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The term ‘parallel computing’ means different things depending on the application area. In this book we
focus on parallel computing – and more specifically parallel programming; we will not discuss a lot of
theory – in the context of scientific computing.

Two of the most common software systems for parallel programming in scientific computing are MPI and
OpenMP. They target different types of parallelism, and use very different constructs. Thus, by covering
both of them in one book we can offer a treatment of parallelism that spans a large range of possible
applications.

Finally, we also discuss the PETSc (Portable Toolkit for Scientific Computing) library, which offers an
abstraction level higher thanMPI or OpenMP, geared specifically towards parallel linear algebra, and very
specifically the sort of linear algebra computations arising from Partial Differential Equation modeling.

Themain languages in scientific computing are C/C++ and Fortran.Wewill discuss bothMPI andOpenMP
withmany examples in these two languages. ForMPI and the PETSc librarywewill also discuss the Python
interfaces.

Comments This book is in perpetual state of revision and refinement. Please send
comments of any kind to eijkhout@tacc.utexas.edu.
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PART I

MPI



This section of the book teaches MPI (‘Message Passing Interface’), the dominant model for distributed
memory programming in science and engineering. It will instill the following competencies.

Basic level:

• The student will understand the SPMD model and how it is realized in MPI (chapter 2).
• The student will know the basic collective calls, both with and without a root process, and can
use them in applications (chapter 3).

• The student knows the basic blocking and non-blocking point-to-point calls, and how to use
them (chapter 4).

Intermediate level:

• The students knows about derived datatypes and can use them in communication routines
(chapter 6).

• The student knows about intra-communicators, and some basic calls for creating subcommuni-
cators (chapter 7); also Cartesian process topologies (section 11.1).

• The student understands the basic design of MPI I/O calls and can use them in basic applications
(chapter 10).

• The student understands about graph process topologies and neighborhood collectives (sec-
tion 11.2).

Advanced level:

• The student understands one-sided communication routines, including window creation rou-
tines, and synchronization mechanisms (chapter 9).

• The student understands MPI shared memory, its advantages, and how it is based on windows
(chapter 12).

• The student understands MPI process spawning mechanisms and inter-communicators (chap-
ter 8).
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Chapter 1

Getting started with MPI

In this chapter you will learn the use of the main tool for distributed memory programming: the Message
Passing Interface (MPI) library. The MPI library has about 250 routines, many of which you may never
need. Since this is a textbook, not a referencemanual, wewill focus on the important concepts and give the
important routines for each concept. What you learn here should be enough for most common purposes.
You are advised to keep a reference document handy, in case there is a specialized routine, or to look up
subtleties about the routines you use.

1.1 Distributed memory and message passing
In its simplest form, a distributed memory machine is a collection of single computers hooked up with
network cables. In fact, this has a name: a Beowulf cluster . As you recognize from that setup, each processor
can run an independent program, and has its own memory without direct access to other processors’
memory. MPI is the magic that makes multiple instantiations of the same executable run so that they
know about each other and can exchange data through the network.

One of the reasons that MPI is so successful as a tool for high performance on clusters is that it is very
explicit: the programmer controls many details of the data motion between the processors. Consequently,
a capable programmer canwrite very efficient codewithMPI. Unfortunately, that programmerwill have to
spell things out in considerable detail. For this reason, people sometimes call MPI ‘the assembly language
of parallel programming’. If that sounds scary, be assured that things are not that bad. You can get started
fairly quickly with MPI, using just the basics, and coming to the more sophisticated tools only when
necessary.

Another reason that MPI was a big hit with programmers is that it does not ask you to learn a new
language: it is a library that can be interfaced to C/C++ or Fortran; there are even bindings to Python and
Java (not described in this course). This does not mean, however, that it is simple to ‘add parallelism’ to an
existing sequential program. An MPI version of a serial program takes considerable rewriting; certainly
more than shared memory parallelism through OpenMP, discussed later in this book.

MPI is also easy to install: there are free implementations that you can download and install on any
computer that has a Unix-like operating system, even if that is not a parallel machine. However, if you
are working on a supercomputer cluster, likely there will already be an MPI installation, tuned to that
machine’s network.
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1. Getting started with MPI

1.2 History
Before the MPI standard was developed in 1993-4, there were many libraries for distributed memory
computing, often proprietary to a vendor platform. MPI standardized the inter-process communication
mechanisms. Other features, such as process management in PVM , or parallel I/O were omitted. Later
versions of the standard have included many of these features.

Since MPI was designed by a large number of academic and commercial participants, it quickly became a
standard. A few packages from the pre-MPI era, such as Charmpp [18], are still in use since they support
mechanisms that do not exist in MPI.

1.3 Basic model
Here we sketch the two most common scenarios for using MPI. In the first, the user is working on an
interactive machine, which has network access to a number of hosts, typically a network of workstations;
see figure 1.1. The user types the command mpiexec1 and supplies

Figure 1.1: Interactive MPI setup

• The number of hosts involved,
• their names, possibly in a hostfile,
• and other parameters, such as whether to include the interactive host; followed by
• the name of the program and its parameters.

The mpiexec program then makes an ssh connection to each of the hosts, giving them sufficient in-
formation that they can find each other. All the output of the processors is piped through the mpiexec
program, and appears on the interactive console.

In the second scenario (figure 1.2) the user prepares a batch job script with commands, and these will
be run when the batch scheduler gives a number of hosts to the job. Now the batch script contains the
mpiexec command, or some variant such as ibrun, and the hostfile is dynamically generated when the
job starts. Since the job now runs at a time when the user may not be logged in, any screen output goes
into an output file.

1. A command variant is mpirun; your local cluster may have a different mechanism.
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1.4. Making and running an MPI program

Figure 1.2: Batch MPI setup

You see that in both scenarios the parallel program is started by the mpiexec command using an Single
Program Multiple Data (SPMD) mode of execution: all hosts execute the same program. It is possible for
different hosts to execute different programs, but we will not consider that in this book.

There can be options and environment variables that are specific to some MPI installations, or to the
network.

• mpich and its derivatives such as Intel MPI or Cray MPI have mpiexec options: https://www.
mpich.org/static/docs/v3.1/www1/mpiexec.html

1.4 Making and running an MPI program

MPI is a library, called from programs in ordinary programming languages such as C/C++ or Fortran. To
compile such a program you use your regular compiler:

gcc -c my_mpi_prog.c -I/path/to/mpi.h
gcc -o my_mpi_prog my_mpi_prog.o -L/path/to/mpi -lmpich

However, MPI libraries may have different names between different architectures, making it hard to have
a portable makefile. Therefore, MPI typically has shell scripts around your compiler call, called mpicc,
mpicxx, mpif90 for C/C++/Fortran respectively.

mpicc -c my_mpi_prog.c
mpicc -o my_mpi_prog my_mpi_prog.o

If you want to know what mpicc does, there is usually an option that prints out its definition. On a Mac
with the clang compiler:

$$ mpicc -show
clang -fPIC -fstack-protector -fno-stack-check -Qunused-arguments -g3 -O0 -Wno-implicit-function-declaration -Wl,-flat_namespace -Wl,-commons,use_dylibs -I/Users/eijkhout/Installation/petsc/petsc-3.16.1/macx-clang-debug/include -L/Users/eijkhout/Installation/petsc/petsc-3.16.1/macx-clang-debug/lib -lmpi -lpmpi

Remark 1 In OpenMPI, these commands are binary executables by default, but you can make it a shell
script by passing the --enable-script-wrapper-compilers option at configure time.
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1. Getting started with MPI

MPI programs can be run on many different architectures. Obviously it is your ambition (or at least your
dream) to run your code on a cluster with a hundred thousand processors and a fast network. But maybe
you only have a small cluster with plain ethernet. Or maybe you’re sitting in a plane, with just your laptop.
An MPI program can be run in all these circumstances – within the limits of your available memory of
course.

The way this works is that you do not start your executable directly, but you use a program, typically
called mpiexec or something similar, which makes a connection to all available processors and starts a
run of your executable there. So if you have a thousand nodes in your cluster, mpiexec can start your
program once on each, and if you only have your laptop it can start a few instances there. In the latter
case you will of course not get great performance, but at least you can test your code for correctness.

Python note 1: Running mpi4py programs. Load the TACC-provided python:

module load python
and run it as:

ibrun python-mpi yourprogram.py

1.5 Language bindings

1.5.1 C

The MPI library is written in C. However, the standard is careful to distinguish between MPI routines,
versus theirC bindings. In fact, as ofMPIMPI-4, for a number of routines there are two bindings, depending
on whether you want 4 byte integers, or larger. See section 6.4, in particular 6.4.1.

1.5.2 C++, including MPL

C++ bindings were defined in the standard at one point, but they were declared deprecated, and have been
officially removed in the MPI-3 standard. Thus, MPI can be used from C++ by including

#include <mpi.h>
and using the C API.

The boost library has its own version of MPI, but it seems not to be under further development. A recent
effort at idiomatic C++ support is Message Passing Layer (MPL) https://github.com/rabauke/mpl.
This book has an index of MPL notes and commands: section 57.4.

MPL note 1: Notes format. MPL is a C++ header-only library. Notes on MPI usage from MPL will be indi-
cated like this.

1.5.3 Fortran

Fortran note 1: Formatting of Fortran notes. Fortran-specific notes will be indicated with a note like this.

Traditionally, Fortran bindings for MPI look very much like the C ones, except that each routine has a final
error return parameter. You will find that a lot of MPI code in Fortran conforms to this.
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However, in the MPI 3 standard it is recommended that an MPI implementation providing a Fortran in-
terface provide a module named mpi_f08 that can be used in a Fortran program. This incorporates the
following improvements:

• This defines MPI routines to have an optional final parameter for the error.
• There are some visible implications of using the mpi_f08 module, mostly related to the fact
that some of the ‘MPI datatypes’ such as MPI_Comm, which were declared as Integer previously,
are now a Fortran Type. See the following sections for details: Communicator 7.1, Datatype 6.1,
Info 15.1.1, Op 3.10.2, Request 4.2.1, Status 4.3, Window 9.1.

• The mpi_f08module solves a problemwith previous Fortran90 bindings: Fortran90 is a strongly
typed language, so it is not possible to pass argument by reference to their address, as C/C++ do
with the void* type for send and receive buffers. This was solved by having separate routines
for each datatype, and providing an Interface block in the MPI module. If you manage to
request a version that does not exist, the compiler will display a message like
There is no matching specific subroutine for this generic subroutine call [MPI_Send]
For details see http://mpi-forum.org/docs/mpi-3.1/mpi31-report/node409.htm.

1.5.4 Python

Python note 2: Python notes. Python-specific notes will be indicated with a note like this.

The mpi4py package [6, 5] of python bindings is not defined by the MPI standards committee. Instead, it
is the work of an individual, Lisandro Dalcin.

In a way, the Python interface is the most elegant. It uses Object-Oriented (OO) techniques such as meth-
ods on objects, and many default arguments.

Notable about the Python bindings is that many communication routines exist in two variants:

• a version that can send arbitrary Python objects. These routines have lowercase names such as
bcast; and

• a version that sends numpy objects; these routines have names such as Bcast. Their syntax can
be slightly different.

The first version looks more ‘pythonic’, is easier to write, and can do things like sending python ob-
jects, but it is also decidedly less efficient since data is packed and unpacked with pickle. As a common
sense guideline, use the numpy interface in the performance-critical parts of your code, and the pythonic
interface only for complicated actions in a setup phase.

Codes with mpi4py can be interfaced to other languages through Swig or conversion routines.

Data in numpy can be specified as a simple object, or [data, (count,displ), datatype].

1.5.5 How to read routine signatures

Throughout the MPI part of this book we will give the reference syntax of the routines. This typically
comprises:

• The semantics: routine name and list of parameters and what they mean.
• C synxtax: the routine definition as it appears in the mpi.h file.
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• Fortran syntax: routine definition with parameters, giving in/out specification.
• Python syntax: routine name, indicating to what class it applies, and parameter, indicating
which ones are optional.

These ‘routine signatures’ look like code but they are not! Here is how you translate them.

1.5.5.1 C

The typically C routine specification in MPI looks like:

int MPI_Comm_size(MPI_Comm comm,int *nprocs)

This means that

• The routine returns an int parameter. Strictly speaking you should test against MPI_SUCCESS (for
all error codes, see section 15.2.1):

MPI_Comm comm = MPI_COMM_WORLD;
int nprocs;
int errorcode;
errorcode = MPI_Comm_size( MPI_COMM_WORLD,&nprocs);
if (errorcode!=MPI_SUCCESS) {

printf("Routine MPI_Comm_size failed! code=%d\n",
errorcode);

return 1;
}

However, the error codes are hardly ever useful, and there is not much your program can do to
recover from an error. Most people call the routine as

MPI_Comm_size( /* parameter ... */ );

For more on error handling, see section 15.2.
• The first argument is of type MPI_Comm. This is not a C built-in datatype, but it behaves like one.
There are many of these MPI_something datatypes in MPI. So you can write:

MPI_Comm my_comm =
MPI_COMM_WORLD; // using a predefined value

MPI_Comm_size( comm, /* remaining parameters */ );

• Finally, there is a ‘star’ parameter. This means that the routine wants an address, rather than a
value. You would typically write:

MPI_Comm my_comm = MPI_COMM_WORLD; // using a predefined value
int nprocs;
MPI_Comm_size( comm, &nprocs );

Seeing a ‘star’ parameter usuallymeans either: the routine has an array argument, or: the routine
internally sets the value of a variable. The latter is the case here.

1.5.5.2 Fortran

The Fortran specification looks like:
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MPI_Comm_size(comm, size, ierror)
Type(MPI_Comm), Intent(In) :: comm
Integer, Intent(Out) :: size
Integer, Optional, Intent(Out) :: ierror

or for the Fortran90 legacy mode:

MPI_Comm_size(comm, size, ierror)
INTEGER, INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

The syntax of using this routine is close to this specification: you write

Type(MPI_Comm) :: comm = MPI_COMM_WORLD
! legacy: Integer :: comm = MPI_COMM_WORLD
Integer :: comm = MPI_COMM_WORLD
Integer :: size,ierr
CALL MPI_Comm_size( comm, size ) ! without the optional ierr

• Most Fortran routines have the same parameters as the corresponding C routine, except that
they all have the error code as final parameter, instead of as a function result. As with C, you
can ignore the value of that parameter. Just don’t forget it.

• The types of the parameters are given in the specification.
• Where C routines have MPI_Comm and MPI_Request and such parameters, Fortran has INTEGER
parameters, or sometimes arrays of integers.

1.5.5.3 Python

The Python interface to MPI uses classes and objects. Thus, a specification like:

MPI.Comm.Send(self, buf, int dest, int tag=0)

should be parsed as follows.

• First of all, you need the MPI class:

from mpi4py import MPI

• Next, you need a Comm object. Often you will use the predefined communicator

comm = MPI.COMM_WORLD

• The keyword self indicates that the actual routine Send is a method of the Comm object, so you
call:

comm.Send( .... )

• Parameters that are listed by themselves, such as buf, as positional. Parameters that are listed
with a type, such as int dest are keyword parameters. Keyword parameters that have a value
specified, such as int tag=0 are optional, with the default value indicated. Thus, the typical
call for this routine is:

comm.Send(sendbuf,dest=other)
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specifying the send buffer as positional parameter, the destination as keyword parameter, and
using the default value for the optional tag.

Some python routines are ‘class methods’, and their specification lacks the self keyword. For instance:

MPI.Request.Waitall(type cls, requests, statuses=None)

would be used as

MPI.Request.Waitall(requests)

1.6 Review

Review 1.1. What determines the parallelism of an MPI job?
1. The size of the cluster you run on.
2. The number of cores per cluster node.
3. The parameters of the MPI starter (mpiexec, ibrun,…)

Solution to exercise 1.1. Answer 3: the MPI starter creates a job with as many processes as you
specify. Normally this is (far) less than the size of your cluster. Also, MPI does not care
about cores.

Review 1.2. T/F: the number of cores of your laptop is the limit of how many MPI proceses
you can start up.

Solution to exercise 1.2. False. You can start more processes than there are cores, and Unix will
use time-slicing to simulate a parallel run. This will give diminished efficiency, but is
convenient for testing.

Review 1.3. Do the following languages have an object-oriented interface to MPI? In what
sense?

1. C
2. C++
3. Fortran2008
4. Python

Solution to exercise 1.3.
1. C is not object-oriented. While it is possible to simulate Object-Oriented Program-

ming (OOP) in C, this is not done in MPI. (Unlike, for instance, in the PETSc library.)
2. C++ is object-oriented, but its Application Programmer Interface (API) to MPI is

deprecated/obsolete.
3. Fortran2008 uses generic functions and INTERFACE blocks to do strict type checking.
4. Python has the most OO interface, where many things are objects with methods. It

uses the ‘dot’ notation for invoking methods on objects.
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MPI topic: Functional parallelism

2.1 The SPMD model
MPI programs conform largely to the Single ProgramMultiple Data (SPMD) model, where each processor
runs the same executable. This running executable we call a process.

WhenMPIwas first written, 20 years ago, it was clear what a processor was: it waswhat was in a computer
on someone’s desk, or in a rack. If this computer was part of a networked cluster, you called it a node. So
if you ran an MPI program, each node would have one MPI process; figure 2.1. You could of course run

Figure 2.1: Cluster structure as of the mid 1990s

more than one process, using the time slicing of the Operating System (OS), but that would give you no
extra performance.

These days the situation is more complicated. You can still talk about a node in a cluster, but now a node
can contain more than one processor chip (sometimes called a socket), and each processor chip probably
has multiple cores. Figure 2.2 shows how you could explore this using a mix of MPI between the nodes,
and a shared memory programming system on the nodes.

However, since each core can act like an independent processor, you can also have multiple MPI processes
per node. To MPI, the cores look like the old completely separate processors. This is the ‘pure MPI’ model
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Figure 2.2: Hybrid cluster structure

of figure 2.3, which we will use in most of this part of the book. (Hybrid computing will be discussed in
chapter 45.)

Figure 2.3: MPI-only cluster structure

This is somewhat confusing: the old processors needed MPI programming, because they were physically
separated. The cores on a modern processor, on the other hand, share the same memory, and even some
caches. In its basic mode MPI seems to ignore all of this: each core receives an MPI process and the
programmer writes the same send/receive call no matter where the other process is located. In fact, you
can’t immediately see whether two cores are on the same node or different nodes. Of course, on the
implementation level MPI uses a different communication mechanism depending on whether cores are
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on the same socket or on different nodes, so you don’t have to worry about lack of efficiency.

Remark 2 In some rare cases you may want to run in an Multiple Program Multiple Data (MPMD) mode,
rather than SPMD. This can be achieved either on the OS level (see section 15.9.4), using options of the mpiexec
mechanism, or you can use MPI’s built-in process management; chapter 8. Like I said, this concerns only rare
cases.

2.2 Starting and running MPI processes

The SPMD model may be initially confusing. Even though there is only a single source, compiled into
a single executable, the parallel run comprises a number of independently started MPI processes (see
section 1.3 for the mechanism).

The following exercises are designed to give you an intuition for this one-source-many-processes setup.
In the first exercise you will see that the mechanism for starting MPI programs starts up independent
copies. There is nothing in the source that says ‘and now you become parallel’.

Figure 2.4: Running a hello world program in parallel

The following exercise demonstrates this point.

Exercise 2.1. Write a ‘hello world’ program, without any MPI in it, and run it in parallel
with mpiexec or your local equivalent. Explain the output.
(There is a skeleton for this exercise under the name hello.)

Solution to exercise 2.1. You get one ‘hello world’ line on your screen for each process you started.

This exercise is illustrated in figure 2.4.
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Figure 2.1 MPI_Init
Name Param name Explanation C type F type inout

MPI_Init (
)

2.2.1 Headers

If you use MPI commands in a program file, be sure to include the proper header file, mpi.h for C/C++.

#include "mpi.h" // for C
The internals of these files can be different between MPI installations, so you can not compile one file
against one mpi.h file and another file, even with the same compiler on the same machine, against a
different MPI.

Fortran note 2: MPI module. For MPI use from Fortran, use an MPI module.

use mpi ! pre 3.0
use mpi_f08 ! 3.0 standard

New language developments, such as large counts; section 6.4.2 will only be included in the
mpi_f08 module, not in the earlier mechanisms.

The header file mpif.h is deprecated as of MPI-4.1: it may be supported by installations, but
doing so is strongly discouraged.

Python note 3: Import mpi module. It’s easiest to

from mpi4py import MPI

MPL note 2: Header file. To compile MPL programs, add a line

#include <mpl/mpl.hpp>

to your file. You need to add a path to your compile line:

mpicxx -o mpiprog -I${MPL_LOCATION}/include mympiprog.cpp

where MPL_LOCATION is system-dependent.

2.2.2 Initialization / finalization

Every (useful) MPI program has to start with MPI initialization through a call to MPI_Init (figure 2.1), and
have MPI_Finalize (figure 2.2) to finish the use of MPI in your program. The init call is different between
the various languages.

In C, you can pass argc and argv, the arguments of a C language main program:

int main(int argc,char **argv) {
....
return 0;

}
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Figure 2.2 MPI_Finalize
Name Param name Explanation C type F type inout

MPI_Finalize (
)

(It is allowed to pass NULL for these arguments.)

Fortran (before 2008) lacks this commandline argument handling, so MPI_Init lacks those arguments.

After MPI_Finalize no MPI routines (with a few exceptions such as MPI_Finalized) can be called. In partic-
ular, it is not allowed to call MPI_Init again. If you want to do that, use the sessions model; section 8.3.

Python note 4: Initialize/finalize. In many cases, no initialize and finalize calls are needed: the statement

## mpi.py
from mpi4py import MPI

performs the initialization. Likewise, the finalize happens at the end of the program.

However, for special cases, there is an mpi4py.rc object that can be set in between importing
mpi4py and importing mpi4py.MPI:

import mpi4py
mpi4py.rc.initialize = False
mpi4py.rc.finalize = False
from mpi4py import MPI
MPI.Init()
# stuff
MPI.Finalize()

MPL note 3: Init, finalize. There is no initialization or finalize call.

Implementation note: Initialization is done at the first mpl::environment method call,
such as comm_world.

This may look a bit like declaring ‘this is the parallel part of a program’, but that’s not true: again, the
whole code is executed multiple times in parallel.

Exercise 2.2. Add the commands MPI_Init and MPI_Finalize to your code. Put three
different print statements in your code: one before the init, one between init and
finalize, and one after the finalize. Again explain the output.

Remark 3 For hybrid MPI-plus-threads programming there is also a call MPI_Init_thread. For that, see sec-
tion 13.1.

2.2.2.1 Aborting an MPI run

Apart from MPI_Finalize, which signals a successful conclusion of the MPI run, an abnormal end to a run
can be forced by MPI_Abort (figure 2.3). This stop execution on all processes associated with the commu-
nicator, but many implementations will terminate all processes. The value parameter is returned to the
environment.
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Figure 2.3 MPI_Abort
Name Param name Explanation C type F type inout

MPI_Abort (
comm communicator of MPI

processes to abort
MPI_Comm TYPE

(MPI_Comm)
IN

errorcode error code to return to
invoking environment

int INTEGER IN

)
MPL:

void mpl::communicator::abort ( int ) const

Python:

MPI.Comm.Abort(self, int errorcode=0)

Figure 2.4 MPI_Initialized
Name Param name Explanation C type F type inout

MPI_Initialized (
flag Flag is true if MPI_INIT

has been called and false
otherwise

int* LOGICAL OUT

)

Code:

// return.c
MPI_Abort(MPI_COMM_WORLD,17);

Output:

mpicc -o return return.o
mpirun -n 1 ./return ; \

echo "MPI program
↪return code $?"

application called
↪MPI_Abort(MPI_COMM_WORLD,
↪17) - process 0

MPI program return code 17

2.2.2.2 Testing the initialized/finalized status

The commandline arguments argc and argv are only guaranteed to be passed to process zero, so the best
way to pass commandline information is by a broadcast (section 3.3.3).

There are a few commands, such as MPI_Get_processor_name, that are allowed before MPI_Init.

If MPI is used in a library, MPI can have already been initialized in a main program. For this reason, one
can test where MPI_Init has been called with MPI_Initialized (figure 2.4).

You can test whether MPI_Finalize has been called with MPI_Finalized (figure 2.5).
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Figure 2.5 MPI_Finalized
Name Param name Explanation C type F type inout

MPI_Finalized (
flag true if MPI was finalized int* LOGICAL OUT
)

2.2.2.3 Information about the run

Once MPI has been initialized, the MPI_INFO_ENV object contains a number of key/value pairs describing
run-specific information; see section 15.1.1.1.

2.2.2.4 Commandline arguments

The MPI_Init routines takes a reference to argc and argv for the following reason: the MPI_Init calls
filters out the arguments to mpirun or mpiexec, thereby lowering the value of argc and elimitating some
of the argv arguments.

On the other hand, the commandline arguments that are meant for mpiexec wind up in the MPI_INFO_ENV
object as a set of key/value pairs; see section 15.1.1.

2.3 Processor identification

Since all processes in anMPI job are instantiations of the same executable, you’d think that they all execute
the exact same instructions, which would not be terribly useful. You will now learn how to distinguish
processes from each other, so that together they can start doing useful work.

2.3.1 Processor name

In the following exercise youwill print out the hostname of eachMPI process with MPI_Get_processor_name
(figure 2.6) as a first way of distinguishing between processes. This routine has a character buffer argu-
ment, which needs to be allocated by you. The length of the buffer is also passed, and on return that
parameter has the actually used length. The maximum needed length is MPI_MAX_PROCESSOR_NAME.
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Figure 2.6 MPI_Get_processor_name
Name Param name Explanation C type F type inout

MPI_Get_processor_name (
name A unique specifier for

the actual (as opposed to
virtual) node.

char* CHARACTER OUT

resultlen Length (in printable
characters) of the result
returned in name

int* INTEGER OUT

)
Python:

MPI.Get_processor_name()

Code:

// procname.c
int name_length = MPI_MAX_PROCESSOR_NAME;
char proc_name[name_length];
MPI_Get_processor_name(proc_name,&name_length);
printf("Process %d/%d is running on node <<%s>>\n",

procid,nprocs,proc_name);

Output:

make[3]: `procname' is up to
↪date.

TACC: Starting up job
↪4328411

TACC: Starting parallel
↪tasks...

This process is running on
↪node
↪<<c205-036.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-036.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-036.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-036.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-036.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-035.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-035.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-035.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-035.frontera.tacc.utexas.edu>>

This process is running on
↪node
↪<<c205-035.frontera.tacc.utexas.edu>>

TACC: Shutdown complete.
↪Exiting.

30 Parallel Computing – r428



2.3. Processor identification

(Underallocating the buffer will not lead to a runtime error.)

MPL note 4: Processor name. The processor name is a method of the environment class:
Code:

// procname.cxx
procno = comm_world.rank();
string procname =

mpl::environment::processor_name();
stringstream ss;
ss << "[" << procno << "] "

<< " Running on: " << procname;
cout << ss.str() << '\n';

Output:

TACC: Starting up job 6051291
TACC: Starting parallel tasks...
[6] Running on: c204-031.frontera.tacc.utexas.edu
[7] Running on: c204-031.frontera.tacc.utexas.edu
[2] Running on: c204-029.frontera.tacc.utexas.edu
[4] Running on: c204-030.frontera.tacc.utexas.edu
[0] Running on: c204-028.frontera.tacc.utexas.edu
[3] Running on: c204-029.frontera.tacc.utexas.edu
[1] Running on: c204-028.frontera.tacc.utexas.edu
[5] Running on: c204-030.frontera.tacc.utexas.edu
TACC: Shutdown complete. Exiting.

Fortran note 3: Processor name. Allocate a Character variable with the appropriate length. The returned
value of the length parameter can assist in printing the result:

Code:

!! procname.F90
Character(len=MPI_MAX_PROCESSOR_NAME) ::

↪proc_name
Integer :: len
len = MPI_MAX_PROCESSOR_NAME
call

↪MPI_Get_processor_name(proc_name,len)
print *,"Proc",procid,"runs on

↪",proc_name(1:len),"."

Output:

Proc 1 runs on
↪c202-010.frontera.tacc.utexas.edu.

Proc 3 runs on
↪c202-011.frontera.tacc.utexas.edu.

Proc 0 runs on
↪c202-010.frontera.tacc.utexas.edu.

Proc 2 runs on
↪c202-011.frontera.tacc.utexas.edu.

Exercise 2.3. Use the command MPI_Get_processor_name. Confirm that you are able to run a
program that uses two different nodes.

2.3.2 Communicators

First we need to introduce the concept of communicator , which is an abstract description of a group of
processes. For now you only need to know about the existence of the MPI_Comm data type, and that there
is a pre-defined communicator MPI_COMM_WORLD which describes all the processes involved in your parallel
run.

In the procedural languages C, a communicator is a variable that is passed to most routines:

#include <mpi.h>
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Send( /* stuff */ comm );

Fortran note 4: Communicator type. In Fortran, pre-2008 a communicator was an opaque handle, stored in
an Integer. With Fortran 2008, communicators are derived types:

use mpi_f098
Type(MPI_Comm} :: comm = MPI_COMM_WORLD
call MPI_Send( ... comm )
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Python note 5: Communicator objects. In object-oriented languages, a communicator is an object, and
rather than passing it to routines, the routines are often methods of the communicator object:

from mpi4py import MPI
comm = MPI.COMM_WORLD
comm.Send( buffer, target )

MPL note 5: World communicator. The naive way of declaring a communicator would be:

// commrank.cxx
mpl::communicator comm_world =

mpl::environment::comm_world();

calling the predefined environment method comm_world.

However, if the variable will always correspond to the world communicator, it is better to make
it const and declare it to be a reference:

const mpl::communicator &comm_world =
mpl::environment::comm_world();

MPL note 6: Communicator copying. The communicator class has its copy operator deleted; however, copy
initialization exists:

// commcompare.cxx
const mpl::communicator &comm =

mpl::environment::comm_world();
cout << "same: " << boolalpha << (comm==comm) << endl;

mpl::communicator copy =
mpl::environment::comm_world();

cout << "copy: " << boolalpha << (comm==copy) << endl;

mpl::communicator init = comm;
cout << "init: " << boolalpha << (init==comm) << endl;

(This outputs true/false/false respectively.)

Implementation note: The copy initializer performs an MPI_Comm_dup.

MPL note 7: Communicator passing. Pass communicators by reference to avoid communicator duplica-
tion:

// commpass.cxx
// BAD! this does a MPI_Comm_dup.
void comm_val( const mpl::communicator comm );

// correct!
void comm_ref( const mpl::communicator &comm );

You will learn much more about communicators in chapter 7.
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Figure 2.7 MPI_Comm_size
Name Param name Explanation C type F type inout

MPI_Comm_size (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

size number of processes in the
group of comm

int* INTEGER OUT

)
MPL:

int mpl::communicator::size ( ) const

Python:

MPI.Comm.Get_size(self)

Figure 2.8 MPI_Comm_rank
Name Param name Explanation C type F type inout

MPI_Comm_rank (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

rank rank of the calling
process in group of comm

int* INTEGER OUT

)
MPL:

int mpl::communicator::rank ( ) const

Python:

MPI.Comm.Get_rank(self)

2.3.3 Process and communicator properties: rank and size

To distinguish between processes in a communicator, MPI provides two calls

1. MPI_Comm_size (figure 2.7) reports how many processes there are in all; and
2. MPI_Comm_rank (figure 2.8) states what the number of the process is that calls this routine.

If every process executes the MPI_Comm_size call, they all get the same result, namely the total number of
processes in your run. On the other hand, if every process executes MPI_Comm_rank, they all get a different
result, namely their own unique number, an integer in the range from zero to the number of processes
minus 1. See figure 2.5. In other words, each process can find out ‘I am process 5 out of a total of 20’.

Exercise 2.4. Write a program where each process prints out a message reporting its
number, and how many processes there are:
Hello from process 2 out of 5!
Write a second version of this program, where each process opens a unique file and
writes to it. On some clusters this may not be advisable if you have large numbers of
processors, since it can overload the file system.
(There is a skeleton for this exercise under the name commrank.)
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Figure 2.5: Parallel program that prints process rank

Solution to exercise 2.4.

## hello.py
from mpi4py import MPI
comm = MPI.COMM_WORLD
nprocs = comm.Get_size()
procno = comm.Get_rank()

Exercise 2.5. Write a program where only the process with number zero reports on how
many processes there are in total.

In object-oriented approaches to MPI, that is, mpi4py and MPL, the MPI_Comm_rank and MPI_Comm_size rou-
tines are methods of the communicator class:

Python note 6: Communicator rank and size. Rank and size are methods of the communicator object. Note
that their names are slightly different from the MPI standard names.

comm = MPI.COMM_WORLD
procid = comm.Get_rank()
nprocs = comm.Get_size()

MPL note 8: Rank and size. The rank of a process (by mpl::communicator::rank) and the size of a commu-
nicator (by mpl::communicator::size) are both methods of the communicator class:

const mpl::communicator &comm_world =
mpl::environment::comm_world();
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int procid = comm_world.rank();
int nprocs = comm_world.size();

2.4 Functional parallelism
Now that processes can distinguish themselves from each other, they can decide to engage in different
activities. In an extreme case you could have a code that looks like

// climate simulation:
if (procid==0)

earth_model();
else if (procid=1)

sea_model();
else

air_model();

Practice is a little more complicated than this. But we will start exploring this notion of processes deciding
on their activity based on their process number.

Being able to tell processes apart is already enough to write some applications, without knowing any
other MPI. We will look at a simple parallel search algorithm: based on its rank, a processor can find
its section of a search space. For instance, in Monte Carlo codes a large number of random samples is
generated and some computation performed on each. (This particular example requires each MPI process
to run an independent random number generator, which is not entirely trivial.)

Exercise 2.6. Is the number 𝑁 = 2, 000, 000, 111 prime? Let each process test a disjoint set
of integers, and print out any factor they find. You don’t have to test all
integers < 𝑁 : any factor is at most √𝑁 ≈ 45, 200.
(Hint: i%0 probably gives a runtime error.)
Can you find more than one solution?
(There is a skeleton for this exercise under the name prime.)

Solution to exercise 2.6. 2, 000, 000, 111 = 2, 999 × 666, 889
There are two solutions:

1. Each process finds a block of contiguous integers to try;
2. process 𝑝 out of 𝑠 tests the integers 𝑖 with i%s=p.

Remark 4 Normally, we expect parallel algorithms to be faster than sequential. Now consider the above
exercise. Suppose the number we are testing is divisible by some small prime number, but every process has a
large block of numbers to test. In that case the sequential algorithm would have been faster than the parallel
one. Food for thought.

As another example, in Boolean satisfiability problems a number of points in a search space needs to be
evaluated. Knowing a process’s rank is enough to let it generate its own portion of the search space. The
computation of the Mandelbrot set can also be considered as a case of functional parallelism. However,
the image that is constructed is data that needs to be kept on one processor, which breaks the symmetry
of the parallel run.
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Of course, at the end of a functionally parallel run you need to summarize the results, for instance printing
out some total. The mechanisms for that you will learn next.

2.5 Distributed computing and distributed data

One reason for using MPI is that sometimes you need to work on a single object, say a vector or a matrix,
with a data size larger than can fit in the memory of a single processor. With distributed memory, each
processor then gets a part of the whole data structure and only works on that.

So let’s say we have a large array, and we want to distribute the data over the processors. That means
that, with p processes and n elements per processor, we have a total of n ⋅ p elements.

Figure 2.6: Local parts of a distributed array

In figure 2.6 we say that data is the local part of a distributed array with a total size of n ⋅ p elements.
However, this array only exists conceptually: each processor has an array with lowest index zero, and you
have to translate that yourself to an index in the global array. In other words, you have to write your code
in such a way that it acts like you’re working with a large array that is distributed over the processors,
while actually manipulating only the local arrays on the processors.

Your typical code then looks like

int myfirst = .....;
for (int ilocal=0; ilocal<nlocal; ilocal++) {

int iglobal = myfirst+ilocal;
array[ilocal] = f(iglobal);

}

Exercise 2.7. Allocate on each process an array:

int my_ints[10];

and fill it so that process 0 has the integers 0⋯ 9, process 1 has 10⋯ 19, et cetera.
It may be hard to print the output in a non-messy way.

If the array size is not perfectly divisible by the number of processors, we have to come up with a division
that is uneven, but not too much. You could for instance, write
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int Nglobal, // is something large
Nlocal = Nglobal/ntids,
excess = Nglobal%ntids;

if (mytid==ntids-1)
Nlocal += excess;

Exercise 2.8. Argue that this strategy is not optimal. Can you come up with a better
distribution? Load balancing is further discussed in HPC book, section-2.10.

2.6 Review questions

For all true/false questions, if you answer that a statement is false, give a one-line explanation.

Exercise 2.9. True or false: mpicc is a compiler.

Solution to exercise 2.9. No, it’s a shell script around your regular compiler.

Exercise 2.10. T/F?
1. In C, the result of MPI_Comm_rank is a number from zero to

number-of-processes-minus-one, inclusive.
2. In Fortran, the result of MPI_Comm_rank is a number from one to

number-of-processes, inclusive.

Exercise 2.11. What is the function of a hostfile?

Solution to exercise 2.11. In MPI codes that are started with mpiexec it is a file with a list of the
hosts on which MPI will run.
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Chapter 3

MPI topic: Collectives

A certain class of MPI routines are called ‘collective’, or more correctly: ‘collective on a communicator’.
This means that if process one in that communicator calls that routine, they all need to call that routine.
In this chapter we will discuss collective routines that are about combining the data on all processes in
that communicator, but there are also operations such as opening a shared file that are collective, which
will be discussed in a later chapter.

3.1 Working with global information

If all processes have individual data, for instance the result of a local computation, you may want to
bring that information together, for instance to find the maximal computed value or the sum of all values.
Conversely, sometimes one processor has information that needs to be shared with all. For this sort of
operation, MPI has collectives.

There are various cases, illustrated in figure 3.1, which you can (sort of) motivate by considering some
classroom activities:

• The teacher tells the class when the exam will be. This is a broadcast: the same item of infor-
mation goes to everyone.

• After the exam, the teacher performs a gather operation to collect the invidivual exams.
• On the other hand, when the teacher computes the average grade, each student has an individual
number, but these are now combined to compute a single number. This is a reduction.

• Now the teacher has a list of grades and gives each student their grade. This is a scatter operation,
where one process has multiple data items, and gives a different one to all the other processes.

This story is a little different from what happens with MPI processes, because these are more symmetric;
the process doing the reducing and broadcasting is no different from the others. Any process can function
as the root process in such a collective.

Exercise 3.1. How would you realize the following scenarios with MPI collectives?
1. Let each process compute a random number. You want to print the maximum

of these numbers to your screen.
2. Each process computes a random number again. Now you want to scale these

numbers by their maximum.
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Figure 3.1: The four most common collective structures

3. Let each process compute a random number. You want to print on what
processor the maximum value is computed.

Think about time and space complexity of your suggestions.

Solution to exercise 3.1.
1. Reduction with a ‘max’ operator. Gathering followed by a local traversal has a

higher space and time complexity.
2. Reduction followed by broadcast.
3. Gather followed by a local traversal of the data.

3.1.1 Practical use of collectives

Collectives are quite common in scientific applications. For instance, if one process reads data from disc
or the commandline, it can use a broadcast or a gather to get the information to other processes. Likewise,
at the end of a program run, a gather or reduction can be used to collect summary information about the
program run.

However, a more common scenario is that the result of a collective is needed on all processes.
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Consider the computation of the standard deviation:

𝜎 =
√

1
𝑁 − 1

𝑁
∑
𝑖
(𝑥𝑖 − 𝜇)2 where 𝜇 = ∑𝑁

𝑖 𝑥𝑖
𝑁

and assume that every process stores just one 𝑥𝑖 value.
1. The calculation of the average 𝜇 is a reduction, since all the distributed values need to be added.
2. Now every process needs to compute 𝑥𝑖 − 𝜇 for its value 𝑥𝑖, so 𝜇 is needed everywhere. You can

compute this by doing a reduction followed by a broadcast, but it is better to use a so-called
allreduce operation, which does the reduction and leaves the result on all processors.

3. The calculation of ∑𝑖(𝑥𝑖 − 𝜇) is another sum of distributed data, so we need another reduction
operation. Depending on whether each process needs to know 𝜎 , we can again use an allreduce.

3.1.2 Synchronization

Collectives are operations that involve all processes in a communicator. A collective is a single call, and
it blocks on all processors, meaning that a process calling a collective cannot proceed until the other
processes have similarly called the collective.

That does not mean that all processors exit the call at the same time: because of implementational details
and network latency they need not be synchronized in their execution. However, semantically we can say
that a process can not finish a collective until every other process has at least started the collective.

In addition to these collective operations, there are operations that are said to be ‘collective on their
communicator’, but which do not involve data movement. Collective then means that all processors must
call this routine; not to do so is an error that will manifest itself in ‘hanging’ code. One such example is
MPI_File_open.

3.1.3 Collectives in MPI

We will now explain the MPI collectives in the following order.

Allreduce We use the allreduce as an introduction to the concepts behind collectives; section 3.2. As
explained above, this routines serves many practical scenarios.

Broadcast and reduce We then introduce the concept of a root in the reduce (section 3.3.1) and broadcast
(section 3.3.3) collectives.

• Sometimes you want a reduction with partial results, where each processor computes the sum
(or other operation) on the values of lower-numbered processors. For this, you use a scan col-
lective (section 3.4).

Gather and scatter The gather/scatter collectives deal with more than a single data item; section 3.5.

There are more collectives or variants on the above.

• If every processor needs to broadcast to every other, you use an all-to-all operation (section 3.6).
• The reduce-scatter is a lesser known combination of collectives; section 3.7.
• A barrier is an operation that makes all processes wait until every process has reached the
barrier (section 3.8).
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Figure 3.1 MPI_Allreduce
Name Param name Explanation C type F type inout

MPI_Allreduce (
MPI_Allreduce_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

recvbuf starting address of
receive buffer

void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in send
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of elements of
send buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

op operation MPI_Op TYPE(MPI_Op) IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)
MPL:

template<typename T , typename F >
void mpl::communicator::allreduce

( F,const T &, T & ) const;
( F,const T *, T *,
const contiguous_layout< T > & ) const;

( F,T & ) const;
( F,T *, const contiguous_layout< T > & ) const;

F : reduction function
T : type

Python:

MPI.Comm.Allreduce(self, sendbuf, recvbuf, Op op=SUM)

• If you want to gather or scatter information, but the contribution of each processor is of a
different size, there are ‘variable’ collectives; they have a v in the name (section 3.9).

Finally, there are some advanced topics in collectives.

• User-defined reduction operators; section 3.10.2.
• Nonblocking collectives; section 3.11.
• We briefly discuss performance aspects of collectives in section 3.12.
• We discuss synchronization aspects in section 3.13.

3.2 Reduction

3.2.1 Reduce to all

Above we saw a couple of scenarios where a quantity is reduced, with all proceses getting the result. The
MPI call for this is MPI_Allreduce (figure 3.1).
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Example: we give each process a random number, and sum these numbers together. The result should be
approximately 1/2 times the number of processes.

// allreduce.c
float myrandom,sumrandom;
myrandom = (float) rand()/(float)RAND_MAX;
// add the random variables together
MPI_Allreduce(&myrandom,&sumrandom,

1,MPI_FLOAT,MPI_SUM,comm);
// the result should be approx nprocs/2:
if (procno==nprocs-1)

printf("Result %6.9f compared to .5\n",sumrandom/nprocs);

Or:

MPI_Count buffersize = 1000;
double *indata,*outdata;
indata = (double*) malloc( buffersize*sizeof(double) );
outdata = (double*) malloc( buffersize*sizeof(double) );
MPI_Allreduce_c(indata,outdata,buffersize,

MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

3.2.1.1 Buffer description

This is the first example in this course that involves MPI data buffers: the MPI_Allreduce call contains two
buffer arguments. In most MPI calls (with the one-sided ones as big exception) a buffer is described by
three parameters:

1. a pointer to the data,
2. the number of items in the buffer, and
3. the datatype of the items in the buffer.

Each of these needs some elucidation.

1. The buffer specification depends on the programming languages. Defailts are in section 3.2.4.
2. The count was a 4-byte integer inMPI standard up to and includingMPI-3. In theMPI-4 standard

the MPI_Count data type become allowed. See section 6.4 for details.
3. Datatypes can be predefined, as in the above example, or user-defined. See chapter 6 for details.

Remark 5 Routines with both a send and receive buffer should not alias these. Instead, see the discussion of
MPI_IN_PLACE; section 3.3.2.

3.2.1.2 Examples and exercises

Exercise 3.2. Let each process compute a random number, and compute the sum of these
numbers using the MPI_Allreduce routine.

𝜉 = ∑
𝑖

𝑥𝑖
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Each process then scales its value by this sum.

𝑥′𝑖 ← 𝑥𝑖/𝜉
Compute the sum of the scaled numbers

𝜉 ′ = ∑
𝑖

𝑥′𝑖

and check that it is 1.
(There is a skeleton for this exercise under the name randommax.)

Solution to exercise 3.2. The first sum needs to be done with an ‘allreduce’. The result of the
second sum is only needed on one processor (the one that performs the check) so it can be
done with a rooted reduction, but using an ‘allreduce’ is just as valid.

Exercise 3.3. Extend the previous exercise to letting each process have an array.

Exercise 3.4. Implement a (very simple-minded) Fourier transform: if 𝑓 is a function on the
interval [0, 1], then the 𝑛-th Fourier coefficient is

𝑓𝑛=̂ ∫
1

0
𝑓 (𝑡)𝑒−2𝜋𝑥 𝑑𝑥

which we approximate by

𝑓𝑛=̂
𝑁−1
∑
𝑖=0

𝑓 (𝑖ℎ)𝑒−𝑖𝑛𝜋/𝑁

• Make one distributed array for the 𝑒−𝑖𝑛ℎ coefficients,
• make one distributed array for the 𝑓 (𝑖ℎ) values
• calculate a couple of coefficients

Exercise 3.5. In the previous exercise you worked with a distributed array, computing a
local quantity and combining that into a global quantity. Why is it not a good idea to
gather the whole distributed array on a single processor, and do all the computation
locally?

Solution to exercise 3.5. One assumption behind distributed arrays is that the global size may
not fit on a single processor. Secondly, this approach does not scale.

MPL note 9: Allreduce operator. The usual reduction operators are given as templated operators:
float

xrank = static_cast<float>( comm_world.rank() ),
xreduce;

// separate recv buffer
comm_world.allreduce(mpl::plus<float>(), xrank,xreduce);
// in place
comm_world.allreduce(mpl::plus<float>(), xrank);

Note the parentheses after the operator. Also note that the operator comes first, not last.

Available: max, min, plus, multiplies, logical_and, logical_or, logical_xor, bit_and, bit_or,
bit_xor.
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Implementation note: The reduction operator has to be compatible with T(T,T)>.

For more about operators, see section 3.10.

3.2.2 Inner product as allreduce

One of the more common applications of the reduction operation is the inner product computation. Typ-
ically, you have two vectors 𝑥, 𝑦 that have the same distribution, that is, where all processes store equal
parts of 𝑥 and 𝑦 . The computation is then

local_inprod = 0;
for (i=0; i<localsize; i++)

local_inprod += x[i]*y[i];
MPI_Allreduce( &local_inprod, &global_inprod, 1,MPI_DOUBLE ... )

Exercise 3.6. The Gram-Schmidt method is a simple way to orthogonalize two vectors:

𝑢 ← 𝑢 − (𝑢𝑡𝑣)/(𝑢𝑡𝑢)
Implement this, and check that the result is indeed orthogonal.
Suggestion: fill 𝑣 with the values sin 2𝑛ℎ𝜋 where 𝑛 = 2𝜋/𝑁 , and 𝑢 with
sin 2𝑛ℎ𝜋 + sin 4𝑛ℎ𝜋 . What does 𝑢 become after orthogonalization?

3.2.3 Reduction operations

Several MPI_Op values are pre-defined. For the list, see section 3.10.1.

For use in reductions and scans it is possible to define your own operator.

MPI_Op_create( MPI_User_function *func, int commute, MPI_Op *op);

For more details, see section 3.10.2.

3.2.4 Data buffers

Collectives are the first example you see of MPI routines that involve transfer of user data. Here, and in
every other case, you see that the data description involves:

• A buffer. This can be a scalar or an array.
• A datatype. This describes whether the buffer contains integers, single/double floating point
numbers, or more complicated types, to be discussed later.

• A count. This states how many of the elements of the given datatype are in the send buffer, or
will be received into the receive buffer.

These three together describe what MPI needs to send through the network.

In the various languages such a buffer/count/datatype triplet is specified in different ways.

First of all, in C the buffer is always an opaque handle, that is, a void* parameter to which you supply an
address. This means that an MPI call can take two forms.

For scalars we need to use the ampersand operator to take the address:
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float x,y;
MPI_Allreduce( &x,&y,1,MPI_FLOAT, ... );

But for arrays we use the fact that arrays and addresses are more-or-less equivalent in:

float xx[2],yy[2];
MPI_Allreduce( xx,yy,2,MPI_FLOAT, ... );

You could cast the buffers and write:

MPI_Allreduce( (void*)&x,(void*)&y,1,MPI_FLOAT, ... );
MPI_Allreduce( (void*)xx,(void*)yy,2,MPI_FLOAT, ... );

but that is not necessary. The compiler will not complain if you leave out the cast.

C++ note 1: Buffer treatment. Treatment of scalars in C++ is the same as in C. However, for arrays you
have the choice between C-style arrays, and std::vector or std::array. For the latter there are
two ways of dealing with buffers:

vector<float> xx(25);
MPI_Send( xx.data(),25,MPI_FLOAT, .... );
MPI_Send( &xx[0],25,MPI_FLOAT, .... );

Fortran note 5: MPI send/recv buffers. In Fortran parameters are always passed by reference, so the buffer
is treated the same way:

Real*4 :: x
Real*4,dimension(2) :: xx
call MPI_Allreduce( x,1,MPI_REAL4, ... )
call MPI_Allreduce( xx,2,MPI_REAL4, ... )

In discussing OO languages, we first note that the official C++ API has been removed from the standard.

Specification of the buffer/count/datatype triplet is not needed explicitly in OO languages.

Python note 7: Buffers from numpy. Most MPI routines in Python have both a variant that can send arbi-
trary Python data, and one that is based on numpy arrays. The former looks the most ‘pythonic’,
and is very flexible, but is usually demonstrably inefficient.

## allreduce.py
random_number = random.randint(1,random_bound)
# native mode send
max_random = comm.allreduce(random_number,op=MPI.MAX)

In the numpy variant, all buffers are numpy objects, which carry information about their type
and size. For scalar reductions this means we have to create an array for the receive buffer, even
though only one element is used.

myrandom = np.empty(1,dtype=int)
myrandom[0] = random_number
allrandom = np.empty(nprocs,dtype=int)
# numpy mode send
comm.Allreduce(myrandom,allrandom[:1],op=MPI.MAX)
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Python note 8: Buffers from subarrays. In many examples you will pass a whole Numpy array as send/re-
ceive buffer. Should want to use a buffer that corresponds to a subset of an array, you can use
the following notation:

MPI_Whatever( buffer[...,5] # more stuff

for passing the buffer that starts at location 5 of the array.

For even more complicated effects, use numpy.frombuffer:
Code:

## bcastcolumn.py
datatype = np.intc
elementsize = datatype().itemsize
typechar = datatype().dtype.char
buffer = np.zeros( [nprocs,nprocs],

↪dtype=datatype)
buffer[:,:] = -1
for proc in range(nprocs):

if procid==proc:
buffer[proc,:] = proc

comm.Bcast\
( [ np.frombuffer\

( buffer.data,
dtype=datatype,

↪offset=(proc*nprocs+proc)*elementsize
↪),

nprocs-proc, typechar ],
root=proc )

Output:

int size: 4
i
[[ 0 0 0 0 0 0]
[-1 1 1 1 1 1]
[-1 -1 2 2 2 2]
[-1 -1 -1 3 3 3]
[-1 -1 -1 -1 4 4]
[ 5 5 5 5 5 5]]

MPL note 10: Scalar buffers. Buffer type handling is done through polymorphism (templating and ADL):
no explicit indication of types.

Scalars are handled as such:

float x,y;
comm.bcast( 0,x ); // note: root first
comm.allreduce( mpl::plus<float>(), x,y ); // op first

where the reduction function needs to be compatible with the type of the buffer.

MPL note 11: Vector buffers. If your buffer is a std::vector you need to take the .data() component of it:

vector<float> xx(2),yy(2);
comm.allreduce( mpl::plus<float>(),

xx.data(), yy.data(), mpl::contiguous_layout<float>(2) );

The contiguous_layout is a ‘derived type’; this will be discussed in more detail elsewhere (see
note 45 and later). For now, interpret it as a way of indicating the count/type part of a buffer
specification.

MPL note 12: Array buffers. You can pass a C-style array as buffer, requiring a layout:
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// collectarray.cxx
float rank2p2p1[2] = { 2*xrank,2*xrank+1 };
mpl::contiguous_layout<float> p2layout(2);
comm_world.allreduce(mpl::plus<float>(), rank2p2p1, p2layout);

MPL note 13: Iterator buffers. MPL point-to-point routines have a way of specifying the buffer(s) through
a begin and end iterator.

// sendrange.cxx
vector<double> v(15);
comm_world.send(v.begin(), v.end(), 1); // send to rank 1
comm_world.recv(v.begin(), v.end(), 0); // receive from rank 0

Not available for collectives.

MPL note 14: Send vs recv buffer. There is a separate variant for non-root usage of rooted collectives:
// scangather.cxx
if (procno==0) {
comm_world.reduce
( mpl::plus<int>(),0,

my_number_of_elements,total_number_of_elements );
} else {
comm_world.reduce
( mpl::plus<int>(),0,my_number_of_elements );

}

3.3 Rooted collectives: broadcast, reduce
In some scenarios there is a certain process that has a privileged status.

• One process can generate or read in the initial data for a program run. This then needs to be
communicated to all other processes.

• At the end of a program run, often one process needs to output some summary information.
This process is called the root process, and we will now consider routines that have a root.

3.3.1 Reduce to a root

In the broadcast operation a single data item was communicated to all processes. A reduction operation
with MPI_Reduce (figure 3.2) goes the other way: each process has a data item, and these are all brought
together into a single item.

Here are the essential elements of a reduction operation:
MPI_Reduce( senddata, recvdata..., operator,

root, comm );

• There is the original data, and the data resulting from the reduction. It is a design decision of
MPI that it will not by default overwrite the original data. The send data and receive data are of
the same size and type: if every processor has one real number, the reduced result is again one
real number.
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Figure 3.2 MPI_Reduce
Name Param name Explanation C type F type inout

MPI_Reduce (
MPI_Reduce_c (

sendbuf address of send buffer const void* TYPE(*),
DIMENSION(..)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in send
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of elements of
send buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

op reduce operation MPI_Op TYPE(MPI_Op) IN
root rank of root process int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)
MPL:

void mpl::communicator::reduce
// root, in place
( F f,int root_rank,T & sendrecvdata ) const
( F f,int root_rank,T * sendrecvdata,const contiguous_layout< T > & l ) const
// non-root
( F f,int root_rank,const T & senddata ) const
( F f,int root_rank,

const T * senddata,const contiguous_layout< T > & l ) const
// general
( F f,int root_rank,const T & senddata,T & recvdata ) const
( F f,int root_rank,

const T * senddata,T * recvdata,const contiguous_layout< T > & l ) const

Python:

comm.Reduce(self, sendbuf, recvbuf, Op op=SUM, int root=0)
native:
comm.reduce(self, sendobj=None, recvobj=None, op=SUM, int root=0)

• It is possible to indicate explicitly that a single buffer is used, and thereby the original data
overwritten; see section 3.3.2 for this ‘in place’ mode.

• There is a reduction operator. Popular choices are MPI_SUM, MPI_PROD and MPI_MAX, but compli-
cated operators such as finding the location of the maximum value exist. (For the full list, see
section 3.10.1.) You can also define your own operators; section 3.10.2.

• There is a root process that receives the result of the reduction. Since the nonroot processes do
not receive the reduced data, they can actually leave the receive buffer undefined.

// reduce.c
float myrandom = (float) rand()/(float)RAND_MAX,

result;
int target_proc = nprocs-1;
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// add all the random variables together
MPI_Reduce(&myrandom,&result,1,MPI_FLOAT,MPI_SUM,

target_proc,comm);
// the result should be approx nprocs/2:
if (procno==target_proc)

printf("Result %6.3f compared to nprocs/2=%5.2f\n",
result,nprocs/2.);

Exercise 3.7. Write a program where each process computes a random number, and
process 0 finds and prints the maximum generated value. Let each process print its
value, just to check the correctness of your program.

Collective operations can also take an array argument, instead of just a scalar. In that case, the operation
is applied pointwise to each location in the array.

Exercise 3.8. Create on each process an array of length 2 integers, and put the values 1, 2 in
it on each process. Do a sum reduction on that array. Can you predict what the
result should be? Code it. Was your prediction right?

3.3.2 Reduce in place

By default MPI will not overwrite the original data with the reduction result, but you can tell it to do so
using the MPI_IN_PLACE specifier:

// allreduceinplace.c
for (int irand=0; irand<nrandoms; irand++)

myrandoms[irand] = (float) rand()/(float)RAND_MAX;
// add all the random variables together
MPI_Allreduce(MPI_IN_PLACE,myrandoms,

nrandoms,MPI_FLOAT,MPI_SUM,comm);

Now every process only has a receive buffer, so this has the advantage of saving half the memory. Each
process puts its input values in the receive buffer, and these are overwritten by the reduced result.

The above example used MPI_IN_PLACE in MPI_Allreduce; in MPI_Reduce it’s little tricky. The reasoning is a
follows:

• In MPI_Reduce every process has a buffer to contribute, but only the root needs a receive buffer.
Therefore, MPI_IN_PLACE takes the place of the receive buffer on any processor except for the
root …

• … while the root, which needs a receive buffer, has MPI_IN_PLACE takes the place of the send
buffer. In order to contribute its value, the root needs to put this in the receive buffer.

Here is one way you could write the in-place version of MPI_Reduce:

if (procno==root)
MPI_Reduce(MPI_IN_PLACE,myrandoms,

nrandoms,MPI_FLOAT,MPI_SUM,root,comm);
else
MPI_Reduce(myrandoms,MPI_IN_PLACE,

nrandoms,MPI_FLOAT,MPI_SUM,root,comm);
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However, as a point of style, having different versions of a a collective in different branches of a condition
is infelicitous. The following may be preferable:

float *sendbuf,*recvbuf;
if (procno==root) {

sendbuf = MPI_IN_PLACE; recvbuf = myrandoms;
} else {

sendbuf = myrandoms; recvbuf = MPI_IN_PLACE;
}
MPI_Reduce(sendbuf,recvbuf,

nrandoms,MPI_FLOAT,MPI_SUM,root,comm);

Fortran note 6: In-place operations. In Fortran you can not do these address calculations. You can use the
solution with a conditional:

!! reduceinplace.F90
call random_number(mynumber)
target_proc = ntids-1;
! add all the random variables together
if (mytid.eq.target_proc) then

result = mytid
call MPI_Reduce(MPI_IN_PLACE,result,1,MPI_REAL,MPI_SUM,&

target_proc,comm)
else

mynumber = mytid
call MPI_Reduce(mynumber,result,1,MPI_REAL,MPI_SUM,&

target_proc,comm)
end if

but you can also solve this with pointers:

!! reduceinplaceptr.F90
in_place_val = MPI_IN_PLACE
if (mytid.eq.target_proc) then

! set pointers
result_ptr => result
mynumber_ptr => in_place_val
! target sets value in receive buffer
result_ptr = mytid

else
! set pointers
mynumber_ptr => mynumber
result_ptr => in_place_val
! non-targets set value in send buffer
mynumber_ptr = mytid

end if
call MPI_Reduce(mynumber_ptr,result_ptr,1,MPI_REAL,MPI_SUM,&

target_proc,comm,err)

Python note 9: In-place collectives. The value MPI.IN_PLACE can be used for the send buffer:

## allreduceinplace.py
myrandom = np.empty(1,dtype=int)
myrandom[0] = random_number
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comm.Allreduce(MPI.IN_PLACE,myrandom,op=MPI.MAX)

MPL note 15: Reduce in place. The in-place variant is activated by specifying only one instead of two buffer
arguments.

float
xrank = static_cast<float>( comm_world.rank() ),
xreduce;

// separate recv buffer
comm_world.allreduce(mpl::plus<float>(), xrank,xreduce);
// in place
comm_world.allreduce(mpl::plus<float>(), xrank);

Reducing a buffer requires specification of a contiguous_layout:

// collectbuffer.cxx
float

xrank = static_cast<float>( comm_world.rank() );
vector<float> rank2p2p1{ 2*xrank,2*xrank+1 },reduce2p2p1{0,0};
mpl::contiguous_layout<float> two_floats(rank2p2p1.size());
comm_world.allreduce
(mpl::plus<float>(), rank2p2p1.data(),reduce2p2p1.data(),two_floats);

if ( iprint )
cout << "Got: " << reduce2p2p1.at(0) << ","

<< reduce2p2p1.at(1) << endl;

Note that the buffers are of type T *, so it is necessary to take the data() of any std::vector and
such.

3.3.3 Broadcast

A broadcast models the scenario where one process, the ‘root’ process, owns some data, and it communi-
cates it to all other processes.

The broadcast routine MPI_Bcast (figure 3.3) has the following structure:

MPI_Bcast( data..., root , comm);

Here:

• There is only one buffer, the send buffer. Before the call, the root process has data in this buffer;
the other processes allocate a same sized buffer, but for them the contents are irrelevant.

• The root is the process that is sending its data. Typically, it will be the root of a broadcast tree.

Example: in general we can not assume that all processes get the commandline arguments, so we broadcast
them from process 0.

// init.c
if (procno==0) {
if ( argc==1 || // the program is called without parameter

( argc>1 && !strcmp(argv[1],"-h") ) // user asked for help
) {
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Figure 3.3 MPI_Bcast
Name Param name Explanation C type F type inout

MPI_Bcast (
MPI_Bcast_c (

buffer starting address of buffer void* TYPE(*),
DIMENSION(..)

INOUT

count number of entries in
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of buffer MPI_Datatype TYPE
(MPI_Datatype)

IN

root rank of broadcast root int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)
MPL:

template<typename T >
void mpl::communicator::bcast

( int root, T & data ) const
( int root, T * data, const layout< T > & l ) const

Python:

MPI.Comm.Bcast(self, buf, int root=0)

printf("\nUsage: init [0-9]+\n");
MPI_Abort(comm,1);

}
input_argument = atoi(argv[1]);

}
MPI_Bcast(&input_argument,1,MPI_INT,0,comm);

Python note 10: Sending objects. In python it is both possible to send objects, and to send more C-like
buffers. The two possibilities correspond (see section 1.5.4) to different routine names; the
buffers have to be created as numpy objects.

We illustrate both the general Python and numpy variants. In the former variant the result is
given as a function return; in the numpy variant the send buffer is reused.

## bcast.py
# first native
if procid==root:

buffer = [ 5.0 ] * dsize
else:

buffer = [ 0.0 ] * dsize
buffer = comm.bcast(obj=buffer,root=root)
if not reduce( lambda x,y:x and y,

[ buffer[i]==5.0 for i in range(len(buffer)) ] ):
print( "Something wrong on proc %d: native buffer <<%s>>" \

% (procid,str(buffer)) )
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# then with NumPy
buffer = np.arange(dsize, dtype=np.float64)
if procid==root:

for i in range(dsize):
buffer[i] = 5.0

comm.Bcast( buffer,root=root )
if not all( buffer==5.0 ):

print( "Something wrong on proc %d: numpy buffer <<%s>>" \
% (procid,str(buffer)) )

else:
if procid==root:

print("Success.")

MPL note 16: Broadcast. The broadcast call comes in two variants, with scalar argument and general lay-
out:

template<typename T >
void mpl::communicator::bcast

( int root_rank, T &data ) const;
void mpl::communicator::bcast

( int root_rank, T *data, const layout< T > &l ) const;

Note that the root argument comes first.

For the following exercise, study figure 3.2.

Exercise 3.9. The Gauss-Jordan algorithm for solving a linear system with a matrix 𝐴 (or
computing its inverse) runs as follows:
for pivot 𝑘 = 1, … , 𝑛

let the vector of scalings ℓ(𝑘)𝑖 = 𝐴𝑖𝑘/𝐴𝑘𝑘
for row 𝑟 ≠ 𝑘

for column 𝑐 = 1, … , 𝑛
𝐴𝑟𝑐 ← 𝐴𝑟𝑐 − ℓ(𝑘)𝑟 𝐴𝑘𝑐

where we ignore the update of the righthand side, or the formation of the inverse.
Let a matrix be distributed with each process storing one column. Implement the
Gauss-Jordan algorithm as a series of broadcasts: in iteration 𝑘 process 𝑘 computes
and broadcasts the scaling vector {ℓ(𝑘)𝑖 }𝑖. Replicate the right-hand side on all
processors.
(There is a skeleton for this exercise under the name jordan.)

Solution to exercise 3.9. The trick is that in the 𝑘 step the broadcast has process 𝑘 as root.

Exercise 3.10. Add partial pivoting to your implementation of Gauss-Jordan elimination.
Change your implementation to let each processor store multiple columns, but still
do one broadcast per column. Is there a way to have only one broadcast per
processor?
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Initial:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17

4 5 32 1 41

-2 -3 -16 1 -21

Step 1:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17 take this row 1/2

4 5 32 1 41

-2 -3 -16 1 -21

Step 2:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17 take this row 1/2
↓ ↓ ↓
4 5 32 1 41 minus 4 × (1/2)

-2 -3 -16 1 -21

Step 3:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17 take this row 1/2

0 1 6 1 7 −2

-2 -3 -16 1 -21

Step 4:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17 take this row 1/2
⇊ ⇊ ⇊
0 1 6 1 7 −2

-2 -3 -16 1 -21 minus (−2) × (1/2)
Step 5:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17 take this row 1/2

0 1 6 1 7 −2

0 -1 -3 1 -4 +1
Step 6:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17 first column done 1/2

0 1 6 1 7 −2

0 -1 -3 1 -4 +1

Step 7:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17

0 1 6 1 7 take this row 1

0 -1 -3 1 -4

Step 8:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 2 13 1 17 minus 2 × 1
↑ ↑ ↑
0 1 6 1 7 take this row 1

0 -1 -3 1 -4

Step 9:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 1 1 3 −2

0 1 6 1 7 take this row 1

0 -1 -3 1 -4

Step 10:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 1 1 3 −2

0 1 6 1 7 take this row 1
↓ ↓ ↓
0 -1 -3 1 -4 minus (−1) × 1

Step 11:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 1 1 3 −2

0 1 6 1 7 take this row 1

0 0 3 1 3 +1
Step 12:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 1 1 3 −2

0 1 6 1 7 second column done 1

0 0 3 1 3 +1
Step 13:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 1 1 3

0 1 6 1 7

0 0 3 1 3 take this row 1/3

Step 14:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 1 1 3 minus 1 × 1/3

0 1 6 1 7
⇈ ⇈ ⇈
0 0 3 1 3 take this row 1/3

Step 15:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 0 1 2 −1/3

0 1 6 1 7

0 0 3 1 3 take this row 1/3

Step 16:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 0 1 2 −1/3

0 1 6 1 7 minus 6 × 1/3
↑ ↑ ↑
0 0 3 1 3 take this row 1/3

Step 17:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 0 1 2

0 1 0 1 1

0 0 3 1 3 take this row

Step 18:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 0 1 2 −1/3

0 1 0 1 1 −2/3

0 0 3 1 3 third column done 1/3

Finished:

matrix sol rhs action 𝑠𝑐𝑎𝑙𝑖𝑛𝑔
2 0 0 1 2

0 1 0 1 1

0 0 3 1 3

Figure 3.2: Gauss-Jordan elimination example
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Figure 3.4 MPI_Scan
Name Param name Explanation C type F type inout

MPI_Scan (
MPI_Scan_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

recvbuf starting address of
receive buffer

void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in
input buffer

[ int
MPI_Count INTEGER IN

datatype datatype of elements of
input buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

op operation MPI_Op TYPE(MPI_Op) IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)
MPL:

template<typename T , typename F >
void mpl::communicator::scan

( F,const T &, T & ) const;
( F,const T *, T *,
const contiguous_layout< T > & ) const;

( F,T & ) const;
( F,T *, const contiguous_layout< T > & ) const;

F : reduction function
T : type

Python:

res = Intracomm.scan( sendobj=None,recvobj=None,op=MPI.SUM)

3.4 Scan operations

The MPI_Scan operation also performs a reduction, but it keeps the partial results. That is, if processor 𝑖
contains a number 𝑥𝑖, and ⊕ is an operator, then the scan operation leaves 𝑥0 ⊕⋯⊕𝑥𝑖 on processor 𝑖. This
type of operation is often called a prefix operation; see HPC book, section-28.

The MPI_Scan (figure 3.4) routine is an inclusive scan operation, meaning that it includes the data on the
process itself; MPI_Exscan (see section 3.4.1) is exclusive, and does not include the data on the calling
process.

process ∶ 0 1 2 ⋯ 𝑝 − 1
data ∶ 𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑝−1

inclusive ∶ 𝑥0 𝑥0 ⊕ 𝑥1 𝑥0 ⊕ 𝑥1 ⊕ 𝑥2 ⋯ ⊕𝑝−1
𝑖=0 𝑥𝑖

exclusive ∶ unchanged 𝑥0 𝑥0 ⊕ 𝑥1 ⋯ ⊕𝑝−2
𝑖=0 𝑥𝑖

// scan.c
// add all the random variables together
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MPI_Scan(&myrandom,&result,1,MPI_FLOAT,MPI_SUM,comm);
// the result should be approaching nprocs/2:
if (procno==nprocs-1)

printf("Result %6.3f compared to nprocs/2=%5.2f\n",
result,nprocs/2.);

In python mode the result is a function return value, with numpy the result is passed as the second
parameter.

## scan.py
mycontrib = 10+random.randint(1,nprocs)
myfirst = 0
mypartial = comm.scan(mycontrib)
sbuf = np.empty(1,dtype=int)
rbuf = np.empty(1,dtype=int)
sbuf[0] = mycontrib
comm.Scan(sbuf,rbuf)

You can use any of the given reduction operators, (for the list, see section 3.10.1), or a user-defined one.
In the latter case, the MPI_Op operations do not return an error code.

MPL note 17: Scan operations. As in the C/F interfaces, MPL interfaces to the scan routines have the same
calling sequences as the ‘Allreduce’ routine.

3.4.1 Exclusive scan

Often, the more useful variant is the exclusive scan MPI_Exscan (figure 3.5) with the same signature.

The result of the exclusive scan is undefined on processor 0 (None in python), and on processor 1 it is a
copy of the send value of processor 1. In particular, the MPI_Op need not be called on these two processors.

Exercise 3.11. The exclusive definition, which computes 𝑥0 ⊕ 𝑥𝑖−1 on processor 𝑖, can be
derived from the inclusive operation for operations such as MPI_SUM or MPI_PROD. Are
there operators where that is not the case?

Solution to exercise 3.11. This is not the case for MPI_MIN or MPI_MAX.

3.4.2 Use of scan operations

The MPI_Scan operation is often useful with indexing data. Suppose that every processor 𝑝 has a local vector
where the number of elements 𝑛𝑝 is dynamically determined. In order to translate the local numbering
0… 𝑛𝑝 − 1 to a global numbering one does a scan with the number of local elements as input. The output
is then the global number of the first local variable.

As an example, setting Fast Fourier Transform (FFT) coefficients requires this translation. If the local sizes
are all equal, determining the global index of the first element is an easy calculation. For the irregular
case, we first do a scan:

// fft.c
MPI_Allreduce( &localsize,&globalsize,1,MPI_INT,MPI_SUM, comm );
globalsize += 1;
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Figure 3.5 MPI_Exscan
Name Param name Explanation C type F type inout

MPI_Exscan (
MPI_Exscan_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

recvbuf starting address of
receive buffer

void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in
input buffer

[ int
MPI_Count INTEGER IN

datatype datatype of elements of
input buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

op operation MPI_Op TYPE(MPI_Op) IN
comm intra-communicator MPI_Comm TYPE

(MPI_Comm)
IN

)
MPL:

template<typename T , typename F >
void mpl::communicator::exscan

( F,const T &, T & ) const;
( F,const T *, T *,
const contiguous_layout< T > & ) const;

( F,T & ) const;
( F,T *, const contiguous_layout< T > & ) const;

F : reduction function
T : type

Python:

res = Intracomm.exscan( sendobj=None,recvobj=None,op=MPI.SUM)

int myfirst=0;
MPI_Exscan( &localsize,&myfirst,1,MPI_INT,MPI_SUM, comm );

for (int i=0; i<localsize; i++)
vector[i] = sin( pi*freq* (i+1+myfirst) / globalsize );

Figure 3.3: Local arrays that together form a consecutive range

Exercise 3.12.
• Let each process compute a random value 𝑛local, and allocate an array of that
length. Define

𝑁 = ∑𝑛local
• Fill the array with consecutive integers, so that all local arrays, laid end-to-end,
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contain the numbers 0⋯𝑁 − 1. (See figure 3.3.)
(There is a skeleton for this exercise under the name scangather.)

