();

 searcher.findTrees (excisedList, T, -1);

 searcher.score += uninformativeScore;

 long t3 = System.currentTimeMillis();

 // Report results.

 Results.report

 (/*directory */ outdir,

 /*programName */ "PhylogenyParsExhSeq",

 /*hostName */ Comm.world().host(),

 /*K */ 1,

 /*infile */ infile,

 /*seqList */ seqList,

 /*seqMap */ seqMap,

 /*searcher */ searcher,

 /*t1 */ t1,

 /*t2 */ t2,

 /*t3 */ t3);

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1)+" msec pre");

 System.out.println ((t3-t2)+" msec calc");

 System.out.println ((t4-t3)+" msec post");

 System.out.println ((t4-t1)+" msec total");

 }

 }

C6910_38.indd Sec1:777C6910_38.indd Sec1:777 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

778 CHAPTER 38 Phylogenetic Tree Construction

Figure 38.6 shows the 15 trees the PhylogenyParsExhSeq program generates, along with their
parsimony scores. There are 5 trees with the smallest parsimony score of 45, and these are the trees the
program reports. Here’s a closer look at one of them:

Human
0.00

Agouti
15.49

Viscacha
6.442 0

2.52

Chinchilla
2.71

5
19.22

2 0

Each interior node is marked with the number of state changes, as computed by the Fitch parsimony scor-
ing algorithm. Each branch is marked with the least-squares branch length computed for this topology.
The squared error in the distances is 5.92. The other four trees are the same as this one, differing only in
the placement of the root node.

Does this mean that viscachas and agoutis actually descended from a common ancestor, rather than
viscachas and chinchillas? Not really. We have found the most parsimonious phylogeny based only on
one gene, the insulin gene, in each species. If we computed the phylogeny based on more of the species’
genes, or if we included more species, then we would probably get a different answer. However, the pro-
gram’s running time goes up as the double factorial of the number of species. If we want to analyze more
than a handful of species, we have to use something other than exhaustive search.

38.6 Maximum Parsimony with Branch-and-Bound Search
Let’s go back for a moment to the eight informative sites in the four example sequences:

Chinchilla AACTGTCT

Viscacha AGACATAT

Agouti CGATAAAC

Human CACCGACC

Suppose we are proceeding through the depth-first search of the graph and have added the first species.
Consider the first site, whose state is A. When we add the remaining three species, the first site is also going
to have a state of C somewhere in the tree. Consequently, the number of state changes is going to increase
by at least 1 at the first site. If we count the number of additional states from the remaining three species at
each site and total up the counts, we find that the number of state changes must increase by at least 8 when
we add the second, third, and fourth species (depending on the topology, it may increase more):

Chinchilla AACTGTCT

 11111111 ← 8 total

Viscacha AGACATAT

Agouti CGATAAAC

Human CACCGACC

C6910_38.indd Sec1:778C6910_38.indd Sec1:778 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.6 Maximum Parsimony with Branch-and-Bound Search 779

When we add the third and fourth species, the number of state changes must increase by at least 3:

Chinchilla AACTGTCT

Viscacha AGACATAT

 1 1 1 ← 3 total

Agouti CGATAAAC

Human CACCGACC

And when we add the fourth species, the number of state changes does not increase further:

Chinchilla AACTGTCT

Viscacha AGACATAT

Agouti CGATAAAC

 ← 0 total

Human CACCGACC

We can use this information to reduce—possibly, greatly reduce—the number of vertices we have to
search to find the most parsimonious topology.

Recall that as we traverse the search graph, we are keeping track of the smallest parsimony score
found so far; call it S. Suppose we’re at a vertex in the search graph where we’ve added a certain num-
ber of species, and the tree’s partial parsimony score at that point is X. Suppose that when we add the
remaining species, the number of state changes (and thus the parsimony score) will increase by at least
Y. Finally, suppose X+Y is greater than S. In this situation, there is no point in continuing the search past
the current vertex. Every complete tree past this point will end up with a parsimony score worse than the
solution we’ve found so far. Instead, we can immediately go on to the next vertex at the current level of
the search graph. The information about the additional number of state changes from the remaining spe-
cies has let us effectively snip out a whole section of the search graph. This is called pruning the search.

A search algorithm that prunes in this manner is called a branch-and-bound search algorithm. As
the algorithm traverses the branches of the search graph, it continually evaluates a lower bound on the
score that would be obtained if the search continued all the way to the bottom. If this lower bound ever
exceeds the best score so far, the search is pruned.

It’s important to emphasize that a branch-and-bound search is guaranteed to find the truly best solution,
just like an exhaustive search. The only difference is that the branch-and-bound search can take less time.

The closer to the beginning of the search at which pruning happens, the smaller the program’s run-
ning time will be. Thus, we want to find a bound close to the final score quickly, so we can prune large
sections of the search graph. Finding a good initial bound is especially important in a phylogenetic tree
search because of the double-factorial explosion in the number of topologies the deeper we go into the
search graph.

One way is to use a fast heuristic algorithm to find a topology, compute the resulting tree’s parsi-
mony score, and use that as the initial bound for the branch-and-bound search. We will use UPGMA to
find this initial bound. While UPGMA may not find the true most parsimonious solution, we hope that
UPGMA finds a solution close to the most parsimonious.

We can use the output of UPGMA in another way as well. UPGMA yields a branch length for each tip
node. Suppose we sort the list of species into descending order of this branch length. Then, as we add the
species to the tree in this order, the species that are more distant from the others are added first. This tends
to make the parsimony score increase more quickly at the initial levels of the search graph and increases the
likelihood that the search gets pruned early on, thus reducing the running time to a greater extent.

C6910_38.indd Sec1:779C6910_38.indd Sec1:779 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

780 CHAPTER 38 Phylogenetic Tree Construction

package edu.rit.compbio.phyl;

import java.util.ArrayList;

public class MaximumParsimonyBnbSeq

 extends MaximumParsimony

The strategy of using the number of additional state changes as each remaining species is added was
suggested in a 1979 paper by Foulds, Hendy, and Penny. Adding the most distant species first was sug-
gested in a 1982 paper by Hendy and Penny. Using UPGMA to find an initial bound was suggested by
O’Brien in 2006.

PhylogenyParsBnbSeq

Upgma

DnaSequenceList

DnaSequenceTree

DnaSequence

Distance

JukesCantorDistance

MaximumParsimony

MaximumParsimonyBnbSeq

Figure 38.7 PhylogenyParsBnbSeq class relationships (remainder is the same as
PhylogenyParsExhSeq in Figure 38.5)

Pulling these ideas together, we can design a phylogenetic tree construction program using
branch-and-bound search. It is still a sequential program (the next version will be a parallel program).
Figure 38.7 shows the classes from which the branch-and-bound phylogeny program is built and their
“uses” relationships. Most of the classes are the same as in the exhaustive search program. Here are the
new classes:

Class Upgma constructs a phylogenetic tree from a DNA sequence list using •
the UPGMA algorithm.

Class MaximumParsimonyBnbSeq extends base class MaximumParsimony •
with the algorithm for a branch-and-bound search executed sequentially in a
single thread. Most of it is the same as class MaximumParsimonyExhSeq for
an exhaustive search.

C6910_38.indd Sec1:780C6910_38.indd Sec1:780 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.6 Maximum Parsimony with Branch-and-Bound Search 781

 {

 /**

 * Construct a new maximum parsimony phylogenetic tree

 * construction algorithm object.

 */

 public MaximumParsimonyBnbSeq()

 {

 }

 /**

 * Find the maximum parsimony phylogenetic tree(s) for the given

 * DNA sequence list. The results are stored in the fields of

 * this object. The findTrees() method will store at most

 * treeStoreLimit maximum parsimony phylogenetic trees. The

 * findTrees() method will only find trees whose parsimony scores

 * are less than or equal to the initialBound.

 *

 * @param seqList DNA sequence list.

 * @param treeStoreLimit Maximum number of trees to store.

 * @param initialBound Initial bound for branch-and-bound

 * search.

 */

 public void findTrees

 (DnaSequenceList seqList,

 int treeStoreLimit,

 int initialBound)

 {

 // Initialize.

 this.seqList = seqList;

 this.treeStoreLimit = treeStoreLimit;

 this.initialBound = initialBound;

 this.treeList = new ArrayList<int[]> (treeStoreLimit);

 this.score = initialBound;

 int L = seqList.seq(0).length();

 int N = seqList.length();

 int C = 2*N - 1;

 // Compute number of absent states as each DNA sequence is

 // added.

 int[] absentStates = seqList.countAbsentStates();

 // Set up stack of DNA sequence trees.

 DnaSequenceTree[] treeStack = new DnaSequenceTree [N];

 for (int i = 0; i < N; ++ i)

Here, we assemble the information used later to compute the bound and prune the search.

C6910_38.indd Sec1:781C6910_38.indd Sec1:781 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

782 CHAPTER 38 Phylogenetic Tree Construction

 {

 treeStack[i] = new DnaSequenceTree (C);

 }

 // Set up stack of auxiliary DNA sequence arrays.

 DnaSequence[][] seqArrayStack = new DnaSequence [N] [];

 for (int i = 0; i < N; ++ i)

 {

 DnaSequence[] seqArray = new DnaSequence [i];

 seqArrayStack[i] = seqArray;

 for (int j = 0; j < i; ++ j)

 {

 seqArray[j] = new DnaSequence (L);

 }

 }

 // Set up tree signature.

 int[] signature = new int [N];

 for (int i = 1; i < N; ++ i)

 {

 signature[i] = -1;

 }

 // Initialize DNA sequence tree at level 0 of the search

 // graph.

 treeStack[0].add (0, seqList.seq(0));

 // Traverse levels 1 .. N-1 of the search graph.

 int level = 1;

 while (level > 0)

 {

 DnaSequenceTree prevTree = treeStack[level-1];

 // If we have reached the bottom of the search graph, we

 // have a tentative solution.

 if (level == N)

 {

 int tentativeScore =

 prevTree.seq (prevTree.root()) .score();

 // If tentative solution’s score is better than the

 // best solution’s score, discard previous solutions.

Here is the actual branch-and-bound search. It is the same as the exhaustive search, except for one
addition—pruning.

C6910_38.indd Sec1:782C6910_38.indd Sec1:782 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

 38.6 Maximum Parsimony with Branch-and-Bound Search 783

 if (tentativeScore < score)

 {

 treeList.clear();

 score = tentativeScore;

 }

 // If tentative solution’s score is the same as the

 // best solution’s score, record tentative solution.

 if (tentativeScore == score &&

 treeList.size() < treeStoreLimit)

 {

 treeList.add ((int[]) signature.clone());

 }

 // Go to previous level.

 -- level;

 }

 // If there are no more positions to try at this level,

 // reset position at this level and go to previous level.

 else if (signature[level] == 2*(level - 1))

 {

 signature[level] = -1;

 -- level;

 }

 // If there are more positions to try at this level, add

 // the DNA sequence to the tree at the next position and

 // do branch-and-bound.

 else

 {

 ++ signature[level];

 DnaSequenceTree currTree = treeStack[level];

 currTree.copy (prevTree);

 int tip = currTree.add

 (signature[level], seqList.seq(level));

 int partialScore =

 FitchParsimony.updateScore

 (currTree, tip, seqArrayStack[level]);

Here is where the pruning happens. Instead of going to the next level unconditionally, we compute the
bound and go to the next level only if the bound does not exceed the best score found so far.

C6910_38.indd Sec1:783C6910_38.indd Sec1:783 2/2/09 12:37:56 PM2/2/09 12:37:56 PM

784 CHAPTER 38 Phylogenetic Tree Construction

 // If partial parsimony score plus number of absent

 // states in the remaining levels is less than or equal

 // to the best solution’s score, go to the next level,

 // otherwise try the next choice at this level.

 if (partialScore + absentStates[level] <= score)

 {

 ++ level;

 }

 }

 }

 }

 }

package edu.rit.compbio.phyl;

import edu.rit.pj.Comm;

import java.io.File;

import java.util.HashMap;

public class PhylogenyParsBnbSeq

 {

 public static void main

 (String[] args)

 throws Exception

 {

 // Start timing.

 long t1 = System.currentTimeMillis();

 // Parse command line arguments.

 if (args.length < 2 || args.length > 4) usage();

 File infile = new File (args[0]);

 File outdir = new File (args[1]);

 int T = 100;

 if (args.length >= 4) T = Integer.parseInt (args[3]);

 // Read DNA sequence list from file and truncate to N

 // sequences if necessary.

 DnaSequenceList seqList = DnaSequenceList.read (infile);

 int N = seqList.length();

 if (args.length >= 3) N = Integer.parseInt (args[2]);

 seqList.truncate (N);

Class PhylogenyParsBnbSeq is the main program for sequential branch-and-•
bound maximum parsimony phylogenetic tree construction. The command-
line arguments are the same as the PhylogenyParsExhSeq program.

C6910_38.indd Sec1:784C6910_38.indd Sec1:784 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

 38.6 Maximum Parsimony with Branch-and-Bound Search 785

 // Run the UPGMA algorithm to get an approximate solution.

 // Calculate its parsimony score.

 DnaSequenceTree upgmaTree =

 Upgma.buildTree (seqList, new JukesCantorDistance());

 int upgmaScore = FitchParsimony.computeScore (upgmaTree);

 // Run the branch-and-bound search. Use the UPGMA parsimony

 // score (reduced by score from uninformative sites) as the

 // initial bound.

 MaximumParsimony searcher = new MaximumParsimonyBnbSeq();

 searcher.findTrees

 (excisedList, T, upgmaScore - uninformativeScore);

 searcher.initialBound += uninformativeScore;

 searcher.score += uninformativeScore;

 // Put the DNA sequence list in descending order of tip node

 // branch length in the UPGMA tree.

 DnaSequenceList sortedList = upgmaTree.toList();

 // Excise uninformative sites.

 DnaSequenceList excisedList =

 new DnaSequenceList (sortedList);

 int uninformativeScore =

 excisedList.exciseUninformativeSites();

 // Map each excised DNA sequence to its original DNA

 // sequence.

 HashMap<DnaSequence,DnaSequence> seqMap =

 new HashMap<DnaSequence,DnaSequence>();

 for (int i = 0; i < N; ++ i)

 {

 seqMap.put (excisedList.seq (i), sortedList.seq (i));

 }

 long t2 = System.currentTimeMillis();

The following ensures that during branch-and-bound search, the sequences most distant from the others
are added first.

Before commencing the branch-and-bound search, we run the fast heuristic UPGMA algorithm to get a
tentative topology.

Here’s where we use the UPGMA tree’s parsimony score as the initial bound in the branch-and-bound search.

C6910_38.indd Sec1:785C6910_38.indd Sec1:785 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

786 CHAPTER 38 Phylogenetic Tree Construction

How much faster than the exhaustive search is the branch-and-bound search? The PhylogenyParsExhSeq
and PhylogenyParsBnbSeq programs were run on one CPU of the “parasite” SMP parallel computer. The input
was a group of 18 DNA sequences from 18 iguana species. Each sequence was 900 characters long. Both pro-
grams were run with N = 9, 10, and 11 sequences. The branch-and-bound program was also run with N = 12, 13,
14, and 15 sequences. The running times (msec) for the search section of each program were the following:

N Exhaustive Branch-
and-bound

9 5451 187

10 111342 858

11 2571056 1406

12 53992176 7667

13 1241820048 32240

14 31045501200 117484

15 838228532400 1455052

 long t3 = System.currentTimeMillis();

 // Report results.

 Results.report

 (/*directory */ outdir,

 /*programName */ "PhylogenyParsBnbSeq",

 /*hostName */ Comm.world().host(),

 /*K */ 1,

 /*infile */ infile,

 /*seqList */ seqList,

 /*seqMap */ seqMap,

 /*searcher */ searcher,

 /*t1 */ t1,

 /*t2 */ t2,

 /*t3 */ t3);

 // Stop timing.

 long t4 = System.currentTimeMillis();

 System.out.println ((t2-t1)+" msec pre");

 System.out.println ((t3-t2)+" msec calc");

 System.out.println ((t4-t3)+" msec post");

 System.out.println ((t4-t1)+" msec total");

 }

 }

C6910_38.indd Sec1:786C6910_38.indd Sec1:786 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

 38.7 Parallel Branch-and-Bound Search 787

The exhaustive program’s running times for N = 12 to 15 were estimated assuming the running time is propor-
tional to (2N – 3)!!. The advantage of branch-and-bound search is clear. Yet even branch-and-bound search can
benefit from an additional speedup on a parallel computer as the problem size N continues to increase.

38.7 Parallel Branch-and-Bound Search
At last, we can design an SMP parallel branch-and-bound maximum parsimony phylogenetic tree
construction program, based on the sequential version. The first design decision is how to partition the
computation among the parallel threads. The job is a bit more complicated than dividing a for loop index
range into chunks, as we have done with most of our parallel programs. Instead, we have to divide the
vertices of the search graph into chunks (Figure 38.8). Yet we still want to use the parallel for loop pat-
tern, which requires an index range. Here’s how we’ll do it. We’ll partition the vertices at level 6 of the
search graph, the level at which we add the seventh species to the tree. (Levels are numbered starting
from 0.) There are (2·7 – 3)!! = 10,395 vertices at this level. So, we’ll let our parallel for loop index run
from 0 to 10,394. Each thread constructs the tree topology at level 6 corresponding to the lower bound of
the thread’s chunk of loop indexes, and then commences the search from there. The choice of the level
at which to partition the search graph is more or less arbitrary; level 7 (with 114,345 vertices) or level 8
(with 1,486,485 vertices) would also work.

Thread 0 Thread 1 Thread 2 Thread 3

0

5

1 0

1 5

2 0

Le
ve

l

Figure 38.8 Search graph partitioned among parallel threads

As usual, the parallel for loop divides the index range into chunks according to the loop schedule.
Because a branch-and-bound algorithm prunes the search at various levels, depending on the parsimony
scores encountered, partitioning the search graph equally among the threads—a fixed schedule—will
likely yield an unbalanced load. Instead, a dynamic schedule or guided schedule must be used to balance
the load.

The second design decision concerns shared variables. The two key variables the search algorithm
writes are treeList, the list of most parsimonious trees (actually, tree signatures), and score, the
smallest parsimony score. These are fields of the base class MaximumParsimony. For the tree list, we’ll
use the reduction pattern. The treeList field becomes a shared global variable. Each thread has its
own per-thread tree list in which the thread stores the most parsimonious trees the thread finds in its own
chunks of the search graph, without needing to synchronize with the other threads. Each thread’s last act
is to copy the trees from its own list to the global tree list, and when doing so, the thread must synchro-
nize with the other threads to avoid conflicts while updating the shared variable.

C6910_38.indd Sec1:787C6910_38.indd Sec1:787 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

788 CHAPTER 38 Phylogenetic Tree Construction

 MaximumParsimony searcher = new MaximumParsimonyBnbSeq();

 searcher.findTrees

 (excisedList, T, upgmaScore - uninformativeScore);

 ParallelTeam team = null;

 MaximumParsimony searcher = null;

 if (seqList.length() > 7)

 {

 team = new ParallelTeam();

The smallest parsimony score variable needs to be treated a little differently. Whenever one thread
finds a tree with a smaller score than the current score, all the threads need to know about the new smaller
score immediately, so all the threads can prune their searches as soon as possible. Therefore, we can’t use
the reduction pattern for the score variable. The threads must all access a shared variable rather than
per-thread variables. Whenever a thread reads the shared variable to compute the bound for pruning, and
whenever a thread updates the shared variable with a new smaller score, the thread must synchronize with
the other threads to prevent conflicts. To achieve synchronization, we will make the shared variable an
instance of class edu.rit.pj.reduction.SharedInteger, the multiple-thread-safe integer wrapper class.

Figure 38.9 shows the classes from which the SMP parallel branch-and-bound phylogeny program is
built and their “uses” relationships. Most of the classes are the same as in the exhaustive search program
and the sequential branch-and-bound search program.

PhylogenyParsBnbSmp

Upgma

MaximumParsimony

MaximumParsimonyBnbSeq

MaximumParsimony

MaximumParsimonyBnbSmp

Figure 38.9 PhylogenyParsBnbSmp class relationships (remainder is the
same as PhylogenyParsExhSeq in Figure 38.5 and PhylogenyParsBnbSeq
in Figure 38.7)

The main program is class PhylogenyParsBnbSmp. It differs from the sequential version in only one
place. Here is the sequential version.

Alternatively, here is the SMP parallel version.

C6910_38.indd Sec1:788C6910_38.indd Sec1:788 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

 38.7 Parallel Branch-and-Bound Search 789

 searcher = new MaximumParsimonyBnbSmp (team);

 }

 else

 {

 searcher = new MaximumParsimonyBnbSeq();

 }

 searcher.findTrees

 (excisedList, T, upgmaScore - uninformativeScore);

package edu.rit.compbio.phyl;

import edu.rit.pj.IntegerForLoop;

import edu.rit.pj.IntegerSchedule;

import edu.rit.pj.ParallelRegion;

import edu.rit.pj.ParallelSection;

import edu.rit.pj.ParallelTeam;

import edu.rit.pj.reduction.IntegerOp;

import edu.rit.pj.reduction.SharedInteger;

import java.util.ArrayList;

public class MaximumParsimonyBnbSmp

 extends MaximumParsimony

 {

 private ParallelTeam team;

 /**

 * Construct a new maximum parsimony phylogenetic tree

 * construction algorithm object.

 *

 * @param team Parallel thread team that will do the search.

 */

 public MaximumParsimonyBnbSmp

 (ParallelTeam team)

 {

 if (team == null)

 {

 throw new NullPointerException

 ("MaximumParsimonyBnbSmp(): team is null");

 }

To do the search, the parallel version uses an instance of class MaximumParsimonyBnbSmp with a paral-
lel thread team; except if there are seven or fewer sequences, the search is done in a single thread. (The
search only takes a fraction of a second in this case.)

Class MaximumParsimonyBnbSmp extends base class MaximumParsimony with the algorithm for a
branch-and-bound search executed in parallel by a team of threads. Most of it is the same as the sequen-
tial version, class MaximumParsimonyBnbSeq.

C6910_38.indd Sec1:789C6910_38.indd Sec1:789 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

790 CHAPTER 38 Phylogenetic Tree Construction

 this.team = team;

 }

 /**

 * Find the maximum parsimony phylogenetic tree(s) for the given

 * DNA sequence list. The results are stored in the fields of

 * this object. The findTrees() method will store at most

 * treeStoreLimit maximum parsimony phylogenetic trees. The

 * findTrees() method will only find trees whose parsimony scores

 * are less than or equal to the initialBound.

 *

 * The findTrees() method assumes there are more than 7 DNA

 * sequences. If there are 7 or fewer DNA sequences, don’t

 * bother computing trees in parallel, use class

 * MaximumParsimonyBnbSeq instead.

 *

 * @param seqList DNA sequence list.

 * @param treeStoreLimit Maximum number of trees to store.

 * @param initialBound Initial bound for branch-and-bound

 * search.

 */

 public void findTrees

 (final DnaSequenceList seqList,

 final int treeStoreLimit,

 final int initialBound)

 throws Exception

 {

 // Initialize.

 this.seqList = seqList;

 this.treeStoreLimit = treeStoreLimit;

 this.initialBound = initialBound;

 this.treeList = new ArrayList<int[]> (treeStoreLimit);

 this.score = initialBound;

 final int L = seqList.seq(0).length();

 final int N = seqList.length();

 final int C = 2*N - 1;

 // Compute number of absent states as each DNA sequence is

 // added.

 final int[] absentStates = seqList.countAbsentStates();

Here is the multiple-thread-safe shared variable, bound, that holds the bound (smallest parsimony score)
that all the threads will use to prune their searches.

C6910_38.indd Sec1:790C6910_38.indd Sec1:790 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

 38.7 Parallel Branch-and-Bound Search 791

 // Shared bound for branch-and-bound, set to initial parsimony

 // score.

 final SharedInteger bound = new SharedInteger (score);

 // Begin parallel execution.

 team.execute (new ParallelRegion()

 {

 public void run() throws Exception

 {

 // Do the 10,395 alternatives at level 6 (seventh

 // level) in parallel.

 execute (0, 10394, new IntegerForLoop()

 {

 // Thread local variables.

 int thrScore;

 ArrayList<int[]> thrTreeList;

 DnaSequenceTree[] treeStack;

 DnaSequence[][] seqArrayStack;

 int[] signature;

 // Extra padding to avert cache interference.

 long p0, p1, p2, p3, p4, p5, p6, p7;

 long p8, p9, pa, pb, pc, pd, pe, pf;

 // Initialize thread local variables.

 public void start()

 {

 // Set up list of maximum parsimony tree

 // signatures.

 thrScore = score;

 thrTreeList =

 new ArrayList<int[]> (treeStoreLimit);

 // Set up stack of DNA sequence trees.

 treeStack = new DnaSequenceTree [N];

 for (int i = 0; i < N; ++ i)

 {

 treeStack[i] = new DnaSequenceTree (C);

 }

 // Set up stack of auxiliary DNA sequence arrays.

 seqArrayStack = new DnaSequence [N] [];

 for (int i = 0; i < N; ++ i)

 {

 DnaSequence[] seqArray = new DnaSequence [i];

 seqArrayStack[i] = seqArray;

C6910_38.indd Sec1:791C6910_38.indd Sec1:791 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

792 CHAPTER 38 Phylogenetic Tree Construction

 for (int j = 0; j < i; ++ j)

 {

 seqArray[j] = new DnaSequence (L);

 }

 }

 // Set up tree signature.

 signature = new int [N];

 // Initialize DNA sequence tree at level 0.

 treeStack[0].add (0, seqList.seq(0));

 }

 // Specify parallel loop schedule.

 public IntegerSchedule schedule()

 {

 return IntegerSchedule.runtime

 (IntegerSchedule.dynamic (100));

 }

 // Do a chunk of iterations.

 public void run (int first, int last)

 {

The parallel for loop will use the schedule specified on the command line with the -Dpj.schedule flag. If
the schedule is not specified, the default is a dynamic schedule with a chunk size of 100, for load balancing.