Solution to exercise 3.12.

// scangather.cxx
MPI_Exscan
(&my_number_of_elements,&my_first_index,
1,MPI_INT,MPI_SUM,comm);

int total_number_of_elements;
vector<int> my_elements( my_number_of_elements );
for (int i_element=0; i_element<my_number_of_elements; i_element++)

my_elements[i_element] = my_first_index+i_element;

MPI_Reduce( &my_number_of_elements,&total_number_of_elements,
1,MPI_INT,MPI_SUM,0,comm);

MPI_Gather
(
&my_number_of_elements,1,MPI_INT,size_buffer.data(),1,MPI_INT,0,comm
);

// where are they going to go in the big buffer?
vector<int> displ_buffer;
if (procno==0)

displ_buffer = vector<int>( nprocs );
MPI_Gather
(
&my_first_index,1,MPI_INT,displ_buffer.data(),1,MPI_INT,0,comm
);

// now create the big buffer
vector<int> gather_buffer;
if (procno==0)

gather_buffer = vector<int>( total_number_of_elements );
/*
* Use Gatherv to collect the small buffers into a big one
*/

MPI_Gatherv
(
my_elements.data(),my_number_of_elements,MPI_INT,
gather_buffer.data(),size_buffer.data(),displ_buffer.data(),
MPI_INT,0,comm
);

Exercise 3.13. Did you use MPI_Scan or MPI_Exscan for the previous exercise? How would
you describe the result of the other scan operation, given the same input?

It is possible to do a segmented scan. Let 𝑥𝑖 be a series of numbers that we want to sum to 𝑋𝑖 as follows.
Let 𝑦𝑖 be a series of booleans such that

{𝑋𝑖 = 𝑥𝑖 if 𝑦𝑖 = 0
𝑋𝑖 = 𝑋𝑖−1 + 𝑥𝑖 if 𝑦𝑖 = 1
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(This is the basis for the implementation of the sparse matrix vector product as prefix operation; see HPC
book, section-28.2.) This means that 𝑋𝑖 sums the segments between locations where 𝑦𝑖 = 0 and the first
subsequent place where 𝑦𝑖 = 1. To implement this, you need a user-defined operator

(
𝑋
𝑥
𝑦
) = (

𝑋1
𝑥1
𝑦1

)⨁(
𝑋2
𝑥2
𝑦2

) ∶ {𝑋 = 𝑥1 + 𝑥2 if 𝑦2 == 1
𝑋 = 𝑥2 if 𝑦2 == 0

This operator is not communitative, and it needs to be declared as such with MPI_Op_create; see sec-
tion 3.10.2

3.5 Rooted collectives: gather and scatter

Figure 3.4: Gather collects all data onto a root

In the MPI_Scatter operation, the root spreads information to all other processes. The difference with a
broadcast is that it involves individual information from/to every process. Thus, the gather operation
typically has an array of items, one coming from each sending process, and scatter has an array, with an

Figure 3.5: A scatter operation

individual item for each receiving process; see figure 3.5.
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These gather and scatter collectives have a different parameter list from the broadcast/reduce. The broad-
cast/reduce involves the same amount of data on each process, so it was enough to have a single datatype-
/size specification; for one buffer in the broadcast, and for both buffers in the reduce call. In the gather/s-
catter calls you have

• a large buffer on the root, with a datatype and size specification, and
• a smaller buffer on each process, with its own type and size specification.

In the gather and scatter calls, each processor has 𝑛 elements of individual data. There is also a root
processor that has an array of length 𝑛𝑝, where 𝑝 is the number of processors. The gather call collects all
this data from the processors to the root; the scatter call assumes that the information is initially on the
root and it is spread to the individual processors.

Here is a small example:

// gather.c
// we assume that each process has a value "localsize"
// the root process collects these values

if (procno==root)
localsizes = (int*) malloc( nprocs*sizeof(int) );

// everyone contributes their info
MPI_Gather(&localsize,1,MPI_INT,

localsizes,1,MPI_INT,root,comm);

This will also be the basis of a more elaborate example in section 3.9.

Exercise 3.14. Let each process compute a random number. You want to print the
maximum value and on what processor it is computed. What collective(s) do you
use? Write a short program.

Solution to exercise 3.14. MPI_Gather or define a custom MPI_Op.

The MPI_Scatter operation is in some sense the inverse of the gather: the root process has an array of
length 𝑛𝑝 where 𝑝 is the number of processors and 𝑛 the number of elements each processor will receive.

int MPI_Scatter
(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

Two things to note about these routines:

• The signature for MPI_Gather (figure 3.6) has two ‘count’ parameters, one for the length of the
individual send buffers, and one for the receive buffer. However, confusingly, the second pa-
rameter (which is only relevant on the root) does not indicate the total amount of information
coming in, but rather the size of each contribution. Thus, the two count parameters will usually
be the same (at least on the root); they can differ if you use different MPI_Datatype values for the
sending and receiving processors.

• While every process has a sendbuffer in the gather, and a receive buffer in the scatter call, only
the root process needs the long array in which to gather, or from which to scatter. However,
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Figure 3.6 MPI_Gather
Name Param name Explanation C type F type inout

MPI_Gather (
MPI_Gather_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcount number of elements in send
buffer

[ int
MPI_Count INTEGER IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

recvcount number of elements for any
single receive

[ int
MPI_Count INTEGER IN

recvtype datatype of recv buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

root rank of receiving process int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)
MPL:

void mpl::communicator::gather
( int root_rank, const T * senddata, const layout< T > & sendl ) const
( int root_rank, const T * senddata, const layout< T > & sendl,

T * recvdata, const layout< T > & recvl ) const
// non-root versions:
( int root_rank, const T & senddata ) const
( int root_rank, const T & senddata, T * recvdata ) const

Python:

MPI.Comm.Gather
(self, sendbuf, recvbuf, int root=0)

because in SPMD mode all processes need to use the same routine, a parameter for this long
array is always present. Nonroot processes can use a null pointer here.

• More elegantly, the MPI_IN_PLACE option can be used for buffers that are not applicable, such as
the receive buffer on a sending process. See section 3.3.2.

MPL note 18: Gather/scatter. Gathering (by communicator::gather)
or scattering (by communicator::scatter)
a single scalar takes a scalar argument and a raw array:

vector<float> v;
float x;
comm_world.scatter(0, v.data(), x);

If more than a single scalar is gathered, or scattered into, it becomes necessary to specify a
layout:
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vector<float> vrecv(2),vsend(2*nprocs);
mpl::contiguous_layout<float> twonums(2);
comm_world.scatter
(0, vsend.data(),twonums, vrecv.data(),twonums );

MPL note 19: Gather on nonroot. Logically speaking, on every nonroot process, the gather call only has a
send buffer. MPL supports this by having two variants that only specify the send data.

if (procno==0) {
vector<int> size_buffer(nprocs);
comm_world.gather
(
0,my_number_of_elements,size_buffer.data()
);

} else {
/*
* If you are not the root, do versions with only send buffers
*/
comm_world.gather
( 0,my_number_of_elements );

3.5.1 Examples

In some applications, each process computes a row or column of a matrix, but for some calculation (such
as the determinant) it is more efficient to have the whole matrix on one process. You should of course
only do this if this matrix is essentially smaller than the full problem, such as an interface system or the
last coarsening level in multigrid.

Figure 3.6: Gather a distributed matrix onto one process

Figure 3.6 pictures this. Note that conceptually we are gathering a two-dimensional object, but the buffer
is of course one-dimensional. You will later see how this can be done more elegantly with the ‘subarray’
datatype; section 6.3.4.

Another thing you can do with a distributed matrix is to transpose it.
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// itransposeblock.c
for (int iproc=0; iproc<nprocs; iproc++) {
MPI_Scatter( regular,1,MPI_DOUBLE,

&(transpose[iproc]),1,MPI_DOUBLE,
iproc,comm);

}

In this example, each process scatters its column. This needs to be done only once, yet the scatter happens
in a loop. The trick here is that a process only originates the scatter when it is the root, which happens
only once. Why do we need a loop? That is because each element of a process’ row originates from a
different scatter operation.

Exercise 3.15. Can you rewrite this code so that it uses a gather rather than a scatter? Does
that change anything essential about structure of the code?

Exercise 3.16. Take the code from exercise 3.12 and extend it to gather all local buffers onto
rank zero. Since the local arrays are of differing lengths, this requires MPI_Gatherv.
How do you construct the lengths and displacements arrays?
(There is a skeleton for this exercise under the name scangather.)

3.5.2 Allgather

Figure 3.7: All gather collects all data onto every process

The MPI_Allgather (figure 3.7) routine does the same gather onto every process: each process winds up
with the totality of all data; figure 3.7.

This routine can be used in the simplest implementation of the dense matrix-vector product to give each
processor the full input; see HPC book, section-7.2.3.

The MPI_IN_PLACE keyword can be used with an all-gather:

1. Use MPI_IN_PLACE for the send buffer;
2. send count and datetype are ignored by MPI;
3. each process needs to put its ‘send content’ in the correct location of the gather buffer.

Some cases look like an all-gather but can be implemented more efficiently. Let’s consider as an example
the set difference of two distributed vectors. That is, you have two distributed vectors, and you want
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Figure 3.7 MPI_Allgather
Name Param name Explanation C type F type inout

MPI_Allgather (
MPI_Allgather_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcount number of elements in send
buffer

[ int
MPI_Count INTEGER IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

recvcount number of elements
received from any process

[ int
MPI_Count INTEGER IN

recvtype datatype of receive buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

comm communicator MPI_Comm TYPE
(MPI_Comm)

IN

)
MPL:

void allgather
( const T & send_data, T * recv_data ) const
( const T * send_data, const layout< T > & sendl,

T * recv_data, const layout< T > & recvl ) const

to create a new vector, again distributed, that contains those elements of the one that do not appear in
the other. You could implement this by gathering the second vector on each processor, but this may be
prohibitive in memory usage.

Exercise 3.17. Can you think of another algorithm for taking the set difference of two
distributed vectors. Hint: look up bucket brigade algorithm; section 4.1.5. What is the
time and space complexity of this algorithm? Can you think of other advantages
beside a reduction in workspace?

Solution to exercise 3.17. Algorithm: Each process sends its part of the second vector down the
ring.
On each process this gives a doubling of the (local) space for the second vector. The time
is 𝛼𝑃 + 𝛽𝑁 where 𝑃 is the number of processes and 𝑁 is the global vector size.
This algorithm has potential overlap of communication and computation: use a loop with
Probe calls and process data as soon as it comes in.

3.6 All-to-all

The all-to-all operation MPI_Alltoall (figure 3.8) can be seen as a collection of simultaneous broadcasts
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Figure 3.8 MPI_Alltoall
Name Param name Explanation C type F type inout

MPI_Alltoall (
MPI_Alltoall_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcount number of elements sent to
each process

[ int
MPI_Count INTEGER IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

recvcount number of elements
received from any process

[ int
MPI_Count INTEGER IN

recvtype datatype of receive buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

comm communicator MPI_Comm TYPE
(MPI_Comm)

IN

)

or simultaneous gathers. The parameter specification is much like an allgather, with a separate send and
receive buffer, and no root specified. As with the gather call, the receive count corresponds to an individual
receive, not the total amount.

Unlike the gather call, the send buffer now obeys the same principle: with a send count of 1, the buffer
has a length of the number of processes.

3.6.1 All-to-all as data transpose

Figure 3.8: All-to-all transposes data
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The all-to-all operation can be considered as a data transpose. For instance, assume that each process
knows how much data to send to every other process. If you draw a connectivity matrix of size 𝑃 × 𝑃 ,
denoting who-sends-to-who, then the send information can be put in rows:

∀𝑖∶ 𝐶[𝑖, 𝑗] > 0 if process 𝑖 sends to process 𝑗.
Conversely, the columns then denote the receive information:

∀𝑗 ∶ 𝐶[𝑖, 𝑗] > 0 if process 𝑗 receives from process 𝑖.

The typical application for such data transposition is in the FFT algorithm, where it can take tens of
percents of the running time on large clusters.

We will consider another application of data transposition, namely radix sort, but we will do that in a
couple of steps. First of all:

Exercise 3.18. In the initial stage of a radix sort, each process considers how many
elements to send to every other process. Use MPI_Alltoall to derive from this how
many elements they will receive from every other process.

3.6.2 All-to-all-v

The major part of the radix sort algorithm consist of every process sending some of its elements to each
of the other processes. The routine MPI_Alltoallv (figure 3.9) is used for this pattern:

• Every process scatters its data to all others,
• but the amount of data is different per process.

Exercise 3.19. The actual data shuffle of a radix sort can be done with MPI_Alltoallv. Finish
the code of exercise 3.18.

3.7 Reduce-scatter

There are several MPI collectives that are functionally equivalent to a combination of others. You have
already seen MPI_Allreduce which is equivalent to a reduction followed by a broadcast. Often such com-
binations can be more efficient than using the individual calls; see HPC book, section-7.1.

Here is another example: MPI_Reduce_scatter is equivalent to a reduction on an array of data (meaning a
pointwise reduction on each array location) followed by a scatter of this array to the individual processes.

We will discuss this routine, or rather its variant MPI_Reduce_scatter_block (figure 3.10), using an impor-
tant example: the sparse matrix-vector product (see HPC book, section-7.5.1 for background information).
Each process contains one or more matrix rows, so by looking at indices the process can decide what other
processes it needs to receive data from, that is, each process knows how many messages it will receive,
and from which processes. The problem is for a process to find out what other processes it needs to send
data to.

Let’s set up the data:
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Figure 3.9 MPI_Alltoallv
Name Param name Explanation C type F type inout

MPI_Alltoallv (
MPI_Alltoallv_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcounts non-negative integer array
(of length group size)
specifying the number of
elements to send to each
rank

[ const int[]
MPI_Count[] INTEGER(*) IN

sdispls integer array (of length
group size). Entry j
specifies the displacement
(relative to sendbuf) from
which to take the outgoing
data destined for process
j

[ const int[]
MPI_Aint[] INTEGER(*) IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

recvcounts non-negative integer array
(of length group size)
specifying the number
of elements that can be
received from each rank

[ const int[]
MPI_Count[] INTEGER(*) IN

rdispls integer array (of length
group size). Entry i
specifies the displacement
(relative to recvbuf)
at which to place the
incoming data from process
i

[ const int[]
MPI_Aint[] INTEGER(*) IN

recvtype datatype of receive buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

comm communicator MPI_Comm TYPE
(MPI_Comm)

IN

)
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Figure 3.9: Reduce scatter

// reducescatter.c
int
// data that we know:
*i_recv_from_proc = (int*) malloc(nprocs*sizeof(int)),
*procs_to_recv_from, nprocs_to_recv_from=0,

// data we are going to determin:
*procs_to_send_to,nprocs_to_send_to;

Each process creates an array of ones and zeros, describing who it needs data from. Ideally, we only need
the array procs_to_recv_from but initially we need the (possibly much larger) array i_recv_from_proc.

Next, the MPI_Reduce_scatter_block call then computes, on each process, how many messages it needs to
send.

MPI_Reduce_scatter_block
(i_recv_from_proc,&nprocs_to_send_to,1,MPI_INT,
MPI_SUM,comm);

We do not yet have the information to which processes to send. For that, each process sends a zero-size
message to each of its senders. Conversely, it then does a receive to with MPI_ANY_SOURCE to discover who is
requesting data from it. The crucial point to the MPI_Reduce_scatter_block call is that, without it, a process
would not know how many of these zero-size messages to expect.

/*
* Send a zero-size msg to everyone that you receive from,
* just to let them know that they need to send to you.
*/
MPI_Request send_requests[nprocs_to_recv_from];
for (int iproc=0; iproc<nprocs_to_recv_from; iproc++) {
int proc=procs_to_recv_from[iproc];
double send_buffer=0.;
MPI_Isend(&send_buffer,0,MPI_DOUBLE, /*to:*/ proc,0,comm,

&(send_requests[iproc]));
}
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Figure 3.10 MPI_Reduce_scatter
Name Param name Explanation C type F type inout

MPI_Reduce_scatter (
MPI_Reduce_scatter_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

recvbuf starting address of
receive buffer

void* TYPE(*),
DIMENSION(..)

OUT

recvcounts non-negative integer
array (of length group
size) specifying the
number of elements of the
result distributed to each
process.

[ const int[]
MPI_Count[] INTEGER(*) IN

datatype datatype of elements of
send and receive buffers

MPI_Datatype TYPE
(MPI_Datatype)

IN

op operation MPI_Op TYPE(MPI_Op) IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)

/*
* Do as many receives as you know are coming in;
* use wildcards since you don't know where they are coming from.
* The source is a process you need to send to.
*/

procs_to_send_to = (int*)malloc( nprocs_to_send_to * sizeof(int) );
for (int iproc=0; iproc<nprocs_to_send_to; iproc++) {
double recv_buffer;
MPI_Status status;
MPI_Recv(&recv_buffer,0,MPI_DOUBLE,MPI_ANY_SOURCE,MPI_ANY_TAG,comm,

&status);
procs_to_send_to[iproc] = status.MPI_SOURCE;

}
MPI_Waitall(nprocs_to_recv_from,send_requests,MPI_STATUSES_IGNORE);

The MPI_Reduce_scatter (figure 3.10) call is more general: instead of indicating the mere presence of a
message between two processes, by having individual receive counts one can, for instance, indicate the
size of the messages.

We can look at reduce-scatter as a limited form of the all-to-all data transposition discussed above (sec-
tion 3.6.1). Suppose that the matrix 𝐶 contains only 0/1, indicating whether or not a messages is send,
rather than the actual amounts. If a receiving process only needs to know how many messages to receive,
rather than where they come from, it is enough to know the column sum, rather than the full column (see
figure 3.9).

Another application of the reduce-scatter mechanism is in the dense matrix-vector product, if a two-
dimensional data distribution is used.
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Exercise 3.20. Implement the dense matrix-vector product, where the matrix is distributed
by columns: each process stores 𝐴∗𝑗 for a disjoint set of 𝑗-values. At the start and
end of the algorithm each process should store a distinct part of the input and
output vectors. Argue that this can be done naively with an MPI_Reduce operation,
but more efficiently using MPI_Reduce_scatter.
For discussion, see HPC book, section-7.2.2.

3.7.1 Examples

An important application of this is establishing an irregular communication pattern. Assume that each
process knows which other processes it wants to communicate with; the problem is to let the other pro-
cesses know about this. The solution is to use MPI_Reduce_scatter to find out how many processes want
to communicate with you

MPI_Reduce_scatter_block
(i_recv_from_proc,&nprocs_to_send_to,1,MPI_INT,
MPI_SUM,comm);

and then wait for precisely that many messages with a source value of MPI_ANY_SOURCE.

/*
* Send a zero-size msg to everyone that you receive from,
* just to let them know that they need to send to you.
*/
MPI_Request send_requests[nprocs_to_recv_from];
for (int iproc=0; iproc<nprocs_to_recv_from; iproc++) {
int proc=procs_to_recv_from[iproc];
double send_buffer=0.;
MPI_Isend(&send_buffer,0,MPI_DOUBLE, /*to:*/ proc,0,comm,

&(send_requests[iproc]));
}

/*
* Do as many receives as you know are coming in;
* use wildcards since you don't know where they are coming from.
* The source is a process you need to send to.
*/

procs_to_send_to = (int*)malloc( nprocs_to_send_to * sizeof(int) );
for (int iproc=0; iproc<nprocs_to_send_to; iproc++) {
double recv_buffer;
MPI_Status status;
MPI_Recv(&recv_buffer,0,MPI_DOUBLE,MPI_ANY_SOURCE,MPI_ANY_TAG,comm,

&status);
procs_to_send_to[iproc] = status.MPI_SOURCE;

}
MPI_Waitall(nprocs_to_recv_from,send_requests,MPI_STATUSES_IGNORE);

Use of MPI_Reduce_scatter to implement the two-dimensional matrix-vector product. Set up separate row
and column communicators with MPI_Comm_split, use MPI_Reduce_scatter to combine local products.

MPI_Allgather(&my_x,1,MPI_DOUBLE,
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Figure 3.11 MPI_Barrier
Name Param name Explanation C type F type inout

MPI_Barrier (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)

local_x,1,MPI_DOUBLE,environ.col_comm);
MPI_Reduce_scatter(local_y,&my_y,&ione,MPI_DOUBLE,

MPI_SUM,environ.row_comm);

3.8 Barrier

A barrier call, MPI_Barrier (figure 3.11) is a routine that blocks all processes until they have all reached
the barrier call. Thus it achieves time synchronization of the processes.

This call’s simplicity is contrasted with its usefulness, which is very limited. It is almost never necessary
to synchronize processes through a barrier: for most purposes it does not matter if processors are out of
sync. Conversely, collectives (except the new nonblocking ones; section 3.11) introduce a barrier of sorts
themselves.

3.9 Variable-size-input collectives

In the gather and scatter call above each processor received or sent an identical number of items. In many
cases this is appropriate, but sometimes each processor wants or contributes an individual number of
items.

Let’s take the gather calls as an example. Assume that each processor does a local computation that
produces a number of data elements, and this number is different for each processor (or at least not the
same for all). In the regular MPI_Gather call the root processor had a buffer of size 𝑛𝑃 , where 𝑛 is the
number of elements produced on each processor, and 𝑃 the number of processors. The contribution from
processor 𝑝 would go into locations 𝑝𝑛, … , (𝑝 + 1)𝑛 − 1.
For the variable case, we first need to compute the total required buffer size. This can be done through a
simple MPI_Reduce with MPI_SUM as reduction operator: the buffer size is ∑𝑝 𝑛𝑝 where 𝑛𝑝 is the number of
elements on processor 𝑝. But you can also postpone this calculation for a minute.

The next question is where the contributions of the processor will go into this buffer. For the contribution
from processor 𝑝 that is ∑𝑞<𝑝 𝑛𝑝 , …∑𝑞≤𝑝 𝑛𝑝 −1. To compute this, the root processor needs to have all the
𝑛𝑝 numbers, and it can collect them with an MPI_Gather call.

We now have all the ingredients. All the processors specify a send buffer just as with MPI_Gather. However,
the receive buffer specification on the root is more complicated. It now consists of:
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outbuffer, array-of-outcounts, array-of-displacements, outtype

and you have just seen how to construct that information.

For example, in an MPI_Gatherv (figure 3.12) call each process has an individual number of items to con-
tribute. To gather this, the root process needs to find these individual amounts with an MPI_Gather call,
and locally construct the offsets array. Note how the offsets array has size ntids+1: the final offset value
is automatically the total size of all incoming data. See the example below.

There are various calls where processors can have buffers of differing sizes.

• In MPI_Scatterv (figure 3.13) the root process has a different amount of data for each recipient.

• In MPI_Gatherv, conversely, each process contributes a different sized send buffer to the re-
ceived result; MPI_Allgatherv (figure 3.14) does the same, but leaves its result on all processes;
MPI_Alltoallv does a different variable-sized gather on each process.

3.9.1 Example of Gatherv

Weuse MPI_Gatherv to do an irregular gather onto a root.We first need an MPI_Gather to determine offsets.
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Figure 3.12 MPI_Gatherv
Name Param name Explanation C type F type inout

MPI_Gatherv (
MPI_Gatherv_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcount number of elements in send
buffer

[ int
MPI_Count INTEGER IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

recvcounts non-negative integer array
(of length group size)
containing the number of
elements that are received
from each process

[ const int[]
MPI_Count[] INTEGER(*) IN

displs integer array (of length
group size). Entry i
specifies the displacement
relative to recvbuf
at which to place the
incoming data from process
i

[ const int[]
MPI_Aint[] INTEGER(*) IN

recvtype datatype of recv buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

root rank of receiving process int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)
MPL:

template<typename T>
void gatherv

(int root_rank, const T *senddata, const layout<T> &sendl,
T *recvdata, const layouts<T> &recvls, const displacements &recvdispls) const
(int root_rank, const T *senddata, const layout<T> &sendl,
T *recvdata, const layouts<T> &recvls) const
(int root_rank, const T *senddata, const layout<T> &sendl ) const

Python:

Gatherv(self, sendbuf, [recvbuf,counts], int root=0)
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Figure 3.13 MPI_Scatterv
Name Param name Explanation C type F type inout

MPI_Scatterv (
MPI_Scatterv_c (

sendbuf address of send buffer const void* TYPE(*),
DIMENSION(..)

IN

sendcounts non-negative integer array
(of length group size)
specifying the number of
elements to send to each
rank

[ const int[]
MPI_Count[] INTEGER(*) IN

displs integer array (of length
group size). Entry i
specifies the displacement
(relative to sendbuf) from
which to take the outgoing
data to process i

[ const int[]
MPI_Aint[] INTEGER(*) IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

recvcount number of elements in
receive buffer

[ int
MPI_Count INTEGER IN

recvtype datatype of receive buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

root rank of sending process int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)

Code:

// gatherv.c
// we assume that each process has an

↪array "localdata"
// of size "localsize"

// the root process decides how much data
↪will be coming:

// allocate arrays to contain size and
↪offset information

if (procno==root) {
localsizes = (int*) malloc(
↪nprocs*sizeof(int) );
offsets = (int*) malloc(
↪nprocs*sizeof(int) );

}
// everyone contributes their local size

↪info
MPI_Gather(&localsize,1,MPI_INT,

↪localsizes,1,MPI_INT,root,comm);
// the root constructs the offsets array

if (procno==root) {
int total_data = 0;
for (int i=0; i<nprocs; i++) {

offsets[i] = total_data;
total_data += localsizes[i];

}
alldata = (int*) malloc(
↪total_data*sizeof(int) );

}
// everyone contributes their data

MPI_Gatherv(localdata,localsize,MPI_INT,

↪alldata,localsizes,offsets,MPI_INT,root,comm);

Output:

make[3]: `gatherv' is up to date.
TACC: Starting up job 4328411
TACC: Starting parallel tasks...
Local sizes: 13, 12, 13, 14, 11, 12, 14, 6, 12,

↪8,
Collected:
0:1,1,1,1,1,1,1,1,1,1,1,1,1;
1:2,2,2,2,2,2,2,2,2,2,2,2;
2:3,3,3,3,3,3,3,3,3,3,3,3,3;
3:4,4,4,4,4,4,4,4,4,4,4,4,4,4;
4:5,5,5,5,5,5,5,5,5,5,5;
5:6,6,6,6,6,6,6,6,6,6,6,6;
6:7,7,7,7,7,7,7,7,7,7,7,7,7,7;
7:8,8,8,8,8,8;
8:9,9,9,9,9,9,9,9,9,9,9,9;
9:10,10,10,10,10,10,10,10;

TACC: Shutdown complete. Exiting.
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Figure 3.14 MPI_Allgatherv
Name Param name Explanation C type F type inout

MPI_Allgatherv (
MPI_Allgatherv_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcount number of elements in send
buffer

[ int
MPI_Count INTEGER IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

recvcounts non-negative integer array
(of length group size)
containing the number of
elements that are received
from each process

[ const int[]
MPI_Count[] INTEGER(*) IN

displs integer array (of length
group size). Entry i
specifies the displacement
(relative to recvbuf)
at which to place the
incoming data from process
i

[ const int[]
MPI_Aint[] INTEGER(*) IN

recvtype datatype of receive buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

comm communicator MPI_Comm TYPE
(MPI_Comm)

IN

)
Python:

MPI.Comm.Allgatherv(self, sendbuf, recvbuf)
where recvbuf = "[ array, counts, displs, type]"

## gatherv.py
# implicitly using root=0
globalsize = comm.reduce(localsize)
if procid==0:

print("Global size=%d" % globalsize)
collecteddata = np.empty(globalsize,dtype=int)
counts = comm.gather(localsize)
comm.Gatherv(localdata, [collecteddata, counts])

3.9.2 Example of Allgatherv

Prior to the actual gatherv call, we need to construct the count and displacement arrays. The easiest way
is to use a reduction.

Victor Eijkhout 75



3. MPI topic: Collectives

// allgatherv.c
MPI_Allgather
( &my_count,1,MPI_INT,

recv_counts,1,MPI_INT, comm );
int accumulate = 0;
for (int i=0; i<nprocs; i++) {

recv_displs[i] = accumulate; accumulate += recv_counts[i]; }
int *global_array = (int*) malloc(accumulate*sizeof(int));
MPI_Allgatherv
( my_array,procno+1,MPI_INT,

global_array,recv_counts,recv_displs,MPI_INT, comm );

In python the receive buffer has to contain the counts and displacements arrays.

## allgatherv.py
mycount = procid+1
my_array = np.empty(mycount,dtype=np.float64)

my_count = np.empty(1,dtype=int)
my_count[0] = mycount
comm.Allgather( my_count,recv_counts )

accumulate = 0
for p in range(nprocs):

recv_displs[p] = accumulate; accumulate += recv_counts[p]
global_array = np.empty(accumulate,dtype=np.float64)
comm.Allgatherv( my_array, [global_array,recv_counts,recv_displs,MPI.DOUBLE] )

3.9.3 Variable all-to-all

The variable all-to-all routine MPI_Alltoallv is discussed in section 3.6.2.

3.10 MPI Operators

MPI operators, that is, objects of type MPI_Op, are used in reduction operators. Most common operators,
such as sum or maximum, have been built into the MPI library; see section 3.10.1. It is also possible to
define new operators; see section 3.10.2.

3.10.1 Pre-defined operators

The following is the list of pre-defined operators MPI_Op values.
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MPI type meaning applies to

MPI_MAX maximum integer, floating point
MPI_MIN minimum
MPI_SUM sum integer, floating point, complex, multilanguage types
MPI_REPLACE overwrite
MPI_NO_OP no change
MPI_PROD product
MPI_LAND logical and C integer, logical
MPI_LOR logical or
MPI_LXOR logical xor
MPI_BAND bitwise and integer, byte, multilanguage types
MPI_BOR bitwise or
MPI_BXOR bitwise xor
MPI_MAXLOC max value and location MPI_DOUBLE_INT and such
MPI_MINLOC min value and location

3.10.1.1 Minloc and maxloc

The MPI_MAXLOC and MPI_MINLOC operations yield both the maximum and the rank on which it occurs. Their
result is a struct of the data over which the reduction happens, and an int.

In C, the types to use in the reduction call are: MPI_FLOAT_INT, MPI_LONG_INT, MPI_DOUBLE_INT, MPI_SHORT_INT,
MPI_2INT, MPI_LONG_DOUBLE_INT. Likewise, the input needs to consist of such structures: the input should be
an array of such struct types, where the int is the rank of the number.

These types may have some unusual size properties:
Code:

// longint.c
MPI_Type_size( MPI_LONG_INT,&s );
printf("MPI_LONG_INT size=%d\n",s);
MPI_Aint ss;
MPI_Type_extent( MPI_LONG_INT,&ss );
printf("MPI_LONG_INT extent=%ld\n",ss);

Output:

MPI_LONG_INT size=12
MPI_LONG_INT extent=16

Fortran note 7: Min/maxloc types. The original Fortran interface to MPI was designed around Fortran77
features, so it is not using Fortran derived types (Type keyword). Instead, all integer indices
are stored in whatever the type is that is being reduced. The available result types are then
MPI_2REAL, MPI_2DOUBLE_PRECISION, MPI_2INTEGER.

Likewise, the input needs to be arrays of such type. Consider this example:

Real*8,dimension(2,N) :: input,output
call MPI_Reduce( input,output, N, MPI_2DOUBLE_PRECISION, &

MPI_MAXLOC, root, comm )

MPL note 20: Operators. Arithmetic: plus, multiplies, max, min.
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Figure 3.15 MPI_Op_create
Name Param name Explanation C type F type inout

MPI_Op_create (
MPI_Op_create_c (

user_fn user defined function [ MPI_User_function∗
MPI_User_function_c∗PROCEDURE

(MPI_User_function)
IN

commute true if commutative; false
otherwise.

int LOGICAL IN

op operation MPI_Op* TYPE(MPI_Op) OUT
)

Python:

MPI.Op.create(cls,function,bool commute=False)

Logic: logical_and, logical_or, logical_xor.

Bitwise: bit_and, bit_or, bit_xor.

3.10.2 User-defined operators

In addition to predefined operators, MPI has the possibility of user-defined operators to use in a reduction
or scan operation.

The routine for this is MPI_Op_create (figure 3.15), which takes a user function and turns it into an object
of type MPI_Op, which can then be used in any reduction:

MPI_Op rwz;
MPI_Op_create(reduce_without_zero,1,&rwz);
MPI_Allreduce(data+procno,&positive_minimum,1,MPI_INT,rwz,comm);

Python note 11: Define reduction operator. In python, Op.Create is a class method for the MPI class.

rwz = MPI.Op.Create(reduceWithoutZero)
positive_minimum = np.zeros(1,dtype=intc)
comm.Allreduce(data[procid],positive_minimum,rwz);

The user function needs to have the following signature:

typedef void MPI_User_function
( void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

FUNCTION USER_FUNCTION( INVEC(*), INOUTVEC(*), LEN, TYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, TYPE

For example, here is an operator for finding the smallest nonzero number in an array of nonnegative
integers:

*(int*)inout = m;
}
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Python note 12: Reduction function. The python equivalent of such a function receives bare buffers as
arguments. Therefore, it is best to turn them first into NumPy arrays using np.frombuffer:

## reductpositive.py
def reduceWithoutZero(in_buf, inout_buf, datatype):

typecode = MPI._typecode(datatype)
assert typecode is not None ## check MPI datatype is built-in
dtype = np.dtype(typecode)

in_array = np.frombuffer(in_buf, dtype)
inout_array = np.frombuffer(inout_buf, dtype)

n = in_array[0]; r = inout_array[0]
if n==0:

m = r
elif r==0:

m = n
elif n<r:

m = n
else:

m = r
inout_array[0] = m

The assert statement accounts for the fact that this mapping of MPI datatype to NumPy dtype
only works for built-in MPI datatypes.

MPL note 21: User-defined operators. A user-defined operator can be a templated class with an operator().
Example:

// reduceuser.cxx
template<typename T>
class lcm {
public:

T operator()(T a, T b) {
T zero=T();
T t((a/gcd(a, b))*b);
if (t<zero)

return -t;
return t;

}

comm_world.reduce(lcm<int>(), 0, v, result);

(The templated class can be a lambda expression)

MPL note 22: Lambda operator. You can also do the reduction by lambda:
comm_world.reduce
( [] (int i,int j) -> int { return i+j; },

0,data );

The function has an array length argument len, to allow for pointwise reduction on a whole array at
once. The inoutvec array contains partially reduced results, and is typically overwritten by the function.

There are some restrictions on the user function:
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Figure 3.16 MPI_Op_commutative
Name Param name Explanation C type F type inout

MPI_Op_commutative (
op operation MPI_Op TYPE(MPI_Op) IN
commute true if op is commutative,

false otherwise
int* LOGICAL OUT

)

Figure 3.17 MPI_Reduce_local
Name Param name Explanation C type F type inout

MPI_Reduce_local (
MPI_Reduce_local_c (

inbuf input buffer const void* TYPE(*),
DIMENSION(..)

IN

inoutbuf combined input and output
buffer

void* TYPE(*),
DIMENSION(..)

INOUT

count number of elements in
inbuf and inoutbuf buffers

[ int
MPI_Count INTEGER IN

datatype datatype of elements of
inbuf and inoutbuf buffers

MPI_Datatype TYPE
(MPI_Datatype)

IN

op operation MPI_Op TYPE(MPI_Op) IN
)

• It may not call MPI functions, except for MPI_Abort.
• It must be associative; it can be optionally commutative, which fact is passed to the
MPI_Op_create call.

Exercise 3.21. Write the reduction function to implement the one-norm of a vector:

‖𝑥‖1 ≡ ∑
𝑖

|𝑥𝑖|.

(There is a skeleton for this exercise under the name onenorm.)
The operator can be destroyed with a corresponding MPI_Op_free.

int MPI_Op_free(MPI_Op *op)

This sets the operator to MPI_OP_NULL. This is not necessary in OO languages, where the destructor takes
care of it.

You can query the commutativity of an operator with MPI_Op_commutative (figure 3.16).

3.10.3 Local reduction

The application of an MPI_Op can be performed with the routine MPI_Reduce_local (figure 3.17). Using this
routine and some send/receive scheme you can build your own global reductions. Note that this routine
does not take a communicator because it is purely local.
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3.11 Nonblocking collectives

Above you have seen how the ‘Isend’ and ‘Irecv’ routines can overlap communication with computation.
This is not possible with the collectives you have seen so far: they act like blocking sends or receives.
However, there are also nonblocking collectives, introduced in MPI-3.

Such operations can be used to increase efficiency. For instance, computing

𝑦 ← 𝐴𝑥 + (𝑥 𝑡𝑥)𝑦

involves a matrix-vector product, which is dominated by computation in the sparse matrix case, and an
inner product which is typically dominated by the communication cost. You would code this as

MPI_Iallreduce( .... x ..., &request);
// compute the matrix vector product
MPI_Wait(request);
// do the addition

This can also be used for 3D FFT operations [15]. Occasionally, a nonblocking collective can be used for
nonobvious purposes, such as the MPI_Ibarrier in [16].

These have roughly the same calling sequence as their blocking counterparts, except that they output an
MPI_Request. You can then use an MPI_Wait call to make sure the collective has completed.

Nonblocking collectives offer a number of performance advantages:

• Do two reductions (on the same communicator) with different operators simultaneously:

𝛼 ← 𝑥 𝑡𝑦
𝛽 ← ‖𝑧‖∞

which translates to:

MPI_Allreduce( &local_xy, &global_xy, 1,MPI_DOUBLE,MPI_SUM,comm);
MPI_Allreduce( &local_xinf,&global_xin,1,MPI_DOUBLE,MPI_MAX,comm);

• do collectives on overlapping communicators simultaneously;
• overlap a nonblocking collective with a blocking one.

Exercise 3.22. Revisit exercise 7.1. Let only the first row and first column have certain data,
which they broadcast through columns and rows respectively. Each process is now
involved in two simultaneous collectives. Implement this with nonblocking
broadcasts, and time the difference between a blocking and a nonblocking solution.
(There is a skeleton for this exercise under the name procgridnonblock.)

Remark 6 Blocking and nonblocking don’t match: either all processes call the nonblocking or all call the
blocking one. Thus the following code is incorrect:

if (rank==root)
MPI_Reduce( &x /* ... */ root,comm );

else
MPI_Ireduce( &x /* ... */ );
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Figure 3.18 MPI_Iallgather
Name Param name Explanation C type F type inout

MPI_Iallgather (
MPI_Iallgather_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcount number of elements in send
buffer

[ int
MPI_Count INTEGER IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf address of receive buffer void* TYPE(*),
DIMENSION(..)

OUT

recvcount number of elements
received from any process

[ int
MPI_Count INTEGER IN

recvtype datatype of receive buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

comm communicator MPI_Comm TYPE
(MPI_Comm)

IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)

This is unlike the point-to-point behavior of nonblocking calls: you can catch a message with MPI_Irecv that
was sent with MPI_Send.

Remark 7 Unlike sends and received, collectives have no identifying tag. With blocking collectives that does
not lead to ambiguity problems. With nonblocking collectives it means that all processes need to issue them
in identical order.

List of nonblocking collectives:

• MPI_Igather,MPI_Igatherv, MPI_Iallgather (figure 3.18),MPI_Iallgatherv,
• MPI_Iscatter, MPI_Iscatterv,
• MPI_Ireduce, MPI_Iallreduce (figure 3.19), MPI_Ireduce_scatter, MPI_Ireduce_scatter_block.
• MPI_Ialltoall,MPI_Ialltoallv, MPI_Ialltoallw,
• MPI_Ibarrier; section 3.11.2,
• MPI_Ibcast,
• MPI_Iexscan, MPI_Iscan,

MPL note 23: Nonblocking collectives. Nonblocking collectives have the same argument list as the corre-
sponding blocking variant, except that instead of a void result, they return an irequest. (See 31)

Wait calls are methods of the irequest object.

// ireducescalar.cxx
float x{1.},sum;
auto reduce_request =
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Figure 3.19 MPI_Iallreduce
Name Param name Explanation C type F type inout

MPI_Iallreduce (
MPI_Iallreduce_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

recvbuf starting address of
receive buffer

void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in send
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of elements of
send buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

op operation MPI_Op TYPE(MPI_Op) IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)

comm_world.ireduce(mpl::plus<float>(), 0, x, sum);
reduce_request.wait();
if (comm_world.rank()==0) {

std::cout << "sum = " << sum << '\n';
}

3.11.1 Examples

3.11.1.1 Array transpose

To illustrate the overlapping of multiple nonblocking collectives, consider transposing a data matrix. Ini-
tially, each process has one row of the matrix; after transposition each process has a column. Since each
row needs to be distributed to all processes, algorithmically this corresponds to a series of scatter calls,
one originating from each process.

// itransposeblock.c
for (int iproc=0; iproc<nprocs; iproc++) {
MPI_Scatter( regular,1,MPI_DOUBLE,

&(transpose[iproc]),1,MPI_DOUBLE,
iproc,comm);

}

Introducing the nonblocking MPI_Iscatter call, this becomes:
MPI_Request scatter_requests[nprocs];
for (int iproc=0; iproc<nprocs; iproc++) {
MPI_Iscatter( regular,1,MPI_DOUBLE,

&(transpose[iproc]),1,MPI_DOUBLE,
iproc,comm,scatter_requests+iproc);

}
MPI_Waitall(nprocs,scatter_requests,MPI_STATUSES_IGNORE);
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Figure 3.20 MPI_Ibarrier
Name Param name Explanation C type F type inout

MPI_Ibarrier (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)

Exercise 3.23. Can you implement the same algorithm with MPI_Igather?

3.11.1.2 Stencils

Figure 3.10: Illustration of five-point stencil gather

The ever-popular five-point stencil evaluation does not look like a collective operation, and indeed, it is
usually evaluated with (nonblocking) send/recv operations. However, if we create a subcommunicator on
each subdomain that contains precisely that domain and its neighbors, (see figure 3.10) we can formu-
late the communication pattern as a gather on each of these. With ordinary collectives this can not be
formulated in a deadlock-free manner, but nonblocking collectives make this feasible.

We will see an even more elegant formulation of this operation in section 11.2.

3.11.2 Nonblocking barrier

Probably the most surprising nonblocking collective is the nonblocking barrier MPI_Ibarrier (figure 3.20).
The way to understand this is to think of a barrier not in terms of temporal synchronization, but state
agreement: reaching a barrier is a sign that a process has attained a certain state, and leaving a barrier
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means that all processes are in the same state. The ordinary barrier is then a blocking wait for agreement,
while with a nonblocking barrier:

• Posting the barrier means that a process has reached a certain state; and
• the request being fullfilled means that all processes have reached the barrier.

One scenario would be local refinement, where some processes decide to refine their subdomain, which
fact they need to communicate to their neighbors. The problem here is that most processes are not among
these neighbors, so they should not post a receive of any type. Instead, any refining process sends to its
neighbors, and every process posts a barrier.

// ibarrierprobe.c
if (i_do_send) {
/*
* Pick a random process to send to,
* not yourself.
*/

int receiver = rand()%nprocs;
MPI_Ssend(&data,1,MPI_FLOAT,receiver,0,comm);

}
/*
* Everyone posts the non-blocking barrier
* and gets a request to test/wait for
*/
MPI_Request barrier_request;
MPI_Ibarrier(comm,&barrier_request);

Now every process alternately probes for messages and tests for completion of the barrier. Probing is done
through the nonblocking MPI_Iprobe call, while testing completion of the barrier is done through MPI_Test.

for ( ; ; step++) {
int barrier_done_flag=0;
MPI_Test(&barrier_request,&barrier_done_flag,

MPI_STATUS_IGNORE);
//stop if you're done!
if (barrier_done_flag) {
break;

} else {
// if you're not done with the barrier:

int flag; MPI_Status status;
MPI_Iprobe

( MPI_ANY_SOURCE,MPI_ANY_TAG,
comm, &flag, &status );

if (flag) {
// absorb message!

We can use a nonblocking barrier to good effect, utilizing the idle time that would result from a blocking
barrier. In the following code fragment processes test for completion of the barrier, and failing to detect
such completion, perform some local work.

// findbarrier.c
MPI_Request final_barrier;
MPI_Ibarrier(comm,&final_barrier);
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int global_finish=mysleep;
do {
int all_done_flag=0;
MPI_Test(&final_barrier,&all_done_flag,MPI_STATUS_IGNORE);
if (all_done_flag) {
break;

} else {
int flag; MPI_Status status;

// force progress
MPI_Iprobe

( MPI_ANY_SOURCE,MPI_ANY_TAG,
comm, &flag, MPI_STATUS_IGNORE );

printf("[%d] going to work for another second\n",procid);
sleep(1);
global_finish++;

}
} while (1);

3.12 Performance of collectives

It is easy to visualize a broadcast as in figure 3.11: see figure 3.11. the root sends all of its data directly to

Figure 3.11: A simple broadcast

every other process. While this describes the semantics of the operation, in practice the implementation
works quite differently.

The time that a message takes can simply be modeled as

𝛼 + 𝛽𝑛,

where 𝛼 is the latency, a one time delay from establishing the communication between two processes,
and 𝛽 is the time-per-byte, or the inverse of the bandwidth, and 𝑛 the number of bytes sent.

Under the assumption that a processor can only send one message at a time, the broadcast in figure 3.11
would take a time proportional to the number of processors.

Exercise 3.24. What is the total time required for a broadcast involving 𝑝 processes? Give 𝛼
and 𝛽 terms separately.

Solution to exercise 3.24. (𝑝 − 1)𝛼 , (𝑝 − 1)𝛽𝑛
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Figure 3.12: A tree-based broadcast

One way to ameliorate that is to structure the broadcast in a tree-like fashion. This is depicted in fig-
ure 3.12.

Exercise 3.25. How does the communication time now depend on the number of
processors, again 𝛼 and 𝛽 terms separately.
What would be a lower bound on the 𝛼, 𝛽 terms?

Solution to exercise 3.25. Both terms are now ⌈log 𝑝⌉.
The lower bound on 𝛼 is achieved. The absolute lower bound on 𝛽 is 𝑛: the root has to
send each element. After that there may be overlap, so this expression is pessimistic.

The theory of the complexity of collectives is described in more detail in HPC book, section-7.1; see
also [3].

3.13 Collectives and synchronization
Collectives, other than a barrier, have a synchronizing effect between processors. For instance, in

MPI_Bcast( ....data... root);
MPI_Send(....);

the send operations on all processors will occur after the root executes the broadcast. Conversely, in a
reduce operation the root may have to wait for other processors. This is illustrated in figure 3.13, which
gives a TAU trace of a reduction operation on two nodes, with two six-core sockets (processors) each. We
see that1:

• In each socket, the reduction is a linear accumulation;
• on each node, cores zero and six then combine their result;
• after which the final accumulation is done through the network.

We also see that the two nodes are not perfectly in sync, which is normal for MPI applications. As a result,
core 0 on the first node will sit idle until it receives the partial result from core 12, which is on the second
node.

While collectives synchronize in a loose sense, it is not possible to make any statements about events
before and after the collectives between processors:

1. This uses mvapich version 1.6; in version 1.9 the implementation of an on-node reduction has changed to simulate shared
memory.
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Figure 3.13: Trace of a reduction operation between two dual-socket 12-core nodes

...event 1...
MPI_Bcast(....);
...event 2....

Consider a specific scenario:

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm);
break;

case 1:
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, &status);
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, &status);
break;

case 2:
MPI_Send(buf2, count, type, 1, tag, comm);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

Note the MPI_ANY_SOURCE parameter in the receive calls on processor 1. One obvious execution of this would
be:
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The most logical execution is:

However, this ordering is allowed too:

Which looks from a distance like:

In other words, one of the messages seems to go ‘back in time’.

Figure 3.14: Possible temporal orderings of send and collective calls
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1. The send from 2 is caught by processor 1;
2. Everyone executes the broadcast;
3. The send from 0 is caught by processor 1.

However, it is equally possible to have this execution:

1. Processor 0 starts its broadcast, then executes the send;
2. Processor 1’s receive catches the data from 0, then it executes its part of the broadcast;
3. Processor 1 catches the data sent by 2, and finally processor 2 does its part of the broadcast.

This is illustrated in figure 3.14.

3.14 Performance considerations

In this sectionwewill consider how collectives can be implemented inmultiple ways, and the performance
implications of such decisions. You can test the algorithms described here using SimGrid (section Tutorials
book, section-20).

3.14.1 Scalability

We are motivated to write parallel software from two considerations. First of all, if we have a certain
problem to solve which normally takes time 𝑇 , then we hope that with 𝑝 processors it will take time 𝑇/𝑝.
If this is true, we call our parallelization scheme scalable in time. In practice, we often accept small extra
terms: as you will see below, parallelization often adds a term log2 𝑝 to the running time.

Exercise 3.26. Discuss scalability of the following algorithms:
• You have an array of floating point numbers. You need to compute the sine of
each

• You a two-dimensional array, denoting the interval [−2, 2]2. You want to make
a picture of the Mandelbrot set, so you need to compute the color of each point.

• The primality test of exercise 2.6.

There is also the notion that a parallel algorithm can be scalable in space: more processors gives you more
memory so that you can run a larger problem.

Exercise 3.27. Discuss space scalability in the context of modern processor design.

Solution to exercise 3.27. If you stay within one node, you don’t get more memory by using more
cores: all the memory is shared, so one core could use the total memory. Of course, using
multiple cores probably gives you a speedup.

3.14.2 Complexity and scalability of collectives

3.14.2.1 Broadcast

Naive broadcast Write a broadcast operation where the root does an MPI_Send to each other process.

What is the expected performance of this in terms of 𝛼, 𝛽?
Run some tests and confirm.
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Simple ring Let the root only send to the next process, and that one send to its neighbor. This scheme
is known as a bucket brigade; see also section 4.1.5.

What is the expected performance of this in terms of 𝛼, 𝛽?
Run some tests and confirm.

Figure 3.15: A pipelined bucket brigade

Pipelined ring In a ring broadcast, each process needs to receive the whole message before it can
pass it on. We can increase the efficiency by breaking up the message and sending it in multiple parts.
(See figure 3.15.) This will be advantageous for messages that are long enough that the bandwidth cost
dominates the latency.

Assume a send buffer of length more than 1. Divide the send buffer into a number of chunks. The root
sends the chunks successively to the next process, and each process sends on whatever chunks it receives.

What is the expected performance of this in terms of 𝛼, 𝛽? Why is this better than the simple ring?

Run some tests and confirm.

Recursive doubling Collectives such as broadcast can be implemented through recursive doubling,
where the root sends to another process, then the root and the other process send to two more, those
four send to four more, et cetera. However, in an actual physical architecture this scheme can be realized
in multiple ways that have drastically different performance.

First consider the implementation where process 0 is the root, and it starts by sending to process 1; then
they send to 2 and 3; these four send to 4–7, et cetera. If the architecture is a linear array of procesors,
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this will lead to contention: multiple messages wanting to go through the same wire. (This is also related
to the concept of bisecection bandwidth.)

In the following analyses we will assumewormhole routing: a message sets up a path through the network,
reserving the necessary wires, and performing a send in time independent of the distance through the
network. That is, the send time for any message can be modeled as

𝑇 (𝑛) = 𝛼 + 𝛽𝑛

regardless source and destination, as long as the necessary connections are available.

Exercise 3.28. Analyze the running time of a recursive doubling broad cast as just
described, with wormhole routing.
Implement this broadcast in terms of blocking MPI send and receive calls. If you
have SimGrid available, run tests with a number of parameters.

The alternative, that avoids contention, is to let each doubling stage divide the network into separate
halves. That is, process 0 sends to 𝑃/2, after which these two repeat the algorithm in the two halves of
the network, sending to 𝑃/4 and 3𝑃/4 respectively.

Exercise 3.29. Analyze this variant of recursive doubling. Code it and measure runtimes on
SimGrid.

Exercise 3.30. Revisit exercise 3.28 and replace the blocking calls by nonblocking
MPI_Isend / MPI_Irecv calls.
Make sure to test that the data is correctly propagated.

MPI implementations often have multiple algorithms, which they dynamicaly switch between. Sometimes
you can determine the choice yourself through environment variables.

TACC note. For Intel MPI , see https://software.intel.com/en-us/
mpi-developer-reference-linux-i-mpi-adjust-family-environment-variables.

3.15 Review questions

For all true/false questions, if you answer that a statement is false, give a one-line explanation.

Review 3.31. How would you realize the following scenarios with MPI collectives?
• Let each process compute a random number. You want to print the maximum
of these numbers to your screen.

• Each process computes a random number again. Now you want to scale these
numbers by their maximum.

• Let each process compute a random number. You want to print on what
processor the maximum value is computed.

Review 3.32. MPI collectives can be sorted in at least the following categories
1. rooted vs rootless
2. using uniform buffer lengths vs variable length buffers
3. blocking vs nonblocking.
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Give examples of each type.

Review 3.33. True or false: collective routines are all about communicating user data
between the processes.

Solution to exercise 3.33. No: barrier, window creation, collective file open.
Review 3.34. True or false: an MPI_Scatter call puts the same data on each process.

Review 3.35. True or false: using the option MPI_IN_PLACE you only need space for a send
buffer in MPI_Reduce.

Review 3.36. True or false: using the option MPI_IN_PLACE you only need space for a send
buffer in MPI_Gather.

Review 3.37. Given a distributed array, with every processor storing

double x[N]; // N can vary per processor

give the approximate MPI-based code that computes the maximum value in the
array, and leaves the result on every processor.

Solution to exercise 3.37.

double localmax = x[0];
for (int i=1; i<N; i++)

localmax = max(localmax,x[i]);
MPI_Allreduce( &localmax, 1,MPI_DOUBLE, comm);

Doing a reduce followed by a broadcast is correct but slightly slower.
Wrong answer: anything based on reducing 𝑁 items, as in

MPI_Allreduce( x,N,MPI_DOUBLE, ... );

Review 3.38.
double data[Nglobal];
int myfirst = /* something */, mylast = /* something */;
for (int i=myfirst; i<mylast; i++) {
if (i>0 && i<N-1) {

process_point( data,i,Nglobal );
}

}
void process_point( double *data,int i,int N ) {

data[i-1] = g(i-1); data[i] = g(i); data[i+1] = g(i+1);
data[i] = f(data[i-1],data[i],data[i+1]);

}

Is this scalable in time? Is this scalable in space? What is the missing MPI call?

Solution to exercise 3.38. This requires an allgather. It’s scalable in time but not in space.
Review 3.39.

double data[Nlocal+2]; // include left and right neighbor
int myfirst = /* something */, mylast = myfirst+Nlocal;
for (int i=0; i<Nlocal; i++) {
if (i>0 && i<N-1) {

process_point( data,i,Nlocal );
}
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void process_point( double *data,int i0,int n ) {
int i = i0+1;
data[i-1] = g(i-1); data[i] = g(i); data[i+1] = g(i+1);
data[i] = f(data[i-1],data[i],data[i+1]);

}

Is this scalable in time? Is this scalable in space? What is the missing MPI call?

Solution to exercise 3.39. Send/receive of any sort of separate send and receive. Scalable in time
and space.

Review 3.40. With data as in the previous question, given the code for normalizing the
array, that is, scaling each element so that ‖𝑥‖2 = 1.

Review 3.41. Just like MPI_Allreduce is equivalent to MPI_Reduce following by MPI_Bcast,
MPI_Reduce_scatter is equivalent to at least one of the following combinations. Select
those that are equivalent, and discuss differences in time or space complexity:

1. MPI_Reduce followed by MPI_Scatter;
2. MPI_Gather followed by MPI_Scatter;
3. MPI_Allreduce followed by MPI_Scatter;
4. MPI_Allreduce followed by a local operation (which?);
5. MPI_Allgather followed by a local operation (which?).

Review 3.42. Think of at least two algorithms for doing a broadcast. Compare them with
regards to asymptotic behavior.
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Chapter 4

MPI topic: Point-to-point

4.1 Blocking point-to-point operations

Suppose you have an array of numbers 𝑥𝑖∶ 𝑖 = 0, … , 𝑁 and you want to compute

𝑦𝑖 = (𝑥𝑖−1 + 𝑥𝑖 + 𝑥𝑖+1)/3∶ 𝑖 = 1, … , 𝑁 − 1.

As seen in figure 2.6, we give each processor a contiguous subset of the 𝑥𝑖s and 𝑦𝑖s. Let’s define 𝑖𝑝 as the
first index of 𝑦 that is computed by processor 𝑝. (What is the last index computed by processor 𝑝? How
many indices are computed on that processor?)

We often talk about the owner computes model of parallel computing: each processor ‘owns’ certain data
items, and it computes their value. The values used for this computation need of course not be local, and
this is where the need for communication arises.

Let’s investigate how processor 𝑝 goes about computing 𝑦𝑖 for the 𝑖-values it owns. Let’s assume that
process 𝑝 also stores the values 𝑥𝑖 for these same indices. Now, for many values 𝑖 it can evalute the com-
putation

𝑦𝑖 = (𝑥𝑖−1 + 𝑥𝑖 + 𝑥𝑖+1)/3
locally (figure 4.1).

However, there is a problem with computing 𝑦 in the first index 𝑖𝑝 on processor 𝑝:

𝑦𝑖𝑝 = (𝑥𝑖𝑝−1 + 𝑥𝑖𝑝 + 𝑥𝑖𝑝+1)/3

The point to the left, 𝑥𝑖𝑝−1, is not stored on process 𝑝 (it is stored on 𝑝−1), so it is not immediately available
for use by process 𝑝. (figure 4.2). There is a similar story with the last index that 𝑝 tries to compute: that
involves a value that is only present on 𝑝 + 1.
You see that there is a need for processor-to-processor, or technically point-to-point, information ex-
change. MPI realizes this through matched send and receive calls:

• One process does a send to a specific other process;
• the other process does a specific receive from that source.

We will now discuss the send and receive routines in detail.
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Figure 4.1: Three point averaging in parallel, case of interior points

Figure 4.2: Three point averaging in parallel, case of edge points

4.1.1 Example: ping-pong

A simple scenario for information exchange between just two processes is the ping-pong: process A sends
data to process B, which sends data back to A. This is not an operation that is particularly relevant to
applications, although it is often used as a benchmark. Here we discuss it for to explain basic ideas.

This means that process A executes the code
MPI_Send( /* to: */ B ..... );
MPI_Recv( /* from: */ B ... );

while process B executes
MPI_Recv( /* from: */ A ... );
MPI_Send( /* to: */ A ..... );

Since we are programming in SPMD mode, this means our program looks like:
if ( /* I am process A */ ) {
MPI_Send( /* to: */ B ..... );
MPI_Recv( /* from: */ B ... );

} else if ( /* I am process B */ ) {
MPI_Recv( /* from: */ A ... );
MPI_Send( /* to: */ A ..... );

}

Remark 8 The structure of the send and receive calls shows the symmetric nature of MPI: every target process
is reached with the same send call, no matter whether it’s running on the same multicore chip as the sender, or
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Figure 4.1 MPI_Send
Name Param name Explanation C type F type inout

MPI_Send (
MPI_Send_c (

buf initial address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

count number of elements in send
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each send
buffer element

MPI_Datatype TYPE
(MPI_Datatype)

IN

dest rank of destination int INTEGER IN
tag message tag int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)
MPL:

template<typename T >
void mpl::communicator::send

( const T scalar&,int dest,tag = tag(0) ) const
( const T *buffer,const layout< T > &,int dest,tag = tag(0) ) const
( iterT begin,iterT end,int dest,tag = tag(0) ) const

T : scalar type
begin : begin iterator
end : end iterator
Python:

Python native:
MPI.Comm.send(self, obj, int dest, int tag=0)
Python numpy:
MPI.Comm.Send(self, buf, int dest, int tag=0)

on a computational node halfway across the machine room, taking several network hops to reach. Of course,
any self-respecting MPI implementation optimizes for the case where sender and receiver have access to the
same shared memory. This means that a send/recv pair is realized as a copy operation from the sender buffer
to the receiver buffer, rather than a network transfer.

4.1.2 Send call

The blocking send command is MPI_Send (figure 4.1). Example:

// sendandrecv.c
double send_data = 1.;
MPI_Send
( /* send buffer/count/type: */ &send_data,1,MPI_DOUBLE,
/* to: */ receiver, /* tag: */ 0,
/* communicator: */ comm);

The send call has the following elements.
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Buffer The send buffer is described by a trio of buffer/count/datatype. See section 3.2.4 for discussion.

Target The messsage target is an explicit process rank to send to. This rank is a number from zero up
to the result of MPI_Comm_size. It is allowed for a process to send to itself, but this may lead to a runtime
deadlock; see section 4.1.4 for discussion. The value MPI_PROC_NULL is allowed: using that as a target causes
no message to be sent or received.

MPL note 24: Null processor. Use mpl::proc_null.

Tag Next, a message can have a tag. Many applications have each sender send only one message at a
time to a given receiver. For the case where there are multiple simultaneous messages between the same
sender / receiver pair, the tag can be used to disambiguate between the messages.

Often, a tag value of zero is safe to use. Indeed, OO interfaces to MPI typically have the tag as an optional
parameter with value zero. If you do use tag values, you can use the key MPI_TAG_UB to query what the
maximum value is that can be used; see section 15.1.2.

Communicator Finally, in common with the vast majority of MPI calls, there is a communicator ar-
gument that provides a context for the send transaction. In order to match a send and receive operation,
they need to be in the same communicator.

MPL note 25: Buffer type safety.

• Scalar data type is handled through templating (and ‘argument-dependent-lookup’): derived by
the compiler.

• Count > 1 is declared in the layout datatype.

MPL note 26: Blocking send and receive. MPL uses a default value for the tag, and it can deduce the type
of the buffer. Sending a scalar becomes:

// sendscalar.cxx
if (comm_world.rank()==0) {
double pi=3.14;
comm_world.send(pi, 1); // send to rank 1
cout << "sent: " << pi << '\n';

} else if (comm_world.rank()==1) {
double pi=0;
comm_world.recv(pi, 0); // receive from rank 0
cout << "got : " << pi << '\n';

}

(See also note 10.)

MPL note 27: Sending arrays. MPL can send static arrays without further layout specification:

// sendarray.cxx
double v[2][2][2];
comm_world.send(v, 1); // send to rank 1
comm_world.recv(v, 0); // receive from rank 0
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Sending vectors uses a general mechanism:

// sendbuffer.cxx
std::vector<double> v(8);
mpl::contiguous_layout<double> v_layout(v.size());
comm_world.send(v.data(), v_layout, 1); // send to rank 1
comm_world.recv(v.data(), v_layout, 0); // receive from rank 0

(See also note 11.)

MPL note 28: Iterator layout. Noncontiguous iteratable objects can be send with a iterator_layout:

std::list<int> v(20, 0);
mpl::iterator_layout<int> l(v.begin(), v.end());
comm_world.recv(&(*v.begin()), l, 0);

4.1.3 Receive call

The basic blocking receive command is MPI_Recv (figure 4.2).

An example:

double recv_data;
MPI_Recv
( /* recv buffer/count/type: */ &recv_data,1,MPI_DOUBLE,
/* from: */ sender, /* tag: */ 0,
/* communicator: */ comm,
/* recv status: */ MPI_STATUS_IGNORE);

This is similar in structure to the send call, with some exceptions.

Buffer The receive buffer has the same buffer/count/data parameters as the send call. However, the
count argument here indicates the size of the buffer, rather than the actual length of a message. This sets
an upper bound on the length of the incoming message.

• For receiving messages with unknown length, use MPI_Probe; section 4.4.1.
• A message longer than the buffer size will give an overflow error, either returning an error, or
ending your program; see section 15.2.2.

The length of the received message can be determined from the status object; see section 4.3 for more
detail.

Source Mirroring the target argument of the MPI_Send call, MPI_Recv has amessage source argument. This
can be either a specific rank, or it can be the MPI_ANY_SOURCE wildcard. In the latter case, the actual source
can be determined after the message has been received; see section 4.3. A source value of MPI_PROC_NULL
is also allowed, which makes the receive succeed immediately with no data received.

MPL note 29: Any source. The constant mpl::any_source equals MPI_ANY_SOURCE (by constexpr).
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Figure 4.2 MPI_Recv
Name Param name Explanation C type F type inout

MPI_Recv (
MPI_Recv_c (

buf initial address of receive
buffer

void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in
receive buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each receive
buffer element

MPI_Datatype TYPE
(MPI_Datatype)

IN

source rank of source or
MPI_ANY_SOURCE

int INTEGER IN

tag message tag or MPI_ANY_TAG int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)
MPL:

template<typename T >
status mpl::communicator::recv

( T &,int,tag = tag(0) ) const inline
( T *,const layout< T > &,int,tag = tag(0) ) const
( iterT begin,iterT end,int source, tag t = tag(0) ) const

Python:

Comm.Recv(self, buf, int source=ANY_SOURCE, int tag=ANY_TAG,
Status status=None)

Python native:
recvbuf = Comm.recv(self, buf=None, int source=ANY_SOURCE, int tag=ANY_TAG,

Status status=None)

Tag Similar to themesssage source, themessage tag of a receive call can be a specific value or a wildcard,
in this case MPI_ANY_TAG.

Python note 13: Message tags. Python calls sensible use a default tag=0, but you can specify your own tag
value. On the receive call, the tag wildcard is MPI.ANY_TAG.

Communicator The communicator argument almost goes without remarking.

Status The MPI_Recv command has one parameter that the send call lacks: the MPI_Status object, de-
scribing the message status. This gives information about the message received, for instance if you used
wildcards for source or tag. See section 4.3 for more about the status object.

Remark 9 If you’re not interested in the status, as is the case in many examples in this book, you can specify
the constant MPI_STATUS_IGNORE. Note that the signature of MPI_Recv lists the status parameter as ‘output’; this
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‘direction’ of the parameter of course only applies if you do not specify this constant.

Exercise 4.1. Implement the ping-pong program. Add a timer using MPI_Wtime. For the
status argument of the receive call, use MPI_STATUS_IGNORE.

• Run multiple ping-pongs (say a thousand) and put the timer around the loop.
The first run may take longer; try to discard it.

• Run your code with the two communicating processes first on the same node,
then on different nodes. Do you see a difference?

• Then modify the program to use longer messages. How does the timing
increase with message size?

For bonus points, can you do a regression to determine 𝛼, 𝛽?
(There is a skeleton for this exercise under the name pingpong.)

Exercise 4.2. Take your pingpong program and modify it to let half the processors be
source and the other half the targets. Does the pingpong time increase? Does the
observed behavior depend on how you choose the two sets?

4.1.4 Problems with blocking communication

You may be tempted to think that the send call puts the data somewhere in the network, and the sending
code can progress after this call, as in figure 4.3, left. But this ideal scenario is not realistic: it assumes that

Figure 4.3: Illustration of an ideal (left) and actual (right) send-receive interaction

somewhere in the network there is buffer capacity for all messages that are in transit. This is not the case:
data resides on the sender, and the sending call blocks, until the receiver has received all of it. (There is a
exception for small messages, as explained in the next section.)

The use of MPI_Send and MPI_Recv is known as blocking communication: when your code reaches a send or
receive call, it blocks until the call is succesfully completed. Technically, blocking operations are called
non-local since their execution depends on factors that are not local to the process. See section 5.4.

4.1.4.1 Deadlock

Suppose two process need to exchange data, and consider the following pseudo-code, which purports to
exchange data between processes 0 and 1:
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other = 1-mytid; /* if I am 0, other is 1; and vice versa */
receive(source=other);
send(target=other);

Imagine that the two processes execute this code. They both issue the send call… and then can’t go on,
because they are both waiting for the other to issue the send call corresponding to their receive call. This
is known as deadlock.

4.1.4.2 Eager vs rendezvous protocol

Messages can be sent using (at least) two different protocols:

1. Rendezvous protocol, and
2. Eager protocol.

The rendezvous protocol is the most general. Sending a message takes several steps:

1. the sender sends a header, typically containing the message envelope: metadata describing the
message;

2. the receiver returns a ‘ready-to-send’ message;
3. the sender sends the actual data.

The purpose of this is to to prepare the receiver buffer space for large messages. However, it implies that
the sender has to wait for some return message from the receiver, making the behavior a synchronous
message.

For the eager protocol, consider the example:

other = 1-mytid; /* if I am 0, other is 1; and vice versa */
send(target=other);
receive(source=other);

With a synchronous protocol you should get deadlock, since the send calls will be waiting for the receive
operation to be posted.

In practice, however, this code will often work. The reason is that MPI implementations sometimes send
small messages regardless of whether the receive has been posted. This is known as an eager send, and it
relies on the availability of some amount of available buffer space. The size under which this behavior is
used is sometimes referred to as the eager limit.

To illustrate eager and blocking behavior in MPI_Send, consider an example where we send gradually larger
messages. From the screen output you can see what the largest message was that fell under the eager limit;
after that the code hangs because of a deadlock.

// sendblock.c
other = 1-procno;
/* loop over increasingly large messages */
for (int size=1; size<2000000000; size*=10) {

sendbuf = (int*) malloc(size*sizeof(int));
recvbuf = (int*) malloc(size*sizeof(int));
if (!sendbuf || !recvbuf) {

printf("Out of memory\n"); MPI_Abort(comm,1);
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}
MPI_Send(sendbuf,size,MPI_INT,other,0,comm);
MPI_Recv(recvbuf,size,MPI_INT,other,0,comm,&status);
/* If control reaches this point, the send call

did not block. If the send call blocks,
we do not reach this point, and the program will hang.

*/
if (procno==0)

printf("Send did not block for size %d\n",size);
free(sendbuf); free(recvbuf);

}

!! sendblock.F90
other = 1-mytid
size = 1
do

allocate(sendbuf(size)); allocate(recvbuf(size))
print *,size
call MPI_Send(sendbuf,size,MPI_INTEGER,other,0,comm,err)
call MPI_Recv(recvbuf,size,MPI_INTEGER,other,0,comm,status,err)
if (mytid==0) then

print *,"MPI_Send did not block for size",size
end if
deallocate(sendbuf); deallocate(recvbuf)
size = size*10
if (size>2000000000) goto 20

end do
20 continue

## sendblock.py
size = 1
while size<2000000000:

sendbuf = np.empty(size, dtype=int)
recvbuf = np.empty(size, dtype=int)
comm.Send(sendbuf,dest=other)
comm.Recv(sendbuf,source=other)
if procid<other:

print("Send did not block for",size)
size *= 10

If you want a code to exhibit the same blocking behavior for all message sizes, you force the send call
to be blocking by using MPI_Ssend, which has the same calling sequence as MPI_Send, but which does not
allow eager sends.

// ssendblock.c
other = 1-procno;
sendbuf = (int*) malloc(sizeof(int));
recvbuf = (int*) malloc(sizeof(int));
size = 1;
MPI_Ssend(sendbuf,size,MPI_INT,other,0,comm);
MPI_Recv(recvbuf,size,MPI_INT,other,0,comm,&status);
printf("This statement is not reached\n");
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Formally you can describe deadlock as follows. Draw up a graph where every process is a node, and draw
a directed arc from process A to B if A is waiting for B. There is deadlock if this directed graph has a loop.

The solution to the deadlock in the above example is to first do the send from 0 to 1, and then from 1 to 0
(or the other way around). So the code would look like:

if ( /* I am processor 0 */ ) {
send(target=other);
receive(source=other);

} else {
receive(source=other);
send(target=other);

}

Eager sends also influences non-blocking sends. The wait call after a non-blocking send will return imme-
diately, regardless any receive call, if the message is under the eager limit:
Code:

// eageri.c
printf("Sending %lu elements\n",n);
MPI_Request request;
MPI_Isend(buffer,n,MPI_DOUBLE,processB,0,comm,&request);
MPI_Wait(&request,MPI_STATUS_IGNORE);
printf(".. concluded\n");

Output:

Setting eager limit to 5000 bytes
TACC: Starting up job 4049189
TACC: Starting parallel tasks...
Sending 1 elements
.. concluded
Sending 10 elements
.. concluded
Sending 100 elements
.. concluded
Sending 1000 elements
^C[mpiexec@c207-029.frontera.tacc.utexas.edu]

↪Sending Ctrl-C to processes as requested

The eager limit is implementation-specific. For instance, for Intel MPI there is a variable
I_MPI_EAGER_THRESHOLD (old versions) or I_MPI_SHM_EAGER_THRESHOLD; for mvapich2 it is
MV2_IBA_EAGER_THRESHOLD, and for OpenMPI the --mca options btl_openib_eager_limit and
btl_openib_rndv_eager_limit.

4.1.4.3 Serialization

There is a second, even more subtle problem with blocking communication. Consider the scenario where
every processor needs to pass data to its successor, that is, the processor with the next higher rank. The
basic idea would be to first send to your successor, then receive from your predecessor. Since the last
processor does not have a successor it skips the send, and likewise the first processor skips the receive.
The pseudo-code looks like:

successor = mytid+1; predecessor = mytid-1;
if ( /* I am not the last processor */ )
send(target=successor);

if ( /* I am not the first processor */ )
receive(source=predecessor)

Exercise 4.3. (Classroom exercise) Each student holds a piece of paper in the right hand
– keep your left hand behind your back – and we want to execute:
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1. Give the paper to your right neighbor;
2. Accept the paper from your left neighbor.