Here is the parallel for loop body. The lower-bound index, first, designates the level-6 tree topology at
which to start searching. The index is used to initialize the tree signature as follows. Because there are 11
alternatives at level 6, we divide the index by 11; the remainder is signature[6], the quotient replaces
the index. Because there are 9 alternatives at level 5, we divide the index by 9; the remainder is
signature[5], the quotient replaces the index. Continuing this way, we fill out signature[6]
through signature[1]. Signature[0] and signature[7] and above are all set to zero. For exam-
ple, if first is 10240, then the signature through level 6 is (0, 0, 2, 4, 5, 3, 10):

10240 ÷ 11 = 930 remainder 10
930 ÷ 9 = 103 remainder 3
103 ÷ 7 = 14 remainder 5
14 ÷ 5 = 2 remainder 4
2 ÷ 3 = 0 remainder 2
0 ÷ 1 = 0 remainder 0

Actually, the elements of signature are set to one less than the preceding because of the way the graph
search loop works.

C6910_38.indd Sec1:792C6910_38.indd Sec1:792 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

 38.7 Parallel Branch-and-Bound Search 793

 // Initialize signature as specified by lower

 // bound loop index <first>.

 int q = first;

 for (int i = 6; i > 0; — i)

 {

 int d = 2*i - 1;

 signature[i] = q % d - 1;

 q = q / d;

 }

 for (int i = 7; i < N; ++ i)

 {

 signature[i] = -1;

 }

 // Traverse levels 1 .. N-1 of the search graph.

 int level = 1;

 while (level > 0)

 {

 DnaSequenceTree prevTree = treeStack[level-1];

 // If we have reached the bottom of the search

 // graph, we have a tentative solution.

 if (level == N)

 {

 int tentativeScore =

 prevTree.seq (prevTree.root()) .score();

 // Atomically set global bound to the

 // smaller of global bound and tentative

 // score.

 int newBound = bound.reduce

 (tentativeScore, IntegerOp.MINIMUM);

 // If global bound is less than previous

 // best solution’s score, discard previous

 // solutions.

 if (newBound < thrScore)

 {

Here, the thread updates the shared bound variable with the smaller of the current bound and the tentative
solution’s score. The thread synchronizes with the other threads accessing bound by calling the
multiple-thread-safe reduce() method to do the update. This method computes the minimum (using the
reduction operator IntegerOp.MINIMUM) of bound and tentativeScore, stores the result back into
bound, and returns the result. (See Appendix D for further information about what happens under the
hood in the reduce() method.)

C6910_38.indd Sec1:793C6910_38.indd Sec1:793 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

794 CHAPTER 38 Phylogenetic Tree Construction

 thrScore = newBound;

 thrTreeList.clear();

 }

 // If tentative solution’s score is the

 // same as best solution’s score, record

 // solution.

 if (tentativeScore == thrScore &&

 thrTreeList.size() < treeStoreLimit)

 {

 thrTreeList.add

 ((int[]) signature.clone());

 }

 // Go to previous level.

 -- level;

 }

 // If there are no more positions to try at

 // this level, reset position at this level

 // and go to previous level.

 else if (signature[level] == 2*(level - 1))

 {

 signature[level] = -1;

 -- level;

 }

 // If there are more positions to try at this

 // level, add the DNA sequence to the tree at

 // the next position and do branch-and-bound.

 else

 {

 ++ signature[level];

 DnaSequenceTree currTree =

 treeStack[level];

 currTree.copy (prevTree);

 int tip =

 currTree.add

 (signature[level],

 seqList.seq(level));

 int partialScore =

 FitchParsimony.updateScore

 (currTree,

 tip,

 seqArrayStack[level]);

C6910_38.indd Sec1:794C6910_38.indd Sec1:794 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

 38.7 Parallel Branch-and-Bound Search 795

 // If we’re below level 6, branch.

 if (level < 6)

 {

 ++ level;

 }

 // If we’re at level 6 and we’re not done

 // with this chunk of iterations, advance

 // to next iteration and branch.

 else if (level == 6 && first <= last)

 {

 ++ first;

 ++ level;

 }

 // If we’re at level 6 and we are done with

 // this chunk of iterations, stop this

 // chunk.

 else if (level == 6) return;

 // We’re above level 6. If partial

 // parsimony score plus number of absent

 // states in the remaining levels is less

 // than or equal to the best solution’s

 // score, go to the next level, otherwise

 // try the next choice at this level.

 else if (partialScore + absentStates[level]

 <= bound.get())

 {

 ++ level;

 }

 }

 }

 }

The logic for pruning the search is slightly different in the parallel version. We won’t prune at all if we’re
below level 6. This is to make sure the parallel for loop visits all the search graph vertices at level 6.

If we’re at level 6, we won’t prune, and we will also count off the number of level-6 vertices we’ve vis-
ited. When we’ve visited all the vertices in the chunk from index first to index last, we return from
the parallel for loop’s run() method.

Above level 6, we’ll prune the search as we did in the sequential version. To compute the bound for the
pruning decision, we call the multiple-thread-safe get() method on the shared bound variable, thus
synchronizing with other threads reading or updating the variable.

C6910_38.indd Sec1:795C6910_38.indd Sec1:795 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

796 CHAPTER 38 Phylogenetic Tree Construction

Here is the thread’s last act—reducing the per-thread tree list into the shared tree list. Synchronization is
achieved by putting the code in a critical section.

 // Reduce per-thread list of solutions into global

 // list of solutions.

 public void finish() throws Exception

 {

 region().critical (new ParallelSection()

 {

 public void run()

 {

 // If this thread’s best score is the same

 // as global best score, add this thread’s

 // solutions to global list.

 if (thrScore == bound.get())

 {

 for

 (int i = 0;

 i < thrTreeList.size() &&

 treeList.size() < treeStoreLimit;

 ++ i)

 {

 treeList.add (thrTreeList.get (i));

 }

 }

 }

 });

 }

 });

 }

 });

 // Finally, record global best score.

 score = bound.get();

 }

 }

Table 38.1 (at the end of the chapter) lists, and Figure 38.10 plots, the PhylogenyParsBnbSmp
program’s performance on the “parasite” SMP parallel computer. The input was a group of 18 DNA
sequences from 18 iguana species. Each sequence was 900 characters long. The program was run with
N = 13, 14, and 15 sequences. The running-time metrics are for the search section of the program. The
parallel program achieved efficiencies of 87 percent or better, out to eight processors.

C6910_38.indd Sec1:796C6910_38.indd Sec1:796 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

 38.8 Acknowledgments 797

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 13

N = 14

N = 15

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

N = 13

N = 14N = 15

EDSF vs. Processors

Processors, K

ED
SF

 (
N

,K
)

(/
1

0
0

0
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

N = 13N = 14N = 15

Speedup vs. Processors

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 13N = 14N = 15

Efficiency vs. Processors

Processors, K

E
ff

(N
,K

)

Figure 38.10 PhylogenyParsBnbSeq/Smp running-time metrics

Going from an exhaustive search to a branch-and-bound search increased the number of species the
maximum parsimony phylogenetic tree construction program could compute in a reasonable amount of
time. Going to a parallel branch-and-bound search increased the number of species still further. However,
the double-factorial explosion in the size of the search graph will inevitably overwhelm even the largest
parallel supercomputer as the number of species increases. Finding the exact most parsimonious phylo-
genetic tree by branch-and-bound search is doable only for a few tens of species at most. Beyond that,
branch-and-bound search takes too long—even on a parallel computer—and heuristic algorithms are the
only viable alternative.

38.8 Acknowledgments
I am indebted to Joseph Felsenstein at the University of Washington and his monograph, Inferring
Phylogenies, for the models and algorithms described in this chapter and their references. Larry Buckley
of the Department of Biological Sciences at the Rochester Institute of Technology provided the iguana

C6910_38.indd Sec1:797C6910_38.indd Sec1:797 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

798 CHAPTER 38 Phylogenetic Tree Construction

DNA sequences used in the running-time measurements. For his M.S. degree project, my student
Terence O’Brien developed a cluster parallel branch-and-bound phylogenetic tree construction program
using C and MPI; I have used some of his ideas in my branch-and-bound programs.

38.9 For Further Information
On the discovery of the DNA double helix—the scientific papers:

J. Watson and F. Crick. A structure for deoxyribose nucleic acid. • Nature,
171:737–738, April 25, 1953.

M. Wilkins, A. Stokes, and H. Wilson. Molecular structure of deoxypentose •
nucleic acids. Nature, 171:738–740, April 25, 1953.

R. Franklin and R. Gosling. Molecular configuration in sodium thymonucleate. •
Nature, 171:740–741, April 25, 1953.

On the people who discovered the DNA double helix:

J. Watson. • The Double Helix. Atheneum Publishers, 1968.

F. Crick. • What Mad Pursuit: A Personal View of Scientific Discovery. Basic
Books, 1990.

B. Maddox. • Rosalind Franklin: The Dark Lady of DNA. HarperCollins
Publishers, 2002.

M. Wilkins. • The Third Man of the Double Helix. Oxford University Press, 2003.

On phylogenies and methods for inferring them:

J. Felsenstein. • Inferring Phylogenies. Sinauer Associates, 2004.

On PHYLIP:

J. Felsenstein. PHYLIP programs and documentation.•
http://evolution.genetics.washington.edu/phylip/phylip.html

On the Jukes-Cantor model of DNA state changes:

T. Jukes and C. Cantor. Evolution of protein molecules. In M. Munro, editor. •
Mammalian Protein Metabolism, Volume III. Academic Press, 1969,
pages 21–132.

J. Felsenstein. • Inferring Phylogenies. Sinauer Associates, 2004, pages 156–158.

On UPGMA:

R. Sokal and C. Michener. A statistical method for evaluating systematic rela-•
tionships. University of Kansas Science Bulletin, 38:1409–1438, 1958.

J. Felsenstein. • Inferring Phylogenies. Sinauer Associates, 2004, pages 161–166.

C6910_38.indd Sec1:798C6910_38.indd Sec1:798 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

http://evolution.genetics.washington.edu/phylip/phylip.html

 38.9 For Further Information 799

On the Fitch algorithm for computing the parsimony score:

W. Fitch. Toward defining the course of evolution: minimum change for a •
specified tree topology. Systematic Zoology, 20:406–416, 1971.

J. Felsenstein. • Inferring Phylogenies. Sinauer Associates, 2004, pages 11–13.

On using informative sites to reduce the time to compute the parsimony score:

V. Ratner, A. Zharkikh, N. Kolchanov, S. Rodin, V. Solovyov, and A. Antonov. •
Molecular Evolution. Springer-Verlag, 1996.

J. Felsenstein. • Inferring Phylogenies. Sinauer Associates, 2004, pages 65–66.

On strategies for conducting a branch-and-bound phylogenetic tree search:

L. Foulds, M. Hendy, and D. Penny. A graph theoretic approach to the •
development of minimal phylogenetic trees. Journal of Molecular Evolution,
13:127–149, 1979.

M. Hendy and D. Penny. Branch and bound algorithms to determine minimal •
evolutionary trees. Mathematical Biosciences, 59:277–290, 1982.

P. Purdom, P. Bradford, K. Tamura, and S. Kumar. Single column discrepancy •
and dynamic max-mini optimizations for quickly finding the most parsimoni-
ous evolutionary trees. Bioinformatics, 16:140–151, 2000.

J. Felsenstein. • Inferring Phylogenies. Sinauer Associates, 2004, pages 64–65.

T. O’Brien. Speedup of parsimonious phylogenetic tree evaluation via parallel •
branch and bound. Rochester Institute of Technology Department of Computer
Science M.S. project, September 2006.
http://www.cs.rit.edu:8080/ms/static/ark/2006/1/two6384/

On parallel programs for maximum parsimony phylogenetic tree construction:

Q. Snell, M. Whiting, M. Clement, and D. McLaughlin. Parallel phylo-•
genetic inference. In Proceedings of the ACM/IEEE 2000 Conference on
Supercomputing, November 2000, page 35.

T. O’Brien. Speedup of parsimonious phylogenetic tree evaluation via parallel •
branch and bound. Rochester Institute of Technology Department of Computer
Science M.S. project, September 2006.
http://www.cs.rit.edu:8080/ms/static/ark/2006/1/two6384/

C6910_38.indd Sec1:799C6910_38.indd Sec1:799 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

http://www.cs.rit.edu:8080/ms/static/ark/2006/1/two6384/On
http://www.cs.rit.edu:8080/ms/static/ark/2006/1/two6384/On
http://www.cs.rit.edu:8080/ms/static/ark/2006/1/two6384/

Table

Table 38.1 PhylogenyParsBnbSeq/Smp running-time metrics

N K T Spdup Eff EDSF

13 seq 32195

13 1 29526 1.090 1.090

13 2 14994 2.147 1.074 0.016

13 3 10191 3.159 1.053 0.018

13 4 7676 4.194 1.049 0.013

13 5 6202 5.191 1.038 0.013

13 6 5411 5.950 0.992 0.020

13 7 4907 6.561 0.937 0.027

13 8 4610 6.984 0.873 0.036

14 seq 108894

14 1 111278 0.979 0.979

14 2 55964 1.946 0.973 0.006

14 3 36305 2.999 1.000 -0.011

14 4 28244 3.855 0.964 0.005

14 5 23088 4.716 0.943 0.009

14 6 19495 5.586 0.931 0.010

14 7 17019 6.398 0.914 0.012

14 8 15330 7.103 0.888 0.015

15 seq 1349625

15 1 1368661 0.986 0.986

15 2 685031 1.970 0.985 0.001

15 3 458661 2.943 0.981 0.003

15 4 351399 3.841 0.960 0.009

15 5 284522 4.743 0.949 0.010

15 6 239571 5.634 0.939 0.010

15 7 210195 6.421 0.917 0.013

15 8 187574 7.195 0.899 0.014

800 CHAPTER 38 Phylogenetic Tree Construction

C6910_38.indd Sec1:800C6910_38.indd Sec1:800 2/2/09 12:37:57 PM2/2/09 12:37:57 PM

801

A P P E N D I X A
in which we take a quick look at SMP parallel programming with OpenMP; and we

compare OpenMP’s features and performance to Parallel Java

OpenMP

C6910_AppA.indd 801C6910_AppA.indd 801 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

A P P E N D I XA OpenMP

A.1 OpenMP Programming
OpenMP is a standard application programming interface (API) for writing thread-based shared memory
parallel programs on SMP parallel computers. First published in 1997 for the Fortran language and in
1998 for the C and C++ languages, the latest version (OpenMP Version 3.0) was released in May 2008.
OpenMP does not support Java. The official standard and a wealth of information about OpenMP are
available on the OpenMP.org Web site. Numerous free implementations and commercial implementations
of the OpenMP standard are available.

To write an OpenMP program, you take a normal Fortran, C, or C++ program and add pragmas
designating where and how the program is to be executed in parallel. There are also OpenMP subroutines
you can call for various purposes. Then, you run your program through a special OpenMP compiler. The
OpenMP compiler looks at the pragmas; it rewrites your program to add threads, shared variables, per-
thread variables, barriers, and so on as directed by the pragmas; and it compiles the now-multithreaded
program. When the compiled program runs on an SMP parallel computer, the program runs in multiple
threads, resulting in a parallel speedup (one hopes).

As a simple example, here is the key portion of a sequential C program for Floyd’s all-shortest-paths
algorithm.

 int n; // Number of vertices

 double **d; // Distance matrix

 int i, r, c;

 for (i = 0; i < n; ++ i)

 {

 double *d_i = d[i];

 for (r = 0; r < n; ++ r)

 {

 double *d_r = d[r];

 for (c = 0; c < n; ++ c)

 {

 d_r[c] = min (d_r[c], d_r[i] + d_i[c]);

 }

 }

 }

C6910_AppA.indd 802C6910_AppA.indd 802 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

 A.2 OpenMP Features 803

And here is the OpenMP parallel version.

 int n; // Number of vertices

 double **d; // Distance matrix

 #pragma omp parallel

 {

 int i, r, c;

 for (i = 0; i < n; ++ i)

 {

 double *d_i = d[i];

 #pragma omp for

 for (r = 0; r < n; ++ r)

 {

 double *d_r = d[r];

 for (c = 0; c < n; ++ c)

 {

 d_r[c] = min (d_r[c], d_r[i] + d_i[c]);

 }

 }

 }

 }

For the complete C source files, see the Parallel Java Library documentation (Javadoc). The source files
are linked from the package summary page for package edu.rit.smp.network.

The #pragma omp signals an OpenMP pragma. The parallel pragma states that the following
block of code is to be executed in parallel by a team of threads. Because the number of threads is not
specified in the pragma, the number of threads is determined at run time. Inside the parallel region, each
thread gets its own copies of the i, r, and c variables; that is, these are per-thread variables. The other
variables n and d, which are declared outside the parallel region, are shared variables.

All the threads execute the outer loop. However, when they reach the middle loop, the for pragma
states that the middle loop is to be executed as a work-sharing parallel loop. That is, the middle loop
iterations are partitioned, and each thread executes a different subset of the iterations. Because no loop
schedule is specified, a default schedule is used. At the end of the middle loop, all the threads do an
implicit barrier wait before proceeding to the next outer loop iteration.

A.2 OpenMP Features
Parallel Java’s SMP parallel programming features are inspired by OpenMP. A comparison of the prin-
cipal features follows. A complete list of OpenMP features and Parallel Java features is too lengthy to
include here. For further information, refer to the OpenMP standard and the Parallel Java documentation.

C6910_AppA.indd 803C6910_AppA.indd 803 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

804 APPENDIX A OpenMP

Region of parallel code. OpenMP uses the parallel pragma.

 #pragma omp parallel

 {

 // Parallel code

 }

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run()

 {

 // Parallel code

 }

 });

 #pragma omp parallel num_threads(2)

 new ParallelTeam(2).execute ...

 #pragma omp parallel shared(x)

 {

 int x;

 x = ...

 }

Parallel Java uses instances of class ParallelTeam and ParallelRegion.

Number of threads. OpenMP specifies the number of threads in a parallel team either at compile time
in the parallel pragma or, if not specified, at run time with the OMP_NUM_THREADS environment variable.

Parallel Java specifies the number of threads in a parallel team either at compile time as the ParallelTeam
constructor argument or, if not specified, at run time with the -Dpj.nt property.

Nested parallel regions. OpenMP allows parallel regions to be nested inside each other with certain
restrictions; typically, there is a limit on the number of levels of nesting allowed. Parallel Java allows
parallel teams and parallel regions to be nested inside each other with no restrictions.

Shared variables. In OpenMP, variables declared outside a parallel region are shared among the par-
allel team threads. Variables declared inside a parallel region are normally per-thread variables, but may
instead be shared by listing them in the parallel pragma. For example, here x is a shared variable.

C6910_AppA.indd 804C6910_AppA.indd 804 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

 A.2 OpenMP Features 805

In Parallel Java, a variable must be declared outside a parallel region to be a shared variable. Neither
OpenMP nor Parallel Java automatically synchronize accesses to a shared variable; it is up to the pro-
grammer to include the proper synchronization when accessing the variable (or to decide that synchroni-
zation is not needed).

Per-thread variables. In OpenMP, variables declared inside a parallel region—“private” variables in
OpenMP parlance—are not shared among the parallel team threads; instead, each thread gets its own copy
of the variable. Variables declared outside a parallel region are normally shared variables, but may instead
be private by listing them in the parallel pragma. For example, here x is a private variable.

In Parallel Java, a variable must be declared inside a parallel region to be a per-thread variable. (They’re
not called private variables because “private” has a different connotation in Java.)

Work-sharing parallel loops. OpenMP uses the for pragma.

 int x;

 #pragma omp parallel private(x)

 {

 x = ...

 }

 #pragma omp parallel

 {

 int i;

 #pragma omp for

 for (i = 0; i <= 99; ++ i)

 {

 // Loop body

 }

 }

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run()

 {

 execute (0, 99, new IntegerForLoop()

 {

 public void run (int first, int last)

 {

 for (int i = first; i <= last; ++ i)

 {

 // Loop body

Parallel Java uses an instance of class IntegerForLoop or LongForLoop.

C6910_AppA.indd 805C6910_AppA.indd 805 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

806 APPENDIX A OpenMP

Both OpenMP and Parallel Java allow loop indexes of type int and type long and allow strides greater
than 1. OpenMP also allows the stride to be negative (that is, the loop index counts down).

Parallel loop schedules. OpenMP specifies a parallel loop’s schedule either at compile time in the
for pragma or, if not specified, at run time with the OMP_SCHEDULE environment variable.

 }

 }

 });

 }

 });

 #pragma omp for schedule(guided)

 for (i = 0; i <= 99; ++ i)

 {

 // Loop body

 }

 execute (0, 99, new IntegerForLoop()

 {

 public IntegerSchedule schedule()

 {

 return IntegerSchedule.guided();

 }

 });

Parallel Java specifies a parallel loop’s schedule either at compile time by defining the schedule()
method or, if not specified, at run time with the -Dpj.schedule property.

Both OpenMP and Parallel Java support fixed, dynamic, guided, and runtime schedules. (What Parallel
Java calls a “fixed” schedule, OpenMP calls a “static” schedule. “Static” has a different connotation in
Java.) Parallel Java also supports arbitrary user-defined parallel loop schedules; simply define a subclass
of class IntegerSchedule or LongSchedule with the desired partitioning algorithm.

Parallel iterations. Parallel Java has the ability to iterate in parallel over the elements of an array,
the items in an Iterable collection, or the items returned by an Iterator. This is the parallel analog of the
Java lan guage’s for-each loop construct. (We have not used parallel iterations in the programs in this
book.) Because the Fortran, C, and C++ languages lack the for-each loop construct, OpenMP does not
support parallel iterations.

C6910_AppA.indd 806C6910_AppA.indd 806 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

 A.2 OpenMP Features 807

Parallel section groups. To get different threads to execute different sections of code—such as a
computation section and a file output section—OpenMP uses the sections and section pragmas.

 #pragma omp parallel num_threads(2)

 {

 #pragma omp sections

 {

 #pragma omp section

 {

 // Computation code

 }

 #pragma omp section

 {

 // File output code

 }

 }

 }

 new ParallelTeam(2).execute (new ParallelRegion()

 {

 public void run()

 {

 execute (new ParallelSection()

 {

 public void run()

 {

 // Computation code

 }

 },

 new ParallelSection()

 {

 public void run()

 {

 // File output code

 }

 });

 }

 });

Parallel Java executes one or more instances of class ParallelSection.

Reduction variables. To support the reduction pattern, OpenMP lets a shared variable be designated
as a reduction variable in the parallel pragma. Each thread gets its own copy of the variable. Inside
the parallel region, the variable’s name refers to the per-thread copy, so each thread updates its own copy

C6910_AppA.indd 807C6910_AppA.indd 807 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

808 APPENDIX A OpenMP

without conflicting with the other threads. At the end of the parallel region, the per-thread variables are
automatically reduced together into the shared variable using a reduction operator specified in the
parallel pragma. Outside the parallel region, the variable’s name refers to the shared variable. For
example, here count is a reduction variable, and addition (+) is the reduction operator.

 long long int count = 0;

 #pragma omp parallel reduction(+:count)

 {

 int i;

 for (i = 0; i < 1000000; ++ i)

 {

 if (...) ++ count;

 }

 }

 printf ("%lld\n", count);

 SharedLong count = new SharedLong (0);

 new ParallelTeam().execute (new ParallelRegion()

 {

 public void run()

 {

 long thrCount = 0;

 for (int i = 0; i < 1000000; ++ i)

 {

 if (...) ++ thrCount;

 }

 count.addAndGet (thrCount);

 }

 });

 System.out.println (count);

In Parallel Java, the shared reduction variable and the per-thread variables must be declared separately,
the shared variable must be multiple thread safe, and the reduction operation must be coded explicitly.

Reduction operators. OpenMP supports only certain reduction operators (+ * - & | ^ && || in
C and C++) and supports reduction only on primitive types. C++ overloaded operators are not supported.

Parallel Java provides several predefined reduction operators as well as supporting arbitrary user-
defined reduction operators; just define an appropriate subclass of class edu.rit.pj.reduction.Op. Parallel
Java supports reduction on primitive types, on arrays of primitive types, on arbitrary object types, and on
arrays of object types.

C6910_AppA.indd 808C6910_AppA.indd 808 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

 A.3 OpenMP Performance 809

A.3 OpenMP Performance
Some folks think that Java is not a suitable language for high-performance computing (HPC) because
Java programs are too slow in comparison to the established HPC languages, Fortran, C, and, to some
extent, C++. This was true last century, when Java was mainly an interpreted language. But modern
JVMs use sophisticated just-in-time (JIT) compilers to convert Java bytecode to highly optimized
machine code, which is then executed. Consequently, Java programs today can run as fast as or even
faster than, say, C programs.

To get a sense of how a parallel C program’s performance compares with a parallel Java program’s
performance, sequential and parallel versions of Floyd’s Algorithm were implemented in C with OpenMP
and in Java with Parallel Java. To make the comparison fair to Java, the C program included statements
to do array index bounds checking, which Java does automatically, but C does not. To make the compari-
son fair to C, the C program was compiled with the highest level of optimization, which the JVM’s JIT
compiler does automatically.

The C and Java programs were compiled and run on the “parasite” machine, a Sun Microsystems
eight-processor SMP parallel computer with four UltraSPARC-IV dual-core CPU chips, a 1.35 GHz
CPU clock speed, and 16 GB of main memory. The C programs were compiled with the Sun C compiler
at optimization level 5 (the highest possible). The Java programs were run with the Sun JDK 1.5.0_15
HotSpot Server Virtual Machine. Table A.1 (at the end of the appendix) lists, and Figure A.1 plots, the C
program’s and the Java program’s performance. The running times are for the calculation portion only.

C6910_AppA.indd 809C6910_AppA.indd 809 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

810 APPENDIX A OpenMP

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 1G

N = 2G

N = 4G

N = 8G

N = 16G

N = 32G

Running Time vs. Processors, C/OpenMP

Processors, K

T
 (

N
,K

)
(s

ec
)

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 1G

N = 2G

N = 4G

N = 8G

N = 16G

N = 32G

Running Time vs. Processors, Java/PJ

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

1 0

1 2

1 4

1 6

N = 1G

N = 2GN = 4GN = 8G
N = 16G

N = 32G

Speedup vs. Processors, C/OpenMP

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

1 0

1 2

1 4

1 6

N = 1G

N = 2G
N = 4G

N = 8G
N = 16G

N = 32G

Speedup vs. Processors, Java/PJ

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N = 1G

N = 2GN = 4GN = 8GN = 16G

N = 32G

Efficiency vs. Processors, C/OpenMP

Processors, K

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N = 1G

N = 2G
N = 4G

N = 8G
N = 16G

N = 32G

Efficiency vs. Processors, Java/PJ

Processors, K

E
ff

(N
,K

)

Figure A.1 Floyd’s Algorithm program running-time metrics

 C/OpenMP Java/Parallel Java

C6910_AppA.indd 810C6910_AppA.indd 810 2/2/09 11:33:19 AM2/2/09 11:33:19 AM

 A.3 OpenMP Performance 811

The program was run on distance matrices with the numbers of vertices n and problem sizes N = n3
as follows:

n N

1,000 1,000,000,000 (1G)

1,260 2,000,376,000 (2G)

1,590 4,019,679,000 (4G)

2,000 8,000,000,000 (8G)

2,520 16,003,008,000 (16G)

3,180 32,157,432,000 (32G)

The Java program’s running times range from 2 percent below to 15 percent above the C program’s run-
ning times. Both the C and the Java versions experience efficiencies around 2 due to cache effects, as
explained in Chapter 16.

As a further comparison between C and Java, sequential and SMP parallel versions of the Monte
Carlo program for estimating π (see Chapter 14) were implemented in C with OpenMP and in Java with
Parallel Java. Where the Floyd’s Algorithm program has a lot of thread synchronization (a barrier wait
at the end of every outer loop iteration), the π estimating program has little thread synchronization (one
reduction at the end of the program). For the complete C source files, see the Parallel Java Library
documentation (Javadoc). The source files are linked from the package summary page for package
edu.rit.smp.monte.

The C and Java programs were compiled and run on the “parasite” machine with N = 1, 2, 5, 10, 20,
and 50 billion darts. Table A.2 (at the end of the appendix) lists, and Figure A.2 plots, the C program’s
and the Java program’s performance. The Java program’s running times are 40 percent smaller than the
C program’s running times.

C6910_AppA.indd 811C6910_AppA.indd 811 2/2/09 11:33:20 AM2/2/09 11:33:20 AM

812 APPENDIX A OpenMP

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 1G

N = 2G

N = 5G

N = 10G

N = 20G

N = 50G

Running Time vs. Processors, C/OpenMP

Processors, K

T
 (

N
,K

)
(s

ec
)

1 1 0
1E0

1E1

1E2

1E3

1E4

N = 1G

N = 2G

N = 5G

N = 10G

N = 20G

N = 50G

Running Time vs. Processors, Java/PJ

Processors, K

T
 (

N
,K

)
(s

ec
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8 N = 1GN = 2GN = 5GN = 10GN = 20GN = 50G

Speedup vs. Processors, C/OpenMP

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8 N = 1GN = 2GN = 5GN = 10GN = 20GN = 50G
Speedup vs. Processors, Java/PJ

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 1GN = 2GN = 5GN = 10GN = 20GN = 50G

Efficiency vs. Processors, C/OpenMP

Processors, K

E
ff

(N
,K

)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 1GN = 2GN = 5GN = 10GN = 20GN = 50G

Efficiency vs. Processors, Java/PJ

Processors, K

E
ff

(N
,K

)

Figure A.2 π estimating program running-time metrics

 C/OpenMP Java/Parallel Java

C6910_AppA.indd 812C6910_AppA.indd 812 2/2/09 11:33:20 AM2/2/09 11:33:20 AM

 A.4 For Further Information 813

A.4 For Further Information
On the official OpenMP standard:

OpenMP.org Web Site. http://openmp.org/wp/•

OpenMP Architecture Review Board. • OpenMP Application Program
Interface, Version 3.0. May 2008.
http://www.openmp.org/mp-documents/spec30.pdf

Textbooks on parallel programming with OpenMP:

B. Chapman, G. Yost, and R. van der Pas. • Using OpenMP: Portable Shared
Memory Parallel Programming. MIT Press, 2008.

M. Quinn. • Parallel Programming in C with MPI and OpenMP.
McGraw-Hill, 2004.

R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. •
Parallel Programming in OpenMP. Academic Press, 2001.

T

Table A.1 Floyd’s Algorithm program running-time metrics

 C/OpenMP Java/Parallel Java

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

1G seq 20349 1G seq 27191

1G 1 21238 0.958 0.958 1G 1 22726 1.196 1.196

1G 2 10718 1.899 0.949 0.009 1G 2 10847 2.507 1.253 -0.045

1G 3 7218 2.819 0.940 0.010 1G 3 8032 3.385 1.128 0.030

1G 4 5446 3.737 0.934 0.009 1G 4 5627 4.832 1.208 -0.003

1G 5 4500 4.522 0.904 0.015 1G 5 4736 5.741 1.148 0.010

1G 6 3794 5.363 0.894 0.014 1G 6 4280 6.353 1.059 0.026

1G 7 3282 6.200 0.886 0.014 1G 7 3618 7.515 1.074 0.019

1G 8 2907 7.000 0.875 0.014 1G 8 3246 8.377 1.047 0.020

2G seq 82572 2G seq 96580

2G 1 83007 0.995 0.995 2G 1 87071 1.109 1.109

2G 2 21563 3.829 1.915 -0.480 2G 2 24056 4.015 2.007 -0.447

2G 3 14430 5.722 1.907 -0.239 2G 3 15991 6.040 2.013 -0.225

2G 4 10879 7.590 1.898 -0.159 2G 4 11152 8.660 2.165 -0.163

2G 5 9008 9.167 1.833 -0.114 2G 5 9318 10.365 2.073 -0.116

2G 6 7557 10.927 1.821 -0.091 2G 6 7873 12.267 2.045 -0.091

2G 7 6520 12.664 1.809 -0.075 2G 7 7133 13.540 1.934 -0.071

2G 8 5808 14.217 1.777 -0.063 2G 8 6552 14.741 1.843 -0.057

C6910_AppA.indd 813C6910_AppA.indd 813 2/2/09 11:33:20 AM2/2/09 11:33:20 AM

http://openmp.org/wp/�
http://openmp.org/wp/�
http://www.openmp.org/mp-documents/spec30.pdf

814 APPENDIX A OpenMP

Table A.1 Floyd’s Algorithm program running-time metrics (cont.)

 C/OpenMP Java/Parallel Java

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

4G seq 168073 4G seq 188427

4G 1 169451 0.992 0.992 4G 1 175013 1.077 1.077

4G 2 69721 2.411 1.205 -0.177 4G 2 74020 2.546 1.273 -0.154

4G 3 29371 5.722 1.907 -0.240 4G 3 30180 6.243 2.081 -0.241

4G 4 22086 7.610 1.902 -0.160 4G 4 24405 7.721 1.930 -0.147

4G 5 18147 9.262 1.852 -0.116 4G 5 18411 10.234 2.047 -0.119

4G 6 15248 11.023 1.837 -0.092 4G 6 15753 11.961 1.994 -0.092

4G 7 13129 12.802 1.829 -0.076 4G 7 15115 12.466 1.781 -0.066

4G 8 11676 14.395 1.799 -0.064 4G 8 13185 14.291 1.786 -0.057

8G seq 337396 8G seq 378557

8G 1 339047 0.995 0.995 8G 1 351896 1.076 1.076

8G 2 191853 1.759 0.879 0.132 8G 2 195594 1.935 0.968 0.112

8G 3 103852 3.249 1.083 -0.041 8G 3 111168 3.405 1.135 -0.026

8G 4 44878 7.518 1.880 -0.157 8G 4 45701 8.283 2.071 -0.160

8G 5 36861 9.153 1.831 -0.114 8G 5 40903 9.255 1.851 -0.105

8G 6 30805 10.953 1.825 -0.091 8G 6 34665 10.920 1.820 -0.082

8G 7 26410 12.775 1.825 -0.076 8G 7 29432 12.862 1.837 -0.069

8G 8 23297 14.482 1.810 -0.064 8G 8 24048 15.742 1.968 -0.065

16G seq 682138 16G seq 759572

16G 1 684118 0.997 0.997 16G 1 705772 1.076 1.076

16G 2 386430 1.765 0.883 0.130 16G 2 393951 1.928 0.964 0.116

16G 3 261972 2.604 0.868 0.074 16G 3 271809 2.795 0.932 0.078

16G 4 209303 3.259 0.815 0.075 16G 4 215268 3.528 0.882 0.073

16G 5 124963 5.459 1.092 -0.022 16G 5 134310 5.655 1.131 -0.012

16G 6 67686 10.078 1.680 -0.081 16G 6 75120 10.111 1.685 -0.072

16G 7 54066 12.617 1.802 -0.074 16G 7 60768 12.500 1.786 -0.066

16G 8 48418 14.089 1.761 -0.062 16G 8 49690 15.286 1.911 -0.062

32G seq 1380749 32G seq 1542463

32G 1 1388991 0.994 0.994 32G 1 1444761 1.068 1.068

32G 2 783923 1.761 0.881 0.129 32G 2 774616 1.991 0.996 0.072

32G 3 533088 2.590 0.863 0.076 32G 3 520599 2.963 0.988 0.041

32G 4 426584 3.237 0.809 0.076 32G 4 427279 3.610 0.902 0.061

32G 5 347860 3.969 0.794 0.063 32G 5 341923 4.511 0.902 0.046

32G 6 294745 4.685 0.781 0.055 32G 6 285792 5.397 0.900 0.037

32G 7 231481 5.965 0.852 0.028 32G 7 240887 6.403 0.915 0.028

32G 8 169085 8.166 1.021 -0.004 32G 8 177570 8.687 1.086 -0.002

C6910_AppA.indd 814C6910_AppA.indd 814 2/2/09 11:33:20 AM2/2/09 11:33:20 AM

 A.4 For Further Information 815

Table A.2 π estimating program running-time metrics

 C/OpenMP Java/Parallel Java

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

1G seq 112473 1G seq 68702

1G 1 113991 0.987 0.987 1G 1 68030 1.010 1.010

1G 2 57011 1.973 0.986 0.000 1G 2 34099 2.015 1.007 0.002

1G 3 38054 2.956 0.985 0.001 1G 3 22789 3.015 1.005 0.002

1G 4 28565 3.937 0.984 0.001 1G 4 17094 4.019 1.005 0.002

1G 5 22900 4.911 0.982 0.001 1G 5 13722 5.007 1.001 0.002

1G 6 19031 5.910 0.985 0.000 1G 6 11447 6.002 1.000 0.002

1G 7 16369 6.871 0.982 0.001 1G 7 9827 6.991 0.999 0.002

1G 8 14344 7.841 0.980 0.001 1G 8 8669 7.925 0.991 0.003

2G seq 225036 2G seq 137300

2G 1 227885 0.987 0.987 2G 1 135906 1.010 1.010

2G 2 114021 1.974 0.987 0.001 2G 2 68046 2.018 1.009 0.001

2G 3 76030 2.960 0.987 0.000 2G 3 45408 3.024 1.008 0.001

2G 4 57133 3.939 0.985 0.001 2G 4 34106 4.026 1.006 0.001

2G 5 45681 4.926 0.985 0.001 2G 5 27303 5.029 1.006 0.001

2G 6 38123 5.903 0.984 0.001 2G 6 22785 6.026 1.004 0.001

2G 7 32669 6.888 0.984 0.001 2G 7 19543 7.026 1.004 0.001

2G 8 28624 7.862 0.983 0.001 2G 8 17220 7.973 0.997 0.002

5G seq 562548 5G seq 343064

5G 1 569801 0.987 0.987 5G 1 339525 1.010 1.010

5G 2 284986 1.974 0.987 0.000 5G 2 169879 2.019 1.010 0.001

5G 3 189962 2.961 0.987 0.000 5G 3 113296 3.028 1.009 0.001

5G 4 142706 3.942 0.986 0.001 5G 4 85035 4.034 1.009 0.001

5G 5 114207 4.926 0.985 0.001 5G 5 68046 5.042 1.008 0.001

5G 6 95221 5.908 0.985 0.001 5G 6 56727 6.048 1.008 0.000

5G 7 81583 6.895 0.985 0.000 5G 7 48651 7.052 1.007 0.001

5G 8 71488 7.869 0.984 0.001 5G 8 42639 8.046 1.006 0.001

10G seq 1125138 10G seq 685992

10G 1 1139809 0.987 0.987 10G 1 678884 1.010 1.010

10G 2 569906 1.974 0.987 0.000 10G 2 339580 2.020 1.010 0.000

10G 3 379930 2.961 0.987 0.000 10G 3 226441 3.029 1.010 0.000

10G 4 285463 3.941 0.985 0.001 10G 4 169925 4.037 1.009 0.000

10G 5 228383 4.927 0.985 0.000 10G 5 135964 5.045 1.009 0.000

10G 6 190315 5.912 0.985 0.000 10G 6 113319 6.054 1.009 0.000

10G 7 163217 6.894 0.985 0.000 10G 7 97132 7.062 1.009 0.000

10G 8 142959 7.870 0.984 0.000 10G 8 85158 8.056 1.007 0.001

C6910_AppA.indd 815C6910_AppA.indd 815 2/2/09 11:33:20 AM2/2/09 11:33:20 AM

816 APPENDIX A OpenMP

Table A.2 π estimating program running-time metrics (cont.)

 C/OpenMP Java/Parallel Java

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

20G seq 2250239 20G seq 1371888

20G 1 2279651 0.987 0.987 20G 1 1357531 1.011 1.011

20G 2 1139833 1.974 0.987 0.000 20G 2 678981 2.021 1.010 0.000

20G 3 759883 2.961 0.987 0.000 20G 3 452664 3.031 1.010 0.000

20G 4 570809 3.942 0.986 0.001 20G 4 339668 4.039 1.010 0.000

20G 5 456722 4.927 0.985 0.000 20G 5 271701 5.049 1.010 0.000

20G 6 380587 5.913 0.985 0.000 20G 6 226480 6.057 1.010 0.000

20G 7 326392 6.894 0.985 0.000 20G 7 194156 7.066 1.009 0.000

20G 8 286297 7.860 0.982 0.001 20G 8 170231 8.059 1.007 0.000

50G seq 5625605 50G seq 3429530

50G 1 5699208 0.987 0.987 50G 1 3393498 1.011 1.011

50G 2 2849585 1.974 0.987 0.000 50G 2 1696993 2.021 1.010 0.000

50G 3 1899721 2.961 0.987 0.000 50G 3 1131360 3.031 1.010 0.000

50G 4 1427108 3.942 0.985 0.001 50G 4 848870 4.040 1.010 0.000

50G 5 1141660 4.928 0.986 0.000 50G 5 679023 5.051 1.010 0.000

50G 6 951528 5.912 0.985 0.000 50G 6 565910 6.060 1.010 0.000

50G 7 815872 6.895 0.985 0.000 50G 7 485098 7.070 1.010 0.000

50G 8 715684 7.860 0.983 0.001 50G 8 425339 8.063 1.008 0.000

C6910_AppA.indd 816C6910_AppA.indd 816 2/2/09 11:33:20 AM2/2/09 11:33:20 AM

817

A P P E N D I X B
in which we take a quick look at cluster parallel programming with MPI; and we

compare MPI’s features and performance to Parallel Java

Message Passing Interface (MPI)

C6910_AppB.indd 817C6910_AppB.indd 817 2/2/09 11:42:03 AM2/2/09 11:42:03 AM

A P P E N D I X B Message Passing Interface (MPI)

B.1 MPI Programming
Message Passing Interface (MPI) is a standard application program interface (API) for writing parallel
programs consisting of multiple processes that communicate by sending and receiving messages. An MPI
program can run on a cluster parallel computer, with one process on each node and messages traversing the
network between nodes. An MPI program can also run on an SMP parallel computer, with one process on
each CPU and messages going between processes through shared memory in the operating system.

MPI Version 1.0, supporting the Fortran 77 and C programming languages, was released in 1994.
MPI Version 1.1 was released a year later. The next major version, MPI Version 2.0, supporting Fortran
77, Fortran 90, C, and C++, was released in 1997. At the time of this writing, MPI Version 2.0 is the
official standard. Work on another revision is underway; a draft of MPI Version 2.1 was released in
June 2008. MPI does not support Java. The official MPI standards are available on the Message Passing
Interface Forum Web site. Numerous free implementations and commercial implementations of the MPI
standard are available.

Unlike OpenMP which uses pragmas and a special compiler, MPI is just a subroutine library—a
large subroutine library. To write an MPI program, you write a normal Fortran, C, or C++ program and
include calls to the MPI subroutines to send and receive messages. Then, you run your program through
the regular Fortran, C, or C++ compiler. When the compiled program is executed on a parallel computer,
typically via a special MPI launcher application, the program runs in multiple processes on the nodes of
the parallel computer, resulting in a speedup (one hopes).

As a simple example, here are a few key portions of class FloydClu, a cluster parallel program for
Floyd’s all-shortest-paths algorithm in Java with Parallel Java (see Chapter 25 for the complete program).

 static Comm world; // World communicator

 static int size;

 static int rank;

 static int n; // Number of nodes

 static double[][] d; // Distance matrix

 static double[] row_i; // Row broadcast from another process

 static DoubleBuf row_i_buf;

 Comm.init (args);

 world = Comm.world();

C6910_AppB.indd 818C6910_AppB.indd 818 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

 B.1 MPI Programming 819

And here are the equivalent portions of a cluster parallel program written in C with MPI.

 size = world.size();

 rank = world.rank();

 for (int i = 0; i < n; ++ i)

 {

 double[] d_i = d[i];

 if (rank == i_root)

 {

 world.broadcast (i_root, DoubleBuf.buffer (d_i));

 }

 else

 {

 world.broadcast (i_root, row_i_buf);

 d_i = row_i;

 }

 for (int r = mylb; r <= myub; ++ r)

 {

 double[] d_r = d[r];

 for (int c = 0; c < n; ++ c)

 {

 d_r[c] = Math.min (d_r[c], d_r[i] + d_i[c]);

 }

 }

 }

 static MPI_Comm world; // World communicator

 static int size;

 static int rank;

 static int n; // Number of nodes

 static double **d; // Distance matrix

 static double *row_i; // Row broadcast from another process

 MPI_Init (&argc, &argv);

 world = MPI_COMM_WORLD;

 MPI_Comm_size (world, &size);

 MPI_Comm_rank (world, &rank);

 for (int i = 0; i < n; ++ i)

 {

 double *d_i = d[i];

 if (rank == i_root)

C6910_AppB.indd 819C6910_AppB.indd 819 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

820 APPENDIX B Message Passing Interface (MPI)

For the complete C source files, see the Parallel Java Library documentation (Javadoc). The source files
are linked from the package summary page for package edu.rit.clu.network.

The variable world of type MPI_Comm is the world communicator, which encompasses all the pro-
cesses in the program. The program calls the MPI subroutines MPI_Init() to initialize the world com-
municator, MPI_Size() to find the number of processes in the program K, and MPI_Rank() to find the
current process’s rank in the range 0 through K–1. The MPI_Bcast() subroutine broadcasts a message
to all processes. The arguments of MPI_Bcast() are as follows:

The address of the first data item to include in the message, either • d_i (the
i-th row of the distance matrix) if this process is sending, or row_i (an extra
row’s worth of storage) if this process is receiving.

The number of data items to include in the message, • n.

The type of the data items, type • double (designated by the constant
MPI_DOUBLE).

The rank of the root process for the broadcast (the source process that has the •
data items to be sent), i_root.

The communicator in which to perform the broadcast, the world •
communicator.

As its last act, the program must call the MPI_Finalize() subroutine; otherwise, a run-time error will occur.

 {

 MPI_Bcast (d_i, n, MPI_DOUBLE, i_root, world);

 }

 else

 {

 MPI_Bcast (row_i, n, MPI_DOUBLE, i_root, world);

 d_i = row_i;

 }

 for (int r = mylb; r <= myub; ++ r)

 {

 double[] d_r = d[r];

 for (int c = 0; c < n; ++ c)

 {

 d_r[c] = Math.min (d_r[c], d_r[i] + d_i[c]);

 }

 }

 }

 MPI_Finalize();

C6910_AppB.indd 820C6910_AppB.indd 820 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

 B.2 MPI Features 821

B.2 MPI Features
Parallel Java’s communicator object, class edu.rit.pj.Comm, and its message passing methods are inspired
by MPI. Indeed, every Parallel Java message passing operation is found in MPI, including the following:

Point-to-point communication operations: send; receive; receive from a wild-•
card source; send-receive; message tags; and nonblocking versions of send,
receive, and send-receive.

Collective communication operations: broadcast, scatter, gather, all-gather, •
reduce, all-reduce, all-to-all, scan, exclusive scan, and barrier.

Reduction with predefined reduction operators and user-defined reduction •
operators.

The ability to create a new communicator encompassing a subset of the pro-•
cesses in an existing communicator.

MPI has many other message passing subroutines—too many to include here. For further information,
refer to the MPI standard and the Parallel Java documentation.

Although Parallel Java’s message passing functionality is the same as MPI’s, Parallel Java’s API design
differs from MPI’s. Parallel Java’s API is organized around two aspects: message passing operations; and
data sources and destinations. Message passing operations are expressed as methods of class Comm. Data
sources and destinations are expressed as buffer objects, instances of subclasses of class edu.rit.mp.Buf. The
two aspects are orthogonal; any buffer object can be used in any message passing operation.

Keeping these two aspects separate simplifies the API. For example, in Parallel Java, there is one
scatter method with three arguments.

 scatter (int root, Buf[] srcarray, Buf dst);

 MPI_Scatter

 (void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int root, MPI_Comm comm);

 MPI_Scatterv

 (void *sendbuf, int *sendcounts, int *displs,

 MPI_Datatype sendtype, void *recvbuf, int recvcount,

 MPI_Datatype recvtype, int root, MPI_Comm comm);

But in MPI, there are two scatter subroutines.

With MPI, you, the programmer, have to call the correct subroutine—the first if the source process is sending
the same number of items to every destination process, the second if the source process is sending a differ-
ent number of items to every destination process. You also have to supply the details about the data items’
addresses, counts, types, and so on as subroutine arguments. Parallel Java’s buffer objects take care of all
this automatically.

C6910_AppB.indd 821C6910_AppB.indd 821 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

822 APPENDIX B Message Passing Interface (MPI)

Also, due to the separate buffer objects, Parallel Java’s message passing operations are more flexible
than MPI’s. In MPI, all data for a message must come from or go into a single block of storage (desig-
nated by a single address, such as the sendbuf and recvbuf arguments in the MPI scatter subroutines).
Parallel Java has no such limitation; different parts of a message can come from or go into different
blocks of storage as implemented by the buffer object. In fact, this is crucial for sending and receiving
matrices, which Java allocates in multiple storage blocks. In MPI it is possible to send and receive data of
a nonprimitive type, such as a C struct; however, some intricate coding is required to make it happen. In
Parallel Java, it is as easy to send a nonprimitive type (an object) as it is to send a primitive type like an
int, simply by creating an ObjectBuf instead of an IntegerBuf.

Here are a few additional features of MPI. This is by no means a complete list; refer to the MPI
standard for further information.

Process topologies. In some parallel programs, every process communicates with every other
process, such as the program for Floyd’s Algorithm in Chapter 25. In other parallel programs, this is not
the case; each process communicates only with certain other processes. For example, in the pipelined
antiproton motion program in Chapter 28, each process communicates only with its predecessor and its
successor. The “process topology” is the pattern in which the processes communicate.

MPI has subroutines to declare the program’s process topology. The MPI middleware can then use
this information when deciding the backend node on which each process should execute. If processes are
assigned to backend nodes such that the process topology matches the backend interconnection network
topology, the program may experience better performance. Specifying the process topology probably
won’t make much difference for a program running on a cluster with a backend network consisting of a
commodity Ethernet switch. However, it may make a difference for other backend network technologies,
such as those that use mesh, torus, or hypercube networks.

Parallel Java at present does not support specifying process topologies.

Multithreading support. In MPI Version 1.1, the standard said nothing about supporting multithreaded
programs. Thus, an MPI implementation could be designed with the assumption that the calling program was
single-threaded—that is, without worrying about multiple-thread safety. Executing a multithreaded program
with such an MPI implementation usually resulted in disaster. Although an MPI implementation could support
multithreading, the standard did not say an implementation had to support multithreading.

MPI Version 2.0 added optional support for multithreaded programs. A multithreaded program must
call MPI_Init_thread() instead of MPI_Init(). As an argument to MPI_Init_thread(), the pro-
gram must specify the program’s threading behavior, which can be one of the following:

The program is single-threaded.•

The program is multithreaded, but only the “main” thread (the thread that •
called MPI_Init_thread()) will call MPI subroutines.

The program is multithreaded, and multiple threads may call MPI subroutines, •
but only one thread at a time will ever call an MPI subroutine.

The program is multithreaded, and multiple threads may call MPI subroutines •
concurrently.

C6910_AppB.indd 822C6910_AppB.indd 822 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

 B.2 MPI Features 823

However, an MPI implementation is still not required to support all these options. Thus, an attempt to ini-
tialize MPI with a certain level of thread support may fail. This means that a multithreaded MPI program
is not guaranteed to run everywhere.

Parallel Java supports multithreaded message passing parallel programs with no restrictions.

One-sided communication. In MPI Version 2.0, each process can set up a “window” referring to a
data item or group of data items by calling the MPI_Win_create() subroutine. Creating a window is a
collective communication operation; every process in the program calls MPI_Win_create(), and every
process becomes aware of every other process’s window. Multiple separate windows can be created. Once a
window is established, the following operations can be performed:

One process A can call • MPI_Put() to transfer data from itself into another
process B’s window. This is like a point-to-point message, except that instead
of A doing a send and B doing a receive, A just does a put; B does not have to
call anything.