Including boundary conditions for first and last process, that becomes the following
program:

1. If you are not the rightmost student, turn to the right and give the paper to
your right neighbor.

2. If you are not the leftmost student, turn to your left and accept the paper from
your left neighbor.

This code does not deadlock. All processors but the last one block on the send call, but the last processor
executes the receive call. Thus, the processor before the last one can do its send, and subsequently continue
to its receive, which enables another send, et cetera.

In one way this code does what you intended to do: it will terminate (instead of hanging forever on a
deadlock) and exchange data the right way. However, the execution now suffers from unexpected serial-
ization: only one processor is active at any time, so what should have been a parallel operation becomes

Figure 4.4: Trace of a simple send-recv code

a sequential one. This is illustrated in figure 4.4.

Exercise 4.4. Implement the above algorithm using MPI_Send and MPI_Recv calls. Run the
code, and use TAU to reproduce the trace output of figure 4.4. If you don’t have
TAU, can you show this serialization behavior using timings, for instance running it
on an increasing number of processes?
(There is a skeleton for this exercise under the name rightsend.)

It is possible to orchestrate your processes to get an efficient and deadlock-free execution, but doing so is
a bit cumbersome.

Exercise 4.5. The above solution treated every processor equally. Can you come up with a
solution that uses blocking sends and receives, but does not suffer from the
serialization behavior?
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There are better solutions which we will explore in the next section.

4.1.5 Bucket brigade

The problemwith the previous exercise was that an operation that was conceptually parallel became serial
in execution. On the other hand, sometimes the operation is actually serial in nature. One example is the
bucket brigade operation, where a piece of data is successively passed down a sequence of processors.

Exercise 4.6. Take the code of exercise 4.4 and modify it so that the data from process zero
gets propagated to every process. Specifically, compute all partial sums ∑𝑝

𝑖=0 𝑖2:

{𝑥0 = 1 on process zero

𝑥𝑝 = 𝑥𝑝−1 + (𝑝 + 1)2 on process 𝑝

Use MPI_Send and MPI_Recv; make sure to get the order right.
Food for thought: all quantities involved here are integers. Is it a good idea to use
the integer datatype here?
(There is a skeleton for this exercise under the name bucketblock.)

Remark 10 There is an MPI_Scan routine (section 3.4) that performs the same computation, but computa-
tionally more efficiently. Thus, this exercise only serves to illustrate the principle.

4.1.6 Pairwise exchange

Above you saw that with blocking sends the precise ordering of the send and receive calls is crucial. Use
the wrong ordering and you get either deadlock, or something that is not efficient at all in parallel. MPI has
a way out of this problem that is sufficient for many purposes: the combined send/recv call MPI_Sendrecv
(figure 4.3).

The sendrecv call works great if every process is paired with precisely one sender and one receiver. You
would then write

sendrecv( ....from... ...to... );

with the right choice of source and destination. For instance, to send data to your right neighbor:

MPI_Comm_rank(comm,&procno);
MPI_Sendrecv( ....

/* from: */ procno-1
... ...

/* to: */ procno+1
... );

This scheme is correct for all processes but the first and last. In order to use the sendrecv call on these
processes, we use MPI_PROC_NULL for the non-existing processes that the endpoints communicate with.
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Figure 4.3 MPI_Sendrecv
Name Param name Explanation C type F type inout

MPI_Sendrecv (
MPI_Sendrecv_c (

sendbuf initial address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcount number of elements in send
buffer

[ int
MPI_Count INTEGER IN

sendtype type of elements in send
buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

dest rank of destination int INTEGER IN
sendtag send tag int INTEGER IN
recvbuf initial address of receive

buffer
void* TYPE(*),

DIMENSION(..)
OUT

recvcount number of elements in
receive buffer

[ int
MPI_Count INTEGER IN

recvtype type of elements receive
buffer element

MPI_Datatype TYPE
(MPI_Datatype)

IN

source rank of source or
MPI_ANY_SOURCE

int INTEGER IN

recvtag receive tag or MPI_ANY_TAG int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)
MPL:

template<typename T >
status mpl::communicator::sendrecv

( const T & senddata, int dest, tag sendtag,
T & recvdata, int source, tag recvtag

) const
( const T * senddata, const layout< T > & sendl, int dest, tag sendtag,

T * recvdata, const layout< T > & recvl, int source, tag recvtag
) const
( iterT1 begin1, iterT1 end1, int dest, tag sendtag,
iterT2 begin2, iterT2 end2, int source, tag recvtag

) const
Python:

Sendrecv(self,
sendbuf, int dest, int sendtag=0,
recvbuf=None, int source=ANY_SOURCE, int recvtag=ANY_TAG,
Status status=None)
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MPI_Comm_rank( .... &procno );
if ( /* I am not the first processor */ )

predecessor = procno-1;
else

predecessor = MPI_PROC_NULL;
if ( /* I am not the last processor */ )

successor = procno+1;
else

successor = MPI_PROC_NULL;
sendrecv(from=predecessor,to=successor);

where the sendrecv call is executed by all processors.

All processors but the last one send to their neighbor; the target value of MPI_PROC_NULL for the last pro-
cessor means a ‘send to the null processor’: no actual send is done.

Likewise, receiving from MPI_PROC_NULL succeeds without altering the receive buffer. The corresponding
MPI_Status object has source MPI_PROC_NULL, tag MPI_ANY_TAG, and count zero.

Remark 11 The MPI_Sendrecv can inter-operate with the normal send and receive calls, both blocking and
non-blocking. Thus it would also be possible to replace the MPI_Sendrecv calls at the end points by simple sends
or receives.

MPL note 30: Send-recv call. The send-recv call in MPL has the same possibilities for specifying the send
and receive buffer as the separate send and recv calls: scalar, layout, iterator. However, out of the
nine conceivably possible routine signatures, only the versions are available where the send and
receive buffer are specified the same way. Also, the send and receive tag need to be specified;
they do not have default values.

// sendrecv.cxx
mpl::tag_t t0(0);
comm_world.sendrecv
( mydata,sendto,t0,

leftdata,recvfrom,t0 );

// sendrecvarray.cxx
mpl::tag_t t0(0);
mpl::contiguous_layout<double>

↪twofloats(2);
comm_world.sendrecv

( mydata,twofloats,sendto,t0,
leftdata,twofloats,recvfrom,t0 );

Exercise 4.7. Revisit exercise 4.3 and solve it using MPI_Sendrecv.
If you have TAU installed, make a trace. Does it look different from the serialized
send/recv code? If you don’t have TAU, run your code with different numbers of
processes and show that the runtime is essentially constant.

This call makes it easy to exchange data between two processors: both specify the other as both target and
source. However, there need not be any such relation between target and source: it is possible to receive
from a predecessor in some ordering, and send to a successor in that ordering; see figure 4.5.

For the above three-point combination scheme you need to move data both left right, so you need two
MPI_Sendrecv calls; see figure 4.6.
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Figure 4.5: An MPI Sendrecv call

Figure 4.6: Two steps of send/recv to do a three-point combination
.

Exercise 4.8. Implement the above three-point combination scheme using MPI_Sendrecv;
every processor only has a single number to send to its neighbor.
(There is a skeleton for this exercise under the name sendrecv.)

Hints for this exercise:

• Each process does one send and one receive; if a process needs to skip one or the other, you can
specify MPI_PROC_NULL as the other process in the send or receive specification. In that case the
corresponding action is not taken.

• As with the simple send/recv calls, processes have to match up: if process 𝑝 specifies 𝑝′ as the
destination of the send part of the call, 𝑝′ needs to specify 𝑝 as the source ofthe recv part.

The following exercise lets you implement a sorting algorithm with the send-receive call1.

Exercise 4.9. A very simple sorting algorithm is swap sort or odd-even transposition sort:
pairs of processors compare data, and if necessary exchange. The elementary step is
called a compare-and-swap: in a pair of processors each sends their data to the other;
one keeps the minimum values, and the other the maximum. For simplicity, in this
exercise we give each processor just a single number.
The transposition sort algorithm is split in even and odd stages, where in the even
stage processors 2𝑖 and 2𝑖 + 1 compare and swap data, and in the odd stage

1. There is an MPI_Compare_and_swap call. Do not use that.
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Figure 4.7: Odd-even transposition sort on 4 elements.

processors 2𝑖 + 1 and 2𝑖 + 2 compare and swap. You need to repeat this 𝑃/2 times,
where 𝑃 is the number of processors; see figure 4.7.
Implement this algorithm using MPI_Sendrecv. (Use MPI_PROC_NULL for the edge cases
if needed.) Use a gather call to print the global state of the distributed array at the
beginning and end of the sorting process.

Figure 4.8: Odd-even transposition sort on 4 processes, holding 2 elements each.

Remark 12 It is not possible to use MPI_IN_PLACE for the buffers, as in section 3.3.2. Instead, the routine
MPI_Sendrecv_replace (figure 4.4) has only one buffer, used as both send and receive buffer. Of course, this
requires the send and receive messages to fit in that one buffer.

Exercise 4.10. Extend this exercise to the case where each process hold an equal number of
elements, more than 1. Consider figure 4.8 for inspiration. Is it coincidence that the
algorithm takes the same number of steps as in the single scalar case?

The following material is for the recently released MPI-4 standard and may not be supported yet.
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Figure 4.4 MPI_Sendrecv_replace
Name Param name Explanation C type F type inout

MPI_Sendrecv_replace (
MPI_Sendrecv_replace_c (

buf initial address of send
and receive buffer

void* TYPE(*),
DIMENSION(..)

INOUT

count number of elements in send
and receive buffer

[ int
MPI_Count INTEGER IN

datatype type of elements in send
and receive buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

dest rank of destination int INTEGER IN
sendtag send message tag int INTEGER IN
source rank of source or

MPI_ANY_SOURCE
int INTEGER IN

recvtag receive message tag or
MPI_ANY_TAG

int INTEGER IN

comm communicator MPI_Comm TYPE
(MPI_Comm)

IN

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)

There are non-blocking and persistent versions of MPI_Sendrecv: MPI_Isendrecv, MPI_Sendrecv_init,
MPI_Isendrecv_replace, MPI_Sendrecv_replace_init.
End of MPI-4 material

4.2 Nonblocking point-to-point operations

The structure of communication is often a reflection of the structure of the operation. With some regular
applications we also get a regular communication pattern. Consider again the above operation:

𝑦𝑖 = 𝑥𝑖−1 + 𝑥𝑖 + 𝑥𝑖+1∶ 𝑖 = 1, … , 𝑁 − 1

Doing this in parallel induces communication, as pictured in figure 4.1.

We note:

• The data is one-dimensional, and we have a linear ordering of the processors.
• The operation involves neighboring data points, and we communicate with neighboring pro-
cessors.

Above you saw how you can use information exchange between pairs of processors

• using MPI_Send and MPI_Recv, if you are careful; or
• using MPI_Sendrecv, as long as there is indeed some sort of pairing of processors.

However, there are circumstances where it is not possible, not efficient, or simply not convenient, to have
such a deterministic setup of the send and receive calls. Figure 4.9 illustrates such a case, where processors
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Figure 4.9: Processors with unbalanced send/receive patterns

are organized in a general graph pattern. Here, the numbers of sends and receive of a processor do not
need to match.

In such cases, one wants a possibility to state ‘these are the expected incoming messages’, without having
to wait for them in sequence. Likewise, one wants to declare the outgoing messages without having to do
them in any particular sequence. Imposing any sequence on the sends and receives is likely to run into
the serialization behavior observed above, or at least be inefficient.

4.2.1 Nonblocking send and receive calls

In the previous section you saw that blocking communication makes programming tricky if you want
to avoid deadlock and performance problems. The main advantage of these routines is that you have full
control about where the data is: if the send call returns the data has been successfully received, and the
send buffer can be used for other purposes or de-allocated.

Figure 4.10: Nonblocking send

By contrast, the nonblocking calls MPI_Isend (figure 4.5) and MPI_Irecv (figure 4.6) (where the ‘I’ stands
for ‘immediate’ or ‘incomplete’ ) do not wait for their counterpart: in effect they tell the runtime system
‘here is some data and please send it as follows’ or ‘here is some buffer space, and expect such-and-such
data to come’. This is illustrated in figure 4.10.

// isendandirecv.c
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Figure 4.5 MPI_Isend
Name Param name Explanation C type F type inout

MPI_Isend (
MPI_Isend_c (

buf initial address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

count number of elements in send
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each send
buffer element

MPI_Datatype TYPE
(MPI_Datatype)

IN

dest rank of destination int INTEGER IN
tag message tag int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)
MPL:

template<typename T >
irequest mpl::communicator::isend

( const T & data, int dest, tag t = tag(0) ) const;
( const T * data, const layout< T > & l, int dest, tag t = tag(0) ) const;
( iterT begin, iterT end, int dest, tag t = tag(0) ) const;

Python:

request = MPI.Comm.Isend(self, buf, int dest, int tag=0)

double send_data = 1.;
MPI_Request request;
MPI_Isend
( /* send buffer/count/type: */ &send_data,1,MPI_DOUBLE,

/* to: */ receiver, /* tag: */ 0,
/* communicator: */ comm,
/* request: */ &request);

MPI_Wait(&request,MPI_STATUS_IGNORE);

double recv_data;
MPI_Request request;
MPI_Irecv
( /* recv buffer/count/type: */ &recv_data,1,MPI_DOUBLE,

/* from: */ sender, /* tag: */ 0,
/* communicator: */ comm,
/* request: */ &request);

MPI_Wait(&request,MPI_STATUS_IGNORE);

Issuing the MPI_Isend / MPI_Irecv call is sometimes referred to as posting a send/receive.

Victor Eijkhout 113



4. MPI topic: Point-to-point

Figure 4.6 MPI_Irecv
Name Param name Explanation C type F type inout

MPI_Irecv (
MPI_Irecv_c (

buf initial address of receive
buffer

void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in
receive buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each receive
buffer element

MPI_Datatype TYPE
(MPI_Datatype)

IN

source rank of source or
MPI_ANY_SOURCE

int INTEGER IN

tag message tag or MPI_ANY_TAG int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)
MPL:

template<typename T >
irequest mpl::communicator::irecv

( const T & data, int src, tag t = tag(0) ) const;
( const T * data, const layout< T > & l, int src, tag t = tag(0) ) const;
( iterT begin, iterT end, int src, tag t = tag(0) ) const;

Python:

recvbuf = Comm.irecv(self, buf=None, int source=ANY_SOURCE, int tag=ANY_TAG,
Request request=None)

Python numpy:
Comm.Irecv(self, buf, int source=ANY_SOURCE, int tag=ANY_TAG,

Request status=None)

4.2.2 Request completion: wait calls

From the definition of MPI_Isend / MPI_Irecv, you seen that nonblocking routine yields an MPI_Request
object. This request can then be used to query whether the operation has concluded. You may also notice
that the MPI_Irecv routine does not yield an MPI_Status object. Thismakes sense: the status object describes
the actually received data, and at the completion of the MPI_Irecv call there is no received data yet.

Waiting for the request is done with a number of routines. We first consider MPI_Wait (figure 4.7). It takes
the request as input, and gives an MPI_Status as output. If you don’t need the status object, you can pass
MPI_STATUS_IGNORE.

// hangwait.c
if (procno==sender) {
for (int p=0; p<nprocs-1; p++) {
double send = 1.;
MPI_Send( &send,1,MPI_DOUBLE,p,0,comm);

}
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Figure 4.7 MPI_Wait
Name Param name Explanation C type F type inout

MPI_Wait (
request request MPI_Request* TYPE

(MPI_Request)
INOUT

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)
Python:

MPI.Request.Wait(type cls, request, status=None)

} else {
double recv=0.;
MPI_Request request;
MPI_Irecv( &recv,1,MPI_DOUBLE,sender,0,comm,&request);
do_some_work();
MPI_Wait(&request,MPI_STATUS_IGNORE);

}

(Note that this example uses a mix of blocking and non-blocking operations: a blocking send is paired
with a non-blocking receive.)

The request is passed by reference, so that the wait routine can free it:

• The wait call deallocates the request object, and
• sets the value of the variable to MPI_REQUEST_NULL.

(See section 4.2.4 for details.)

MPL note 31: Requests from nonblocking calls. Nonblocking routines have an irequest as function result.
Note: not a parameter passed by reference, as in the C interface. The various wait calls are
methods of the irequest class.

double recv_data;
mpl::irequest recv_request =
comm_world.irecv( recv_data,sender );

recv_request.wait();

You can not default-construct the request variable:
// DOES NOT COMPILE:
mpl::irequest recv_request;
recv_request = comm.irecv( ... );

This means that the normal sequence of first declaring, and then filling in, the request variable
is not possible.

Implementation note: The wait call always returns a status_t object; not assigning it
means that the destructor is called on it.

Now we discuss in some detail the various wait calls. These are blocking; for the nonblocking versions
see section 4.2.3.
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Figure 4.8 MPI_Waitall
Name Param name Explanation C type F type inout

MPI_Waitall (
count list length int INTEGER IN
array_of_requests array of requests MPI_Request[] TYPE

(MPI_Request)
(count)

INOUT

array_of_statuses array of status objects MPI_Status[] TYPE
(MPI_Status)
(*)

OUT

)
Python:

MPI.Request.Waitall(type cls, requests, statuses=None)

4.2.2.1 Wait for one request

MPI_Wait waits for a a single request. If you are indeed waiting for a single nonblocking communication
to complete, this is the right routine. If you are waiting for multiple requests you could call this routine
in a loop.

for (p=0; p<nrequests ; p++) // Not efficient!
MPI_Wait(&request[p],&(status[p]));

However, this would be inefficient if the first request is fulfilled much later than the others: your waiting
process would have lots of idle time. In that case, use one of the following routines.

4.2.2.2 Wait for all requests

MPI_Waitall (figure 4.8) allows you to wait for a number of requests, and it does not matter in what se-
quence they are satisfied. Using this routine is easier to code than the loop above, and it could be more
efficient.

// irecvloop.c
MPI_Request requests =
(MPI_Request*) malloc( 2*nprocs*sizeof(MPI_Request) );

recv_buffers = (int*) malloc( nprocs*sizeof(int) );
send_buffers = (int*) malloc( nprocs*sizeof(int) );
for (int p=0; p<nprocs; p++) {
int

left_p = (p-1+nprocs) % nprocs,
right_p = (p+1) % nprocs;

send_buffer[p] = nprocs-p;
MPI_Isend(sendbuffer+p,1,MPI_INT, right_p,0, requests+2*p);
MPI_Irecv(recvbuffer+p,1,MPI_INT, left_p,0, requests+2*p+1);

}
/* your useful code here */
MPI_Waitall(2*nprocs,requests,MPI_STATUSES_IGNORE);

The output argument is an array or MPI_Status object. If you don’t need the status objects, you can pass
MPI_STATUSES_IGNORE.
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As an illustration, we realize exercise 4.4, and its trace in figure 4.4, with non-blocking execution and
MPI_Waitall. Figure 4.11 shows the trace of this variant of the code.

Figure 4.11: A trace of a nonblocking send between neighboring processors

Exercise 4.11. Revisit exercise 4.6 and consider replacing the blocking calls by nonblocking
ones. How far apart can you put the MPI_Isend / MPI_Irecv calls and the
corresponding MPI_Waits?
(There is a skeleton for this exercise under the name bucketpipenonblock.)

Solution to exercise 4.11.

## code #1

MPI_Request send_request, recv_request;
MPI_Status status;

for (int ipart=0; ipart<PARTS; ipart++) {
MPI_Irecv(leftdata+partition_starts[ipart], partition_sizes[ipart], MPI_DOUBLE, recvfrom, ipart, comm, &recv_request);
// problem: operating on `leftdata' starts without making sure there is actual data
// problem2: memory leak because most request are never waited on.
for (int i=partition_starts[ipart]; i<partition_starts[ipart]+partition_sizes[ipart]; i++){

myvalue[i] = (procno+1)*(procno+1) + leftdata[i];
}
MPI_Isend(myvalue+partition_starts[ipart], partition_sizes[ipart], MPI_DOUBLE, sendto, ipart, comm, &send_request);

}

MPI_Wait(&send_request, &status);
MPI_Wait(&recv_request, &status);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// code #2

MPI_Request request;
for (int ipart=0; ipart<PARTS; ipart++) {

MPI_Irecv
(
leftdata+partition_starts[ipart],partition_sizes[ipart],
MPI_DOUBLE,recvfrom,ipart,comm,&request);

MPI_Wait(&request,MPI_STATUS_IGNORE);
// problem: Irecv & immediate wait is kinda pointless: equivalent to regular Recv
for (int i=partition_starts[ipart];

i<partition_starts[ipart]+partition_sizes[ipart];
i++)

myvalue[i] = (procno+1)*(procno+1) + leftdata[i];
MPI_Isend

(
myvalue+partition_starts[ipart],partition_sizes[ipart],
MPI_DOUBLE,sendto,ipart,comm,&request);

}
// problem2: Wait call is needed to prevent memory leak

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// code #3

MPI_Request requests[2];

for (int ipart=0; ipart<PARTS; ipart++) {
MPI_Irecv

(leftdata+partition_starts[ipart], partition_sizes[ipart], MPI_DOUBLE, recvfrom, 0, comm, &(requests[0]));
MPI_Wait(&(requests[0]),MPI_STATUS_IGNORE);
for (int i=partition_starts[ipart];

i<partition_starts[ipart]+partition_sizes[ipart];
i++)
myvalue[i] = (procno+1)*(procno+1) + leftdata[i];

MPI_Isend
(myvalue+partition_starts[ipart], partition_sizes[ipart], MPI_DOUBLE, sendto, 0, comm, &(requests[1]));

MPI_Wait(&(requests[1]), MPI_STATUS_IGNORE);
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// code #4

MPI_Request reqRecv[PARTS];
MPI_Request reqSend[PARTS];

for (int ipart = 0; ipart < PARTS; ipart++) {
MPI_Irecv(leftdata+partition_starts[ipart], partition_sizes[ipart], MPI_DOUBLE, recvfrom, ipart, comm, &reqRecv[ipart]);

}

Victor Eijkhout 117



4. MPI topic: Point-to-point

for (int ipart = 0; ipart < PARTS; ipart++) {
int j;
MPI_Waitany(PARTS, reqRecv, &j, MPI_STATUS_IGNORE);

for (int i = partition_starts[j]; i < partition_starts[j]+partition_sizes[j]; i++)
myvalue[i] = (procno+1)*(procno+1) + leftdata[i];

MPI_Isend(myvalue+partition_starts[j], partition_sizes[j], MPI_DOUBLE, sendto, j, comm, &reqSend[j]);
}

MPI_Waitall(PARTS, reqSend, MPI_STATUSES_IGNORE);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// code #5

MPI_Request reqRecv[PARTS];
MPI_Request reqSend[PARTS];

for (int ipart = 0; ipart < PARTS; ipart++) {
MPI_Irecv(leftdata+partition_starts[ipart], partition_sizes[ipart], MPI_DOUBLE, recvfrom, ipart, comm, &reqRecv[ipart]);

}

for (int ipart = 0; ipart < PARTS; ipart++) {
MPI_Wait(reqRecv+ipart, MPI_STATUS_IGNORE);

for (int i = partition_starts[ipart]; i < partition_starts[ipart]+partition_sizes[ipart]; i++)
myvalue[i] = (procno+1)*(procno+1) + leftdata[i];

MPI_Isend(myvalue+partition_starts[ipart], partition_sizes[ipart], MPI_DOUBLE, sendto, ipart, comm, &reqSend[ipart]);
}

// final wait to prevent memory leaks.
MPI_Waitall(PARTS, reqSend, MPI_STATUSES_IGNORE);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Exercise 4.12. Create two distributed arrays of positive integers. Take the set difference of
the two: the first array needs to be transformed to remove from it those numbers
that are in the second array.
How could you solve this with an MPI_Allgather call? Why is it not a good idea to do
so? Solve this exercise instead with a circular bucket brigade algorithm.
(There is a skeleton for this exercise under the name setdiff.)

Python note 14: Handling a single request. Non-blocking routines such as MPI_Isend return a request ob-
ject. The MPI_Wait is a class method, not a method of the request object:

## irecvsingle.py
sendbuffer = np.empty( nprocs, dtype=int )
recvbuffer = np.empty( nprocs, dtype=int )

left_p = (procid-1) % nprocs
right_p = (procid+1) % nprocs
send_request = comm.Isend\

( sendbuffer[procid:procid+1],dest=left_p)
recv_request = comm.Irecv\

( sendbuffer[procid:procid+1],source=right_p)
MPI.Request.Wait(send_request)
MPI.Request.Wait(recv_request)

Python note 15: Request arrays. An array of requests (for the waitall/some/any calls) is an ordinary Python
list:

## irecvloop.py
requests = []
sendbuffer = np.empty( nprocs, dtype=int )
recvbuffer = np.empty( nprocs, dtype=int )

for p in range(nprocs):
left_p = (p-1) % nprocs
right_p = (p+1) % nprocs
requests.append( comm.Isend\

( sendbuffer[p:p+1],dest=left_p) )
requests.append( comm.Irecv\

( sendbuffer[p:p+1],source=right_p) )
MPI.Request.Waitall(requests)

The MPI_Waitall method is again a class method.
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Figure 4.9 MPI_Waitany
Name Param name Explanation C type F type inout

MPI_Waitany (
count list length int INTEGER IN
array_of_requests array of requests MPI_Request[] TYPE

(MPI_Request)
(count)

INOUT

index index of handle for
operation that completed

int* INTEGER OUT

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)
Python:

MPI.Request.Waitany( requests,status=None )
class method, returns index

4.2.2.3 Wait for any requests

The ‘waitall’ routine is good if you need all nonblocking communications to be finished before you can
proceed with the rest of the program. However, sometimes it is possible to take action as each request is
satisfied. In that case you could use MPI_Waitany (figure 4.9) and write:

for (p=0; p<nrequests; p++) {
MPI_Irecv(buffer+index, /* ... */, requests+index);

}
for (p=0; p<nrequests; p++) {
MPI_Waitany(nrequests,request_array,&index,&status);
// operate on buffer[index]

}

Note that this routine takes a single status argument, passed by reference, and not an array of statuses!

Fortran note 8: Index of requests. The index parameter is the index in the array of requests, which is a
Fortran array, so it uses 1-based indexing.

!! irecvsource.F90
if (mytid==ntids-1) then

do p=1,ntids-1
print *,"post"
call MPI_Irecv(recv_buffer(p),1,MPI_INTEGER,p-1,0,comm,&

requests(p),err)
end do
do p=1,ntids-1

call MPI_Waitany(ntids-1,requests,index,MPI_STATUS_IGNORE,err)
write(*,'("Message from",i3,":",i5)') index,recv_buffer(index)

end do

!! waitnull.F90
Type(MPI_Request),dimension(:),allocatable :: requests
allocate(requests(ntids-1))

call MPI_Waitany(ntids-1,requests,index,MPI_STATUS_IGNORE)
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if ( .not. requests(index)==MPI_REQUEST_NULL) then
print *,"This request should be null:",index

!! waitnull.F90
Type(MPI_Request),dimension(:),allocatable :: requests
allocate(requests(ntids-1))

call MPI_Waitany(ntids-1,requests,index,MPI_STATUS_IGNORE)
if ( .not. requests(index)==MPI_REQUEST_NULL) then

print *,"This request should be null:",index

MPL note 32: Request pools. Instead of an array of requests, use an irequest_pool object, which acts like a
vector of requests, meaning that you can push onto it.

// irecvsource.cxx
mpl::irequest_pool recv_requests;
for (int p=0; p<nprocs-1; p++) {

recv_requests.push( comm_world.irecv( recv_buffer[p], p ) );
}

You can not declare a pool of a fixed size and assign elements. (Why not? Can you find a way
around it?)

MPL note 33: Wait any. The irequest_pool class has methods waitany, waitall, testany, testall, waitsome,
testsome.

The ‘any’ methods return a std::pair<mpl::test_result,size_t>, where the test_result is an
enum class with values:

• completed (for any/some/all completions),
• no_completed (for none),
• no_active_requests (if no more requests active).

auto [success,index] = recv_requests.waitany();
if ( success==mpl::test_result::completed ) {

auto recv_status = recv_requests.get_status(index);

MPL note 34: Request handling.

auto [success,index] = recv_requests.waitany();
if ( success==mpl::test_result::completed ) {

auto recv_status = recv_requests.get_status(index);

4.2.2.4 Polling with MPI Wait any

The MPI_Waitany routine can be used to implement polling: occasionally check for incoming messages
while other work is going on.
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Code:

// irecvsource.c
if (procno==nprocs-1) {
int *recv_buffer;
MPI_Request *request; MPI_Status status;
recv_buffer = (int*)

↪malloc((nprocs-1)*sizeof(int));
request = (MPI_Request*) malloc

((nprocs-1)*sizeof(MPI_Request));

for (int p=0; p<nprocs-1; p++) {
ierr =
↪MPI_Irecv(recv_buffer+p,1,MPI_INT,
↪p,0,comm,

request+p);
↪CHK(ierr);

}
for (int p=0; p<nprocs-1; p++) {

int index,sender;

↪MPI_Waitany(nprocs-1,request,&index,&status);
if (index!=status.MPI_SOURCE)

printf("Mismatch index %d vs source
↪%d\n",

index,status.MPI_SOURCE);
printf("Message from %d: %d\n",

index,recv_buffer[index]);
}

} else {
ierr = MPI_Send(&procno,1,MPI_INT,

↪nprocs-1,0,comm);
}

Output:

make[3]: `irecvsource' is up to date.
process 1 waits 6s before sending
process 2 waits 3s before sending
process 0 waits 13s before sending
process 3 waits 8s before sending
process 5 waits 1s before sending
process 6 waits 14s before sending
process 4 waits 12s before sending
Message from 5: 5
Message from 2: 2
Message from 1: 1
Message from 3: 3
Message from 4: 4
Message from 0: 0
Message from 6: 6

## irecvsource.py
if procid==nprocs-1:

receive_buffer = np.empty(nprocs-1,dtype=int)
requests = [ None ] * (nprocs-1)
for sender in range(nprocs-1):

requests[sender] = comm.Irecv(receive_buffer[sender:sender+1],source=sender)
# alternatively: requests = [ comm.Irecv(s) for s in .... ]
status = MPI.Status()
for sender in range(nprocs-1):

ind = MPI.Request.Waitany(requests,status=status)
if ind!=status.Get_source():

print("sender mismatch: %d vs %d" % (ind,status.Get_source()))
print("received from",ind)

else:
mywait = random.randint(1,2*nprocs)
print("[%d] wait for %d seconds" % (procid,mywait))
time.sleep(mywait)
mydata = np.empty(1,dtype=int)
mydata[0] = procid
comm.Send([mydata,MPI.INT],dest=nprocs-1)
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Each process except for the root does a blocking send; the root posts MPI_Irecv from all other processors,
then loops with MPI_Waitany until all requests have come in. Use MPI_SOURCE to test the index parameter of
the wait call.

Note the MPI_STATUS_IGNORE parameter: we know everything about the incoming message, so we do not
need to query a status object. Contrast this with the example in section 4.3.1.

4.2.2.5 Wait for some requests

Finally, MPI_Waitsome is very much like MPI_Waitany, except that it returns multiple numbers, if multiple
requests are satisfied. Now the status argument is an array of MPI_Status objects.

4.2.2.6 Receive status of the wait calls

The MPI_Wait... routines have the MPI_Status objects as output. If you are not interested in the status in-
formation, you can use the values MPI_STATUS_IGNORE for MPI_Wait and MPI_Waitany, or MPI_STATUSES_IGNORE
for MPI_Waitall, MPI_Waitsome, MPI_Testall, MPI_Testsome.

Remark 13 The routines that can returnmultiple statuses, can return the error condition MPI_ERR_IN_STATUS,
indicating that one of the statuses was in error. See section 4.3.3.

Exercise 4.13.
(There is a skeleton for this exercise under the name isendirecv.) Now use
nonblocking send/receive routines to implement the three-point averaging operation

𝑦𝑖 = (𝑥𝑖−1 + 𝑥𝑖 + 𝑥𝑖+1)/3∶ 𝑖 = 1, … , 𝑁 − 1

on a distributed array. There are two approaches to the first and last process:
1. you can use MPI_PROC_NULL for the ‘missing’ communications;
2. you can skip these communications altogether, but now you have to count the

requests carefully.

Solution to exercise 4.13.

// left neighbor
sendto = ( procno<nprocs-1 ? procno+1 : MPI_PROC_NULL ) ;
recvfrom = ( procno>0 ? procno-1 : MPI_PROC_NULL ) ;

MPI_Isend(&mydata,1,MPI_INT, sendto,0, comm,&(requests[0]));
MPI_Irecv(&leftdata,1,MPI_INT, recvfrom,0, comm,&(requests[1]));

// same with right neighbor
...

MPI_Waitall(4,requests,MPI_STATUSES_IGNORE);

Alternatively:
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int nrequests = 0;
if (procno<nprocs-1) {

sendto = procno+1; recvfrom = procno-1;
MPI_Isend(&mydata,1,MPI_INT, sendto,0, comm,

&(requests[nrequests++]));
MPI_Irecv(&leftdata,1,MPI_INT, recvfrom,0, comm,

&(requests[nrequests++]));
}

// same with right neighbor
...

MPI_Waitall(nrequests,requests,MPI_STATUSES_IGNORE);

4.2.2.7 Latency hiding / overlapping communication and computation

There is a second motivation for the Isend/Irecv calls: if your hardware supports it, the communication
can happen while your program can continue to do useful work:

// start nonblocking communication
MPI_Isend( ... ); MPI_Irecv( ... );
// do work that does not depend on incoming data
....
// wait for the Isend/Irecv calls to finish
MPI_Wait( ... );
// now do the work that absolutely needs the incoming data
....

This is known as overlapping computation and communication, or latency hiding. See also asynchronous
progress; section 15.4.

Unfortunately, a lot of this communication involves activity in user space, so the solution would have
been to let it be handled by a separate thread. Until recently, processors were not efficient at doing such
multi-threading, so true overlap stayed a promise for the future. Some network cards have support for
this overlap, but it requires a nontrivial combination of hardware, firmware, and MPI implementation.

Exercise 4.14.
(There is a skeleton for this exercise under the name isendirecvarray.) Take your
code of exercise 4.13 and modify it to use latency hiding. Operations that can be
performed without needing data from neighbors should be performed in between
the MPI_Isend / MPI_Irecv calls and the corresponding MPI_Wait calls.

Remark 14 You have now seen various send types: blocking, nonblocking, synchronous. Can a receiver see
what kind of message was sent? Are different receive routines needed? The answer is that, on the receiving
end, there is nothing to distinguish a nonblocking or synchronous message. The MPI_Recv call can match any
of the send routines you have seen so far, and conversely a message sent with MPI_Send can be received by
MPI_Irecv.
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4.2.2.8 Buffer issues in nonblocking communication

While the use of nonblocking routines prevents deadlock, it introduces problems of its own.

• With a blocking send call, you could repeatedly fill the send buffer and send it off.

double *buffer;
for ( ... p ... ) {

buffer = // fill in the data
MPI_Send( buffer, ... /* to: */ p );

• On the other hand, when a nonblocking send call returns, the actual send may not have been
executed, so the send buffer may not be safe to overwrite. Similarly, when the recv call returns,
you do not know for sure that the expected data is in it. Only after the corresponding wait call
are you use that the buffer has been sent, or has received its contents.

• To send multiple messages with nonblocking calls you therefore have to allocate multiple
buffers.

double **buffers;
for ( ... p ... ) {

buffers[p] = // fill in the data
MPI_Send( buffers[p], ... /* to: */ p );

}
MPI_Wait( /* the requests */ );

// irecvloop.c
MPI_Request requests =
(MPI_Request*) malloc( 2*nprocs*sizeof(MPI_Request) );

recv_buffers = (int*) malloc( nprocs*sizeof(int) );
send_buffers = (int*) malloc( nprocs*sizeof(int) );
for (int p=0; p<nprocs; p++) {
int

left_p = (p-1+nprocs) % nprocs,
right_p = (p+1) % nprocs;

send_buffer[p] = nprocs-p;
MPI_Isend(sendbuffer+p,1,MPI_INT, right_p,0, requests+2*p);
MPI_Irecv(recvbuffer+p,1,MPI_INT, left_p,0, requests+2*p+1);

}
/* your useful code here */
MPI_Waitall(2*nprocs,requests,MPI_STATUSES_IGNORE);

4.2.3 Wait and test calls

The MPI_Wait... routines are blocking. Thus, they are a good solution if the receiving process can not do
anything until the data (or at least some data) is actually received. The MPI_Test... calls are themselves
nonblocking: they test for whether one or more requests have been fullfilled, but otherwise immediately
return. It is also a local operation: it does not force progress.

Remark 15 The MPI_Test... routines are similar to, but different from MPI_Probe, which is blocking and
forces progress; see section 4.4.1.
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Figure 4.10 MPI_Test
Name Param name Explanation C type F type inout

MPI_Test (
request communication request MPI_Request* TYPE

(MPI_Request)
INOUT

flag true if operation
completed

int* LOGICAL OUT

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)
Python:

reqest.Test()

The MPI_Test call can be used in the manager-worker model: the manager process creates tasks, and sends
them to whichever worker process has finished its work. (This uses a receive from MPI_ANY_SOURCE, and a
subsequent test on the MPI_SOURCE field of the receive status.) While waiting for the workers, the manager
can do useful work too, which requires a periodic check on incoming message.

Pseudo-code:

while ( not done ) {
// create new inputs for a while
....
// see if anyone has finished
MPI_Test( .... &index, &flag );
if ( flag ) {
// receive processed data and send new

}

If the test is true, the request is deallocated and set to MPI_REQUEST_NULL, or, in the case of an active persistent
request (section 5.1), set to inactive.

Analogous to MPI_Wait, MPI_Waitany, MPI_Waitall, MPI_Waitsome, there are MPI_Test (figure 4.10),
MPI_Testany, MPI_Testall, MPI_Testsome.

Exercise 4.15. Read section HPC book, section-7.5 and give pseudo-code for the distributed
sparse matrix-vector product using the above idiom for using MPI_Test... calls.
Discuss the advantages and disadvantages of this approach. The answer is not going
to be black and white: discuss when you expect which approach to be preferable.

4.2.4 More about requests

Every nonblocking call allocates an MPI_Request object. Unlike MPI_Status, an MPI_Request variable is not
actually an object, but instead it is an (opaque) pointer. This meeans that when you call, for instance,
MPI_Irecv, MPI will allocate an actual request object, and return its address in the MPI_Request variable.

Correspondingly, calls to MPI_Wait or MPI_Test free this object, setting the handle to MPI_REQUEST_NULL.
(There is an exception for persistent communications where the request is only set to ‘inactive’; sec-
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Figure 4.11 MPI_Request_free
Name Param name Explanation C type F type inout

MPI_Request_free (
request communication request MPI_Request* TYPE

(MPI_Request)
INOUT

)

Figure 4.12 MPI_Request_get_status
Name Param name Explanation C type F type inout

MPI_Request_get_status (
request request MPI_Request TYPE

(MPI_Request)
IN

flag boolean flag, same as from
MPI_TEST

int* LOGICAL OUT

status status object if flag is
true

MPI_Status* TYPE
(MPI_Status)

OUT

)

tion 5.1.) Thus, it is wise to issue wait calls even if you know that the operation has succeeded. For in-
stance, if all receive calls are concluded, you know that the corresponding send calls are finished and there
is no strict need to wait for their requests. However, omitting the wait calls would lead to a memory leak.

Another way around this is to call MPI_Request_free (figure 4.11), which sets the request variable to
MPI_REQUEST_NULL, and marks the object for deallocation after completion of the operation. Conceivably,
one could issue a nonblocking call, and immediately call MPI_Request_free, dispensing with any wait call.
However, this makes it hard to know when the operation is concluded and when the buffer is safe to
reuse [26].

You can inspect the status of a request without freeing the request object with MPI_Request_get_status
(figure 4.12). For multiple statuses use MPI_Request_get_status_all, MPI_Request_get_status_some,
MPI_Request_get_status_any in MPI-4.1.

4.3 The Status object and wildcards

In section 4.1.1 you saw that MPI_Recv has a ‘status’ argument of type MPI_Status that MPI_Send lacks.
(The various MPI_Wait... routines also have a status argument; see section 4.2.1.) Often you specify
MPI_STATUS_IGNORE for this argument: commonly you know what data is coming in and where it is coming
from.

However, in some circumstances the recipient may not know all details of a message when you make the
receive call, so MPI has a way of querying the status of the message:

• If you are expecting multiple incoming messages, it may be most efficient to deal with them in
the order in which they arrive. So, instead of waiting for a specific message, you would specify
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MPI_ANY_SOURCE or MPI_ANY_TAG in the description of the receive message. Now you have to be
able to ask ‘who did this message come from, and what is in it’.

• Maybe you know the sender of a message, but the amount of data is unknown. In that case you
can overallocate your receive buffer, and after the message is received ask how big it was, or
you can ‘probe’ an incoming message (see section 4.4.1) and allocate enough data when you
find out how much data is being sent.

To do this, the receive call has a MPI_Status parameter. The MPI_Status object is a structure (in C a struct,
in F90 an array, in F2008 a derived type) with freely accessible members:

• MPI_SOURCE gives the source ofthe message; see section 4.3.1.
• MPI_TAG gives the tag with which the message was received; see section 4.3.2.
• MPI_ERROR gives the error status of the receive call; see section 4.3.3.
• The number of items in the message can be deduced from the status object, not as a structure
member, but through a function call to MPI_Get_count; see section 4.3.4.

Fortran note 9: Status object in f08. The mpi_f08 module turns many handles (such as communicators)
from Fortran Integers into Types. Retrieving the integer from the type is usually done through
the %val member, but for the status object this is more difficult. The routines MPI_Status_f2f08
and MPI_Status_f082f convert between these. (Remarkably, these routines are even available
in C, where they operate on MPI_Fint, MPI_F08_status arguments.)

The following material is for the recently released MPI-4 standard and may not be supported yet.

both to get and to set, with routines such as MPI_Status_get_source, MPI_Status_set_source, et cetera.
End of MPI-4 material

Python note 16: Status object. The status object is explicitly created before being passed to the receive
routine. It has the usual query method for the message count:

## pingpongbig.py
status = MPI.Status()
comm.Recv( rdata,source=0,status=status)
count = status.Get_count(MPI.DOUBLE)

(The count function without argument returns a result in bytes.)

However, unlike in C/F where the fields of the status object are directly accessible, Python has
query methods for these too:

status.Get_source()
status.Get_tag()
status.Get_elements()
status.Get_error()
status.Is_cancelled()

Should you need them, there are even Set variants of these. https://mpi4py.readthedocs.
io/en/stable/reference/mpi4py.MPI.Status.html

MPL note 35: Status object. The mpl::status_t object is created by the receive (or wait) call:
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mpl::contiguous_layout<double> target_layout(count);
mpl::status_t recv_status =
comm_world.recv(target.data(),target_layout, the_other);

recv_count = recv_status.get_count<double>();

4.3.1 Source

In some applications it makes sense that a message can come from one of a number of processes. In
this case, it is possible to specify MPI_ANY_SOURCE as the source. To find out the source where the message
actually came from, you would use the MPI_SOURCE field of the status object that is delivered by MPI_Recv
or the MPI_Wait... call after an MPI_Irecv.

MPI_Recv(recv_buffer+p,1,MPI_INT, MPI_ANY_SOURCE,0,comm,
&status);

sender = status.MPI_SOURCE;

There are various scenarios where receiving from ‘any source’ makes sense. One is that of the manager-
worker model. The manager task would first send data to the worker tasks, then issues a blocking wait
for the data of whichever process finishes first.

In Fortran2008 style, the source is a member of the Status type.

!! anysource.F90
Type(MPI_Status) :: status

allocate(recv_buffer(ntids-1))
do p=0,ntids-2

call MPI_Recv(recv_buffer(p+1),1,MPI_INTEGER,&
MPI_ANY_SOURCE,0,comm,status)

sender = status%MPI_SOURCE

In Fortran90 style, the source is an index in the Status array.

!! anysource.F90
integer :: status(MPI_STATUS_SIZE)

allocate(recv_buffer(ntids-1))
do p=0,ntids-2

call MPI_Recv(recv_buffer(p+1),1,MPI_INTEGER,&
MPI_ANY_SOURCE,0,comm,status,err)

sender = status(MPI_SOURCE)

MPL note 36: Status querying. The status object can be queried:

int source = recv_status.source();

Likewise the source:

mpl::tag_t t = recv_status.tag();
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4.3.2 Tag

In some circumstances, a tag wildcard can be used on the receive operation: MPI_ANY_TAG. The actual tag
of a message can be retrieved as the MPI_TAG member in the status structure.

There are not many cases where this is needed.

• Messages from a single source, even non-blocking, are non-overtaking. This means that mes-
sages can be distinguished by their order.

• Messages from multiple sources can be distinguished by the source field.
• Retrieving the message tag might be needed if information is encoded in it.
• The non-overtaking argument does not apply in the case of hybrid computing: two threads may
send messages that do not have an MPI-imposed order. See the example in section 45.1.

MPL note 37: Message tag. MPL differs from other APIs in its treatment of tags: a tag is not directly an
integer, but an object of class tag_t.

// sendrecv.cxx
mpl::tag_t t0(0);
comm_world.sendrecv
( mydata,sendto,t0,

leftdata,recvfrom,t0 );

The tag_t class has a couple of methods such as mpl::tag_t::any() (for the MPI_ANY_TAGwildcard
in receive calls) and mpl::tag_t::up() (maximal tag, found from the MPI_TAG_UB attribute).

MPL note 38: Tag types. Tag are int or an enum typ:

template<typename T >
tag_t (T t);
tag_t (int t);

Example:

// inttag.cxx
enum class pingpongtag : int { ping=1, pong=2 };
int pinger = 0, ponger = world.size()-1;
if (world.rank()==pinger) {

world.send(x, ponger, pingpongtag::ping);
world.recv(x, ponger, pingpongtag::pong);

} else if (world.rank()==ponger) {
world.recv(x, pinger, pingpongtag::ping);
world.send(x, pinger, pingpongtag::pong);

}

4.3.3 Error

For functions that return a single status, any error is returned as the function result. For a function re-
turning multiple statuses, such as MPI_Waitall, the presence of an error in one of the receives is indicated
by a result of MPI_ERR_IN_STATUS. Any errors during the receive operation can be found as the MPI_ERROR
member of the status structure.
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Figure 4.13 MPI_Get_count
Name Param name Explanation C type F type inout

MPI_Get_count (
MPI_Get_count_c (

status return status of receive
operation

const
MPI_Status*

TYPE
(MPI_Status)

IN

datatype datatype of each receive
buffer entry

MPI_Datatype TYPE
(MPI_Datatype)

IN

count number of received entries [ int∗
MPI_Count∗ INTEGER OUT

)
MPL:

template<typename T>
int mpl::status::get_count () const

template<typename T>
int mpl::status::get_count (const layout<T> &l) const

Python:

status.Get_count( Datatype datatype=BYTE )

4.3.4 Count

If the amount of data received is not known a priori, the count of elements received can be found by
MPI_Get_count (figure 4.13):

// count.c
if (procid==0) {
int sendcount = (rand()>.5) ? N : N-1;
MPI_Send( buffer,sendcount,MPI_FLOAT,target,0,comm );

} else if (procid==target) {
MPI_Status status;
int recvcount;
MPI_Recv( buffer,N,MPI_FLOAT,0,0, comm, &status );
MPI_Get_count(&status,MPI_FLOAT,&recvcount);
printf("Received %d elements\n",recvcount);

}
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Figure 4.14 MPI_Get_elements
Name Param name Explanation C type F type inout

MPI_Get_elements (
MPI_Get_elements_c (

status return status of receive
operation

const
MPI_Status*

TYPE
(MPI_Status)

IN

datatype datatype used by receive
operation

MPI_Datatype TYPE
(MPI_Datatype)

IN

count number of received basic
elements

[ int∗
MPI_Count∗ INTEGER OUT

)

Code:

!! count.F90
if (procid==0) then

sendcount = N
call random_number(fraction)
if (fraction>.5) then

print *,"One less" ; sendcount =
↪N-1
end if
call MPI_Send(
↪buffer,sendcount,MPI_REAL,target,0,comm
↪)

else if (procid==target) then
call MPI_Recv( buffer,N,MPI_REAL,0,0,
↪comm, status )
call
↪MPI_Get_count(status,MPI_FLOAT,recvcount)
print *,"Received",recvcount,"elements"

end if

Output:

make[3]: `count' is up to date.
TACC: Starting up job 4051425
TACC: Setting up parallel environment for

↪MVAPICH2+mpispawn.
TACC: Starting parallel tasks...
One less
Received 9 elements
TACC: Shutdown complete. Exiting.

This may be necessary since the count argument to MPI_Recv is the buffer size, not an indication of the
actually received number of data items.

Remarks.

• Unlike the source and tag, the message count is not directly a member of the status structure.
• The ‘count’ returned is the number of elements of the specified datatype. If this is a derived
type (section 6.3) this is not the same as the number of predefined datatype elements. For that,
use MPI_Get_elements (figure 4.14) or MPI_Get_elements_x which returns the number of basic el-
ements.

MPL note 39: Receive count. The get_count function is a method of the status object. The argument type
is handled through templating:

// recvstatus.cxx
double pi=0;
auto s = comm_world.recv(pi, 0); // receive from rank 0
int c = s.get_count<double>();

Victor Eijkhout 131



4. MPI topic: Point-to-point

std::cout << "got : " << c << " scalar(s): " << pi << '\n';

4.3.5 Example: receiving from any source

Consider an example where the last process receives from every other process. We could implement this
as a loop

for (int p=0; p<nprocs-1; p++)
MPI_Recv( /* from source= */ p );

but this may incur idle time if the messages arrive out of order.

Instead, we use the MPI_ANY_SOURCE specifier to give a wildcard behavior to the receive call: using this
value for the ‘source’ value means that we accept mesages from any source within the communicator,
and messages are only matched by tag value. (Note that size and type of the receive buffer are not used
for message matching!)

We then retrieve the actual source from the MPI_Status object through the MPI_SOURCE field.

// anysource.c
if (procno==nprocs-1) {
/*
* The last process receives from every other process
*/
int *recv_buffer;
recv_buffer = (int*) malloc((nprocs-1)*sizeof(int));

/*
* Messages can come in in any order, so use MPI_ANY_SOURCE
*/
MPI_Status status;
for (int p=0; p<nprocs-1; p++) {

err = MPI_Recv(recv_buffer+p,1,MPI_INT, MPI_ANY_SOURCE,0,comm,
&status); CHK(err);

int sender = status.MPI_SOURCE;
printf("Message from sender=%d: %d\n",

sender,recv_buffer[p]);
}
free(recv_buffer);

} else {
/*
* Each rank waits an unpredictable amount of time,
* then sends to the last process in line.
*/
float randomfraction = (rand() / (double)RAND_MAX);
int randomwait = (int) ( nprocs * randomfraction );
printf("process %d waits for %e/%d=%d\n",

procno,randomfraction,nprocs,randomwait);
sleep(randomwait);
err = MPI_Send(&randomwait,1,MPI_INT, nprocs-1,0,comm); CHK(err);

}
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## anysource.py
rstatus = MPI.Status()
comm.Recv(rbuf,source=MPI.ANY_SOURCE,status=rstatus)
print("Message came from %d" % rstatus.Get_source())

The manager-worker model is a design patterns that offers an opportunity for inspecting the MPI_SOURCE
field of the MPI_Status object describing the data that was received. All workers processes model their
work by waitin a random amount of time, and the manager process accepts messages from any source.

// anysource.c
if (procno==nprocs-1) {
/*
* The last process receives from every other process
*/

int *recv_buffer;
recv_buffer = (int*) malloc((nprocs-1)*sizeof(int));

/*
* Messages can come in in any order, so use MPI_ANY_SOURCE
*/

MPI_Status status;
for (int p=0; p<nprocs-1; p++) {

err = MPI_Recv(recv_buffer+p,1,MPI_INT, MPI_ANY_SOURCE,0,comm,
&status); CHK(err);

int sender = status.MPI_SOURCE;
printf("Message from sender=%d: %d\n",

sender,recv_buffer[p]);
}
free(recv_buffer);

} else {
/*
* Each rank waits an unpredictable amount of time,
* then sends to the last process in line.
*/

float randomfraction = (rand() / (double)RAND_MAX);
int randomwait = (int) ( nprocs * randomfraction );
printf("process %d waits for %e/%d=%d\n",

procno,randomfraction,nprocs,randomwait);
sleep(randomwait);
err = MPI_Send(&randomwait,1,MPI_INT, nprocs-1,0,comm); CHK(err);

}

In chapter 49 you can do programming project with this model.

4.4 More about point-to-point communication

4.4.1 Message probing

MPI receive calls specify a receive buffer, and its size has to be enough for any data sent. In case you really
have no idea how much data is being sent, and you don’t want to overallocate the receive buffer, you can
use a ‘probe’ call.
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Figure 4.15 MPI_Probe
Name Param name Explanation C type F type inout

MPI_Probe (
source rank of source or

MPI_ANY_SOURCE
int INTEGER IN

tag message tag or MPI_ANY_TAG int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)

Figure 4.16 MPI_Iprobe
Name Param name Explanation C type F type inout

MPI_Iprobe (
source rank of source or

MPI_ANY_SOURCE
int INTEGER IN

tag message tag or MPI_ANY_TAG int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

flag true if there is a
matching message that can
be received

int* LOGICAL OUT

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)

The routines MPI_Probe (figure 4.15) and MPI_Iprobe (figure 4.16) (for which see also section 15.4) accept a
message but do not copy the data. Instead, when probing tells you that there is a message, you can use
MPI_Get_count (section 4.3.4) to determine its size, allocate a large enough receive buffer, and do a regular
receive to have the data copied.

// probe.c
if (procno==receiver) {
MPI_Status status;
MPI_Probe(sender,0,comm,&status);
int count;
MPI_Get_count(&status,MPI_FLOAT,&count);
float recv_buffer[count];
MPI_Recv(recv_buffer,count,MPI_FLOAT, sender,0,comm,MPI_STATUS_IGNORE);

} else if (procno==sender) {
float buffer[buffer_size];
ierr = MPI_Send(buffer,buffer_size,MPI_FLOAT, receiver,0,comm); CHK(ierr);

}

There is a problem with the MPI_Probe call in a multithreaded environment: the following scenario can
happen.

1. A thread determines by probing that a certain message has come in.
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Figure 4.17 MPI_Mprobe
Name Param name Explanation C type F type inout

MPI_Mprobe (
source rank of source or

MPI_ANY_SOURCE
int INTEGER IN

tag message tag or MPI_ANY_TAG int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

message returned message MPI_Message* TYPE
(MPI_Message)

OUT

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)

Figure 4.18 MPI_Mrecv
Name Param name Explanation C type F type inout

MPI_Mrecv (
MPI_Mrecv_c (

buf initial address of receive
buffer

void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in
receive buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each receive
buffer element

MPI_Datatype TYPE
(MPI_Datatype)

IN

message message MPI_Message* TYPE
(MPI_Message)

INOUT

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)

2. It issues a blocking receive call for that message…
3. But in between the probe and the receive call another thread has already received the message.
4. … Leaving the first thread in a blocked state with no message to receive.

This is solved by MPI_Mprobe (figure 4.17), which after a successful probe removes the message from the
matching queue: the list of messages that can be matched by a receive call. The thread that matched the
probe now issues an MPI_Mrecv (figure 4.18) call on that message through an object of type MPI_Message.

4.4.2 Errors

MPI routines return MPI_SUCCESS upon succesful completion. The following error codes can be returned
(see section 15.2.1 for details) for completion with error by both send and receive operations: MPI_ERR_COMM,
MPI_ERR_COUNT, MPI_ERR_TYPE, MPI_ERR_TAG, MPI_ERR_RANK.
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4.4.3 Message envelope

Apart from its bare data, each message has amessage envelope. This has enough information to distinguish
messages from each other: the source, destination, tag, communicator.

4.5 Review questions

For all true/false questions, if you answer that a statement is false, give a one-line explanation.

Review 4.16. Describe a deadlock scenario involving three processors.

Solution to exercise 4.16. One sends to two, two to three, three to one.
Review 4.17. True or false: a message sent with MPI_Isend from one processor can be

received with an MPI_Recv call on another processor.

Solution to exercise 4.17. True.
Review 4.18. True or false: a message sent with MPI_Send from one processor can be

received with an MPI_Irecv on another processor.

Solution to exercise 4.18. True.
Review 4.19. Why does the MPI_Irecv call not have an MPI_Status argument?

Solution to exercise 4.19. The status argument describes the actually received message. If you
receive by MPI_Irecv, the message is not known until the MPI_Wait call. Therefore the
wait call has the status argument.

Review 4.20. Suppose you are testing ping-pong timings. Why is it generally not a good
idea to use processes 0 and 1 for the source and target processor? Can you come up
with a better guess?

Review 4.21. What is the relation between the concepts of ‘origin’, ‘target’, ‘fence’, and
‘window’ in one-sided communication.

Solution to exercise 4.21. The origin is the process that makes the put/get/accumulate call. The
window is the memory area on the target that an origin process can access. A fence is a
call to indicate the start or end of a one-side communication epoch.

Review 4.22. What are the three routines for one-sided data transfer?

Solution to exercise 4.22. MPI_Put, MPI_Get, MPI_Accumulate

Review 4.23. In the following fragments assume that all buffers have been allocated with
sufficient size. For each fragment note whether it deadlocks or not. Discuss
performance issues.

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE);

˜
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for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE);

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

int ireq = 0;
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Isend(sbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE);

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);

int ireq = 0;
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Irecv(rbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);

int ireq = 0;
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Irecv(rbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);
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Fortran codes:

do p=0,nprocs-1
if (p/=procid) then

call MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm,ierr)
end if

end do
do p=0,nprocs-1

if (p/=procid) then
call MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE,ierr)

end if
end do

do p=0,nprocs-1
if (p/=procid) then

call MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE,ierr)
end if

end do
do p=0,nprocs-1

if (p/=procid) then
call MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm,ierr)

end if
end do

ireq = 0
do p=0,nprocs-1

if (p/=procid) then
call MPI_Isend(sbuffers(1,p+1),buflen,MPI_INT,p,0,comm,&

requests(ireq+1),ierr)
ireq = ireq+1

end if
end do
do p=0,nprocs-1

if (p/=procid) then
call MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE,ierr)

end if
end do
call MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE,ierr)

ireq = 0
do p=0,nprocs-1

if (p/=procid) then
call MPI_Irecv(rbuffers(1,p+1),buflen,MPI_INT,p,0,comm,&

requests(ireq+1),ierr)
ireq = ireq+1

end if
end do
do p=0,nprocs-1

if (p/=procid) then
call MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm,ierr)

end if
end do
call MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE,ierr)
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// block5.F90
ireq = 0
do p=0,nprocs-1

if (p/=procid) then
call MPI_Irecv(rbuffers(1,p+1),buflen,MPI_INT,p,0,comm,&

requests(ireq+1),ierr)
ireq = ireq+1

end if
end do
call MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE,ierr)
do p=0,nprocs-1

if (p/=procid) then
call MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm,ierr)

end if
end do

Review 4.24. Consider a ring-wise communication where

int
next = (mytid+1) % ntids,
prev = (mytid+ntids-1) % ntids;

and each process sends to next, and receives from prev.
The normal solution for preventing deadlock is to use both MPI_Isend and MPI_Irecv.
The send and receive complete at the wait call. But does it matter in what sequence
you do the wait calls?

// ring3.c
MPI_Request req1,req2;
MPI_Irecv(&y,1,MPI_DOUBLE,prev,0,comm,&req1);
MPI_Isend(&x,1,MPI_DOUBLE,next,0,comm,&req2);
MPI_Wait(&req1,MPI_STATUS_IGNORE);
MPI_Wait(&req2,MPI_STATUS_IGNORE);

// ring4.c
MPI_Request req1,req2;
MPI_Irecv(&y,1,MPI_DOUBLE,prev,0,comm,&req1);
MPI_Isend(&x,1,MPI_DOUBLE,next,0,comm,&req2);
MPI_Wait(&req2,MPI_STATUS_IGNORE);
MPI_Wait(&req1,MPI_STATUS_IGNORE);

Can we have one nonblocking and one blocking call? Do these scenarios block?

// ring1.c
MPI_Request req;
MPI_Issend(&x,1,MPI_DOUBLE,next,0,comm,&req);
MPI_Recv(&y,1,MPI_DOUBLE,prev,0,comm,

MPI_STATUS_IGNORE);
MPI_Wait(&req,MPI_STATUS_IGNORE);

// ring2.c
MPI_Request req;
MPI_Irecv(&y,1,MPI_DOUBLE,prev,0,comm,&req);
MPI_Ssend(&x,1,MPI_DOUBLE,next,0,comm);
MPI_Wait(&req,MPI_STATUS_IGNORE);
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Chapter 5

MPI topic: Communication modes

5.1 Persistent communication

You can imagine that setting up a communication carries some overhead, and if the same communication
structure is repeated many times, this overhead may be avoided.

Persistent communication is a mechanism for dealing with a repeating communication transaction, where
the parameters of the transaction, such as sender, receiver, tag, root, and buffer address /type / size, stay
the same. Only the contents of the buffers involved may change between the transactions.

1. For nonblocking communications MPI_Ixxx (both point-to-point and collective) there is a
persistent variant MPI_Xxx_init with the same calling sequence. The ‘init’ call produces an
MPI_Request output parameter, which can be used to test for completion of the communication.

2. The ‘init’ routine does not start the actual communication: that is done in MPI_Start, or
MPI_Startall for multiple requests.

3. Any of the MPI ‘wait’ calls can then be used to conclude the communication.
4. The communication can then be restarted with another ‘start’ call.
5. The wait call does not release the request object, since it can be used for repeat occurrences of

this transaction. The request object is only freed with MPI_Request_free.

MPI_Send_init( /* ... */ &request);
while ( /* ... */ ) {
MPI_Start( request );
MPI_Wait( request, &status );

}
MPI_Request_free( & request );

MPL note 40: Persistent requests. MPL returns a prequest from persistent ‘init’ routines, rather than an
irequest (MPL note 31):

template<typename T >
prequest send_init (const T &data, int dest, tag t=tag(0)) const;

Likewise, there is a prequest_pool instead of an irequest_pool (note 32).
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Figure 5.1 MPI_Send_init
Name Param name Explanation C type F type inout

MPI_Send_init (
MPI_Send_init_c (

buf initial address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

count number of elements sent [ int
MPI_Count INTEGER IN

datatype type of each element MPI_Datatype TYPE
(MPI_Datatype)

IN

dest rank of destination int INTEGER IN
tag message tag int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)
Python:

MPI.Comm.Send_init(self, buf, int dest, int tag=0)

Figure 5.2 MPI_Startall
Name Param name Explanation C type F type inout

MPI_Startall (
count list length int INTEGER IN
array_of_requests array of requests MPI_Request[] TYPE

(MPI_Request)
(count)

INOUT

)
Python:

MPI.Prequest.Startall(type cls, requests)

5.1.1 Persistent point-to-point communication

The main persistent point-to-point routines are MPI_Send_init (figure 5.1), which has the same calling
sequence as MPI_Isend, and MPI_Recv_init, which has the same calling sequence as MPI_Irecv.

In the following example a ping-pong is implemented with persistent communication. Since we use per-
sistent operations for both send and receive on the ‘ping’ process, we use MPI_Startall (figure 5.2) to start
both at the same time, and MPI_Waitall to test their completion. (There is MPI_Start for starting a single
persistent transfer.)
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Code:

// persist.c
if (procno==src) {

/*
* Send ping, receive pong
*/
MPI_Send_init
(send,s,MPI_DOUBLE,tgt,0,comm,
requests+0);

MPI_Recv_init
(recv,s,MPI_DOUBLE,tgt,0,comm,
requests+1);

for (int n=0; n<NEXPERIMENTS; n++) {
fill_buffer(send,s,n);
MPI_Startall(2,requests);
MPI_Waitall(2,requests,

MPI_STATUSES_IGNORE);
int r = chck_buffer(send,s,n);
if (!r) printf("buffer problem %d\n",s);

}
} else if (procno==tgt) {

/*
* Receive ping, send pong
*/
MPI_Send_init
(recv,s,MPI_DOUBLE,src,0,comm,
requests+0);

MPI_Recv_init
(recv,s,MPI_DOUBLE,src,0,comm,
requests+1);

for (int n=0; n<NEXPERIMENTS; n++) {
// receive

MPI_Start(requests+1);

↪MPI_Wait(requests+1,MPI_STATUS_IGNORE);
// send

MPI_Start(requests+0);

↪MPI_Wait(requests+0,MPI_STATUS_IGNORE);
}

}
MPI_Request_free(requests+0);
MPI_Request_free(requests+1);

Output:

make[3]: `persist' is up to date.
TACC: Starting up job 4328411
TACC: Starting parallel tasks...
Pingpong size=1: t=1.2123e-04
Pingpong size=10: t=4.2826e-06
Pingpong size=100: t=7.1507e-06
Pingpong size=1000: t=1.2084e-05
Pingpong size=10000: t=3.7668e-05
Pingpong size=100000: t=3.4415e-04
Persistent size=1: t=3.8177e-06
Persistent size=10: t=3.2410e-06
Persistent size=100: t=4.0468e-06
Persistent size=1000: t=1.1525e-05
Persistent size=10000: t=4.1672e-05
Persistent size=100000: t=2.8648e-04
TACC: Shutdown complete. Exiting.

(Ask yourself: why does the sender use MPI_Startall and MPI_Waitall, but the receiver uses MPI_Start and
MPI_Wait twice?)

## persist.py
requests = [ None ] * 2
sendbuf = np.ones(size,dtype=int)
recvbuf = np.ones(size,dtype=int)
if procid==src:

print("Size:",size)
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Figure 5.3 MPI_Allreduce_init
Name Param name Explanation C type F type inout

MPI_Allreduce_init (
MPI_Allreduce_init_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

recvbuf starting address of
receive buffer

void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in send
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of elements of
send buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

op operation MPI_Op TYPE(MPI_Op) IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

info info argument MPI_Info TYPE
(MPI_Info)

IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)

times[isize] = MPI.Wtime()
for n in range(nexperiments):

requests[0] = comm.Isend(sendbuf[0:size],dest=tgt)
requests[1] = comm.Irecv(recvbuf[0:size],source=tgt)
MPI.Request.Waitall(requests)
sendbuf[0] = sendbuf[0]+1

times[isize] = MPI.Wtime()-times[isize]
elif procid==tgt:

for n in range(nexperiments):
comm.Recv(recvbuf[0:size],source=src)
comm.Send(recvbuf[0:size],dest=src)

As with ordinary send commands, there are persistent variants of the other send modes:

• MPI_Bsend_init for buffered communication, section 5.5;
• MPI_Ssend_init for synchronous communication, section 5.3.1;
• MPI_Rsend_init for ready sends, section 15.8.

5.1.2 Persistent collectives
The following material is for the recently released MPI-4 standard and may not be supported yet.

For each collective call, there is a persistent variant. As with persistent point-to-point calls (section 5.1.1),
these have largely the same calling sequence as the nonpersistent variants, except for:

• an MPI_Info parameter that can be used to pass system-dependent hints; and
• an added final MPI_Request parameter.

(See for instance MPI_Allreduce_init (figure 5.3).) This request (or an array of requests frommultiple calls)
can then be used by MPI_Start (or MPI_Startall) to initiate the actual communication.
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// powerpersist1.c
double localnorm,globalnorm=1.;
MPI_Request reduce_request;
MPI_Allreduce_init
( &localnorm,&globalnorm,1,MPI_DOUBLE,MPI_SUM,

comm,MPI_INFO_NULL,&reduce_request);
for (int it=0; ; it++) {
/*
* Matrix vector product
*/

matmult(indata,outdata,buffersize);

// start computing norm of output vector
localnorm = local_l2_norm(outdata,buffersize);
double old_globalnorm = globalnorm;
MPI_Start( &reduce_request );

// end computing norm of output vector
MPI_Wait( &reduce_request,MPI_STATUS_IGNORE );
globalnorm = sqrt(globalnorm);

// now `globalnorm' is the L2 norm of `outdata'
scale(outdata,indata,buffersize,1./globalnorm);

}
MPI_Request_free( &reduce_request );

Some points.
• Metadata arrays, such as of counts and datatypes, must not be altered until the MPI_Request_free
call.

• The initialization call is nonlocal (for this particular case of persistent collectives), so it can block
until all processes have performed it.

• Multiple persistent collective can be initialized, in which case they satisfy the same restrictions
as ordinary collectives, in particular on ordering. Thus, the following code is incorrect:

// WRONG
if (procid==0) {
MPI_Reduce_init( /* ... */ &req1);
MPI_Bcast_init( /* ... */ &req2);

} else {
MPI_Bcast_init( /* ... */ &req2);
MPI_Reduce_init( /* ... */ &req1);

}

However, after initialization the start calls can be in arbitrary order, and in different order among
the processes.

Available persistent collectives are: MPI_Barrier_init MPI_Bcast_init MPI_Reduce_init MPI_Allreduce_init
MPI_Reduce_scatter_init MPI_Reduce_scatter_block_init MPI_Gather_init MPI_Gatherv_init
MPI_Allgather_init MPI_Allgatherv_init MPI_Scatter_init MPI_Scatterv_init MPI_Alltoall_init
MPI_Alltoallv_init MPI_Alltoallw_init MPI_Scan_init MPI_Exscan_init

Remark 16 Persistent operations can be started in any order. However, system-dependent optimizations are
possible if all processes start persistent collectives in the same order. This can be declared in MPI-4.1 by setting
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Figure 5.4 MPI_Psend_init
Name Param name Explanation C type F type inout

MPI_Psend_init (
buf initial address of send

buffer
const void* TYPE(*),

DIMENSION(..)
IN

partitions number of partitions int INTEGER IN
count number of elements sent

per partition
MPI_Count INTEGER

(KIND=MPI_COUNT_KIND)
IN

datatype type of each element MPI_Datatype TYPE
(MPI_Datatype)

IN

dest rank of destination int INTEGER IN
tag message tag int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

info info argument MPI_Info TYPE
(MPI_Info)

IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)

the info key mpi_assert_strict_persistent_collective_ordering to true. (See section 15.1.1 for info objects.)
This value needs to be set identically on all processes of the communicator.

End of MPI-4 material

5.1.3 Persistent neighbor communications
The following material is for the recently released MPI-4 standard and may not be supported yet.

There are persistent version of the neighborhood collectives; section 11.2.2.

MPI_Neighbor_allgather_init, MPI_Neighbor_allgatherv_init, MPI_Neighbor_alltoall_init,
MPI_Neighbor_alltoallv_init, MPI_Neighbor_alltoallw_init,
End of MPI-4 material

5.2 Partitioned communication
The following material is for the recently released MPI-4 standard and may not be supported yet.

Partitioned communication is a variant on persistent communication, in the sense that we use the init /
start / wait sequence. There difference is that now a message can be constructed in bit-by-bit.

• The normal MPI_Send_init is replaced by MPI_Psend_init (figure 5.4). Note the presence of an
MPI_Info argument, as in persistent collectives, but unlike in persistent sends and receives.

• After this, the MPI_Start does not actually start the transfer; instead:
• Each partition of the message is separately declared as ready-to-be-sent with MPI_Pready.
• An MPI_Wait call completes the operation, indicating that all partitions have been sent.
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Figure 5.5 MPI_Pready
Name Param name Explanation C type F type inout

MPI_Pready (
partition partition to mark ready

for transfer
int INTEGER IN

request partitioned communication
request

MPI_Request TYPE
(MPI_Request)

INOUT

)

A common scenario for this is in multi-threaded environments, where each thread can construct its own
part of a message. Having partitioned messages means that partially constructed message buffers can be
sent off without having to wait for all threads to finish.

Indicating that parts of a message are ready for sending is done by one of the following calls:

• MPI_Pready (figure 5.5) for a single partition;
• MPI_Pready_range for a range of partitions; and
• MPI_Pready_list for an explicitly enumerated list of partitions.

The MPI_Psend_init call yields an MPI_Request object that can be used to test for completion (see sections
4.2.2 and 4.2.3) of the full operation.

MPI_Request send_request;
MPI_Psend_init
(sendbuffer,nparts,SIZE,MPI_DOUBLE,tgt,0,
comm,MPI_INFO_NULL,&send_request);

for (int it=0; it<ITERATIONS; it++) {
MPI_Start(&send_request);
for (int ip=0; ip<nparts; ip++) {

fill_buffer(sendbuffer,partitions[ip],partitions[ip+1],ip);
MPI_Pready(ip,send_request);

}
MPI_Wait(&send_request,MPI_STATUS_IGNORE);

}
MPI_Request_free(&send_request);

The receiving side is largely the mirror image of the sending side:

double *recvbuffer = (double*)malloc(bufsize*sizeof(double));
MPI_Request recv_request;
MPI_Precv_init
(recvbuffer,nparts,SIZE,MPI_DOUBLE,src,0,
comm,MPI_INFO_NULL,&recv_request);

for (int it=0; it<ITERATIONS; it++) {
MPI_Start(&recv_request); int r=1,flag;
for (int ip=0; ip<nparts; ip++) // cycle this many times
for (int ap=0; ap<nparts; ap++) { // check specific part

MPI_Parrived(recv_request,ap,&flag);
if (flag) {

r *= chck_buffer
(recvbuffer,partitions[ap],partitions[ap+1],ap);
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Figure 5.6 MPI_Parrived
Name Param name Explanation C type F type inout

MPI_Parrived (
request partitioned communication

request
MPI_Request TYPE

(MPI_Request)
IN

partition partition to be tested int INTEGER IN
flag true if operation

completed on the specified
partition, false if not

int* LOGICAL OUT

)

break; }
}

MPI_Wait(&recv_request,MPI_STATUS_IGNORE);
}
MPI_Request_free(&recv_request);

• a partitioned send can only be matched with a partitioned receive, so we start with an
MPI_Precv_init.

• Arrival of a partition can be tested with MPI_Parrived (figure 5.6).
• A call to MPI_Wait completes the operation, indicating that all partitions have arrived.

Again, the MPI_Request object from the receive-init call can be used to test for completion of the full receive
operation.
End of MPI-4 material

5.3 Synchronous and asynchronous communication

It is easiest to think of blocking as a form of synchronization with the other process, but that is not quite
true. Synchronization is a concept in itself, and we talk about synchronous communication if there is actual
coordination going on with the other process, and asynchronous communication if there is not. Blocking
then only refers to the program waiting until the user data is safe to reuse; in the synchronous case a
blocking call means that the data is indeed transferred, in the asynchronous case it only means that the
data has been transferred to some system buffer. The four possible cases are illustrated in figure 5.1.

5.3.1 Synchronous send operations

MPI has a number of routines for synchronous communication, such as MPI_Ssend. Driving home the
point that nonblocking and asynchronous are different concepts, there is a routine MPI_Issend, which
is synchronous but nonblocking. These routines have the same calling sequence as their not-explicitly
synchronous variants, and only differ in their semantics.

See section 4.1.4.2 for examples.
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Figure 5.1: Blocking and synchronicity

5.4 Local and nonlocal operations

The MPI standard does not dictate whether communication is buffered. If a message is buffered, a send
call can complete, even if no corresponding send has been posted yet. See section 4.1.4.2. Thus, in the
standard communication, a send operation is nonlocal: its completion may be depend on whether the
corresponding receive has been posted. A local operation is one that is not nonlocal.

On the other hand, buffered communication (routines MPI_Bsend, MPI_Ibsend, MPI_Bsend_init; section 5.5) is
local: the presence of an explicit buffer means that a send operation can complete no matter whether the
receive has been posted.

The synchronous send (routines MPI_Ssend, MPI_Issend, MPI_Ssend_init; section 15.8) is again nonlocal (even
in the nonblocking variant) since it will only complete when the receive call has completed.

Finally, the ready mode send (MPI_Rsend, MPI_Irsend) is nonlocal in the sense that its only correct use is
when the corresponding receive has been issued.

5.5 Buffered communication

By now you have probably got the notion that managing buffer space in MPI is important: data has to
be somewhere, either in user-allocated arrays or in system buffers. Using buffered communication is yet
another way of managing buffer space.

1. You allocate your own buffer space, and you attach it to your process. This buffer is not a send
buffer: it is a replacement for buffer space used inside the MPI library or on the network card;
figure 5.2. If high-bandwidth memory is available, you could create your buffer there.
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Figure 5.2: User communication routed through an attached buffer

Figure 5.7 MPI_Bsend
Name Param name Explanation C type F type inout

MPI_Bsend (
MPI_Bsend_c (

buf initial address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

count number of elements in send
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each send
buffer element

MPI_Datatype TYPE
(MPI_Datatype)

IN

dest rank of destination int INTEGER IN
tag message tag int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

)

The following material is for the recently released MPI-4 standard and may not be supported yet.
2. A buffer can also be attached directly to a communicator or session; see below.

End of MPI-4 material
3. You use the MPI_Bsend (figure 5.7) (or its local variant MPI_Ibsend) call for sending, using other-

wise normal send and receive buffers;
4. You detach the buffer when you’re done with the buffered sends.

One advantage of buffered sends is that they are nonblocking: since there is a guaranteed buffer long
enough to contain the message, it is not necessary to wait for the receiving process.

We illustrate the use of buffered sends:

// bufring.c
int bsize = BUFLEN*sizeof(float);
float
*sbuf = (float*) malloc( bsize ),
*rbuf = (float*) malloc( bsize );

MPI_Pack_size( BUFLEN,MPI_FLOAT,comm,&bsize);
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Figure 5.8 MPI_Buffer_attach
Name Param name Explanation C type F type inout

MPI_Buffer_attach (
MPI_Buffer_attach_c (

buffer initial buffer address void* TYPE(*),
DIMENSION(..)

IN

size buffer size, in bytes [ int
MPI_Count INTEGER IN

)

Figure 5.9 MPI_Comm_attach_buffer

bsize += MPI_BSEND_OVERHEAD;
float
*buffer = (float*) malloc( bsize );

MPI_Buffer_attach( buffer,bsize );
err = MPI_Bsend(sbuf,BUFLEN,MPI_FLOAT,next,0,comm);
MPI_Recv (rbuf,BUFLEN,MPI_FLOAT,prev,0,comm,MPI_STATUS_IGNORE);
MPI_Buffer_detach( &buffer,&bsize );

5.5.1 Buffer treatment

If you attach the buffer directly to the MPI process with MPI_Buffer_attach (figure 5.8) there can be only
one buffer per process.
The following material is for the recently released MPI-4 standard and may not be supported yet.

The calls MPI_Comm_attach_buffer (figure 5.9) and MPI_Comm_detach_buffer (figure 5.10) (as of
MPI-4.1) can be used to have a buffer per communicator. Likewise MPI_Session_attach_buffer and
MPI_Session_detach_buffer

Also: MPI_Comm_flush_buffer, MPI_Session_flush_buffer, and a global function MPI_Buffer_flush.
End of MPI-4 material

The buffer size should be enough for all MPI_Bsend calls that are simultaneously outstanding. You can
compute the needed size of the buffer with MPI_Pack_size; see section 6.8. Additionally, a term of
MPI_BSEND_OVERHEAD is needed. See the above code fragment.
The following material is for the recently released MPI-4 standard and may not be supported yet.

specifying MPI_BUFFER_AUTOMATIC in any of the attach routines as the buffer argument. The size argument
is then ignored.
End of MPI-4 material

The buffer is detached with MPI_Buffer_detach (figure 5.11). This returns the address and size of the buffer;
the call blocks until all buffered messages have been delivered.

Note that both MPI_Buffer_attach and MPI_Buffer_detach have a void* argument for the buffer, but
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Figure 5.10 MPI_Comm_detach_buffer

Figure 5.11 MPI_Buffer_detach
Name Param name Explanation C type F type inout

MPI_Buffer_detach (
MPI_Buffer_detach_c (

buffer_addr initial buffer address void* TYPE(C_PTR) OUT

size buffer size, in bytes [ int∗
MPI_Count∗ INTEGER OUT

)

• in the attach routine this is the address of the buffer,
• while the detach routine it is the address of the buffer pointer.

This is done so that the detach routine can zero the buffer pointer.

While the buffered send is nonblocking like an MPI_Isend, there is no corresponding wait call. You can
force delivery by

MPI_Buffer_detach( &b, &n );
MPI_Buffer_attach( b, n );

MPL note 41: Buffered send. Creating and attaching a buffer is done through bsend_buffer and a support
routine bsend_size helps in calculating the buffer size:

// bufring.cxx
vector<float> sbuf(BUFLEN), rbuf(BUFLEN);
int size{ comm_world.bsend_size<float>(mpl::contiguous_layout<float>(BUFLEN)) };
mpl::bsend_buffer buff(size);
comm_world.bsend(sbuf.data(),mpl::contiguous_layout<float>(BUFLEN), next);

Constant: mpl::bsend_overhead is constexpr’d to the MPI constant MPI_BSEND_OVERHEAD.

MPL note 42: Buffer attach and detach. There is a separate attach routine, but normally this is called by the
constructor of the bsend_buffer. Likewise, the detach routine is called in the buffer destructor.

void mpl::environment::buffer_attach (void *buff, int size);
std::pair< void *, int > mpl::environment::buffer_detach ();

5.5.2 Buffered send calls

The possible error codes are

• MPI_SUCCESS the routine completed successfully.
• MPI_ERR_BUFFER The buffer pointer is invalid; this typically means that you have supplied a null
pointer.

• MPI_ERR_INTERN An internal error in MPI has been detected.

The asynchronous version is MPI_Ibsend, the persistent (see section 5.1) call is MPI_Bsend_init (figure 5.12).

Victor Eijkhout 151



5. MPI topic: Communication modes

Figure 5.12 MPI_Bsend_init
Name Param name Explanation C type F type inout

MPI_Bsend_init (
MPI_Bsend_init_c (

buf initial address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

count number of elements sent [ int
MPI_Count INTEGER IN

datatype type of each element MPI_Datatype TYPE
(MPI_Datatype)

IN

dest rank of destination int INTEGER IN
tag message tag int INTEGER IN
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)

5.5.3 Local behavior

The attach routines are local; the detach and flush routines are non-local.
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Chapter 6

MPI topic: Data types

In the examples you have seen so far, every time data was sent it was as a contiguous buffer with elements
of a single type. In practice you may want to send noncontiguous or heterogeneous data.

• As an example of noncontiguous data, communicating the real parts of an array of complex
numbers means specifying every other number.

• Heterogeneous data is needed when communicating a C structure or Fortran type with more
than one type of element.

The datatypes you have dealt with so far are known as predefined datatypes; the datatypes you create to
deal with other data are known as derived datatypes.

6.1 The MPI_Datatype data type

Datatypes such as MPI_INT are values of the type MPI_Datatype. This type is handled differently in different
languages.

In C you can declare variables as

MPI_Datatype mytype;

Fortran note 10: Derived types for handles. In Fortran before 2008, datatypes variables are stored in Integer
variables. With the Fortran2008 standard, datatypes are Fortran derived types:

!! vector.F90
Type(MPI_Datatype) :: newvectortype

Implementationwise speaking, these types have exactly one member, MPI_VAL, which is the same
integer as was used for that datatype in the earlier Fortran version.

Python note 17: Data types. There is a class

mpi4py.MPI.Datatype

with predefined values such as

mpi4py.MPI.Datatype.DOUBLE
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which are themselves objects with methods for creating derived types; see section 6.3.1.

MPL note 43: Datatype handling. MPL mostly handles datatypes through subclasses of the layout class.
Layouts are MPL routines are templated over the data type.

// sendlong.cxx
mpl::contiguous_layout<long long> v_layout(v.size());

comm.send(v.data(), v_layout, 1); // send to rank 1

Also works with complex of float and double.

The data types, where MPL can infer their internal representation, are enumeration types, C ar-
rays of constant size and the template classes std::array, std::pair and std::tuple of the C++
Standard Template Library. The only limitation is, that the C array and the mentioned template
classes hold data elements of types that can be sent or received by MPL.

MPL note 44: Native MPI data types. Should you need the MPI_Datatype object contained in an MPL layout,
there is an access function native_handle.

6.2 Predefined data types

MPI has a number of predefined data types of various kinds

• First of all there are the types corresponding to the simple data types of the host languages. The
names are made to resemble the types of C and Fortran, for instance MPI_FLOAT and MPI_DOUBLE
corresponding to float and double in C, versus MPI_REAL and MPI_DOUBLE_PRECISION correspond-
ing to Real and Double precision in Fortran.

• The types MPI_PACKED and MPI_BYTE do not correspond to language types.
• The type MPI_Aint (and the Fortran kind MPI_ADDRESS_KIND) is used in Remote Memory Access
(RMA) windows; see section 9.3.1.

• The type MPI_Offset (and the corresponding Fortran MPI_OFFSET_KIND kind) is used to define
MPI_Offset quantities, used in file I/O; section 10.2.2.

• The type MPI_Count describes buffers; see section 6.4.
• The type MPI_CHAR corresponds to a character, which is not the same as a C char: it can be more
than one byte. Also, MPI converts between native character representations when communi-
cating between different architectures.

6.2.1 C/C++

Here we illustrate for C/C++ the correspondence between a type used to declare a variable, and how this
type appears in MPI communication routines:

long int i;
MPI_Send(&i,1,MPI_LONG,target,tag,comm);

See table 6.1.

• There is some, but not complete, support for C99 types; see table 6.2.

154 Parallel Computing – r428



6.2. Predefined data types

C type MPI type

char MPI_CHAR
unsigned char MPI_UNSIGNED_CHAR
char MPI_SIGNED_CHAR
short MPI_SHORT
unsigned short MPI_UNSIGNED_SHORT
int MPI_INT
unsigned int MPI_UNSIGNED
long int MPI_LONG
unsigned long int MPI_UNSIGNED_LONG
long long int MPI_LONG_LONG_INT
float MPI_FLOAT
double MPI_DOUBLE
long double MPI_LONG_DOUBLE
unsigned char MPI_BYTE
(does not correspond to a C type) MPI_PACKED

Table 6.1: Predefined datatypes in C

C99 type MPI type

_Bool MPI_C_BOOL
float _Complex MPI_C_COMPLEX

MPI_C_FLOAT_COMPLEX
double _Complex MPI_C_DOUBLE_COMPLEX
long double _Complex MPI_C_LONG_DOUBLE_COMPLEX

Table 6.2: C99 synonym types.

• There is support for C11 fixed width integer types; see table 6.3.
• The MPI_LONG_INT type is not an integer type, but rather a long and an int packed together; see
section 3.10.1.1.

• See section 6.2.4 for MPI_Aint and more about byte counting.

6.2.2 Fortran

Table 6.4 lists standard Fortran types and common extensions. Not all the types in the right table
need be supported; for instance MPI_INTEGER16 may not exist, in which case it will be equivalent to
MPI_DATATYPE_NULL.

The default integer type MPI_INTEGER is equivalent to INTEGER(KIND=MPI_INTEGER_KIND).
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C11 type MPI type

int8_t MPI_INT8_T
int16_t MPI_INT16_T
int32_t MPI_INT32_T
int64_t MPI_INT64_T

uint8_t MPI_UINT8_T
uint16_t MPI_UINT16_T
uint32_t MPI_UINT32_T
uint64_t MPI_UINT64_T

Table 6.3: C11 fixed width integer types.

MPI_CHARACTER Character(Len=1)
MPI_INTEGER
MPI_REAL
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_LOGICAL
MPI_BYTE
MPI_PACKED

MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_INTEGER16
MPI_REAL2
MPI_REAL4
MPI_REAL8
MPI_DOUBLE_COMPLEX

Complex(Kind=Kind(0.d0))

Table 6.4: Standard Fortran types (left) and common extension (right)

6.2.2.1 Fortran90 kind-defined types

If your Fortran90 code uses KIND to define scalar types with specified precision, you need to use the fol-
lowing routines to make MPI equivalences of Fortran scalar types:

• MPI_Type_create_f90_integer (figure 6.1)
• MPI_Type_create_f90_real (figure 6.2)
• MPI_Type_create_f90_complex (figure 6.3).

Example of an integer kind;

INTEGER ( KIND = SELECTED_INT_KIND(15) ) , &
DIMENSION(100) :: array

INTEGER :: root , error
Type(MPI_Datatype) :: integertype

CALL MPI_Type_create_f90_integer( 15 , integertype , error )
CALL MPI_Bcast ( array , 100 , &
integertype , root , MPI_COMM_WORLD , error )
! error parameter optional in f08, both routines.
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Figure 6.1 MPI_Type_create_f90_integer
Name Param name Explanation C type F type inout

MPI_Type_create_f90_integer (
r decimal exponent range,

i.e., number of decimal
digits

int INTEGER IN

newtype the requested MPI datatype MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)

Figure 6.2 MPI_Type_create_f90_real
Name Param name Explanation C type F type inout

MPI_Type_create_f90_real (
p precision, in decimal

digits
int INTEGER IN

r decimal exponent range int INTEGER IN
newtype the requested MPI datatype MPI_Datatype* TYPE

(MPI_Datatype)
OUT

)

Code:

!! kindsend.F90
Integer,parameter :: digits=16
Integer,parameter :: ip =

↪Selected_Int_Kind(digits)
Integer (kind=ip) :: data
Type(MPI_Datatype) :: mpi_ip
Call

↪MPI_Type_create_f90_integer(digits,mpi_ip)
if (rank==0) then

print *,"Fortran type has
↪range",range(data)
call MPI_Send( data,1,mpi_ip,
↪1,0,comm )

else if (rank==1) then
call MPI_Recv( data,1,mpi_ip,
↪0,0,comm, MPI_STATUS_IGNORE )

Output:

Fortran type has range 18
Sending: 729000000000000

Received: 729000000000000

Example of a real kind:

REAL ( KIND = SELECTED_REAL_KIND(15 ,300) ) , &
DIMENSION(100) :: array
CALL MPI_Type_create_f90_real( 15 , 300 , realtype , error )

Example of a complex kind:

COMPLEX ( KIND = SELECTED_REAL_KIND(15 ,300) ) , &
DIMENSION(100) :: array
CALL MPI_Type_create_f90_complex( 15 , 300 , complextype , error )
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Figure 6.3 MPI_Type_create_f90_complex
Name Param name Explanation C type F type inout

MPI_Type_create_f90_complex (
p precision, in decimal

digits
int INTEGER IN

r decimal exponent range int INTEGER IN
newtype the requested MPI datatype MPI_Datatype* TYPE

(MPI_Datatype)
OUT

)

Remark 17 The MPI types thus created are predefined data types, so there is no need to commit or free them.

6.2.3 Python

Python note 18: Predefined data types. This section 6.2.3 discusses of predefined datatypes in Python.

In python, all buffer data comes from Numpy.

mpi4py type NumPy type

MPI.INT np.intc
np.int32

MPI.LONG np.int64
MPI.FLOAT np.float32
MPI.DOUBLE np.float64

In this table we see that Numpy has three integer types, one corresponding to C ints, and two with the
number of bits explicitly indicated. There used to be a np.int type, but this is deprecated as of Numpy
1.20.

Examples:
Code:

## inttype.py
sizeofint = np.dtype('int32').itemsize
print("Size of numpy int32:

↪{}".format(sizeofint))
sizeofint = np.dtype('intc').itemsize
print("Size of C int:

↪{}".format(sizeofint))

Output:

Size of numpy int32: 4
Size of C int: 4

## allgatherv.py
mycount = procid+1
my_array = np.empty(mycount,dtype=np.float64)

6.2.3.1 Type correspondences MPI / Python

Above we saw that the number of bytes of a Numpy type can be deduced from
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sizeofint = np.dtype('intc').itemsize

It is possible to derive the Numpy type corresponding to an MPI type:

## typesize.py
datatype = MPI.FLOAT
typecode = MPI._typecode(datatype)
assert typecode is not None # check MPI datatype is built-in
dtype = np.dtype(typecode)

6.2.4 Byte addressing types

So far we have mostly been taking about datatypes in the context of sending them. The MPI_Aint type is
not so much for sending, as it is for describing the size of objects, such as the size of an MPI_Win object
(section 9.1) or byte displacements in MPI_Type_create_hindexed.

Addresses have type MPI_Aint. The start of the address range is given in MPI_BOTTOM. See also the MPI_Sizeof
(section 6.2.5) and MPI_Get_address (section 6.3.6) routines.

Variables of type MPI_Aint can be sent as MPI_AINT:

MPI_Aint address;
MPI_Send( address,1,MPI_AINT, ... );

See section 9.5.3 for an example.

In order to prevent overflow errors in byte calculations there are support routines MPI_Aint_add

MPI_Aint MPI_Aint_add(MPI_Aint base, MPI_Aint disp)

and similarly MPI_Aint_diff.

Fortran note 11: Byte counting types in Fortran. The equivalent of MPI_Aint in Fortran is an integer of kind
MPI_ADDRESS_KIND:

integer(kind=MPI_ADDRESS_KIND) :: winsize

Using this integer kind to compute the size of a window also requires being able to query the
size of the datatype in that window. See section 6.2.5 for details.

Example usage in MPI_Win_create:

call MPI_Sizeof(windowdata,window_element_size,ierr)
window_size = window_element_size*500
call MPI_Win_create( windowdata,window_size,window_element_size,... )

Python note 19: Size of numpy types. Here is a goodway for finding the size of numpy datatypes in bytes:

## putfence.py
intsize = np.dtype('int').itemsize
window_data = np.zeros(2,dtype=int)
win = MPI.Win.Create(window_data,intsize,comm=comm)
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Figure 6.4 MPI_Type_match_size
Name Param name Explanation C type F type inout

MPI_Type_match_size (
typeclass generic type specifier int INTEGER IN
size size, in bytes, of

representation
int INTEGER IN

datatype datatype with correct
type, size

MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)

6.2.5 Matching language type to MPI type

In some circumstances youmaywant to find theMPI type that corresponds to a type in your programming
language.

• In C++ functions and classes can be templated, meaning that the type is not fully known:

template<typename T> {
class something<T> {
public:
void dosend(T input) {

MPI_Send( &input,1,/* ????? */ );
};

};

(Note that in MPL this is hardly ever needed because MPI calls are templated there.)

• Petsc installations use a generic identifier PetscScalar (or PetscReal) with a
configuration-dependent realization.

• The size of a datatype is not always statically known, for instance if the Fortran KIND keyword
is used.

Here are some MPI mechanisms that address this problem.

6.2.5.1 Type matching in C

Datatypes in C can be translated to MPI types with MPI_Type_match_size (figure 6.4) where the typeclass
argument is one of MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER, MPI_TYPECLASS_COMPLEX.
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Figure 6.5 MPI_Type_size
Name Param name Explanation C type F type inout

MPI_Type_size (
MPI_Type_size_c (

datatype datatype to get
information on

MPI_Datatype TYPE
(MPI_Datatype)

IN

size datatype size [ int∗
MPI_Count∗ INTEGER OUT

)

Code:

// typematch.c
float x5;
double x10;
int s5,s10;
MPI_Datatype mpi_x5,mpi_x10;

MPI_Type_match_size
(MPI_TYPECLASS_REAL,sizeof(x5),&mpi_x5);

MPI_Type_match_size

↪(MPI_TYPECLASS_REAL,sizeof(x10),&mpi_x10);
MPI_Type_size(mpi_x5,&s5);
printf("float: size=%d, mpi size=%d\n",

sizeof(x5),s5);
MPI_Type_size(mpi_x10,&s10);
printf("double: size=%d, mpi size=%d\n",

sizeof(x10),s10);

Output:

mpiexec -n 1 ./typematch
float: size=4, mpi size=4
double: size=8, mpi size=8

The space that MPI takes for a structure type can be queried in a variety of ways. First of all MPI_Type_size
(figure 6.5) counts the datatype size as the number of bytes occupied by the data in a type. That means
that in an MPI vector datatype it does not count the gaps.

// typesize.c
MPI_Type_vector(count,bs,stride,MPI_DOUBLE,&newtype);
MPI_Type_commit(&newtype);
MPI_Type_size(newtype,&size);
ASSERT( size==(count*bs)*sizeof(double) );

6.2.5.2 Type matching in Fortran

In Fortran, the size of the datatype in the language can be obtained with MPI_Sizeof (figure 6.6) (note
the nonoptional error parameter!). This routine is deprecated in MPI-4: use of storage_size (which
reports the number of bits) and/or c_sizeof (from the iso_c_binding module, which reports bytes) is
recommended.

!! matchkind.F90
call MPI_Sizeof(x10,s10,ierr)
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Figure 6.6 MPI_Sizeof
Name Param name Explanation C type F type inout

MPI_Sizeof (
)

call MPI_Type_match_size(MPI_TYPECLASS_REAL,s10,mpi_x10)
call MPI_Type_size(mpi_x10,s10)
print *,"10 positions supported, MPI type size is",s10

Petsc has its own translation mechanism; see section 32.2.

6.3 Derived datatypes

MPI allows you to create your own data types, somewhat (but not completely…) analogous to defining
structures in a programming language. MPI data types are mostly of use if you want to send multiple
items in one message.

There are two problems with using only predefined datatypes as you have seen so far.

• MPI communication routines can only send multiples of a single data type: it is not possible to
send items of different types, even if they are contiguous in memory. It would be possible to use
the MPI_BYTE data type, but this is not advisable.

• It is also ordinarily not possible to send items of one type if they are not contiguous in memory.
You could of course send a contiguous memory area that contains the items you want to send,
but that is wasteful of bandwidth, and of memory space on the receiving side.

With MPI data types you can solve these problems in several ways.

• You can create a new contiguous data type consisting of an array of elements of another data
type. There is no essential difference between sending one element of such a type and multiple
elements of the component type.

• You can create a vector data type consisting of regularly spaced blocks of elements of a compo-
nent type. This is a first solution to the problem of sending noncontiguous data.

• For not regularly spaced data, there is the indexed data type, where you specify an array of index
locations for blocks of elements of a component type. The blocks can each be of a different size.

• The struct data type can accomodate multiple data types.

And you can combine these mechanisms to get irregularly spaced heterogeneous data, et cetera.

6.3.1 Basic calls

The typical sequence of calls for creating a new datatype is as follows:

• You need a variable for the datatype; this is of type MPI_Datatype.
• There is a create call, followed by a ‘commit’ call where MPI performs internal bookkeeping
and optimizations; we will discuss this in great detail below.
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• The type needs to be ‘committed’. After this:
• The datatype is used, possibly multiple times;
• When the datatype is no longer needed, it must be freed to prevent memory leaks; see sec-
tion 6.3.1.2.

In code:

MPI_Datatype newtype;
MPI_Type_something( < oldtype specifications >, &newtype );
MPI_Type_commit( &newtype );
/* code that uses your new type */
MPI_Type_free( &newtype );

In Fortran2008:

Type(MPI_Datatype) :: newvectortype
call MPI_Type_something( <oldtype specification>, &

newvectortype)
call MPI_Type_commit(newvectortype)
!! code that uses your type
call MPI_Type_free(newvectortype)

Python note 20: Derived type handling. The various type creation routines are methods of the datatype
classes, after which commit and free are methods on the new type.

## vector.py
source = np.empty(stride*count,dtype=np.float64)
target = np.empty(count,dtype=np.float64)
if procid==sender:

newvectortype = MPI.DOUBLE.Create_vector(count,1,stride)
newvectortype.Commit()
comm.Send([source,1,newvectortype],dest=the_other)
newvectortype.Free()

elif procid==receiver:
comm.Recv([target,count,MPI.DOUBLE],source=the_other)

MPL note 45: Derived type handling. In MPL type creation routines are in the main namespace, templated
over the datatypes.

// vector.cxx
vector<double>
source(stride*count);

if (procno==sender) {
mpl::strided_vector_layout<double>

newvectortype(count,1,stride);
comm_world.send
(source.data(),newvectortype,the_other);

}

The commit call is part of the type creation, and freeing is done in the destructor.

MPL note 46: Layouts.
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Figure 6.7 MPI_Type_commit
Name Param name Explanation C type F type inout

MPI_Type_commit (
datatype datatype that is committed MPI_Datatype* TYPE

(MPI_Datatype)
INOUT

)
MPL:

Done as part of the type create call.

namespace mpl {
template <typename T> class layout; // Basisklasse
template <typename T> class null_layout; // MPI_DATATYPE_NULL
template <typename T> class empty_layout; // leere Nachricht
template <typename T> class contiguous_layout; // MPI_Type_contiguous
template <typename T> class vector_layout; // MPI_Type_contiguous
template <typename T> class strided_vector_layout; // MPI_Type_vector
template <typename T> class indexed_layout; // MPI_Type_indexed
template <typename T> class hindexed_layout; // MPI_Type_create_hindexed
template <typename T> class indexed_block_layout; // MPI_Type_create_indexed_block
template <typename T> class hindexed_block_layout; // MPI_Type_create_hindexed_block
template <typename T> class iterator_layout; // MPI_Type_create_hindexed_block
template <typename T> subarray_layout; // MPI_Type_create_subarray
class heterogeneous_layout; // MPI_Type_create_struct

}

6.3.1.1 Create calls

The MPI_Datatype variable gets its value by a call to one of the following routines:

• MPI_Type_contiguous for contiguous blocks of data; section 6.3.2;
• MPI_Type_vector for regularly strided data; section 6.3.3;
• MPI_Type_create_subarray for subsets out higher dimensional block; section 6.3.4;
• MPI_Type_create_struct for heterogeneous irregular data; section 6.3.7;
• MPI_Type_indexed and MPI_Type_hindexed for irregularly strided data; section 6.3.6.

These calls take an existing type, whether predefined or also derived, and produce a new type.

6.3.1.2 Commit and free

It is necessary to call MPI_Type_commit (figure 6.7) on a new data type, which makes MPI do the indexing
calculations for the data type.

When you no longer need the data type, you call MPI_Type_free (figure 6.8). (This is typically not needed
in OO APIs.) This has the following effects:

• The definition of the datatype identifier will be changed to MPI_DATATYPE_NULL.
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Figure 6.8 MPI_Type_free
Name Param name Explanation C type F type inout

MPI_Type_free (
datatype datatype that is freed MPI_Datatype* TYPE

(MPI_Datatype)
INOUT

)
MPL:

Done in the destructor.

Figure 6.9 MPI_Type_contiguous
Name Param name Explanation C type F type inout

MPI_Type_contiguous (
MPI_Type_contiguous_c (

count replication count [ int
MPI_Count INTEGER IN

oldtype old datatype MPI_Datatype TYPE
(MPI_Datatype)

IN

newtype new datatype MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)
Python:

Create_contiguous(self, int count)

• Any communication using this data type, that was already started, will be completed succesfully.
• Datatypes that are defined in terms of this data type will still be usable.

6.3.2 Contiguous type

The simplest derived type is the ‘contiguous’ type, constructed with MPI_Type_contiguous (figure 6.9).

A contigous type describes an array of items of an predefined or earlier defined type. There is no differ-
ence between sending one item of a contiguous type and multiple items of the constituent type. This is
illustrated in figure 6.1.

// contiguous.c
MPI_Datatype newvectortype;
if (procno==sender) {
MPI_Type_contiguous(count,MPI_DOUBLE,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,receiver,0,comm);
MPI_Type_free(&newvectortype);

} else if (procno==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_DOUBLE,sender,0,comm,
&recv_status);
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Figure 6.1: A contiguous datatype is built up out of elements of a constituent type

MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);
ASSERT(count==recv_count);

}

!! contiguous.F90
integer :: newvectortype
if (mytid==sender) then

call MPI_Type_contiguous(count,MPI_DOUBLE_PRECISION,newvectortype)
call MPI_Type_commit(newvectortype)
call MPI_Send(source,1,newvectortype,receiver,0,comm)
call MPI_Type_free(newvectortype)

else if (mytid==receiver) then
call MPI_Recv(target,count,MPI_DOUBLE_PRECISION,sender,0,comm,&

recv_status)
call MPI_Get_count(recv_status,MPI_DOUBLE_PRECISION,recv_count)
!ASSERT(count==recv_count);

end if

## contiguous.py
source = np.empty(count,dtype=np.float64)
target = np.empty(count,dtype=np.float64)
if procid==sender:

newcontiguoustype = MPI.DOUBLE.Create_contiguous(count)
newcontiguoustype.Commit()
comm.Send([source,1,newcontiguoustype],dest=the_other)
newcontiguoustype.Free()

elif procid==receiver:
comm.Recv([target,count,MPI.DOUBLE],source=the_other)

MPL note 47: Contiguous type. The MPL interface makes extensive use of contiguous_layout, as it is the
main way to declare a nonscalar buffer; see note 11.

MPL note 48: Contiguous composing. Contiguous layouts can only use predefined types or other contigu-
ous layouts as their ‘old’ type. To make a contiguous type for other layouts, use vector_layout:

// contiguous.cxx
mpl::contiguous_layout<int> type1(7);
mpl::vector_layout<int> type2(8,type1);

(Contrast this with strided_vector_layout; note 49.)

6.3.3 Vector type

The simplest noncontiguous datatype is the ‘vector’ type, constructed with MPI_Type_vector (figure 6.10).
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Figure 6.10 MPI_Type_vector
Name Param name Explanation C type F type inout

MPI_Type_vector (
MPI_Type_vector_c (

count number of blocks [ int
MPI_Count INTEGER IN

blocklength number of elements in each
block

[ int
MPI_Count INTEGER IN

stride number of elements between
start of each block

[ int
MPI_Count INTEGER IN

oldtype old datatype MPI_Datatype TYPE
(MPI_Datatype)

IN

newtype new datatype MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)
Python:

MPI.Datatype.Create_vector(self, int count, int blocklength, int stride)

Figure 6.2: A vector datatype is built up out of strided blocks of elements of a constituent type

A vector type describes a series of blocks, all of equal size, spaced with a constant stride. This is illustrated
in figure 6.2.

The vector datatype gives the first nontrivial illustration that datatypes can be different on the sender and
receiver . If the sender sends b blocks of length l each, the receiver can receive them as bl contiguous
elements, either as a contiguous datatype, or as a contiguous buffer of an predefined type; see figure 6.3.
The receiver has no knowledge of the stride of the datatype on the sender.

In this example a vector type is created only on the sender, in order to send a strided subset of an array;
the receiver receives the data as a contiguous block.

// vector.c
source = (double*) malloc(stride*count*sizeof(double));
target = (double*) malloc(count*sizeof(double));
MPI_Datatype newvectortype;
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Figure 6.3: Sending a vector datatype and receiving it as predefined or contiguous

if (procno==sender) {
MPI_Type_vector(count,1,stride,MPI_DOUBLE,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,the_other,0,comm);
MPI_Type_free(&newvectortype);

} else if (procno==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_DOUBLE,the_other,0,comm,
&recv_status);

MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);
ASSERT(recv_count==count);

}

We illustrate Fortran2008:

if (mytid==sender) then
call MPI_Type_vector(count,1,stride,MPI_DOUBLE_PRECISION,&

newvectortype)
call MPI_Type_commit(newvectortype)
call MPI_Send(source,1,newvectortype,receiver,0,comm)
call MPI_Type_free(newvectortype)
if ( .not. newvectortype==MPI_DATATYPE_NULL) then

print *,"Trouble freeing datatype"
else

print *,"Datatype successfully freed"
end if

else if (mytid==receiver) then
call MPI_Recv(target,count,MPI_DOUBLE_PRECISION,sender,0,comm,&

recv_status)
call MPI_Get_count(recv_status,MPI_DOUBLE_PRECISION,recv_count)

end if

In legacy mode Fortran90, code stays the same except that the type is declared as Integer:
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!! vector.F90
integer :: newvectortype
integer :: recv_count

call MPI_Type_vector(count,1,stride,MPI_DOUBLE_PRECISION,&
newvectortype,err)

call MPI_Type_commit(newvectortype,err)

Python note 21: Vector type. The vector creation routine is a method of the datatype class. For the general
discussion, see section 6.3.1.

## vector.py
source = np.empty(stride*count,dtype=np.float64)
target = np.empty(count,dtype=np.float64)
if procid==sender:

newvectortype = MPI.DOUBLE.Create_vector(count,1,stride)
newvectortype.Commit()
comm.Send([source,1,newvectortype],dest=the_other)
newvectortype.Free()

elif procid==receiver:
comm.Recv([target,count,MPI.DOUBLE],source=the_other)

MPL note 49: Vector type. MPL has the strided_vector_layout class as equivalent of the vector type:

// vector.cxx
vector<double>
source(stride*count);

if (procno==sender) {
mpl::strided_vector_layout<double>

newvectortype(count,1,stride);
comm_world.send
(source.data(),newvectortype,the_other);

}

(See note 48 for nonstrided vectors.)

6.3.3.1 Two-dimensional arrays

Figure 6.4 indicates one source of irregular data: with a matrix on column-major storage, a column is stored
in contiguous memory. However, a row of such a matrix is not contiguous; its elements being separated
by a stride equal to the column length.

Exercise 6.1. How would you describe the memory layout of a submatrix, if the whole
matrix has size 𝑀 × 𝑁 and the submatrix 𝑚 × 𝑛?

Solution to exercise 6.1. 𝑛 blocks of 𝑚 elements, spaced with a stride of 𝑀 .
As an example of this datatype, consider the example of transposing a matrix, for instance to convert
between C and Fortran arrays. Suppose that a processor has a matrix stored in C, row-major, layout, and
it needs to send a column to another processor. If the matrix is declared as

int M,N; double mat[M][N]

then a column has 𝑀 blocks of one element, spaced 𝑁 locations apart. In other words:
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Figure 6.4: Memory layout of a row and column of a matrix in column-major storage

MPI_Datatype MPI_column;
MPI_Type_vector(

/* count= */ M, /* blocklength= */ 1, /* stride= */ N,
MPI_DOUBLE, &MPI_column );

Sending the first column is easy:

MPI_Send( mat, 1,MPI_column, ... );

The second column is just a little trickier: you now need to pick out elements with the same stride, but
starting at A[0][1].

MPI_Send( &(mat[0][1]), 1,MPI_column, ... );

You can make this marginally more efficient (and harder to read) by replacing the index expression by
mat+1.
Exercise 6.2. Suppose you have a matrix of size 4𝑁 × 4𝑁 , and you want to send the

elements A[4*i][4*j] with 𝑖, 𝑗 = 0, … , 𝑁 − 1. How would you send these elements
with a single transfer?

Solution to exercise 6.2. Make a vector datatype for the 𝑁 elements with stride 4 of a single row,
then make a vector datatype for 𝑁 of those rows, with stride 4𝑁 .

Exercise 6.3. Allocate a matrix on processor zero, using Fortran column-major storage.
Using 𝑃 sendrecv calls, distribute the rows of this matrix among the processors.

Python note 22: Sending from the middle of a matrix. In C and Fortran it’s easy to apply a derived type to
data in the middle of an array, for instance to extract an arbitrary column out of a C matrix,
or row out of a Fortran matrix. While Python has no trouble describing sections from an array,
usually it copies these instead of taking the address. Therefore, it is necessary to convert the
matrix to a buffer and compute an explicit offset in bytes:
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Figure 6.5: Send strided data from process zero to all others

## rowcol.py
rowsize = 4; colsize = 5
coltype = MPI.INT.Create_vector(4, 1, 5)
coltype.Commit()
columntosend = 2

comm.Send\
( [np.frombuffer(matrix.data, intc,

offset=columntosend*np.dtype('intc').itemsize),
1,coltype],

receiver)

Exercise 6.4. Let processor 0 have an array 𝑥 of length 10𝑃 , where 𝑃 is the number of
processors. Elements 0, 𝑃, 2𝑃, … , 9𝑃 should go to processor zero, 1, 𝑃 + 1, 2𝑃 + 1,… to
processor 1, et cetera.

• Code this as a sequence of send/recv calls, using a vector datatype for the send,
and a contiguous buffer for the receive.

• For simplicity, skip the send to/from zero. What is the most elegant solution if
you want to include that case?

• For testing, define the array as 𝑥[𝑖] = 𝑖.
(There is a skeleton for this exercise under the name stridesend.)

Exercise 6.5. Write code to compare the time it takes to send a strided subset from an array:
copy the elements by hand to a smaller buffer, or use a vector data type. What do
you find? You may need to test on fairly large arrays.

6.3.4 Subarray type

The vector datatype can be used for blocks in an array of dimension more than 2 by using it recur-
sively. However, this gets tedious. Instead, there is an explicit subarray type MPI_Type_create_subarray
(figure 6.11). This describes the dimensionality and extent of the array, and the starting point (the ‘upper
left corner’) and extent of the subarray.

MPL note 50: Subarray layout. The templated subarray_layout class is constructed from a vector of triplets
of global size / subblock size / first coordinate.
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Figure 6.11 MPI_Type_create_subarray
Name Param name Explanation C type F type inout

MPI_Type_create_subarray (
MPI_Type_create_subarray_c (

ndims number of array dimensions int INTEGER IN

array_of_sizes number of elements of type
oldtype in each dimension
of the full array

[ const int[]
MPI_Count[] INTEGER

(ndims)
IN

array_of_subsizes number of elements of type
oldtype in each dimension
of the subarray

[ const int[]
MPI_Count[] INTEGER

(ndims)
IN

array_of_starts starting coordinates
of the subarray in each
dimension

[ const int[]
MPI_Count[] INTEGER

(ndims)
IN

order array storage order flag int INTEGER IN
oldtype old datatype MPI_Datatype TYPE

(MPI_Datatype)
IN

newtype new datatype MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)
Python:

MPI.Datatype.Create_subarray
(self, sizes, subsizes, starts, int order=ORDER_C)

mpl::subarray_layout<int>(
{ {ny, ny_l, ny_0}, {nx, nx_l, nx_0} }
);

Exercise 6.6. Assume that your number of processors is 𝑃 = 𝑄3, and that each process has
an array of identical size. Use MPI_Type_create_subarray to gather all data onto a root
process. Use a sequence of send and receive calls; MPI_Gather does not work here.
(There is a skeleton for this exercise under the name cubegather.)

Fortran note 12: Subarrays. Subarrays are naturally supported in Fortran through array sections.

!! section.F90
integer,parameter :: siz=20
real,dimension(siz,siz) :: matrix = [ ((j+(i-1)*siz,i=1,siz),j=1,siz) ]
real,dimension(2,2) :: submatrix
if (procno==0) then

call MPI_Send(matrix(1:2,1:2),4,MPI_REAL,1,0,comm)
else if (procno==1) then

call MPI_Recv(submatrix,4,MPI_REAL,0,0,comm,MPI_STATUS_IGNORE)
if (submatrix(2,2)==22) then

print *,"Yay"
else

print *,"nay...."
end if

end if
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However, there is a subtlety with non-blocking operations: for a non-contiguous buffer a tem-
porary is created, which is released after the MPI call. This is correct for blocking sends, but for
non-blocking the temporary has to stay around till the wait call.

!! sectionisend.F90
integer :: siz
real,dimension(:,:),allocatable :: matrix
real,dimension(2,2) :: submatrix

siz = 20
allocate( matrix(siz,siz) )
matrix = reshape( [ ((j+(i-1)*siz,i=1,siz),j=1,siz) ], (/siz,siz/) )
call MPI_Isend(matrix(1:2,1:2),4,MPI_REAL,1,0,comm,request)
call MPI_Wait(request,MPI_STATUS_IGNORE)
deallocate(matrix)

In MPI-3 the variable MPI_SUBARRAYS_SUPPORTED indicates support for this mechanism:

if ( .not. MPI_SUBARRAYS_SUPPORTED ) then
print *,"This code will not work"
call MPI_Abort(comm,0)

end if

The possibilities for the order parameter are MPI_ORDER_C and MPI_ORDER_FORTRAN. However, this has noth-
ing to do with the order of traversal of elements; it determines how the bounds of the subarray are inter-
preted. As an example, we fill a 4×4 array in C order with the numbers 0⋯ 15, and send the [0, 1] × [0⋯ 4]
slice two ways, first C order, then Fortran order:

// row2col.c
#define SIZE 4
int

sizes[2], subsizes[2], starts[2];
sizes[0] = SIZE; sizes[1] = SIZE;
subsizes[0] = SIZE/2; subsizes[1] = SIZE;
starts[0] = starts[1] = 0;
MPI_Type_create_subarray

(2,sizes,subsizes,starts,
MPI_ORDER_C,MPI_DOUBLE,&rowtype);

MPI_Type_create_subarray
(2,sizes,subsizes,starts,
MPI_ORDER_FORTRAN,MPI_DOUBLE,&coltype);

The receiver receives the following, formatted to bring out where the numbers originate:

Received C order:
0.000 1.000 2.000 3.000
4.000 5.000 6.000 7.000
Received F order:
0.000 1.000
4.000 5.000
8.000 9.000
12.000 13.000
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Figure 6.12 MPI_Type_indexed
Name Param name Explanation C type F type inout

MPI_Type_indexed (
MPI_Type_indexed_c (

count number of blocks---also
number of entries in
array_of_displacements
and array_of_blocklengths

[ int
MPI_Count INTEGER IN

array_of_blocklengths number of elements per
block

[ const int[]
MPI_Count[] INTEGER

(count)
IN

array_of_displacements displacement for each
block, in multiples of
oldtype

[ const int[]
MPI_Count[] INTEGER

(count)
IN

oldtype old datatype MPI_Datatype TYPE
(MPI_Datatype)

IN

newtype new datatype MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)
Python:

MPI.Datatype.Create_indexed(self, blocklengths,displacements )

6.3.5 Distributed array type

Each dimension can independently be distributed as MPI_DISTRIBUTE_BLOCK, MPI_DISTRIBUTE_CYCLIC,
MPI_DISTRIBUTE_NONE,

With the cyclic distribution, the amount of cyclicity can be indicated by setting dargs[id] to a certain
number.

With the block distribution, blocks can be set explicitly in dargs[id], but MPI_DISTRIBUTE_DFLT_DARG causes
an even distribution to be found.

Ordering can be MPI_ORDER_C or MPI_ORDER_FORTRAN.

6.3.6 Indexed type

The indexed datatype, constructed with MPI_Type_indexed (figure 6.12) can send arbitrarily located ele-
ments from an array of a single datatype. You need to supply an array of index locations, plus an array of
blocklengths with a separate blocklength for each index. The total number of elements sent is the sum of
the blocklengths.

The following example picks items that are on prime number-indexed locations.

// indexed.c
displacements = (int*) malloc(count*sizeof(int));
blocklengths = (int*) malloc(count*sizeof(int));
source = (int*) malloc(totalcount*sizeof(int));
target = (int*) malloc(targetbuffersize*sizeof(int));
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Figure 6.6: The elements of an MPI Indexed datatype

MPI_Datatype newvectortype;
if (procno==sender) {
MPI_Type_indexed(count,blocklengths,displacements,MPI_INT,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,the_other,0,comm);
MPI_Type_free(&newvectortype);

} else if (procno==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,targetbuffersize,MPI_INT,the_other,0,comm,
&recv_status);

MPI_Get_count(&recv_status,MPI_INT,&recv_count);
ASSERT(recv_count==count);

}

For Fortran we show the legacy syntax for once:

!! indexed.F90
integer :: newvectortype;
ALLOCATE(indices(count))
ALLOCATE(blocklengths(count))
ALLOCATE(source(totalcount))
ALLOCATE(targt(count))
if (mytid==sender) then

call MPI_Type_indexed(count,blocklengths,indices,MPI_INT,&
newvectortype,err)

call MPI_Type_commit(newvectortype,err)
call MPI_Send(source,1,newvectortype,receiver,0,comm,err)
call MPI_Type_free(newvectortype,err)

else if (mytid==receiver) then
call MPI_Recv(targt,count,MPI_INT,sender,0,comm,&

recv_status,err)
call MPI_Get_count(recv_status,MPI_INT,recv_count,err)
! ASSERT(recv_count==count);

end if

## indexed.py
displacements = np.empty(count,dtype=int)
blocklengths = np.empty(count,dtype=int)
source = np.empty(totalcount,dtype=np.float64)
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target = np.empty(count,dtype=np.float64)
if procid==sender:

newindextype = MPI.DOUBLE.Create_indexed(blocklengths,displacements)
newindextype.Commit()
comm.Send([source,1,newindextype],dest=the_other)
newindextype.Free()

elif procid==receiver:
comm.Recv([target,count,MPI.DOUBLE],source=the_other)

MPL note 51: Indexed type. In MPL, the indexed_layout is based on a vector of 2-tuples denoting block
length / block location.

// indexed.cxx
const int count = 5;
mpl::contiguous_layout<int>

fiveints(count);
mpl::indexed_layout<int>

indexed_where{ { {1,2}, {1,3}, {1,5}, {1,7}, {1,11} } };

if (procno==sender) {
comm_world.send( source_buffer.data(),indexed_where, receiver );

} else if (procno==receiver) {
auto recv_status =
comm_world.recv( target_buffer.data(),fiveints, sender );

int recv_count = recv_status.get_count<int>();
assert(recv_count==count);

}

MPL note 52: Layouts for gatherv. The size/displacement arrays for MPI_Gatherv / MPI_Alltoallv are han-
dled through a layouts object, which is basically a vector of layout objects.

mpl::layouts<int> receive_layout;
for ( int iproc=0,loc=0; iproc<nprocs; iproc++ ) {
auto siz = size_buffer.at(iproc);
receive_layout.push_back

( mpl::indexed_layout<int>( {{ siz,loc }} ) );
loc += siz;

}

MPL note 53: Indexed block type. For the case where all block lengths are the same, use
indexed_block_layout:

// indexedblock.cxx
mpl::indexed_block_layout<int>

indexed_where( 1, {2,3,5,7,11} );
comm_world.send( source_buffer.data(),indexed_where, receiver );

You can also MPI_Type_create_hindexedwhich describes blocks of a single old type, but with index locations
in bytes, rather than in multiples of the old type.

int MPI_Type_create_hindexed
(int count, int blocklens[], MPI_Aint indices[],
MPI_Datatype old_type,MPI_Datatype *newtype)
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Figure 6.13 MPI_Type_create_hindexed_block
Name Param name Explanation C type F type inout

MPI_Type_create_hindexed_block (
MPI_Type_create_hindexed_block_c (

count number of blocks---also
number of entries in
array_of_displacements

[ int
MPI_Count INTEGER IN

blocklength number of elements in each
block

[ int
MPI_Count INTEGER IN

array_of_displacements byte displacement of each
block

[ const MPI_Aint[]
MPI_Count[] INTEGER

(KIND=MPI_ADDRESS_KIND)
(count)

IN

oldtype old datatype MPI_Datatype TYPE
(MPI_Datatype)

IN

newtype new datatype MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)

Figure 6.14 MPI_Get_address
Name Param name Explanation C type F type inout

MPI_Get_address (
location location in caller memory const void* TYPE(*),

DIMENSION(..)
IN

address address of location MPI_Aint* INTEGER
(KIND=MPI_ADDRESS_KIND)

OUT

)

A slightly simpler version, MPI_Type_create_hindexed_block (figure 6.13) assumes constant block length.

There is an important difference between the hindexed and the above MPI_Type_indexed: that one de-
scribed offsets from a base location; these routines describes absolute memory addresses. You can use this
to send for instance the elements of a linked list. You would traverse the list, recording the addresses of
the elements with MPI_Get_address (figure 6.14). (The routine MPI_Address is deprecated.)

In C++ you can use this to send an std::<vector>, that is, a vector object from the C++ standard library, if
the component type is a pointer.

6.3.7 Struct type

The structure type, created with MPI_Type_create_struct (figure 6.15), can contain multiple data types.
(The routine MPI_Type_struct is deprecated with MPI-3.) The specification contains a ‘count’ parameter
that specifies how many blocks there are in a single structure. For instance,

struct {
int i;
float x,y;
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Figure 6.15 MPI_Type_create_struct
Name Param name Explanation C type F type inout

MPI_Type_create_struct (
MPI_Type_create_struct_c (

count number of blocks---also
number of entries in
arrays array_of_types,
array_of_displacements,
and array_of_blocklengths

[ int
MPI_Count INTEGER IN

array_of_blocklengths number of elements in each
block

[ const int[]
MPI_Count[] INTEGER

(count)
IN

array_of_displacements byte displacement of each
block

[ const MPI_Aint[]
MPI_Count[] INTEGER

(KIND=MPI_ADDRESS_KIND)
(count)

IN

array_of_types type of elements in each
block

const
MPI_Datatype[]

TYPE
(MPI_Datatype)
(count)

IN

newtype new datatype MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)

Figure 6.7: The elements of an MPI Struct datatype

} point;

has two blocks, one of a single integer, and one of two floats. This is illustrated in figure 6.7.

count The number of blocks in this datatype. The blocklengths, displacements, types arguments
have to be at least of this length.

blocklengths array containing the lengths of the blocks of each datatype.
displacements array describing the relative location of the blocks of each datatype.
types array containing the datatypes; each block in the new type is of a single datatype; there can be

multiple blocks consisting of the same type.

In this example, unlike the previous ones, both sender and receiver create the structure type. With struc-
tures it is no longer possible to send as a derived type and receive as a array of a simple type. (It would
be possible to send as one structure type and receive as another, as long as they have the same datatype
signature.)
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// struct.c
struct object {
char c;
double x[2];
int i;

};
MPI_Datatype newstructuretype;
int structlen = 3;
int blocklengths[structlen]; MPI_Datatype types[structlen];
MPI_Aint displacements[structlen];

/*
* where are the components relative to the structure?
*/
MPI_Aint current_displacement=0;

// one character
blocklengths[0] = 1; types[0] = MPI_CHAR;
displacements[0] = (size_t)&(myobject.c) - (size_t)&myobject;

// two doubles
blocklengths[1] = 2; types[1] = MPI_DOUBLE;
displacements[1] = (size_t)&(myobject.x) - (size_t)&myobject;

// one int
blocklengths[2] = 1; types[2] = MPI_INT;
displacements[2] = (size_t)&(myobject.i) - (size_t)&myobject;

MPI_Type_create_struct(structlen,blocklengths,displacements,types,&newstructuretype);
MPI_Type_commit(&newstructuretype);
if (procno==sender) {
MPI_Send(&myobject,1,newstructuretype,the_other,0,comm);

} else if (procno==receiver) {
MPI_Recv(&myobject,1,newstructuretype,the_other,0,comm,MPI_STATUS_IGNORE);

}
MPI_Type_free(&newstructuretype);

Note the displacement calculations in this example, which involve some not so elegant pointer arith-
metic. The following Fortran code uses MPI_Get_address, which is more elegant, and in fact the only way
address calculations can be done in Fortran.

!! struct.F90
Type object

character :: c
real*8,dimension(2) :: x
integer :: i

end type object
type(object) :: myobject
integer,parameter :: structlen = 3
type(MPI_Datatype) :: newstructuretype
integer,dimension(structlen) :: blocklengths
type(MPI_Datatype),dimension(structlen) :: types;
MPI_Aint,dimension(structlen) :: displacements
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MPI_Aint :: base_displacement, next_displacement
if (procno==sender) then

myobject%c = 'x'
myobject%x(0) = 2.7; myobject%x(1) = 1.5
myobject%i = 37

!! component 1: one character
blocklengths(1) = 1; types(1) = MPI_CHAR
call MPI_Get_address(myobject,base_displacement)
call MPI_Get_address(myobject%c,next_displacement)
displacements(1) = next_displacement-base_displacement

!! component 2: two doubles
blocklengths(2) = 2; types(2) = MPI_DOUBLE
call MPI_Get_address(myobject%x,next_displacement)
displacements(2) = next_displacement-base_displacement

!! component 3: one int
blocklengths(3) = 1; types(3) = MPI_INT
call MPI_Get_address(myobject%i,next_displacement)
displacements(3) = next_displacement-base_displacement

if (procno==sender) then
call MPI_Send(myobject,1,newstructuretype,receiver,0,comm)

else if (procno==receiver) then
call MPI_Recv(myobject,1,newstructuretype,sender,0,comm,MPI_STATUS_IGNORE)

end if
call MPI_Type_free(newstructuretype)

It would have been incorrect to write
displacement[0] = 0;
displacement[1] = displacement[0] + sizeof(char);

since you do not know the way the compiler lays out the structure in memory1.

If you want to send more than one structure, you have to worry more about padding in the structure. You
can solve this by adding an extra type MPI_UB for the ‘upper bound’ on the structure:

displacements[3] = sizeof(myobject); types[3] = MPI_UB;
MPI_Type_create_struct(struclen+1,.....);

MPL note 54: Struct type scalar. One could describe the MPI struct type as a collection of displacements, to
be applied to any set of items that conforms to the specifications. An MPL heterogeneous_layout
on the other hand, incorporates the actual data. Thus you could write

// structscalar.cxx
char c; double x; int i;
if (procno==sender) {

c = 'x'; x = 2.4; i = 37; }
mpl::heterogeneous_layout object( c,x,i );
if (procno==sender)

1. Homework question: what does the language standard say about this?
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comm_world.send( mpl::absolute,object,receiver );
else if (procno==receiver)
comm_world.recv( mpl::absolute,object,sender );

Here, the absolute indicates the lack of an implicit buffer: the layout is absolute rather than a
relative description.

MPL note 55: Struct type general. More complicated data than scalars takes more work:

// struct.cxx
char c; vector<double> x(2); int i;
if (procno==sender) {

c = 'x'; x[0] = 2.7; x[1] = 1.5; i = 37; }
mpl::heterogeneous_layout object
( c,

mpl::make_absolute(x.data(),mpl::vector_layout<double>(2)),
i );

if (procno==sender) {
comm_world.send( mpl::absolute,object,receiver );

} else if (procno==receiver) {
comm_world.recv( mpl::absolute,object,sender );

}

Note the make_absolute in addition to absolute mentioned above.

6.4 Big data types

The size parameter inMPI send and receive calls is of type integer, meaning that it’s maximally (platform-
dependent, but typically:) 231 − 1. These day computers are big enough that this is a limitation. As of
the MPI-4 standard, this has been solved by allowing a larger count parameter of type MPI_Count. The
implementation of this depends somewhat on the language.
The following material is for the recently released MPI-4 standard and may not be supported yet.

MPL note 56: Large counts.

6.4.1 C

For every routine, such as MPI_Send with an integer count, there is a corresponding MPI_Send_c with a
count of type MPI_Count.

MPI_Count buffersize = 1000;
double *indata,*outdata;
indata = (double*) malloc( buffersize*sizeof(double) );
outdata = (double*) malloc( buffersize*sizeof(double) );
MPI_Allreduce_c(indata,outdata,buffersize,

MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);
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Code:

// pingpongbig.c
assert( sizeof(MPI_Count)>4 );
for ( int power=3; power<=10; power++) {

MPI_Count length=pow(10,power);
buffer = (double*)malloc(
↪length*sizeof(double) );
MPI_Ssend_c

(buffer,length,MPI_DOUBLE,
processB,0,comm);

MPI_Recv_c
(buffer,length,MPI_DOUBLE,
processB,0,comm,MPI_STATUS_IGNORE);

Output:

make[3]: `pingpongbig' is up to date.
Ping-pong between ranks 0--1, repeated 10

↪times
MPI Count has 8 bytes
Size: 10^3, (repeats=10000)
Time 1.399211e-05 for size 10^3: 1.1435

↪Gb/sec
Size: 10^4, (repeats=10000)
Time 4.077882e-05 for size 10^4: 3.9236

↪Gb/sec
Size: 10^5, (repeats=1000)
Time 1.532863e-04 for size 10^5: 10.4380

↪Gb/sec
Size: 10^6, (repeats=1000)
Time 1.418844e-03 for size 10^6: 11.2768

↪Gb/sec
Size: 10^7, (repeats=100)
Time 1.443470e-02 for size 10^7: 11.0844

↪Gb/sec
Size: 10^8, (repeats=100)
Time 1.540918e-01 for size 10^8: 10.3834

↪Gb/sec
Size: 10^9, (repeats=10)
Time 1.813220e+00 for size 10^9: 8.8241

↪Gb/sec
Size: 10^10, (repeats=10)
Time 1.846741e+01 for size 10^10: 8.6639

↪Gb/sec

6.4.2 Fortran

The count parameter can be declared to be

use mpi_f08
Integer(kind=MPI_COUNT_KIND) :: count

Since Fortran has polymorphism, the same routine names can be used.

The legit way of coding:

!! typecheckkind.F90
integer(8) :: source,n=1
call MPI_Init()
call MPI_Send(source,n,MPI_INTEGER8, &

1,0,MPI_COMM_WORLD)

… but you can see what’s under the hood:

!! typecheck8.F90
integer(8) :: source,n=1
call MPI_Init()
call MPI_Send(source,n,MPI_INTEGER8, &

1,0,MPI_COMM_WORLD)

Routines using this type are not available unless using the mpi_f08 module.
End of MPI-4 material
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!! pingpongbig.F90
integer :: power,countbytes
Integer(KIND=MPI_COUNT_KIND) :: length
call MPI_Sizeof(length,countbytes,ierr)
if (procno==0) &

print *,"Bytes in count:",countbytes
length = 10**power
allocate( senddata(length),recvdata(length) )

call MPI_Send(senddata,length,MPI_DOUBLE_PRECISION, &
processB,0, comm)

call MPI_Recv(recvdata,length,MPI_DOUBLE_PRECISION, &
processB,0, comm,MPI_STATUS_IGNORE)

6.4.3 Count datatype

The MPI_Count datatype is defined as being large enough to accomodate values of
• the ordinary 4-byte integer type;
• the MPI_Aint type, sections 6.2.4 and 6.2.4;
• the MPI_Offset type, section 10.2.2.

The size_t type in C/C++ is defined as big enough to contain the output of sizeof, that is, being big
enough to measure any object.

6.4.4 MPI 3 temporary solution

Large messages were already possible by using derived types: to send a big data type of 1040 elements you
would

• create a contiguous type with 1020 elements, and
• send 1020 elements of that type.

This often works, but it’s not perfect. For instance, the routine MPI_Get_elements returns the total number
of basic elements sent (as opposed to MPI_Get_count which would return the number of elements of the
derived type). Since its output argument is of integer type, it can’t store the right value.

The MPI-3 standard has addressed this through the introduction of an MPI_Count datatype, and new rou-
tines with an _x extension, that return that type of count.
The following material is for the recently released MPI-4 standard and may not be supported yet.

In view of the ‘embiggened’ routines, this solution is no longer needed, and is deprecated as of MPI-4.1.
End of MPI-4 material
Let us consider an example.

Allocating a buffer of more than 4Gbyte is not hard:
// vectorx.c
float *source=NULL,*target=NULL;
int mediumsize = 1<<30;
int nblocks = 8;
size_t datasize = (size_t)mediumsize * nblocks * sizeof(float);
if (procno==sender) {
source = (float*) malloc(datasize);
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We use the trick with sending elements of a derived type:

MPI_Datatype blocktype;
MPI_Type_contiguous(mediumsize,MPI_FLOAT,&blocktype);
MPI_Type_commit(&blocktype);
if (procno==sender) {
MPI_Send(source,nblocks,blocktype,receiver,0,comm);

We use the same trick for the receive call, but now we catch the status parameter which will later tell us
how many elements of the basic type were sent:

} else if (procno==receiver) {
MPI_Status recv_status;
MPI_Recv(target,nblocks,blocktype,sender,0,comm,
&recv_status);

When we query how many of the basic elements are in the buffer (remember that in the receive call the
buffer length is an upper bound on the number of elements received) do we need a counter that is larger
than an integer. MPI has introduced a type MPI_Count for this, and new routines such as MPI_Get_elements_x
(figure 4.14) that return a count of this type:

MPI_Count recv_count;
MPI_Get_elements_x(&recv_status,MPI_FLOAT,&recv_count);

Remark 18 Computing a big number to allocate is not entirely simple.

// getx.c
int gig = 1<<30;
int nblocks = 8;
size_t big1 = gig * nblocks * sizeof(double);
size_t big2 = (size_t)1 * gig * nblocks * sizeof(double);
size_t big3 = (size_t) gig * nblocks * sizeof(double);
size_t big4 = gig * nblocks * (size_t) ( sizeof(double) );
size_t big5 = sizeof(double) * gig * nblocks;
;

gives as output:

size of size_t = 8
0 68719476736 68719476736 0 68719476736

Clearly, not only do operations go left-to-right, but casting is done that way too: the computed subexpressions
are only cast to size_t if one operand is.

Above, we did not actually create a datatype that was bigger than 2G, but if you do so, you can query its
extent by MPI_Type_get_extent_x (figure 6.17) and MPI_Type_get_true_extent_x (figure 6.17).

Python note 23: Big data. Since python has unlimited size integers there is no explicit need for the
‘x’ variants of routines. Internally, MPI.Status.Get_elements is implemented in terms of
MPI_Get_elements_x.
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Figure 6.16 MPI_Type_get_extent
Name Param name Explanation C type F type inout

MPI_Type_get_extent (
MPI_Type_get_extent_c (

datatype datatype to get
information on

MPI_Datatype TYPE
(MPI_Datatype)

IN

lb lower bound of datatype [ MPI_Aint∗
MPI_Count∗ INTEGER

(KIND=MPI_ADDRESS_KIND)
OUT

extent extent of datatype [ MPI_Aint∗
MPI_Count∗ INTEGER

(KIND=MPI_ADDRESS_KIND)
OUT

)

6.5 Type maps and type matching

With derived types, you saw that it was not necessary for the type of the sender and receiver to match.
However, when the send buffer is constructed, and the receive buffer unpacked, it is necessary for the
successive types in that buffer to match.

The types in the send and receive buffers also need to match the datatypes of the underlying architecture,
with two exceptions. The MPI_PACKED and MPI_BYTE types can match any underlying type. However, this
still does not mean that it is a good idea to use these types on only sender or receiver, and a specific type
on the other.

6.6 Type extent

See section 6.2.5 about the related issue of type sizes.

6.6.1 Extent and true extent

The datatype extent, measured with MPI_Type_get_extent (figure 6.16), is strictly the distance from the first
to the last data item of the type, that is, with counting the gaps in the type. It is measured in bytes so the
output parameters are of type MPI_Aint.

In the following example (see also figure 6.8) we measure the extent of a vector type. Note that the extent
is not the stride times the number of blocks, because that would count a ‘trailing gap’.

MPI_Aint lb,asize;
MPI_Type_vector(count,bs,stride,MPI_DOUBLE,&newtype);
MPI_Type_commit(&newtype);
MPI_Type_get_extent(newtype,&lb,&asize);
ASSERT( lb==0 );
ASSERT( asize==((count-1)*stride+bs)*sizeof(double) );
MPI_Type_free(&newtype);

Similarly, using MPI_Type_get_extent counts the gaps in a struct induced by alignment issues.
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Figure 6.8: Extent of a vector datatype

size_t size_of_struct = sizeof(struct object);
MPI_Aint typesize,typelb;
MPI_Type_get_extent(newstructuretype,&typelb,&typesize);
assert( typesize==size_of_struct );

See section 6.3.7 for the code defining the structure type.

Remark 19 Routine MPI_Type_get_extent replaces deprecated functions MPI_Type_extent, MPI_Type_lb,
MPI_Type_ub.

Figure 6.9: True lower bound and extent of a subarray data type

The subarray datatype need not start at the first element of the buffer, so the extent is an overstatement
of how much data is involved. In fact, the lower bound is zero, and the extent equals the size of the block
from which the subarray is taken. The routine MPI_Type_get_true_extent (figure 6.17) returns the lower
bound, indicating where the data starts, and the extent from that point. This is illustrated in figure 6.9.
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Figure 6.17 MPI_Type_get_true_extent
Name Param name Explanation C type F type inout

MPI_Type_get_true_extent (
MPI_Type_get_true_extent_c (

datatype datatype to get
information on

MPI_Datatype TYPE
(MPI_Datatype)

IN

true_lb true lower bound of
datatype

[ MPI_Aint∗
MPI_Count∗ INTEGER

(KIND=MPI_ADDRESS_KIND)
OUT

true_extent true extent of datatype [ MPI_Aint∗
MPI_Count∗ INTEGER

(KIND=MPI_ADDRESS_KIND)
OUT

)

Code:

// trueextent.c
int sender = 0, receiver = 1, the_other =

↪1-procno;
int sizes[2] = {4,6},subsizes[2] =

↪{2,3},starts[2] = {1,2};
MPI_Datatype subarraytype;
MPI_Type_create_subarray

(2,sizes,subsizes,starts,
MPI_ORDER_C,MPI_DOUBLE,&subarraytype);

MPI_Type_commit(&subarraytype);

MPI_Aint true_lb,true_extent,extent;
MPI_Type_get_true_extent
(subarraytype,&true_lb,&true_extent);

MPI_Aint
comp_lb = sizeof(double) *

( starts[0]*sizes[1]+starts[1] ),
comp_extent = sizeof(double) *

( sizes[1]-starts[1] // first row
+ starts[1]+subsizes[1] // last

↪row
+ ( subsizes[0]>1 ?

↪subsizes[0]-2 : 0 )*sizes[1] );
ASSERT(true_lb==comp_lb);
ASSERT(true_extent==comp_extent);

↪MPI_Send(source,1,subarraytype,the_other,0,comm);
MPI_Type_free(&subarraytype);

Output:

In basic array of 192 bytes
find sub array of 48 bytes
Found lb=64, extent=72
Computing lb=64 extent=72
Non-true lb=0, extent=192, computed=192
Finished
received: 8.500 9.500 10.500 14.500 15.500

↪16.500
1,2
1,3
1,4
2,2
2,3
2,4

There are also ‘big data’ routines MPI_Type_get_extent_x MPI_Type_get_true_extent_x that has an MPI_Count
as output.
The following material is for the recently released MPI-4 standard and may not be supported yet.

The C routines MPI_Type_get_extent_c MPI_Type_get_true_extent_c also output an MPI_Count.
End of MPI-4 material
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Figure 6.18 MPI_Type_create_resized
Name Param name Explanation C type F type inout

MPI_Type_create_resized (
MPI_Type_create_resized_c (

oldtype input datatype MPI_Datatype TYPE
(MPI_Datatype)

IN

lb new lower bound of
datatype

[ MPI_Aint
MPI_Count INTEGER

(KIND=MPI_ADDRESS_KIND)
IN

extent new extent of datatype [ MPI_Aint
MPI_Count INTEGER

(KIND=MPI_ADDRESS_KIND)
IN

newtype output datatype MPI_Datatype* TYPE
(MPI_Datatype)

OUT

)

6.6.2 Extent resizing

A type is partly characterized by its lower bound and extent, or equivalently lower bound and upperbound.
Somewhat miraculously, you can actually change these to achieve special effects. This is needed for:

• Some cases of gather/scatter operations; see the example in section 6.6.2.2.
• When the count of derived items in a buffer is more than one. See the example in section 6.6.2.1.

The technicality on which the solution hinges is that you can ‘resize’ a type with MPI_Type_create_resized
(figure 6.18) to give it a different extent, while not affecting how much data there actually is in it.

We can describe the space taken by a data type (the ‘true extent’) and the ‘extent’ as follows. If the send
count is more than 1, or if you scatter some data type:

1. A pointer is set at the first data item; then
2. For each instance of the datatype to be sent:

(a) data is sent as described by the data type; and
(b) the pointer is advanced by the extent of the data type

(Receiving and gathering behave similarly, but with data going in the opposite direction.)

6.6.2.1 Example 1

In the examples of derived types so far we always used a send count of 1. What happens if you use a larger
count?

Consider a vector type, with a send count of 2.

MPI_Type_vector( count,bs,stride,oldtype,&one_n_type );
MPI_Type_contiguous( 2,&one_n_type,&two_n_type );

Contrast this with a twice-as-large vector type: It is clear that

MPI_Type_vector( 2*count,bs,stride,oldtype,&two_n_type );
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Figure 6.10: Contiguous type of two vectors, before and after resizing the extent.

The difference is pictured in figure 6.10, where the two illustrates the result of using a send count of 2,
and the bottom the desired effect.

To show how this problem can be solved by resizing the extent, let’s look at a specific example, and
consider sending more than one derived type, from a buffer containing consecutive integers:

// vectorpadsend.c
for (int i=0; i<max_elements; i++) sendbuffer[i] = i;
MPI_Type_vector(count,blocklength,stride,MPI_INT,&stridetype);
MPI_Type_commit(&stridetype);
MPI_Send( sendbuffer,ntypes,stridetype, receiver,0, comm );

We receive into a contiguous buffer:
MPI_Recv( recvbuffer,max_elements,MPI_INT, sender,0, comm,&status );
int count; MPI_Get_count(&status,MPI_INT,&count);
printf("Receive %d elements:",count);
for (int i=0; i<count; i++) printf(" %d",recvbuffer[i]);
printf("\n");

giving an output of:

Receive 6 elements: 0 2 4 5 7 9
Next, we resize the type to ad the gap at the end. This is illustrated in figure 6.10.

Resizing the type looks like:
MPI_Type_get_extent(stridetype,&l,&e);
printf("Stride type l=%ld e=%ld\n",l,e);
e += ( stride-blocklength) * sizeof(int);
MPI_Type_create_resized(stridetype,l,e,&paddedtype);
MPI_Type_get_extent(paddedtype,&l,&e);
printf("Padded type l=%ld e=%ld\n",l,e);
MPI_Type_commit(&paddedtype);
MPI_Send( sendbuffer,ntypes,paddedtype, receiver,0, comm );

and the corresponding output, including querying the extents, is:
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Figure 6.11: Placement of gathered strided types.

Strided type l=0 e=20
Padded type l=0 e=24
Receive 6 elements: 0 2 4 6 8 10
About the extent routines we make two observations:

1. the lower bound and extent parameters are of type MPI_Aint, meaning that they measure in
bytes; and

2. the lower bound is typically left unchanged: we give no examples in this book where it is
changed.

6.6.2.2 Example 2

For another example, let’s revisit exercise 6.4 (and figure 6.5) where each process makes a buffer of integers
that will be interleaved in a gather call: Strided data was sent in individual transactions. Would it be
possible to address all these interleaved packets in one gather or scatter call?