A can call • MPI_Get() to transfer data into itself from B’s window. This is
like a point-to-point message, except that instead of A doing a receive and B
doing a send, A just does a get; B does not have to call anything.

A can call • MPI_Accumulate() to combine its own data with data from B’s
window using a reduction operator, storing the result back into B’s window.
Again, B does not have to call anything.

Because only one of the two processes involved needs to call a subroutine to transfer the data, this capa-
bility is dubbed “one-sided” communication.

Parallel Java at present does not have such a capability.

Parallel I/O. MPI Version 2.0 includes platform-independent subroutines for file I/O, allowing MPI
programs that access files to run unchanged on any operating system. An MPI program can also define
“views” of a file, where the data items in the file are partitioned among the processes in a specified
manner (Figure B.1) and each process sees just the data items in its own view. This supports the parallel
input files and parallel output files patterns where each process reads or writes its own portion of a file
in parallel with the other processes, rather than doing all file I/O in a single process (which can reduce
performance). MPI implementations can also take advantage of special high-performance parallel file
system hardware, if available.

C6910_AppB.indd 823C6910_AppB.indd 823 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

824 APPENDIX B Message Passing Interface (MPI)

Block views

Striped views, 1 item per stripe

Striped views, 3 items per stripe

Pr 0 Pr 1 Pr 2 Pr 3View of:

Figure B.1 Parallel I/O file views in MPI Version 2.0

Parallel Java at present does not have a full-blown parallel file capability like MPI’s. Some support
for the parallel input files and parallel output files patterns is provided in the image classes in package
edu.rit.image and the file classes in package edu.rit.io.

B.3 MPI Performance
To get a sense of how a cluster parallel C program’s performance compares with a cluster parallel Java program’s
performance, sequential and parallel versions of Floyd’s Algorithm were implemented in C with MPI and in Java
with Parallel Java. To make the comparison fair to Java, the C program included statements to do array index
bounds checking, which Java does automatically, but C does not. To make the comparison fair to C, the C pro-
gram was compiled with the highest level of optimization, which the JVM’s JIT compiler does automatically.

The C and Java programs were compiled and run on the “paranoia” machine. This is an older and
slower machine than the “tardis” machine that was used for cluster parallel program running-time mea-
surements in the rest of this book. Each of the “paranoia” computer’s 32 backend nodes has a 650-MHz
Sun Microsystems UltraSPARC-IIe CPU chip and 1 GB of main memory. The backend machines are
connected by a 100-Mbps switched Ethernet.

The C programs were compiled with the Sun C compiler at optimization level 5 (the highest possi-
ble) and used Sun’s MPI library. The Java programs were run with the Sun JDK 1.5.0_15 HotSpot Server
Virtual Machine. Table B.1 (at the end of the appendix) lists, and Figure B.2 plots, the C program’s and
the Java program’s performance. The running times are for the calculation portion only. The program was
run on distance matrices with the following numbers of vertices n and problem sizes N = n3:

n N

1,000 1,000,000,000 (1G)
1,260 2,000,376,000 (2G)
1,590 4,019,679,000 (4G)
2,000 8,000,000,000 (8G)
2,520 16,003,008,000 (16G)
3,180 32,157,432,000 (32G)

C6910_AppB.indd 824C6910_AppB.indd 824 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

 B.3 MPI Performance 825

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 1G
N = 2G

N = 4G

N = 8G

N = 16G

N = 32G

Running Time vs. Processors, C/MPI

Processors, K

T
 (

N
,K

)
(s

ec
)

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 1G
N = 2G
N = 4G
N = 8G

N = 16G

N = 32G

Running Time vs. Processors, Java/PJ

Processors, K

T
 (

N
,K

)
(s

ec
)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0

4

8

1 2

1 6

2 0

2 4

2 8

3 2

N =

N =

N =
N =
N =

N =

Speedup vs. Processors, C/MPI

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0

4

8

1 2

1 6

2 0

2 4

2 8

3 2

N = 1G

N = 2G

N = 4G

N = 8G

N = 16G
N = 32G

Speedup vs. Processors, Java/PJ

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N = 1G

N = 2G

N = 4G
N = 8G
N = 16G

N = 32G

Efficiency vs. Processors, C/MPI

Processors, K

E
ff

(N
,K

)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N = 1G

N = 2G

N = 4G

N = 8G
N = 16G
N = 32G

Efficiency vs. Processors, Java/PJ

Processors, K

E
ff

(N
,K

)

Figure B.2 Floyd’s Algorithm program running-time metrics

 C/MPI Java/Parallel Java

C6910_AppB.indd 825C6910_AppB.indd 825 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

826 APPENDIX B Message Passing Interface (MPI)

The Java program’s running times on one processor are about 50 percent higher than the C program’s
running times. Also, the Java program’s speedups and efficiencies are not as high as the C program’s.
This is likely due to a more efficient, platform-specific implementation of message passing in Sun’s MPI
library. The Parallel Java Library’s platform-independent implementation results in additional overhead
when sending and receiving messages.

As a further comparison between C and Java, sequential and cluster parallel versions of the Monte
Carlo program for estimating π (see Chapter 26) were implemented in C with MPI and in Java with
Parallel Java. Where the Floyd’s Algorithm program has a lot of communication (a broadcast at the top of
every outer loop iteration), the π estimating program has little communication (one reduction at the end
of the program). For the complete C source files, see the Parallel Java Library documentation (Javadoc).
The source files are linked from the package summary page for package edu.rit.clu.monte.

The C and Java programs were compiled and run on the “paranoia” machine with N = 200 million,
500 million, 1 billion, 2 billion, 5 billion, and 10 billion darts. Table B.2 (at the end of the appendix) lists,
and Figure B.3 plots, the C program’s and the Java program’s performance. The Java program’s running
times are 30 percent smaller than the C program’s running times.

C6910_AppB.indd 826C6910_AppB.indd 826 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

 B.3 MPI Performance 827

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 200M

N = 500M

N = 1G

N = 2G

N = 5G

N = 10G

Running Time vs. Processors, C/MPI

Processors, K

T
 (

N
,K

)
(s

ec
)

1 1 0 100
1E0

1E1

1E2

1E3

1E4

N = 200M

N = 500M

N = 1G

N = 2G

N = 5G

N = 10G

Running Time vs. Processors, Java/PJ

Processors, K

T
 (

N
,K

)
(s

ec
)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0

4

8

1 2

1 6

2 0

2 4

2 8

3 2

N = 200M

N = 500M

N = 1G
N = 2G
N = 5GN = 10G

Speedup vs. Processors, C/MPI

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0

4

8

1 2

1 6

2 0

2 4

2 8

3 2

N = 200M

N = 500M

N = 1G
N = 2G
N = 5GN = 10G

Speedup vs. Processors, Java/PJ

Processors, K

S
p

e
e

d
u

p
(N

,K
)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 200M

N = 500M

N = 1G
N = 2G
N = 5GN = 10G

Efficiency vs. Processors, C/MPI

Processors, K

E
ff

(N
,K

)

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N = 200M

N = 500M
N = 1G
N = 2GN = 5GN = 10G

Efficiency vs. Processors, Java/PJ

Processors, K

E
ff

(N
,K

)

Figure B.3 π estimating program running-time metrics

 C/MPI Java/Parallel Java

C6910_AppB.indd 827C6910_AppB.indd 827 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

828 APPENDIX B Message Passing Interface (MPI)

B.4 For Further Information
On the official MPI standard:

Message Passing Interface Forum Web site.•
http://www.mpi-forum.org/

Message Passing Interface Forum. • MPI: A Message-Passing Interface
Standard. June 12, 1995. (MPI Version 1.1)
http://www.mpi-forum.org/docs/mpi-11.ps

Message Passing Interface Forum. • MPI-2: Extensions to the Message-Passing
Interface. July 18, 1997. (MPI Version 2.0)
http://www.mpi-forum.org/docs/mpi-20.ps

Textbooks on parallel programming with MPI:

B. Wilkinson and M. Allen. • Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers, Second
Edition. Prentice-Hall, 2005.

M. Quinn. • Parallel Programming in C with MPI and OpenMP. McGraw-Hill, 2004.

G. Karniadakis and R. Kirby II. • Parallel Scientific Computing in C++ and
MPI: A Seamless Approach to Parallel Algorithms and Their Implementation.
Cambridge University Press, 2003.

W. Gropp, E. Lusk, and A. Skjellum. • Using MPI: Portable Parallel Programming
with the Message Passing Interface, Second Edition. MIT Press, 1999.

P. Pacheco. • A User’s Guide to MPI. March 30, 1998.
ftp://math.usfca.edu/pub/MPI/mpi.guide.ps.Z

P. Pacheco. • Parallel Programming with MPI. Morgan Kaufmann, 1997.

C6910_AppB.indd 828C6910_AppB.indd 828 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

http://www.mpi-forum.org/Message
http://www.mpi-forum.org/Message
http://www.mpi-forum.org/docs/mpi-11.ps
http://www.mpi-forum.org/docs/mpi-20.ps

 B.4 For Further Information 829

Table B.1 Floyd’s Algorithm program running-time metrics

C/MPI Java/Parallel Java

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

1G seq 58639 1G seq 80661

1G 1 54685 1.072 1.072 1G 1 80745 0.999 0.999

1G 2 28056 2.090 1.045 0.026 1G 2 42560 1.895 0.948 0.054

1G 3 19054 3.078 1.026 0.023 1G 3 30574 2.638 0.879 0.068

1G 4 14789 3.965 0.991 0.027 1G 4 26208 3.078 0.769 0.099

1G 5 11921 4.919 0.984 0.022 1G 5 20272 3.979 0.796 0.064

1G 6 10050 5.835 0.972 0.021 1G 6 18494 4.361 0.727 0.075

1G 8 7852 7.468 0.934 0.021 1G 8 14586 5.530 0.691 0.064

1G 10 6250 9.382 0.938 0.016 1G 10 13457 5.994 0.599 0.074

1G 12 5189 11.301 0.942 0.013 1G 12 12074 6.681 0.557 0.072

1G 16 3916 14.974 0.936 0.010 1G 16 10251 7.869 0.492 0.069

1G 20 3556 16.490 0.825 0.016 1G 20 10173 7.929 0.396 0.080

1G 32 3552 16.509 0.516 0.035 1G 32 9111 8.853 0.277 0.084

2G seq 120397 2G seq 164884

2G 1 111047 1.084 1.084 2G 1 165191 0.998 0.998

2G 2 56695 2.124 1.062 0.021 2G 2 85423 1.930 0.965 0.034

2G 3 38223 3.150 1.050 0.016 2G 3 59377 2.777 0.926 0.039

2G 4 29444 4.089 1.022 0.020 2G 4 45682 3.609 0.902 0.035

2G 5 23849 5.048 1.010 0.018 2G 5 38866 4.242 0.848 0.044

2G 6 20113 5.986 0.998 0.017 2G 6 39700 4.153 0.692 0.088

2G 8 15770 7.635 0.954 0.019 2G 8 26902 6.129 0.766 0.043

2G 10 12801 9.405 0.941 0.017 2G 10 24011 6.867 0.687 0.050

2G 12 10789 11.159 0.930 0.015 2G 12 21110 7.811 0.651 0.048

2G 16 8459 14.233 0.890 0.015 2G 16 17653 9.340 0.584 0.047

2G 20 6864 17.540 0.877 0.012 2G 20 16977 9.712 0.486 0.056

2G 32 5564 21.639 0.676 0.019 2G 32 13676 12.056 0.377 0.053

4G seq 249909 4G seq 336484

4G 1 227871 1.097 1.097 4G 1 335668 1.002 1.002

4G 2 118641 2.106 1.053 0.041 4G 2 173215 1.943 0.971 0.032

4G 3 79704 3.135 1.045 0.025 4G 3 118248 2.846 0.949 0.028

4G 4 60875 4.105 1.026 0.023 4G 4 91237 3.688 0.922 0.029

4G 5 49126 5.087 1.017 0.019 4G 5 74844 4.496 0.899 0.029

4G 6 41344 6.045 1.007 0.018 4G 6 64617 5.207 0.868 0.031

4G 8 32152 7.773 0.972 0.018 4G 8 51247 6.566 0.821 0.032

4G 10 26226 9.529 0.953 0.017 4G 10 44875 7.498 0.750 0.037

4G 12 22217 11.249 0.937 0.015 4G 12 39419 8.536 0.711 0.037

4G 16 17632 14.174 0.886 0.016 4G 16 31913 10.544 0.659 0.035

4G 20 14547 17.179 0.859 0.015 4G 20 29764 11.305 0.565 0.041

4G 32 9783 25.545 0.798 0.012 4G 32 23382 14.391 0.450 0.040

C6910_AppB.indd 829C6910_AppB.indd 829 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

830 APPENDIX B Message Passing Interface (MPI)

Table B.1 Floyd’s Algorithm program running-time metrics (cont.)

C/MPI Java/Parallel Java

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

8G seq 519582 8G seq 690626

8G 1 466349 1.114 1.114 8G 1 700838 0.985 0.985

8G 2 235456 2.207 1.103 0.010 8G 2 351825 1.963 0.981 0.004

8G 3 158512 3.278 1.093 0.010 8G 3 236787 2.917 0.972 0.007

8G 4 120645 4.307 1.077 0.012 8G 4 180722 3.821 0.955 0.010

8G 5 97198 5.346 1.069 0.011 8G 5 149818 4.610 0.922 0.017

8G 6 81126 6.405 1.067 0.009 8G 6 126998 5.438 0.906 0.017

8G 8 62583 8.302 1.038 0.011 8G 8 98606 7.004 0.875 0.018

8G 10 50903 10.207 1.021 0.010 8G 10 84401 8.183 0.818 0.023

8G 12 43133 12.046 1.004 0.010 8G 12 72171 9.569 0.797 0.021

8G 16 34005 15.280 0.955 0.011 8G 16 57995 11.908 0.744 0.022

8G 20 28270 18.379 0.919 0.011 8G 20 52780 13.085 0.654 0.027

8G 32 19381 26.809 0.838 0.011 8G 32 39336 17.557 0.549 0.026

16G seq 1045915 16G seq 1404550

16G 1 937904 1.115 1.115 16G 1 1398564 1.004 1.004

16G 2 471136 2.220 1.110 0.005 16G 2 705170 1.992 0.996 0.008

16G 3 316234 3.307 1.102 0.006 16G 3 474557 2.960 0.987 0.009

16G 4 239252 4.372 1.093 0.007 16G 4 354286 3.964 0.991 0.004

16G 5 192635 5.430 1.086 0.007 16G 5 289351 4.854 0.971 0.009

16G 6 161416 6.480 1.080 0.007 16G 6 245271 5.727 0.954 0.010

16G 8 123541 8.466 1.058 0.008 16G 8 191650 7.329 0.916 0.014

16G 10 100324 10.425 1.043 0.008 16G 10 158653 8.853 0.885 0.015

16G 12 84700 12.348 1.029 0.008 16G 12 161202 8.713 0.726 0.035

16G 16 66128 15.817 0.989 0.009 16G 16 107968 13.009 0.813 0.016

16G 20 54858 19.066 0.953 0.009 16G 20 95143 14.763 0.738 0.019

16G 32 37692 27.749 0.867 0.009 16G 32 71054 19.767 0.618 0.020

32G seq 2106085 32G seq 2761066

32G 1 1891309 1.114 1.114 32G 1 2840370 0.972 0.972

32G 2 951322 2.214 1.107 0.006 32G 2 1391888 1.984 0.992 -0.020

32G 3 641446 3.283 1.094 0.009 32G 3 954381 2.893 0.964 0.004

32G 4 483654 4.355 1.089 0.008 32G 4 722122 3.824 0.956 0.006

32G 5 389189 5.411 1.082 0.007 32G 5 585715 4.714 0.943 0.008

32G 6 326248 6.455 1.076 0.007 32G 6 491069 5.623 0.937 0.007

32G 8 247466 8.511 1.064 0.007 32G 8 373809 7.386 0.923 0.008

32G 10 200135 10.523 1.052 0.006 32G 10 310758 8.885 0.888 0.010

32G 12 168425 12.505 1.042 0.006 32G 12 265366 10.405 0.867 0.011

32G 16 128527 16.386 1.024 0.006 32G 16 206515 13.370 0.836 0.011

32G 20 104935 20.070 1.004 0.006 32G 20 179458 15.386 0.769 0.014

32G 32 69109 30.475 0.952 0.005 32G 32 127957 21.578 0.674 0.014

C6910_AppB.indd 830C6910_AppB.indd 830 2/2/09 11:42:04 AM2/2/09 11:42:04 AM

 B.4 For Further Information 831

Table B.2 π estimating program running-time metrics

C/MPI Java/Parallel Java

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

200M seq 78510 200M seq 52221

200M 1 77330 1.015 1.015 200M 1 53654 0.973 0.973

200M 2 39171 2.004 1.002 0.013 200M 2 27061 1.930 0.965 0.009

200M 3 25953 3.025 1.008 0.003 200M 3 18150 2.877 0.959 0.007

200M 4 19773 3.971 0.993 0.008 200M 4 13723 3.805 0.951 0.008

200M 5 15937 4.926 0.985 0.008 200M 5 11071 4.717 0.943 0.008

200M 6 13415 5.852 0.975 0.008 200M 6 9333 5.595 0.933 0.009

200M 8 10413 7.540 0.942 0.011 200M 8 7092 7.363 0.920 0.008

200M 10 8313 9.444 0.944 0.008 200M 10 5916 8.827 0.883 0.011

200M 12 7021 11.182 0.932 0.008 200M 12 5020 10.403 0.867 0.011

200M 16 5439 14.435 0.902 0.008 200M 16 3983 13.111 0.819 0.013

200M 20 4721 16.630 0.831 0.012 200M 20 3464 15.075 0.754 0.015

200M 32 3568 22.004 0.688 0.015 200M 32 2446 21.350 0.667 0.015

500M seq 195540 500M seq 130056

500M 1 192530 1.016 1.016 500M 1 133678 0.973 0.973

500M 2 96644 2.023 1.012 0.004 500M 2 67066 1.939 0.970 0.003

500M 3 64614 3.026 1.009 0.003 500M 3 44818 2.902 0.967 0.003

500M 4 48631 4.021 1.005 0.003 500M 4 33743 3.854 0.964 0.003

500M 5 39002 5.014 1.003 0.003 500M 5 27038 4.810 0.962 0.003

500M 6 32642 5.990 0.998 0.003 500M 6 22641 5.744 0.957 0.003

500M 8 24607 7.947 0.993 0.003 500M 8 17098 7.607 0.951 0.003

500M 10 20028 9.763 0.976 0.004 500M 10 13771 9.444 0.944 0.003

500M 12 16630 11.758 0.980 0.003 500M 12 11742 11.076 0.923 0.005

500M 16 12849 15.218 0.951 0.005 500M 16 8973 14.494 0.906 0.005

500M 20 10306 18.973 0.949 0.004 500M 20 7408 17.556 0.878 0.006

500M 32 7206 27.136 0.848 0.006 500M 32 4957 26.237 0.820 0.006

1G seq 390885 1G seq 259812

1G 1 384801 1.016 1.016 1G 1 267048 0.973 0.973

1G 2 192801 2.027 1.014 0.002 1G 2 133726 1.943 0.971 0.002

1G 3 128727 3.037 1.012 0.002 1G 3 89288 2.910 0.970 0.002

1G 4 96671 4.043 1.011 0.002 1G 4 67079 3.873 0.968 0.002

1G 5 77494 5.044 1.009 0.002 1G 5 53768 4.832 0.966 0.002

1G 6 64701 6.041 1.007 0.002 1G 6 44878 5.789 0.965 0.002

1G 8 48855 8.001 1.000 0.002 1G 8 33800 7.687 0.961 0.002

1G 10 39096 9.998 1.000 0.002 1G 10 27276 9.525 0.953 0.002

1G 12 32648 11.973 0.998 0.002 1G 12 22873 11.359 0.947 0.003

1G 16 24638 15.865 0.992 0.002 1G 16 17377 14.951 0.934 0.003

1G 20 20082 19.464 0.973 0.002 1G 20 14028 18.521 0.926 0.003

1G 32 13133 29.764 0.930 0.003 1G 32 9207 28.219 0.882 0.003

C6910_AppB.indd 831C6910_AppB.indd 831 2/2/09 11:42:05 AM2/2/09 11:42:05 AM

832 APPENDIX B Message Passing Interface (MPI)

Table B.2 π estimating program running-time metrics (cont.)

 C/MPI Java/Parallel Java

N K T Spdup Eff EDSF N K T Spdup Eff EDSF

2G seq 781538 2G seq 519331

2G 1 769499 1.016 1.016 2G 1 533687 0.973 0.973

2G 2 385141 2.029 1.015 0.001 2G 2 267071 1.945 0.972 0.001

2G 3 256898 3.042 1.014 0.001 2G 3 178189 2.914 0.971 0.001

2G 4 192821 4.053 1.013 0.001 2G 4 133785 3.882 0.970 0.001

2G 5 154371 5.063 1.013 0.001 2G 5 107134 4.847 0.969 0.001

2G 6 128784 6.069 1.011 0.001 2G 6 89345 5.813 0.969 0.001

2G 8 96748 8.078 1.010 0.001 2G 8 67135 7.736 0.967 0.001

2G 10 77556 10.077 1.008 0.001 2G 10 53921 9.631 0.963 0.001

2G 12 64729 12.074 1.006 0.001 2G 12 45061 11.525 0.960 0.001

2G 16 48780 16.022 1.001 0.001 2G 16 34067 15.244 0.953 0.001

2G 20 39309 19.882 0.994 0.001 2G 20 27423 18.938 0.947 0.001

2G 32 25253 30.948 0.967 0.002 2G 32 17450 29.761 0.930 0.001

5G seq 1953738 5G seq 1297842

5G 1 1923311 1.016 1.016 5G 1 1333845 0.973 0.973

5G 2 962138 2.031 1.015 0.001 5G 2 667187 1.945 0.973 0.000

5G 3 641593 3.045 1.015 0.000 5G 3 444931 2.917 0.972 0.000

5G 4 481353 4.059 1.015 0.000 5G 4 333875 3.887 0.972 0.000

5G 5 385199 5.072 1.014 0.000 5G 5 267181 4.858 0.972 0.000

5G 6 321104 6.084 1.014 0.000 5G 6 222722 5.827 0.971 0.000

5G 8 241142 8.102 1.013 0.000 5G 8 167122 7.766 0.971 0.000

5G 10 192905 10.128 1.013 0.000 5G 10 133862 9.695 0.970 0.000

5G 12 160890 12.143 1.012 0.000 5G 12 111718 11.617 0.968 0.000

5G 16 120945 16.154 1.010 0.000 5G 16 84079 15.436 0.965 0.001

5G 20 97025 20.136 1.007 0.000 5G 20 67388 19.259 0.963 0.001

5G 32 61219 31.914 0.997 0.001 5G 32 42489 30.545 0.955 0.001

10G seq 3907132 10G seq 2595385

10G 1 3846674 1.016 1.016 10G 1 2667343 0.973 0.973

10G 2 1924194 2.031 1.015 0.000 10G 2 1333923 1.946 0.973 0.000

10G 3 1282690 3.046 1.015 0.000 10G 3 889483 2.918 0.973 0.000

10G 4 962154 4.061 1.015 0.000 10G 4 667150 3.890 0.973 0.000

10G 5 769882 5.075 1.015 0.000 10G 5 533876 4.861 0.972 0.000

10G 6 641632 6.089 1.015 0.000 10G 6 444936 5.833 0.972 0.000

10G 8 481354 8.117 1.015 0.000 10G 8 333867 7.774 0.972 0.000

10G 10 385291 10.141 1.014 0.000 10G 10 267243 9.712 0.971 0.000

10G 12 321387 12.157 1.013 0.000 10G 12 222924 11.642 0.970 0.000

10G 16 241244 16.196 1.012 0.000 10G 16 167470 15.498 0.969 0.000

10G 20 193205 20.223 1.011 0.000 10G 20 134106 19.353 0.968 0.000

10G 32 121374 32.191 1.006 0.000 10G 32 84158 30.839 0.964 0.000

C6910_AppB.indd 832C6910_AppB.indd 832 2/2/09 11:42:05 AM2/2/09 11:42:05 AM

833

A P P E N D I X C
in which we survey several numerical methods used in this book, including log-log

plots; power functions; power function curve fitting; linear regression; general linear

least-squares curve fitting; and quadratic and cubic equations

Numerical Methods

C6910_AppC.indd 833C6910_AppC.indd 833 2/2/09 12:38:08 PM2/2/09 12:38:08 PM

A P P E N D I XC Numerical Methods

C.1 Log-Log Plots
A regular plot uses a linear scale for each axis. Each tick mark’s value is obtained by adding a fixed
amount to the previous tick mark’s value. Putting it another way, the tick mark values form an arithmetic
series. However, for some data sets, a plot with linear scales isn’t very helpful.

Consider the running-time data for the AES key search program from Chapter 9. Figure C.1 shows
this data set on a regular plot. Because the T values for N = 512M are so large, only the first two or
three curves show up well on the plot. The other curves, with much smaller T values, are all compressed
together at the bottom of the plot. This makes it difficult to see what the curves look like or whether there
are any anomalies in the data.

0 1 2 3 4 5 6 7 8 9 1 0
0

500

1000

1500

2000

2500

3000

N = 16MN = 32MN = 64MN = 128M
N = 256M
N = 512M

Running Time vs. Processors

Processors, K

T
 (

N
,K

)
(s

ec
)

Figure C.1 FindKeySeq/FindKeySmp3 T vs. K

Suppose we keep the linear scales, but rather than plotting the data itself, we plot the logarithm of
the data. That is, we plot (log T) versus (log K) instead of T versus K. Figure C.2 shows the result. Now
all the curves are visible and well separated. Furthermore, the curves show up as straight lines, an obser-
vation we will return to shortly.