The problem here is that MPI uses the extent of the send type in a scatter, or the receive type in a gather:
if that type is 20 bytes big from its first to its last element, then data will be read out 20 bytes apart in a
scatter, or written 20 bytes apart in a gather. This ignores the ‘gaps’ in the type! (See exercise 6.4.)

int *mydata = (int*) malloc( localsize*sizeof(int) );
for (int i=0; i<localsize; i++)

mydata[i] = i*nprocs+procno;
MPI_Gather( mydata,localsize,MPI_INT,

/* rest to be determined */ );

An ordinary gather call will of course not interleave, but put the data end-to-end:

MPI_Gather( mydata,localsize,MPI_INT,
gathered,localsize,MPI_INT, // abutting
root,comm );

gather 4 elements from 3 procs:
0 3 6 9 1 4 7 10 2 5 8 11
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Using a strided type still puts data end-to-end, but now there are unwritten gaps in the gather buffer:

MPI_Gather( mydata,localsize,MPI_INT,
gathered,1,stridetype, // abut with gaps
root,comm );

This is illustrated in figure 6.11. A sample printout of the result would be:

0 1879048192 1100361260 3 3 0 6 0 0 9 1 198654

Figure 6.12: Interleaved gather from data with resized extent

The trick is to use MPI_Type_create_resized to make the extent of the type only one int long:

// interleavegather.c
MPI_Datatype interleavetype;
MPI_Type_create_resized(stridetype,0,sizeof(int),&interleavetype);
MPI_Type_commit(&interleavetype);
MPI_Gather( mydata,localsize,MPI_INT,

gathered,1,interleavetype, // shrunk extent
root,comm );

Now data is written with the same stride, but at starting points equal to the shrunk extent:

0 1 2 3 4 5 6 7 8 9 10 11
This is illustrated in figure 6.12.

Fortran note 13: Extent as Aint. The lowerbound and extent parameters are of type
Integer(kind=MPI_Address_kind):

!! stridescatter.F90
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integer(kind=MPI_Address_kind) :: l,e
call MPI_Type_get_extent(scattertype,l,e)
e = c_sizeof(i)
call MPI_Type_create_resized(scattertype,l,e,interleavetype)
call MPI_Type_commit(interleavetype)

Exercise 6.7. Rewrite exercise 6.4 to use a gather, rather than individual messages.

MPL note 57: Extent resizing. Resizing a datatype does not give a new type, but does the resize ‘in place’:

void layout::resize(ssize_t lb, ssize_t extent);

6.6.2.3 Example: dynamic vectors

Does it bother you (a little) that in the vector type you have to specify explicitly how many blocks there
are? It would be nice if you could create a ‘block with padding’ and then send however many of those.

Well, you can introduce that padding by resizing a type, making it a little larger.

// stridestretch.c
MPI_Datatype oneblock;
MPI_Type_vector(1,1,stride,MPI_DOUBLE,&oneblock);
MPI_Type_commit(&oneblock);
MPI_Aint block_lb,block_x;
MPI_Type_get_extent(oneblock,&block_lb,&block_x);
printf("One block has extent: %ld\n",block_x);

MPI_Datatype paddedblock;
MPI_Type_create_resized(oneblock,0,stride*sizeof(double),&paddedblock);
MPI_Type_commit(&paddedblock);
MPI_Type_get_extent(paddedblock,&block_lb,&block_x);
printf("Padded block has extent: %ld\n",block_x);

// now send a bunch of these padded blocks
MPI_Send(source,count,paddedblock,the_other,0,comm);

There is a second solution to this problem, using a structure type. This does not use resizing, but rather
indicates a displacement that reaches to the end of the structure. We do this by putting a type MPI_UB at
this displacement:

int blens[2]; MPI_Aint displs[2];
MPI_Datatype types[2], paddedblock;
blens[0] = 1; blens[1] = 1;
displs[0] = 0; displs[1] = 2 * sizeof(double);
types[0] = MPI_DOUBLE; types[1] = MPI_UB;
MPI_Type_struct(2, blens, displs, types, &paddedblock);
MPI_Type_commit(&paddedblock);
MPI_Status recv_status;
MPI_Recv(target,count,paddedblock,the_other,0,comm,&recv_status);
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Figure 6.13: Transposing a 1D partitioned array

6.6.2.4 Example: transpose

Transposing data is an important part of such operations as the FFT. We develop this in steps. Refer to
figure 6.13.

The source data can be described as a vector type defined as:

• there are 𝑏 blocks,
• of blocksize 𝑏,
• spaced apart by the global 𝑖-size of the array.

## transposeblock.py
MPI_Datatype sourceblock;
MPI_Type_vector( blocksize_j,blocksize_i,isize,MPI_INT,&sourceblock);
MPI_Type_commit( &sourceblock);

The target type is harder to describe. First we note that each contiguous block from the source type can
be described as a vector type with:

• 𝑏 blocks,
• of size 1 each,
• stided by the global 𝑗-size of the matrix.

MPI_Datatype targetcolumn;
MPI_Type_vector( blocksize_i,1,jsize, MPI_INT,&targetcolumn);
MPI_Type_commit( &targetcolumn );

For the full type at the receiving process we now need to pack 𝑏 of these lines together.

Exercise 6.8. Finish the code.
• What is the extent of the targetcolumn type?
• What is the spacing of the first elements of the blocks? How do you therefore
resize the targetcolumn type?

6.7 Reconstructing types

It is possible to find from a datatype how it was constructed. This uses the routines MPI_Type_get_envelope
and MPI_Type_get_contents. The first routine returns the combiner (with values such as
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Figure 6.19 MPI_Pack
Name Param name Explanation C type F type inout

MPI_Pack (
MPI_Pack_c (

inbuf input buffer start const void* TYPE(*),
DIMENSION(..)

IN

incount number of input data items [ int
MPI_Count INTEGER IN

datatype datatype of each input
data item

MPI_Datatype TYPE
(MPI_Datatype)

IN

outbuf output buffer start void* TYPE(*),
DIMENSION(..)

OUT

outsize output buffer size, in
bytes

[ int
MPI_Count INTEGER IN

position current position in
buffer, in bytes

[ int∗
MPI_Count∗ INTEGER INOUT

comm communicator for packed
message

MPI_Comm TYPE
(MPI_Comm)

IN

)

MPI_COMBINER_VECTOR) and the number of parameters; the second routine is then used to retrieve the
actual parameters.

6.8 Packing

One of the reasons for derived datatypes is dealing with noncontiguous data. In older communication
libraries this could only be done by packing data from its original containers into a buffer, and likewise
unpacking it at the receiver into its destination data structures.

MPI offers this packing facility, partly for compatibility with such libraries, but also for reasons of flexibil-
ity. Unlike with derived datatypes, which transfers data atomically, packing routines add data sequentially
to the buffer and unpacking takes them sequentially.

This means that one could pack an integer describing how many floating point numbers are in the rest
of the packed message. Correspondingly, the unpack routine could then investigate the first integer and
based on it unpack the right number of floating point numbers.

MPI offers the following:

• The MPI_Pack command adds data to a send buffer;
• the MPI_Unpack command retrieves data from a receive buffer;
• the buffer is sent with a datatype of MPI_PACKED.

With MPI_Pack (figure 6.19) data elements can be added to a buffer one at a time. The position parameter
is updated each time by the packing routine.

Conversely, MPI_Unpack (figure 6.20) retrieves one element from the buffer at a time. You need to specify
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Figure 6.20 MPI_Unpack
Name Param name Explanation C type F type inout

MPI_Unpack (
MPI_Unpack_c (

inbuf input buffer start const void* TYPE(*),
DIMENSION(..)

IN

insize size of input buffer, in
bytes

[ int
MPI_Count INTEGER IN

position current position in bytes [ int∗
MPI_Count∗ INTEGER INOUT

outbuf output buffer start void* TYPE(*),
DIMENSION(..)

OUT

outcount number of items to be
unpacked

[ int
MPI_Count INTEGER IN

datatype datatype of each output
data item

MPI_Datatype TYPE
(MPI_Datatype)

IN

comm communicator for packed
message

MPI_Comm TYPE
(MPI_Comm)

IN

)

the MPI datatype.

A packed buffer is sent or received with a datatype of MPI_PACKED. The sending routine uses the position
parameter to specify how much data is sent, but the receiving routine does not know this value a priori,
so has to specify an upper bound.
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Code:

if (procno==sender) {
position = 0;
MPI_Pack(&nsends,1,MPI_INT,

buffer,buflen,&position,comm);
for (int i=0; i<nsends; i++) {
double value = rand()/(double)RAND_MAX;
printf("[%d] pack %e\n",procno,value);
MPI_Pack(&value,1,MPI_DOUBLE,

buffer,buflen,&position,comm);
}
MPI_Pack(&nsends,1,MPI_INT,

buffer,buflen,&position,comm);

↪MPI_Send(buffer,position,MPI_PACKED,other,0,comm);
} else if (procno==receiver) {

int irecv_value;
double xrecv_value;

↪MPI_Recv(buffer,buflen,MPI_PACKED,other,0,
comm,MPI_STATUS_IGNORE);

position = 0;
MPI_Unpack(buffer,buflen,&position,

&nsends,1,MPI_INT,comm);
for (int i=0; i<nsends; i++) {
MPI_Unpack(buffer,buflen,

↪&position,&xrecv_value,1,MPI_DOUBLE,comm);
printf("[%d] unpack
↪%e\n",procno,xrecv_value);

}
MPI_Unpack(buffer,buflen,&position,

&irecv_value,1,MPI_INT,comm);
ASSERT(irecv_value==nsends);

}

Output:

[0] pack 8.401877e-01
[0] pack 3.943829e-01
[0] pack 7.830992e-01
[0] pack 7.984400e-01
[0] pack 9.116474e-01
[0] pack 1.975514e-01

You can precompute the size of the required buffer with MPI_Pack_size (figure 6.21).
Code:

// pack.c
for (int i=1; i<=4; i++) {

MPI_Pack_size(i,MPI_CHAR,comm,&s);
printf("%d chars: %d\n",i,s);

}
for (int i=1; i<=4; i++) {

↪MPI_Pack_size(i,MPI_UNSIGNED_SHORT,comm,&s);
printf("%d unsigned shorts: %d\n",i,s);

}
for (int i=1; i<=4; i++) {

MPI_Pack_size(i,MPI_INT,comm,&s);
printf("%d ints: %d\n",i,s);

}

Output:

1 chars: 1
2 chars: 2
3 chars: 3
4 chars: 4
1 unsigned shorts: 2
2 unsigned shorts: 4
3 unsigned shorts: 6
4 unsigned shorts: 8
1 ints: 4
2 ints: 8
3 ints: 12
4 ints: 16
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Figure 6.21 MPI_Pack_size
Name Param name Explanation C type F type inout

MPI_Pack_size (
MPI_Pack_size_c (

incount count argument to packing
call

[ int
MPI_Count INTEGER IN

datatype datatype argument to
packing call

MPI_Datatype TYPE
(MPI_Datatype)

IN

comm communicator argument to
packing call

MPI_Comm TYPE
(MPI_Comm)

IN

size upper bound on size of
packed message, in bytes

[ int∗
MPI_Count∗ INTEGER OUT

)

Exercise 6.9. Suppose you have a ‘structure of arrays’

struct aos {
int length;
double *reals;
double *imags;

};

with dynamically created arrays. Write code to send and receive this structure.
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6.9 Review questions

For all true/false questions, if you answer that a statement is false, give a one-line explanation.

1. Give two examples of MPI derived datatypes. What parameters are used to describe them?
Solution to exercise 6.9.

• Contiguous: number of elements, type;
• vector: number of blocks and block size, type;
• indexed: number of blocks, individual size and displacement, type;
• struct: as indexed, but adding types.

2. Give a practical example where the sender uses a different type to send than the receiver uses
in the corresponding receive call. Name the types involved.

Solution to exercise 6.9.
• Sending a row from a Fortran matrix or a column from a C matrix, to contiguous.

One example would be transposing a matrix between two processors.
• Gathering boundary elements of a physical domain: from indexed to contiguous.
• Sending a row out of a Fortran array or column out of C array: from vector to

contiguous.
• Sending one field out of a row of structures: byte-indexed to contiguous.
• All the above can be reversed.

3. Fortran only. True or false?
(a) Array indices can be different between the send and receive buffer arrays.
(b) It is allowed to send an array section.
(c) You need to Reshape a multi-dimensional array to linear shape before you can send it.
(d) An allocatable array, when dimensioned and allocated, is treated by MPI as if it were a

normal static array, when used as send buffer.
(e) An allocatable array is allocated if you use it as the receive buffer: it is filled with the

incoming data.
4. Fortran only: how do you handle the case where you want to use an allocatable array as receive

buffer, but it has not been allocated yet, and you do not know the size of the incoming data?
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Chapter 7

MPI topic: Communicators

A communicator is an object describing a group of processes. In many applications all processes work
together closely coupled, and the only communicator you need is MPI_COMM_WORLD, the group describing all
processes that your job starts with.

In this chapter you will see ways to make new groups of MPI processes: subgroups of the original
world communicator. Chapter 8 discusses dynamic process management, which, while not extending
MPI_COMM_WORLD does extend the set of available processes. That chapter also discusses the ‘sessions
model’, which is another way to constructing communicators.

7.1 Basic communicators

There are three predefined communicators:

• MPI_COMM_WORLD comprises all processes that were started together by mpiexec (or some related
program).

• MPI_COMM_SELF is the communicator that contains only the current process.
• MPI_COMM_NULL is the invalid communicator. This values results

– when a communicator is freed; see section 7.3;
– as error return value from routines that construct communicators;
– for processes outside a created Cartesian communicator (section 11.1.1);
– on non-spawned processes when querying their parent (section 7.6.3).

These values are constants, though not necessarily compile-time constants. Thus, they can not be used in
switch statements, array declarations, or constexpr evaluations.

If you don’t want to write MPI_COMM_WORLD repeatedly, you can assign that value to a variable of type
MPI_Comm.

Examples:

// C:
#include <mpi.h>
MPI_Comm comm = MPI_COMM_WORLD;
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Figure 7.1 MPI_Comm_dup
Name Param name Explanation C type F type inout

MPI_Comm_dup (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

newcomm copy of comm MPI_Comm* TYPE
(MPI_Comm)

OUT

)
MPL:

Done as part of the copy assignment operator.

!! Fortran 2008 interface
use mpi_f08
Type(MPI_Comm) :: comm = MPI_COMM_WORLD

!! Fortran legacy interface
#include <mpif.h>
Integer :: comm = MPI_COMM_WORLD

Python note 24: Communicator types.
comm = MPI.COMM_WORLD

MPL note 58: Predefined communicators. The environment namespace has the equivalents of MPI_COMM_WORLD
and MPI_COMM_SELF:

const communicator& mpl::environment::comm_world();
const communicator& mpl::environment::comm_self();

Uses of MPI_COMM_NULL are handled differently.

MPL note 59: Raw communicator handles. Should you need the MPI_Comm object contained in an MPL
communicator, there is an access function native_handle.

You can name your communicators with MPI_Comm_set_name, which could improve the quality of error
messages when they arise.

7.2 Duplicating communicators

With MPI_Comm_dup (figure 7.1) you can make an exact duplicate of a communicator (see section 7.2.2 for
an application). There is a nonblocking variant MPI_Comm_idup (figure 7.2).

These calls do not propagate info hints (sections 15.1.1 and 15.1.1.2); to achieve this, use
MPI_Comm_dup_with_info and MPI_Comm_idup_with_info; section 15.1.1.2.

Python note 25: Communicator duplication. Duplicate communicators are created as output of the dupli-
cation routine:
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Figure 7.2 MPI_Comm_idup
Name Param name Explanation C type F type inout

MPI_Comm_idup (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

newcomm copy of comm MPI_Comm* TYPE
(MPI_Comm)

OUT

request communication request MPI_Request* TYPE
(MPI_Request)

OUT

)

newcomm = comm.Dup()

MPL note 60: Communicator duplication. Communicators can be duplicated but only during initialization.
Copy assignment has been deleted. Thus:

// LEGAL:
mpl::communicator init = comm;
// WRONG:
mpl::communicator init;
init = comm;

7.2.1 Communicator comparing

You may wonder what ‘an exact copy’ means precisely. For this, think of a communicator as a context
label that you can attach to, among others, operations such as sends and receives. And it’s that label that
counts, not what processes are in the communicator. A send and a receive ‘belong together’ if they have
the same communicator context. Conversely, a send in one communicator can not be matched to a receive
in a duplicate communicator, made by MPI_Comm_dup.

Testing whether two communicators are really the same is then more than testing if they comprise the
same processes. The call MPI_Comm_compare returns MPI_IDENT if two communicator values are the same,
and not if one is derived from the other by duplication:
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Code:

// commcompare.c
int result;
MPI_Comm copy = comm;
MPI_Comm_compare(comm,copy,&result);
printf("assign: comm==copy: %d \n",

result==MPI_IDENT);
printf(" congruent: %d \n",

result==MPI_CONGRUENT);
printf(" not equal: %d \n",

result==MPI_UNEQUAL);

MPI_Comm_dup(comm,&copy);
MPI_Comm_compare(comm,copy,&result);
printf("duplicate: comm==copy: %d \n",

result==MPI_IDENT);
printf(" congruent: %d \n",

result==MPI_CONGRUENT);
printf(" not equal: %d \n",

result==MPI_UNEQUAL);

Output:

assign: comm==copy: 1
congruent: 0
not equal: 0

duplicate: comm==copy: 0
congruent: 1
not equal: 0

Communicators that are not actually the same can be

• consisting of the same processes, in the same order, giving MPI_CONGRUENT;
• merely consisting of the same processes, but not in the same order, giving MPI_SIMILAR;
• different, giving MPI_UNEQUAL.

Comparing against MPI_COMM_NULL is not allowed.

MPL note 61: Communicator comparing.
Code:

const mpl::communicator &comm =
mpl::environment::comm_world();

MPI_Comm
world_extract = comm.native_handle(),
world_given = MPI_COMM_WORLD;

int result;
MPI_Comm_compare(world_extract,world_given,&result);
cout << "Compare raw comms: " << "\n"

<< "identical: "
<< (result==MPI_IDENT) << "\n"
<< "congruent: "
<< (result==MPI_CONGRUENT) << "\n"
<< "unequal : "
<< (result==MPI_UNEQUAL) << "\n";

Output:

Compare raw comms:
identical: true
congruent: false
unequal : false

7.2.2 Communicator duplication for library use

Duplicating a communicator may seem pointless, but it is actually very useful for the design of software
libraries. Imagine that you have a code
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MPI_Isend(...); MPI_Irecv(...);
// library call
MPI_Waitall(...);

and suppose that the library has receive calls. Now it is possible that the receive in the library inadvertently
catches the message that was sent in the outer environment.

Let us consider an example. First of all, here is code where the library stores the communicator of the
calling program:

// commdupwrong.cxx
class library {
private:
MPI_Comm comm;
int procno,nprocs,other;
MPI_Request request[2];

public:
library(MPI_Comm incomm) {

comm = incomm;
MPI_Comm_rank(comm,&procno);
other = 1-procno;

};
int communication_start();
int communication_end();

};

This models a main program that does a simple message exchange, and it makes two calls to library
routines. Unbeknown to the user, the library also issues send and receive calls, and they turn out to
interfere.

Here

• The main program does a send,
• the library call function_start does a send and a receive; because the receive canmatch either
send, it is paired with the first one;

• the main program does a receive, which will be paired with the send of the library call;
• both the main program and the library do a wait call, and in both cases all requests are succes-
fully fulfilled, just not the way you intended.

To prevent this confusion, the library should duplicate the outer communicator with MPI_Comm_dup and
send all messages with respect to its duplicate. Now messages from the user code can never reach the
library software, since they are on different communicators.

// commdupright.cxx
class library {
private:
MPI_Comm comm;
int procno,nprocs,other;
MPI_Request request[2];

public:
library(MPI_Comm incomm) {
MPI_Comm_dup(incomm,&comm);
MPI_Comm_rank(comm,&procno);
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other = 1-procno;
};
~library() {
MPI_Comm_free(&comm);

}
int communication_start();
int communication_end();

};

Note how the preceding example performs the MPI_Comm_free cal in a C++ destructor .

## commdup.py
class Library():

def __init__(self,comm):
# wrong: self.comm = comm
self.comm = comm.Dup()
self.other = self.comm.Get_size()-self.comm.Get_rank()-1
self.requests = [ None ] * 2

def __del__(self):
if self.comm.Get_rank()==0: print(".. freeing communicator")
self.comm.Free()

def communication_start(self):
sendbuf = np.empty(1,dtype=int); sendbuf[0] = 37
recvbuf = np.empty(1,dtype=int)
self.requests[0] = self.comm.Isend( sendbuf, dest=other,tag=2 )
self.requests[1] = self.comm.Irecv( recvbuf, source=other )

def communication_end(self):
MPI.Request.Waitall(self.requests)

mylibrary = Library(comm)
my_requests[0] = comm.Isend( sendbuffer,dest=other,tag=1 )
mylibrary.communication_start()
my_requests[1] = comm.Irecv( recvbuffer,source=other )
MPI.Request.Waitall(my_requests,my_status)
mylibrary.communication_end()

7.3 Sub-communicators

In many scenarios you divide a large job over all the available processors. However, your job may have
two or more parts that can be considered as jobs by themselves. In that case it makes sense to divide your
processors into subgroups accordingly.

Suppose that you are running a simulation where inputs are generated, a computation is performed on
them, and the results of this computation are analyzed or rendered graphically. You could then consider
dividing your processors in three groups corresponding to generation, computation, rendering. As long
as you only do sends and receives, this division works fine. However, if one group of processes needs to
perform a collective operation, you don’t want the other groups involved in this. Thus, you really want
the three groups to be distinct from each other: you want them to be in separate communicators.
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In order to make such subsets of processes, MPI has the mechanism of taking a subset of MPI_COMM_WORLD
(or other communicator) and turning that subset into a new communicator.

Now you understand why the MPI collective calls had an argument for the communicator. A collective
involves all processes of that communicator. If only the world communicator existed, no such argument
would be needed, but by making a communicator that contains a subset of all available processes, you
can do a collective on that subset.

The usage is as follows:

• You create a new communicator with routines such as MPI_Comm_dup (section 7.2), MPI_Comm_split
(section 7.4), MPI_Comm_create (section 7.5), MPI_Intercomm_create (section 7.6), MPI_Comm_spawn
(section 8.1);

• you use that communiator for a while;
• and you call MPI_Comm_free when you are done with it; this also sets the communicator variable
to MPI_COMM_NULL. A similar routine, MPI_Comm_disconnect waits for all pending communication
to finish. Both are collective.

7.3.1 Scenario: distributed linear algebra

For scalability reasons (see HPC book, section-7.2.3), matrices should often be distributed in a 2D manner,
that is, each process receives a subblock that is not a block of full columns or rows. This means that the
processors themselves are, at least logically, organized in a 2D grid. Operations then involve reductions
or broadcasts inside rows or columns. For this, a row or column of processors needs to be in a subcom-
municator.

7.3.2 Scenario: climate model

A climate simulation code has several components, for instance corresponding to land, air, ocean, and
ice. You can imagine that each needs a different set of equations and algorithms to simulate. You can then
divide your processes, where each subset simulates one component of the climate, occasionally commu-
nicating with the other components.

7.3.3 Scenario: quicksort

The popular quicksort algorithm works by splitting the data into two subsets that each can be sorted
individually. If you want to sort in parallel, you could implement this by making two subcommunicators,
and sorting the data on these, creating recursively more subcommunicators.

7.3.4 Shared memory

There is an important application of communicator splitting in the context of one-sided communication,
grouping processes by whether they access the same shared memory area; see section 7.4.1.
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Figure 7.3 MPI_Comm_split
Name Param name Explanation C type F type inout

MPI_Comm_split (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

color control of subset
assignment

int INTEGER IN

key control of rank assignment int INTEGER IN
newcomm new communicator MPI_Comm* TYPE

(MPI_Comm)
OUT

)

7.3.5 Process spawning

Finally, newly created communicators do not always need to be subset of the initial MPI_COMM_WORLD. MPI
can dynamically spawn new processes (see chapter 8) which start in a MPI_COMM_WORLD of their own. Ad-
ditionally, another communicator will be created that spawns the old and new worlds so that you can
communicate with the new processes.

7.4 Splitting a communicator

Above we saw several scenarios where it makes sense to divide MPI_COMM_WORLD into disjoint subcommu-
nicators. The command MPI_Comm_split (figure 7.3) uses a ‘color’ to define these subcommunicators: all
processes in the old communicator with the same color wind up in a new communicator together. The
old communicator still exists, so processes now have two different contexts in which to communicate.

The ranking of processes in the new communicator is determined by a ‘key’ value: in a subcommunicator
the process with lowest key is given the lowest rank, et cetera. Most of the time, there is no reason to
use a relative ranking that is different from the global ranking, so the MPI_Comm_rank value of the global
communicator is a good choice. Any ties between identical key values are broken by using the rank from
the original communicator. Thus, specifying zero as the key will also retain the original process ordering.

Figure 7.1: Row and column broadcasts in subcommunicators
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Here is one example of communicator splitting. Suppose your processors are in a two-dimensional grid:
MPI_Comm_rank( MPI_COMM_WORLD, &mytid );
proc_i = mytid % proc_column_length;
proc_j = mytid / proc_column_length;

You can now create a communicator per column:
MPI_Comm column_comm;
MPI_Comm_split( MPI_COMM_WORLD, proc_j, mytid, &column_comm );

and do a broadcast in that column:
MPI_Bcast( data, /* stuff */, column_comm );

Because of the SPMD nature of the program, you are now doing in parallel a broadcast in every processor
column. Such operations often appear in dense linear algebra.
Exercise 7.1. Organize your processes in a grid, and make subcommunicators for the rows

and columns. For this compute the row and column number of each process.
In the row and column communicator, compute the rank. For instance, on a 2 × 3
processor grid you should find:
Global ranks: Ranks in row: Ranks in colum:

0 1 2 0 1 2 0 0 0
3 4 5 0 1 2 1 1 1

Check that the rank in the row communicator is the column number, and the other
way around.
Run your code on different number of processes, for instance a number of rows and
columns that is a power of 2, or that is a prime number.
(There is a skeleton for this exercise under the name procgrid.)

Remark 20 A process that sets the color parameter to MPI_UNDEFINED, receives a communicator value of
MPI_COMM_NULL, that is, it will not be part of any created subcommunicator.

Python note 26: Comm split key is optional. In Python, the ‘key’ argument is optional:
Code:

## commsplit.py
mydata = procid

# communicator modulo 2
color = procid%2
mod2comm = comm.Split(color)
procid2 = mod2comm.Get_rank()

# communicator modulo 4 recursively
color = procid2 % 2
mod4comm = mod2comm.Split(color)
procid4 = mod4comm.Get_rank()

Output:

Proc 0 -> 0 -> 0
Proc 2 -> 1 -> 0
Proc 6 -> 3 -> 1
Proc 4 -> 2 -> 1
Proc 3 -> 1 -> 0
Proc 7 -> 3 -> 1
Proc 1 -> 0 -> 0
Proc 5 -> 2 -> 1

MPL note 62: Communicator splitting. In MPL, splitting a communicator is done as one of the overloads
of the communicator constructor;
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// commsplit.cxx
// create sub communicator modulo 2
int color2 = procno % 2;
mpl::communicator comm2
( mpl::communicator::split, comm_world, color2 );

auto procno2 = comm2.rank();

// create sub communicator modulo 4 recursively
int color4 = procno2 % 2;
mpl::communicator

comm4( mpl::communicator::split, comm2, color4 );
auto procno4 = comm4.rank();

Implementation note: The communicator::split identifier is an object of class
communicator::split_tag, itself is an otherwise empty subclass of communicator:

class split_tag {};
static constexpr split_tag split{};

As another example of communicator splitting, consider the recursive algorithm for matrix transposition.
Processors are organized in a square grid. The matrix is divided on 2 × 2 block form.

Exercise 7.2. Implement a recursive algorithm for matrix transposition:

• Swap blocks (1, 2) and (2, 1); then
• Divide the processors into four subcommunicators, and apply this algorithm
recursively on each;

• If the communicator has only one process, transpose the matrix in place.
(assume one element per process)

7.4.1 Splitting by type

There is also a routine MPI_Comm_split_type (figure 7.4) which uses a type rather than a key to split the
communicator.

Here the split_type parameter has to be from the following (short) list:

• MPI_COMM_TYPE_SHARED: split the communicator into subcommunicators of processes sharing a
memory area. We will see this in action in section 12.1.

The following material is for the recently released MPI-4 standard and may not be supported yet.
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Figure 7.4 MPI_Comm_split_type
Name Param name Explanation C type F type inout

MPI_Comm_split_type (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

split_type type of processes to be
grouped together

int INTEGER IN

key control of rank assignment int INTEGER IN
info info argument MPI_Info TYPE

(MPI_Info)
INOUT

newcomm new communicator MPI_Comm* TYPE
(MPI_Comm)

OUT

)
Python:

MPI.Comm.Split_type(
self, int split_type, int key=0, Info info=INFO_NULL)

• MPI_COMM_TYPE_HW_GUIDED (MPI-4): split using an info value from MPI_Get_hw_resource_types.
The function MPI_Get_hw_resource_info (as of MPI-4.1) returns an MPI_Info object containing
key/value pairs of available hardware resources. (See section 15.1.1 for how to unpack info ob-
jects.)

• MPI_COMM_TYPE_HW_UNGUIDED (MPI-4): similar to MPI_COMM_TYPE_HW_GUIDED, but the resulting com-
municators should be a strict subset of the original communicator. On processes where this
condition can not be fullfilled, MPI_COMM_NULL will be returned.

• MPI_COMM_TYPE_RESOURCE_GUIDED (MPI-4.1): this splits a communicator by
– Hardware properties. For this case there is the info key mpi_hw_resource_type. One

possible key value mpi_shared_memory effects the same split as using the split type
MPI_COMM_TYPE_SHARED.

– pset names. For this case there is the info key mpi_pset_name. If a communicator is not
derived from a session, the split communicator will be MPI_COMM_NULL.

End of MPI-4 material

Remark 21 The OpenMPI implementation of MPI has a number of non-standard split types, such as
OMPI_COMM_TYPE_SOCKET; see https://www.open-mpi.org/doc/v4.1/man3/MPI_Comm_split_type.
3.php

7.5 Communicators and groups

You saw in section 7.4 that it is possible derive communicators that have a subset of the processes of
another communicator. There is a more general mechanism, using MPI_Group objects.

Using groups, it takes the following steps to create a new communicator:

1. Access the MPI_Group of a communicator object using MPI_Comm_group (figure 7.5).
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Figure 7.5 MPI_Comm_group
Name Param name Explanation C type F type inout

MPI_Comm_group (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

group group corresponding to
comm

MPI_Group* TYPE
(MPI_Group)

OUT

)

Figure 7.6 MPI_Comm_create
Name Param name Explanation C type F type inout

MPI_Comm_create (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

group group, which is a subset
of the group of comm

MPI_Group TYPE
(MPI_Group)

IN

newcomm new communicator MPI_Comm* TYPE
(MPI_Comm)

OUT

)

2. Use various routines, discussed next, to form a new group.
Note: you would form that group even on the processes that will not be come part of the new
communicator.

3. Make a new communicator object from the group with using MPI_Comm_create (figure 7.6), col-
lective on the old communicator.

4. On the ranks that were not in the subgroup, the resulting communicator value will be
MPI_COMM_NULL.

There is also a routine MPI_Comm_create_group that only needs to be called on the group that constitutes
the new communicator.

7.5.1 Process groups

Groups are manipulated with MPI_Group_incl (figure 7.7), MPI_Group_excl (figure 7.8), MPI_Group_difference
and a few more.

MPI_Comm_group (comm, group)
MPI_Comm_create (MPI_Comm comm,MPI_Group group, MPI_Comm newcomm)

MPI_Group_union(group1, group2, newgroup)
MPI_Group_intersection(group1, group2, newgroup)
MPI_Group_difference(group1, group2, newgroup)

MPI_Group_size(group, size)
MPI_Group_rank(group, rank)
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Figure 7.7 MPI_Group_incl
Name Param name Explanation C type F type inout

MPI_Group_incl (
group group MPI_Group TYPE

(MPI_Group)
IN

n number of elements in
array ranks (and size of
newgroup)

int INTEGER IN

ranks ranks of processes in
group to appear in
newgroup

const int[] INTEGER(n) IN

newgroup new group derived from
above, in the order
defined by ranks

MPI_Group* TYPE
(MPI_Group)

OUT

)

Figure 7.8 MPI_Group_excl
Name Param name Explanation C type F type inout

MPI_Group_excl (
group group MPI_Group TYPE

(MPI_Group)
IN

n number of elements in
array ranks

int INTEGER IN

ranks array of integer ranks of
processes in group not to
appear in newgroup

const int[] INTEGER(n) IN

newgroup new group derived from
above, preserving the
order defined by group

MPI_Group* TYPE
(MPI_Group)

OUT

)

Certain MPI types, MPI_Win and MPI_File, are created on a communicator. While you can not directly
extract that communicator from the object, you can get the group with MPI_Win_get_group and
MPI_File_get_group.

There is a pre-defined empty group MPI_GROUP_EMPTY, which can be used as an input to group construc-
tion routines, or appear as the result of such operations as a zero intersection. This not the same as
MPI_GROUP_NULL, which is the output of invalid operations on groups, or the result of MPI_Group_free.

MPL note 63: Raw group handles. Should you need the MPI_Datatype object contained in an MPL group,
there is an access function native_handle.

7.5.2 Examples

Suppose you want to split the world communicator into one manager process, with the remaining pro-
cesses workers.
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// portapp.c
MPI_Comm comm_work;
{
MPI_Group world_group,work_group;
MPI_Comm_group( comm_world,&world_group );
int manager[] = {0};
MPI_Group_excl( world_group,1,manager,&work_group );
MPI_Comm_create( comm_world,work_group,&comm_work );
MPI_Group_free( &world_group ); MPI_Group_free( &work_group );

}

Exercise 7.3. Write a code that does a scaling study: your code needs to contain a loop over
increasingly sized subsets of MPI_COMM_WORLD.

for (int subsize=1; subsize<=worldsize; subsize++) {
MPI_Comm subcomm;
// form `subcomm' to be of size `subsize'
MPI_Allreduce( /* stuff */ subcomm );
}

Carefully address which process do the various communicator and group calls; in
particular do MPI_Comm_free and MPI_Group_free on the right processes.

7.6 Intercommunicators

In several scenarios it may be desirable to have a way to communicate between communicators. For
instance, an application can have clearly functionally separated modules (preprocessor, simulation, post-
processor) that need to stream data pairwise. In another example, dynamically spawned processes (sec-
tion 8.1) get their own value of MPI_COMM_WORLD, but still need to communicate with the process(es) that
spawned them. In this section we will discuss the inter-communicator mechanism that serves such use
cases.

Communicating between disjoint communicators can of course be done by having a communicator that
overlaps them, but this would be complicated: since the ‘inter’ communication happens in the overlap
communicator, you have to translate its ordering into those of the two worker communicators. It would
be easier to express messages directly in terms of those communicators, and this is what happens in an
inter-communicator .

A call to MPI_Intercomm_create (figure 7.9) involves the following communicators:

• Two local communicators, which in this context are known as intra-communicators: one process
in each will act as the local leader, connected to the remote leader;

• The peer communicator , often MPI_COMM_WORLD, that contains the local communicators;
• An inter-communicator that allows the leaders of the subcommunicators to communicate with
the other subcommunicator.

Even though the intercommunicator connects only two proceses, it is collective on the peer communicator.
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Figure 7.2: Illustration of ranks in an intercommunicator setup

Figure 7.9 MPI_Intercomm_create
Name Param name Explanation C type F type inout

MPI_Intercomm_create (
local_comm local intra-communicator MPI_Comm TYPE

(MPI_Comm)
IN

local_leader rank of local group leader
in local_comm

int INTEGER IN

peer_comm ``peer'' communicator;
significant only at the
local_leader

MPI_Comm TYPE
(MPI_Comm)

IN

remote_leader rank of remote group
leader in peer_comm;
significant only at the
local_leader

int INTEGER IN

tag tag int INTEGER IN
newintercomm new inter-communicator MPI_Comm* TYPE

(MPI_Comm)
OUT

)

7.6.1 Intercommunicator point-to-point

The local leaders can now communicate with each other.

• The sender specifies as target the local number of the other leader in the other
sub-communicator;

• Likewise, the receiver specifies as source the local number of the sender in its
sub-communicator.

In one way, this design makes sense: processors are referred to in their natural, local, numbering. On the
other hand, it means that each group needs to know how the local ordering of the other group is arranged.
Using a complicated key value makes this difficult.

if (i_am_local_leader) {
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if (color==0) {
interdata = 1.2;
int inter_target = local_number_of_other_leader;
printf("[%d] sending interdata %e to %d\n",

procno,interdata,inter_target);
MPI_Send(&interdata,1,MPI_DOUBLE,inter_target,0,intercomm);

} else {
MPI_Status status;
MPI_Recv(&interdata,1,MPI_DOUBLE,MPI_ANY_SOURCE,MPI_ANY_TAG,intercomm,&status);
int inter_source = status.MPI_SOURCE;
printf("[%d] received interdata %e from %d\n",

procno,interdata,inter_source);
if (inter_source!=local_number_of_other_leader)

fprintf(stderr,
"Got inter communication from unexpected %d; s/b %d\n",
inter_source,local_number_of_other_leader);

}
}

7.6.2 Intercommunicator collectives

The intercommunicator can be used in collectives such as a broadcast.

• In the sending group, the root process passes MPI_ROOT as ‘root’ value; all others use
MPI_PROC_NULL.

• In the receiving group, all processes use a ‘root’ value that is the rank of the root process in the
root group. Note: this is not the global rank!

Gather and scatter behave similarly; the allgather is different: all send buffers of group A are concatenated
in rank order, and places on all processes of group B.

Intercommunicators can be used if two groups of process work asynchronously with respect to each other;
another application is fault tolerance (section 15.5).

if (color==0) { // sending group: the local leader sends
if (i_am_local_leader)

root = MPI_ROOT;
else

root = MPI_PROC_NULL;
} else { // receiving group: everyone indicates leader of other group

root = local_number_of_other_leader;
}
if (DEBUG) fprintf(stderr,"[%d] using root value %d\n",procno,root);
MPI_Bcast(&bcast_data,1,MPI_INT,root,intercomm);

7.6.3 Intercommunicator querying

Some of the operations you have seen before for intra-communicators behave differently with intercom-
municator:

• MPI_Comm_size returns the size of the local group, not the size of the intercommunicator.
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Figure 7.10 MPI_Comm_get_parent
Name Param name Explanation C type F type inout

MPI_Comm_get_parent (
parent the parent communicator MPI_Comm* TYPE

(MPI_Comm)
OUT

)

Figure 7.11 MPI_Comm_test_inter
Name Param name Explanation C type F type inout

MPI_Comm_test_inter (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

flag true if comm is an
inter-communicator

int* LOGICAL OUT

)

• MPI_Comm_rank returns the rank in the local group.
• MPI_Comm_group returns the local group.

Spawned processes can find their parent communicator with MPI_Comm_get_parent (figure 7.10) (see exam-
ples in section 8.1). On other processes this returns MPI_COMM_NULL.

Test whether a communicator is intra or inter: MPI_Comm_test_inter (figure 7.11).

MPI_Comm_compare works for intercommunicators.

Processes connected through an intercommunicator can query the size of the ‘other’ communicator with
MPI_Comm_remote_size (figure 7.12). The actual group can be obtained with MPI_Comm_remote_group (fig-
ure 7.13).

Virtual topologies (chapter 11) cannot be created with an intercommunicator. To set up virtual topologies,
first transform the intercommunicator to an intracommunicator with the function MPI_Intercomm_merge
(figure 7.14).
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Figure 7.12 MPI_Comm_remote_size
Name Param name Explanation C type F type inout

MPI_Comm_remote_size (
comm inter-communicator MPI_Comm TYPE

(MPI_Comm)
IN

size number of processes in the
remote group of comm

int* INTEGER OUT

)
Python:

Intercomm.Get_remote_size(self)

Figure 7.13 MPI_Comm_remote_group
Name Param name Explanation C type F type inout

MPI_Comm_remote_group (
comm inter-communicator MPI_Comm TYPE

(MPI_Comm)
IN

group remote group corresponding
to comm

MPI_Group* TYPE
(MPI_Group)

OUT

)
Python:

Intercomm.Get_remote_group(self)

7.7 Review questions

For all true/false questions, if you answer that a statement is false, give a one-line explanation.

1. True or false: in each communicator, processes are numbered consecutively from zero.
Solution to exercise 7.3. True
2. If a process is in two communicators, it has the same rank in both.

Solution to exercise 7.3. False
3. Any communicator that is not MPI_COMM_WORLD is a strict subset of it.

Solution to exercise 7.3. False: MPI_Comm_dup gives a communicator of equal size.
4. The subcommunicators derived by MPI_Comm_split are disjoint.

Solution to exercise 7.3. True.
5. If two processes have ranks 𝑝 < 𝑞 in some communicator, and they are in the same subcommu-

nicator, then their ranks 𝑝′, 𝑞′ in the subcommunicator also obey 𝑝′ < 𝑞′.
Solution to exercise 7.3. False. That’s where the ‘key’ argument comes in.
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Figure 7.14 MPI_Intercomm_merge
Name Param name Explanation C type F type inout

MPI_Intercomm_merge (
intercomm inter-communicator MPI_Comm TYPE

(MPI_Comm)
IN

high ordering of the local and
remote groups in the new
intra-communicator

int LOGICAL IN

newintracomm new intra-communicator MPI_Comm* TYPE
(MPI_Comm)

OUT

)
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Chapter 8

MPI topic: Process management

In this course we have up to now only considered the SPMD model of running MPI programs. In some
rare cases you may want to run in an MPMDmode, rather than SPMD. This can be achieved either on the
OS level, using options of the mpiexec mechanism, or you can use MPI’s built-in process management.
Read on if you’re interested in the latter.

8.1 Process spawning

The first version of MPI did not contain any process management routines, even though the earlier PVM
project did have that functionality. Process management was later added with MPI-2.

Unlike what you might think, newly added processes do not become part of MPI_COMM_WORLD; rather, they
get their own communicator, and an inter-communicator (section 7.6) is established between this new
group and the existing one. The first routine is MPI_Comm_spawn (figure 8.1), which tries to fire up multiple
copies of a single named executable. Errors in starting up these codes are returned in an array of integers,
or if you’re feeling sure of yourself, specify MPI_ERRCODES_IGNORE.

It is not immediately clear whether there is opportunity for spawning new executables; after all,
MPI_COMM_WORLD contains all your available processors. You can probably tell your job starter to
reserve space for a few extra processes, but that is installation-dependent (see below). However,
there is a standard mechanism for querying whether such space has been reserved. The attribute
MPI_UNIVERSE_SIZE, retrieved with MPI_Comm_get_attr (section 15.1.2), will tell you to the total number of
hosts available.

If this option is not supported, you can determine yourself how many processes you want to spawn.
However, if you exceed the hardware resources, your multi-tasking operating system (which is some
variant of Unix for almost everyone) will use time-slicing to start the spawned processes, but you will not
gain any performance.

8.1.1 Commandline arguments

The argv argument contains the commandline arguments passed to the spawned process.

• This array needs to be null-terminated, so that its length can be determined.
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Figure 8.1 MPI_Comm_spawn
Name Param name Explanation C type F type inout

MPI_Comm_spawn (
command name of program to be

spawned
const char* CHARACTER IN

argv arguments to command char*[] CHARACTER(*) IN
maxprocs maximum number of

processes to start
int INTEGER IN

info a set of key-value pairs
telling the runtime system
where and how to start the
processes

MPI_Info TYPE
(MPI_Info)

IN

root rank of process in which
previous arguments are
examined

int INTEGER IN

comm intra-communicator
containing group of
spawning processes

MPI_Comm TYPE
(MPI_Comm)

IN

intercomm inter-communicator between
original group and the
newly spawned group

MPI_Comm* TYPE
(MPI_Comm)

OUT

array_of_errcodes one code per process int[] INTEGER(*) OUT
)

Python:

MPI.Intracomm.Spawn(self,
command, args=None, int maxprocs=1, Info info=INFO_NULL,
int root=0, errcodes=None)

returns an intracommunicator

• If the spawned process takes no commandline arguments, a value of MPI_ARGV_NULL can be used,
in both C and Fortran. In C this is the same as NULL.

• Unline the argv argument of a main program, the argv argument passed in the spawn call does
not contain the name of the executable.

8.1.2 Example: work manager

Here is an example of a work manager. First we query how much space we have for new processes, using
the flag to see if this option is supported:

int universe_size, *universe_size_attr,uflag;
MPI_Comm_get_attr
(comm_world,MPI_UNIVERSE_SIZE,
&universe_size_attr,&uflag);

if (uflag) {
universe_size = *universe_size_attr;

} else {
printf("This MPI does not support UNIVERSE_SIZE.\nUsing world size");
universe_size = world_n;
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}
int work_n = universe_size - world_n;
if (world_p==0) {

printf("A universe of size %d leaves room for %d workers\n",
universe_size,work_n);

printf(".. spawning from %s\n",procname);
}

(See section 15.1.2 for that dereference behavior.)

Then we actually spawn the processes:

const char *workerprogram = "./spawnapp";
MPI_Comm_spawn(workerprogram,MPI_ARGV_NULL,

work_n,MPI_INFO_NULL,
0,comm_world,&comm_inter,NULL);

## spawnmanager.py
try :

universe_size = comm.Get_attr(MPI.UNIVERSE_SIZE)
if universe_size is None:

print("Universe query returned None")
universe_size = nprocs + 4

else:
print("World has {} ranks in a universe of {}"\

.format(nprocs,universe_size))
except :

print("Exception querying universe size")
universe_size = nprocs + 4

nworkers = universe_size - nprocs

itercomm = comm.Spawn("./spawn_worker.py", maxprocs=nworkers)

A process can detect whether it was a spawning or a spawned process by using MPI_Comm_get_parent: the
resulting intercommunicator is MPI_COMM_NULL on the parent processes.

// spawnapp.c
MPI_Comm comm_parent;
MPI_Comm_get_parent(&comm_parent);
int is_child = (comm_parent!=MPI_COMM_NULL);
if (is_child) {
int nworkers,workerno;
MPI_Comm_size(MPI_COMM_WORLD,&nworkers);
MPI_Comm_rank(MPI_COMM_WORLD,&workerno);
printf("I detect I am worker %d/%d running on %s\n",

workerno,nworkers,procname);

The spawned program looks verymuch like a regular MPI program, with its own initialization and finalize
calls.

// spawnworker.c
MPI_Comm_size(MPI_COMM_WORLD,&nworkers);
MPI_Comm_rank(MPI_COMM_WORLD,&workerno);
MPI_Comm_get_parent(&parent);
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## spawnworker.py
parentcomm = comm.Get_parent()
nparents = parentcomm.Get_remote_size()

Spawned processes wind up with a value of MPI_COMM_WORLD of their own, but managers and workers can
find each other regardless. The spawn routine returns the intercommunicator to the parent; the children
can find it through MPI_Comm_get_parent (section 7.6.3). The number of spawning processes can be found
through MPI_Comm_remote_size on the parent communicator.

Running spawnapp with usize=12, wsize=4
%%
%% manager output
%%
A universe of size 12 leaves room for 8 workers
.. spawning from c209-026.frontera.tacc.utexas.edu
%%
%% worker output
%%
Worker deduces 8 workers and 4 parents
I detect I am worker 0/8 running on c209-027.frontera.tacc.utexas.edu
I detect I am worker 1/8 running on c209-027.frontera.tacc.utexas.edu
I detect I am worker 2/8 running on c209-027.frontera.tacc.utexas.edu
I detect I am worker 3/8 running on c209-027.frontera.tacc.utexas.edu
I detect I am worker 4/8 running on c209-028.frontera.tacc.utexas.edu
I detect I am worker 5/8 running on c209-028.frontera.tacc.utexas.edu
I detect I am worker 6/8 running on c209-028.frontera.tacc.utexas.edu
I detect I am worker 7/8 running on c209-028.frontera.tacc.utexas.edu

8.1.3 MPI startup with universe

You could start up a single copy of this program with

mpiexec -n 1 spawnmanager

but with a hostfile that has more than one host.

TACC note. Intel MPI requires you to pass an option -usize to mpiexec indicating the size of the
comm universe. With the TACC jobs starter ibrun do the following:

export FI_MLX_ENABLE_SPAWN=yes
# specific
MY_MPIRUN_OPTIONS="-usize 8" ibrun -np 4 spawnmanager
# more generic
MY_MPIRUN_OPTIONS="-usize ${SLURM_NPROCS}" ibrun -np 4 spawnmanager
# using mpiexec:
mpiexec -np 2 -usize ${SLURM_NPROCS} spawnmanager
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Figure 8.2 MPI_Open_port
Name Param name Explanation C type F type inout

MPI_Open_port (
info implementation-specific

information on how to
establish an address

MPI_Info TYPE
(MPI_Info)

IN

port_name newly established port char* CHARACTER OUT
)

8.1.4 MPMD

Instead of spawning a single executable, you can spawn multiple with MPI_Comm_spawn_multiple. In that
case a process can retrieve with the attribute MPI_APPNUM which of the executables it is; section 15.1.2.

Commandline arguments are handled similarly to MPI_Comm_spawn (section 8.1.1), except that that there
is now an array of arrays of strings. If not executables take commandline argumentscommandline argu-
ments!of multiple spawns, the value MPI_ARGVS_NULL can be passed. If only certain executables take no
arguments, for them an array of length 1 needs to be passed containing only the null-terminator .

8.2 Socket-style communications

It is possible to establish connections with running MPI programs that have their own world communi-
cator.

• The server process establishes a port with MPI_Open_port, and calls MPI_Comm_accept to accept
connections to its port.

• The client process specifies that port in an MPI_Comm_connect call. This establishes the connection.

8.2.1 Server calls

The server calls MPI_Open_port (figure 8.2), yielding a port name. Port names are generated by the system
and copied into a character buffer of length at most MPI_MAX_PORT_NAME.

The server then needs to call MPI_Comm_accept (figure 8.3) prior to the client doing a connect call. This
is collective over the calling communicator. It returns an intercommunicator (section 7.6) that allows
communication with the client.

MPI_Comm intercomm;
char myport[MPI_MAX_PORT_NAME];
MPI_Open_port( MPI_INFO_NULL,myport );
int portlen = strlen(myport);
MPI_Send( myport,portlen+1,MPI_CHAR,1,0,comm_world );
printf("Host sent port <<%s>>\n",myport);
MPI_Comm_accept( myport,MPI_INFO_NULL,0,comm_self,&intercomm );
printf("host accepted connection\n");

The port can be closed with MPI_Close_port.
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Figure 8.3 MPI_Comm_accept
Name Param name Explanation C type F type inout

MPI_Comm_accept (
port_name port name const char* CHARACTER IN
info implementation-dependent

information
MPI_Info TYPE

(MPI_Info)
IN

root rank in comm of root node int INTEGER IN
comm intra-communicator over

which call is collective
MPI_Comm TYPE

(MPI_Comm)
IN

newcomm inter-communicator with
client as remote group

MPI_Comm* TYPE
(MPI_Comm)

OUT

)

Figure 8.4 MPI_Comm_connect
Name Param name Explanation C type F type inout

MPI_Comm_connect (
port_name network address const char* CHARACTER IN
info implementation-dependent

information
MPI_Info TYPE

(MPI_Info)
IN

root rank in comm of root node int INTEGER IN
comm intra-communicator over

which call is collective
MPI_Comm TYPE

(MPI_Comm)
IN

newcomm inter-communicator with
server as remote group

MPI_Comm* TYPE
(MPI_Comm)

OUT

)

8.2.2 Client calls

After the server has generated a port name, the client needs to connect to it with MPI_Comm_connect (fig-
ure 8.4), again specifying the port through a character buffer. The connect call is collective over its com-
municator.

char myport[MPI_MAX_PORT_NAME];
if (work_p==0) {
MPI_Recv( myport,MPI_MAX_PORT_NAME,MPI_CHAR,

MPI_ANY_SOURCE,0, comm_world,MPI_STATUS_IGNORE );
printf("Worker received port <<%s>>\n",myport);

}
MPI_Bcast( myport,MPI_MAX_PORT_NAME,MPI_CHAR,0,comm_work );

/*
* The workers collective connect over the inter communicator
*/
MPI_Comm intercomm;
MPI_Comm_connect( myport,MPI_INFO_NULL,0,comm_work,&intercomm );
if (work_p==0) {
int manage_n;
MPI_Comm_remote_size(intercomm,&manage_n);
printf("%d workers connected to %d managers\n",work_n,manage_n);
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Figure 8.5 MPI_Publish_name
Name Param name Explanation C type F type inout

MPI_Publish_name (
service_name a service name to

associate with the port
const char* CHARACTER IN

info implementation-specific
information

MPI_Info TYPE
(MPI_Info)

IN

port_name a port name const char* CHARACTER IN
)

}

If the named port does not exist (or has been closed), MPI_Comm_connect raises an error of class MPI_ERR_PORT.

The client can sever the connection with MPI_Comm_disconnect.

Running the above code on 5 processes gives:
# exchange port name:
Host sent port <<tag#0$OFA#000010e1:0001cde9:0001cdee$rdma_port#1024$rdma_host#10:16:225:0:1:205:199:254:128:0:0:0:0:0:0$>>
Worker received port <<tag#0$OFA#000010e1:0001cde9:0001cdee$rdma_port#1024$rdma_host#10:16:225:0:1:205:199:254:128:0:0:0:0:0:0$>>

# Comm accept/connect
host accepted connection
4 workers connected to 1 managers

# Send/recv over the intercommunicator
Manager sent 4 items over intercomm
Worker zero received data

8.2.3 Published service names

More elegantly than the port mechanism above, it is possible to publish a named service, with
MPI_Publish_name (figure 8.5), which can then be discovered by other processes.

// publishapp.c
MPI_Comm intercomm;
char myport[MPI_MAX_PORT_NAME];
MPI_Open_port( MPI_INFO_NULL,myport );
MPI_Publish_name( service_name, MPI_INFO_NULL, myport );
MPI_Comm_accept( myport,MPI_INFO_NULL,0,comm_self,&intercomm );

Worker processes connect to the intercommunicator by

char myport[MPI_MAX_PORT_NAME];
MPI_Lookup_name( service_name,MPI_INFO_NULL,myport );
MPI_Comm intercomm;
MPI_Comm_connect( myport,MPI_INFO_NULL,0,comm_work,&intercomm );

For this it is necessary to have a name server running.
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Figure 8.6 MPI_Unpublish_name
Name Param name Explanation C type F type inout

MPI_Unpublish_name (
service_name a service name const char* CHARACTER IN
info implementation-specific

information
MPI_Info TYPE

(MPI_Info)
IN

port_name a port name const char* CHARACTER IN
)

Figure 8.7 MPI_Comm_join
Name Param name Explanation C type F type inout

MPI_Comm_join (
fd socket file descriptor int INTEGER IN
intercomm new inter-communicator MPI_Comm* TYPE

(MPI_Comm)
OUT

)

Intel note. Start the hydra name server and use the corresponding mpi starter:

hydra_nameserver &
MPIEXEC=mpiexec.hydra

There is an environment variable, but that doesn’t seem to be needed.

export I_MPI_HYDRA_NAMESERVER=`hostname`:8008
It is also possible to specify the name server as an argument to the job starter.

At the end of a run, the service should be unpublished with MPI_Unpublish_name (figure 8.6). Unpublishing
a nonexisting or already unpublished service gives an error code of MPI_ERR_SERVICE.

MPI provides no guarantee of fairness in servicing connection attempts. That is, connection attempts are
not necessarily satisfied in the order in which they were initiated, and competition from other connection
attempts may prevent a particular connection attempt from being satisfied.

8.2.4 Unix sockets

It is also possible to create an intercommunicator from a Unix socket with MPI_Comm_join (figure 8.7).

8.3 Sessions

The most common way of initializing MPI, with MPI_Init (or MPI_Init_thread) and MPI_Finalize, is known
as the world model which can be described as:

1. There is a single call to MPI_Init or MPI_Init_thread;
2. There is a single call to MPI_Finalize;
3. With very few exceptions, all MPI calls appear in between the initialize and finalize calls.
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Figure 8.8 MPI_Session_init
Name Param name Explanation C type F type inout

MPI_Session_init (
info info object to specify

thread support level
and MPI implementation
specific resources

MPI_Info TYPE
(MPI_Info)

IN

errhandler error handler to invoke
in the event that an error
is encountered during this
function call

MPI_Errhandler TYPE
(MPI_Errhandler)

IN

session new session MPI_Session* TYPE
(MPI_Session)

OUT

)

This model suffers from some disadvantages:

1. There is no error handling during MPI_Init.
2. MPI can not be finalized and restarted;
3. If multiple libraries are active, they can not initialize or finalize MPI, but have to base themselves

on subcommunicators; section 7.2.2.
4. There is no threadsafe way of initializing MPI: a library can’t safely do

MPI_Initialized(&flag);
if (!flag) MPI_Init(0,0);

if it is running in a multi-threaded environment.
The following material is for the recently released MPI-4 standard and may not be supported yet.

In addition to the world, where all MPI is bracketed by MPI_Init (or MPI_Init_thread) and MPI_Finalize,
there is the session model, where entities such as libraries can start/end their MPI session independently.

The two models can be used in the same program, but there are limitations on how they can mix.

8.3.1 Short description of the session model

In the session model, each session starts and finalizes MPI independently, giving each a separate
MPI_COMM_WORLD. The world model then becomes a separate way of starting MPI. You can create a
communicator using the world model in addition to starting multiple sessions, each on their own set of
processes, possibly identical or overlapping. You can also create sessions without have an MPI_COMM_WORLD
created by the world model.

You can not mix in a single call objects from different sessions, from a session and from the world model,
or from a session and from MPI_Comm_get_parent or MPI_Comm_join.

8.3.2 Session creation

An MPI session is initialized and finalized with MPI_Session_init (figure 8.8) and MPI_Session_finalize,
somewhat similar to MPI_Init and MPI_Finalize.
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MPI_Session the_session;
MPI_Session_init
( session_request_info,MPI_ERRORS_ARE_FATAL,
&the_session );

MPI_Session_finalize( &the_session );

This call is thread-safe, in view of the above reasoning.

8.3.2.1 Session info

The MPI_Info object that is passed to MPI_Session_init can be null, or it can be used to request a threading
level:

// session.c
MPI_Info session_request_info = MPI_INFO_NULL;
MPI_Info_create(&session_request_info);
char thread_key[] = "mpi_thread_support_level";
MPI_Info_set(session_request_info,

thread_key,"MPI_THREAD_MULTIPLE");

Other info keys can be implementation-dependent, but the key thread_support is pre-defined.

Info keys can be retrieved again with MPI_Session_get_info:

MPI_Info session_actual_info;
MPI_Session_get_info( the_session,&session_actual_info );
char thread_level[100]; int info_len = 100, flag;
MPI_Info_get_string( session_actual_info,

thread_key,&info_len,thread_level,&flag );

8.3.2.2 Session error handler

The error handler argument accepts a pre-defined error handler (section 15.2.2) or one created by
MPI_Session_create_errhandler.

8.3.3 Process sets and communicators

A session has a number of process sets. Process sets are indicated with a Uniform Resource Identifier (URI),
where the URIs mpi://WORLD and mpi://SELF are always defined.

You query the ‘psets’ with MPI_Session_get_num_psets and MPI_Session_get_nth_pset:
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Code:

int npsets;
MPI_Session_get_num_psets

( the_session,MPI_INFO_NULL,&npsets );
if (mainproc)

printf("Number of process sets:
↪%d\n",npsets);

for (int ipset=0; ipset<npsets; ipset++) {
int len_pset; char

↪name_pset[MPI_MAX_PSET_NAME_LEN];
MPI_Session_get_nth_pset
( the_session,MPI_INFO_NULL,

ipset,&len_pset,name_pset );
if (mainproc)

printf("Process set %2d: <<%s>>\n",
ipset,name_pset);

Output:

mpiexec -n 2 ./session
Could not obtain thread level,flag=0
Number of process sets: 2
Process set 0: <<mpi://WORLD>>
Process set 1: <<mpi://SELF>>
Found WORLD as pset 0
World has 2 processes

The following partial code creates a communicator equivalent to MPI_COMM_WORLD in the session model:

MPI_Group world_group = MPI_GROUP_NULL;
MPI_Comm world_comm = MPI_COMM_NULL;
MPI_Group_from_session_pset
( the_session,world_name,&world_group );

MPI_Comm_create_from_group
( world_group,"victor-code-session.c",
MPI_INFO_NULL,MPI_ERRORS_ARE_FATAL,
&world_comm );

MPI_Group_free( &world_group );
int procid = -1, nprocs = 0;
MPI_Comm_size(world_comm,&nprocs);
MPI_Comm_rank(world_comm,&procid);

However, comparing communicators (with MPI_Comm_compare) from the session and world model, or from
different sessions, is undefined behavior.

Get the info object (section 15.1.1) from a process set: MPI_Session_get_pset_info. This info object always
has the key mpi_size.

8.3.4 Example

As an example of the use of sessions, we declare a library class, where each library object starts and ends
its own session:

// sessionlib.cxx
class Library {
private:
MPI_Comm world_comm; MPI_Session session;

public:
Library() {
MPI_Info info = MPI_INFO_NULL;
MPI_Session_init

( MPI_INFO_NULL,MPI_ERRORS_ARE_FATAL,&session );
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char world_name[] = "mpi://WORLD";
MPI_Group world_group;
MPI_Group_from_session_pset

( session,world_name,&world_group );
MPI_Comm_create_from_group

( world_group,"world-session",
MPI_INFO_NULL,MPI_ERRORS_ARE_FATAL,
&world_comm );

MPI_Group_free( &world_group );
};
~Library() { MPI_Session_finalize(&session); };

Now we create a main program, using the world model, which activates two libraries, passing data to
them by parameter:

int main(int argc,char **argv) {

Library lib1,lib2;
MPI_Init(0,0);
MPI_Comm world = MPI_COMM_WORLD;
int procno,nprocs;
MPI_Comm_rank(world,&procno);
MPI_Comm_size(world,&nprocs);
auto sum1 = lib1.compute(procno);
auto sum2 = lib2.compute(procno+1);

Note that no mpi calls will go between main program and either of the libraries, or between the two
libraries, but this seems to make sense in this scenario.
End of MPI-4 material

8.4 Functionality available outside init/finalize

MPI_Initialized MPI_Finalized MPI_Get_version MPI_Get_library_version MPI_Info_create
MPI_Info_create_env MPI_Info_set MPI_Info_delete MPI_Info_get MPI_Info_get_valuelen
MPI_Info_get_nkeys MPI_Info_get_nthkey MPI_Info_dup MPI_Info_free MPI_Info_f2c MPI_Info_c2f
MPI_Session_create_errhandler MPI_Session_call_errhandler MPI_Errhandler_free MPI_Errhandler_f2c
MPI_Errhandler_c2f MPI_Error_string MPI_Error_class

Also all routines starting with MPI_Txxx.
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Chapter 9

MPI topic: One-sided communication

Above, you saw point-to-point operations of the two-sided type: they require the co-operation of a sender
and receiver. This co-operation could be loose: you can post a receive with MPI_ANY_SOURCE as sender, but
there had to be both a send and receive call. This two-sidedness can be limiting. Consider code where the
receiving process is a dynamic function of the data:

x = f();
p = hash(x);
MPI_Send( x, /* to: */ p );

The problem is now: how does p know to post a receive, and how does everyone else know not to?

In this section, you will see one-sided communication routines where a process can do a ‘put’ or ‘get’ op-
eration, writing data to or reading it from another processor, without that other processor’s involvement.

In one-sided MPI operations, known as Remote Memory Access (RMA) operations in the standard, or
as Remote Direct Memory Access (RDMA) in other literature, there are still two processes involved: the
origin, which is the process that originates the transfer, whether this is a ‘put’ or a ‘get’, and the target
whose memory is being accessed. Unlike with two-sided operations, the target does not perform an action
that is the counterpart of the action on the origin.

That does not mean that the origin can access arbitrary data on the target at arbitrary times. First of all,
one-sided communication in MPI is limited to accessing only a specifically declared memory area on the
target: the target declares an area of memory that is accessible to other processes. This is known as a
window. Windows limit how origin processes can access the target’s memory: you can only ‘get’ data
from a window or ‘put’ it into a window; all the other memory is not reachable from other processes. On
the origin there is no such limitation; any data can function as the source ofa ‘put’ or the recipient of a
‘get operation.

The alternative to having windows is to use distributed shared memory or virtual shared memory: memory
is distributed but acts as if it shared. The so-called Partitioned Global Address Space (PGAS) languages
such as Unified Parallel C (UPC) use this model.

Within one-sided communication, MPI has two modes: active RMA and passive RMA. In active RMA, or
active target synchronization, the target sets boundaries on the time period (the ‘epoch’) during which its
window can be accessed. The main advantage of this mode is that the origin program can perform many
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small transfers, which are aggregated behind the scenes. This would be appropriate for applications that
are structured in a Bulk Synchronous Parallel (BSP) mode with supersteps. Active RMA acts much like
asynchronous transfer with a concluding MPI_Waitall.

In passive RMA, or passive target synchronization, the target process puts no limitation onwhen its window
can be accessed. (PGAS languages such as UPC are based on this model: data is simply read or written at
will.) While intuitively it is attractive to be able to write to and read from a target at arbitrary time, there
are problems. For instance, it requires a remote agent on the target, which may interfere with execution
of the main thread, or conversely it may not be activated at the optimal time. Passive RMA is also very
hard to debug and can lead to race conditions.

9.1 Windows

Figure 9.1: Collective definition of a window for one-sided data access

In one-sided communication, each processor can make an area of memory, called a window, available to
one-sided transfers. This is stored in a variable of type MPI_Win. A process can put an arbitrary item from
its own memory (not limited to any window) to the window of another process, or get something from
the other process’ window in its own memory.

A window can be characteristized as follows:

• The window is defined on a communicator, so the create call is collective; see figure 9.1.
• The window size can be set individually on each process. A zero size is allowed, but since win-
dow creation is collective, it is not possible to skip the create call.

• You can set a ‘displacement unit’ for the window: this is a number of bytes that will be used as
the indexing unit. For example if you use sizeof(double) as the displacement unit, an MPI_Put
to location 8 will go to the 8th double. That’s easier than having to specify the 64th byte.

• The window is the target of data in a put operation, or the source of data in a get operation; see
figure 9.2.

• There can be memory associated with a window, so it needs to be freed explicitly with
MPI_Win_free.

The typical calls involved are:
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Figure 9.1 MPI_Win_create
Name Param name Explanation C type F type inout

MPI_Win_create (
MPI_Win_create_c (

base initial address of window void* TYPE(*),
DIMENSION(..)

IN

size size of window in bytes MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

disp_unit local unit size for
displacements, in bytes

[ int
MPI_Aint INTEGER IN

info info argument MPI_Info TYPE
(MPI_Info)

IN

comm intra-communicator MPI_Comm TYPE
(MPI_Comm)

IN

win window object MPI_Win* TYPE(MPI_Win) OUT
)

Python:

MPI.Win.Create
(memory, int disp_unit=1,
Info info=INFO_NULL, Intracomm comm=COMM_SELF)

MPI_Info info;
MPI_Win window;
MPI_Win_allocate( /* size info */, info, comm, &memory, &window );
// do put and get calls
MPI_Win_free( &window );

Figure 9.2: Put and get between process memory and windows

9.1.1 Window creation and freeing

The memory for a window is at first sight ordinary data in user space. There are multiple ways you can
associate data with a window:

1. You can pass a user buffer to MPI_Win_create (figure 9.1). This buffer can be an ordinary array,
or it can be created with MPI_Alloc_mem. (In the former case, it may not be possible to lock the
window; section 9.4.)
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Figure 9.2 MPI_Win_allocate
Name Param name Explanation C type F type inout

MPI_Win_allocate (
MPI_Win_allocate_c (

size size of window in bytes MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

disp_unit local unit size for
displacements, in bytes

[ int
MPI_Aint INTEGER IN

info info argument MPI_Info TYPE
(MPI_Info)

IN

comm intra-communicator MPI_Comm TYPE
(MPI_Comm)

IN

baseptr initial address of window void* TYPE(C_PTR) OUT
win window object returned by

call
MPI_Win* TYPE(MPI_Win) OUT

)

2. You can let MPI do the allocation, so that MPI can perform various optimizations regarding
placement of the memory. The user code then receives the pointer to the data from MPI. This
can again be done in two ways:

• Use MPI_Win_allocate (figure 9.2) to create the data and the window in one call.
• If a communicator is on a shared memory (see section 7.4.1) you can create a window
in that shared memory with MPI_Win_allocate_shared. This will be useful for MPI shared
memory; see chapter 12.

3. Finally, you can create a window with MPI_Win_create_dynamic which postpones the allocation;
see section 9.5.3.

First of all, MPI_Win_create creates a window from a pointer to memory. The data array must not be
PARAMETER or static const.

The size parameter is measured in bytes. In C this can be done with the sizeof operator;

// putfencealloc.c
MPI_Win the_window;
int *window_data;
MPI_Win_allocate(2*sizeof(int),sizeof(int),

MPI_INFO_NULL,comm,
&window_data,&the_window);

for doing this calculation in Fortran, see section 15.3.1.

Python note 27: Displacement byte computations. For computing the displacement in bytes, here is a good
way for finding the size of numpy datatypes:

## putfence.py
intsize = np.dtype('int').itemsize
window_data = np.zeros(2,dtype=int)
win = MPI.Win.Create(window_data,intsize,comm=comm)
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Figure 9.3 MPI_Alloc_mem
Name Param name Explanation C type F type inout

MPI_Alloc_mem (
size size of memory segment in

bytes
MPI_Aint INTEGER

(KIND=MPI_ADDRESS_KIND)
IN

info info argument MPI_Info TYPE
(MPI_Info)

IN

baseptr pointer to beginning of
memory segment allocated

void* TYPE(C_PTR) OUT

)

Next, one can obtain the memory from MPI by using MPI_Win_allocate, which has the data pointer as
output. Note the void* in the C signature; it is still necessary to pass a pointer to a pointer:

double *window_data;
MPI_Win_allocate( ... &window_data ... );

The routine MPI_Alloc_mem (figure 9.3) performs only the allocation part of MPI_Win_allocate, after which
you need to MPI_Win_create.

• An error of MPI_ERR_NO_MEM indicates that no memory could be allocated.
The following material is for the recently released MPI-4 standard and may not be supported yet.

• Allocated memory can be aligned by specifying an MPI_Info key of
mpi_minimum_memory_alignment.

• The type of memory allocated can be controlled by info keys; see section 9.5.2.
• An info key mpi_accumulate_granularity can be used to distinguish between accumulate opera-
tions for which throughput, or rather latency, is more important. This key has an integer value
of the number of bytes in between synchronizations; this can also stand for the number of bytes
that is atomically written (MPI-4.1).

End of MPI-4 material
This memory is freed with MPI_Free_mem:

// getfence.c
int *number_buffer = NULL;
MPI_Alloc_mem
( /* size: */ 2*sizeof(int),
MPI_INFO_NULL,&number_buffer);

MPI_Win_create
( number_buffer,2*sizeof(int),sizeof(int),
MPI_INFO_NULL,comm,&the_window);

MPI_Win_free(&the_window);
MPI_Free_mem(number_buffer);

(Note the lack of an ampersand in the free call!)

These calls reduce to malloc and free if there is no special memory area; SGI is an example where such
memory does exist.

A window is freed with a call to the collective MPI_Win_free (figure 9.4), which sets the window han-
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Figure 9.4 MPI_Win_free
Name Param name Explanation C type F type inout

MPI_Win_free (
win window object MPI_Win* TYPE(MPI_Win) INOUT
)

dle to MPI_WIN_NULL. This call must only be done if all RMA operations are concluded, by MPI_Win_fence,
MPI_Win_wait, MPI_Win_complete, MPI_Win_unlock, depending on the case. If the window memory was allo-
cated internally by MPI through a call to MPI_Win_allocate or MPI_Win_allocate_shared, it is freed. User
memory used for the window can be freed after the MPI_Win_free call.

There will be more discussion of window memory in section 9.5.1.

Python note 28: Window buffers. Unlike in C, the python window allocate call does not return a pointer to
the buffer memory, but an MPI.memory object. Should you need the bare memory, there are the
following options:

• Window objects expose the Python buffer interface. So you can do Pythonic things like

mview = memoryview(win)
array = numpy.frombuffer(win, dtype='i4')

• If you really want the raw base pointer (as an integer), you can do any of these:

base, size, disp_unit = win.atts
base = win.Get_attr(MPI.WIN_BASE)

• You can use mpi4py’s builtin memoryview/buffer-like type, but I do not recommend it, much
better to use NumPy as above:

mem = win.tomemory() # type(mem) is MPI.memory, similar to memoryview, but quite
↪limited in functionality

base = mem.address
size = mem.nbytes

9.1.2 Address arithmetic

Working with windows involves a certain amount of arithmetic on addresses, meaning MPI_Aint. See
MPI_Aint_add and MPI_Aint_diff in section 6.2.4.

9.2 Active target synchronization: epochs

One-sided communication has an obvious complication over two-sided: if you do a put call instead of a
send, how does the recipient know that the data is there? This process of letting the target know the state
of affairs is called ‘synchronization’, and there are various mechanisms for it. First of all we will consider
active target synchronization. Here the target knows when the transfer may happen (the communication
epoch), but does not do any data-related calls.
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Figure 9.5 MPI_Win_fence
Name Param name Explanation C type F type inout

MPI_Win_fence (
assert program assertion int INTEGER IN
win window object MPI_Win TYPE(MPI_Win) IN
)

Python:

win.Fence(self, int assertion=0)

In this section we look at the first mechanism, which is to use a fence operation: MPI_Win_fence (figure 9.5).
This operation is collective on the communicator of the window. (Another, more sophisticated mechanism
for active target synchronization is discussed in section 9.2.2.)

The interval between two fences is known as an epoch. Roughly speaking, in an epoch you can make
one-sided communication calls, and after the concluding fence all these communications are concluded.

MPI_Win_fence(0,win);
MPI_Get( /* operands */, win);
MPI_Win_fence(0, win);
// the `got' data is available

In between the two fences the window is exposed, and while it is you should not access it locally. If you
absolutely need to access it locally, you can use an RMA operation for that. Also, there can be only one
remote process that does a put; multiple accumulate accesses are allowed.

Fences are, together with other window calls, collective operations. That means they imply some amount
of synchronization between processes. Consider:

MPI_Win_fence( ... win ... ); // start an epoch
if (mytid==0) // do lots of work
MPI_Win_fence( ... win ... ); // end the epoch

and assume that all processes execute the first fence more or less at the same time. The zero process does
work before it can do the second fence call, but all other processes can call it immediately. However, they
can not finish that second fence call until all one-sided communication is finished, which means they wait
for the zero process.

As a further restriction, you can not mix MPI_Get with MPI_Put or MPI_Accumulate calls in a single epoch.
Hence, we can characterize an epoch as an access epoch on the origin, and as an exposure epoch on the
target.

9.2.1 Fence assertions

You can give various hints to the system about this epoch versus the ones before and after through the
assert parameter.

• MPI_MODE_NOSTORE This value can be specified or not per process.
• MPI_MODE_NOPUT This value can be specified or not per process.
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Figure 9.3: A trace of a one-sided communication epoch where process zero only originates a one-sided
transfer

• MPI_MODE_NOPRECEDE This value has to be specified or not the same on all processes.
• MPI_MODE_NOSUCCEED This value has to be specified or not the same on all processes.

Example:
MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);
MPI_Get( /* operands */, win);
MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

Assertions are an integer parameter: you can combine assertions by adding them or using logical-or. The
value zero is always correct. For further information, see section 9.6.

9.2.2 Non-global target synchronization

The ‘fence’ mechanism (section 9.2) uses a global synchronization on the communicator of the window,
giving a program a BSP like character. As such it is good for applications where the processes are largely
synchronized, but it may lead to performance inefficiencies if processors are not in step which each other.
Also, global synchronization may have hardware support, making this less restrictive than it may at first
seem.

There is a mechanism that is more fine-grained, by using synchronization only on a processor group. This
takes four different calls, two for starting and two for ending the epoch, separately for target and origin.

You start and complete an exposure epoch with MPI_Win_post / MPI_Win_wait:
int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)
int MPI_Win_wait(MPI_Win win)

In other words, this turns your window into the target for a remote access. There is a non-blocking version
MPI_Win_test of MPI_Win_wait.
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Figure 9.4: Window locking calls in fine-grained active target synchronization

You start and complete an access epoch with MPI_Win_start / MPI_Win_complete:

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)
int MPI_Win_complete(MPI_Win win)

In other words, these calls border the access to a remote window, with the current processor being the
origin of the remote access.

In the following snippet a single processor puts data on one other. Note that they both have their own
definition of the group, and that the receiving process only does the post and wait calls.

// postwaitwin.c
MPI_Comm_group(comm,&all_group);
if (procno==origin) {
MPI_Group_incl(all_group,1,&target,&two_group);

// access
MPI_Win_start(two_group,0,the_window);
MPI_Put( /* data on origin: */ &my_number, 1,MPI_INT,

/* data on target: */ target,0, 1,MPI_INT,
the_window);
MPI_Win_complete(the_window);

}

if (procno==target) {
MPI_Group_incl(all_group,1,&origin,&two_group);

// exposure
MPI_Win_post(two_group,0,the_window);
MPI_Win_wait(the_window);

}

Both pairs of operations declare a group of processors; see section 7.5.1 for how to get such a group from
a communicator. On an origin processor you would specify a group that includes the targets you will
interact with, on a target processor you specify a group that includes the possible origins.
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Figure 9.6 MPI_Put
Name Param name Explanation C type F type inout

MPI_Put (
MPI_Put_c (

origin_addr initial address of origin
buffer

const void* TYPE(*),
DIMENSION(..)

IN

origin_count number of entries in
origin buffer

[ int
MPI_Count INTEGER IN

origin_datatype datatype of each entry in
origin buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

target_rank rank of target int INTEGER IN
target_disp displacement from start of

window to target buffer
MPI_Aint INTEGER

(KIND=MPI_ADDRESS_KIND)
IN

target_count number of entries in
target buffer

[ int
MPI_Count INTEGER IN

target_datatype datatype of each entry in
target buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

win window object used for
communication

MPI_Win TYPE(MPI_Win) IN

)
Python:

win.Put(self, origin, int target_rank, target=None)

9.3 Put, get, accumulate

We will now look at the first three routines for doing one-sided operations: the Put, Get, and Accumulate
call. (We will look at so-called ‘atomic’ operations in section 9.3.7.) These calls are somewhat similar to a
Send, Receive and Reduce, except that of course only one process makes a call. Since one process does all
the work, its calling sequence contains both a description of the data on the origin (the calling process)
and the target (the affected other process).

As in the two-sided case, MPI_PROC_NULL can be used as a target rank.

The Accumulate routine has an MPI_Op argument that can be any of the usual operators, but no user-
defined ones (see section 3.10.1).

9.3.1 Put

The MPI_Put (figure 9.6) call can be considered as a one-sided send. As such, it needs to specify

• the target rank
• the data to be sent from the origin, and
• the location where it is to be written on the target.

The description of the data on the origin is the usual trio of buffer/count/datatype. However, the descrip-
tion of the data on the target is more complicated. It has a count and a datatype, but additionally it has
a displacement with respect to the start of the window on the target. This displacement can be given
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in bytes, so its type is MPI_Aint, but strictly speaking it is a multiple of the displacement unit that was
specified in the window definition.

Specifically, data is written starting at

window_base + target_disp × disp_unit.

Here is a single put operation. Note that the window create and window fence calls are collective, so they
have to be performed on all processors of the communicator that was used in the create call.

// putfence.c
MPI_Win the_window;
MPI_Win_create
(&window_data,2*sizeof(int),sizeof(int),
MPI_INFO_NULL,comm,&the_window);

MPI_Win_fence(0,the_window);
if (procno==0) {
MPI_Put
( /* data on origin: */ &my_number, 1,MPI_INT,

/* data on target: */ other,1, 1,MPI_INT,
the_window);

}
MPI_Win_fence(0,the_window);
MPI_Win_free(&the_window);

Fortran note 14: Displacement unit. The disp_unit variable is declared as an integer of ‘kind’
MPI_ADDRESS_KIND:

!! putfence.F90
integer(kind=MPI_ADDRESS_KIND) :: target_displacement

target_displacement = 1
call MPI_Put( my_number, 1,MPI_INTEGER, &

other,target_displacement, &
1,MPI_INTEGER, &
the_window)

Prior to Fortran2008, specifying a literal constant, such as 0, could lead to bizarre runtime errors;
the solution was to specify a zero-valued variable of the right type. With the mpi_f08 module
this is no longer allowed. Instead you get an error such as

error #6285: There is no matching specific subroutine for this generic subroutine call. [MPI_PUT]
Python note 29: MPI one-sided transfer routines. MPI_Put (and Get and Accumulate) accept at minimum the

origin buffer and the target rank. The displacement is by default zero.

Exercise 9.1. Revisit exercise 4.3 and solve it using MPI_Put.
(There is a skeleton for this exercise under the name rightput.)
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Figure 9.7 MPI_Get
Name Param name Explanation C type F type inout

MPI_Get (
MPI_Get_c (

origin_addr initial address of origin
buffer

void* TYPE(*),
DIMENSION(..)

OUT

origin_count number of entries in
origin buffer

[ int
MPI_Count INTEGER IN

origin_datatype datatype of each entry in
origin buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

target_rank rank of target int INTEGER IN
target_disp displacement from window

start to the beginning of
the target buffer

MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

target_count number of entries in
target buffer

[ int
MPI_Count INTEGER IN

target_datatype datatype of each entry in
target buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

win window object used for
communication

MPI_Win TYPE(MPI_Win) IN

)
Python:

win.Get(self, origin, int target_rank, target=None)

Exercise 9.2. Write code where:
• process 0 computes a random number 𝑟
• if 𝑟 < .5, zero writes in the window on 1;
• if 𝑟 ≥ .5, zero writes in the window on 2.

(There is a skeleton for this exercise under the name randomput.)

Solution to exercise 9.2.

9.3.2 Get

The MPI_Get (figure 9.7) call is very similar.

Example:

MPI_Win_fence(0,the_window);
if (procno==0) {
MPI_Get( /* data on origin: */ &my_number, 1,MPI_INT,

/* data on target: */ other,1, 1,MPI_INT,
the_window);

}
MPI_Win_fence(0,the_window);

We make a null window on processes that do not participate.
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## getfence.py
if procid==0 or procid==nprocs-1:

win_mem = np.empty( 1,dtype=np.float64 )
win = MPI.Win.Create( win_mem,comm=comm )

else:
win = MPI.Win.Create( None,comm=comm )

# put data on another process
win.Fence()
if procid==0 or procid==nprocs-1:

putdata = np.empty( 1,dtype=np.float64 )
putdata[0] = mydata
print("[%d] putting %e" % (procid,mydata))
win.Put( putdata,other )

win.Fence()

9.3.3 Put and get example: halo update

As an example, let’s look at halo update. The array A is
updated using the local values and the halo that comes
from bordering processors, either through Put or Get
operations.

In a first version we separate computation and com-
munication. Each iteration has two fences. Between
the two fences in the loop body we do the MPI_Put op-
eration; between the second and and first one of the
next iteration there is only computation, so we add
the MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED asser-
tions. The MPI_MODE_NOSTORE assertion states that the
local window was not updated: the Put operation only
works on remote windows.

for ( .... ) {
update(A);
MPI_Win_fence(MPI_MODE_NOPRECEDE, win);
for(i=0; i < toneighbors; i++)
MPI_Put( ... );

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);
}

For much more about assertions, see section 9.6 below.

Next, we split the update in the core part, which can be done purely from local values, and the boundary,
which needs local and halo values. Update of the core can overlap the communication of the halo.

for ( .... ) {
update_boundary(A);
MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);
for(i=0; i < fromneighbors; i++)
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Figure 9.8 MPI_Accumulate
Name Param name Explanation C type F type inout

MPI_Accumulate (
MPI_Accumulate_c (

origin_addr initial address of buffer const void* TYPE(*),
DIMENSION(..)

IN

origin_count number of entries in
buffer

[ int
MPI_Count INTEGER IN

origin_datatype datatype of each entry MPI_Datatype TYPE
(MPI_Datatype)

IN

target_rank rank of target int INTEGER IN
target_disp displacement from start

of window to beginning of
target buffer

MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

target_count number of entries in
target buffer

[ int
MPI_Count INTEGER IN

target_datatype datatype of each entry in
target buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

op reduce operation MPI_Op TYPE(MPI_Op) IN
win window object MPI_Win TYPE(MPI_Win) IN
)

Python:

MPI.Win.Accumulate(self, origin, int target_rank, target=None, Op op=SUM)

MPI_Get( ... );
update_core(A);
MPI_Win_fence(MPI_MODE_NOSUCCEED, win);
}

The MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED assertions still hold, but the Get operation implies that
instead of MPI_MODE_NOSTORE in the second fence, we use MPI_MODE_NOPUT in the first.

9.3.4 Accumulate

A third one-sided routine is MPI_Accumulate (figure 9.8) which does a reduction operation on the results
that are being put.

Accumulate is an atomic reduction with remote result. This means that multiple accumulates to a single
target in the same epoch give the correct result. As with MPI_Reduce, the order in which the operands are
accumulated is undefined.

The same predefined operators are available, but no user-defined ones. There is one extra operator:
MPI_REPLACE, this has the effect that only the last result to arrive is retained.

Exercise 9.3. Implement an ‘all-gather’ operation using one-sided communication: each
processor stores a single number, and you want each processor to build up an array
that contains the values from all processors. Note that you do not need a special case
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for a processor collecting its own value: doing ‘communication’ between a processor
and itself is perfectly legal.

Figure 9.5: Pool of work descriptors with shared stack pointers

For the next exercise, refer to figure 9.5.
Exercise 9.4.

Implement a shared counter:
• One process maintains a counter;
• Iterate: all others at random moments update this counter.
• When the counter is no longer positive, everyone stops iterating.

The problem here is data synchronization: does everyone see the counter the same
way?

9.3.5 Ordering and coherence of RMA operations

There are few guarantees about what happens inside one epoch.
• No ordering of Get and Put/Accumulate operations: if you do both, there is no guarantee
whether the Get will find the value before or after the update.

• No ordering of multiple Puts. It is safer to do an Accumulate.
The following operations are well-defined inside one epoch:

• Instead of multiple Put operations, use Accumulate with MPI_REPLACE.
• MPI_Get_accumulate with MPI_NO_OP is safe.
• Multiple Accumulate operations from one origin are done in program order by default. To allow
reordering, for instance to have all reads happen after all writes, use the info parameter when
the window is created; section 9.5.4.

9.3.6 Request-based operations

Analogous to MPI_Isend there are request-based one-sided operations: MPI_Rput (figure 9.9) and similarly
MPI_Rget and MPI_Raccumulate and MPI_Rget_accumulate. These only apply to passive target synchroniza-
tion. Any MPI_Win_flush... call also terminates these transfers.
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Figure 9.9 MPI_Rput
Name Param name Explanation C type F type inout

MPI_Rput (
MPI_Rput_c (

origin_addr initial address of origin
buffer

const void* TYPE(*),
DIMENSION(..)

IN

origin_count number of entries in
origin buffer

[ int
MPI_Count INTEGER IN

origin_datatype datatype of each entry in
origin buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

target_rank rank of target int INTEGER IN
target_disp displacement from start of

window to target buffer
MPI_Aint INTEGER

(KIND=MPI_ADDRESS_KIND)
IN

target_count number of entries in
target buffer

[ int
MPI_Count INTEGER IN

target_datatype datatype of each entry in
target buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

win window object used for
communication

MPI_Win TYPE(MPI_Win) IN

request RMA request MPI_Request* TYPE
(MPI_Request)

OUT

)

9.3.7 Atomic operations

One-sided calls are said to emulate shared memory in MPI, but the put and get calls are not enough for
certain scenarios with shared data. Consider the scenario where:

• One process stores a table of work descriptors, and a pointer to the first unprocessed descriptor;
• Each process reads the pointer, reads the corresponding descriptor, and increments the pointer;
and

• A process that has read a descriptor then executes the corresponding task.

The problem is that reading and updating the pointer is not an atomic operation, so it is possible that
multiple processes get hold of the same value; conversely, multiple updates of the pointer may lead to
work descriptors being skipped. These different overall behaviors, depending on precise timing of lower
level events, are called a race condition.

In MPI-3 some atomic routines have been added. Both MPI_Fetch_and_op (figure 9.10) and
MPI_Get_accumulate (figure 9.11) atomically retrieve data from the window indicated, and apply an
operator, combining the data on the target with the data on the origin. Unlike Put and Get, it is safe to
have multiple atomic operations in the same epoch.

Both routines perform the same operations: return data before the operation, then atomically update data
on the target, but MPI_Get_accumulate is more flexible in data type handling. The more simple routine,
MPI_Fetch_and_op, which operates on only a single element, allows for faster implementations, in particular
through hardware support.
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Figure 9.10 MPI_Fetch_and_op
Name Param name Explanation C type F type inout

MPI_Fetch_and_op (
origin_addr initial address of buffer const void* TYPE(*),

DIMENSION(..)
IN

result_addr initial address of result
buffer

void* TYPE(*),
DIMENSION(..)

OUT

datatype datatype of the entry in
origin, result, and target
buffers

MPI_Datatype TYPE
(MPI_Datatype)

IN

target_rank rank of target int INTEGER IN
target_disp displacement from start

of window to beginning of
target buffer

MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

op reduce operation MPI_Op TYPE(MPI_Op) IN
win window object MPI_Win TYPE(MPI_Win) IN
)

Figure 9.11 MPI_Get_accumulate
Name Param name Explanation C type F type inout

MPI_Get_accumulate (
MPI_Get_accumulate_c (

origin_addr initial address of buffer const void* TYPE(*),
DIMENSION(..)

IN

origin_count number of entries in
origin buffer

[ int
MPI_Count INTEGER IN

origin_datatype datatype of each entry in
origin buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

result_addr initial address of result
buffer

void* TYPE(*),
DIMENSION(..)

OUT

result_count number of entries in
result buffer

[ int
MPI_Count INTEGER IN

result_datatype datatype of each entry in
result buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

target_rank rank of target int INTEGER IN
target_disp displacement from start

of window to beginning of
target buffer

MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

target_count number of entries in
target buffer

[ int
MPI_Count INTEGER IN

target_datatype datatype of each entry in
target buffer

MPI_Datatype TYPE
(MPI_Datatype)

IN

op reduce operation MPI_Op TYPE(MPI_Op) IN
win window object MPI_Win TYPE(MPI_Win) IN
)
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Use of MPI_NO_OP as the MPI_Op turns these routines into an atomic Get. Similarly, using MPI_REPLACE turns
them into an atomic Put.

Exercise 9.5. Redo exercise 9.4 using MPI_Fetch_and_op. The problem is again to make sure
all processes have the same view of the shared counter.
Does it work to make the fetch-and-op conditional? Is there a way to do it
unconditionally? What should the ‘break’ test be, seeing that multiple processes can
update the counter at the same time?

Example. A root process has a table of data; the other processes do atomic gets and update of that data
using passive target synchronization through MPI_Win_lock.

// passive.cxx
if (procno==repository) {
// Repository processor creates a table of inputs
// and associates that with the window
}
if (procno!=repository) {
float contribution=(float)procno,table_element;
int loc=0;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE,repository,0,the_window);

// read the table element by getting the result from adding zero
MPI_Fetch_and_op
(&contribution,&table_element,MPI_FLOAT,
repository,loc,MPI_SUM,the_window);

MPI_Win_unlock(repository,the_window);
}

## passive.py
if procid==repository:

# repository process creates a table of inputs
# and associates it with the window
win_mem = np.empty( ninputs,dtype=np.float32 )
win = MPI.Win.Create( win_mem,comm=comm )

else:
# everyone else has an empty window
win = MPI.Win.Create( None,comm=comm )

if procid!=repository:
contribution = np.empty( 1,dtype=np.float32 )
contribution[0] = 1.*procid
table_element = np.empty( 1,dtype=np.float32 )
win.Lock( repository,lock_type=MPI.LOCK_EXCLUSIVE )
win.Fetch_and_op( contribution,table_element,repository,0,MPI.SUM)
win.Unlock( repository )

Finally, MPI_Compare_and_swap (figure 9.12) swaps the origin and target data if the target data equals some
comparison value.

9.3.7.1 A case study in atomic operations

Let us consider an example where a process, identified by counter_process, has a table of work descriptors,
and all processes, including the counter process, take items from it to work on. To avoid duplicate work,
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Figure 9.12 MPI_Compare_and_swap
Name Param name Explanation C type F type inout

MPI_Compare_and_swap (
origin_addr initial address of buffer const void* TYPE(*),

DIMENSION(..)
IN

compare_addr initial address of compare
buffer

const void* TYPE(*),
DIMENSION(..)

IN

result_addr initial address of result
buffer

void* TYPE(*),
DIMENSION(..)

OUT

datatype datatype of the element in
all buffers

MPI_Datatype TYPE
(MPI_Datatype)

IN

target_rank rank of target int INTEGER IN
target_disp displacement from start

of window to beginning of
target buffer

MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

win window object MPI_Win TYPE(MPI_Win) IN
)

the counter process has as counter that indicates the highest numbered available item. The part of this
application that we simulate is this:

1. a process reads the counter, to find an available work item; and
2. subsequently decrements the counter by one.

We initialize the window content, under the separate memory model:

// countdownop.c
MPI_Win_fence(0,the_window);
if (procno==counter_process)
MPI_Put(&counter_init,1,MPI_INT,

counter_process,0,1,MPI_INT,
the_window);

MPI_Win_fence(0,the_window);

We start by considering the naive approach, where we execute the above scheme literally with MPI_Get
and MPI_Put:

// countdownput.c
MPI_Win_fence(0,the_window);
int counter_value;
MPI_Get( &counter_value,1,MPI_INT,

counter_process,0,1,MPI_INT,
the_window);

MPI_Win_fence(0,the_window);
if (i_am_available) {
int decrement = -1;
counter_value += decrement;
MPI_Put
( &counter_value, 1,MPI_INT,

counter_process,0,1,MPI_INT,
the_window);

}
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MPI_Win_fence(0,the_window);

This scheme is correct if only process has a true value for i_am_available: that processes ‘owns’ the current
counter values, and it correctly updates the counter through the MPI_Put operation. However, if more than
one process is available, they get duplicate counter values, and the update is also incorrect. If we run this
program, we see that the counter did not get decremented by the total number of ‘put’ calls.

Exercise 9.6. Supposing only one process is available, what is the function of the middle of
the three fences? Can it be omitted?

Solution to exercise 9.6. It can not be omitted: it forces the loal coherence of the counter_value
variable.

We can fix the decrement of the counter by using MPI_Accumulate for the counter update, since it is atomic:
multiple updates in the same epoch all get processed.

// countdownacc.c
MPI_Win_fence(0,the_window);
int counter_value;
MPI_Get( &counter_value,1,MPI_INT,

counter_process,0,1,MPI_INT,
the_window);

MPI_Win_fence(0,the_window);
if (i_am_available) {
int decrement = -1;
MPI_Accumulate
( &decrement, 1,MPI_INT,

counter_process,0,1,MPI_INT,
MPI_SUM,
the_window);

}
MPI_Win_fence(0,the_window);

This scheme still suffers from the problem that processes will obtain duplicate counter values. The true
solution is to combine the ‘get’ and ‘put’ operations into one atomic action; in this case MPI_Fetch_and_op:

MPI_Win_fence(0,the_window);
int

counter_value;
if (i_am_available) {
int

decrement = -1;
total_decrement++;
MPI_Fetch_and_op
( /* operate with data from origin: */ &decrement,

/* retrieve data from target: */ &counter_value,
MPI_INT, counter_process, 0, MPI_SUM,
the_window);

}
MPI_Win_fence(0,the_window);
if (i_am_available) {

my_counter_values[n_my_counter_values++] = counter_value;
}
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Figure 9.13 MPI_Win_lock
Name Param name Explanation C type F type inout

MPI_Win_lock (
lock_type either MPI_LOCK_EXCLUSIVE

or MPI_LOCK_SHARED
int INTEGER IN

rank rank of locked window int INTEGER IN
assert program assertion int INTEGER IN
win window object MPI_Win TYPE(MPI_Win) IN
)

Python:

MPI.Win.Lock(self,
int rank, int lock_type=LOCK_EXCLUSIVE, int assertion=0)

Now, if there are multiple accesses, each retrieves the counter value and updates it in one atomic, that is,
indivisible, action.

9.4 Passive target synchronization

In passive target synchronization only the origin is actively involved: the target makes no synchronization
calls. This means that the origin process remotely locks the window on the target, performs a one-sided
transfer, and releases the window by unlocking it again.

During an access epoch, also called an passive target epoch in this case (the concept of ‘exposure epoch’
makes no sense with passive target synchronization), a process can initiate and finish a one-sided transfer.
Typically it will lock the window with MPI_Win_lock (figure 9.13):

if (rank == 0) {
MPI_Win_lock (MPI_LOCK_EXCLUSIVE, 1, 0, win);
MPI_Put (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);
MPI_Win_unlock (1, win);

}

Remark 22 The possibility to lock a window is not guaranteed for windows that are not created (possibly
internally) by MPI_Alloc_mem, that is, all but MPI_Win_create.

9.4.1 Lock types

A lock is needed to start an access epoch, that is, for an origin to acquire the capability to access a target. You
can either acquire a lock on a specific process with MPI_Win_lock, or on all processes (in a communicator)
with MPI_Win_lock_all. Unlike MPI_Win_fence, this is not a collective call. Also, it is possible to havemultiple
access epochs through MPI_Win_lock active simultaenously.

The two lock types are:
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Figure 9.14 MPI_Win_unlock
Name Param name Explanation C type F type inout

MPI_Win_unlock (
rank rank of window int INTEGER IN
win window object MPI_Win TYPE(MPI_Win) IN
)

• MPI_LOCK_SHARED: multiple processes can access the window on the same rank. If multiple pro-
cesses perform a MPI_Get call there is no problem; with MPI_Put and similar calls there is a con-
sistency problem; see below.

• MPI_LOCK_EXCLUSIVE: an origin gets exclusive access to the window on a certain target. Unlike
the shared lock, this has no consistency problems.

You can only specify a lock type in MPI_Win_lock; MPI_Win_lock_all is always shared.

To unlock a window, use MPI_Win_unlock (figure 9.14), respectively MPI_Win_unlock_all.

Exercise 9.7. Investigate atomic updates using passive target synchronization. Use
MPI_Win_lock with an exclusive lock, which means that each process only acquires
the lock when it absolutely has to.

• All processs but one update a window:

int one=1;
MPI_Fetch_and_op(&one, &readout,

MPI_INT, repo, zero_disp, MPI_SUM,
the_win);

• while the remaining process spins until the others have performed their
update.

Use an atomic operation for the latter process to read out the shared value.
Can you replace the exclusive lock with a shared one?
(There is a skeleton for this exercise under the name lockfetch.)

Solution to exercise 9.7.

Supervisor:
// lockfetch.c
MPI_Win_lock(MPI_LOCK_EXCLUSIVE,

↪repo, /* no assert */ 0,
↪the_window);

int update=0;
MPI_Fetch_and_op
(&update, &readout ,
MPI_INT, repo,zero_disp,
↪MPI_NO_OP, the_window);

MPI_Win_unlock(repo,the_window);

Worker:

MPI_Win_lock(MPI_LOCK_EXCLUSIVE,
↪repo, /* no assert: */ 0,
↪the_window);

int mone = -1;
MPI_Fetch_and_op(&mone, &readout,

↪MPI_INT, repo,zero_disp,
↪MPI_SUM, the_window);

if (readout>0) my_work++;
MPI_Win_unlock(repo,the_window);

Exercise 9.8. As exercise 9.7, but now use a shared lock: all processes acquire the lock
simultaneously and keep it as long as is needed.
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Figure 9.15 MPI_Win_lock_all
Name Param name Explanation C type F type inout

MPI_Win_lock_all (
assert program assertion int INTEGER IN
win window object MPI_Win TYPE(MPI_Win) IN
)

The problem here is that coherence between window buffers and local variables is
now not forced by a fence or releasing a lock. Use MPI_Win_flush_local to force
coherence of a window (on another process) and the local variable from
MPI_Fetch_and_op.
(There is a skeleton for this exercise under the name lockfetchshared.)

Solution to exercise 9.8.

// lockfetchshared.c
MPI_Win_lock
(MPI_LOCK_SHARED,
repo, 0, the_window);
MPI_Fetch_and_op(&mone, &readout, MPI_INT, repo,zero_disp, MPI_SUM,
↪the_window);
if (readout>0) my_work++;
MPI_Win_flush_local

(repo,the_window);

9.4.2 Lock all

To lock the windows of all processes in the group of the windows, use MPI_Win_lock_all (figure 9.15).
This is not a collective call: the ‘all’ part refers to the fact that one process is locking the window on all
processes.

• The assertion value can be zero, or MPI_MODE_NOCHECK, which asserts that no other process will
acquire a competing lock.

• There is no ‘locktype’ parameter: this is a shared lock.

The corresponding unlock is MPI_Win_unlock_all.

The expected use of a ‘lock/unlock all’ is that they surround an extended epoch with get/put and flush
calls.

9.4.3 Completion and consistency in passive target synchronization

In one-sided transfer one should keep straight the multiple instances of the data, and the various comple-
tions that effect their consistency.

• The user data. This is the buffer that is passed to an RMA call. For instance, after an MPI_Put call,
but still in an access epoch, the user buffer is not safe to reuse. Making sure the buffer has been
transferred is called local completion.
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Figure 9.16 MPI_Win_flush_local
Name Param name Explanation C type F type inout

MPI_Win_flush_local (
rank rank of target window int INTEGER IN
win window object MPI_Win TYPE(MPI_Win) IN
)

Figure 9.17 MPI_Win_flush
Name Param name Explanation C type F type inout

MPI_Win_flush (
rank rank of target window int INTEGER IN
win window object MPI_Win TYPE(MPI_Win) IN
)

• The window data. While this may be publicly accessible, it is not necessarily always consistent
with internal copies.

• The remote data. Even a successful MPI_Put does not guarantee that the other process has re-
ceived the data. A successful transfer is a remote completion.

As observed, RMA operations are nonblocking, so we need mechanisms to ensure that an operation is
completed, and to ensure consistency of the user and window data.

Completion of the RMA operations in a passive target epoch is ensured with MPI_Win_unlock or
MPI_Win_unlock_all, similar to the use of MPI_Win_fence in active target synchronization.

If the passive target epoch is of greater duration, and no unlock operation is used to ensure completion,
the following calls are available.

Remark 23 Using flush routines with active target synchronization (or generally outside a passive target
epoch) you are likely to get a message

Wrong synchronization of RMA calls

9.4.3.1 Local completion

The call MPI_Win_flush_local (figure 9.16) ensure that all operations with a given target is completed
at the origin. For instance, for calls to MPI_Get or MPI_Fetch_and_op the local result is available after the
MPI_Win_flush_local.

With MPI_Win_flush_local_all local operations are concluded for all targets. This will typically be used
with MPI_Win_lock_all (section 9.4.2).

9.4.3.2 Remote completion

The calls MPI_Win_flush (figure 9.17) and MPI_Win_flush_all effect completion of all outstanding RMA op-
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erations on the target, so that other processes can access its data. This is useful for MPI_Put operations,
but can also be used for atomic operations such as MPI_Fetch_and_op.

9.4.3.3 Window synchronization

Under the separate memory model, the user code can hold a buffer that is not coherent with the internal
window data. The call MPI_Win_sync synchronizes private and public copies of the window.

9.5 More about window memory

9.5.1 Memory models

You may think that the window memory is the same as the buffer you pass to MPI_Win_create or that
you get from MPI_Win_allocate (section 9.1.1). This is not necessarily true, and the actual state of affairs is
called the memory model. There are two memory models:

• Under the unified memory model, the buffer in process space is indeed the window mem-
ory, or at least they are kept coherent. This means that after completion of an epoch you can
read the window contents from the buffer. To get this, the window needs to be created with
MPI_Win_allocate_shared. This memory model is required for MPI shared memory; chapter 12.

• Under the separate memory model, the buffer in process space is the private window and the
target of put/get operations is the public window and the two are not the same and are not kept
coherent. Under this model, you need to do an explicit get to read the window contents.

You can query the model of a window using the MPI_Win_get_attr call with the MPI_WIN_MODEL keyword:

// window.c
int *modelstar,flag;
MPI_Win_get_attr(the_window,MPI_WIN_MODEL,&modelstar,&flag);
int model = *modelstar;
if (procno==0)

printf("Window model is unified: %d\n",model==MPI_WIN_UNIFIED);

with possible values:

• MPI_WIN_SEPARATE,
• MPI_WIN_UNIFIED,

For more on attributes, see section 9.5.5.
The following material is for the recently released MPI-4 standard and may not be supported yet.

9.5.2 Allocation kinds

It may be desirable to indicate the type of memory returned by MPI_Win_allocate or MPI_Alloc_mem, espe-
cially if accelerators are involved. This functionality was added in MPI-4.1.

Two info keys in MPI-4.1 are used to query/request support, or assert usage, of memory allocation kinds:
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Figure 9.18 MPI_Win_create_dynamic
Name Param name Explanation C type F type inout

MPI_Win_create_dynamic (
info info argument MPI_Info TYPE

(MPI_Info)
IN

comm intra-communicator MPI_Comm TYPE
(MPI_Comm)

IN

win window object returned by
the call

MPI_Win* TYPE(MPI_Win) OUT

)

• mpi_memory_alloc_kinds: the value of this a comma-separated list of memory allocation
kinds supported by the MPI implementation. It can be used in the input MPI_Info object of
MPI_Session_init, MPI_Comm_spawn, or MPI_Comm_spawn_multiple, to request support for certain al-
location kinds. If used as a query, it reports the allocation kinds supported in the given session,
et cetera. This may include kinds not requested by the user.

• mpi_assert_memory_alloc_kinds: by setting this, the user tells MPI that all buffers (on the
given communicator, session, et cetera) use only memory of the indicated type.

Some info values for the allocation kinds are predefined:

• mpi: Memory allocated by the MPI library.
• system: Memory returned by standard system allocators.
• default: Memory from one of the supported allocators.

Info values can have restrictors:

kind1:restrict1,kind2:restrict2
Restrict values are:

• alloc_mem
• win_allocate
• win_allocate_shared

End of MPI-4 material

9.5.3 Dynamically attached memory

In section 9.1.1 we looked at simple ways to create a window and its memory.

It is also possible to have windows where the size is dynamically set. Create a dynamic window with
MPI_Win_create_dynamic (figure 9.18) and attach memory to the window with MPI_Win_attach (figure 9.19).

At first sight, the code looks like splitting up a MPI_Win_create call into separate creation of the window
and declaration of the buffer:

// windynamic.c
MPI_Win_create_dynamic(MPI_INFO_NULL,comm,&the_window);
if (procno==data_proc)

window_buffer = (int*) malloc( 2*sizeof(int) );
MPI_Win_attach(the_window,window_buffer,2*sizeof(int));
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Figure 9.19 MPI_Win_attach
Name Param name Explanation C type F type inout

MPI_Win_attach (
win window object MPI_Win TYPE(MPI_Win) IN
base initial address of memory

to be attached
void* TYPE(*),

DIMENSION(..)
IN

size size of memory to be
attached in bytes

MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

)

Figure 9.20 MPI_Win_detach
Name Param name Explanation C type F type inout

MPI_Win_detach (
win window object MPI_Win TYPE(MPI_Win) IN
base initial address of memory

to be detached
const void* TYPE(*),

DIMENSION(..)
IN

)

(where the window_buffer represents memory that has been allocated.)

However, there is an important difference in how the window is addressed in RMA operations. With all
other window models, the displacement parameter is measured relative in units from the start of the
buffer, here the displacement is an absolute address. This means that we need to get the address of the
window buffer with MPI_Get_address and communicate it to the other processes:

MPI_Aint data_address;
if (procno==data_proc) {
MPI_Get_address(window_buffer,&data_address);

}
MPI_Bcast(&data_address,1,MPI_AINT,data_proc,comm);

Location of the data, that is, the displacement parameter, is then given as an absolute location of the start
of the buffer plus a count in bytes; in other words, the displacement unit is 1. In this example we use
MPI_Get to find the second integer in a window buffer:

MPI_Aint disp = data_address+1*sizeof(int);
MPI_Get( /* data on origin: */ retrieve, 1,MPI_INT,
/* data on target: */ data_proc,disp, 1,MPI_INT,
the_window);

Notes.

• The attached memory can be released with MPI_Win_detach (figure 9.20).
• The above fragments show that an origin process has the actual address of the window buffer.
It is an error to use this if the buffer is not attached to a window.

• In particular, one has to make sure that the attach call is concluded before performing RMA
operations on the window.
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9.5.4 Window usage hints

The following keys can be passed as info argument:

• no_locks: if set to true, passive target synchronization (section 9.4) will not be used on this
window.

• accumulate_ordering: a comma-separated list of the keywords rar, raw, war, waw can be spec-
ified. This indicates that reads or writes from MPI_Accumulate or MPI_Get_accumulate can be re-
ordered, subject to certain constraints.

• accumulate_ops: the value same_op indicates that concurrent Accumulate calls use the same oper-
ator; same_op_no_op indicates the same operator or MPI_NO_OP.

9.5.5 Window information

The MPI_Info parameter (see section 15.1.1 for info objects) can be used to pass implementation-dependent
information.

A number of attributes are stored with a window when it is created.

• MPI_WIN_BASE for obtaining a pointer to the start of the window area:

void *base;
MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag)

• MPI_WIN_SIZE and MPI_WIN_DISP_UNIT for obtaining the size and window displacement unit:

MPI_Aint *size;
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag),
int *disp_unit;
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag),

• MPI_WIN_CREATE_FLAVOR for determining the type of create call used:

int *create_kind;
MPI_Win_get_attr(win, MPI_WIN_CREATE_FLAVOR, &create_kind, &flag)

with possible values:
– MPI_WIN_FLAVOR_CREATE if the window was create with MPI_Win_create;
– MPI_WIN_FLAVOR_ALLOCATE if the window was create with MPI_Win_allocate;
– MPI_WIN_FLAVOR_DYNAMIC if the windowwas create with MPI_Win_create_dynamic. In this case

the base is MPI_BOTTOM and the size is zero;
– MPI_WIN_FLAVOR_SHARED if the window was create with MPI_Win_allocate_shared;

• MPI_WIN_MODEL for querying the window memory model; see section 9.5.1.

Get the group of processes (see section 7.5) associated with a window:

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

Window information objects (see section 15.1.1) can be set and retrieved:

int MPI_Win_set_info(MPI_Win win, MPI_Info info)

int MPI_Win_get_info(MPI_Win win, MPI_Info *info_used)
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9.6 Assertions

The routines

• (Active target synchronization) MPI_Win_fence, MPI_Win_post, MPI_Win_start;
• (Passive target synchronization) MPI_Win_lock, MPI_Win_lockall,

take an argument through which assertions can be passed about the activity before, after, and during the
epoch. The value zero is always allowed, by you can make your program more efficient by specifying one
or more of the following, combined by bitwise OR in C/C++ or IOR in Fortran.

• MPI_Win_start Supports the option:
– MPI_MODE_NOCHECK the matching calls to MPI_Win_post have already completed on all target

processes when the call to MPI_Win_start is made. The nocheck option can be specified in
a start call if and only if it is specified in each matching post call. This is similar to the
optimization of “ready-send” that may save a handshake when the handshake is implicit
in the code. (However, ready-send is matched by a regular receive, whereas both start and
post must specify the nocheck option.)

• MPI_Win_post supports the following options:
– MPI_MODE_NOCHECK the matching calls to MPI_Win_start have not yet occurred on any origin

processes when the call to MPI_Win_post is made. The nocheck option can be specified by
a post call if and only if it is specified by each matching start call.

– MPI_MODE_NOSTORE the local window was not updated by local stores (or local get or receive
calls) since last synchronization. This may avoid the need for cache synchronization at the
post call.

– MPI_MODE_NOPUT the local window will not be updated by put or accumulate calls after the
post call, until the ensuing (wait) synchronization. This may avoid the need for cache
synchronization at the wait call.

• MPI_Win_fence supports the following options:
– MPI_MODE_NOSTORE the local window was not updated by local stores (or local get or receive

calls) since last synchronization.
– MPI_MODE_NOPUT the local window will not be updated by put or accumulate calls after the

fence call, until the ensuing (fence) synchronization.
– MPI_MODE_NOPRECEDE the fence does not complete any sequence of locally issued RMA calls.

If this assertion is given by any process in the window group, then it must be given by all
processes in the group.

– MPI_MODE_NOSUCCEED the fence does not start any sequence of locally issued RMA calls. If
the assertion is given by any process in the window group, then it must be given by all
processes in the group.

• MPI_Win_lock and MPI_Win_lock_all support the following option:
– MPI_MODE_NOCHECK no other process holds, or will attempt to acquire a conflicting lock, while

the caller holds thewindow lock. This is useful whenmutual exclusion is achieved by other
means, but the coherence operations that may be attached to the lock and unlock calls are
still required.
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9.7 Implementation

You may wonder how one-sided communication is realized1. Can a processor somehow get at another
processor’s data? Unfortunately, no.

Active target synchronization is implemented in terms of two-sided communication. Imagine that the
first fence operation does nothing, unless it concludes prior one-sided operations. The Put and Get calls
do nothing involving communication, except for marking with what processors they exchange data. The
concluding fence is where everything happens: first a global operation determines which targets need to
issue send or receive calls, then the actual sends and receive are executed.

Exercise 9.9. Assume that only Get operations are performed during an epoch. Sketch how
these are translated to send/receive pairs. The problem here is how the senders find
out that they need to send. Show that you can solve this with an MPI_Reduce_scatter
call.

The previous paragraph noted that a collective operationwas necessary to determine the two-sided traffic.
Since collective operations induce some amount of synchronization, you may want to limit this.

Exercise 9.10. Argue that the mechanism with window post/wait/start/complete operations
still needs a collective, but that this is less burdensome.

Solution to exercise 9.10. The collective is only group where the window is posted.

Passive target synchronization needs another mechanism entirely. Here the target process needs to have
a background task (process, thread, daemon,…) running that listens for requests to lock the window. This
can potentially be expensive.

1. For more on this subject, see [27].
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9.8 Review questions

Find all the errors in this code.

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

#define MASTER 0

int main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
MPI_Comm comm = MPI_COMM_WORLD;
int r, p;
MPI_Comm_rank(comm, &r);
MPI_Comm_size(comm, &p);
printf("Hello from %d\n", r);
int result[1] = {0};
//int assert = MPI_MODE_NOCHECK;
int assert = 0;
int one = 1;
MPI_Win win_res;
MPI_Win_allocate(1 * sizeof(MPI_INT), sizeof(MPI_INT), MPI_INFO_NULL, comm, &result[0],

↪&win_res);
MPI_Win_lock_all(assert, win_res);
if (r == MASTER) {

result[0] = 0;
do{

MPI_Fetch_and_op(&result, &result , MPI_INT, r, 0, MPI_NO_OP, win_res);
printf("result: %d\n", result[0]);

} while(result[0] != 4);
printf("Master is done!\n");

} else {
MPI_Fetch_and_op(&one, &result, MPI_INT, 0, 0, MPI_SUM, win_res);

}
MPI_Win_unlock_all(win_res);
MPI_Win_free(&win_res);
MPI_Finalize();
return 0;
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MPI topic: File I/O

This chapter discusses the I/O support of MPI, which is intended to alleviate the problems inherent in par-
allel file access. Let us first explore the issues. This story partly depends on what sort of parallel computer
are you running on. Here are some of the hardware scenarios you may encounter:

• On networks of workstations each node will have a separate drive with its own file system.
• On many clusters there will be a shared file system that acts as if every process can access every
file.

• Cluster nodes may or may not have a private file system.

Based on this, the following strategies are possible, even before we start talking about MPI I/O.

• One process can collect all data with MPI_Gather and write it out. There are at least three things
wrong with this: it uses network bandwidth for the gather, it may require a large amount of
memory on the root process, and centralized writing is a bottleneck.

• Absent a shared file system, writing can be parallelized by letting every process create a unique
file and merge these after the run. This makes the I/O symmetric, but collecting all the files is a
bottleneck.

• Even with a with a shared file system this approach is possible, but it can put a lot of strain on
the file system, and the post-processing can be a significant task.

• Using a shared file system, there is nothing against every process opening the same existing file
for reading, and using an individual file pointer to get its unique data.

• … but having every process open the same file for output is probably not a good idea. For
instance, if two processes try to write at the end of the file, you may need to synchronize them,
and synchronize the file system flushes.

For these reasons, MPI has a number of routines that make it possible to read and write a single file from
a large number of processes, giving each process its own well-defined location where to access the data.
These locations can use MPI derived datatypes for both the source data (that is, in memory) and target
data (that is, on disk). Thus, in one call that is collective on a communicator each process can address data
that is not contiguous in memory, and place it in locations that are not contiguous on disc.

There are dedicated libraries for file I/O, such as hdf5, netcdf , or silo. However, these often add header
information to a file that may not be understandable to post-processing applications. With MPI I/O you
are in complete control of what goes to the file. (A useful tool for viewing your file is the unix utility od.)
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Figure 10.1 MPI_File_open
Name Param name Explanation C type F type inout

MPI_File_open (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

filename name of file to open const char* CHARACTER IN
amode file access mode int INTEGER IN
info info object MPI_Info TYPE

(MPI_Info)
IN

fh new file handle MPI_File* TYPE
(MPI_File)

OUT

)
Python:

Open(type cls, Intracomm comm, filename,
int amode=MODE_RDONLY, Info info=INFO_NULL)

TACC note. Each node has a private /tmp file system (typically flash storage), to which you can write
files. Considerations:

• Since these drives are separate from the shared file system, you don’t have to worry about
stress on the file servers.

• These temporary file systems are wiped after your job finishes, so you have to do the
post-processing in your job script.

• The capacity of these local drives are fairly limited; see the userguide for exact numbers.

10.1 File handling

MPI has a datatype for files: MPI_File. This acts a little like a traditional file handle, in that there are open,
close, read/write, and seek operations on it. However, unlike traditional file handling, which in parallel
would mean having one handle per process, this handle is collective: MPI processes act as if they share
one file handle.

You open a file with MPI_File_open (figure 10.1). This routine is collective, even if only certain processes
will access the file with a read or write call. Similarly, MPI_File_close is collective.

MPL note 64: File opening. Files are objects of type mpl::file. You can use the default constructor, and the
open method, or open the file in the constructor:

// filewrite.cxx
mpl::file mpifile
(comm_world,"filewrite.dat",
mpl::file::access_mode::create | mpl::file::access_mode::write_only
);

mpifile.close();

• Failure to open throws an mpl::io_failure exception; the what method of this exception gives
an error string. The copy and copy-assignment constructors have been deleted.

262 Parallel Computing – r428



10.2. File reading and writing

Python note 30: File open is class method. Note the slightly unusual syntax for opening a file:

mpifile = MPI.File.Open(comm,filename,mode)

Even though the file is opened on a communicator, it is a class method for the MPI.File class,
rather than for the communicator object. The latter is passed in as an argument.

File access modes:

• MPI_MODE_RDONLY: read only,
• MPI_MODE_RDWR: reading and writing,
• MPI_MODE_WRONLY: write only,
• MPI_MODE_CREATE: create the file if it does not exist,
• MPI_MODE_EXCL: error if creating file that already exists,
• MPI_MODE_DELETE_ON_CLOSE: delete file on close,
• MPI_MODE_UNIQUE_OPEN: file will not be concurrently opened elsewhere,
• MPI_MODE_SEQUENTIAL: file will only be accessed sequentially,
• MPI_MODE_APPEND: set initial position of all file pointers to end of file.

These modes can be added or bitwise-or’ed.

As a small illustration:
Code:

// filewrite.c
MPI_File mpifile;
MPI_File_open
(comm,"filewrite.dat",
MPI_MODE_CREATE |
↪MPI_MODE_WRONLY,MPI_INFO_NULL,

&mpifile);
MPI_File_write_at
(mpifile,/* offset: */

↪procno*sizeof(int),
&procno,1, MPI_INT,MPI_STATUS_IGNORE);

MPI_File_close(&mpifile);

Output:

Finished: all 4 correct
octal dump:
0000000 000000 000000 000001 000000

↪000002 000000 000003 000000
0000020

You can delete a file with MPI_File_delete.

Buffers can be flushed with MPI_File_sync, which is a collective call.

10.2 File reading and writing

The basic file operations, in between the open and close calls, are the POSIX-like, noncollective, calls

• MPI_File_seek (figure 10.2). The whence parameter can be:
– MPI_SEEK_SET The pointer is set to offset.
– MPI_SEEK_CUR The pointer is set to the current pointer position plus offset.
– MPI_SEEK_END The pointer is set to the end of the file plus offset.
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Figure 10.2 MPI_File_seek
Name Param name Explanation C type F type inout

MPI_File_seek (
fh file handle MPI_File TYPE

(MPI_File)
INOUT

offset file offset MPI_Offset INTEGER
(KIND=MPI_OFFSET_KIND)

IN

whence update mode int INTEGER IN
)

Figure 10.3 MPI_File_write
Name Param name Explanation C type F type inout

MPI_File_write (
MPI_File_write_c (

fh file handle MPI_File TYPE
(MPI_File)

INOUT

buf initial address of buffer const void* TYPE(*),
DIMENSION(..)

IN

count number of elements in
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each buffer
element

MPI_Datatype TYPE
(MPI_Datatype)

IN

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)

• MPI_File_write (figure 10.3). This routine writes the specified data in the locations specified
with the current file view. The number of items written is returned in the MPI_Status argument;
all other fields of this argument are undefined. It can not be used if the file was opened with
MPI_MODE_SEQUENTIAL.

• If all processes execute a write at the same logical time, it is better to use the collective call
MPI_File_write_all.

• MPI_File_read (figure 10.4) This routine attempts to read the specified data from the locations
specified in the current file view. The number of items read is returned in the MPI_Status argu-
ment; all other fields of this argument are undefined. It can not be used if the file was opened
with MPI_MODE_SEQUENTIAL.

• If all processes execute a read at the same logical time, it is better to use the collective call
MPI_File_read_all (figure 10.5).

For thread safety it is good to combine seek and read/write operations:

• MPI_File_read_at: combine read and seek. The collective variant is MPI_File_read_at_all.
• MPI_File_write_at: combine write and seek. The collective variant is MPI_File_write_at_all; sec-
tion 10.2.2.

Writing to and reading from a parallel file is rather similar to sending a receiving:
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Figure 10.4 MPI_File_read
Name Param name Explanation C type F type inout

MPI_File_read (
MPI_File_read_c (

fh file handle MPI_File TYPE
(MPI_File)

INOUT

buf initial address of buffer void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each buffer
element

MPI_Datatype TYPE
(MPI_Datatype)

IN

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)

Figure 10.5 MPI_File_read_all
Name Param name Explanation C type F type inout

MPI_File_read_all (
MPI_File_read_all_c (

fh file handle MPI_File TYPE
(MPI_File)

INOUT

buf initial address of buffer void* TYPE(*),
DIMENSION(..)

OUT

count number of elements in
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each buffer
element

MPI_Datatype TYPE
(MPI_Datatype)

IN

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)

• The process uses an predefined data type or a derived datatype to describe what elements in an
array go to file, or are read from file.

• In the simplest case, your read or write that data to the file using an offset, or first having done
a seek operation.

• But you can also set a ‘file view’ to describe explicitly what elements in the file will be involved.

MPL note 65: File writing. Routines with the obvious names exist:

mpifile.write_at
( /* offset: */ procno*sizeof(int),
/* data: */ procno );

Also read, write, iread, iwrite, read_at, write_at, iread_at, iwrite_at, read_all, write_all,
iread_all, iwrite_all, read_ordered, write_ordered, iread_ordered, iwrite_ordered,
read_shared, write_shared, iread_shared, iwrite_shared, read_at_all, write_at_all,
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Figure 10.6 MPI_File_iwrite
Name Param name Explanation C type F type inout

MPI_File_iwrite (
MPI_File_iwrite_c (

fh file handle MPI_File TYPE
(MPI_File)

INOUT

buf initial address of buffer const void* TYPE(*),
DIMENSION(..)

IN

count number of elements in
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each buffer
element

MPI_Datatype TYPE
(MPI_Datatype)

IN

request request object MPI_Request* TYPE
(MPI_Request)

OUT

)

iread_at_all, iwrite_at_all, read_all_begin, write_all_begin, read_all_end, write_all_end,
read_at_all_begin, write_at_all_begin, read_at_all_end, write_at_all_end, read_ordered_begin,
write_ordered_begin, read_ordered_end, write_ordered_end,

10.2.1 Nonblocking read/write

Just like there are blocking and nonblocking sends, there are also nonblocking writes and
reads: MPI_File_iwrite (figure 10.6), MPI_File_iread operations, and their collective versions
MPI_File_iwrite_all, MPI_File_iread_all.

Also MPI_File_iwrite_at, MPI_File_iwrite_at_all, MPI_File_iread_at., MPI_File_iread_at_all.

These routines output an MPI_Request object, which can then be tested with MPI_Wait or MPI_Test.

Nonblocking collective I/O functions much like other nonblocking collectives (section 3.11): the request
is satisfied if all processes finish the collective.

There are also split collectives that function like nonblocking collective I/O, but with the request/wait
mechanism: MPI_File_write_all_begin / MPI_File_write_all_end (and similarly MPI_File_read_all_begin /
MPI_File_read_all_end) where the second routine blocks until the collective write/read has been con-
cluded.

Also MPI_File_iread_shared, MPI_File_iwrite_shared.

10.2.2 Individual file pointers, contiguous writes

After the collective open call, each process holds an individual file pointer that it can individually position
somewhere in the shared file. Let’s explore this modality.

The simplest way of writing a data to file is much like a send call: a buffer is specified with the usual
count/datatype specification, and a target location in the file is given. The routine MPI_File_write_at (fig-
ure 10.7) gives this location in absolute terms with a parameter of type MPI_Offset, which counts bytes.
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Figure 10.7 MPI_File_write_at
Name Param name Explanation C type F type inout

MPI_File_write_at (
MPI_File_write_at_c (

fh file handle MPI_File TYPE
(MPI_File)

INOUT

offset file offset MPI_Offset INTEGER
(KIND=MPI_OFFSET_KIND)

IN

buf initial address of buffer const void* TYPE(*),
DIMENSION(..)

IN

count number of elements in
buffer

[ int
MPI_Count INTEGER IN

datatype datatype of each buffer
element

MPI_Datatype TYPE
(MPI_Datatype)

IN

status status object MPI_Status* TYPE
(MPI_Status)

OUT

)
Python:

MPI.File.Write_at(self, Offset offset, buf, Status status=None)

Figure 10.1: Writing at an offset

Exercise 10.1. Create a buffer of length nwords=3 on each process, and write these buffers
as a sequence to one file with MPI_File_write_at.
(There is a skeleton for this exercise under the name blockwrite.)

Instead of giving the position in the file explicitly, you can also use a MPI_File_seek call to position the file
pointer, and write with MPI_File_write at the pointer location. The write call itself also advances the file
pointer so separate calls for writing contiguous elements need no seek calls with MPI_SEEK_CUR.

Exercise 10.2. Rewrite the code of exercise 10.1 to use a loop where each iteration writes
only one item to file. Note that no explicit advance of the file pointer is needed.

Exercise 10.3. Construct a file with the consecutive integers 0, … ,𝑊𝑃 where 𝑊 some
integer, and 𝑃 the number of processes. Each process 𝑝 writes the numbers
𝑝, 𝑝 + 𝑊 , 𝑝 + 2𝑊 ,…. Use a loop where each iteration

1. writes a single number with MPI_File_write, and
2. advanced the file pointer with MPI_File_seek with a whence parameter of
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Figure 10.8 MPI_File_set_view
Name Param name Explanation C type F type inout

MPI_File_set_view (
fh file handle MPI_File TYPE

(MPI_File)
INOUT

disp displacement MPI_Offset INTEGER
(KIND=MPI_OFFSET_KIND)

IN

etype elementary datatype MPI_Datatype TYPE
(MPI_Datatype)

IN

filetype filetype MPI_Datatype TYPE
(MPI_Datatype)

IN

datarep data representation const char* CHARACTER IN
info info object MPI_Info TYPE

(MPI_Info)
IN

)
Python:

mpifile = MPI.File.Open( .... )
mpifile.Set_view

(self,
Offset disp=0, Datatype etype=None, Datatype filetype=None,
datarep=None, Info info=INFO_NULL)

MPI_SEEK_CUR.

10.2.3 File views

The previous mode of writing is enough for writing simple contiguous blocks in the file. However, you
can also access noncontiguous areas in the file. For this you use MPI_File_set_view (figure 10.8). This call
is collective, even if not all processes access the file.

• The disp displacement parameters is measured in bytes. It can differ between processes. On
sequential files such as tapes or network streams it does not make sense to set a displacement;
for those the MPI_DISPLACEMENT_CURRENT value can be used.

• The etype describes the data type of the file, it needs to be the same on all processes.
• The filetype describes how this process sees the file, so it can differ between processes.
• The datarep string can have the following values:

– native: data on disk is represented in exactly the same format as in memory;
– internal: data on disk is represented in whatever internal format is used by the MPI

implementation;
– external: data on disk is represented using XDR portable data formats.

• The info parameter is an MPI_Info object, or MPI_INFO_NULL. See section 15.1.1.3 for more on file
info. (See T3PIO [21] for a tool that assists in setting this object.)

// scatterwrite.c
MPI_File_set_view
(mpifile,
offset,MPI_INT,scattertype,
"native",MPI_INFO_NULL);
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Figure 10.2: Writing at a view

Exercise 10.4.
(There is a skeleton for this exercise under the name viewwrite.) Write a file in the
same way as in exercise 10.1, but now use MPI_File_write and use MPI_File_set_view
to set a view that determines where the data is written.

You can get very creative effects by setting the view to a derived datatype.

Fortran note 15: Offset literals. In Fortran you have to assure that the displacement parameter is of ‘kind’
MPI_OFFSET_KIND. In particular, you can not specify a literal zero ‘0’ as the displacement; use
0_MPI_OFFSET_KIND instead.

More: MPI_File_set_size, MPI_File_get_size MPI_File_preallocate, MPI_File_get_view.

10.2.4 Shared file pointers

It is possible to have a file pointer that is shared (and therefore identical) between all processes of the
communicator that was used to open the file. This file pointer is set with MPI_File_seek_shared. For reading
and writing there are then two sets of routines:

• Individual accesses are done with MPI_File_read_shared and MPI_File_write_shared. Nonblock-
ing variants are MPI_File_iread_shared and MPI_File_iwrite_shared.

• Collective accesses are done with MPI_File_read_ordered and MPI_File_write_ordered, which ex-
ecute the operations in order ascending by rank.

Shared file pointers require that the same view is used on all processes. Also, these operations are less
efficient because of the need to maintain the shared pointer.
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Figure 10.3: Writing at a derived type

10.3 Consistency

It is possible for one process to read data previously writte by another process. For this, it is of course
necessary to impose a temporal order, for instance by using MPI_Barrier, or using a zero-byte send from
the writing to the reading process.

However, the file also needs to be declared atomic: MPI_File_set_atomicity.

10.4 Constants

MPI_SEEK_SET used to be called SEEK_SET which gave conflicts with the C++ library. This had to be cir-
cumvented with

make CPPFLAGS="-DMPICH_IGNORE_CXX_SEEK -DMPICH_SKIP_MPICXX"
and such.

10.5 Error handling

By default, MPI uses MPI_ERRORS_ARE_FATAL since parallel errors are almost impossible to recover from. File
handling errors, on the other hand, are less serious: if a file is not found, the operation can be abandoned.
For this reason, the default error handler for file operations is MPI_ERRORS_RETURN.

The default I/O error handler can be queried and set with MPI_File_get_errhandler and
MPI_File_set_errhandler respectively, passing MPI_FILE_NULL as argument.
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10.6 Review questions

Exercise 10.5. T/F? After your SLURM job ends, you can copy from the login node the files
you’ve written to \tmp.

Solution to exercise 10.5. False: \tmp is local to the nodes, so
• it is not accessible after your job ends, and
• it is wiped after your job ends.

Exercise 10.6. T/F? File views (MPI_File_set_view) are intended to
• write MPI derived types to file; without them you can only write contiguous
buffers;

• prevent collisions in collective writes; they are not needed for individual writes.

Solution to exercise 10.6. False and false.

Exercise 10.7. The sequence MPI_File_seek_shared, MPI_File_read_shared can be replaced by
MPI_File_seek, MPI_File_read if you make what changes?

Solution to exercise 10.7. Each process needs to position its own file pointer.
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Chapter 11

MPI topic: Topologies

A communicator describes a group of processes, but the structure of your computation may not be such
that every process will communicate with every other process. For instance, in a computation that is math-
ematically defined on a Cartesian 2D grid, the processes themselves act as if they are two-dimensionally
ordered and communicate with N/S/E/W neighbors. If MPI had this knowledge about your application, it
could conceivably optimize for it, for instance by renumbering the ranks so that communicating processes
are closer together physically in your cluster.

The mechanism to declare this structure of a computation to MPI is known as a virtual topology. The
following types of topology are defined:

• MPI_UNDEFINED: this values holds for communicators where no topology has explicitly been spec-
ified.

• MPI_CART: this value holds for Cartesian toppologies, where processes act as if they are ordered
in a multi-dimensional ‘brick’; see section 11.1.

• MPI_GRAPH: this value describes the graph topology that was defined in MPI-1; section 11.2.4.
It is unnecessarily burdensome, since each process needs to know the total graph, and should
therefore be considered obsolete; the type MPI_DIST_GRAPH should be used instead.

• MPI_DIST_GRAPH: this value describes the distributed graph topology where each process only
describes the edges in the process graph that touch itself; see section 11.2.

These values can be discovered with the routine MPI_Topo_test.

11.1 Cartesian grid topology

A Cartesian grid is a structure, typically in 2 or 3 dimensions, of points that have two neighbors in each
of the dimensions. Thus, if a Cartesian grid has sizes 𝐾 ×𝑀 ×𝑁 , its points have coordinates (𝑘, 𝑚, 𝑛) with
0 ≤ 𝑘 < 𝐾 et cetera. Most points have six neighbors (𝑘 ± 1, 𝑚, 𝑛), (𝑘, 𝑚 ± 1, 𝑛), (𝑘, 𝑚, 𝑛 ± 1); the exception
are the edge points. A grid where edge points are connected through wraparound connections is called a
periodic grid.

MPI has a ‘Cartesian communicator’ construct (that is, a communicator with type MPI_CART; see above)
for processes to be organized not just linearly through their ranks, but also as if they are organized in a
Cartesian grid.
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MPL note 66: Cartesian communicator. There is a separate class cartesian_communicator.

Additionaly, there is a class dimensions that describes the shape of the Cartesian grid and its
periodicity. The size(int) method retrieves the size in the given dimension.

The auxiliary routine MPI_Dims_create assists in finding a grid of a given dimension, attempting to mini-
mize the diameter.
Code:

// cartdims.c
int *dimensions = (int*)

↪malloc(dim*sizeof(int));
for (int idim=0; idim<dim; idim++)

dimensions[idim] = 0;
MPI_Dims_create(nprocs,dim,dimensions);

Output:

mpicc -o cartdims cartdims.o
Cartesian grid size: 3 dim: 1
3

Cartesian grid size: 3 dim: 2
3 x 1

Cartesian grid size: 4 dim: 1
4

Cartesian grid size: 4 dim: 2
2 x 2

Cartesian grid size: 4 dim: 3
2 x 2 x 1

Cartesian grid size: 12 dim: 1
12
Cartesian grid size: 12 dim: 2
4 x 3

Cartesian grid size: 12 dim: 3
3 x 2 x 2

Cartesian grid size: 12 dim: 4
3 x 2 x 2 x 1

If the dimensions array is nonzero in a component, that one is not touched. Of course, the product of the
specified dimensions has to divide in the input number of nodes.

MPL note 67: Dims create. The dims_create routine takes a dimensions object with only the dimensionality
specified, and creates one with the sizes filled in.

mpl::cartesian_communicator::dimensions brick(3);
brick = mpl::dims_create(nprocs,brick);

To have certain dimensions be periodic, the initial dimensions object needs to be create with
periodicity values periodic or non_periodic.

mpl::cartesian_communicator::dimensions pbrick
( { mpl::cartesian_communicator::non_periodic,

mpl::cartesian_communicator::periodic,
mpl::cartesian_communicator::non_periodic } );

pbrick = mpl::dims_create(nprocs,pbrick);

11.1.1 Cartesian topology communicator

The cartesian topology is specified by giving MPI_Cart_create (figure 11.1) the sizes of the processor grid
along each axis, and whether the grid is periodic along that axis.
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Figure 11.1 MPI_Cart_create
Name Param name Explanation C type F type inout

MPI_Cart_create (
comm_old input communicator MPI_Comm TYPE

(MPI_Comm)
IN

ndims number of dimensions of
Cartesian grid

int INTEGER IN

dims integer array of size
ndims specifying the
number of processes in
each dimension

const int[] INTEGER
(ndims)

IN

periods logical array of size
ndims specifying whether
the grid is periodic
(true) or not (false) in
each dimension

const int[] LOGICAL
(ndims)

IN

reorder ranking may be reordered
(true) or not (false)

int LOGICAL IN

comm_cart communicator with new
Cartesian topology

MPI_Comm* TYPE
(MPI_Comm)

OUT

)

Figure 11.2 MPI_Topo_test
Name Param name Explanation C type F type inout

MPI_Topo_test (
comm communicator MPI_Comm TYPE

(MPI_Comm)
IN

status topology type of
communicator comm

int* INTEGER OUT

)

MPI_Comm cart_comm;
int *periods = (int*) malloc(dim*sizeof(int));
for ( int id=0; id<dim; id++ ) periods[id] = 0;
MPI_Cart_create
( comm,dim,dimensions,periods,
0,&cart_comm );

(The Cartesian grid can have fewer processes than the input communicator: any processes not included
get MPI_COMM_NULL as output.)

MPL note 68: Cartesian communicator create. The actual Cartesian communicator has a constructor that
takes a dimensions object as input.

mpl::cartesian_communicator cart_comm( comm_world,brick );

For a given communicator, you can test what type it is with MPI_Topo_test (figure 11.2):

int world_type,cart_type;
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Figure 11.3 MPI_Cart_coords
Name Param name Explanation C type F type inout

MPI_Cart_coords (
comm communicator with

Cartesian structure
MPI_Comm TYPE

(MPI_Comm)
IN

rank rank of a process within
group of comm

int INTEGER IN

maxdims length of vector coords in
the calling program

int INTEGER IN

coords integer array (of size
maxdims) containing the
Cartesian coordinates of
specified process

int[] INTEGER
(maxdims)

OUT

)

MPI_Topo_test( comm,&world_type);
MPI_Topo_test( cart_comm,&cart_type );
if (procno==0) {

printf("World comm type=%d, Cart comm type=%d\n",
world_type,cart_type);

printf("no topo =%d, cart top =%d\n",
MPI_UNDEFINED,MPI_CART);

}

For a Cartesian communicator, you can retrieve its information with MPI_Cartdim_get and MPI_Cart_get:

int dim;
MPI_Cartdim_get( cart_comm,&dim );
int *dimensions = (int*) malloc(dim*sizeof(int));
int *periods = (int*) malloc(dim*sizeof(int));
int *coords = (int*) malloc(dim*sizeof(int));
MPI_Cart_get( cart_comm,dim,dimensions,periods,coords );

MPL note 69: Get the dimensions object. The dimensions object can be extracted from the communicator

mpl::cartesian_communicator::dimensions
dimensions = cart_comm.get_dimensions();

after which dimensions and periodicies can be extracted:

// cartcoord.cxx
int dsize = dimensions.size(idim);
auto p = dimensions.periodicity(idim);

11.1.2 Cartesian vs world rank

Each point in a Cartesian communicator has a coordinate and a rank. The translation from rank to Carte-
sian coordinate is done by MPI_Cart_coords (figure 11.3), and translation from coordinates to a rank is done
by MPI_Cart_rank (figure 11.4). In both cases, this translation can be done on any process; for the latter
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Figure 11.4 MPI_Cart_rank
Name Param name Explanation C type F type inout

MPI_Cart_rank (
comm communicator with

Cartesian structure
MPI_Comm TYPE

(MPI_Comm)
IN

coords integer array (of size
ndims) specifying the
Cartesian coordinates of a
process

const int[] INTEGER(*) IN

rank rank of specified process int* INTEGER OUT
)

routine note that coordinates outside the Cartesian grid are erroneous, if the grid is not periodic in the
offending coordinate.

// cart.c
MPI_Comm comm2d;
int periodic[ndim]; periodic[0] = periodic[1] = 0;
MPI_Cart_create(comm,ndim,dimensions,periodic,1,&comm2d);
if (comm2d==MPI_COMM_NULL) {

printf("Process %d not included\n",procno);
} else {
MPI_Cart_coords(comm2d,procno,ndim,coord_2d);
MPI_Cart_rank(comm2d,coord_2d,&rank_2d);
printf("I am %d: (%d,%d); originally %d\n",

rank_2d,coord_2d[0],coord_2d[1],procno);

The reorder parameter to MPI_Cart_create indicates whether processes can have a rank in the new com-
municator that is different from in the old one.

MPL note 70: Rank to coord translation. The coordinates method of the cartesian communicator returns a
vector-like object describing the process coordinate:

for ( int ip=0; ip<nprocs; ip++ ) {
mpl::cartesian_communicator::vector

coord = cart_comm.coordinates(ip);
print("[{:2}] coord: [",ip);
for ( int id=0; id<dim; id++ )

print("{},",coord[id]);
print("]\n");

11.1.3 Cartesian communication

A common communication pattern in Cartesian grids is to do an MPI_Sendrecv with processes that are
adjacent along one coordinate axis.

By way of example, consider a 3D grid that is periodic in the first dimension:

// cartcoord.c
for ( int id=0; id<dim; id++)
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periods[id] = id==0 ? 1 : 0;
MPI_Cart_create
( comm,dim,dimensions,periods,
0,&period_comm );

We shift process 0 in dimensions 0 and 1. In dimension 0 we get a wrapped-around source, and a target
that is the next process in row-major ordering; in dimension 1 we get MPI_PROC_NULL as source, and a
legitimate target.
Code:

int pred,succ;
MPI_Cart_shift
(period_comm,/* dim: */ 0,/* up: */ 1,
&pred,&succ);

printf
("periodic dimension 0:\n src=%d,

↪tgt=%d\n",
pred,succ);

MPI_Cart_shift
(period_comm,/* dim: */ 1,/* up: */ 1,
&pred,&succ);

printf
("non-periodic dimension 1:\n src=%d,

↪tgt=%d\n",
pred,succ);

Output:

Grid of size 6 in 3 dimensions:
3 x 2 x 1

Shifting process 0.
periodic dimension 0:

src=4, tgt=2
non-periodic dimension 1:

src=-1, tgt=1

MPL note 71: Cartesian shifting. The routine cartesian_communicator::shift takes a dimension and a di-
rection, and gives the source and destination as a shifted_ranks object, which is basically a tuple
of two integers:

int pred,succ;
mpl::shift_ranks shifted = cart_comm.shift

( /* dim: */ 1,/* up: */ 1 );
pred = shifted.source; succ = shifted.destination;
print("non-periodic: src={}, tgt={}\n",pred,succ);

Exercise 11.1. Use Cartesian topology routines to extend exercise ?? to two dimensions.

11.1.4 Communicators in subgrids

The routine MPI_Cart_sub (figure 11.5) is similar to MPI_Comm_split, in that it splits a communicator into
disjoint subcommunicators. In this case, it splits a Cartesian communicator into disjoint Cartesian commu-
nicators, each corresponding to a subset of the dimensions. This subset inherits both sizes and periodicity
from the original communicator.
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Figure 11.5 MPI_Cart_sub
Name Param name Explanation C type F type inout

MPI_Cart_sub (
comm communicator with

Cartesian structure
MPI_Comm TYPE

(MPI_Comm)
IN

remain_dims the i-th entry of
remain_dims specifies
whether the i-th dimension
is kept in the subgrid
(true) or is dropped
(false)

const int[] LOGICAL(*) IN

newcomm communicator containing
the subgrid that includes
the calling process

MPI_Comm* TYPE
(MPI_Comm)

OUT

)

Code:

MPI_Cart_sub(
↪period_comm,remain,&hyperplane );

if (procno==0) {
MPI_Topo_test( hyperplane,&topo_type );
MPI_Cartdim_get( hyperplane,&hyperdim );
printf("hyperplane has dimension %d,

↪type %d\n",
hyperdim,topo_type);

MPI_Cart_get(
↪hyperplane,dim,dims,period,coords );

printf(" periodic: ");
for (int id=0; id<2; id++)

printf("%d,",period[id]);
printf("\n");

Output:

Grid of size 6 in 3 dimensions:
3 x 2 x 1

hyperplane has dimension 2, type 2
periodic: 1,0,

11.1.5 Reordering

The MPI_Cart_create routine has a possibility of reordering ranks. If this is applied, the routine
MPI_Cart_map gives the result of this. Given the same parameters as MPI_Cart_create, it returns the
re-ordered rank for the calling process.