C6910_AppC.indd 834C6910_AppC.indd 834 2/2/09 12:38:08 PM2/2/09 12:38:08 PM

 C.2 Power Functions on a Log-Log Plot 835

Figure C.2 FindKeySeq/FindKey Smp3

1 1 0
1E1

1E2

1E3

1E4

N = 16M

N = 32M

N = 64M

N = 128M

N = 256M

N = 512M

Running Time vs. Processors

Processors, K

T
(N

,K
)

(s
ec

)

Figure C.3 FindKeySeq/FindKey Smp3
 (log T) vs. (log K) T vs. K, log-log plot

The logarithm we are using is the base-10 logarithm, sometimes written as “log10.” This is not the
same as the natural logarithm or logarithm to the base e, sometimes written as “ln.” On calculators, the
base-10 logarithm key is usually labeled “log,” and the natural logarithm key is usually labeled “ln.” In
Java, the Math.log() function computes the natural logarithm and the Math.log10() function com-
putes the base-10 logarithm. You can also compute the base-10 logarithm of x as (ln x / ln 10).

While the curves show up nicely when we plot the logarithm of the data, the tick marks on the axes
do not turn out as nicely—they show the logarithms of the data values, which are not as meaningful as
the data values themselves. Suppose we continue to plot the logarithms of the data values, but we mark
the axes with the actual data values. Figure C.3 shows the result. By convention, the major divisions cor-
respond to integer powers of 10—1 × 101 (1E1), 1 × 102 (1E2), and so on. Within each major division, the
minor divisions correspond to integer mantissas—2 × 101, 3 × 101, . . . , 9 × 101, and so on. The minor
divisions are not evenly spaced because the logarithm function is nonlinear.

The scale used for each axis in a plot like Figure C.3 is called a logarithmic scale. Each major tick
mark’s value is obtained by multiplying the previous major tick mark’s value by a fixed amount. Putting
it another way, the major tick mark values form a geometric series. Because the horizontal axis uses a
logarithmic (log) scale and the vertical axis also uses a log scale, the whole thing is called a log-log plot.

C.2 Power Functions on a Log-Log Plot
Let’s look at how a power function appears on a log-log plot. A power function y(x) is one of the form

 (C.1)

where a and b are constants. In computer science, power functions are interesting because many
algorithms have a polynomial complexity. For example, an O(n2) algorithm’s running time is less than or
equal to some constant times n2, which is a power function with b = 2. A parallel pro gram’s running time
T for a given problem size is ideally supposed to be inversely proportional to the number of processors K;
that is, T is some constant times 1/K (b = –1).

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

N = 16M

N = 32M

N = 64M

N = 128M

N = 256M

N = 512M

Log Running Time vs. Log Processors

Processors, log K

lo
g

 T
 (

N
,K

)
(s

ec
)

C6910_AppC.indd 835C6910_AppC.indd 835 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

836 APPENDIX C Numerical Methods

On a log-log plot, we plot a data point (x,y) in alternate coordinates (u,v), where u = log x and v = log y.
Taking the logarithm of both sides of Equation C.1 gives the following:

 (C.2)

Expressing this in terms of u and v gives

 (C.3)

where c = log a. This is the equation for a straight line in (u,v) coordinates, where b is the slope and c is
the intercept.

Consequently, a power function shows up as a straight line on a log-log plot, with slope equal to the
power of x. Figure C.4 plots several power functions with the same multiplier a = 1 and different expo-
nents. The multiplier shifts the curve up or down without changing its slope. Figure C.5 plots several
power functions with different multipliers and the same exponent b = 2.

Figure C.4 Log-log plots of y = xb for various exponents

1 1 0 100
1E0

1E1

1E2

1E3

1E4

1E5

1E6

A = 1

A = 3

A = 10

A = 30

A = 100

X

Y
 =

 A
 X

Figure C.5 Log-log plots of y = ax2 for
 various multipliers

Thus, a log-log plot is ideal for eyeballing whether one quantity is proportional to a power of another
quantity. Just look for a straight line and see if it has the right slope.

C.3 Power Function Curve Fitting
An experiment yields a series of (x,y) measurements where y is supposed to be a power function of
x, y = axb, with a predetermined exponent b. Due to random measurement errors, the data points do
not fall precisely on a straight line on a log-log plot. We want to determine the coefficient a that gives
the closest fit between the model function y = axb and the data series (x,y). This is the power function
curve-fitting problem.

1 1 0 100
1E−2

1E−1

1E0

1E1

1E2

1E3

1E4

B = −1

B = −1/2

B = 0

B = 1 / 2

B = 1

B = 2

X

Y
 =

 X

C6910_AppC.indd 836C6910_AppC.indd 836 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

 C.3 Power Function Curve Fitting 837

As an example, in Chapter 25 we needed to fit the following data to the model y = ax3, where x was
the number of vertices in a distance matrix and y was the running time (sec) for a sequential version of
Floyd’s Algorithm:

x y

2000 67.942

2520 136.506

3180 269.528

4000 589.131

5040 1182.404

6360 2474.565

Rearranging Equation C.2 gives a formula for (log a) in terms of the predetermined exponent b and
the data values (x,y):

 (C.4)

Plugging different data values into Equation C.4 gives different values for (log a). In the example, with
b = 3, the values are the following:

x y log a

2000 67.942 −8.071

2520 136.506 −8.069

3180 269.528 −8.077

4000 589.131 −8.036

5040 1182.404 −8.035

6360 2474.565 −8.017

If the data fell on a straight line on a log-log plot, all the (log a) values would be the same, namely the
intercept of the line. Due to random measurement errors, the (log a) values are close, but not identical.
To get the best fit between the straight line (the model function) and the data, we will take the intercept to
be the median of the (log a) values. To find the median, sort the list of values; if there are an odd number
of values, then the median is the middle value; if there are an even number of values, then the median is
halfway between the two middle values. In the example, the median (log a) value is –8.053. Raising 10 to
the power of (log a) gives a = 8.86 × 10–9. The model function is then y = 8.86 × 10–9 x3.

Figure C.6 shows the example data and the fitted model function. Two of the six data points—cor-
responding to the two middle vales in the sorted list—are closest to the straight line, and the straight line
splits the difference between them.

C6910_AppC.indd 837C6910_AppC.indd 837 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

838 APPENDIX C Numerical Methods

1000 10000
1 0

100

1000

10000

X

Y

Figure C.6 Example of a power function curve fit

How is this model function the “best” fit to the data? Define the total absolute deviation D to be the
sum of the absolute differences between the actual y value and the model function for each data point, in
logarithmic coordinates:

 (C.5)

Then choosing (log a) as just described will minimize D. That is, the best curve fit is the one that mini-
mizes the total absolute deviation.

C.4 Linear Regression
We are given a series of data points (xi, yi), i = 1, 2, ..., M. We want to find a straight line of the form

 (C.6)

that is the best fit to the data points. Equation C.6 is a model of the data, and the coefficients a and b
are the model parameters. Fitting a model to the data is called “regression,” and when the model is a
straight line the process is called linear regression.

First, compute the means of the x and y values:

 (C.7)

 (C.8)

C6910_AppC.indd 838C6910_AppC.indd 838 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

 C.5 General Linear Least-Squares Curve Fitting 839

Then, the model parameters are the following:

 (C.9)

 (C.10)

The model function (C.6) gives the best fit to the data in this sense. Define χ2 (“chi-squared”) as the sum
of the squared differences between the yi data values and the y values predicted by the model, as follows:

 (C.11)

Then, the model parameters a and b defined by (C.9) and (C.10) yield the model function that minimizes χ2.
The linear regression process also computes R, the correlation coefficient between x and y:

 (C.12)

R is a number between –1 and +1 that indicates how close to a straight line the (xi, yi) data points fall. If the
data points fall exactly on a line of positive slope (any slope), then R is +1; we say x and y are correlated.
If the data points fall exactly on a line of negative slope, then R is –1; x and y are anticorrelated. If the data
points do not fall on a straight line, then R’s value is somewhere between its extremes, and the farther the
data points are from a straight line, the closer R is to 0.

The correlation coefficient does not, however, tell whether the model (C.6) actually is a good fit to the
data. R only tells how closely x and y are correlated, assuming the model is a good fit. If a straight-line model
is not a good fit—if, for example, the data looks more like a quadratic or an exponential function—then R is
meaningless. To decide whether a straight line is a good fit to the data, we can do a statistical goodness-of-fit
test on the model. However, this test uses the probability distribution of the errors in the yi values, something
we don’t usually know. See any statistics textbook for further information about statistical goodness-of-fit tests.

Class edu.rit.numeric.XYSeries in the Parallel Java Library implements the linear regression formulas. Set
up an instance of class XYSeries containing the (xi, yi) data points, and then call the linearRegression()
method to calculate a, b, and R.

C.5 General Linear Least-Squares Curve Fitting
Generalizing the previous section, suppose we want to fit the data points (xi, yi), i = 1, 2, ..., M, to a model
that is a linear combination of arbitrary functions of x:

 (C.13)

C6910_AppC.indd 839C6910_AppC.indd 839 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

840 APPENDIX C Numerical Methods

The functions fj(x), j = 1, 2, ..., N, are the model’s basis functions, and the coefficients aj, j = 1, 2, ..., N,
are the model parameters. The linear regression model function is a special case of (C.13) with N = 2,
f1(x) = 1, and f2(x) = x. In Chapter 10, the Second Problem Size Law was defined as the following:

 (C.14)

This is a multivariate model function that again is a linear combination of basis functions

 (C.15)

where f1(N,K) = 1, f2(N,K) = N, f3(N,K) = 1/K, and f4(N,K) = N/K.
As we did for linear regression, define χ2 as the sum of the squared differences between the yi data

values and the model y values:

 (C.16)

Then, the general linear least-squares problem is to find the coefficients aj that minimize χ2.
To illustrate, suppose there are M=6 data points and N=3 basis functions. Writing Equation C.13 for

each data point (xi, yi) gives the following:

 (C.17)

These are six simultaneous equations for the three unknowns a1, a2, and a3. Because there are more
equations than unknowns, it is, in general, not possible to find a1, a2, and a3 that satisfy all the equations.
The best we can do is to minimize the sum of the squared differences between the left sides and the right
sides—that is, to minimize χ2.

The simultaneous equations can be written more compactly in matrix notation:

 (C.18)

The M × N matrix F, where each element Fij = fj(xi), is called the design matrix of the general linear
least-squares problem. A is an N-element vector of the model parameters aj. Y is an M-element vector of
the yi data values. Given the data points and the basis functions, F and Y are known, and we are solving
the matrix equation (C.18) for the unknown A.

In the general linear least-squares problems in this book, there are constraints on the model param-
eter values. Specifically, the model parameters must all be nonnegative. For example, it makes no sense

C6910_AppC.indd 840C6910_AppC.indd 840 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

 C.7 Cubic Equations 841

for any of the Second Problem Size Law’s model parameters to be negative. Thus, we want a solution to
Equation C.18 that minimizes χ2, and such that A is nonnegative. If any model parameter aj “wants” to
be negative, then that parameter is set to 0 instead, and the best solution for the remaining unconstrained
parameters is found.

Charles Lawson and Richard Hanson have published a Non-Negative Least Squares algorithm that
solves exactly this problem. They have also published a public domain Fortran program, NNLS, that
implements the algorithm. Class edu.rit.numeric.NonNegativeLeastSquares in the Parallel Java Library
is a translation of the NNLS program into Java. The TimeFit program mentioned in Chapter 10 uses
class NonNegativeLeastSquares to fit a model for the running time T(N,K) to a series of running-time
measurements.

C.6 Quadratic Equations
A quadratic equation is of the following form:

 (C.19)

We want to find the roots of the quadratic equation, that is, the value or values of x that make the left side
equal to 0. First, compute the discriminant of the quadratic equation, D:

 (C.20)

If D < 0, then the quadratic equation has no (real) roots. If D ≥ 0, then the quadratic equation has two
roots x1 and x2, computed by the following formulas:

 (C.21)

 (C.22)

 (C.23)

sgn(b) is the signum function; it is –1 if b < 0 and +1 if b ≥ 0. The formulas (C.21)–(C.23) are less sus-
ceptible to roundoff error than the classical quadratic formula we all learned in high school.

Class edu.rit.numeric.Quadratic in the Parallel Java Library implements the preceding formulas. Use
an instance of class Quadratic to find the roots of a quadratic equation.

C.7 Cubic Equations
A cubic equation is of the following form:

 (C.24)

C6910_AppC.indd 841C6910_AppC.indd 841 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

842 APPENDIX C Numerical Methods

If d, the coefficient of x3, is not 1, then divide both sides by d to get

 (C.25)

where a = e/d, b = f/d, and c = g/d. We want to find the roots of the cubic equation. First, compute two
intermediate quantities Q and R:

 (C.26)

 (C.27)

The discriminant of the cubic equation is the following:

 (C.28)

If D < 0, then the cubic equation has three unequal roots x1, x2, and x3, computed by the following formulas:

 (C.29)

 (C.30)

 (C.31)

 (C.32)

If D = 0, then the cubic equation has three roots x1, x2, and x3, at least two of which are equal, computed
by the following formulas:

 (C.33)

 (C.34)

If D > 0, then the cubic equation has one root x1, computed by the following formulas:

 (C.35)

C6910_AppC.indd 842C6910_AppC.indd 842 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

 C.8 For Further Information 843

 (C.36)

 (C.37)

Class edu.rit.numeric.Cubic in the Parallel Java Library implements the preceding formulas. Use an
instance of class Cubic to find the roots of a cubic equation.

C.8 For Further Information
On numerical methods in general:

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. • Numerical Recipes: The
Art of Scientific Computing, Third Edition. Cambridge University Press, 2008.

On libraries of numerical algorithms:

GNU Scientific Library. http://www.gnu.org/software/gsl/•

 (The GNU Scientific Library is free software released under the GNU General
Public License.)

Netlib Repository. http://www.netlib.org/•

 (Some routines in the Netlib Repository are in the public domain, other
routines are released under various software licenses.)

Numerical Recipes Home Page. http://www.nr.com/•

 (To use the Numerical Recipes routines, you must pay a license fee.)

On the nonnegative least squares problem:

C. Lawson and R. Hanson. • Solving Least Squares Problems. Society for
Industrial and Applied Mathematics, 1995.

NNLS program. http://www.netlib.org/lawson-hanson/all•

The formulas for the roots of quadratic and cubic equations come from:

E. Weisstein. “Quadratic Equation.” From • MathWorld—A Wolfram Web
Resource.
http://mathworld.wolfram.com/QuadraticEquation.html

E. Weisstein. “Cubic formula.” From • MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/CubicFormula.html

C6910_AppC.indd 843C6910_AppC.indd 843 2/2/09 12:38:09 PM2/2/09 12:38:09 PM

http://www.gnu.org/software/gsl/�
http://www.gnu.org/software/gsl/�
http://www.netlib.org/�
http://www.netlib.org/�
http://www.nr.com/�
http://www.nr.com/�
http://www.netlib.org/lawson-hanson/all
http://mathworld.wolfram.com/QuadraticEquation.html
http://mathworld.wolfram.com/CubicFormula.html

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

845

A P P E N D I X D
in which we survey techniques for synchronizing multiple threads accessing a shared

variable; we introduce the atomic compare-and-set operation; and we see how to update

a shared variable in a multiple-thread-safe fashion using atomic compare-and-set

Atomic Compare-and-Set

C6910_AppD.indd 845C6910_AppD.indd 845 2/2/09 11:32:55 AM2/2/09 11:32:55 AM

A P P E N D I XD Atomic Compare-and-Set

D.1 Blocking Synchronization
When multiple threads write a shared variable at the same time, or when some threads read the variable
at the same time as other threads write the variable, the threads must synchronize with each other to avoid
conflicts. One synchronization technique involves blocking. When thread A is about to access a shared
variable, A is made to block, or suspend execution, if another thread B is already accessing the variable.
When B finishes with the variable, A is allowed to unblock, or resume execution. A then proceeds to
access the variable. In this way, only one thread at a time is permitted to access the variable, thus syn-
chronizing the threads.

The Java platform provides several blocking constructs for synchronizing threads:

Synchronized methods• . Every Java object has an associated hidden lock.
When a thread calls a synchronized method on an object, the thread blocks
until the object’s lock is unlocked, and then the thread locks the lock and
executes the method (which contains statements to access the shared data, typ-
ically private fields of the object). When the thread returns from the method,
the thread unlocks the lock.

Synchronized blocks• . A section of code can be placed inside a block that
begins with the synchronized keyword designating an object.

 synchronized (anObject)

 {

 // Statements to access shared data go here

 }

When a thread arrives at a synchronized block, the thread blocks until the
designated object’s lock is unlocked, and then the thread locks the lock and
executes the statements. When the thread fi nishes executing the statements,
the thread unlocks the lock.

Semaphores• . Class java.util.concurrent.Semaphore provides a sema phore
object. A semaphore is a counter. When a thread calls the semaphore’s
acquire() method, the acquire() method blocks the calling thread until
the counter is greater than zero, and then the acquire() method decrements

C6910_AppD.indd 846C6910_AppD.indd 846 2/2/09 11:32:55 AM2/2/09 11:32:55 AM

 D.1 Blocking Synchronization 847

the counter and returns. At this point, the thread proceeds to access the shared
data. When the thread finishes with the shared data, the thread calls the sema-
phore’s release() method, which increments the counter.

Locks• . Class java.util.concurrent.locks.ReentrantLock provides a lock object.
When a thread calls the lock’s lock() method, the lock() method blocks the
calling thread until the lock is unlocked, and then the lock() method locks
the lock and returns. At this point, the thread proceeds to access the shared
data. When the thread finishes with the shared data, the thread calls the lock’s
unlock() method, which unlocks the lock. (This is the same behavior as the
synchronized keyword, except the lock is its own separate visible object.)

Other languages and operating systems provide similar blocking synchronization capabilities. Parallel
Java programs can use the parallel region’s critical() method for thread synchronization, as well as
Java’s built-in capabilities.

However, several problems arise when using locks, or any of the similar blocking techniques, to
synchronize multiple threads in an SMP parallel program. These problems include the following:

Locking and unlocking are heavyweight operations, requiring many CPU •
cycles to execute. This increases the program’s running time—problematic in
what is supposed to be a high-performance parallel program.

Lock implementations are typically optimized for the no-contention case, •
where only one thread at a time ever tries to lock the lock. If several threads
try to lock the lock, then the time needed to lock the lock goes up. This is a
reasonable strategy if locking rarely occurs. But if locking is frequent, as is
often the case in an SMP parallel program with multiple threads updating a
shared variable, the lock implementa tion’s reduced performance becomes
problematic.

Synchronization by blocking can lead to • convoying. Suppose thread A locks
a lock, and then a context switch happens and thread B starts executing.
Suppose B tries to lock the lock and blocks because it is already locked, so
a context switch happens and thread C starts executing. Suppose C tries to
lock the lock Eventually a whole convoy of threads may pile up behind
thread A. None of these threads can make any progress until A’s turn to
execute comes round again and A unlocks the lock. That’s on a single-CPU
machine. On an SMP parallel machine, each thread can have its own CPU, so
the operating system does not have to context switch between different threads
on the same CPU. However, depending on how the operating system’s thread
scheduler is implemented, convoying may still be possible to some extent even
on an SMP machine.

C6910_AppD.indd 847C6910_AppD.indd 847 2/2/09 11:32:55 AM2/2/09 11:32:55 AM

848 APPENDIX D Atomic Compare-and-Set

D.2 Atomic Compare-and-Set
An alternative, non-blocking thread synchronization technique uses the atomic compare-and-set (CAS)
operation. CAS is performed on a given (shared) variable X, a given expected value, and a given
updated value:

Compare-and-set (X, expected value, updated value)
 If X = expected value:
 X ← updated value
 Return true
 Else:
 Return false

A similar operation is atomic compare-and-swap or atomic compare-and-exchange:

Compare-and-swap (X, expected value, updated value)
 If X = expected value:
 Swap X ↔ updated value
 Return true
 Else:
 Return false

The preceding steps are atomic; they are guaranteed to execute with no interruptions or context switches
in the middle. To ensure atomicity, CAS is usually a single CPU instruction executed by the hardware.
Most CPUs, beginning with the IBM System/370 CPU in 1970, provide some kind of CAS instruction.
The Intel 486 has the CMPXCHG instruction, which does an atomic compare-and-exchange on 32-bit
quantities. The Intel Pentium added the CMPXCHG8B instruction, which does an atomic compare-and-
exchange on 64-bit quantities. The Sun SPARC has the CASA and CASXA instructions.

The Java platform provides atomic compare-and-set operations on integers, longs, Booleans, and
object references via the multiple-thread-safe wrapper classes in package java.util.concurrent.atomic.
The Parallel Java Library provides atomic compare-and-set operations on all the primitive types, as well
as object references, via the multiple-thread-safe wrapper classes in package edu.rit.pj.reduction. As an
example, here are the definitions of two methods in class edu.rit.pj.reduction.SharedInteger.

 /**

 * Returns this reduction variable’s current value.

 *

 * @return Current value.

 */

 public int get();

 /**

 * Atomically set this reduction variable to the given updated

 * value if the current value equals the expected value.

 *

 * @param expect Expected value.

 * @param update Updated value.

C6910_AppD.indd 848C6910_AppD.indd 848 2/2/09 11:32:55 AM2/2/09 11:32:55 AM

 D.3 Shared Variable Updating with Atomic CAS 849

D.3 Shared Variable Updating with Atomic CAS
Here’s the pattern for using an atomic CAS operation to update a shared variable X in a multiple-thread-
safe fashion:

1 Do:
2 Expected value ← Current value of X
3 Updated value ← New value of X
4 While CAS (X, expected value, updated value) is false

Note that there is no locking, so multiple threads can execute this sequence of statements simultaneously.
The executing thread gets the current value of X, computes the new value of X (which may or may not
depend on the current value), and does the atomic CAS operation. If no other thread changed the value of
X between line 2 and line 4, X’s value is still the same as the expected value, the CAS operation updates
X to the new value and returns true, and the thread proceeds past the do-while loop. But if another thread
changed the value of X between line 2 and line 4, the CAS operation leaves X unchanged and returns
false, and the thread stays in the do-while loop. The thread rereads the current (changed) value of X,
recomputes the new value of X (which may be different if X’s value changed), and redoes the CAS
operation. This loop continues until the CAS operation succeeds. A thread may have to spin through the
retry loop several times if many threads are trying to update X, and the more threads there are, the more
retries there may have to be.

As an example of the use of CAS to synchronize multiple threads updating a shared variable, here is
the code that updates the bound variable in the SMP parallel branch-and-bound search program for maxi-
mum parsimony phylogenetic tree construction in Chapter 38. Afterward, bound is supposed to be set to
the smaller of its current value and the value of tentativeScore.

 *

 * @return True if the update happened, false otherwise.

 */

 public boolean compareAndSet

 (int expect,

 int update);

 // Atomically set global bound to the smaller of global bound

 // and tentative score.

 int newBound = bound.reduce

 (tentativeScore, IntegerOp.MINIMUM);

The reduce() method updates the shared variable in a multiple-thread-safe fashion. Rather than using
blocking synchronization, the reduce() method uses a non-blocking CAS operation. Here is what
reduce() does under the hood. myValue is a private field that holds the shared variable’s value.

C6910_AppD.indd 849C6910_AppD.indd 849 2/2/09 11:32:55 AM2/2/09 11:32:55 AM

850 APPENDIX D Atomic Compare-and-Set

In the phylogenetic tree construction program, when the reduce() method calls the op() method on the
op argument—that is, on the IntegerOp.MINIMUM object—the op() method returns the smaller of the
current bound (oldvalue) and the tentative score (value). The result becomes the updated value for
the CAS operation. If the CAS operation succeeds, then the updated value is returned. If the CAS opera-
tion fails, then the loop repeats, the updated value is recalculated, and the CAS operation is retried.

D.4 Limitations, Caveats
Because CAS is implemented in hardware and does not block the threads, a program that uses CAS for
synchronization typically runs faster than a program that uses locking. On the other hand, locks
can synchronize an arbitrary section of code, such as the code to add an item to a linked list; CAS can
only synchronize an update of a single variable.

It is possible to write lock-free concurrent data structures using CAS as a building block. For
example, a lock-free concurrent queue lets multiple threads add items to or remove items from the queue
at the same time, without conflicts and without blocking. Some of the multiple thread safe collection
classes in package java.util.concurrent use lock-free concurrent programming techniques. Space does not
permit covering these techniques here. Herlihy’s and Shavit’s book is an excellent resource for further
information.

A potential problem with using CAS to update a shared variable is the ABA problem. Here is the
CAS updating pattern again:

1 Do:
2 Expected value ← Current value of X
3 Updated value ← New value of X
4 While CAS (X, expected value, updated value) is false

package edu.rit.pj.reduction;

import java.util.concurrent.atomic.AtomicInteger;

public class SharedInteger

 {

 private AtomicInteger myValue;

 public int reduce (int value, IntegerOp op)

 {

 for (;;)

 {

 int oldvalue = myValue.get();

 int newvalue = op.op (oldvalue, value);

 if (myValue.compareAndSet (oldvalue, newvalue))

 return newvalue;

 }

 }

 }

C6910_AppD.indd 850C6910_AppD.indd 850 2/2/09 11:32:55 AM2/2/09 11:32:55 AM

 D.5 For Further Information 851

Suppose a thread executes line 2 and finds X’s value to be A. The thread computes a new value for X at
line 3. But before the thread can execute line 4, suppose another thread updates X’s value to B. And further
suppose that another thread updates X’s value back to A. When the original thread executes line 4, X’s value
will be what the thread expects (A), so the CAS operation will succeed. However, this may not be correct, if
the new value of X was computed assuming X would not be updated between line 2 and line 4.

The ABA problem does not occur if the sequence of values stored into X is monotonic, in the sense that
once a certain value has been stored into X, that value will never be stored into X again. For example, if X
is always incremented and never decremented, or if X is always set to the minimum of itself and another
value, the sequence of X values will be monotonic and the ABA problem will not occur. The ABA problem
can occur, for example, in linked-list data structures if the same nodes are linked, unlinked, and relinked into
the list. Lock-free concurrent data structures must be implemented to avoid the ABA problem.