11.2 Distributed graph topology
In many calculations on a grid (using the term in its mathematical, Finite Element Method (FEM), sense), a
grid point will collect information from grid points around it. Under a sensible distribution of the grid over
processes, this means that each process will collect information from a number of neighbor processes. The
number of neighbors is dependent on that process. For instance, in a 2D grid (and assuming a five-point
stencil for the computation) most processes communicate with four neighbors; processes on the edge with
three, and processes in the corners with two.
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Figure 11.1: Illustration of a distributed graph topology where each node has four neighbors

Such a topology is illustrated in figure 11.1.

MPI’s notion of graph topology, and the neighborhood collectives, offer an elegant way of expressing such
communication structures. There are various reasons for using graph topologies over the older, simpler
methods.

• MPI is allowed to reorder the processes, so that network proximity in the cluster corresponds
to proximity in the structure of the code.

• Ordinary collectives could not directly be used for graph problems, unless one would adopt a
subcommunicator for each graph neighborhood. However, scheduling would then lead to dead-
lock or serialization.

• The normal way of dealingwith graph problems is through nonblocking communications. How-
ever, since the user indicates an explicit order in which they are posted, congestion at certain
processes may occur.

• Collectives can pipeline data, while send/receive operations need to transfer their data in its
entirety.

• Collectives can use spanning trees, while send/receive uses a direct connection.

Thus the minimal description of a process graph contains for each process:

• Degree: the number of neighbor processes; and
• the ranks of the processes to communicate with.

However, this ignores that communication is not always symmetric: maybe the processes you receive from
are not the ones you send to. Worse, maybe only one side of this duality is easily described. Therefore,
there are two routines:

• MPI_Dist_graph_create_adjacent assumes that a process knows both who it is sending it, and
who will send to it. This is the most work for the programmer to specify, but it is ultimately the
most efficient.
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• MPI_Dist_graph_create specifies on each process only what it is the source for; that is, who this
process will be sending to. Consequently, some amount of processing – including communica-
tion – is needed to build the converse information, the ranks that will be sending to a process.

11.2.1 Graph creation

There are two creation routines for process graphs. These routines are fairly general in that they allow
any process to specify any part of the topology. In practice, of course, you will mostly let each process
describe its own neighbor structure.

The routine MPI_Dist_graph_create_adjacent assumes that a process knows both who it is sending it, and
who will send to it. This means that every edge in the communication graph is represented twice, so the
memory footprint is double of what is strictly necessary. However, no communication is needed to build
the graph.

The second creation routine, MPI_Dist_graph_create (figure 11.6), is probably easier to use, especially in
cases where the communication structure of your program is symmetric, meaning that a process sends
to the same neighbors that it receives from. Now you specify on each process only what it is the source
for; that is, who this process will be sending to.1. Consequently, some amount of processing – including
communication – is needed to build the converse information, the ranks that will be sending to a process.

MPL note 72: Distributed graph creation. The class mpl::dist_graph_communicator only has a constructor
corresponding to MPI_Dist_graph_create.

Figure 11.1 describes the common five-point stencil structure. If we let each process only describe itself,
we get the following:

• nsources= 1 because the calling process describes on node in the graph: itself.
• sources is an array of length 1, containing the rank of the calling process.
• degrees is an array of length 1, containing the degree (probably: 4) of this process.
• destinations is an array of length the degree of this process, probably again 4. The elements
of this array are the ranks of the neighbor nodes; strictly speaking the ones that this process
will send to.

• weights is an array declaring the relative importance of the destinations. For an unweighted
graph use MPI_UNWEIGHTED. In the case the graph is weighted, but the degree of a source is zero,
you can pass an empty array as MPI_WEIGHTS_EMPTY.

• reorder (int in C, LOGICAL in Fortran) indicates whether MPI is allowed to shuffle processes
to achieve greater locality.

The resulting communicator has all the processes of the original communicator, with the same ranks.
In other words MPI_Comm_size and MPI_Comm_rank gives the same values on the graph communicator, as
on the intra-communicator that it is constructed from. To get information about the grouping, use
MPI_Dist_graph_neighbors and MPI_Dist_graph_neighbors_count; section 11.2.3.

By way of example we build an unsymmetric graph, that is, an edge 𝑣1 → 𝑣2 between vertices 𝑣1, 𝑣2 does
not imply an edge 𝑣2 → 𝑣1.

1. I disagree with this design decision. Specifying your sources is usually easier than specifying your destinations.
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Figure 11.6 MPI_Dist_graph_create
Name Param name Explanation C type F type inout

MPI_Dist_graph_create (
comm_old input communicator MPI_Comm TYPE

(MPI_Comm)
IN

n number of source nodes
for which this process
specifies edges

int INTEGER IN

sources array containing the n
source nodes for which
this process specifies
edges

const int[] INTEGER(n) IN

degrees array specifying the
number of destinations
for each source node in
the source node array

const int[] INTEGER(n) IN

destinations destination nodes for the
source nodes in the source
node array

const int[] INTEGER(*) IN

weights weights for source to
destination edges

const int[] INTEGER(*) IN

info hints on optimization and
interpretation of weights

MPI_Info TYPE
(MPI_Info)

IN

reorder the ranks may be reordered
(true) or not (false)

int LOGICAL IN

comm_dist_graph communicator with
distributed graph topology
added

MPI_Comm* TYPE
(MPI_Comm)

OUT

)
MPL:

dist_graph_communicator
(const communicator &old_comm,
const source_set &ss, const dest_set &ds, bool reorder=true)

where:
class dist_graph_communicator::source_set : private set< pair<int,int> >
class dist_graph_communicator::dest_set : private set< pair<int,int> >

Python:

MPI.Comm.Create_dist_graph
(self, sources, degrees, destinations, weights=None, Info info=INFO_NULL, bool reorder=False)

returns graph communicator
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Code:

// graph.c
for ( int i=0; i<=1; i++ ) {

int neighb_i = proci+i;
if (neighb_i<0 || neighb_i>=idim)
continue;

int j = 1-i;
int neighb_j = procj+j;
if (neighb_j<0 || neighb_j>=jdim)

continue;
destinations[ degree++ ] =

PROC(neighb_i,neighb_j,idim,jdim);
}
MPI_Dist_graph_create

(comm,
/* I specify just one proc: me */ 1,
&procno,&degree,destinations,weights,
MPI_INFO_NULL,0,
&comm2d
);

Here we gather the coordinates of the source neighbors:
Code:

int indegree,outdegree,
weighted;

MPI_Dist_graph_neighbors_count
(comm2d,
&indegree,&outdegree,
&weighted);

int
my_ij[2] = {proci,procj},
other_ij[4][2];

MPI_Neighbor_allgather
( my_ij,2,MPI_INT,

other_ij,2,MPI_INT,
comm2d );

Output:

[ 0 = (0,0)] has 2 outbound: 1, 2,
0 inbound:

[ 1 = (0,1)] has 1 outbound: 3,
1 inbound: (0,0)=0

[ 2 = (1,0)] has 2 outbound: 3, 4,
1 inbound: (0,0)=0

[ 3 = (1,1)] has 1 outbound: 5,
2 inbound: (0,1)=1 (1,0)=2

[ 4 = (2,0)] has 1 outbound: 5,
1 inbound: (1,0)=2

[ 5 = (2,1)] has 0 outbound:
2 inbound: (1,1)=3 (2,0)=4

However, we can’t rely on the sources being ordered, so the following segment performs an explicit query
for the source neighbors:
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Code:

int indegree=4, sources[indegree],
inweights[indegree],weighted;

int outdegree=4, targets[outdegree],
outweights[outdegree];

MPI_Dist_graph_neighbors_count
(comm2d,
&indegree,&outdegree,
&weighted);

MPI_Dist_graph_neighbors
(comm2d,
indegree,sources,inweights,
outdegree,targets,outweights
);

Output:

0 inbound:
1 inbound: 0
1 inbound: 0
2 inbound: 1 2
1 inbound: 2
2 inbound: 4 3

Python note 31: Graph communicators. Graph communicator creation is a method of the Comm class, and
the graph communicator is a function return result:

graph_comm = oldcomm.Create_dist_graph(sources, degrees, destinations)

The weights, info, and reorder arguments have default values.

MPL note 73: Graph communicators. The constructor dist_graph_communicator

dist_graph_communicator
(const communicator &old_comm, const source_set &ss,
const dest_set &ds, bool reorder = true);

is a wrapper around MPI_Dist_graph_create_adjacent.

MPL note 74: Graph communicator querying. Methods indegree, outdegree are wrappers around
MPI_Dist_graph_neighbors_count. Sources and targets can be queried with inneighbors and
outneighbors, which are wrappers around MPI_Dist_graph_neighbors.

11.2.2 Neighbor collectives

We can now use the graph topology to perform a gather or allgather MPI_Neighbor_allgather (figure 11.7)
that combines only the processes directly connected to the calling process.

The neighbor collectives have the same argument list as the regular collectives, but they apply to a graph
communicator.

Figure 11.2: Solving the right-send exercise with neighborhood collectives
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Figure 11.7 MPI_Neighbor_allgather
Name Param name Explanation C type F type inout

MPI_Neighbor_allgather (
MPI_Neighbor_allgather_c (

sendbuf starting address of send
buffer

const void* TYPE(*),
DIMENSION(..)

IN

sendcount number of elements sent to
each neighbor

[ int
MPI_Count INTEGER IN

sendtype datatype of send buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

recvbuf starting address of
receive buffer

void* TYPE(*),
DIMENSION(..)

OUT

recvcount number of elements
received from each
neighbor

[ int
MPI_Count INTEGER IN

recvtype datatype of receive buffer
elements

MPI_Datatype TYPE
(MPI_Datatype)

IN

comm communicator with topology
structure

MPI_Comm TYPE
(MPI_Comm)

IN

)

Exercise 11.2. Revisit exercise 4.3 and solve it using MPI_Dist_graph_create. Use figure 11.2
for inspiration.
Use a degree value of 1.
(There is a skeleton for this exercise under the name rightgraph.)

The previous exercise can be done with a degree value of:

• 1, reflecting that each process communicates with just 1 other; or
• 2, reflecting that you really gather from two processes.

In the latter case, results do not wind up in the receive buffer in order of increasing process number as
with a traditional gather. Rather, you need to use MPI_Dist_graph_neighbors to find their sequencing; see
section 11.2.3.

Another neighbor collective is MPI_Neighbor_alltoall.

The vector variants are MPI_Neighbor_allgatherv and MPI_Neighbor_alltoallv.

There is a heterogenous (multiple datatypes) variant: MPI_Neighbor_alltoallw.

The list is: MPI_Neighbor_allgather, MPI_Neighbor_allgatherv, MPI_Neighbor_alltoall,
MPI_Neighbor_alltoallv, MPI_Neighbor_alltoallw.

Nonblocking: MPI_Ineighbor_allgather, MPI_Ineighbor_allgatherv, MPI_Ineighbor_alltoall,
MPI_Ineighbor_alltoallv, MPI_Ineighbor_alltoallw.

For unclear reasons there is no MPI_Neighbor_allreduce.
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Figure 11.8 MPI_Dist_graph_neighbors_count
Name Param name Explanation C type F type inout

MPI_Dist_graph_neighbors_count (
comm communicator with

distributed graph topology
MPI_Comm TYPE

(MPI_Comm)
IN

indegree number of edges into this
process

int* INTEGER OUT

outdegree number of edges out of
this process

int* INTEGER OUT

weighted false if MPI_UNWEIGHTED
was supplied during
creation, true otherwise

int* LOGICAL OUT

)

Figure 11.9 MPI_Dist_graph_neighbors
Name Param name Explanation C type F type inout

MPI_Dist_graph_neighbors (
comm communicator with

distributed graph topology
MPI_Comm TYPE

(MPI_Comm)
IN

maxindegree size of sources and
sourceweights arrays

int INTEGER IN

sources processes for which the
calling process is a
destination

int[] INTEGER
(maxindegree)

OUT

sourceweights weights of the edges into
the calling process

int[] INTEGER(*) OUT

maxoutdegree size of destinations and
destweights arrays

int INTEGER IN

destinations processes for which the
calling process is a
source

int[] INTEGER
(maxoutdegree)

OUT

destweights weights of the edges out
of the calling process

int[] INTEGER(*) OUT

)

11.2.3 Query

There are two routines for querying the neighbors of a process: MPI_Dist_graph_neighbors_count (fig-
ure 11.8) and MPI_Dist_graph_neighbors (figure 11.9).

While this information seems derivable from the graph construction, that is not entirely true for two
reasons.

1. With the nonadjoint version MPI_Dist_graph_create, only outdegrees and destinations are spec-
ified; this call then supplies the indegrees and sources;

2. As observed above, the order in which data is placed in the receive buffer of a gather call is not
determined by the create call, but can only be queried this way.
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11.2.4 Graph topology (deprecated)

The original MPI-1 had a graph topology interface MPI_Graph_createwhich required each process to spec-
ify the full process graph. Since this is not scalable, it should be considered deprecated. Use the distributed
graph topology (section 11.2) instead.

Other legacy routines: MPI_Graph_neighbors, MPI_Graph_neighbors_count, MPI_Graph_get, MPI_Graphdims_get.

11.2.5 Re-ordering

Similar to the MPI_Cart_map routine (section 11.1.5), the routine MPI_Graph_map gives a re-ordered rank for
the calling process.
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MPI topic: Shared memory

Some programmers are under the impression that MPI would not be efficient on shared memory, since all
operations are done throughwhat looks like network calls. This is not correct: manyMPI implementations
have optimizations that detect shared memory and can exploit it, so that data is copied, rather than going
through a communication layer. (Conversely, programming systems for shared memory such as OpenMP
can actually have inefficiencies associated with thread handling.) The main inefficiency associated with
using MPI on shared memory is then that processes can not actually share data.

The one-sided MPI calls (chapter 9) can also be used to emulate shared memory, in the sense that an
origin process can access data from a target process without the target’s active involvement. However,
these calls do not distinguish between actually shared memory and one-sided access across the network.

In this chapter we will look at the ways MPI can interact with the presence of actual shared memory.
(This functionality was added in the MPI-3 standard.) This relies on the MPI_Win windows concept, but
otherwise uses direct access of other processes’ memory.

12.1 Recognizing shared memory

MPI’s one-sided routines take a very symmetric view of processes: each process can access the window of
every other process (within a communicator). Of course, in practice there will be a difference in perfor-
mance depending on whether the origin and target are actually on the same shared memory, or whether
they can only communicate through the network. For this reasonMPI makes it easy to group processes by
shared memory domains using MPI_Comm_split_type (see section 7.4.1) with the type MPI_COMM_TYPE_SHARED.

Splitting by shared memory:
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Code:

// commsplittype.c
MPI_Info info;
MPI_Comm_split_type

(MPI_COMM_WORLD,
MPI_COMM_TYPE_SHARED,
procno,info,&sharedcomm);

MPI_Comm_size
(sharedcomm,&new_nprocs);

MPI_Comm_rank
(sharedcomm,&new_procno);

Output:

make[3]: `commsplittype' is up to date.
TACC: Starting up job 4356245
TACC: Starting parallel tasks...
There are 10 ranks total
[0] is processor 0 in a shared group of 5,

↪running on
↪c209-010.frontera.tacc.utexas.edu

[5] is processor 0 in a shared group of 5,
↪running on
↪c209-011.frontera.tacc.utexas.edu

TACC: Shutdown complete. Exiting.

Exercise 12.1. Write a program that uses MPI_Comm_split_type to analyze for a run
1. How many nodes there are;
2. How many processes there are on each node.

If you run this program on an unequal distribution, say 10 processes on 3 nodes,
what distribution do you find?

Nodes: 3; processes: 10
TACC: Starting up job 4210429
TACC: Starting parallel tasks...
There are 3 nodes
Node sizes: 4 3 3
TACC: Shutdown complete. Exiting.

MPL note 75: Split by shared memory. Similar to ordinary communicator splitting (slide 62):
communicator::split_shared.

// commsplittype.cxx
mpl::communicator shared_comm
( mpl::communicator::split_shared_memory, world_comm );

int
onnode_procno = shared_comm.rank(),
onnode_nprocs = shared_comm.size();

But note: shared memory is currently not available, since windows are not (yet) implemented.

12.2 Shared memory for windows

Processes that exist on the same physical shared memory should be able to move data by copying, rather
than through MPI send/receive calls – which of course will do a copy operation under the hood. In order
to do such user-level copying:

1. We need to create a shared memory area with MPI_Win_allocate_shared. This creates a window
with the unified memory model (see section 9.5.1); and

2. We need to get pointers to where a process’ area is in this shared space; this is done with
MPI_Win_shared_query.
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Figure 12.1 MPI_Win_allocate_shared
Name Param name Explanation C type F type inout

MPI_Win_allocate_shared (
MPI_Win_allocate_shared_c (

size size of local window in
bytes

MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

disp_unit local unit size for
displacements, in bytes

[ int
MPI_Aint INTEGER IN

info info argument MPI_Info TYPE
(MPI_Info)

IN

comm intra-communicator MPI_Comm TYPE
(MPI_Comm)

IN

baseptr address of local allocated
window segment

void* TYPE(C_PTR) OUT

win window object returned by
the call

MPI_Win* TYPE(MPI_Win) OUT

)

Remark 24 As of MPI-4.1, MPI_Win_shared_query can be used on memory from MPI_Win_allocate and
MPI_Win_create, as long as this is actually a window on shared memory. Only MPI_Win_allocate_shared is
guaranteed to yield such shared memory.

12.2.1 Pointers to a shared window

The first step is to create a window (in the sense of one-sided MPI; section 9.1) on the processes on one
node. Using the MPI_Win_allocate_shared (figure 12.1) call presumably will put the memory close to the
socket on which the process runs.

// sharedbulk.c
MPI_Win node_window;
MPI_Aint window_size; double *window_data;
if (onnode_procid==0)

window_size = sizeof(double);
else window_size = 0;
MPI_Win_allocate_shared
( window_size,sizeof(double),MPI_INFO_NULL,

nodecomm,
&window_data,&node_window);

The memory allocated by MPI_Win_allocate_shared is contiguous between the processes. This makes it
possible to do address calculation. However, if a cluster node has a Non-UniformMemory Access (NUMA)
structure, for instance if two sockets have memory directly attached to each, this would increase latency
for some processes. To prevent this, the key alloc_shared_noncontig can be set to true in the MPI_Info
object.
The following material is for the recently released MPI-4 standard and may not be supported yet.

In the contiguous case, the mpi_minimum_memory_alignment info argument (section 9.1.1) applies only to the
memory on the first process; in the noncontiguous case it applies to all.
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End of MPI-4 material
// numa.c
MPI_Info window_info;
MPI_Info_create(&window_info);
MPI_Info_set(window_info,"alloc_shared_noncontig","true");

MPI_Win_allocate_shared( window_size,sizeof(double),window_info,
nodecomm,
&window_data,&node_window);

MPI_Info_free(&window_info);

Let’s explore this. We create a shared window where each process stores exactly one double, that is,
8 bytes. The following code fragment queries the window locations, and prints the distance in bytes to
the window on process 0.

for (int p=1; p<onnode_nprocs; p++) {
MPI_Aint window_sizep; int windowp_unit; double *winp_addr;
MPI_Win_shared_query( node_window,p,

&window_sizep,&windowp_unit, &winp_addr );
distp = (size_t)winp_addr-(size_t)win0_addr;
if (procno==0)

printf("Distance %d to zero: %ld\n",p,(long)distp);

With the default strategy, these windows are contiguous, and so the distances are multiples of 8 bytes.
Not so for the the non-contiguous allocation:

Strategy: default behavior of shared window alloca-
tion

Distance 1 to zero: 8
Distance 2 to zero: 16
Distance 3 to zero: 24
Distance 4 to zero: 32
Distance 5 to zero: 40
Distance 6 to zero: 48
Distance 7 to zero: 56
Distance 8 to zero: 64
Distance 9 to zero: 72

Strategy: allow non-contiguous shared window al-
location

Distance 1 to zero: 4096
Distance 2 to zero: 8192
Distance 3 to zero: 12288
Distance 4 to zero: 16384
Distance 5 to zero: 20480
Distance 6 to zero: 24576
Distance 7 to zero: 28672
Distance 8 to zero: 32768
Distance 9 to zero: 36864

The explanation here is that each window is placed on its own small page, which on this particular system
has a size of 4K.

Remark 25 The ampersand operator in C is not a physical address, but a virtual address. The translation
of where pages are placed in physical memory is determined by the page table.

12.2.2 Querying the shared structure

Even though the window created above is shared, that doesn’t mean it’s contiguous. Hence it is
necessary to retrieve the pointer to the area of each process that you want to communicate with:
MPI_Win_shared_query (figure 12.2).
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Figure 12.2 MPI_Win_shared_query
Name Param name Explanation C type F type inout

MPI_Win_shared_query (
MPI_Win_shared_query_c (

win shared memory window
object

MPI_Win TYPE(MPI_Win) IN

rank rank in the group
of window win or
MPI_PROC_NULL

int INTEGER IN

size size of the window segment MPI_Aint* INTEGER
(KIND=MPI_ADDRESS_KIND)

OUT

disp_unit local unit size for
displacements, in bytes

[ int∗
MPI_Aint∗ INTEGER OUT

baseptr address for load/store
access to window segment

void* TYPE(C_PTR) OUT

)

MPI_Aint window_size0; int window_unit; double *win0_addr;
MPI_Win_shared_query
( node_window,0,
&window_size0,&window_unit, &win0_addr );

12.2.3 Heat equation example

As an example, which consider the 1D heat equation. On each process we create a local area of three
point:

// sharedshared.c
MPI_Win_allocate_shared(3,sizeof(int),info,sharedcomm,&shared_baseptr,&shared_window);

12.2.4 Shared bulk data

In applications such as ray tracing, there is a read-only large data object (the objects in the scene to be
rendered) that is needed by all processes. In traditional MPI, this would need to be stored redundantly
on each process, which leads to large memory demands. With MPI shared memory we can store the data
object once per node. Using as above MPI_Comm_split_type to find a communicator per NUMA domain, we
store the object on process zero of this node communicator.

Exercise 12.2. Let the ‘shared’ data originate on process zero in MPI_COMM_WORLD. Then:
• create a communicator per shared memory domain;
• create a communicator for all the processes with number zero on their node;
• broadcast the shared data to the processes zero on each node.

(There is a skeleton for this exercise under the name shareddata.)
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Chapter 13

MPI topic: Hybrid computing

While the MPI standard itself makes no mention of threads – process being the primary unit of compu-
tation – the use of threads is allowed. Below we will discuss what provisions exist for doing so.

Using threads and other shared memory models in combination with MPI leads of course to the question
how race conditions are handled. Example of a code with a data race that pertains to MPI:

#pragma omp sections
#pragma omp section
MPI_Send( x, /* to process 2 */ )

#pragma omp section
MPI_Recv( x, /* from process 3 */ )

The MPI standard here puts the burden on the user: this code is not legal, and behavior is not defined.

13.1 MPI support for threading
In hybrid execution, the main question is whether all threads are allowed to make MPI calls. To deter-
mine this, replace the MPI_Init call by MPI_Init_thread (figure 13.1) Here the required and provided
parameters can take the following (monotonically increasing) values:

• MPI_THREAD_SINGLE: Only a single thread will execute.
• MPI_THREAD_FUNNELED: The programmay usemultiple threads, but only themain threadwill make
MPI calls.
The main thread is usually the one selected by the master directive, but technically it is the only
that executes MPI_Init_thread. If you call this routine in a parallel region, the main thread may
be different from the master.

• MPI_THREAD_SERIALIZED: The programmay usemultiple threads, all of whichmaymakeMPI calls,
but there will never be simultaneous MPI calls in more than one thread.

• MPI_THREAD_MULTIPLE: Multiple threads may issue MPI calls, without restrictions.

After the initialization call, you can query the support level with MPI_Query_thread (figure 13.2).

In case more than one thread performs communication, MPI_Is_thread_main (figure 13.3) can determine
whether a thread is the main thread.

Python note 32: Thread level. The thread level can be set through the mpi4py.rc object (section 2.2.2):
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Figure 13.1 MPI_Init_thread
Name Param name Explanation C type F type inout

MPI_Init_thread (
argc desired level of thread

support
int* INTEGER IN

argv provided level of thread
support

char*** INTEGER OUT

)

Figure 13.2 MPI_Query_thread
Name Param name Explanation C type F type inout

MPI_Query_thread (
provided provided level of thread

support
int* INTEGER OUT

)

mpi4py.rc.threads # default True
mpi4py.rc.thread_level # default "multiple"

Available levels are multiple, serialized, funneled, single.

MPL note 76: Threading support. MPL always calls MPI_Init_thread requesting the highest level
MPI_THREAD_MULTIPLE.

enum mpl::threading_modes {
mpl::threading_modes::single = MPI_THREAD_SINGLE,
mpl::threading_modes::funneled = MPI_THREAD_FUNNELED,
mpl::threading_modes::serialized = MPI_THREAD_SERIALIZED,
mpl::threading_modes::multiple = MPI_THREAD_MULTIPLE

};
threading_modes mpl::environment::threading_mode ();
bool mpl::environment::is_thread_main ();

The mvapich implementation of MPI does have the required threading support, but you need to set this
environment variable:

export MV2_ENABLE_AFFINITY=0
Another solution is to run your code like this:

ibrun tacc_affinity <my_multithreaded_mpi_executable
Intel MPI uses an environment variable to turn on thread support:

I_MPI_LIBRARY_KIND=<value>
where
release : multi-threaded with global lock
release_mt : multi-threaded with per-object lock for thread-split
The mpiexec program usually propagates environment variables, so the value of OMP_NUM_THREADSwhen
you call mpiexec will be seen by each MPI process.
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Figure 13.3 MPI_Is_thread_main
Name Param name Explanation C type F type inout

MPI_Is_thread_main (
flag true if calling thread

is main thread, false
otherwise

int* LOGICAL OUT

)

• It is possible to use blocking sends in threads, and let the threads block. This does away with
the need for polling.

• You can not send to a thread number: use the MPI message tag to send to a specific thread.

Exercise 13.1. Consider the 2D heat equation and explore the mix of MPI/OpenMP
parallelism:

• Give each node one MPI process that is fully multi-threaded.
• Give each core an MPI process and don’t use multi-threading.

Discuss theoretically why the former can give higher performance. Implement both
schemes as special cases of the general hybrid case, and run tests to find the optimal
mix.

// thread.c
MPI_Init_thread(&argc,&argv,MPI_THREAD_MULTIPLE,&threading);
comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&procno);
MPI_Comm_size(comm,&nprocs);

if (procno==0) {
switch (threading) {
case MPI_THREAD_MULTIPLE : printf("Glorious multithreaded MPI\n"); break;
case MPI_THREAD_SERIALIZED : printf("No simultaneous MPI from threads\n"); break;
case MPI_THREAD_FUNNELED : printf("MPI from main thread\n"); break;
case MPI_THREAD_SINGLE : printf("no threading supported\n"); break;
}

}
MPI_Finalize();
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Chapter 14

MPI topic: Tools interface

Recent versions of MPI, starting at MPI-3.0 and extended in MPI-3.1 andMPI-4.0, have a standardized way
of reading out performance variables: the tools interface which improves on the old interface described in
section 15.6.2.

14.1 Initializing the tools interface

The tools interface requires a different initialization routine MPI_T_init_thread

int MPI_T_init_thread( int required,int *provided );

Likewise, there is MPI_T_finalize

int MPI_T_finalize();

These matching calls can be made multiple times, after MPI has already been initialized with MPI_Init or
MPI_Init_thread.

Verbosity level is an integer parameter.

MPI_T_VERBOSITY_{USER,TUNER,MPIDEV}_{BASIC,DETAIL,ALL}

14.2 Control variables

Control variables are implementation-dependent variables that can be used to inspect and/or control the
internal workings of MPI. Accessing control variables requires initializing the tools interface; section 14.1.

We query how many control variables are available with MPI_T_cvar_get_num (figure 14.1). A description
of the control variable can be obtained from MPI_T_cvar_get_info (figure 14.2).

• An invalid index leads to a function result of MPI_T_ERR_INVALID_INDEX.
• Any output parameter can be specified as NULL and MPI will not set this.
• The bind variable is an object type or MPI_T_BIND_NO_OBJECT.
• The enumtype variable is MPI_T_ENUM_NULL if the variable is not an enum type.
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Figure 14.1 MPI_T_cvar_get_num
Name Param name Explanation C type F type inout

MPI_T_cvar_get_num (
)

Figure 14.2 MPI_T_cvar_get_info
Name Param name Explanation C type F type inout

MPI_T_cvar_get_info (
)

// cvar.c
MPI_T_cvar_get_num(&ncvar);
printf("#cvars: %d\n",ncvar);
for (int ivar=0; ivar<ncvar; ivar++) {
char name[100]; int namelen = 100;
char desc[256]; int desclen = 256;
int verbosity,bind,scope;
MPI_Datatype datatype;
MPI_T_enum enumtype;
MPI_T_cvar_get_info

(ivar,
name,&namelen,
&verbosity,&datatype,&enumtype,desc,&desclen,&bind,&scope
);

printf("cvar %3d: %s\n %s\n",ivar,name,desc);

Remark 26 There is no constant indicating a maximum buffer length for these variables. However, you can
do the following:

1. Call the info routine with NULL values for the buffers, reading out the buffer lengths;
2. allocate the buffers with sufficient length, that is, including an extra position for the null terminator;

and
3. calling the info routine a second time, filling in the string buffers.

Conversely, given a variable name, its index can be retrieved with MPI_T_cvar_get_index:

int MPI_T_cvar_get_index(const char *name, int *cvar_index)

If the name can not be matched, the index is MPI_T_ERR_INVALID_NAME.

Accessing a control variable is done through a control variable handle.
int MPI_T_cvar_handle_alloc

(int cvar_index, void *obj_handle,
MPI_T_cvar_handle *handle, int *count)

The handle is freed with MPI_T_cvar_handle_free:
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int MPI_T_cvar_handle_free(MPI_T_cvar_handle *handle)

Control variable access is done through MPI_T_cvar_read and MPI_T_cvar_write:

int MPI_T_cvar_read(MPI_T_cvar_handle handle, void* buf);
int MPI_T_cvar_write(MPI_T_cvar_handle handle, const void* buf);

14.2.1 Callback interface
The following material is for the recently released MPI-4 standard and may not be supported yet.

MPI_T_Source_.... MPI_T_Event_.... MPI_T_Category_get_num_events_.... MPI_T_Category_get_events_....
End of MPI-4 material

14.3 Performance variables

The realization of the tools interface is installation-dependent, you first need to query how much of the
tools interface is provided.

// mpitpvar.c
MPI_Init_thread(&argc,&argv,MPI_THREAD_SINGLE,&tlevel);
MPI_T_init_thread(MPI_THREAD_SINGLE,&tlevel);
int npvar;
MPI_T_pvar_get_num(&npvar);

int name_len=256,desc_len=256,
verbosity,var_class,binding,isreadonly,iscontiguous,isatomic;

char var_name[256],description[256];
MPI_Datatype datatype; MPI_T_enum enumtype;
for (int pvar=0; pvar<npvar; pvar++) {

name_len = 256; desc_len=256;
MPI_T_pvar_get_info(pvar,var_name,&name_len,

&verbosity,&var_class,
&datatype,&enumtype,
description,&desc_len,
&binding,&isreadonly,&iscontiguous,&isatomic);

if (procid==0)
printf("pvar %d: %d/%s = %s\n",pvar,var_class,var_name,description);

}

Performance variables come in classes: MPI_T_PVAR_CLASS_STATE MPI_T_PVAR_CLASS_LEVEL
MPI_T_PVAR_CLASS_SIZE MPI_T_PVAR_CLASS_PERCENTAGE MPI_T_PVAR_CLASS_HIGHWATERMARK
MPI_T_PVAR_CLASS_LOWWATERMARK MPI_T_PVAR_CLASS_COUNTER MPI_T_PVAR_CLASS_AGGREGATE
MPI_T_PVAR_CLASS_TIMER MPI_T_PVAR_CLASS_GENERIC

Query the number of performance variables with MPI_T_pvar_get_num:

int MPI_T_pvar_get_num(int *num_pvar);

Get information about each variable, by index, with MPI_T_pvar_get_info:
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int MPI_T_pvar_get_info
(int pvar_index, char *name, int *name_len,
int *verbosity, int *var_class, MPI_Datatype *datatype,
MPI_T_enum *enumtype, char *desc, int *desc_len, int *bind,
int *readonly, int *continuous, int *atomic)

See general remarks about these in section 14.2.

• The readonly variable indicates that the variable can not be written.
• The continuous variable requires use of MPI_T_pvar_start and MPI_T_pvar_stop.

Given a name, the index can be retried with MPI_T_pvar_get_index:

int MPI_T_pvar_get_index(const char *name, int var_class, int *pvar_index)

Again, see section 14.2.

14.3.1 Performance experiment sessions

To prevent measurements from getting mixed up, they need to be done in performance experiment sessions,
to be called ‘sessions’ in this chapter. However see section 8.3.

Create a session with MPI_T_pvar_session_create

int MPI_T_pvar_session_create(MPI_T_pvar_session *session)

and release it with MPI_T_pvar_session_free:

int MPI_T_pvar_session_free(MPI_T_pvar_session *session)

which sets the session variable to MPI_T_PVAR_SESSION_NULL.

We access a variable through a handle, associated with a certain session. The handle is created with
MPI_T_pvar_handle_alloc:

int MPI_T_pvar_handle_alloc
(MPI_T_pvar_session session, int pvar_index,
void *obj_handle, MPI_T_pvar_handle *handle, int *count)

(If a routine takes both a session and handle argument, and the two are not associated, an error of
MPI_T_ERR_INVALID_HANDLE is returned.)

Free the handle with MPI_T_pvar_handle_free:

int MPI_T_pvar_handle_free
(MPI_T_pvar_session session,
MPI_T_pvar_handle *handle)

which sets the variable to MPI_T_PVAR_HANDLE_NULL.

Continuous variables (see MPI_T_pvar_get_info above, which outputs this) can be started and stopped with
MPI_T_pvar_start and MPI_T_pvar_stop:
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int MPI_T_pvar_start(MPI_T_pvar_session session, MPI_T_pvar_handle handle);
int MPI_T_pvar_stop(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

Passing MPI_T_PVAR_ALL_HANDLES to the stop call attempts to stop all variables within the session. Failure
to stop a variable returns MPI_T_ERR_PVAR_NO_STARTSTOP.

Variables can be read and written with MPI_T_pvar_read and MPI_T_pvar_write:

int MPI_T_pvar_read
(MPI_T_pvar_session session, MPI_T_pvar_handle handle,
void* buf)

int MPI_T_pvar_write
(MPI_T_pvar_session session, MPI_T_pvar_handle handle,
const void* buf)

If the variable can not be written (see the readonly parameter of MPI_T_pvar_get_info),
MPI_T_ERR_PVAR_NO_WRITE is returned.

A special case of writing the variable is to reset it with

int MPI_T_pvar_reset(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

The handle value of MPI_T_PVAR_ALL_HANDLES is allowed.

A call to MPI_T_pvar_readreset is an atomic combination of the read and reset calls:

int MPI_T_pvar_readreset
(MPI_T_pvar_session session,MPI_T_pvar_handle handle,
void* buf)

14.4 Categories of variables

Variables, both the control and performance kind, can be grouped into categories by the MPI implemen-
tation.

The number of categories is queried with MPI_T_category_get_num:

int MPI_T_category_get_num(int *num_cat)

and for each category the information is retrieved with MPI_T_category_get_info:

int MPI_T_category_get_info
(int cat_index,
char *name, int *name_len, char *desc, int *desc_len,
int *num_cvars, int *num_pvars, int *num_categories)

For a given category name the index can be found with MPI_T_category_get_index:

int MPI_T_category_get_index(const char *name, int *cat_index)

The contents of a category are retrieved with MPI_T_category_get_cvars, MPI_T_category_get_pvars,
MPI_T_category_get_categories:
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int MPI_T_category_get_cvars(int cat_index, int len, int indices[])
int MPI_T_category_get_pvars(int cat_index, int len, int indices[])
int MPI_T_category_get_categories(int cat_index, int len, int indices[])

These indices can subsequently be used in the calls MPI_T_cvar_get_info, MPI_T_pvar_get_info,
MPI_T_category_get_info.

If categories change dynamically, this can be detected with MPI_T_category_changed

int MPI_T_category_changed(int *stamp)

14.5 Events
// mpitevent.c
int nsource;
MPI_T_source_get_num(&nsource);

int name_len=256,desc_len=256;
char var_name[256],description[256];
MPI_T_source_order ordering;
MPI_Count ticks_per_second,max_ticks;
MPI_Info info;
MPI_Datatype datatype; MPI_T_enum enumtype;
for (int source=0; source<nsource; source++) {

name_len = 256; desc_len=256;
MPI_T_source_get_info(source,var_name,&name_len,

description,&desc_len,
&ordering,&ticks_per_second,&max_ticks,&info);
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Chapter 15

MPI leftover topics

15.1 Contextual information, attributes, etc.

15.1.1 Info objects

Certain MPI routines can accept MPI_Info objects. (For files, see section 15.1.1.3, for windows, see sec-
tion 9.5.5.) These contain key-value pairs that can offer system or implementation dependent information.

Info objects can be created with MPI_Info_create (figure 15.1) and deleted with MPI_Info_free (figure 15.2);
there is one info object, named MPI_INFO_ENV, which is created by MPI_Init or MPI_Init_thread; see sec-
tion 15.1.1.1.

Keys are then set with MPI_Info_set (figure 15.3), and they can be queried with MPI_Info_get (figure 15.4).
Note that the output of the ‘get’ routine is not allocated: it is a buffer that is passed. The maximum
length of a key is given by the parameter MPI_MAX_INFO_KEY. You can delete a key from an info object with
MPI_Info_delete (figure 15.5).

There is a straightforward duplication of info objects: MPI_Info_dup (figure 15.6).

You can also query the number of keys in an info object with MPI_Info_get_nkeys (figure 15.7), after which
the keys can be queried in succession with MPI_Info_get_nthkey

Info objects that are marked as ‘In’ or ‘Inout’ arguments are parsed before that routine returns. This means
that in nonblocking routines they can be freed immediately, unlike, for instance, send buffers.
The following material is for the recently released MPI-4 standard and may not be supported yet.

The routines MPI_Info_get and MPI_Info_get_valuelen are not robust with respect to the C language null
terminator . Therefore, they are deprecated, and should be replaced with MPI_Info_get_string, which al-
ways returns a null-terminated string.

int MPI_Info_get_string
(MPI_Info info, const char *key,
int *buflen, char *value, int *flag)

End of MPI-4 material

MPL note 77: Info objects. There is an info object in the mpl namespace:

mpl::info infoobject; // default constructor
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Figure 15.1 MPI_Info_create
Name Param name Explanation C type F type inout

MPI_Info_create (
info info object created MPI_Info* TYPE

(MPI_Info)
OUT

)

Figure 15.2 MPI_Info_free
Name Param name Explanation C type F type inout

MPI_Info_free (
info info object MPI_Info* TYPE

(MPI_Info)
INOUT

)

Figure 15.3 MPI_Info_set
Name Param name Explanation C type F type inout

MPI_Info_set (
info info object MPI_Info TYPE

(MPI_Info)
INOUT

key key const char* CHARACTER IN
value value const char* CHARACTER IN
)

Figure 15.4 MPI_Info_get
Name Param name Explanation C type F type inout

MPI_Info_get (
info info object MPI_Info TYPE

(MPI_Info)
IN

key key const char* CHARACTER IN
valuelen length of value associated

with key
int INTEGER IN

value value char* CHARACTER OUT
flag true if key defined, false

if not
int* LOGICAL OUT

)

Figure 15.5 MPI_Info_delete
Name Param name Explanation C type F type inout

MPI_Info_delete (
info info object MPI_Info TYPE

(MPI_Info)
INOUT

key key const char* CHARACTER IN
)
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Figure 15.6 MPI_Info_dup
Name Param name Explanation C type F type inout

MPI_Info_dup (
info info object MPI_Info TYPE

(MPI_Info)
IN

newinfo info object created MPI_Info* TYPE
(MPI_Info)

OUT

)

Figure 15.7 MPI_Info_get_nkeys
Name Param name Explanation C type F type inout

MPI_Info_get_nkeys (
info info object MPI_Info TYPE

(MPI_Info)
IN

nkeys number of defined keys int* INTEGER OUT
)

Sample methods:

void set(const std::string &key, const std::string &value);
[[nodiscard]] std::optional<std::string> value(const std::string &key) const;

15.1.1.1 Environment information

The object MPI_INFO_ENV is predefined, containing:

• command Name of program executed.
• argv Space separated arguments to command.
• maxprocs Maximum number of MPI processes to start.
• soft Allowed values for number of processors.
• host Hostname.
• arch Architecture name.
• wdir Working directory of the MPI process.
• file Value is the name of a file in which additional information is specified.
• thread_level Requested level of thread support, if requested before the program started exe-
cution.

Note that these are the requested values; the running program can for instance have lower thread support.

15.1.1.2 Communicator and window information

MPI has a built-in possibility of attaching information to communicators and windows using the calls
MPI_Comm_get_info MPI_Comm_set_info, MPI_Win_get_info, MPI_Win_set_info.

Copying a communicator with MPI_Comm_dup does not cause the info to be copied; to propagate information
to the copy there is MPI_Comm_dup_with_info (section 7.2).
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15.1.1.3 File information

An MPI_Info object can be passed to the following file routines:

• MPI_File_open
• MPI_File_set_view
• MPI_File_set_info; collective. The converse routine is MPI_File_get_info.

The following keys are defined in the MPI-2 standard:

• access_style: A comma separated list of one or more of: read_once, write_once,
read_mostly, write_mostly, sequential, reverse_sequential, random

• collective_buffering: true or false; enables or disables buffering on collective I/O operations
• cb_block_size: integer block size for collective buffering, in bytes
• cb_buffer_size: integer buffer size for collective buffering, in bytes
• cb_nodes: integer number of MPI processes used in collective buffering
• chunked: a comma separated list of integers describing the dimensions of a multidimensional
array to be accessed using subarrays, starting with the most significant dimension (1st in C, last
in Fortran)

• chunked_item: a comma separated list specifying the size of each array entry, in bytes
• chunked_size: a comma separated list specifying the size of the subarrays used in chunking
• file_perm: UNIX file permissions at time of creation, in octal
• io_node_list: a comma separated list of I/O nodes to use

The following material is for the recently released MPI-4 standard and may not be supported yet.
• mpi_minimum_memory_alignment: aligment of allocated memory.

End of MPI-4 material
• nb_proc: integer number of processes expected to access a file simultaneously
• num_io_nodes: integer number of I/O nodes to use
• striping_factor: integer number of I/O nodes/devices a file should be striped across
• striping_unit: integer stripe size, in bytes

Additionally, file system-specific keys can exist.

15.1.2 Attributes

Some runtime (or installation dependendent) values are available as attributes through MPI_Comm_set_attr
(figure 15.8) and MPI_Comm_get_attr (figure 15.9) for communicators, or MPI_Win_get_attr,
MPI_Type_get_attr. (The MPI-2 routine MPI_Attr_get is deprecated). The flag parameter has two functions:

• it returns whether the attributed was found;
• if on entry it was set to false, the value parameter is ignored and the routines only tests whether
the key is present.

The return value parameter is subtle: while it is declared void*, it is actually the address of a void* pointer.

// tags.c
int tag_upperbound;
void *v; int flag=1;
ierr = MPI_Comm_get_attr(comm,MPI_TAG_UB,&v,&flag);
tag_upperbound = *(int*)v;
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Figure 15.8 MPI_Comm_set_attr
Name Param name Explanation C type F type inout

MPI_Comm_set_attr (
comm communicator to which

attribute will be attached
MPI_Comm TYPE

(MPI_Comm)
INOUT

comm_keyval key value int INTEGER IN
attribute_val attribute value void* INTEGER

(KIND=MPI_ADDRESS_KIND)
IN

)

Figure 15.9 MPI_Comm_get_attr
Name Param name Explanation C type F type inout

MPI_Comm_get_attr (
comm communicator to which the

attribute is attached
MPI_Comm TYPE

(MPI_Comm)
IN

comm_keyval key value int INTEGER IN
attribute_val attribute value, unless

flag = false
void* INTEGER

(KIND=MPI_ADDRESS_KIND)
OUT

flag false if no attribute is
associated with the key

int* LOGICAL OUT

)
Python:

MPI.Comm.Get_attr(self, int keyval)

## tags.py
tag_upperbound = comm.Get_attr(MPI.TAG_UB)
if procid==0:

print("Determined tag upperbound: {}".format(tag_upperbound))

Attributes are:

• MPI_TAG_UB Upper bound for tag value. (The lower bound is zero.) Note that MPI_TAG_UB is the
key, not the actual upper bound! This value has to be at least 32767.

• MPI_HOST Host process rank, if such exists, MPI_PROC_NULL, otherwise. The standard does not de-
fine what it means to be a host, or even whether there should be one to begin with. This is
deprecated as of MPI-4.1.

• MPI_IO rank of a node that has regular I/O facilities. Nodes in the same communicatormay return
different values for this parameter. If this return MPI_ANY_SOURCE, all ranks can perform I/O.

• MPI_WTIME_IS_GLOBAL Boolean variable that indicates whether clocks are synchronized.

Also:

• MPI_UNIVERSE_SIZE: the total number of processes that can be created. This can be more than the
size of MPI_COMM_WORLD if the host list is larger than the number of initially started processes. See
section 8.1.

• MPI_APPNUM: if MPI is used in MPMD mode (section 15.9.4), or if MPI_Comm_spawn_multiple is used
(section 8.1), this attribute reports the how-manieth program we are in.
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Figure 15.10 MPI_Comm_create_keyval
Name Param name Explanation C type F type inout

MPI_Comm_create_keyval (
comm_copy_attr_fn copy callback function for

comm_keyval
MPI_Comm_copy_attr_function*PROCEDURE

(MPI_Comm_copy_attr_function)
IN

comm_delete_attr_fn delete callback function
for comm_keyval

MPI_Comm_delete_attr_function*PROCEDURE
(MPI_Comm_delete_attr_function)

IN

comm_keyval key value for future
access

int* INTEGER OUT

extra_state extra state for callback
function

void* INTEGER
(KIND=MPI_ADDRESS_KIND)

IN

)

Fortran note 16: Attribute querying. Fortran has none of this double indirection stuff. The value of the
attribute is returned immediately, as an integer of kind MPI_ADDRESS_KIND:

!! tags.F90
logical :: flag
integer(KIND=MPI_ADDRESS_KIND) :: attr_v,tag_upperbound
call MPI_Comm_get_attr(comm,MPI_TAG_UB,attr_v,flag,ierr)
tag_upperbound = attr_v

print '("Determined tag upperbound: ",i9)', tag_upperbound

Python note 33: Universe size. mpi4py.MPI.UNIVERSE_SIZE.

15.1.3 Create new keyval attributes

Create a key value with MPI_Comm_create_keyval (figure 15.10), MPI_Type_create_keyval,
MPI_Win_create_keyval. Use this key to set new attributes with MPI_Comm_set_attr, MPI_Type_set_attr,
MPI_Win_set_attr. Free the attributed with MPI_Comm_delete_attr, MPI_Type_delete_attr,
MPI_Win_delete_attr.

This uses a function type MPI_Comm_attr_function. This function is copied when a communicator is dupli-
cated; section 7.2. Free with MPI_Comm_free_keyval.

15.1.4 Processor name

You can query the hostname of a processor with MPI_Get_processor_name. This name need not be unique
between different processor ranks.

You have to pass in the character storage: the character array must be at least MPI_MAX_PROCESSOR_NAME
characters long. The actual length of the name is returned in the resultlen parameter.

15.1.5 Version information

For runtime determination, The MPI version is available through two parameters MPI_VERSION and
MPI_SUBVERSION or the function MPI_Get_version (figure 15.11).
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Figure 15.11 MPI_Get_version
Name Param name Explanation C type F type inout

MPI_Get_version (
version version number int* INTEGER OUT
subversion subversion number int* INTEGER OUT
)

The library version can be queried with MPI_Get_library_version. The result string has to fit in
MPI_MAX_LIBRARY_VERSION_STRING.

Python note 34: MPI Version. A function is available for version and subversion, as well as explicit param-
eters:

Code:

## version.py
print(MPI.Get_version())
print(MPI.VERSION)
print(MPI.SUBVERSION)

Output:

(3, 1)
3
1

15.1.6 Python utility functions

Python note 35: Utility functions.
## util.py
print(f"Configuration:\n{mpi4py.get_config()}")
print(f"Include dir:\n{mpi4py.get_include()}")

Mac OS X with Python installed through macports:
Configuration:
{'mpicc': '/opt/local/bin/mpicc-mpich-mp'}
Include dir:
/opt/local/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/mpi4py/include

Intel compiler and locally installed Python:

Configuration:
{'mpicc': '/opt/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpicc',
'mpicxx': '/opt/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpicxx',
'mpifort': '/opt/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpif90',
'mpif90': '/opt/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpif90',
'mpif77': '/opt/intel/compilers_and_libraries_2020.4.304/linux/mpi/intel64/bin/mpif77'}
Include dir:
/opt/apps/intel19/impi19_0/python3/3.9.2/lib/python3.9/site-packages/mpi4py/include

15.2 Error handling
Errors in normal programs can be tricky to deal with; errors in parallel programs can be even harder. This is because
in addition to everything that can go wrong with a single executable (floating point errors, memory violation) you
now get errors that come from faulty interaction between multiple executables.
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A few examples of what can go wrong:

• MPI errors: an MPI routine can exit prematurely for various reasons, such as receiving much more data
than its buffer can accomodate. Such errors, as well as the more common type mentioned above, typically
cause your whole execution to terminate. That is, if one incarnation of your executable exits, the MPI
runtime will kill all others.

• Deadlocks and other hanging executions: there are various scenarios where your processes individually
do not exit, but are all waiting for each other. This can happen if two processes are both waiting for a
message from each other, and this can be helped by using nonblocking calls. In another scenario, through
an error in program logic, one process will be waiting for more messages (including nonblocking ones)
than are sent to it.

While it is desirable for an MPI implementation to return an error, this is not always possible. Therefore, some
scenarios, whether supplying certain procedure arguments, or doing a certain sequence of procedure calls, are
simply marked as ‘erroneous’, and the state of MPI after an erroneous call is undefined.

15.2.1 Error codes

There are a bunch of error codes. These are all positive int values, while MPI_SUCCESS is zero. The maximum value
of any built-in error code is MPI_ERR_LASTCODE. User-defined error codes are all larger than this.

• MPI_ERR_ARG: an argument was invalid that is not covered by another error code.
• MPI_ERR_BUFFER The buffer pointer is invalid; this typically means that you have supplied a null pointer.
• MPI_ERR_COMM: invalid communicator. A common error is to use a null communicator in a call.
• MPI_ERR_COUNT Invalid count argument, usually this is caused by a negative count value; zero is often a
valid count.

• MPI_ERR_INTERN An internal error in MPI has been detected.
• MPI_ERR_IN_STATUS A functioning returning an array of statuses has at least one status where the
MPI_ERROR field is set to other than MPI_SUCCESS. See section 4.3.3.

• MPI_ERR_INFO: invalid info object.
• MPI_ERR_NO_MEM is returned by MPI_Alloc_mem if memory is exhausted.
• MPI_ERR_OTHER: an error occurred; use MPI_Error_string to retrieve further information about this error;
see section 15.2.2.3.

• MPI_ERR_PORT: invalid port; this applies to MPI_Comm_connect and such.
The following material is for the recently released MPI-4 standard and may not be supported yet.

• MPI_ERR_PROC_ABORTED is returned if a process tries to communicate with a process that has aborted.
End of MPI-4 material

• MPI_ERR_RANK: an invalid source or destination rank is specified. Valid ranks are 0… 𝑠 − 1 where 𝑠 is the
size of the communicator, or MPI_PROC_NULL, or MPI_ANY_SOURCE for receive operations.

• MPI_ERR_SERVICE: invalid service in MPI_Unpublish_name; section 8.2.3.

15.2.2 Error handling

The MPI library has a general mechanism for dealing with errors that it detects: one can specify an error handler,
specific to MPI objects.

• Most commonly, an error handler is associated with a communicator: MPI_Comm_set_errhandler (and
likewise it can be retrieved with MPI_Comm_get_errhandler);

• other possibilities are MPI_File_set_errhandler, MPI_File_call_errhandler,
The following material is for the recently released MPI-4 standard and may not be supported yet.

MPI_Session_set_errhandler, MPI_Session_call_errhandler,
End of MPI-4 material

MPI_Win_set_errhandler, MPI_Win_call_errhandler.
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Remark 27 The routine MPI_Errhandler_set is deprecated, replaced by its MPI-2 variant MPI_Comm_set_errhandler.

Some handlers of type MPI_Errhandler are predefined (MPI_ERRORS_ARE_FATAL, MPI_ERRORS_ABORT,
MPI_ERRORS_RETURN; see below), but you can define your own with MPI_Errhandler_create, to be freed later with
MPI_Errhandler_free.

By default, MPI uses MPI_ERRORS_ARE_FATAL, except for file operations; see section 10.5.

Python note 36: Error policy. The policy for dealing with errors can be set through the mpi4py.rc object
(section 2.2.2):

mpi4py.rc.errors # default: "exception"

Available levels are exception, default, fatal.

15.2.2.1 Abort

The default behavior, where the full run is aborted, is equivalent to your code having the following call to

MPI_Comm_set_errhandler(MPI_COMM_WORLD,MPI_ERRORS_ARE_FATAL);

The handler MPI_ERRORS_ARE_FATAL, even though it is associated with a communicator, causes the whole application
to abort.
The following material is for the recently released MPI-4 standard and may not be supported yet.

The handler MPI_ERRORS_ABORT (MPI-4) aborts on the processes in the communicator for which it is specified.
End of MPI-4 material

15.2.2.2 Return

Another simple possibility is to specify MPI_ERRORS_RETURN:

MPI_Comm_set_errhandler(MPI_COMM_WORLD,MPI_ERRORS_RETURN);

which causes the error code to be returned to the user. This gives you the opportunity to write code that handles
the error return value; see the next section.

15.2.2.3 Error printing

If the MPI_Errhandler value MPI_ERRORS_RETURN is used, you can compare the return code to MPI_SUCCESS and print
out debugging information:

int ierr;
ierr = MPI_Something();
if (ierr!=MPI_SUCCESS) {

// print out information about what your programming is doing
MPI_Abort();

}

For instance,

Fatal error in MPI_Waitall:
See the MPI_ERROR field in MPI_Status for the error code
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Figure 15.12 MPI_Comm_create_errhandler
Name Param name Explanation C type F type inout

MPI_Comm_create_errhandler (
comm_errhandler_fn user defined error

handling procedure
MPI_Comm_errhandler_function*PROCEDURE

(MPI_Comm_errhandler_function)
IN

errhandler MPI error handler MPI_Errhandler* TYPE
(MPI_Errhandler)

OUT

)

You could then retrieve the MPI_ERROR field of the status, and print out an error string with MPI_Error_string or
maximal size MPI_MAX_ERROR_STRING:

MPI_Comm_set_errhandler(MPI_COMM_WORLD,MPI_ERRORS_RETURN);
ierr = MPI_Waitall(2*ntids-2,requests,status);
if (ierr!=0) {

char errtxt[MPI_MAX_ERROR_STRING];
for (int i=0; i<2*ntids-2; i++) {

int err = status[i].MPI_ERROR;
int len=MPI_MAX_ERROR_STRING;
MPI_Error_string(err,errtxt,&len);
printf("Waitall error: %d %s\n",err,errtxt);

}
MPI_Abort(MPI_COMM_WORLD,0);

}

One cases where errors can be handled is that of MPI file I/O: if an output file has the wrong permissions, code can
possibly progress without writing data, or writing to a temporary file.

MPI operators (MPI_Op) do not return an error code. In case of an error they call MPI_Abort; if MPI_ERRORS_RETURN
is the error handler, error codes may be silently ignored.

You can create your own error handler with MPI_Comm_create_errhandler (figure 15.12), which is then installed
with MPI_Comm_set_errhandler. You can retrieve the error handler with MPI_Comm_get_errhandler.

MPL note 78: Communicator errhandler. MPL does not have a routine for setting the error handler. Instead, use the
native_handle method to retrieve the embedded communiator.

15.2.3 Defining your own MPI errors

You can define your own errors that behave like MPI errors. As an example, let’s write a send routine that refuses
to send zero-sized data.

The first step to defining a new error is to define an error class with MPI_Add_error_class:

int nonzero_class;
MPI_Add_error_class(&nonzero_class);

This error number is larger than MPI_ERR_LASTCODE, the upper bound on built-in error codes. The attribute
MPI_LASTUSEDCODE records the last issued value.

Your new error code is then defined in this class with MPI_Add_error_code, and an error string can be added with
MPI_Add_error_string:
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int nonzero_code;
MPI_Add_error_code(nonzero_class,&nonzero_code);
MPI_Add_error_string(nonzero_code,"Attempting to send zero buffer");

You can then call an error handler with this code. For instance to have a wrapped send routine that will not send
zero-sized messages:

// errorclass.c
int MyPI_Send( void *buffer,int n,MPI_Datatype type, int target,int tag,MPI_Comm comm) {
if (n==0)
MPI_Comm_call_errhandler( comm,nonzero_code );
MPI_Ssend(buffer,n,type,target,tag,comm);

return MPI_SUCCESS;
};

Here we used the default error handler associated with the communicator, but one can set a different one with
MPI_Comm_create_errhandler.

We test our example:

for (int msgsize=1; msgsize>=0; msgsize--) {
double buffer;
if (procno==0) {

printf("Trying to send buffer of length %d\n",msgsize);
MyPI_Send(&buffer,msgsize,MPI_DOUBLE, 1,0,comm);
printf(".. success\n");

} else if (procno==1) {
MPI_Recv (&buffer,msgsize,MPI_DOUBLE, 0,0,comm,MPI_STATUS_IGNORE);

}
}

which gives:

Trying to send buffer of length 1
.. success
Trying to send buffer of length 0
Abort(1073742081) on node 0 (rank 0 in comm 0):
Fatal error in MPI_Comm_call_errhandler: Attempting to send zero buffer

15.3 Fortran issues
MPI is typically written in C, what if you program Fortran?

See section 6.2.2.1 for MPI types corresponding to Fortran90 types.

15.3.1 Assumed-shape arrays

Use of other than contiguous data, for instance A(1:N:2), was a problem in MPI calls, especially nonblocking ones.
In that case it was best to copy the data to a contiguous array. This has been fixed in MPI-3.

• Fortran routines have the same signature as C routines except for the addition of an integer error pa-
rameter.

Victor Eijkhout 311



15. MPI leftover topics

• The call for MPI_Init in Fortran does not have the commandline arguments; they need to be handled
separately.

• The routine MPI_Sizeof is only available in Fortran, it provides the functionality of the C/C++ operator
sizeof.

15.3.2 Prevent compiler optimizations

The Fortran compiler can aggressively optimize by rearranging instructions. This may lead to incorrect behavior in
MPI code. In the sequence:

call MPI_Isend( buf, ..., request )
call MPI_Wait(request)
print *,buf(1)

the wait call does not involve the buffer, so the compiler can translate this into

call MPI_Isend( buf, ..., request )
register = buf(1)
call MPI_Wait(request)
print *,register

Preventing this is possible with a Fortran2018 mechanism. First of all the buffer should be declared asynchronous

<type>,Asynchronous :: buf

and introducing

IF (.NOT. MPI_ASYNC_PROTECTS_NONBLOCKING) &
CALL MPI_F_SYNC_REG( buf )

The call to MPI_F_sync_reg will be removed at compile time if MPI_ASYNC_PROTECTS_NONBLOCKING is true.

15.4 Progress
The concept asynchronous progress describes that MPI messages continue on their way through the network, while
the application is otherwise busy.

The problem here is that, unlike straight MPI_Send and MPI_Recv calls, communication of this sort can typically not
be off-loaded to the network card, so different mechanisms are needed.

This can happen in a number of ways:

• Compute nodes may have a dedicated communications processor. The Intel Paragon was of this design;
modern multicore processors are a more efficient realization of this idea.

• The MPI library may reserve a core or thread for communications processing. This is implementation
dependent; see Intel MPI information below.

• Reserving a core, or a thread in a continuous busy-wait spin loop, takes away possible performance from
the code. For this reason, Ruhela et al. [24] propose using a pthreads signal to wake up the progress
thread.

• Absent such dedicated resources, the application can force MPI to make progress by occasional calls to
a polling routine such as MPI_Iprobe.
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Remark 28 The MPI_Probe call is somewhat similar, in spirit if not quite in functionality, as MPI_Test. However, they
behave differently with respect to progress. Quoting the standard:

The MPI implementation of MPI_Probe and MPI_Iprobe needs to guarantee progress: if a call to
MPI_Probe has been issued by a process, and a send that matches the probe has been initiated by
some process, then the call to MPI_Probe will return.

In other words: probing causes MPI to make progress. On the other hand,

A call to MPI_Test returns flag = true if the operation identified by request is complete.

In other words, if progress has been made, then testing will report completion, but by itself it does not cause completion.

A similar problem arises with passive target synchronization: it is possible that the origin process may hang until
the target process makes an MPI call.

The following commands force progress: MPI_Win_test, MPI_Request_get_status.

Intel note. Only available with the release_mt and debug_mt versions of the Intel MPI library. Set
I_MPI_ASYNC_PROGRESS to 1 to enable asynchronous progress threads, and
I_MPI_ASYNC_PROGRESS_THREADS to set the number of progress threads.

See https://software.intel.com/en-us/
mpi-developer-guide-linux-asynchronous-progress-control,
https://software.intel.com/en-us/
mpi-developer-reference-linux-environment-variables-for-asynchronous-progress-control

Progress issues play with: MPI_Test, MPI_Request_get_status, MPI_Win_test.

15.5 Fault tolerance
Processors are not completely reliable, so it may happen that one ‘breaks’: for software or hardware reasons it
becomes unresponsive. For an MPI program this means that it becomes impossible to send data to it, and any
collective operation involving it will hang. Can we deal with this case? Yes, but it involves some programming.

First of all, one of the possible MPI error return codes (section 15.2) is MPI_ERR_COMM, which can be returned if a
processor in the communicator is unavailable. You may want to catch this error, and add a ‘replacement processor’
to the program. For this, the MPI_Comm_spawn can be used (see 8.1 for details). But this requires a change of program
design: the communicator containing the new process(es) is not part of the old MPI_COMM_WORLD, so it is better to set
up your code as a collection of inter-communicators to begin with.

15.6 Performance, tools, and profiling
In most of this book we talk about functionality of the MPI library. There are cases where a problem can be solved
in more than one way, and then we wonder which one is the most efficient. In this section we will explicitly address
performance. We start with two sections on the mere act of measuring performance.

15.6.1 Timing

MPI has a wall clock timer: MPI_Wtime (figure 15.13) which gives the number of seconds from a certain point in the
past. (Note the absence of the error parameter in the fortran call.)

Victor Eijkhout 313

https://software.intel.com/en-us/mpi-developer-guide-linux-asynchronous-progress-control
https://software.intel.com/en-us/mpi-developer-guide-linux-asynchronous-progress-control
https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-asynchronous-progress-control
https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-asynchronous-progress-control


15. MPI leftover topics

Figure 15.13 MPI_Wtime
Name Param name Explanation C type F type inout

MPI_Wtime (
)

Python:

MPI.Wtime()

Figure 15.14 MPI_Wtick
Name Param name Explanation C type F type inout

MPI_Wtick (
)

Python:

MPI.Wtick()

double t;
t = MPI_Wtime();
for (int n=0; n<NEXPERIMENTS; n++) {
// do something;

}
t = MPI_Wtime()-t; t /= NEXPERIMENTS;

The timer has a resolution of MPI_Wtick (figure 15.14).

MPL note 79: Timing. The timing routines wtime and wtick and wtime_is_global are environment methods:

double mpl::environment::wtime ();
double mpl::environment::wtick ();
bool mpl::environment::wtime_is_global ();

Timing in parallel is a tricky issue. For instance, most clusters do not have a central clock, so you can not relate start
and stop times on one process to those on another. You can test for a global clock as followsMPI_WTIME_IS_GLOBAL:

int *v,flag;
MPI_Attr_get( comm, MPI_WTIME_IS_GLOBAL, &v, &flag );
if (mytid==0) printf("Time synchronized? %d->%d\n",flag,*v);

Normally you don’t worry about the starting point for this timer: you call it before and after an event and subtract
the values.

t = MPI_Wtime();
// something happens here
t = MPI_Wtime()-t;

If you execute this on a single processor you get fairly reliable timings, except that you would need to subtract the
overhead for the timer. This is the usual way to measure timer overhead:

t = MPI_Wtime();
// absolutely nothing here
t = MPI_Wtime()-t;
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15.6.1.1 Global timing

However, if you try to time a parallel application you will most likely get different times for each process, so you
would have to take the average or maximum. Another solution is to synchronize the processors by using a barrier
through MPI_Barrier:

MPI_Barrier(comm)
t = MPI_Wtime();
// something happens here
MPI_Barrier(comm)
t = MPI_Wtime()-t;

Exercise 15.1. This scheme also has some overhead associated with it. How would you measure that?

Solution to exercise 15.1. Two barrier calls in a row.

15.6.1.2 Local timing

Now suppose you want to measure the time for a single send. It is not possible to start a clock on the sender and do
the second measurement on the receiver, because the two clocks need not be synchronized. Usually a ping-pong is
done:

if ( proc_source ) {
MPI_Send( /* to target */ );
MPI_Recv( /* from target */ );

else if ( proc_target ) {
MPI_Recv( /* from source */ );
MPI_Send( /* to source */ );

}

No matter what sort of timing you are doing, it is good to know the accuracy of your timer. The routine MPI_Wtick
gives the smallest possible timer increment. If you find that your timing result is too close to this ‘tick’, you need to
find a better timer (for CPU measurements there are cycle-accurate timers), or you need to increase your running
time, for instance by increasing the amount of data.

15.6.2 Simple profiling

Remark 29 This section describes MPI profiling before the introduction of the MPI tools interface. For that, see chap-
ter 14.

MPI allows you to write your own profiling interface. To make this possible, every routine MPI_Something calls a
routine PMPI_Something that does the actual work. You can now write your MPI_... routine which calls PMPI_...,
and inserting your own profiling calls. See figure 15.1.

By default, the MPI routines are defined as weak linker symbols as a synonym of the PMPI ones. In the gcc case:

#pragma weak MPI_Send = PMPI_Send
As you can see in figure 15.2, normally only the PMPI routines show up in the stack trace.

15.6.3 Programming for performance

We outline some issues pertaining to performance.
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Figure 15.1: Calling hierarchy of MPI and PMPI routines

Eager limit Short blocking messages are handled by a simpler mechanism than longer. The limit on what is
considered ‘short’ is known as the eager limit (section 4.1.4.2), and you could tune your code by increasing its value.
However, note that a process may likely have a buffer accomodating eager sends for every single other process.
This may eat into your available memory.

Blocking versus nonblocking The issue of blocking versus nonblocking communication is something of a red
herring. While nonblocking communication allows latency hiding, we can not consider it an alternative to blocking
sends, since replacing nonblocking by blocking calls will usually give deadlock.

Still, even if you use nonblocking communication for themere avoidance of deadlock or serialization (section 4.1.4.3),
bear in mind the possibility of overlap of communication and computation. This also brings us to our next point.

Looking at it the otherway around, in a codewith blocking sends youmay get better performance fromnonblocking,
even if that is not structurally necessary.

Progress MPI is not magically active in the background, especially if the user code is doing scalar work that
does not involve MPI. As sketched in section 15.4, there are various ways of ensuring that latency hiding actually
happens.

Persistent sends If a communication between the same pair of processes, involving the same buffer, happens
regularly, it is possible to set up a persistent communication. See section 5.1.

Buffering MPI uses internal buffers, and the copying from user data to these buffers may affect performance.
For instance, derived types (section 6.3) can typically not be streamed straight through the network (this requires
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Figure 15.2: A stack trace, showing the PMPI calls.

special hardware support [19]) so they are first copied. Somewhat surprisingly, we find that buffered communication
(section 5.5) does not help. Perhaps MPI implementors have not optimized this mode since it is so rarely used.

This is issue is extensively investigated in [10].

Graph topology and neighborhood collectives Load balancing and communication minimization are im-
portant in irregular applications. There are dedicated programs for this (ParMetis, Zoltan), and libraries such as
PETSc may offer convenient access to such capabilities.

In the declaration of a graph topology (section 11.2) MPI is allowed to reorder processes, which could be used to
support such activities. It can also serve for better message sequencing when neighborhood collectives are used.

Network issues In the discussion so far we have assumed that the network is a perfect conduit for data. However,
there are issues of port design, in particular caused by oversubscription that adversely affect performance. While in
an ideal world it may be possible to set up routine to avoid this, in the actual practice of a supercomputer cluster,
network contention or message collision from different user jobs is hard to avoid.

Offloading and onloading There are different philosophies of network card design:Mellanox, being a network
card manufacturer, believes in off-loading network activity to the Network Interface Card (NIC), while Intel, being
a processor manufacturer, believes in ‘on-loading’ activity to the process. There are argument either way.

Either way, investigate the capabilities of your network.

15.6.4 MPIR

MPIR is the informally specified debugging interface for processes acquisition and message queue extraction.
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15.7 Determinism
MPI processes are only synchronized to a certain extent, so youmaywonder what guarantees there are that running
a code twice will give the same result. You need to consider two cases: first of all, if the two runs are on different
numbers of processors there are already numerical problems; see HPC book, section-3.6.5.

Let us then limit ourselves to two runs on the same set of processors. In that case, MPI is deterministic as long as you
do not use wildcards such as MPI_ANY_SOURCE. Formally, MPI messages are ‘nonovertaking’: two messages between
the same sender-receiver pair will arrive in sequence. Actually, they may not arrive in sequence: they are matched
in sequence in the user program. If the second message is much smaller than the first, it may actually arrive earlier
in the lower transport layer.

Another source of non-determinism comes from hybrid computing; see section 45.1.

15.8 Subtleties with processor synchronization
Blocking communication involves a complicated dialog between the two processors involved. Processor one says
‘I have this much data to send; do you have space for that?’, to which processor two replies ‘yes, I do; go ahead
and send’, upon which processor one does the actual send. This back-and-forth (technically known as a handshake)
takes a certain amount of communication overhead. For this reason, network hardware will sometimes forgo the
handshake for small messages, and just send them regardless, knowing that the other process has a small buffer for
such occasions.

One strange side-effect of this strategy is that a code that should deadlock according to the MPI specification does
not do so. In effect, you may be shielded from you own programming mistake! Of course, if you then run a larger
problem, and the small message becomes larger than the threshold, the deadlock will suddenly occur. So you find
yourself in the situation that a bug only manifests itself on large problems, which are usually harder to debug. In
this case, replacing every MPI_Send with a MPI_Ssend will force the handshake, even for small messages.

Conversely, you may sometimes wish to avoid the handshake on large messages. MPI as a solution for this: the
MPI_Rsend (‘ready send’) routine sends its data immediately, but it needs the receiver to be ready for this. How can
you guarantee that the receiving process is ready? You could for instance do the following (this uses nonblocking
routines, which are explained below in section 4.2.1):

if ( receiving ) {
MPI_Irecv() // post nonblocking receive
MPI_Barrier() // synchronize

else if ( sending ) {
MPI_Barrier() // synchronize
MPI_Rsend() // send data fast

When the barrier is reached, the receive has been posted, so it is safe to do a ready send. However, global barriers
are not a good idea. Instead you would just synchronize the two processes involved.

Exercise 15.2. Give pseudo-code for a scheme where you synchronize the two processes through the
exchange of a blocking zero-size message.

15.9 Shell interaction
MPI programs are not run directly from the shell, but are started through an ssh tunnel. We briefly discuss ramifi-
cations of this.
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15.9.1 Standard input

Letting MPI processes interact with the environment is not entirely straightforward. For instance, shell input redi-
rection as in

mpiexec -n 2 mpiprogram < someinput

may not work.

Instead, use a script programscript that has one parameter:

#!/bin/bash
mpirunprogram < $1

and run this in parallel:

mpiexec -n 2 programscript someinput

15.9.2 Standard out and error

The stdout and stderr streams of an MPI process are returned through the ssh tunnel. Thus they can be caught as
the stdout/err of mpiexec.

// outerr.c
fprintf(stdout,"This goes to std out\n");
fprintf(stderr,"This goes to std err\n");

The name of the variable is implementation dependent, for mpich and its derivates such as Intel MPI it is PMI_RANK.
(There is a similar PMI_SIZE.)

If you are only interested in displaying the rank

• srun has an option --label.

15.9.3 Process status

The return code of MPI_Abort is returned as the processes status ofmpiexec. Running

// abort.c
if (procno==nprocs-1)
MPI_Abort(comm,37);

as

mpiexec -n 4 ./abort ; \
echo "Return code from ${MPIRUN} is <<$$?>>"

gives

TACC: Starting up job 3760534
TACC: Starting parallel tasks...
application called MPI_Abort(MPI_COMM_WORLD, 37) - process 3
TACC: MPI job exited with code: 37
TACC: Shutdown complete. Exiting.
Return code from ibrun is <<37>>

Victor Eijkhout 319



15. MPI leftover topics

15.9.4 Multiple program start

If the MPI application consists of sub-applications, that is, if we have a true MPMD runs, there are usually two ways
of starting this up. (Once started, each process can retrieve with MPI_APPNUM to which application it belongs.)