D.5 For Further Information
A sampling of the vast literature on lock-free concurrent data structures:

M. Michael and M. Scott. Simple, fast, and practical non-blocking and block-•
ing concurrent queue algorithms. In Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Computing (PODC’96),
pages 267–275, 1996.

M. Michael. High performance dynamic lock-free hash tables and list-•
based sets. In Proceedings of the 14th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 73–82, 2002.

D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algo-•
rithm. In Proceedings of the 16th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 206–215, 2004.

M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to imple-•
ment scalable and lock-free FIFO queues. In Proceedings of the 17th Annual
ACM Symposium on Parallelism in Algorithms and Architectures,
pages 253–262, 2005.

W. Scherer, D. Lea, and M. Scott. Scalable synchronous queues. In •
Proceedings of the 11th Annual SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 147–156, 2006.

On concurrent programming on SMP machines:

M. Herlihy and N. Shavit. • The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

C6910_AppD.indd 851C6910_AppD.indd 851 2/2/09 11:32:55 AM2/2/09 11:32:55 AM

C6910_FMTOC.indd xviiiC6910_FMTOC.indd xviii 2/2/09 9:21:02 AM2/2/09 9:21:02 AM

This page intentionally left blank

 Index 853

Index

1-D CCA (one-dimensional continuous cellular
automation)
CCASeq class and, 252–256

 described, 246–247
 evolution of, 247–249
 nested parallel regions and, 274–276
 overlapping and, 268, 271, 276–284
 overview, 259–264
 rational arithmetic and, 249–251
 scalability and, 251–252

A
ABA problem, 850–851
actin, 704
add method, 767
address space, 22
adenine, 756
Adleman, Leonard, 636
AES (Advanced Encryption Standard). See also AES key

search program
 all-to-all scan and, 550–551, 564–565
 block cipher objects and, 91
 described, 68–69
 encryption function, 68
 numerical methods and, 834–835

AES key search program, 75, 145, 623. See also AES
(Advanced Encryption Standard)
 cache interference and, 112, 115–116
 cryptography and, 90–96
 data slicing and, 346
 described, 69
 early loop exit and, 338–344
 load balancing and, 157–158
 massive parallel problems and, 330–334,

336–344, 584–590
 scalability and, 482, 484

 sizeup and, 128–130
 speedup and, 105, 107–109

AES256Cipher class, 70, 113, 116
AES256CipherSmp class, 116
AesTestClu class, 564–565
AesTestSeq class, 551–555, 570
algorithms, 5, 100–101, 129. See also specifi c
algorithms

 described, 160
 heuristic, 760–761
 random number generation and, 187–189

align method, 719, 724, 731, 748
alignment

 global, 705–706
 local, 705–706, 713
 scores, 705
 sequences, 705–718

Alignment class, 719
AlignmentPrinter class, 719
AlignmentStats interface, 719
all-gather message passing

 collective communication and, 460–463
 computation time model and, 470–473
 gravitational N-body problem and, 477–478
 overview, 445–480
 sequential antiproton program and, 455–460

allGather method, 320–321
all-gather time model, 462
all-pairs shortest-path problem, 224–226,

410–411, 622
all-reduce message passing

 collective communication and, 529–530
 described, 529
 overview, 513–546

allReduce method, 322, 529–530
allToAll method, 323–324

C6910_Index.indd 853C6910_Index.indd 853 2/2/09 9:21:23 AM2/2/09 9:21:23 AM

854 Index

all-to-all scan, 547–570
AMD, 17
Amdahl, Gene, 101
Amdahl Corporation, 101
Amdahl’s Law, 101–105, 117, 165

 all-reduce message passing and, 545
 broadcasts and, 421
 load balancing and, 164
 massive parallel problems and, 336, 337
 sequential dependencies and, 236, 240
 sizeup and, 122–123, 130

amino acids, 704
analyze method, 677, 681, 685
animation, 11, 135–152. See also images; pixels
anonymous inner classes, described, 80
antimatter particles, motion of, 445–480
antiproton program, 446, 481, 499–512. See also all-

gather message passing
Antiproton3 class, 509
AntiprotonClu class, 473–476, 479–480, 487, 508,

510, 564–470
AntiprotonClu2 class, 488, 496–498, 508, 509
AntiprotonClu3 class, 502–511
AntiprotonFile class, 462
AntiprotonSeq class, 455–460, 479–480, 497–498,

510–511
APIs (application programming interfaces), 27–28, 802,

841. See also OpenMP
arguments

 all-reduce message passing and, 523
 MRI spin relaxometry and, 690
 protein sequence querying and, 726, 743
 send-receive operation and, 487–488

arithmetic, rational, 249–251
array(s)

 all-gather message passing and, 461–462, 466
 all-to-all scan and, 557
 barrier actions and, 246, 252, 256, 257, 259
 buffers for, 348–350
 cache interference and, 112–114

 MRI spin relaxometry and, 696
 OpenMP and, 809
 partitioning and, 349–350
 pipelining and, 485, 490–493
 prefi x sum of, 324–325
 reduction patterns and, 201, 203, 209,

434–436, 437
 scalability and, 483
 slices of, 348–350

AT&T Bell Laboratories, 8
atomic compare-and-exchange, 848
atomic compare-and-set, 845–851
atomic compare-and-swap, 848
availableProcessors method, 79
Avery, Oswald, 756

B
backend
 networks, described, 22
 processors, described, 22
bandwidth, 24, 389, 390
barrier(s). See also barrier actions

 described, 83
 overlapping and, 268, 273

barrier actions
 described, 257–258
 memory scalability and, 251–252
 overlapping and, 268, 273
 overview, 245–265
 rational arithmetic and, 249–251

barrier method, 327
BarrierAction class, 257–258, 273
base(s)

 -10 logarithms, 834
 described, 756
 pair, 756

basis functions, 840
Becker, Donald, 16
Beowulf cluster, 16, 17
bit scores, 714

C6910_Index.indd 854C6910_Index.indd 854 2/2/09 9:21:23 AM2/2/09 9:21:23 AM

 Index 855

bitwise-or operator, 73
blackBuffer method, 538
BLAST (Basic Local Alignment Search Tool) program, 8, 39

 parallel data-set querying and, 634
 protein sequence querying and, 708, 710, 714, 749

block ciphers, 68, 91, 550–551
blocking

 described, 846
 synchronization, 846–847

BLOSUM (Block Substitution Matrix), 709, 712–714,
717, 719

Blosum62 class, 719
Boggs, David, 16
BOINC (Berkeley Open Infrastructure for Network

Computing), 10, 27
boolean data type, 190, 346, 638
branch length, 758
branch-and-bound search algorithm, 778–798
break statements, 96–97
broadcast(s)

 collective communication and, 412–413
 computation time model, 419–422
 overview, 409–426, 621–632
 reduction and, comparison of, 429
 time model, 417–419
 tree, described, 417

broadcast method, 316, 412–413, 626
browsers, 107
buffer(s)

 all-gather message passing and, 463,
466–467

 all-reduce message passing and, 532–534
 allToAll method and, 323–324
 arguments as, 311
 for arrays, 348–350
 classes, 346
 communication overhead and, 390, 402–403
 data slicing and, 346–350
 described, 346–347

 fl ood operation and, 317
 load balancing and, 374, 376
 massive parallel problems and, 340–341
 matrices, 350–354
 MPI and, 821–822
 MRI spin relaxometry and, 696
 objects, 346–347
 overlapping and, 501–502
 parallel message passing and, 316–318, 323–325
 pipelining and, 485–486
 prefi x sum operation and, 324
 reduction and, 429–431, 435–436
 single-item, 347–348
 zero-length, 340–341

buffer method, 347–348, 350–351, 696
byte data type, 346

C
C (high-level programming language), 17, 18

 MPI and, 818, 819–820, 822, 824, 826
 OpenMP and, 802, 806, 809, 811
 parallel programming libraries and, 30

C++ (high-level programming language), 17, 30
 MPI and, 818
 OpenMP and, 802, 806, 808, 809
CA (cellular automation), 246
cache(s). See also cache interference; memory

 churning, 238
 coherence protocol, 20
 hit ratios, 19
 hits, 19
 L1 (level-1), 20
 L2 (level-2), 20
 lines, 19, 113, 114
 miss, 19
 multilevel, 19–20
 sequential dependencies and, 237–238
 write policies, 19

C6910_Index.indd 855C6910_Index.indd 855 2/2/09 9:21:23 AM2/2/09 9:21:23 AM

856 Index

cache interference. See also memory
 described, 21, 114
 eliminating, 114–119
 origin on, 112–114
 overview, 111–120
 sizeup and, 128

calculateNextCell method, 280
Carriero, Nicholas, 36
CAS (atomic compare-and-set) operation, 172,

175–176, 845–851
CCA. See 1-D CCA (one-dimensional continuous cellular

automation)
CCASeq class, 252–256, 265, 282–283
CCASmp class, 260–265
CCASmp2 class, 276–284
CCSM (Community Climate System Model), 7
cell(s)

 barrier actions and, 246
 described, 246

Cerf, Vinton, 16
char data type, 346
Chargaff, Erwin, 756
Chase, Martha, 756
Chebyshev acceleration, 522–523
chess, 10
chunk(s)

 described, 83, 158
 size, 158–159

cipher(s). See also ciphertext
 all-to-all scan and, 550–551
 block, 68, 91, 550–551
 breaking, 68–69
 load balancing and, 157–158

cipher variable, 91
ciphertext. See also ciphers; cryptography

 all-to-all scan and, 550–551
 described, 68
 load balancing and, 157–158
 massive parallel problems and, 330
 scalability and, 484

ciphertext variable, 90, 91
Clairaut, Alexis-Claude, 477
class(es). See also classes (listed by name)

 anonymous inner, 80
 constructors and, 52, 250–251, 718, 731
 multiple-thread safe, 172, 173, 190
 serializable, 190
 wrapper, 176, 788, 848

classes (listed by name). See also classes
 AES256Cipher class, 70, 113, 116
 AES256CipherSmp class, 116
 AesTestClu class, 564–565
 AesTestSeq class, 551–555, 570
 Alignment class, 719
 AlignmentPrinter class, 719
 Antiproton3 class, 509
 AntiprotonClu class, 473–476, 479–480, 487, 508,

510, 564–470
 AntiprotonClu2 class, 488, 496–498, 508, 509
 AntiprotonClu3 class, 502–511
 AntiprotonFile class, 462
 AntiprotonSeq class, 455–460, 479–480,

497–498, 510–511
 BarrierAction class, 257–258, 273
 Blosum62 class, 719
 CCASeq class, 252–256, 265, 282–283
 CCASmp class, 260–265
 CCASmp2 class, 276–284
 Comm class, 310–311, 346, 821
 CommRequest class, 502
 DefaultAlignmentStats class, 719
 DnaSequence class, 767
 DnaSequenceList class, 767
 DnaSequenceTree class, 767
 DoubleMatrixFile class, 227
 Drawing class, 776
 FindKeyClu class, 331–335, 337–338, 343–344
 FindKeyClu2 class, 338–344
 FindKeyHyb class, 587–590, 592–593

C6910_Index.indd 856C6910_Index.indd 856 2/2/09 9:21:23 AM2/2/09 9:21:23 AM

 Index 857

 FindKeySeq class, 71–75, 96–97, 107–108, 110,
119–120, 127–130, 132–133, 335, 337–338,
343–344, 592–593, 835

 FindKeySeq2 class, 97
 FindKeySmp class, 92–97, 107–110, 112
 FindKeySmp3 class, 116–117, 119–120,

127–130, 132–133, 835
 FindProteinHyb class, 736–737, 747, 749, 751
 FindProteinHyb2 class, 743–744, 747
 FindProteinSeq class, 718, 726, 747, 751
 FinishPoint class, 733, 735
 FloydClu class, 414, 417, 423–426, 818–820
 FloydHyb class, 628–631
 FloydSeq class, 229–231, 238, 241, 243–244, 423,

426, 629–631
 FloydSmpCol class, 232–241, 244, 422–426
 FloydSmpRow class, 238–240, 243
 Graphics2D class, 137
 GrayImageRow class, 253
 HammingDistance class, 775
 HotSpotClu class, 534–546
 HotSpotGray class, 523
 HotSpotJVM class, 58
 HotSpotSeq class, 523–529, 546
 IntegerBuf class, 347–348
 IntegerForLoop class, 83, 211, 219, 234, 805
 IntegerItemBuf class, 347–348
 IntegerOp class, 207–208
 IntegerSchedule class, 160, 365
 JukesCantorDistance class, 775
 LongForLoop class, 173, 178, 805
 MakeKey class, 70, 551–552
 MandelbrotSetClu class, 358–364
 MandelbrotSetClu2 class, 368–380, 382,

391–392, 398–399
 MandelbrotSetClu3 class, 394–402,

407, 598
 MandelbrotSetHyb class, 598, 606–607
 MandelbrotSetHyb2 class, 608, 615–616,

618–619

 MandelbrotSetSeq class, 139–145, 150–151,
162, 364, 378–380, 392, 407, 606–607, 616,
618–619

 MandelbrotSetSmp class, 146, 149, 150, 154,
156–157, 161–166

 MandelbrotSetSmp2 class, 154
 MaximumParsimony class, 768, 770, 789
 MaximumParsimonyBnbSeq class, 780
 MaximumParsimonyBnbSmp class, 780
 MaximumParsimonyExhSeq class, 770, 780
 MSHistogramClu class, 436–437, 442, 444
 MSHistogramSeq class, 200–203,

221–222, 444
 MSHistogramSmp class, 203–204, 213–215,

221–222
 MSHistogramSmp2 class, 209–213
 MSHistogramSmp3 class, 216–220
 NonLinearLeastSquares class, 674, 677
 NonNegativeLeastSquares class, 677, 760, 775
 ObjectBuf class, 696
 ParallelRegion class, 79–81, 804
 ParallelSection class, 272
 ParallelTeam class, 804
 PhylogenyParsBnbSeq class, 784, 786, 797
 PhylogenyParsBnbSmp class, 788–789,

796, 797
 PhylogenyParsExhSeq class, 766–767, 776, 778,

784, 786
 PiClu class, 432, 442, 443, 434
 PiSeq class, 174–175, 182, 192, 443
 PiSeq3 class, 191, 196
 PiSmp class, 172, 174–176
 PiSmp2 class, 177, 182, 192
 PiSmp3 class, 196
 PixelAnalysis class, 677, 685
 PixelChunk class, 686, 688–689, 690
 PixelSchedule class, 693
 PixelSignal class, 677
 PixelTissues class, 677, 685, 690
 PJGColorImage class, 142

C6910_Index.indd 857C6910_Index.indd 857 2/2/09 9:21:23 AM2/2/09 9:21:23 AM

858 Index

 PJGGrayImage class, 251–253, 257
 PJGHueImage class, 528
 PlotPixel class, 677, 698–700
 Prime32List class, 644
 PrimeCountFunctionHyb class, 646, 653, 655
 PrimeCountFunctionSeq class, 644, 653, 655
 Program1Clu class, 304, 306–307
 Program1Seq class, 50–51, 57, 300–302
 Program1Smp class, 53, 55–56
 ProteinDatabase class, 719
 ProteinLocalAlignment class, 719, 724, 731
 proteinLocalAlignmentSeq class, 724
 ProteinLocalAlignmentSmp class, 731, 736
 ProteinSequence class, 718
 Random class, 69, 170, 172, 190–192, 549
 Range class, 330, 348, 391–392
 Results class, 775
 Semaphore class, 846–847
 Sequence class, 718
 Serializable class, 688
 SharedInteger class, 208–209, 788, 848
 SharedIntegerArray class, 203–205, 209
 SharedLong class, 172, 173, 178, 647
 Sieve class, 643
 SignalDataSetReader class, 676–677, 686
 SignalDataSetWriter class, 676–677
 SpinRelaxometryClu class, 697–698
 SpinRelaxometrySeq class, 683, 690, 697–698
 SpinSignal class, 677
 SpinSignalDifference class, 677
 Statistics class, 554–555
 TimeSendByte class, 383, 388–391
 TimeSendDouble class, 388
 TimeSendInt class, 388
 TissuesDataSetReader class, 677
 TissuesDataSetWriter class, 677
 TreeDrawing class, 776
 Upgma class, 780
 Vector2D class, 455–456
 Writer class, 227

client/server computing, 107
climate modeling, 7
clock speed. See speedup
clumping, 43–44
cluster(s). See also cluster parallel computers; cluster

parallel programs
 commodity, 403
 hybrid, 334
 middleware, 306

cluster parallel computers. See also clusters; cluster
parallel programs
 described, 22
 computing grids and, 26–27
 history of, 17–18
 overview, 22–25
 pros and cons of, 28–29

cluster parallel program(s). See also clusters; cluster
parallel computers
 all-gather message passing and, 445–480
 all-reduce message passing and, 513–546
 all-to-all scan and, 547–570
 broadcasts and, 409–426
 communication overhead and, 381–408
 computation-time model and, 628
 data slicing and, 345–354
 design, 330–331
 introduction to, 299–307
 load balancing and, 355–380, 596, 597, 617
 massive parallel problems and, 329–344,

583–594
 MPI and, 817–832
 MRI spin relaxometry and, 686–687
 overlapping and, 499–512
 parallel message passing and, 309–327
 pipelining and, 481–498
 reduction and, 427–444
 scalability and, 481–498

CMPXCHG instruction, 848
collective communication operation, 314–327,

356–358, 402–403

C6910_Index.indd 858C6910_Index.indd 858 2/2/09 9:21:23 AM2/2/09 9:21:23 AM

 Index 859

colSliceBuffer method, 351, 353
column(s)

 partitioning matrices by, 353–354
 slices, 239–241, 351

Comet Halley, 477
Comm class, 310–311, 346, 821
CommRequest class, 502
communication layer, 302
communication overhead

 inter-node message send-time model and,
403–404

 master-worker pattern and, 392
 measuring, 381–408
 message send-time model and, 388–391

communication request argument, 313
communication status object, 312
compiler(s), 18, 58, 164, 336. See also JIT compiler

 cache interference and, 117–119
 communication overhead and, 388, 402
 load balancing and, 377, 607
 MPI and, 818, 824
 OpenMP and, 809
 Program1Seq program and, 302
 reduction and, 215
 sequential dependencies and, 236–238
 speedup and, 107

composite numbers, 636
compression

 load balancing and, 165
 lossless, described, 138
 lossy, described, 138

computation time model, 419–422, 470–473,
508–509, 628

computeAccelerationOtherSlice method, 493
Computer History Museum, 10
computeScore method, 767
computing grids, described, 26–27
conserved quantity, 454
constructors, 52, 250–251, 718, 731

convoying, 847
correlation coeffi cient, 839
Coulumb constant, 451
counter mode, 188
CPUs (central processing units), 51, 57. See also

speedup
 architectural features of, 18
 atomic compare-and-set and, 847, 848
 broadcasts and, 424
 cache interference and, 112–114, 118–119
 chess programs and, 10
 communication overhead and, 390, 404
 described, 18
 dual-core, 21
 hardware for, 18–21
 hyperthreaded, 21
 job queues and, 306
 load balancing and, 365, 596, 597, 607
 massive parallel problems and, 330, 584, 590
 Mersenne primes and, 9
 MPI and, 818, 824
 MRI spin relaxometry and, 687
 multicore, 21
 OpenMP and, 809
 overlapping and, 500
 parallelism and, 38
 phylogenetic tree construction and, 786
 Program1Seq program and, 301
 proprietary designs for, 16
 protein sequence querying and, 729, 736
 quad-core, 21
 reduction and, 179
 sequential dependencies and, 238
 speedup and, 100–109

CreateSignalDataSet program, 675
Crick, Francis, 756
critical method, 215–216, 219, 847
critical sections, 215–216, 221
Crush test suite, 189

C6910_Index.indd 859C6910_Index.indd 859 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

860 Index

cryptography, 67–76, 89–98, 329–344. See also AES
(Advanced Encryption Standard)
 early loop exits and, 96–97
 load balancing and, 157–158
 massive parallel problems and, 583–594
 parallel data-set querying and, 636
 preparing input and, 69–71

cubic equations, 841–843
currentTImeMillis method, 49
cytosine, 756

D
daemon processes, 107, 305–306
data sets

 described, 634
 protein sequence querying and, 703–752
 replicating, 634–635, 645
 querying, 633–656, 700, 703–752

data slicing. See also slices
 array buffers and, 348–350
 matrix buffers and, 350–354
 overview, 345–354
 single-item buffers and, 347–348

databases. See also queries
 DNA sequence and, 30, 39–40
 protein sequences and, 7–8, 703–752
 Swiss-Prot database, 7–8, 715–716, 746

decimal numbers, arbitrary precision, 250
Deep Blue computer, 10
DefaultAlignmentStats class, 719
denominators, 250
deserialization, 347
design matrices, 672
desktop sueprcomputers, 28
Diehard test suite, 189
Digital Equipment Corporation, 16
direct N-body methods, 8–9
dirty cache lines, 19

discriminants, of quadratic equations, 841
distance methods, 757–762
distances, described, 757
distributed memory, 22–23
DNA (deoxyribonucleic acid). DNA sequence(s)

 described, 756
 discovery of, 756
 phylogenetic tree construction and, 753–800

DNA sequence(s). See also DNA (deoxyribonucleic acid)
 databases, 30, 39–40
 described, 757
 parallel data-set querying and, 634

DnaSequence class, 767
DnaSequenceList class, 767
DnaSequenceTree class, 767
Dorband, John, 16
double data type, 190, 346, 347
double helix, 756
DoubleMatrixFile class, 227
Drawing class, 776
DreamWorks Animation SKG, 11

E
early loop exit, 96–97
edges, 224–225
EDSFs (experimentally determined sequential fractions)

 all-reduce message passing and, 545
 broadcasts and, 423, 424
 cache interference and, 117
 communication overhead and, 401–402
 described, 105
 load balancing and, 162, 364, 377–378
 massive parallel problems and, 335, 336, 591
 MRI spin relaxometry and, 698
 overlapping and, 282–283
 phylogenetic tree construction and, 797
 pipelining and, 497
 random number generation and, 192

C6910_Index.indd 860C6910_Index.indd 860 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

 Index 861

 reduction and, 179, 434, 442
 sequential dependencies and, 237, 240, 241
 speedup and, 105, 107, 109

EFF (Electronic Frontier Foundation), 9
effi ciency

 all-to-all scan and, 564–565
 broadcasts and, 423
 communication overhead and, 401
 described, 101, 122, 126, 127
 Floyd’s algorithm and, 629
 load balancing and, 364, 377–378, 606, 616
 massive parallel problems and, 335–338, 592
 MPI and, 825, 827
 MRI spin relaxometry and, 698
 OpenMP and, 810, 812
 overlapping and, 270–271, 510
 parallel data-set querying and, 653
 phylogenetic tree construction and, 797
 pipelining and, 497
 protein sequence querying and, 747
 random number generation and, 194
 reduction and, 179–180, 213–215, 434, 442
 scalability and, 482
 sequential dependencies and, 236, 238,

240, 241
 sizeup and, 122
 speedup and, 101, 103, 104–105, 109

embarrassingly parallel problems, 75–76
emptyBuffer method, 340
Encrypt program, 70–71, 74
encryption, 68. See also cryptography
entropy source, 69
environment variables, 804, 806
error(s)

 all-gather message passing and, 450
 MPI and, 820
 numerical methods and, 836
 random measurement, 117–119
 random number generation and, 193–194

Ethernet
 communication overhead and, 389, 390, 403
 described, 24
 massive parallel problems and, 334, 590
 standards, 16
 switches, 17, 24

Euclidean distances, 226, 227
European Bioinformatics Institute, 714
E-value, 714, 716, 726, 729, 743
exclusive-scan collective communication, 558
exclusiveScan method, 326
exclusive-scan operations, 567–568
execute method, 80, 82, 83, 272–273
exhaustive searches, 68–69, 766–778
experimentally determined sequential fractions. See EDSFs

(experimentally determined sequential fractions)

F
false sharing, 114, 145
FASTA format, 715, 718–719, 726, 743, 749
Felsenstein, Joseph, 758
Ferguson, Niels, 636
fi leforRank method, 396
fi leIndex variable, 695
fi lename variable, 145
FileOutputStream, 144
FindKeyClu class, 331–335, 337–338, 343–344
FindKeyClu2 class, 338–344
FindKeyHyb class, 587–590, 592–593
FindKeySeq class, 71–75, 96–97, 107–108, 110,

119–120, 127–130, 132–133, 335, 337–338,
343–344, 592–593, 835

FindKeySeq2 class, 97
FindKeySmp class, 92–97, 107–110, 112
FindKeySmp3 class, 116–117, 119–120, 127–130,

132–133, 835
FindProteinHyb class, 736–737, 747, 749, 751
FindProteinHyb2 class, 743–744, 747
FindProteinSeq class, 718, 726, 747, 751

C6910_Index.indd 861C6910_Index.indd 861 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

862 Index

fi ndTrees method, 768
fi nish method, 79–83, 86, 178, 212
FinishPoint class, 733, 735
First Problem Size Law, 125
Fitch algorithm, 765, 771
fl oat data type, 190, 250, 346
fl ood operation, 317–318, 338
fl oodReceive method, 317, 340
fl ood-receive operation, 340, 341
fl oodSend method, 317
fl ood-send operation, 341
fl ow control, 390
Floyd, Robert, 226
Floyd’s algorithm

 all-gather message passing and, 471, 476
 barrier actions and, 257
 broadcasts and, 410–417, 419–426
 clusters and, 410–411
 column slicing and, 239–241
 described, 224–226
 hybrid parallel programs and, 622–630
 I/O fi les and, 226–229
 MPI and, 818–820, 824, 829–830
 numerical methods and, 827
 OpenMP and, 802–803, 809–810, 813–814
 parallel data-set querying and, 634
 parallelizing, 231–232
 row slicing and, 232–239
 scalability and, 482

FloydClu class, 414, 417, 423–426, 818–820
FloydHyb class, 628–631
FloydSeq class, 229–231, 238, 241, 243–244, 423, 426,

629–631
FloydSmpCol class, 232–241, 244, 422–426
FloydSmpRow class, 238–240, 243
for loops, 82–87, 94, 787, 792
Fortran, 17, 30, 818

 MRI spin relaxometry and, 674
 OpenMP and, 802, 806, 809

foundkey variable, 74, 90–92, 95, 97
fractal geometry, 136
fractions. See EDSFs (experimentally determined

sequential fractions)
Franklin, Rosalind, 756
frontend processors, 22

G
gamma variable, 145
gap(s)

 existence penalty, 710
 extension penalty, 710
 opening penalty, 710
 penalty, affi ne, 710, 711, 713
 positions, 705–706
 scores, 710

gather method, 319–321
gather operation, 349–350, 356–358
Gaussian distributions, 105–106
Gelertner, David, 36
general linear least squares curve fi t, 129, 839–841
genes, defi ned, 756. See also DNA (deoxyribonucleic acid)
genetic code, 756
genomes, 757
Georgetown University, 714
get method, 795
getInstance method, 190
getSeed method, 69–70
getThreadIndex method, 53
GIMPS (Great Internet Mersenne Prime Search), 9, 10, 27
GPGPU (General Purpose Computation on Graphics

Processing Units), 27–28
GPU (graphics processing unit) coprocessors, 27–28
gradients, 674
GRAPE-6 processor, 9
graph(s)

 described, 224–225
 sequential dependencies and, 224–226

graphics. See images; pixels

C6910_Index.indd 862C6910_Index.indd 862 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

 Index 863

Graphics2D class, 137
gravitation, 9, 477, 477–478
gravitational N-body problem, 477–478
gravitySimulator system, 9
GrayImageRow class, 253
guanine, 756
Gustafson, John, 104, 122–123, 130, 337
Gustafson’s Law, 122–124

H
Hamming, Richard, 757
Hamming distance, 757, 759, 775
HammingDistance class, 775
Hanson, Richard, 672
Hargrove, William, 17
hash functions

 composite, 188
 described, 187

heat distribution, calculating, 513–546
height variable, 145
Hershey, Alfred, 756
heuristic algorithms, 760–761
hexadecimal numbers, 70
histogram variable, 434
histograms, 216–220, 699

 described, 198
 reduction and, 198–206, 209–215, 434–444

Hoffman, Forrest, 17
HotSpotClu class, 534–546
HotSpotGray class, 523
HotSpotJVM class, 58
HotSpotSeq class, 523–529, 546
HPC (high-performance computing), 6
HSB (hue-saturation-brightness) components, 138
HTML (HyperText Markup Language), 775
HTTPS (HyperText Transfer Protocol, Secure), 636
huetable variable, 145
Hughes STX Corporation, 16

Hurricane Katrina, 6–7
hybrid parallel program(s)

 computation-time model and, 628
 described, 25–26
 design, 584–587
 Floyd’s algorithm and, 622–630
 load balancing and, 595–620
 massive parallel problems and, 583–594
 MPI and, 30–31
 one-level scheduling and, 596–607
 parallel data-set querying and, 633–656
 pros and cons of, 28–29
 protein sequence querying and, 729, 736, 746

I
IBM (International Business Machines), 10, 17, 136, 848

 PCs, advent of, 16
 System/360 mainframes, 101

IEEE (Institute for Electrical and Electronics Engineers)
standards, 16

image(s). See also pixels
 CCASeq class and, 252–256
 color, 137–138, 140–144
 compression, 138, 165
 dimensions, 149
 generation, parallel, 135–152
 grayscale, 139
 load balancing and, 165
 rational arithmetic and, 249–251
 resolution, 139–140
 scalability and, 251–252

image variable, 145
imagerow variable, 253
incrementAndGet method, 206
independent sequences, 195
Infi niband, 24–25d, 28
init method, 302, 305–306, 310
input/output. See I/O (input/output)

C6910_Index.indd 863C6910_Index.indd 863 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

864 Index

instruction reordering, 18
insulin, 704
int data type, 73, 190, 250, 346, 347
IntegerBuf class, 347–348
IntegerForLoop class, 83, 211, 219, 234, 805
IntegerItemBuf class, 347–348
IntegerOp class, 207–208
integers, arbitrary precision, 250
IntegerSchedule class, 160, 365
Intel, 16, 17, 57
interpolation, 128
intra-node message(s)

 described, 404–408
 send-time model, 403–406, 408, 476

invalidation, 20–21
inversion recovery sequence, 667
I/O (input/output), 240, 628–630. See also overlapping

 all-gather message passing and, 455, 462
 communication overhead and, 400
 FloydSeq class and, 229–231
 MPI and, 823, 824
 overlapping and, 268–271, 500
 sequential dependencies and, 226–231

IP (Internet Protocol), 16, 389, 390
i_root variable, 416
isPrime method, 55, 303, 306
iterated mode, 188, 189
iterator method, 642

J
Java. See also JVM (Java Virtual Machine); Parallel Java;

Parallel Java Library
 Collections Framework, 347–348
 critical sections and, 215–220
 Development Kit (JDK), 31, 809, 824
 cryptography and, 69–71, 74, 90–97
 image generation and, 137–139, 143
 load balancing and, 158–161
 MPI and, 31
 Object Serialization, 346–347

 parallel programming libraries and, 30
 parallel teams and, 78–81
 random number generation and, 190
 reduction and, 170–171, 208, 215–220
 sequential programs and, 49–59
 sizeup and, 129
 variable declarations and, 84–87

java.awt package, 137
java.io interface, 688
java.util package, 170, 347–348
JDK (Java Development Kit), 31, 809, 824
JIT (just-in-time) compiler(s), 58, 107, 824. See also

compilers
 cache interference and, 117–119
 communication overhead and, 388, 402
 described, 58
 effect, 164–165, 215
 load balancing and, 164–165, 377, 607
 massive parallel problems and, 336
 OpenMP and, 809
 Program1Seq program and, 302
 reduction and, 215
 sequential dependencies and, 236, 238

job backend process, 306
job frontend process, 305
job queues, 306
Job Launcher Daemon, 305–306
Job Scheduler Daemon, 305–306
JPEG (Joint Photographic Experts Group) images, 138.

See also images
Jukes-Cantor model, 759, 760, 775
JukesCantorDistance class, 775
JVM (Java Virtual Machine), 55–56, 58

 all-to-all scan and, 555
 cache interference and, 112–114, 116–119
 communication overhead and, 388
 cryptography and, 92, 95
 job backend process and, 306
 job frontend process and, 305
 load balancing and, 164, 607

C6910_Index.indd 864C6910_Index.indd 864 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

 Index 865

 OpenMP and, 809
 parallel regions and, 81
 Program1Seq program and, 302
 reduction and, 179, 215
 sequential dependencies and, 238
 shared memory and, 86
 speedup and, 107

K
Kahn, Robert, 16
Kasparaov, Garry, 10
kernels, 69
keylsbs variable, 72, 90, 91
K-node clusters, 29
known plaintext attacks, 68
Kolmogorov, Andrei Nikolaevich, 549
Kolmogorov-Smirnov test, 548–565
Kramnik, Vladimir, 10
ksPvalue method, 554

L
L1 (level-1) cache, 20
L2 (level-2) cache, 20
Lalande, Joseph, 477
Laplace’s equation, 514–515
latency, 24
Law of Conservation of Energy, 477
Lawson, Charles, 672
LCG (linear congruential generator), 187, 189
leapfrogging, 185–186, 190
least-squares solutions, 760
L’Ecuyer, Pierre, 189
Lepaute, Nicole, 477
Levenberg-Marquardt algorithm, 673–674, 677
linear

 congruential generator (LCG), 187, 189
 regression, 388–389, 838–839
 scale, 834

Linux, 17, 69
Lipman, David, 715

load balancing. See also master-worker pattern
 achieving, 157–158
 described, 154–157
 Floyd’s Algorithm and, 234
 hybrid parallel programs and, 595–620
 one-level scheduling and, 596–607
 overview, 153–166, 355–380, 595–620
 phylogenetic tree construction and, 792
 two-level scheduling and, 607–608
 unbalanced, 155

lock method, 847
lock-free concurrent data structures, 850–851
logarithmic scale, 835
logarithms, base-10, 834
log-log plots, 108, 834–836
long data type, 173, 178, 250, 346
LongForLoop class, 173, 178, 805
LongIterator interface, 642
loop(s)

 all-gather message passing and, 457, 468
 all-reduce message passing and, 545
 barrier actions and, 256–264
 broadcasts and, 412–413, 626
 exit, early, 338–344
 for loops, 82–87, 94, 787, 792
 load balancing and, 159–161, 375
 massive parallel problems and, 338–344, 585,

586–587
 nested, 84–85, 240
 OpenMP and, 805–806
 overlapping and, 275, 278, 280–281
 parallel data-set querying and, 652
 phylogenetic tree construction and, 787,

792, 795
 random number generation and, 185
 reduction and, 173, 178, 205, 207–209, 212
 schedules, 158–161
 sequential dependencies and, 231–232, 234, 235,

239–240

C6910_Index.indd 865C6910_Index.indd 865 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

866 Index

lossless compression, 138
lossy compression, 138

M
MacLeod, Colin, 756
magnetization, 666–667
main method, 55, 71, 78, 79, 86, 86, 305
MakeKey class, 70, 551–552
Makino, Junichiro, 9
Mandelbrot, Benoit, 136
Mandelbrot set, 159, 404

 described, 136–137
 image generation and, 136–140, 145
 load balancing and, 154–158, 161–166,

356–380, 596
 master-worker pattern and, 365–380
 reduction and, 198–203, 209–220, 434–435

MandelbrotSetClu class, 358–364
MandelbrotSetClu2 class, 368–380, 382, 391–392,

398–399
MandelbrotSetClu3 class, 394–401, 407, 598
MandelbrotSetHyb class, 598, 606–607
MandelbrotSetHyb2 class, 608, 615–616, 618–619
MandelbrotSetSeq class, 139–145, 150–151, 162, 364,

378–380, 392, 407, 606–607, 616, 618–619
MandelbrotSetSmp class, 146, 149, 150, 154,

156–157, 161–166
MandelbrotSetSmp2 class, 154
Marsaglia, George, 187, 189
massive parallel programs

 described, 75–76, 330–331, 584
 early loop exit and, 338–344
 overview, 329–344, 583–594
 sizeup and, 336–338
 speedup and, 334–336

master-worker patterns, 313, 392, 394–402. See load
balancing
 described, 44–46
 hybrid parallel programs and, 595–620
 Mandelbrot Set and, 365–380
 MRI spin relaxometry and, 686–687, 691–695

 one-level scheduling and, 596–607
 parallel data-set querying and, 646
 protein sequence querying and, 736, 742
 reduction and, 434–435, 437
 two-level scheduling and, 607–617

masterSection method, 601, 744
matrices, 143, 226–239

 buffers for, 350–354
 data slicing and, 350–354
 numerical methods and, 840
 partitions and, 352–354
 patches of, 352
 protein sequence querying and, 708–709, 712
 reading, 227
 reduction and, 203
 sequential dependencies and, 224–231, 239
 substitution and, 708–709, 712
 symmetric, 226
 weight of, 226

matrix variable, 145
maxcounter variable, 73, 90, 91, 94
MAXIMUM operator, 208
MaximumParsimony class, 768, 770, 789
MaximumParsimonyBnbSeq class, 780
MaximumParsimonyBnbSmp class, 780
MaximumParsimonyExhSeq class, 770, 780
McCarty, Maclyn, 756
MCG (multiplicative congruential generator), 187, 189
memory. See also caches; scalability

 all-gather message passing and, 476
 all-to-all scan and, 564
 barrier actions and, 251–252
 communication overhead and, 394
 distributed, 22–23
 GPU coprocessors and, 27–28
 limits, 484
 massive parallel problems and, 334–336, 590
 OpenMP and, 809
 pages, 483
 physical, 483
 Program1Seq program and, 301

C6910_Index.indd 866C6910_Index.indd 866 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

 Index 867

 sequential dependencies and, 238
 shared, 86
 virtual, 483

Merritt, David, 9
Mersenne, Marin, 9
Mersenne primes, 9
mesh(es)

 dividing a plate into a, 515
 element allocation/communication, 530–534
 point residuals, 517
 updating, 518–520

message(s). See also broadcasts; communication
overhead; MPI (Message Passing Interface) standard;
pipelining
 bandwidth, 389–390
 broadcast time model, 417–419
 described, 24
 gather time model, 402–403
 latency, 389
 MPI and, 817–832
 passing, reduced, 392–402
 ping-pong, 382–383
 scatter-time model, 402–403
 segments, 390
 send-time model, 388–391
 tags, 368
 transmission time, 389

Metcalf, Robert, 16
methods (listed by name)

 add method, 767
 align method, 719, 724, 731, 748
 allGather method, 320–321
 allReduce method, 322, 529–530
 allToAll method, 323–324
 analyze method, 677, 681, 685
 availableProcessors method, 79
 barrier method, 326
 blackBuffer method, 538
 broadcast method, 316–317, 412–413, 626
 buffer method, 347–348, 350–351, 696

 calculateNextCell method, 280
 colSliceBuffer method, 351, 353
 computeAccelerationOtherSlice method, 493
 computeScore method, 767
 critical method, 215–216, 219, 847
 currentTImeMillis method, 49
 emptyBuffer method, 340
 exclusiveScan method, 326
 execute method, 80, 82, 83, 272–273
 fi leforRank method, 396
 fi ndTrees method, 768
 fi nish method, 79–83, 86, 178, 212
 fl oodReceive method, 317–318, 340
 fl oodSend method, 317–318
 gather method, 319–321
 get method, 795
 getInstance method, 190
 getSeed method, 69–70
 getThreadIndex method, 53
 incrementAndGet method, 206
 init method, 302, 305–306, 310
 isPrime method, 55, 303, 306
 iterator method, 642
 ksPvalue method, 554
 lock method, 847
 main method, 55, 71, 78, 79, 86, 86, 305
 masterSection method, 601, 744
 next method, 188, 373, 686
 nextBoolean method, 190
 nextDouble method, 172, 190
 nextFloat method, 190
 nextInt method, 190
 nonblocking receive method, 313
 nonblocking send method, 313
 objectBuffer method, 696
 op method, 850
 pack method, 137
 patchBuffer method, 352, 353–354
 prepareToWrite method, 139, 227
 println method, 49

C6910_Index.indd 867C6910_Index.indd 867 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

868 Index

 rank method, 310
 readExternal method, 690
 receive method, 312–313, 317, 374, 602, 604
 reduce method, 209, 322, 431, 793, 849–850
 region method, 219
 release method, 847
 rowSliceBuffer method, 351–353
 run method, 52–53, 55–56, 79–84, 94, 96, 158,

164, 192, 215, 258, 272–273, 601, 795
 scatter method, 318–319, 320
 schedule method, 160, 161, 806
 send method, 311–313, 317
 sendReceive method, 314, 487–488, 502
 setToBest method, 735
 size method, 310
 skip method, 190
 sliceBuffers method, 350
 sort method, 553
 start method, 79–83, 86, 94, 96, 112–113,

116, 372
 updateScore method, 767–768
 waitForFinish method, 313, 502
 workerSection method, 601, 603, 744
 write method, 139, 227
 writeCurrentCell method, 255, 281
 writeExternal method, 689, 690

Miescher, Friedrich, 756
Milky Way, 8
MINIMUM operator, 208
MINPACK Library, 674
MMPs (massive multithreaded processors), 21
model

 functions, 671–673, 836–839
 parameters, 125, 129

modes of operation, 187–188
momentum

 described, 454
 total, 454–455

Monte Carlo algorithms
 described, 168–172
 OpenMP and, 811
 random number generation and, 183–196
 reduction and, 168–172, 175, 177–182,

428–429, 432–434
MPI (Message Passing Interface) standard, 17–18, 310,

817–832
 described, 30–31
 launcher, 30–31

MRI (magnetic resonance image) scanners, 4–6,
666–670. See also MRI spin relaxometry

MRI spin relaxometry, 4–6, 666–670. See also MRI
(magnetic resonance image) scanners
 cluster parallel programs and, 686–687
 described, 671
 displaying the results of, 698–700
 overview, 665–792

MSHistogramClu class, 436–437, 442, 444
MSHistogramSeq class, 200–203, 221–222, 444
MSHistogramSmp class, 203–204, 213–215, 221–222
MSHistogramSmp2 class, 209–213
MSHistogramSmp3 class, 216–220
MSS (maximum segment size), 390
MTU (maximum transmission unit), 389–390
multithreading support, 822
multivariate model function, 840
Myrinet, 24–25, 28
myslice variable, 361–362

N
n variable, 90, 91
N-body problem, 477–478
NASA (National Aeronautics Space Administration), 16
National Museum of American History, 10
net magnetization, 666
Newton, Isaac, 477
Newton’s Second Law of Motion, 448

C6910_Index.indd 868C6910_Index.indd 868 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

 Index 869

next method, 188, 373, 686
nextBoolean method, 190
nextDouble method, 172, 190
nextFloat method, 190
nextInt method, 190
nonblocking receive method, 313
nonblocking send method, 313
nonlinear least-squares curve-fi tting procedure, 671,

674, 677
NonLinearLeastSquares class, 674, 677
nonnegative least-squares solution, 760, 672, 677,

760, 775
NonNegativeLeastSquares class, 677, 760, 775
nucleotides, 756
numerators, 250
numerical
 integration algorithm, 449–450
 methods, 833–834

O
Oak Ridge National Laboratory, 17
Object data type, 346
ObjectBuf class, 696
objectBuffer method, 696
objects, serialized, 346–347
one-level scheduling, 596–607
op method, 618, 850
OpenMP standard, 17, 30, 31

 described, 801–802
 features, 803–808
 overview, 801–816
 performance, 809–912

OpenMP.org Web site, 802
OSG (Open Science Grid), 26–27
overlapping

 communication overhead and, 400
 computation time model and, 508–509
 described, 42, 268–269
 nested parallel regions and, 274–276

 non-blocking send-receive operation and, 502
 overlapped computation/communication and,

500–502
 overview, 267–284, 499–512
 parallel sections and, 271–174

P
pack method, 137
Packer, Charles, 16
padding, 114–116, 211, 218
PAM (Point Accepted Mutation) matrices, 708
parallel data-set querying

 overview, 633–656
 prime counting function and, 636–644
 strategies, 634–636

parallel for loops, 82–87, 787, 792. See also loops
parallel input fi les pattern, 410–411, 686, 736,

823–824
Parallel Java. See also Parallel Java Library

 all-gather message passing and, 455
 atomic compare-and-set and, 848
 broadcasts and, 417
 communication overhead and, 389, 403
 daemons and, 306
 data slicing and, 346–348
 load balancing and, 356
 MPI and, 817–832
 OpenMP and, 801–816
 parallel message passing and, 309–327
 parallel sections and, 271–174
 reduction and, 431

Parallel Java Library, 137–139, 826. See also
Parallel Java
 cache interference and, 116–117
 communication overhead and, 403
 communicators and, 310–311
 cryptography and, 70, 97
 described, 31
 MRI spin relaxometry and, 674

C6910_Index.indd 869C6910_Index.indd 869 2/2/09 9:21:24 AM2/2/09 9:21:24 AM

870 Index

 numerical methods and, 839
 parallel data-set querying and, 644
 random number generation and, 190
 reduction and, 172, 176, 208
 rewriting cluster parallel programs with,

302–306
 sequential dependencies and, 227
 sizeup and, 129–130
 speedup and, 109

parallel message passing
 collective communication and, 314–327
 point-to-point communication and, 311–314
 overview, 309–327

parallel output fi les pattern, 394, 462, 542, 596,
823–824

parallel reduction pattern, 322
parallel regions, 52, 79–81, 147, 274–276, 804
parallel sections, 271–174
parallel team(s), 52, 79–81, 607–608

 cache interference and, 112–114
 described, 78
 for loops and, 82–84
 overlapping and, 273–274
 reduction and, 205, 211

parallelism
 agenda, 38–41, 44–46
 coarse-grained, 37
 cost of, 56
 fi ne-grained, 37
 patterns of, 36–43
 protein sequence querying and, 731
 result, 36–38
 specialist, 41–43, 275

ParallelRegion class, 79–81, 804
ParallelSection class, 272
ParallelTeam class, 804
parsimony, 757, 763–788
“parasite,” parallel computers, 103, 116, 150, 170, 175,

236, 238, 786

partialkey variable, 90, 91
partitions

 arrays and, 349–350
 load balancing and, 596
 overview, 621–632
 matrices and, 352–354
 parallel data-set querying and, 634–635, 645
 phylogenetic tree construction and, 787

patchBuffer method, 352, 353–354
Pearson, William, 715
pepsin, 704
perihelion, 477
PET (positron emission tomography) scans, 446–447
PHYLIP (Phylogeny Inference Package) format, 758,

767, 776
phylogenetic tree construction

 branch-and-bound search and, 778–798
 distance methods and, 757–762
 exhaustive search and, 766–778
 Fitch algorithm and, 765, 771
 overview, 753–800

phylogeny, 754–757. See also phylogenetic tree
construction

PhylogenyParsBnbSeq class, 784, 786, 797
PhylogenyParsBnbSmp class, 788–789, 796, 797
PhylogenyParsExhSeq class, 766–767, 776, 778,

784, 786
pi, estimating, 168–175, 177–180, 191–194

 MPI and, 831–832
 OpenMP and, 815–816
 reduction and, 428–429, 432–434

PiClu class, 432, 442, 443, 434
pipelining, 18, 42

 antiproton program and, 488–497
 described, 18, 484–487
 overlapping and, 499–512
 overview, 481–498
 program performance and, 496–498

PiSeq class, 174–175, 182, 192, 443

C6910_Index.indd 870C6910_Index.indd 870 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

 Index 871

PiSeq3 class, 191, 196
PiSmp class, 172, 174–176
PiSmp2 class, 177, 182, 192
PiSmp3 class, 196
Pixar Animation Studios, 11
pixel(s), 138–140, 142–150. See also images; PJG

(Parallel Java Graphics) format
 all-reduce message passing and, 523–524, 528
 barrier actions and, 250, 251–252
 color images and, 137–138
 communication overhead and, 391–392, 394
 compression and, 138
 GPU coprocessors and, 27–28
 load balancing and, 154–158, 162, 164,

356–358, 366, 374, 596–598, 603,
605–607

 MRI spin relaxometry and, 4–6, 668–670,
672–686

 overlapping and, 281
 reduction and, 198–203, 205–213
 speedup and, 100

PixelAnalysis class, 677, 685
PixelChunk class, 686, 688–689, 690
pixelrow variable, 253
PixelSchedule class, 693
PixelSignal class, 677
PixelTissues class, 677, 685, 690
PJG (Parallel Java Graphics) format, 138–145, 227.

See also images; pixels
 all-reduce message passing and, 528, 542
 barrier actions and, 251–253, 256, 257
 communication overhead and, 392–394,

396, 400
 described, 138
 load balancing and, 154, 165, 356, 365–368, 371,

377, 603
 master-worker pattern and, 365–368fr

PJGColorImage class, 142
PJGGrayImage class, 251–253, 257

PJGHueImage class, 528
plaintext

 attacks, 70
 described, 68
 load balancing and, 157–158
 massive parallel problems and, 330
 scalability and, 484

plaintext variable, 90, 91
PlotPixel class, 677, 698–700
PNG (Portable Network Graphics) fi les, 42, 138–139,

776. See also images
point-to-point communication, 311–314, 487–488
positrons, 446
PostScript fi les, 139
power function, 835–838
power function curve-fi tting problem, 836–838
pragmas

 described, 30, 802
 OpenMP and, 802–816

prefi x sum operation, 324–327
prepareToWrite method, 139, 227
prime(s)

 counting function, 636–653
 described, 636
 Sieve of Eratosthenes and, 636–637

Prime32List class, 644
PrimeCountFunctionHyb class, 646, 653, 655
PrimeCountFunctionSeq class, 644, 653, 655
primitive data types, 176, 250, 346, 808
println method, 49
PRNGs (pseudorandom number generators)

 all-gather message passing and, 455, 466
 all-to-all scan and, 548–551, 557, 564–565
 block ciphers as, 550–551
 classes and, 190
 described, 69
 reduction and, 170–175, 177–178, 181,

184–189, 429
probability theory, 106

C6910_Index.indd 871C6910_Index.indd 871 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

872 Index

problem size
 described, 100
 laws, 124–127, 129

processors
 all-gather message passing and, 472,

473–474
 all-to-all scan and, 564–565
 broadcasts and, 419–420, 423
 communication overhead and, 381, 401–402
 computing grids and, 26–27
 cryptography and, 76–77
 Floyd’s algorithm and, 629
 load balancing and, 154–157, 162, 364,

377–378, 606, 616
 massive parallel problems and, 335–338,

591, 592
 MPI and, 825, 827
 MRI spin relaxometry and, 698
 OpenMP and, 809–810, 812
 overlapping and, 270–271, 282–283,

508–509, 510
 parallel data-set querying and, 653
 parallelism and, 36–43
 phylogenetic tree construction and, 796–797
 pipelining and, 497
 protein sequence querying and, 747
 random number generation and, 186, 194
 reduction and, 175–176, 179–182,

213–215, 434
 scalability and, 482–484
 sequential dependencies and, 237, 241
 use of the term, 5

PRODUCT operator, 208
Program1Clu class, 304, 306–307
Program1Seq class, 50–51, 57, 300–302
Program1Smp class, 53, 55–56
protein(s)

 described, 704
 sequence querying, 7–8, 703–752

Protein Information Resource, 714

ProteinDatabase class, 719
ProteinLocalAlignment class, 719, 724, 731
proteinLocalAlignmentSeq class, 724
ProteinLocalAlignmentSmp class, 731, 736
ProteinSequence class, 718
Pthreads (POSIX thread library), 30
PVM (Parallel Virtual Machine) library, 17

Q
quadratic equations, 841
queries. See also databases

 data set, 633–656
 described, 633
 partitioning, 634–635, 645
 protein sequence, 703–752

R
RAM (random-access memory), 483. See also memory
Ranawake, Udaya, 16
Random class, 69, 170, 172, 190–192, 549
random number(s). See also random number generation

 cycles of, 184
 estimating pi with, 168–175
 skipping over, 185–186

random number generation(s), 69, 183–196.
PRNGs (pseudorandom number generators)

 all-gather message passing and, 455, 466
 algorithms, 187–189
 estimating pi with, 168–175
 reduction and, 170–175, 177–178, 181,

184–189, 429
Range class, 330, 348, 391–392
Range object, 391–392
ranges variable, 360
rank attribute, 303, 310, 330–331
rank method, 310
rational arithmetic, 249–251
readExternal method, 690
read-write confl icts, 87
receive method, 312–313, 317, 374, 602, 604

C6910_Index.indd 872C6910_Index.indd 872 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

 Index 873

reduce method, 209, 322, 431, 793, 849–850
reduction. See also reduction patterns

 critical sections and, 215–220
 OpenMP and, 807–808
 operators, 40, 207–213, 219, 221, 808
 overview, 167–182, 197–222
 performance comparisons and, 213–215
 variables, 176, 178, 807–808

reduction patterns, 175–176, 207–209, 220–221,
430–434. See also reduction
 broadcasts and, comparison of, 429
 collective communication and, 429–431
 described, 40
 Mandelbrot set histogram program and,

434–444
 overview, 427–444
 parallel data-set querying and, 652
 phylogenetic tree construction and, 787

region method, 219
regression formulas, 388–389
relaxation algorithms, 516–517, 520
relaxation parameters, 520–521
release method, 847
render farms, 11
replacement policy, 19
residuals,

 termination using, 517
 total absolute, 517–518

resolution, 139–140
Results class, 775
RFCs (Requests For Comments), 16
RGB (red-green-blue) format, 137–138, 142, 144
Rivest, Ronald, 636
root(s)

 process, 316
 of quadratic equations, 841

row(s)
 major order, 351
 partitioning matrices by, 352–354
 slicing, 232–239, 351–353

rowSliceBuffer method, 351–353
RSA public key cryptosystem, 8, 636. See also

cryptography
RTT (round-trip time), 382–383, 385
run method, 52–53, 55–56, 79–84, 94, 96, 158, 164,

192, 215, 258, 272–273, 601, 795
running time metrics, 105–109, 117, 119–120,

124–127
 all-gather message passing and, 470,

473–476, 479–480
 all-reduce message passing and, 521,

544, 546
 all-to-all scan and, 570
 broadcasts and, 419–420, 423, 426
 communication overhead and, 401, 407
 described, 100
 Floyd’s algorithm and, 629–631
 image generation and, 142, 149, 151
 load balancing and, 155–157, 161–166, 364,

377–380, 606, 615–616, 618–619
 massive parallel problems and, 334–338,

343–344, 591–593
 MPI and, 825, 827, 829–830
 MRI spin relaxometry and, 697–698
 OpenMP and, 809–810, 812–816
 overlapping and, 269–270, 282–284,

508–509, 510–511
 parallel data-set querying and, 653
 phylogenetic tree construction and, 786, 797
 pipelining and, 497–498
 protein sequence querying and, 747–748, 751
 random number generation and, 194, 196
 reduction and, 179–180, 213–215, 221–222, 434,

442–444
 sequential dependencies and, 237, 241

S
sample means, 106
Sandia National Laboratories, 122
Savarese, Daniel, 16

C6910_Index.indd 873C6910_Index.indd 873 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

874 Index

scalability, 29, 394, 476
 all-to-all scan and, 564–565
 described, 482–484
 overlapping and, 499–512
 overview, 481–498

scan operation, 324–325
scatter method, 318–319, 320
scatter operation, 349–350
schedule(s). See also scheduling

 described, 158–161
 dynamic,158–159, 160, 205
 fi xed, 158
 guided, 159, 160, 162, 205
 master-worker pattern and, 365
 objects, 160
 OpenMP and, 806
 runtime, 160, 161
 specifying, 161

schedule method, 160, 161, 806
scheduling. See also schedules

 one-level, 596–605
 two-level, 607–617, 646, 742

Schneier, Bruce, 636
SCI (Scalable Coherent Interface), 24–25
score variable, 788
searches

 branch-and-bound, 778–798
 exhaustive, 68–69, 766–778
 pruning, 779, 781–783, 795

Second Problem Size Law, 126, 127, 129–130, 337
second-order integration algorithm, 450–454
secret keys, 68
section groups, 807
seeds

 all-gather message passing and, 455, 466
 random number generation and, 170–171,

184–185, 190
 setting, 184

Semaphore class, 846–847
semaphores, 846–847

send and receive operation, 313–314
send method, 311–313, 317
sendReceive method, 314, 487–488, 502
send-receive operation, 487–488, 502, 540
sequence(s)

 aligning, 705–718
 splitting, 186–187, 190, 191–194, 490

Sequence class, 718
sequential

 dependencies, 37–40, 223–244
 fractions, 103

Serializable class, 688
Serializable interface, 347
servers, 17, 107, 138, 302
SETI (search for extraterrestrial intelligence), 9–10, 27
setToBest method, 735
Shamir, Adi, 636
SharedInteger class, 208–209, 788, 848
SharedIntegerArray class, 203–205, 209
SharedLong class, 172, 173, 178, 647
short data type, 346
Sieve class, 643
Sieve of Eratosthenes, 636–637
SignalDataSetReader class, 676–677, 686
SignalDataSetWriter class, 676–677
signature variable, 772
Simard, Richard, 185
sites

 informative, 766
 uninformative, 766
 use of the term, 757

size attribute, 303, 310, 330–331
size method, 310
sizeup, 121–133, 472

 all-to-all scan and, 564–565
 broadcasts and, 421–422
 described, 6, 104, 122
 Gustafson’s Law and, 122–124
 linear, 122
 massive parallel problems and, 336–338

C6910_Index.indd 874C6910_Index.indd 874 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

 Index 875

 problem size laws and, 124–127, 129
 scalability and, 482
 sublinear, 122

skip method, 190
slice(s). See also data slicing

 all-gather message passing and, 461–462,
468, 470

 all-reduce message passing and, 530–532,
536–537, 539–540, 543

 all-to-all scan and, 556–557
 communication overhead and, 392–393,

398, 400
 described, 43–44
 load balancing and, 361–362, 372–376,

603, 613
 matrices and, 351
 MRI spin relaxometry and, 667
 overlapping and, 502
 pipelining and, 484–486, 490–493
 protein sequence querying and, 732

sliceBuffers method, 350
slowdowns, 471, 545
SMBH (supermassive black hole), 8
Smirnov, Nikolai, 549
Smith, Temple, 706
Smith-Waterman algorithm, 706, 711, 716, 730, 749
SMP (shared memory multiprocessor) parallel computers

 all-to-all scan and, 568
 atomic compare-and-set and, 847
 barrier actions and, 245–265
 cache interference and, 111–120
 closer examination of, 77–88
 cryptography and, 89–97
 described, 22
 image generation and, 135–152
 load balancing and, 153–166
 massive parallel problems and, 67–76,

583–594
 measuring speedup and, 99–110
 OpenMP and, 801–816

 overlapping and, 267–284, 500
 parallel random number generation and,

183–196
 phylogenetic tree construction and, 788, 796
 pros and cons of, 28–29
 protein sequence querying and, 729, 730,

736, 749
 reduction and, 167–182, 197–222,

428–429, 434
 sequential dependencies and, 223–244

SOR (successive overrelaxation), 520–523, 544–546
sort method, 553
spectral radius, 520–521
speed, of programs, 100–101
speedup, 56, 81, 99–110

 all-gather message passing and, 471–474
 all-reduce message passing and, 545
 Amdahl’s Law and, 101–105
 broadcasts and, 421–422, 423
 cache interference and, 117
 communication overhead and, 401
 described, 5–6, 100, 101
 Floyd’s algorithm and, 629
 linear, 101
 load balancing and, 162, 363, 606, 616
 massive parallel problems and, 334–336,

591, 592
 MPI and, 818, 825, 827
 MRI spin relaxometry and, 698
 OpenMP and, 810, 812
 overlapping and, 270–271, 508–509, 510
 parallel data-set querying and, 653
 phylogenetic tree construction and, 797
 pipelining and, 497
 protein sequence querying and, 747
 random number generation and, 194
 reduction and, 174, 179–180, 213–215,

 434, 442
 sequential dependencies and, 237
 sizeup and, 130–131

C6910_Index.indd 875C6910_Index.indd 875 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

876 Index

 sublinear, 101
 superlinear, 215, 270

spin(s). See also spin relaxometry
 density, 670, 681
 described, 666
 -lattice relaxation rate, 670, 681, 683
 -lattice relaxation time, 670
 signals, 669, 668

spin relaxometry, 4–6, 666–670. See also MRI
(magnetic resonance image) scanners; spins
 cluster parallel programs and, 686–687
 described, 671
 displaying the results of, 698–700
 overview, 665–792

SpinRelaxometryClu class, 697–698
SpinRelaxometrySeq class, 683, 690, 697–698
SpinSignal class, 677
SpinSignalDifference class, 677
spreadsheets, 37–38
start method, 79–83, 86, 94, 96, 112–113, 116, 372
state changes, 758
statistical tests, 548–550
Statistics class, 554–555
Sterling, Thomas, 16
stride, of ranges, 349
subject sequences, 705, 713
subranges, 83, 350, 585
superscalar architecture, 18
Sun Microsystems, 17, 51, 107, 179
SUM operator, 208
surface-to-volume effect, 240, 390, 475, 545
Swiss-Prot database, 7–8, 715–716, 746. See also

databases
symmetric multiprocessors, 20–21
synchronized blocks, 846–847, 849
synchronized keyword, 846, 847
synchronized methods, 846–847

T
T (one-way time), 382–383, 385
t1 variable, 91
t2 variable, 91
table-lookup techniques, 142
taxonomy, 754
TCP (Transmission Control Protocol), 16, 389, 390
TCP/IP (Transmission Control Protocol/Internet Protocol),

16, 17, 24–25
temperature, calculating, 513–546
termination, using residuals, 517
thread(s)

 atomic compare-and-set and, 845–851
 barriers and, 83, 257–259
 broadcasts and, 623
 cache interference and, 113–114
 confl icts, 87
 cryptography and, 90–92
 described, 78
 early loop exits and, 96–97
 image generation and, 145
 indexes, 79
 load balancing and, 155–158, 162, 365–366,

370–371, 377, 596, 599–602, 605, 607–608,
615, 617

 massive parallel problems and, 586, 591
 MPI and, 822
 OpenMP and, 804
 overlapping and, 268, 275, 278, 281
 parallel data-set querying and, 646–651
 parallel teams and, 78–79
 phylogenetic tree construction and, 787,

792, 795
 protein sequence querying and, 729, 730, 732,

734, 748
 random number generation and, 183
 reduction and, 167–181, 207–209, 217

C6910_Index.indd 876C6910_Index.indd 876 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

 Index 877

 sequential dependencies and, 235, 237
 synchronizing, 87, 91, 95, 145, 167–181,

217, 259
thymine, 756
tight binary stars, 477
time steps, 449, 467, 477
TimeSendByte class, 383, 388–391
TimeSendDouble class, 388
TimeSendInt class, 388
tissues variable, 696
TissuesDataSetReader class, 677
TissuesDataSetWriter class, 677
TOP500 List, 17, 29
Torvalds, Linus, 16
total

 absolute deviation, 838
 momentum, 454

tracebacks, 707–708, 711, 719, 734
TreeDrawing class, 776
tree signatures, 769, 772–773, 792. See also

phylogenetic tree construction
treeStack variable, 771
trial division algorithm, 48
trialciphertext variable, 73, 91
trialkey variable, 90, 112–113
truncation errors, 450

U
ultrametric trees, 762
UltraSPARC chips, 51, 107, 179, 238, 301, 809, 824
UnitProt (Universal Protein Resource), 714
University of California Berkeley, 9–10
University of Maryland, 16
University of Tokyo, 9
Unix, 69
updateScore method, 767–768

UPGMA (Unweighted Pair Group Method with
Arithmetic mean), 761, 759–762, 779–780, 785

Upgma class, 780

V
value(s)

 barrier actions and, 246, 252
 calculating, 252
 described, 246

variable(s)
 atomic, 92
 declarations, 84–87, 96
 environment, 804, 806
 global, 603, 787
 initializing, 93–94
 load balancing and, 603
 local, 86, 145, 234
 loop control, 86
 OpenMP and, 804–805
 per-thread, 86, 96, 209–213, 114, 805
 reading/writing, 87
 reduction and, 176, 178
 shared, 86, 97, 804–805, 849–850
 updating, 87
 WORM (write once, read many), 91, 145,

233, 259
Vector2D class, 455–456
VectorFunction interface, 677
vectors

 all-gather message passing and, 447–448,
451–452, 455–456

 two-dimensional (2-D), 447–448, 455–456
vertices

 adjacent, 224–225
 described, 224–225

virtual machine. See JVM (Java Virtual Machine)

C6910_Index.indd 877C6910_Index.indd 877 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

878 Index

virtual memory, 29
voxels, 668, 671, 698

W
waitForFinish method, 313, 502
Walt Disney, 11
Waterman, Michael, 706
Watson, James, 756
weather forecasting, 6–7
width variable, 145
wildcards, 313, 366
Wilkins, Maurice, 756
workerSection method, 601, 603, 744
working set, 19
world communicator, 302–303, 412–413

 described, 310–311
 early loop exit and, 338, 340
 massive parallel problems and, 330–331,

338, 340
 rank attribute, 303, 310, 330–331
 size attribute, 303, 310, 330–331

WORM (write once, read many) variables, 91, 145,
233, 259

wraparound boundaries, 246–247
wrapper classes, 176, 788, 848

WRF (Weather Research and Forecasting) model, 6–7
write method, 139, 227
writeCurrentCell method, 255, 281
writeExternal method, 689, 690
write-write confl icts, 87, 91–92, 95
Writer class, 227

X
x components, 447–448
xcenter variable, 145
Xerox PARC (Palo Alto Research Center), 16
xoffset variable, 142, 145
Xorshift generator, 187–188

Y
y components, 447–448
Yale University, 36
ycenter variable, 145
yoffset variable, 142, 145

Z
zero-length buffers, 340–341. See also buffers
Zharkikh, Andrey, 765
zmagsqr variable, 144

C6910_Index.indd 878C6910_Index.indd 878 2/2/09 9:21:25 AM2/2/09 9:21:25 AM

	Front Cover
	Title Page
	Copyright
	Table of Contents
	Part I: Preliminaries
	Chapter 1 Parallel Computing
	1.1 Bigger Problems, Faster Answers
	1.2 Applications for Parallel Computing
	1.3 For Further Information

	Chapter 2 Parallel Computers
	2.1 A Brief History of Parallel Computers
	2.2 CPU Hardware
	2.3 SMP Parallel Computers
	2.4 Cluster Parallel Computers
	2.5 Hybrid Parallel Computers
	2.6 Computing Grids
	2.7 GPU Coprocessors
	2.8 SMPs, Clusters, Hybrids: Pros and Cons
	2.9 Parallel Programming Libraries
	2.10 For Further Information

	Chapter 3 How to Write Parallel Programs
	3.1 Patterns of Parallelism
	3.2 Result Parallelism
	3.3 Agenda Parallelism
	3.4 Specialist Parallelism
	3.5 Clumping, or Slicing
	3.6 Master-Worker
	3.7 For Further Information

	Chapter 4 A First Parallel Program
	4.1 Sequential Program
	4.2 Running the Sequential Program
	4.3 SMP Parallel Program
	4.4 Running the Parallel Program
	4.5 Running on a Regular Computer
	4.6 The Rest of the Book
	4.7 For Further Information
	Part I: Exercises

	Part II: SMPs
	Chapter 5 Massively Parallel Problems
	5.1 Breaking the Cipher
	5.2 Preparing the Input
	5.3 Sequential Key Search Program
	5.4 Transitioning to a Parallel Program
	5.5 For Further Information

	Chapter 6 SMP Parallel Programming
	6.1 Parallel Team
	6.2 Parallel Region
	6.3 Parallel For Loop
	6.4 Variables
	6.5 For Further Information

	Chapter 7 Massively Parallel Problems, Part 2
	7.1 AES Key Search Parallel Program Design
	7.2 AES Key Search Parallel Program Code
	7.3 Early Loop Exit

	Chapter 8 Measuring Speedup
	8.1 Speedup Metrics
	8.2 Amdahl’s Law
	8.3 Measuring Running Time
	8.4 FindKeySmp Running Time Measurements
	8.5 For Further Information

	Chapter 9 Cache Interference
	9.1 Origin of Cache Interference
	9.2 Eliminating Cache Interference
	9.3 FindKeySmp3 Measurements
	9.4 For Further Information

	Chapter 10 Measuring Sizeup
	10.1 Sizeup Metrics
	10.2 Gustafson’s Law
	10.3 The Problem Size Laws
	10.4 Measuring Sizeup
	10.5 FindKeySmp3 Sizeup Data
	10.6 Speedup or Sizeup?
	10.7 For Further Information

	Chapter 11 Parallel Image Generation
	11.1 The Mandelbrot Set
	11.2 Color Images
	11.3 Sequential Program
	11.4 Parallel Program
	11.5 For Further Information

	Chapter 12 Load Balancing
	12.1 Load Balance
	12.2 Achieving a Balanced Load
	12.3 Parallel For Loop Schedules
	12.4 Parallel Program with Load Balancing
	12.5 For Further Information

	Chapter 13 Reduction
	13.1 Estimating pi Using Random Numbers
	13.2 Sequential Program
	13.3 Parallel Program
	13.4 The Reduction Pattern
	13.5 Parallel Program with Reduction
	13.6 The Second Flaw
	13.7 For Further Information

	Chapter 14 Parallel Random Number Generation
	14.1 Parallel PRNG Patterns
	14.2 Pseudorandom Number Generator Algorithms
	14.3 A Parallel PRNG Class
	14.4 Parallel Program with Sequence Splitting
	14.5 Parting Remarks
	14.6 For Further Information

	Chapter 15 Reduction, Part 2
	15.1 Histogram of the Mandelbrot Set
	15.2 Sequential Version
	15.3 Parallel Version without Reduction
	15.4 Reduction Operators
	15.5 Parallel Version with Reduction
	15.6 Performance Comparison
	15.7 Critical Sections
	15.8 Parallel Version with Critical Section
	15.9 Summary: Combining Partial Results

	Chapter 16 Sequential Dependencies
	16.1 Floyd’s Algorithm
	16.2 Input and Output Files
	16.3 Sequential Program
	16.4 Parallelizing Floyd’s Algorithm
	16.5 Parallel Program with Row Slicing
	16.6 Parallel Program with Column Slicing
	16.7 For Further Information

	Chapter 17 Barrier Actions
	17.1 One-Dimensional Continuous Cellular Automata
	17.2 Rational Arithmetic
	17.3 Improving Memory Scalability
	17.4 Sequential Program
	17.5 Barrier Actions
	17.6 Parallel Program
	17.7 For Further Information

	Chapter 18 Overlapping
	18.1 Overlapped Computation and I/O
	18.2 Parallel Sections
	18.3 Nested Parallel Regions
	18.4 Parallel Program with Overlapping
	Part II: Exercises

	Part III: Clusters
	Chapter 19 A First Cluster Parallel Program
	19.1 Sequential Program
	19.2 Running the Sequential Program
	19.3 Cluster Parallel Program
	19.4 Running the Parallel Program

	Chapter 20 Parallel Message Passing
	20.1 Communicators
	20.2 Point-to-Point Communication
	20.3 Collective Communication

	Chapter 21 Massively Parallel Problems, Part 3
	21.1 Cluster Parallel Program Design
	21.2 Parallel Key Search Program
	21.3 Parallel Program Speedup
	21.4 Parallel Program Sizeup
	21.5 Early Loop Exit

	Chapter 22 Data Slicing
	22.1 Buffers
	22.2 Single-Item Buffers
	22.3 Array Buffers
	22.4 Matrix Buffers
	22.5 For Further Information

	Chapter 23 Load Balancing, Part 2
	23.1 Collective Communication: Gather
	23.2 Parallel Mandelbrot Set Program
	23.3 Master-Worker
	23.4 Master-Worker Mandelbrot Set Program

	Chapter 24 Measuring Communication Overhead
	24.1 Measuring the Time to Send a Message
	24.2 Message Send-Time Model
	24.3 Applying the Model
	24.4 Design with Reduced Message Passing
	24.5 Program with Reduced Message Passing
	24.6 Message Scatter and Gather Time Models
	24.7 Intra-Node Message Passing

	Chapter 25 Broadcast
	25.1 Floyd’s Algorithm on a Cluster
	25.2 Collective Communication: Broadcast
	25.3 Parallel Floyd’s Algorithm Program
	25.4 Message Broadcast Time Model
	25.5 Computation Time Model
	25.6 Parallel Floyd’s Algorithm Performance

	Chapter 26 Reduction, Part 3
	26.1 Estimating pi on a Cluster
	26.2 Collective Communication: Reduction
	26.3 Parallel pi Program with Reduction
	26.4 Mandelbrot Set Histogram Program

	Chapter 27 All-Gather
	27.1 Antiproton Motion
	27.2 Sequential Antiproton Program
	27.3 Collective Communication: All-Gather
	27.4 Parallel Antiproton Program
	27.5 Computation Time Model
	27.6 Parallel Program Performance
	27.7 The Gravitational N-Body Problem
	27.8 For Further Information

	Chapter 28 Scalability and Pipelining
	28.1 Scalability
	28.2 Pipelined Message Passing
	28.3 Point-to-Point Communication: Send-Receive
	28.4 Pipelined Antiproton Program
	28.5 Pipelined Program Performance

	Chapter 29 Overlapping, Part 2
	29.1 Overlapped Computation and Communication
	29.2 Non-Blocking Send-Receive
	29.3 Pipelined Overlapped Antiproton Program
	29.4 Computation Time Model
	29.5 Pipelined Overlapped Program Performance

	Chapter 30 All-Reduce
	30.1 A Heat Distribution Problem
	30.2 Sequential Heat Distribution Program
	30.3 Collective Communication: All-Reduce
	30.4 Mesh Element Allocation and Communication
	30.5 Parallel Heat Distribution Program
	30.6 Parallel Program Performance
	30.7 For Further Information

	Chapter 31 All-to-All and Scan
	31.1 The Kolmogorov-Smirnov Test
	31.2 Block Ciphers as PRNGs
	31.3 Sequential K-S Test Program
	31.4 Parallel K-S Test Design
	31.5 Parallel K-S Test Program
	31.6 Parallel K-S Test Program Performance
	31.7 Collective Communication: All-to-All and Scan
	31.8 For Further Information
	Part III: Exercises

	Part IV: Hybrid SMP Clusters
	Chapter 32 Massively Parallel Problems, Part 4
	32.1 Hybrid Parallel Program Design
	32.2 Parallel Key Search Program
	32.3 Parallel Program Performance

	Chapter 33 Load Balancing, Part 3
	33.1 Load Balancing with One-Level Scheduling
	33.2 Hybrid Program with One-Level Scheduling
	33.3 Program Performance with One-Level Scheduling
	33.4 Load Balancing with Two-Level Scheduling
	33.5 Hybrid Program with Two-Level Scheduling
	33.6 Program Performance with Two-Level Scheduling

	Chapter 34 Partitioning and Broadcast, Part 2
	34.1 Floyd’s Algorithm on a Hybrid
	34.2 Hybrid Parallel Floyd’s Algorithm Program
	34.3 Computation-Time Model
	34.4 Hybrid Floyd’s Algorithm Performance

	Chapter 35 Parallel Data-Set Querying
	35.1 Data Sets and Queries
	35.2 Parallel Data-Set Querying Strategies
	35.3 The Prime Counting Function
	35.4 Sieving
	35.5 Sequential Prime Counting Program
	35.6 Hybrid Parallel Prime Counting Program
	35.7 For Further Information
	Part IV: Exercises

	Part V: Applications
	Chapter 36 MRI Spin Relaxometry
	36.1 MRI Scanning
	36.2 Spin Relaxometry Analysis
	36.3 Sequential Spin Relaxometry Program
	36.4 Cluster Parallel Program Design
	36.5 Parallel Spin Relaxometry Program
	36.6 Parallel Program Performance
	36.7 Displaying the Results
	36.8 Acknowledgments
	36.9 For Further Information

	Chapter 37 Protein Sequence Querying
	37.1 Protein Sequences
	37.2 Protein Sequence Alignment
	37.3 A Protein Sequence Query Example
	37.4 Sequential Program
	37.5 Parallel Program, Version 1
	37.6 Parallel Program, Version 2
	37.7 Parallel Program Performance
	37.8 Smith-Waterman vs. FASTA and BLAST
	37.9 For Further Information

	Chapter 38 Phylogenetic Tree Construction
	38.1 Phylogeny
	38.2 Distances
	38.3 A Distance Method: UPGMA
	38.4 Maximum Parsimony Method
	38.5 Maximum Parsimony with Exhaustive Search
	38.6 Maximum Parsimony with Branch-and-Bound Search
	38.7 Parallel Branch-and-Bound Search
	38.8 Acknowledgments
	38.9 For Further Information

	Appendices
	A: OpenMP
	A.1 OpenMP Programming
	A.2 OpenMP Features
	A.3 OpenMP Performance
	A.4 For Further Information

	B: Message Passing Interface (MPI)
	B.1 MPI Programming
	B.2 MPI Features
	B.3 MPI Performance
	B.4 For Further Information

	C: Numerical Methods
	C.1 Log-Log Plots
	C.2 Power Functions on a Log-Log Plot
	C.3 Power Function Curve Fitting
	C.4 Linear Regression
	C.5 General Linear Least-Squares Curve Fitting
	C.6 Quadratic Equations
	C.7 Cubic Equations
	C.8 For Further Information

	D: Atomic Compare-and-Set
	D.1 Blocking Synchronization
	D.2 Atomic Compare-and-Set
	D.3 Shared Variable Updating with Atomic CAS
	D.4 Limitations, Caveats
	D.5 For Further Information

	Index