The first possibility is that the job starter, mpiexec or mpirun or a local variant, accepts multiple executables:

mpiexec spec0 [ : spec1 [ : spec2 : ... ] ]
Absent this mechanism, the sort of script of section 15.9.1 can also be used to implement MPMD runs. We let the
script start one of a number of programs, and we use the fact that the MPI rank is known in the environment; see
section 15.9.2.

Use a script mpmdscript:

#!/bin/bash

rank=$PMI_RANK
half=$(( ${PMI_SIZE} / 2 ))

if [ $rank -lt $half ] ; then
./prog1

else
./prog2

fi

TACC: Starting up job 4032931
TACC: Starting parallel tasks...
Program 1 has process 1 out of 4
Program 2 has process 2 out of 4
Program 2 has process 3 out of 4
Program 1 has process 0 out of 4
TACC: Shutdown complete. Exiting.

This script is run in parallel:

mpiexec -n 25 mpmdscript

15.10 Leftover topics

15.10.1 MPI constants

MPI has a number of built-in constants. These do not all behave the same.

• Some are compile-time constants. Examples are MPI_VERSION and MPI_MAX_PROCESSOR_NAME. Thus, they
can be used in array size declarations, even before MPI_Init.

• Some link-time constants get their value by MPI initialization, such as MPI_COMM_WORLD. Such symbols,
which include all predefined handles, can be used in initialization expressions.

• Some link-time symbols can not be used in initialization expressions, such as MPI_BOTTOM and
MPI_STATUS_IGNORE.

For symbols, the binary realization is not defined. For instance, MPI_COMM_WORLD is of type MPI_Comm, but the imple-
mentation of that type is not specified.

See Annex A of the MPI-3.1 standard for full lists.

The following are the compile-time constants:

• MPI_MAX_PROCESSOR_NAME
• MPI_MAX_LIBRARY_VERSION_STRING
• MPI_MAX_ERROR_STRING
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• MPI_MAX_DATAREP_STRING
• MPI_MAX_INFO_KEY
• MPI_MAX_INFO_VAL
• MPI_MAX_OBJECT_NAME
• MPI_MAX_PORT_NAME
• MPI_VERSION
• MPI_SUBVERSION

Fortran note 17: Fortran-only compile-time constants.

• MPI_STATUS_SIZE. No longer needed with Fortran2008 support; see section 9.
• MPI_ADDRESS_KIND
• MPI_COUNT_KIND
• MPI_INTEGER_KIND
• MPI_OFFSET_KIND
• MPI_SUBARRAYS_SUPPORTED
• MPI_ASYNC_PROTECTS_NONBLOCKING

The following are the link-time constants:

• MPI_BOTTOM
• MPI_STATUS_IGNORE
• MPI_STATUSES_IGNORE
• MPI_ERRCODES_IGNORE
• MPI_IN_PLACE
• MPI_ARGV_NULL
• MPI_ARGVS_NULL
• MPI_UNWEIGHTED
• MPI_WEIGHTS_EMPTY

Assorted constants:

• MPI_PROC_NULL and other ..._NULL constants.
• MPI_ANY_SOURCE
• MPI_ANY_TAG
• MPI_UNDEFINED
• MPI_BSEND_OVERHEAD
• MPI_KEYVAL_INVALID
• MPI_LOCK_EXCLUSIVE
• MPI_LOCK_SHARED
• MPI_ROOT

(This section was inspired by http://blogs.cisco.com/performance/mpi-outside-of-c-and-fortran.)

15.10.2 Cancelling messages

In section 4.3.1 we showed a master-worker example where the master accepts in arbitrary order the messages from
the workers. Here we will show a slightly more complicated example, where only the result of the first task to com-
plete is needed. Thus, we issue an MPI_Recv with MPI_ANY_SOURCE as source. When a result comes, we broadcast its
source to all processes. All the other workers then use this information to cancel their message with an MPI_Cancel
operation.
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// cancel.c
fprintf(stderr,"get set, go!\n");
if (procno==nprocs-1) {
MPI_Status status;
MPI_Recv(dummy,0,MPI_INT, MPI_ANY_SOURCE,0,comm,

&status);
first_tid = status.MPI_SOURCE;
MPI_Bcast(&first_tid,1,MPI_INT, nprocs-1,comm);
fprintf(stderr,"[%d] first msg came from %d\n",procno,first_tid);

} else {
float randomfraction = (rand() / (double)RAND_MAX);
int randomwait = (int) ( nprocs * randomfraction );
MPI_Request request;
fprintf(stderr,"[%d] waits for %e/%d=%d\n",

procno,randomfraction,nprocs,randomwait);
sleep(randomwait);
MPI_Isend(dummy,0,MPI_INT, nprocs-1,0,comm,

&request);
MPI_Bcast(&first_tid,1,MPI_INT, nprocs-1,comm

);
if (procno!=first_tid) {
MPI_Cancel(&request);
fprintf(stderr,"[%d] canceled\n",procno);

}
}

After the cancelling operation it is still necessary to call MPI_Request_free, MPI_Wait, or MPI_Test in order to free
the request object.

The MPI_Cancel operation is local, so it can not be used for nonblocking collectives or one-sided transfers.

Remark 30 As of MPI-3.2, cancelling a send is deprecated.

15.10.3 The origin of one-sided communication in ShMem
The Cray T3E had a library called shmem which offered a type of shared memory. Rather than having a true global
address space it worked by supporting variables that were guaranteed to be identical between processors, and
indeed, were guaranteed to occupy the same location in memory. Variables could be declared to be shared a ‘sym-
metric’ pragma or directive; their values could be retrieved or set by shmem_get and shmem_put calls.

15.11 Literature
Online resources:

• MPI 1 Complete reference:
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

• Official MPI documents:
http://www.mpi-forum.org/docs/

• List of all MPI routines:
http://www.mcs.anl.gov/research/projects/mpi/www/www3/

Tutorial books on MPI:
• Using MPI [13] by some of the original authors.

322 Parallel Computing – r428

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.mpi-forum.org/docs/
http://www.mcs.anl.gov/research/projects/mpi/www/www3/


Chapter 16

MPI Examples

16.1 Bandwidth and halfbandwidth
Bandwidth is the quantity that measures the number of bytes per second that can go through a connection. This
definition seems straightforward, but comes with many footnotes.

• The size of the message used matters, since there is a latency cost to merely starting the message. Often,
the bandwidth number quoted is an asymptotic figure, hard to achieve in practice.

• If a certain bandwidth figure is attained between a pair of processes, will two pairs, sending simultane-
ously, reach the same number?

• Does the bandwidth depend on the choice of processes to measure?
• And combinations of these considerations.

A useful measure comes from asking what bandwidth is achievable if all processes are either sending or receiving.
As a further refinement, we ask what the least favorable choice is for the communicating pairs:

Bisection bandwidth is defined as the minimum total bandwidth, over all possible choices of
splitting the processes into a sending and receiving half.

See also HPC book, section-2.7.1.

Figure 16.1: Intra and inter schemes for bandwidth

Figure 16.1 illustrates the ‘intra’ (left) and ‘inter’ (right) scheme for letting all processes communicate in pairs. With
intra-communication, the messages do not rely on the network so we expect to measure high bandwidth. With
inter-communication, all messages go through the network and we expect to measure a lower number.

However, there are more issues to explore, which we will now do.

First of all we need to find pairs of processes. Consecutive pairs:
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// halfbandwidth.cxx
int sender = procid - procid%2, receiver = sender+1;

Pairs that are 𝑃/2 apart:

int sender = procid<halfprocs ? procid : procid-halfprocs,
receiver = sender + halfprocs;
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Figure 16.2: Time as a function of core count. Left: on node. Right: between nodes.

The halfbandwidth is measured as the total number of bytes sent divided by the total time. Both numbers are
measured outside a repeat loop that does each transaction 100 times.

auto duration = myclock::now()-start_time;
auto microsec_duration = std::chrono::duration_cast<std::chrono::microseconds>(duration);
int total_ping_count;
MPI_Allreduce(&pingcount,&total_ping_count,1,MPI_INT,MPI_SUM,comm);
long bytes = buffersize * sizeof(double) * total_ping_count;
float fsec = microsec_duration.count() * 1.e-6,

halfbandwidth = bytes / fsec;

In the left graph of figure 16.2 we see that the time for 𝑃/2 simultaneous pingpongs stays fairly constant. This
reflects the fact that, on node, the pingpong operations are data copies, which proceed simultaneously. Thus, the
time is independent of the number of cores that are moving data. The exception is the final data point: with all cores
active we take up more than the available bandwidth on the node.

In the right graph, each pingpong is inter-node, going through the network. Here we see the runtime go up linearly
with the number of pingpongs, or somewhat worse than that. This reflects the fact that network transfers are done
sequentially. (Actually, message can be broken up in packets, as long as they satisfy MPI message semantics. This
does not alter our argument.)

Next we explore the influence of the buffer size on performance. The right graph in figure 16.3 show that inter-node
bandwidth is almost independent of the buffer size. This means that even our smallest buffer is large enough to
overcome any MPI startup cost.
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Figure 16.3: Bandwidth as a function of buffer size. Left: on node. Right: between nodes.

On other hand, the left graph shows a more complicated pattern. Initially, the bandwidth increases, possibly reflect-
ing the decreasing importance of MPI startup. For the final data points, however, performance drops again. This is
due to the fact that the data size overflows cache size, and we are dominated by bandwidth from memory, rather
than cache.
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OPENMP



This section of the book teaches OpenMP (‘Open Multi Processing’), the dominant model for shared memory pro-
gramming in science and engineering. It will instill the following competencies.

Basic level:

• Threading model: the student will understand the threading model of OpenMP, and the relation between
threads and cores (chapter 17); the concept of a parallel region and private versus shared data (chapter 18).

• Loop parallelism: the student will be able to parallelize loops, and understand the impediments to paral-
lelization, and iteration scheduling (chapter 19; reductions (chapter 20).

• The student will understand the concept of worksharing constructs, and its implications for synchro-
nization (chapter 21).

Intermediate level:

• The student will understand the abstract notion of synchronization, its implementations in OpenMP, and
implications for performance (chapter 23).

• The student will understand the task model as underlying the thread model, be able to write code that
spawns tasks, and be able to distinguish when tasks are needed versus simpler worksharing constructs
(chapter 24).

• The student will understand thread/code affinity, how to control it, and possible implications for perfor-
mance (chapter 25).

Advanced level:

• The student will understand the OpenMP memory model, and sequential consistency (chapter 28.8).
• The student will understand SIMD processing, the extent to which compilers do this outside of OpenMP,
and how OpenMP can specify further opportunities for SIMD-ization (chapter 26).

• The student will understand offloading to Graphics Processing Units (GPUs), and the OpenMP directives
for effecting this (chapter 27).
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Chapter 17

Getting started with OpenMP

This chapter explains the basic concepts of OpenMP, and helps you get started on running your first OpenMP
program.

17.1 The OpenMP model
We start by establishing a mental picture of the hardware and software that OpenMP targets.

17.1.1 Target hardware

Modern computers have a multi-layered design. Maybe you have access to a cluster, and maybe you have learned
how to use MPI to communicate between cluster nodes. OpenMP, the topic of this chapter, is concerned with a
single cluster node and getting the most out of the available parallelism available there.

Figure 17.1: A node with two sockets and a co-processor

Figure 17.1 pictures a typical design of a node: within one enclosure you find two sockets, single processor chips,
plus an accelerator . (The picture is of a node of the TACC Stampede cluster no longer in serivce, with two sockets
and an Intel Xeon PHI co-processor.)
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Figure 17.2: Structure of an Intel Sandybridge eight-core socket

Your personal laptop or desktop computer will probably have one socket; while most supercomputers have nodes
with two or four sockets. In either case there can be a GPU as co-processor; supercomputer clusters can also have
other types of accelerators. OpenMP versions as of OpenMP-4.0 target such offloadable devices.

To see what aspects of this architecture OpenMP addresses we need to dig into the sockets. Figure 17.2 shows a
picture of an Intel Sandybridge socket. You recognize a structure with eight cores: independent processing units,
that all have access to the same memory. (In figure 17.1 you saw four memory chips, or DIMMs, attached to each
of the two sockets; all of the sixteen cores have access to all that memory.) OpenMP makes it easy to explore all
these cores in the same program. The OpenMP-4.0 standard also added the possibility to offload computations to
the GPU or other accelerator.

To summarize the structure of the architecture that OpenMP targets:

• A node has a number of sockets, typically 1, 2, or 4;

• each socket has a number of cores, as of 2022 this can be up to 64;

• each core is an independent processing unit, with access to all the memory on the node.

• There can be an accelerator, which can be used to offload computations to.

What OpenMP does not target is the cluster structure, where nodes communicate through a library that can access
the network, such as Message Passing Interface (MPI)
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17.1.2 Target software

OpenMP is based on on two concepts: the use of threads and the fork/join model of parallelism. For now you can
think of a thread as a sort of process: the processing unit executes a sequence of instructions. The fork/join model
says that a thread can split itself (‘fork’) into a number of threads that are identical copies. At some point these
copies go away and the original thread is left (‘join’), but while the team of threads created by the fork exists, you
have parallelism available to you. The part of the execution between fork and join is known as a parallel region.

Figure 17.3 gives a simple picture of this: a thread forks into a team of threads, and these threads themselves can
fork again.

Figure 17.3: Thread creation and deletion during parallel execution

The threads that are forked are all copies of the master thread: they have access to all that was computed so far;
this is their shared data. Of course, if the threads were completely identical the parallelism would be pointless, so
they also have private data, and they can identify themselves: they know their thread number. This allows you to
do meaningful parallel computations with threads.

This brings us to the third important concept: that of work sharing constructs. In a team of threads, initially there
will be replicated execution; a work sharing construct divides available work over the threads.

So there you have it: OpenMP uses teams of threads, and inside a parallel region the work is
distributed over the threads with a work sharing construct. Threads can access shared data,
and they have some private data.

An important difference between OpenMP and MPI is that parallelism in OpenMP is dynamically activated by a
thread spawning a team of threads. Furthermore, the number of threads used can differ between parallel regions,
and threads can create threads recursively. By contrast, in an MPI program the number of running processes is
(mostly) constant throughout the run, and determined by factors external to the program.

17.1.3 About threads and cores

OpenMP programming is typically done to take advantage of multicore processors. Thus, to get a good speedup you
would typically let your number of threads be equal to the number of cores. However, there is nothing to prevent
you from creating more threads if that serves the natural expression of your algorithm: the operating system will
use time slicing to let them all be executed. You just don’t get a speedup beyond the number of actually available
cores.

On some modern processors there are hardware threads, meaning that a core can actually let more than thread be
executed, with some speedup over the single thread. To use such a processor efficiently you would let the number
of OpenMP threads be 2 or 4 times the number of cores, depending on the hardware.
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17.2 Logistics of an OpenMP program run
Before we can start looking at OpenMP, we need to get some formalities out of the way about OpenMP programs.

17.2.1 Compiling

A C program needs to contain:

#include "omp.h"

while a Fortran program needs to contain:

use omp_lib

or

#include "omp_lib.h"

OpenMP is handled by extensions to your regular compiler, typically by adding an option to your commandline:

# gcc
gcc -o foo foo.c -fopenmp
# Intel compiler
icc -o foo foo.c -qopenmp
If you have separate compile and link stages, you need that option in both.

17.2.2 Standards

The OpenMP system has gone through a number of standards, and some features you read about in this course may
not be available with your compiler.

When you want to check this, you can query the OpenMP standard as follows. When you use the above compiler
options, the OpenMP macro, (or cpp macro) _OPENMP will be defined. Thus, you can have conditional compilation by
writing

#ifdef _OPENMP
...

#else
...

#endif

The value of this macro is a decimal value yyyymm denoting the OpenMP standard release that this compiler sup-
ports; see section 28.7.

Fortran note 18: OpenMP version. The parameter openmp_version contains the version in yyyymm format.

!! version.F90
use omp_lib
implicit none
integer :: standard
standard = openmp_version
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17.2.3 Running an OpenMP program

You run an OpenMP program by invoking it the regular way (for instance ./a.out), but its behavior is influenced
by some OpenMP environment variables. The most important one is OMP_NUM_THREADS:

export OMP_NUM_THREADS=8
which sets the number of threads that a program will use. You would typically set this equal to the number of cores
in your hardware, and hope for approximately linear speedup.

See section 28.1 for a list of all environment variables.

17.3 Your first OpenMP program
In this section you will see just enough of OpenMP to write a first program and to explore its behavior. For this
we need to introduce a couple of OpenMP language constructs. They will all be discussed in much greater detail in
later chapters.

17.3.1 Directives

OpenMP is not magic, so you have to tell it when something can be done in parallel. This is mostly done through
directives; additional specifications can be done through library calls.

In C/C++ the pragma mechanism is used: annotations for the benefit of the compiler that are otherwise not part of
the language. This looks like:

#pragma omp somedirective clause(value,othervalue)
statement;

#pragma omp somedirective clause(value,othervalue)
{
statement 1;
statement 2;
}

with

• the #pragma omp sentinel to indicate that an OpenMP directive is coming;
• a directive, such as parallel;
• and possibly clauses with values.
• After the directive comes either a single statement or a block in curly braces.

Directives in C/C++ are case-sensitive. Directives can be broken over multiple lines by escaping the line end.

C++ note 2: Bracket syntax. In keeping with the desire to get rid of the C PreProcessor (CPP) in C++, a new syntax
for OpenMP directives was introduced:

// directive.cxx
int nthreads;
[[omp::directive( parallel ) ]]
[[omp::directive( master ) ]]
nthreads = omp_get_num_threads();

Fortran note 19: OpenMP sentinel. The sentinel in Fortran looks like a comment:
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!$omp directive clause(value)
statements

!$omp end directive

The difference with the C directive is that Fortran does not have code blocks, so there is an explicit end-of
directive line.

If you break a directive over more than one line, all but the last line need to have a continuation character,
and each line needs to have the sentinel:

!$omp parallel &
!$omp num_threads(7)

tp = omp_get_thread_num()
!$omp end parallel

The directives are case-insensitive. In Fortran fixed-form source files (which is the only possibility in
Fortran77), c$omp and *$omp are allowed too.

17.3.2 Parallel regions

The simplest way to create parallelism in OpenMP is to use the parallel pragma. A block preceded by the parallel
pragma is called a parallel region; it is executed by a newly created team of threads. This is an instance of the Single
Program Multiple Data (SPMD) model: all threads execute (redundantly) the same segment of code.

#pragma omp parallel
{
// this is executed by a team of threads

}

Exercise 17.1. Write a ‘hello world’ program, where the print statement is in a parallel region.
Compile and run.
Run your program with different values of the environment variable OMP_NUM_THREADS. If
you know how many cores your machine has, can you set the value higher?

Let’s start exploring how OpenMP handles parallelism, using the following functions:

• omp_get_num_threads reports how many threads are currently active, and
• omp_get_thread_num reports the number of the thread that makes the call.
• omp_get_num_procs reports the number of available cores.

Exercise 17.2. Take the hello world program of exercise 17.1 and insert the above functions, before,
in, and after the parallel region. What are your observations?

Solution to exercise 17.2. Use omp_get_num_threads. The first print statement will appear only once be-
cause it is not in a parallel region. The second statement will appear once for each thread.

Exercise 17.3. Extend the program from exercise 17.2. Make a complete program based on these
lines:
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Code:

// reduct.c
int tsum=0;
#pragma omp parallel
{

tsum += // expression
}
printf("Sum is %d\n",tsum);

Output:

With 4 threads, sum s/b 6
Sum is 6
Sum is 5
Sum is 1
Sum is 4
Sum is 6
Sum is 5
Sum is 6
Sum is 5
Sum is 3
Sum is 4

Compile and run again. (In fact, run your program a number of times.) Do you see
something unexpected? Can you think of an explanation?

If the above puzzles you, read about race conditions in HPC book, section-2.6.1.5.

17.3.3 Code and execution structure
Here are a couple of important concepts:

• An OpenMP directive is followed by an structured block; in C this is a single statement, a compound
statement, or a block in braces; In Fortran it is delimited by the directive and its matching ‘end’ directive.
A structured block can not be jumped into, so it can not start with a labeled statement, or contain a jump
statement leaving the block.

• An OpenMP construct is the section of code starting with a directive and spanning the following struc-
tured block, plus in Fortran the end-directive. This is a lexical concept: it contains the statements directly
enclosed, and not any subroutines called from them.

• A region of code is defined as all statements that are dynamically encountered while executing the code
of an OpenMP construct. This is a dynamic concept: unlike a ‘construct’, it does include any subroutines
that are called from the code in the structured block.

17.4 Thread data
Inmost programming languages, visibility of data is governed by rules on the scope of variables: a variable is declared
in a block, and it is then visible to any statement in that block and blocks with a lexical scope contained in it, but
not in surrounding blocks:

main () {
// no variable `x' define here
{
int x = 5;
if (somecondition) { x = 6; }
printf("x=%e\n",x); // prints 5 or 6

}
printf("x=%e\n",x); // syntax error: `x' undefined

}

Fortran has simpler rules, since it does not have blocks inside blocks.

OpenMP has similar rules concerning data in parallel regions and other OpenMP constructs.
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Data is visible in enclosed scopes:

main() {
int x;

#pragma omp parallel
{

// you can use and set `x' here
}
printf("x=%e\n",x); // value depends on what

// happened in the parallel region
}

In C, you can redeclare a variable inside a nested scope:

{
int x;
if (something) {
double x; // same name, different entity

}
x = ... // this refers to the integer again

}

Doing so makes the outer variable inaccessible.

OpenMP has a similar mechanism: parallel regions are a scope. There is an important difference with plain C code:
each thread in the team gets its own instance of the enclosed variable.

{
int x;

#pragma omp parallel
{
double x;
// do something with x

}
}

• A parallel region is a scope.
• Local variables are per thread.

Figure 17.4: Locality of variables in threads

This is illustrated in figure 17.4.

In addition to such scoped variables, which live on a stack, there are variables on the heap, typically created by a
call to malloc (in C) or new (in C++). Rules for them are more complicated.
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Summarizing the above, there are

• shared variables, where each thread refers to the same data item, and
• private variables, where each thread has its own instance.

In addition to using scoping, OpenMP also uses options on the directives to control whether data is private or shared.

Many of the difficulties of parallel programming with OpenMP stem from the use of shared variables. For instance,
if two threads update a shared variable, there is no guarantee an the order on the updates.

We will discuss all this in detail in section 22.

17.5 Creating parallelism
The fork/join model of OpenMP means that you need some way of indicating where an activity can be forked for
independent execution. There are two ways of doing this:

1. You can declare a parallel region and split one thread into a whole team of threads. We will discuss this
next in chapter 18. The division of the work over the threads is controlled by work sharing construct; see
chapter 21.

2. Alternatively, you can use tasks and specify one parallel activity at a time. You will see this in section 24.

Note that OpenMP only indicates how much parallelism is present; whether independent activities are in fact exe-
cuted in parallel is a runtime decision.

Declaring a parallel region tells OpenMP that a team of threads can be created. The actual size of the team depends
on various factors (see section 28.1 for variables and functions mentioned in this section).

• The environment variable OMP_NUM_THREADS limits the number of threads that can be created.
• If you don’t set this variable, you can also set this limit dynamically with the library routine
omp_set_num_threads. This routine takes precedence over the aforementioned environment variable if
both are specified.

• A limit on the number of threads can also be set as a num_threads clause on a parallel region:

#pragma omp parallel num_threads(ndata)

To ask howmuch parallelism is actually used in your parallel region, use omp_get_num_threads. To query these hard-
ware limits, use omp_get_num_procs. You can query the maximum number of threads with omp_get_max_threads.
This equals the value of OMP_NUM_THREADS, not the number of actually active threads in a parallel region.

// proccount.c
void nested_report() {
#pragma omp parallel
#pragma omp master

printf("Nested : %2d cores and %2d
↪threads out of max %2d\n",

omp_get_num_procs(),
omp_get_num_threads(),
omp_get_max_threads());

}
int env_num_threads;

#pragma omp parallel
#pragma omp master
{

env_num_threads =
↪omp_get_num_threads();
printf("Parallel : %2d cores and %2d
↪threads out of max %2d\n",

omp_get_num_procs(),
omp_get_num_threads(),
omp_get_max_threads());

}

#pragma omp parallel \
num_threads(2*env_num_threads)

#pragma omp master
{

printf("Double : %2d cores and %2d
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↪threads out of max %2d\n",
omp_get_num_procs(),
omp_get_num_threads(),
omp_get_max_threads());

}

#pragma omp parallel
#pragma omp master

nested_report();

[c:48] for t in 1 2 4 8 16 ; do OMP_NUM_THREADS=$t ./proccount ; done
---------------- Parallelism report ----------------
Sequential: count 4 cores and 1 threads out of max 1
Parallel : count 4 cores and 1 threads out of max 1
Parallel : count 4 cores and 1 threads out of max 1
---------------- Parallelism report ----------------
Sequential: count 4 cores and 1 threads out of max 2
Parallel : count 4 cores and 2 threads out of max 2
Parallel : count 4 cores and 1 threads out of max 2
---------------- Parallelism report ----------------
Sequential: count 4 cores and 1 threads out of max 4
Parallel : count 4 cores and 4 threads out of max 4
Parallel : count 4 cores and 1 threads out of max 4
---------------- Parallelism report ----------------
Sequential: count 4 cores and 1 threads out of max 8
Parallel : count 4 cores and 8 threads out of max 8
Parallel : count 4 cores and 1 threads out of max 8
---------------- Parallelism report ----------------
Sequential: count 4 cores and 1 threads out of max 16
Parallel : count 4 cores and 16 threads out of max 16
Parallel : count 4 cores and 1 threads out of max 16

Another limit on the number of threads is imposed when you use nested parallel regions. This can arise if you have
a parallel region in a subprogram which is sometimes called sequentially, sometimes in parallel. For details, see
section 18.2.
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18.1 Creating parallelism with parallel regions
In OpenMP you need to indicate explicitly what passages are parallel. Creating parallelism, which here means:
creating a team of threads, is done with the parallel pragma. A block preceded by the omp parallel pragma is
called a parallel region; it is executed by a newly created team of threads. This is an instance of the SPMD model: all
threads execute the same segment of code.

#pragma omp parallel
{
// this is executed by a team of threads

}

It would be pointless to have the block be executed identically by all threads. One way to get a meaningful parallel
code is to use the function omp_get_thread_num to find out which thread you are, and execute work that is individual
to that thread. This function gives a number relative to the current team; recall from figure 17.3 that new teams can
be created recursively.

There is also a function omp_get_num_threads to find out the total number of threads.

The first thing we want to do is create a team of threads. This is done with a parallel region. Here is a very simple
example where each thread outputs its number:
Code:

// hello.c
#pragma omp parallel
{

int t = omp_get_thread_num();
printf("Hello world from %d!\n",t);

}

Output:

Hello world from 1!
Hello world from 0!
Hello world from 2!
Hello world from 3!

or in Fortran
Code:

!! hello.F90
!$omp parallel
print *,"Hello world!"

!$omp end parallel

Output:

Hello world from 1
Hello world from 2
Hello world from 3
Hello world from 0

C++ note 3: Output streams in parallel. The use of cout may give jumbled output:lines can break at each <<.Use
stringstream to form a single stream to output.
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// hello.cxx
#pragma omp parallel
{
int t = omp_get_thread_num();
stringstream proctext;
proctext << "Hello world from " << t << '\n';
cerr << proctext.str();

}

C++ note 4: Parallel regions in lambdas. OpenMP parallel regions can be in functions, including lambda expres-
sions.

const int s = [] () {
int s;

# pragma omp parallel
# pragma omp master

s = 2 * omp_get_num_threads();
return s; }();

(‘Immediately Invoked Function Expression’)

The following example uses parallelism for an actual calculation:

result = f(x)+g(x)+h(x)

you could parallelize this as

double result,fresult,gresult,hresult;
#pragma omp parallel
{ int num = omp_get_thread_num();
if (num==0) fresult = f(x);
else if (num==1) gresult = g(x);
else if (num==2) hresult = h(x);

}
result = fresult + gresult + hresult;

This code corresponds to the model we just discussed:

• Immediately preceding the parallel block, one thread will be executing the code. In the main program
this is the initial thread.

• At the start of the block, a new team of threads is created, and the thread that was active before the block
becomes the master thread of that team.

• After the block only the master thread is active.
• Inside the block there is team of threads: each thread in the team executes the body of the block, and
it will have access to all variables of the surrounding environment. How many threads there are can be
determined in a number of ways; we will get to that later.

Remark 31 In future versions of OpenMP, the master thread will be called the primary thread. In 5.1 the master
construct will be deprecated, and masked (with added functionality) will take its place. In 6.0 master will disappear from
the Spec, including proc_bind master “variable” and combined master constructs (master taskloop, etc.)

Exercise 18.1. What happens if you call omp_get_thread_num and omp_get_num_threads outside a
parallel region?

Solution to exercise 18.1. There is only thread, which is number zero out of 1.
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// hello-inout.c
int mythread,nthreads;
nthreads = omp_get_num_threads();
mythread = omp_get_thread_num();
printf("Hello from %d out of %d outside the region\n",mythread,nthreads);

18.2 Nested parallelism

What happens if you call a function from inside a parallel region, and that function itself contains a parallel region?

int main() {
...

#pragma omp parallel
{
...
func(...)
...
}

} // end of main

void func(...) {
#pragma omp parallel

{
...
}

}

Since any thread can create a team, you may expect that every thread, in its call to func, will create its own new
team. This is called nested parallelism and it works as described.

However, by default, the nested parallel region will have only one thread. You need to allow non-trivial nested
parallelism explicitly.

To allow nested thread creation, use the environment variable OMP_MAX_ACTIVE_LEVELS (default: 1) to set
the number of levels of parallel nesting. Equivalently, there are functions omp_set_max_active_levels and
omp_get_max_active_levels:

OMP_MAX_ACTIVE_LEVELS=3

or

void omp_set_max_active_levels(int);
int omp_get_max_active_levels(void);

Remark 32 A deprecatedmechanism is to set the environment variable OMP_NESTED (default: false) or its corresponding
function:

OMP_NESTED=true
or
omp_set_nested(1)

Nested parallelism can happen with nested loops, but it’s also possible to have a sections construct and a loop
nested. Example:
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Code:

// sectionnest.c
#pragma omp parallel sections

↪reduction(+:s)
{
#pragma omp section
{

double s1=0;
omp_set_num_threads(team);
#pragma omp parallel for

↪reduction(+:s1)
for (int i=0; i<N; i++) {

Output:

Nesting: false
Threads: 2, speedup: 2.0
Threads: 4, speedup: 2.0
Threads: 8, speedup: 2.0
Threads: 12, speedup: 2.0
Nesting: true
Threads: 2, speedup: 1.8
Threads: 4, speedup: 3.7
Threads: 8, speedup: 6.9
Threads: 12, speedup: 10.4

The amount of nested parallelism can be set:

OMP_NUM_THREADS=4,2
means that initially a parallel region will have four threads, and each thread can create two more threads. It is still
necessary that set the number of active levels.

The total number of threads active simultaneously (technically: in a contention group) can be limited with:

OMP_THREAD_LIMIT=123
Its value can be queried with omp_get_thread_limit.

More functions: omp_get_level, omp_get_active_level, omp_get_ancestor_thread_num,
omp_get_team_size(level).

18.2.1 Subprograms with parallel regions

A common application of nested parallelism is the case where you have a subprogram with a parallel region, which
itself gets called from a parallel region.

Exercise 18.2. Test nested parallelism by writing an OpenMP program as follows:
1. Write a subprogram that contains a parallel region.
2. Write a main program with a parallel region; call the subprogram both inside and

outside the parallel region.
3. Insert print statements

(a) in the main program outside the parallel region,
(b) in the parallel region in the main program,
(c) in the subprogram outside the parallel region,
(d) in the parallel region inside the subprogram.

Run your program and count how many print statements of each type you get.

Writing subprograms that are called in a parallel region illustrates the following point: directives are evaluation
with respect to the dynamic scope of the parallel region, not just the lexical scope. In the following example:

#pragma omp parallel
{

f();
}
void f() {
#pragma omp for
for ( .... ) {
...
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}
}

the body of the function f falls in the dynamic scope of the parallel region, so the for loop will be parallelized.

If the function may be called both from inside and outside parallel regions, you can test which is the case with
omp_in_parallel.

C++ note 5: Dynamic scope for class methods. Dynamic scope holds for class methods as for any other function:
Code:

// nested.cxx
class withnest {
public:
void f() {

stringstream ss;
ss
<< omp_get_num_threads()
<< '\n';

cout << ss.str();
};

};
int main() {

withnest my_object;
#pragma omp parallel

my_object.f();

Output:

executing: OMP_MAX_ACTIVE_LEVELS=2
↪OMP_PROC_BIND=true
↪OMP_NUM_THREADS=2 ./nested

2
2

18.3 Cancel parallel construct
It is possible to terminate a parallel construct early with the cancel directive:

!$omp cancel construct [if (expr)]

where construct is parallel, sections, do or taskgroup.

See section 30.4 for an example.

Cancelling is disabled by default for performance reasons. To activate it, set the OMP_CANCELLATION variable to true.

The state of cancellation can be queried with omp_get_cancellation, but there is no function to set it.

Cancellation can happen at most obvious places where OpenMP is active, but additional cancellation points can be
set with

#pragma omp cancellation point <construct>

where the construct is parallel, sections, for, do, taskgroup.

18.4 Review questions
Exercise 18.3. T/F? The function omp_get_num_threads() returns a number that is equal to the

number of cores.
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Exercise 18.4. T/F? The function omp_set_num_threads() can not be set to a higher number than the
number of cores.

Exercise 18.5. What function can be used to detect the number of cores?

Solution to exercise 18.5. omp_get_num_procs()
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Loop parallelism is a very common type of parallelism in scientific codes, so OpenMP has an easy mechanism for
it. OpenMP parallel loops are a first example of OpenMP ‘worksharing’ constructs (see section 21.1 for the full list):
constructs that take an amount of work and distribute it over the available threads in a parallel region, created with
the parallel pragma.

The parallel execution of a loop can be handled a number of different ways. For instance, you can create a parallel
region around the loop, and adjust the loop bounds:

#pragma omp parallel
{
int threadnum = omp_get_thread_num(),

numthreads = omp_get_num_threads();
int low = N*threadnum/numthreads,

high = N*(threadnum+1)/numthreads;
for (int i=low; i<high; i++)
// do something with i

}

In effect, this is how you would parallelize a loop inMPI: the parallel pragma creates a team of threads, each thread
executes the block of code, and based on its thread number finds a unique block of work to do.

Exercise 19.1. What are some important differences between the resulting OpenMP and MPI code?

Solution to exercise 19.1.
• In MPI each process uses indexing from zero on its local array; in OpenMP each thread uses

global indexing.
• OpenMP iterations can access any memory location, MPI would have to send data before it

can do so.

19.1 Loop parallelism through directives
The natural way to parallelize a loop in OpenMP is to use the for pragma where OpenMP does the above chopping
of the loop for you:

#pragma omp parallel
#pragma omp for
for (int i=0; i<N; i++) {
// do something with i

}
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This fragment combines two OpenMP idioms:

1. First the parallel directive creates a team of threads; after which
2. The for directive is a worksharing construct: it divides the available work over the available threads.

Remark 33 In this example the loop variable is declared in the loop header, as is the preferred practice, but if you don’t
do it this way, the loop variable is automatically made private to the threads.

Leaving the work distribution to OpenMP has several advantages. For one, you don’t have to calculate the loop
segments for the threads yourself, but you can also tell OpenMP to assign the loop iterations according to different
schedules (section 19.3).

Fortran note 20: OMP do pragma. The for pragma only exists in C; there is a correspondingly named do pragma in
Fortran.

$!omp parallel
$!omp do
do i=1,N
! something with i

end do
$!omp end do
$!omp end parallel

19.1.1 About parallelism and worksharing

It is important to realize that the parallel directive does not immediately distribute any work: all threads start
out executing the same code. As an illustration, figure 19.1 shows the execution on four threads of code that has
instructions between the parallel and for directives:

#pragma omp parallel
{

code1();
#pragma omp for
for (int i=1; i<=4*N; i++) {

code2();
}
code3();

}

The code before and after the loop is executed identically in each thread; the loop iterations are spread over the four
threads.

The do and for pragmas do not themselves create parallelism: they take the team of threads that is active, and
divide the loop iterations over them. This means that the omp for or omp do directive needs to be inside a parallel
region. Outside of a parallel region they would execute sequentially.

As an illustration:

346 Parallel Computing – r428



19.1. Loop parallelism through directives

Figure 19.1: Execution of parallel code inside and outside a loop

Code:

// parfor.c
#pragma omp parallel
{

int
nthreads = omp_get_num_threads(),
thread_num = omp_get_thread_num();

printf("Threads entering parallel region:
↪%d\n",

nthreads);
#pragma omp for
for (int iter=0; iter<nthreads; iter++)

printf("thread %d executing iter %d\n",
thread_num,iter);

}

Output:

%%%% equal thread/core counts %%%%
Threads entering parallel region: 4
thread 3 executing iter 3
Threads entering parallel region: 4
thread 0 executing iter 0
Threads entering parallel region: 4
thread 2 executing iter 2
Threads entering parallel region: 4
thread 1 executing iter 1

Exercise 19.2. What would happen in the above example if you increase the number of threads to be
larger than the number of cores?

Solution to exercise 19.2. Here I am using a clause to force oversubscription, but you can of course use
environment variables.
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Code:
// parfor.c
#pragma omp parallel num_threads(2*ncores)

{
int nthreads = omp_get_num_threads(),

thread_num = omp_get_thread_num();
printf("Threads entering parallel region: %d\n",

nthreads);
#pragma omp for
for (int iteration=0; iteration<nthreads;
↪iteration++)
printf("thread %d executing iteration %d\n",

thread_num,iteration);
}

Output:
%%%% equal thread/core counts %%%%
%% on 4 cores %%
Thread 4 entering parallel region
thread 0 executing iteration 0
Thread 4 entering parallel region
thread 3 executing iteration 3
Thread 4 entering parallel region
thread 1 executing iteration 1
Thread 4 entering parallel region
thread 2 executing iteration 2
%%%% oversubscription threads over

↪cores %%%%
%% on 4 cores %%
Thread 8 entering parallel region
Thread 8 entering parallel region
Thread 8 entering parallel region
Thread 8 entering parallel region
thread 4 executing iteration 4
Thread 8 entering parallel region
thread 7 executing iteration 7
thread 1 executing iteration 1
thread 2 executing iteration 2
Thread 8 entering parallel region
thread 3 executing iteration 3
Thread 8 entering parallel region
thread 6 executing iteration 6
Thread 8 entering parallel region
thread 5 executing iteration 5
thread 0 executing iteration 0

It is also possible to have a combined omp parallel for or omp parallel do directive.

#pragma omp parallel for
for (int i=0; .....

C++ note 6: Custom iterators. OpenMP can parallelize any range-based loop with a random-access iterator.

// iterator.cxx
template<typename T>
class NewVector {
protected:

T *storage;
int s;

public:
// iterator stuff
class iter;
iter begin();
iter end();

};

The following methods are needed for the contained iter class:

NewVector<T>::iter& operator++();
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T& operator*();
bool operator==( const NewVector::iter &other ) const;
bool operator!=( const NewVector::iter &other ) const;
// needed to OpenMP
int operator-

( const NewVector::iter& other ) const;
NewVector<T>::iter& operator+=( int add );

And then a range-based loop is allowed:

NewVector<float> v(s);
#pragma omp parallel for
for ( auto e : v )

cout << e << " ";

19.1.2 Loops are static

There are some restrictions on the loop: basically, OpenMP needs to be able to determine in advance how many
iterations there will be.

• The loop can not contains break, return, exit statements, or goto to a label outside the loop. However,
there is the cancel construct; see section 18.3.

• The continue (for C/C++) or cycle (for Fortran) statement is allowed.
• C++ exceptions need to be caught in the loop body.
• The index update has to be an increment (or decrement) by a fixed amount.
• The loop index variable is automatically private (section 22.2), and no changes to it inside the loop are
allowed. The following loop is not parallelizable in OpenMP:

for (int i=0; i<N; ) {
// something
if (something)
i++;
else
i += 2;

}

Remark 34 The loop index needs to be an integer value for the loop to be parallelizable. Unsigned values are allowed
as of OpenMP-3.

19.1.3 When is a loop parallel?

OpenMP parallelism is not magic. You can not take a sequential loop, even when it satisfies the restrictions above,
put an omp parallel for on it, and hope you get the same result, only faster. The speed issue is something we will
go into later; for now let’s consider the issue of whether the parallel code computes the right result to begin with.

The trivial case of a loop that is executed correctly in parallel, is one where iteration i writes in location i of some
array:

for (int i=low; i<hi; i++)
x[i] = // expression
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The iterations of this loop are independent, and hence can be computed in parallel in any order, if the right-hand-side
expression does not contain any references to x, or at best x[i].

Leaving considerations of the right-hand-side expression aside, we can more generally say that a loop is paralleliz-
able if in

for (int i=low; i<hi; i++)
x[ f(i) ] = // expression

the function f satisfies:
𝑖 ≠ 𝑗 ⇒ 𝑓 (𝑖) ≠ 𝑓 (𝑗).

Exercise 19.3. Consider the code

for (int i=0; i<n; i++)
x[i/2] += f(i)

Argue that this does not satisfy the above consition. Can you rewrite this loop to be
parallelizable?

Solution to exercise 19.3.

for (int i=0; i<n2/; i++)
x[i] += f(2*i)+f(2*i+1);

Careful with the endpoint if 𝑛 is not even.

19.2 An example
To illustrate the speedup of perfectly parallel calculations, we consider a simple code that applies the same calcula-
tion to each element of an array.

All tests are done on the TACC Frontera cluster, which has dual-socket Intel Cascade Lake nodes, with a total of 56
cores. We control affinity by setting OMP_PROC_BIND=true.

Here is the essential code fragment:

// speedup.c
#pragma omp parallel for

for (int ip=0; ip<N; ip++) {
for (int jp=0; jp<M; jp++) {

double f = sin( values[ip] );
values[ip] = f;

}
}

Exercise 19.4. Verify that the outer loop is parallel, but the inner one is not.

Solution to exercise 19.4. The outer loop is parallel because each iteration only uses ip as index. The inner
loop is a recursion, so not parallel.

Exercise 19.5. Compare the time for the sequential code and the single-threaded OpenMP code. Try
different optimization levels, and different compilers if you have them.

• Do you sometimes get a significant difference? What would be an explanation?
• Does your compiler have a facility for generating optimization reports? For instance
-qoptreport=5 for the Intel compiler .
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Figure 19.2: Speedup as function of problem size

Solution to exercise 19.5. The compiler may exchange the outer and inner loop of the sequential version,
which

• make the inner loop vectorizable, and
• makes this variant faster by the vector instruction width. On Frontera I have observed about

a factor of 6.
LOOP BEGIN at speedup.c(62,5)

remark #25444: Loopnest Interchanged: ( 1 2 3 ) --> ( 1 3 2 )
remark #15542: loop was not vectorized: inner loop was already vectorized

Now we investigate the influence of two parameters:

1. the OpenMP thread count: while we have 56 cores, values larger than that are allowed; and
2. the size of the problem: the smaller the problem, the larger the relative overhead of creating and syn-

chronizing the team of threads.

We execute the above computation several times to even out effects of cache loading.

The results are in figure 19.2:

• While the problem size is always larger than the number of threads, only for the largest problem, which
has at least 400 points per thread, is the speedup essentially linear.

• OpenMP allows for the number of threads to be larger than the core count, but there is no performance
improvement in doing so.
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Figure 19.3: Speedup on a hyper-threaded architecture

The above tests did not use hyperthreads, since that is disabled on Frontera. However, the Intel Knights Landing
nodes of the TACC Stampede2 cluster have four hyperthreads per core. Table 19.3 shows that this will indeed give a
modest speedup.

For reference, the commandlines executed were:

# frontera
make localclean run_speedup EXTRA_OPTIONS=-DN=200 NDIV=8 NP=112
make localclean run_speedup EXTRA_OPTIONS=-DN=2000 NDIV=8 NP=112
make localclean run_speedup EXTRA_OPTIONS=-DN=20000 NDIV=8 NP=112

# stampede2
make localclean run_speedup NDIV=8 EXTRA_OPTIONS="-DN=200000 -DM=1000" NP=272

C++ note 7: Range syntax. Parallel loops in C++ can use range-based syntax as of OpenMP-5.0:

// vecdata.cxx
vector<float> values(100);

#pragma omp parallel for
for ( auto& elt : values ) {

elt = 5.f;
}

float sum{0.f};
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#pragma omp parallel for reduction(+:sum)
for ( auto elt : values ) {

sum += elt;
}

Tests show exactly the same speedup as the C code.

C++ note 8: C++20 ranges header. The C++20 ranges library is supported:

# pragma omp parallel for reduction(+:count)
for ( auto e : data

| std::ranges::views::drop(1) )
count += e;

# pragma omp parallel for reduction(+:count)
for ( auto e : data

| std::ranges::views::transform
( []( auto e ) { return 2*e; } ) )

count += e;

C++ note 9: C++20 ranges speedup.

==== Run range on 1 threads ====
sum of vector: 50000005000000 in 6.148
sum w/ drop 1: 50000004999999 in 6.017
sum times 2 : 100000010000000 in 6.012
==== Run range on 25 threads ====
sum of vector: 50000005000000 in 0.494
sum w/ drop 1: 50000004999999 in 0.477
sum times 2 : 100000010000000 in 0.489
==== Run range on 51 threads ====
sum of vector: 50000005000000 in 0.257
sum w/ drop 1: 50000004999999 in 0.248
sum times 2 : 100000010000000 in 0.245
==== Run range on 76 threads ====
sum of vector: 50000005000000 in 0.182
sum w/ drop 1: 50000004999999 in 0.184
sum times 2 : 100000010000000 in 0.185
==== Run range on 102 threads ====
sum of vector: 50000005000000 in 0.143
sum w/ drop 1: 50000004999999 in 0.139
sum times 2 : 100000010000000 in 0.134
==== Run range on 128 threads ====
sum of vector: 50000005000000 in 0.122
sum w/ drop 1: 50000004999999 in 0.11
sum times 2 : 100000010000000 in 0.106
scaling results in: range-scaling-ls6.out

C++ note 10: Ranges and indices. Use iota_view to obtain indices:

// iota.cxx
vector<long> data(N);
# pragma omp parallel for
for ( auto i : std::ranges::iota_view( 0UZ,data.size() ) )

data[i] = f(i);
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Note that this uses C++23 suffix for unsigned size_t. For older versions:

iota_view( static_cast<size_t>(0),data.size() )

19.3 Loop schedules
Usually you will have many more iterations in a loop than there are threads. Thus, there are several ways you can
assign your loop iterations to the threads. OpenMP lets you specify this with the schedule clause.

#pragma omp for schedule(....)

The first distinction we now have to make is between static and dynamic schedules. With static schedules, the
iterations are assigned purely based on the number of iterations and the number of threads (and the chunk parameter;
see later). In dynamic schedules, on the other hand, iterations are assigned to threads that are unoccupied. Dynamic
schedules are a good idea if iterations take an unpredictable amount of time, so that load balancing is needed.

Figure 19.4: Illustration static round-robin scheduling versus dynamic

Figure 19.4 illustrates this: assume that each core gets assigned two (blocks of) iterations and these blocks take
gradually less and less time. You see from the left picture that thread 1 gets two fairly long blocks, where as thread 4
gets two short blocks, thus finishing much earlier. (This phenomenon of threads having unequal amounts of work
is known as load imbalance.) On the other hand, in the right figure thread 4 gets block 5, since it finishes the first
set of blocks early. The effect is a perfect load balancing.

Figure 19.5: Illustration of the scheduling strategies of loop iterations

The default static schedule is to assign one consecutive block of iterations to each thread. If you want different sized
blocks you can define a chunk size:
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#pragma omp for schedule(static[,chunk])

(where the square brackets indicate an optional argument). With static scheduling, the compiler will determine
the assignment of loop iterations to the threads at compile time, so, provided the iterations take roughly the same
amount of time, this is the most efficient at runtime.

The choice of a chunk size is often a balance between the low overhead of having only a few chunks, versus the
load balancing effect of having smaller chunks.
Exercise 19.6. Why is a chunk size of 1 typically a bad idea? (Hint: think about cache lines, and read

HPC book, section-1.4.2.)
In dynamic scheduling OpenMP will put blocks of iterations (the default chunk size is 1) in a task queue, and the
threads take one of these tasks whenever they are finished with the previous.

#pragma omp for schedule(static[,chunk])

While this schedule may give good load balancing if the iterations take very differing amounts of time to execute,
it does carry runtime overhead for managing the queue of iteration tasks.

Finally, there is the guided schedule, which gradually decreases the chunk size. The thinking here is that large
chunks carry the least overhead, but smaller chunks are better for load balancing. The various schedules are illus-
trated in figure 19.5.

If you don’t want to decide on a schedule in your code, you can specify the runtime schedule. The actual schedule
will then at runtime be read from the OMP_SCHEDULE environment variable. You can even just leave it to the runtime
library by specifying auto
Exercise 19.7. Write a simple prime number tester and a loop that counts primes:

// primesched.c
for (int n = 0; n < N; n++) {
if (is_prime(n))

j++;
}

Do you expect a dynamic schedule to be better than a static one? Finish the program and
test with different schedules.

Solution to exercise 19.7.

Running on 28 cores with schedule: 1=static
# primes = 1270607
run time = 0.582228s
Running on 28 cores with schedule: 2=dynamic
# primes = 1270607
run time = 0.425858s
Running on 28 cores with schedule: 3=guided
# primes = 1270607
run time = 0.414374s

Exercise 19.8. We continue with exercise 20.2. We add ‘adaptive integration’where needed, the
program refines the step size1. This means that the iterations no longer take a predictable
amount of time.

1. Use the omp parallel for construct to parallelize the loop. As in the previous lab, you
may at first see an incorrect result. Use the reduction clause to fix this.

1. It doesn’t actually do this in a mathematically sophisticated way, so this code is more for the sake of the example.
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2. Your code should now see a decent speedup, but possible not for all cores. It is possible
to get completely linear speedup by adjusting the schedule.
Start by using schedule(static,n). Experiment with values for 𝑛. When can you get a
better speedup? Explain this.

3. Since this code is somewhat dynamic, try schedule(dynamic). This will actually give a
fairly bad result. Why? Use schedule(dynamic,$n$) instead, and experiment with
values for 𝑛.

4. Finally, use schedule(guided), where OpenMP uses a heuristic. What results does that
give?

Exercise 19.9. Program the LU factorization algorithm without pivoting.

for k=1,n:
A[k,k] = 1./A[k,k]
for i=k+1,n:

A[i,k] = A[i,k]/A[k,k]
for j=k+1,n:

A[i,j] = A[i,j] - A[i,k]*A[k,j]

1. Argue that it is not possible to parallelize the outer loop.
2. Argue that it is possible to parallelize both the 𝑖 and 𝑗 loops.
3. Parallelize the algorithm by focusing on the 𝑖 loop. Why is the algorithm as given here

best for a matrix on row-storage? What would you do if the matrix was on column
storage?

4. Argue that with the default schedule, if a row is updated by one thread in one
iteration, it may very well be updated by another thread in another. Can you find a
way to schedule loop iterations so that this does not happen? What practical reason is
there for doing so?

The schedule can be declared explicitly, set at runtime through the OMP_SCHEDULE environment variable, or left up
to the runtime system by specifying auto. Especially in the last two cases you may want to enquire what schedule
is currently being used with omp_get_schedule (since OpenMP-5.1):

int omp_get_schedule(omp_sched_t * kind, int * modifier );

Its mirror call is omp_set_schedule, which sets the value that is used when schedule value runtime is used. It is in
effect equivalent to setting the environment variable OMP_SCHEDULE.

void omp_set_schedule (omp_sched_t kind, int modifier);

Type environment variable clause omp_sched_t omp_sched_t modifier default
OMP_SCHEDULE= schedule( ... ) name value

static static[,n] static[,n] omp_sched_static 1 𝑁/nthreads
dynamic dynamic[,n] dynamic[,n] omp_sched_dynamic 2 1
guided guided[,n] guided[,n] omp_sched_guided 3
auto auto auto omp_sched_auto 4

Here are the various schedules you can set with the schedule clause:

affinity Set by using value omp_sched_affinity
auto The schedule is left up to the implementation. Set by using value omp_sched_auto
static value: 1. The modifier parameter is the chunk size. Can also be set by using value omp_sched_static
dynamic value: 2. The modifier parameter is the chunk size; default 1. Can also be set by using value

omp_sched_dynamic
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guided Value: 3. The modifier parameter is the chunk size. Set by using value omp_sched_guided
runtime Use the value of the OMP_SCHEDULE environment variable. Set by using value omp_sched_runtime

19.4 Timing experiments

19.4.1 Indexing schemes

For two-dimensional loops there are several possible ways of handling the indexing.

1. We can use a nested loop, and translate i,j indices to a linear index;

// collapse.cxx
# pragma omp parallel for

for ( int i=0; i<nsize; i++ )
for ( int j=0; j<nsize; j++ )

data[ i*nsize+j] += sqrt(x*y);
# pragma omp parallel for reduction(+:s)

for ( int i=0; i<nsize; i++ )
for ( int j=0; j<nsize; j++ )

s + sqrt(data[ i*nsize+j]);

2. same, but with a collapse(2) directive;

# pragma omp parallel for collapse(2)
for ( int i=0; i<nsize; i++ )
for ( int j=0; j<nsize; j++ )

data[ i*nsize+j] += sqrt(x*y);
# pragma omp parallel for reduction(+:s) collapse(2)

for ( int i=0; i<nsize; i++ )
for ( int j=0; j<nsize; j++ )

s + sqrt(data[ i*nsize+j]);

3. with C++32 mdspan we can use true 2D indexing;

# pragma omp parallel for
for ( int i=0; i<nsize; i++ )
for ( int j=0; j<nsize; j++ )

mdata[ i,j] += sqrt(x*y);
# pragma omp parallel for reduction(+:s)

for ( int i=0; i<nsize; i++ )
for ( int j=0; j<nsize; j++ )

s + sqrt(mdata[ i,j]);

4. finally, to deal with Partial Diffential Equations (PDEs) with a boundary condition, we use a nested loop
that only traverses the interior of the array.

# pragma omp parallel for
for ( int i=1; i<nsize-1; i++ )
for ( int j=1; j<nsize-1; j++ )

data[ i*nsize+j] += sqrt(x*y);
# pragma omp parallel for reduction(+:s)

for ( int i=1; i<nsize-1; i++ )
for ( int j=1; j<nsize-1; j++ )

s + sqrt(data[ i*nsize+j]);
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Figure 19.6: Different ways of indexing a 2D parallel loop. Left: absolute times; Right: normalized to 𝑡1.

We report the results in figure 19.6. These results were run on the TACC Frontera cluster, with 56-core dual-socket
Intel Cascade Lake processors.

We conclude that all schemes perform approximately equally well. Surprisingly the collapse(2) degrades perfor-
mance. The gaps in the indexing from the ‘inner’ scheme don’t seem to matter. The mdspan indexing performs
slightly worse than the best scheme.

19.4.2 OpenMP loops vs C++ standard algorithms
C++ note 11: Parallel standard algorithms. The C++17/C++20 standards have introduced the notion of execution pol-

icy to the standard algorithms, meaning the operations on containers that are in the algorithm library.

This parallelization is often done through Thread Building Blocks (TBB).

As an example, let’s consider prime number marking: create an array where p[i] is one if i is prime, zero otherwise.
missing snippet markprimeomp
missing snippet markprimecpp

As a result we find (figure 19.8) that the parallel algorithm is competitive with OpenMP loop parallelization for low
thread counts, but not for higher.

19.5 Reductions
So far we have focused on loops with independent iterations. Reductions are a common type of loop with depen-
dencies. There is an extended discussion of reductions in chapter 20.

C++ note 12: Performance comparison. Figure 19.8 gives a performance comparison between OpenMP reductions
and C++ execution policies.
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Figure 19.7: Different ways of indexing a five-point Laplace loop. Left: absolute times; Right: normalized
to 𝑡1.

19.6 Nested loops

19.6.1 Collapsing nested loops

In general, the more work there is to divide over a number of threads, the more efficient the parallelization will
be. In the context of parallel loops, it is possible to increase the amount of work by parallelizing all levels of loops
instead of just the outer one.

Example: in

for ( int i=0; i<N; i++ )
for ( int j=0; j<N; j++ )

A[i][j] = B[i][j] + C[i][j]

all𝑁 2 iterations are independent, but a regular omp for directive will only parallelize one level. The collapse clause
will parallelize more than one level:

#pragma omp for collapse(2)
for ( int i=0; i<N; i++ )
for ( int j=0; j<N; j++ )

A[i][j] = B[i][j] + C[i][j]

It is only possible to collapse perfectly nested loops, that is, the loop body of the outer loop can consist only of the
inner loop; there can be no statements before or after the inner loop in the loop body of the outer loop. That is, the
two loops in

for ( int i=0; i<N; i++ ) {
y[i] = 0.;
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Figure 19.8: Load unbalanced algorithm (left: parallel loop, right: reduction) with 1. execution policy,
2. OpenMP static scheduling, 3. OpenMP dynamic scheduling

for ( int j=0; j<N; j++)
y[i] += A[i][j] * x[j]

}

can not be collapsed.

Exercise 19.10. You could rewrite the above code as

for (int i=0; i<N; i++)
y[i] = 0.;

for (int i=0; i<N; i++) {
for (int j=0; j<N; j++)

y[i] += A[i][j] * x[j]
}

Is it now correct to have the collapse directive on the nested loop?

Exercise 19.11. Consider this code for matrix transposition:

void transposer(int n, int m, double *dst, const double *src) {
int blocksize;
for (int i = 0; i < n; i += blocksize) {

for (int j = 0; j < m; j += blocksize) {
// transpose the block beginning at [i,j]
for (int k = i; k < i + blocksize; ++k) {

for (int l = j; l < j + blocksize; ++l) {
dst[k + l*n] = src[l + k*m];

}
}

}
}
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}

Assuming that the src and dst array are disjoint, which loops are parallel, and how many
levels can you collapse?

Solution to exercise 19.11. The outermost loop can be marked collapse(4), since a matrix transposition
writes each destination location precisely once.

19.6.2 Array traversal
Consider arrays

float Amat[N][N];
float xvec[N],yvec[N];

and the operation 𝑠 ← 𝑦 𝑡𝐴𝑥 .
1. Code this as an OpenMP parallel double loop.
2. Argue that the matrix 𝐴 can be traversed two ways: by rows and columns, or by columns and rows, both

giving the same result (in exact arithmetic).
3. Argue that the loops can be collapsed with collapse directory.
4. So now you have 4 variants in addition to the sequential code. Time these.

You should find that the row/column (or row-major) variant is faster. Can you find reasons for this?

19.7 Ordered iterations
Iterations in a parallel loop that are executed in parallel do not execute in lockstep. That means that in

#pragma omp parallel for
for ( ... i ... ) {
... f(i) ...
printf("something with %d\n",i);

}

it is not true that all function evaluations happen more or less at the same time, followed by all print statements.
The print statements can really happen in any order. The ordered clause coupled with the ordered directive can
force execution in the right order:

#pragma omp parallel for ordered
for ( ... i ... ) {
... f(i) ...

#pragma omp ordered
printf("something with %d\n",i);

}

Example code structure:

#pragma omp parallel for shared(y) ordered
for ( ... i ... ) {
int x = f(i)

#pragma omp ordered
y[i] += f(x)
z[i] = g(y[i])

}

There is a limitation: each iteration can encounter only one ordered directive.
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19.8 nowait
An OpenMP loop is a worksharing construct, after which execution in the parallel region goes back to replicated
execution. To synchronize this, OpenMP inserts a barrier, meaning that threads wait for each other to reach this
point. See section 23.1.1 for details.

The implicit barrier at the end of a work sharing construct can be cancelled with a nowait clause. This has the effect
that threads that are finished can continue with the next code in the parallel region:

#pragma omp parallel
{
#pragma omp for nowait
for (int i=0; i<N; i++) {
...

}
// more parallel code

}

In the following example, threads that are finished with the first loop can start on the second. Note that this requires
both loops to have the same schedule.We specify the static schedule here to have an identical scheduling of iterations
over threads:

#pragma omp parallel
{

x = local_computation()
#pragma omp for schedule(static) nowait
for (int i=0; i<N; i++) {

x[i] = ...
}

#pragma omp for schedule(static)
for (int i=0; i<N; i++) {

y[i] = ... x[i] ...
}

}

19.9 While loops
OpenMP can only handle ‘for’ loops: while loops can not be parallelized. So you have to find a way around that.
While loops are for instance used to search through data:

while ( a[i]!=0 && i<imax ) {
i++; }
// now i is the first index for which a[i] is zero.

We replace the while loop by a for loop that examines all locations:

result = -1;
#pragma omp parallel for
for (int i=0; i<imax; i++) {
if (a[i]!=0 && result<0) result = i;

}

Exercise 19.12. Show that this code has a race condition.
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Solution to exercise 19.12. The result value is read, then written. Another thread can set it in between
those two actions.

You can fix the race condition by making the condition into a critical section; section 23.2.2. In this particular
example, with a very small amount of work per iteration, that is likely to be inefficient in this case (why?). A more
efficient solution uses the lastprivate pragma:

result = -1;
#pragma omp parallel for lastprivate(result)
for (int i=0; i<imax; i++) {
if (a[i]!=0) result = i;

}

You have now solved a slightly different problem: the result variable contains the last location where a[i] is zero.

19.10 Review questions
Exercise 19.13. The following loop can be parallelized with a parallel for. Is it correct to add the

directive collapse(2)?

for (int i=0; i<N; i++) {
y[i] = 0.;
for (int j=0; j<N; j++)
y[i] += A[i][j] * x[j]

}

Exercise 19.14. Same question for the nested loop here:

for (int i=0; i<N; i++)
y[i] = 0.;
for (int i=0; i<N; i++) {
for (int j=0; j<N; j++)
y[i] += A[i][j] * x[j]

}

Exercise 19.15. In this triple loop:

for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
for (int k=0; k<kmax; k++)

x[i][j] += f(i,j,k)

what OpenMP directives do you use? Can you collapse all levels? Does it matter what the
loop bounds are?

Solution to exercise 19.15.
• You can not collapse(3) because of the reduction.
• if n is large, use collapse(2) and leave the reduction sequential.
• if kmax large and n small, put a reduction on the inner loop.
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Chapter 20

OpenMP topic: Reductions

20.1 Reductions: why, what, how?
Parallel tasks often produce some quantity that needs to be summed or otherwise combined. If you write:

int sum=0;
#pragma omp parallel for
for (int i=0; i<N; i++)

sum += f(i);

you will find that the sum value depends on the number of threads, and is likely not the same as when you execute
the code sequentially. The problem here is the race condition involving the sum variable, since this variable is shared
between all threads.

We will discuss several strategies of dealing with this.

20.1.1 Reduction clause

The easiest way to effect a reduction is of course to use the reduction clause. Adding this to an omp parallel
region has the following effect:

• OpenMP will make a copy of the reduction variable per thread, initialized to the identity of the reduction
operator, for instance 1 for multiplication.

• Each thread will then reduce into its local variable;
• At the end of the parallel region, the local results are combined, again using the reduction operator, into
the global variable.

The simplest case is a reduction over a parallel loop. Here we compute 𝜋/4 as a Riemann sum:

// pi.c
#pragma omp parallel for reduction(+:pi4)
for (int isample=0; isample<N; isample++) {
float xsample = isample * h;
float y = sqrt(1-xsample*xsample);
pi4 += h*y;

}

You can also reduce over sections:
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// sectionreduct.c
float y=0;
#pragma omp parallel reduction(+:y)
#pragma omp sections
{
#pragma omp section

y += f();
#pragma omp section

y += g();
}

Another reduction, this time over a parallel region, without any work sharing:

// reductpar.c
m = INT_MIN;
#pragma omp parallel reduction(max:m) num_threads(ndata)
{
int t = omp_get_thread_num();
int d = data[t];
m = d>m ? d : m;

};

If you want to reduce multiple variables with the same operator, use

reduction(+:x,y,z)

For multiple reduction with different operators, use more than one clause.

Remark 35 A reduction is one of those cases where the parallel execution can have a slightly different value from the
one that is computed sequentially, because floating point operations are not associative, so roundoffwill lead to differing
results. See HPC book, section-3.6.5 for more explanation.

The OpenMP standard does not even specify that two runs with the same number of threads, and the same
scheduling, have to give identical results. Some runtimes may have a setting to enforce this; for instance
KMP_DETERMINISTIC_REDUCTION for the Intel runtime.

20.1.2 Code your own reduction

While using a reduction clause is the preferred way of dealing with codes as in section 20.1 above, it can be in-
structive to look at other mechanisms.

The most immediate way is to eliminate the race condition by declaring a critical section:

double result = 0;
#pragma omp parallel
{
double local_result;
int num = omp_get_thread_num();
if (num==0) local_result = f(x);
else if (num==1) local_result = g(x);
else if (num==2) local_result = h(x);

# pragma omp critical
result += local_result;

}
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This is a good solution if the amount of serialization in the critical section is small compared to computing the
functions 𝑓 , 𝑔, ℎ. On the other hand, you may not want to do that in a loop:

double result = 0;
#pragma omp parallel
{
double local_result;

# pragma omp for
for (i=0; i<N; i++) {

local_result = f(x,i);
# pragma omp critical

result += local_result;
} // end of for loop

}

Exercise 20.1. Can you think of a small modification of this code, that still uses a critical section, that
is more efficient? Time both codes.

Solution to exercise 20.1.

double result = 0;
#pragma omp parallel
{

double local_result;
# pragma omp for

for (i=0; i<N; i++) {
local_result = f(x,i);

} // end of for loop
# pragma omp critical

result += local_result;
}

20.1.2.1 False sharing

If your code can not be easily structured as a reduction, you can realize the above scheme by hand by ‘duplicating’
the global variable and gather the contributions later. This example presumes three threads, and gives each a location
of their own to store the result computed on that thread:

double result,local_results[3];
#pragma omp parallel
{
int num = omp_get_thread_num();
if (num==0) local_results[num] = f(x)
else if (num==1) local_results[num] = g(x)
else if (num==2) local_results[num] = h(x)

}
result = local_results[0]+local_results[1]+local_results[2]

While this code is correct, it may be inefficient because of a phenomemon called false sharing. Even though the
threads write to separate variables, those variables are likely to be on the same cacheline (see HPC book, section-
1.4.2 for an explanation). This means that the cores will be wasting a lot of time and bandwidth updating each
other’s copy of this cacheline.

False sharing can be prevent by giving each thread its own cacheline:
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double result,local_results[3][8];
#pragma omp parallel
{
int num = omp_get_thread_num();
if (num==0) local_results[num][1] = f(x)

// et cetera
}

A more elegant solution gives each thread a true local variable, and uses a critical section to sum these, at the very
end:

double result = 0;
#pragma omp parallel
{
double local_result;
local_result = .....

#pragam omp critical
result += local_result;

}

20.1.3 Exercises

Exercise 20.2. Compute 𝜋 by numerical integration. We use the fact that 𝜋 is the area of the unit
circle, and we approximate this by computing the area of a quarter circle using Riemann
sums.

• Let 𝑓 (𝑥) = √1 − 𝑥2 be the function that describes the quarter circle for 𝑥 = 0… 1;
• Then we compute

𝜋/4 ≈
𝑁−1
∑
𝑖=0

Δ𝑥𝑓 (𝑥𝑖) where 𝑥𝑖 = 𝑖Δ𝑥 and Δ𝑥 = 1/𝑁

Write a program for this, and parallelize it using OpenMP parallel for directives.
1. Put a parallel directive around your loop. Does it still compute the right result? Does

the time go down with the number of threads? (The answers should be no and no.)
2. Change the parallel to parallel for (or parallel do). Now is the result correct?

Does execution speed up? (The answers should now be no and yes.)
3. Put a critical directive in front of the update. (Yes and very much no.)
4. Remove the critical and add a clause reduction(+:quarterpi) to the for directive.

Now it should be correct and efficient.
Use different numbers of cores and compute the speedup you attain over the sequential
computation. Is there a performance difference between the OpenMP code with 1 thread and
the sequential code?

Solution to exercise 20.2.
1. With the parallel directive, the loop gets multiple evaluations. There is no time reduction,

and the result 𝜋 times up to the number of threads; less because of race conditions.
2. With a for directive the loop is distributed, so the time goes down. Results are still wrong

because of the race condition.
3. critical fixes the correctness, but slows everything down.

Remark 36 In this exercise you may have seen the runtime go up a couple of times where you weren’t expecting it.
The issue here is false sharing; see HPC book, section-3.6.5 for more explanation.
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Exercise 20.3. The Jacobi method for solving linear system 𝐴𝑥 = 𝑏 is given by

𝑥 (𝑛+1)
𝑖 = 𝑎𝑖𝑖 (𝑏𝑖 − ∑

𝑗≠𝑖
𝑎𝑖𝑗𝑥 (𝑛)

𝑗 )

Insert OpenMP directives in the code, and check that it converges with the same precision,
regardless the number of threads.
Study speedup. Does the problem size play a role?

Exercise 20.4. How much performance improvement do you get from considering
• removing barriers by nowait clauses
• affinity
• first-touch

Exercise 20.5. Experiment with scheduling options.
Do you see any effect?
In particular try small chunk sizes.

Exercise 20.6. Can you put the whole iteration loop in a parallel region?
Does this give further performance improvement?

20.2 Built-in reduction

20.2.1 Operators

Arithmetic reductions: +,*,-,max,min. The minus operator is deprecated as of OpenMP-5.2.

Logical operator reductions in C: & && | || ^

Logical operator reductions in Fortran: .and. .or. .eqv. .neqv. .iand. .ior. .ieor.

Reduction can be applied to any type for which the operator is defined. The types to which max/min are applicable
are limited.

Exercise 20.7. The maximum and minimum reductions were not added to OpenMP until
OpenMP-3.1. Write a parallel loop that computes the maximum and minimum values in an
array without using the reduction directive. Discuss the various options. Do timings to
evaluate the speedup that is attained and to find the best option.

20.2.2 Reduction on arrays

Starting with the OpenMP-4.5 standard, you can reduce on statically and dynamically allocated arrays:

// reductarray.c
int data[nthreads];
#pragma omp parallel for schedule(static,1) \

reduction(+:data[:nthreads])
for (int it=0; it<nthreads; it++) {
for (int i=0; i<nthreads; i++)

data[i]++;
}
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int *alloced = (int*)malloc( nthreads*sizeof(int) );
for (int i=0; i<nthreads; i++)

alloced[i] = 0;
#pragma omp parallel for schedule(static,1) \

reduction(+:alloced[:nthreads])
for (int it=0; it<nthreads; it++) {
for (int i=0; i<nthreads; i++)

alloced[i]++;
}

C++ note 13: Reductions on vectors. Use the datamethod to extract the array on which to reduce. However, this does
not work:

vector<float> x;
#pragma omp parallel reduction(+:x.data())

because the reduction clause wants a variable, not an expression, for the array, so you need an extra bare
pointer:

// reductarray.cxx
vector<int> data(nthreads,0);
int *datadata = data.data();
#pragma omp parallel for schedule(static,1) \

reduction(+:datadata[:nthreads])

In the course of the reduction, OpenMP may need to allocate temporary arrays. This may run into limitations of
stack size. You may need to increase the value of the OMP_STACKSIZE environment variable.

20.3 Initial value for reductions
The treatment of initial values in reductions is slightly involved.

x = init_x
#pragma omp parallel for reduction(min:x)
for (int i=0; i<N; i++)

x = min(x,data[i]);

Each thread does a partial reduction, but its initial value is not the user-supplied init_x value, but a value dependent
on the operator. In the end, the partial results will then be combined with the user initial value. The initialization
values are mostly self-evident, such as zero for addition and one for multiplication. For min and max they are
respectively the maximal and minimal representable value of the result type.

Figure 20.1 illustrates this, where 1,2,3,4 are four data items, i is the OpenMP initialization, and u is the user
initialization; each p stands for a partial reduction value. The figure is based on execution using two threads.
Exercise 20.8. Write a program to test the fact that the partial results are initialized to the unit of the

reduction operator.
Solution to exercise 20.8.

int v = 256, i;
#pragma omp parallel for reduction(+:v)

for (i=0; i<16; i++) {
v += 2*i;
if (v>450) printf("hitting %d\n",v);

}
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Figure 20.1: Reduction of four items on two threads, taking into account initial values.

The if statement in the loop will not print anything.

20.4 User-defined reductions
In a loop that performs a reduction, most of the element-by-element reduction as done in user code. However, in a
parallel version of that loop, OpenMP needs to perform that same reduction on the partial results from the threads.
Thus, if you want to perform your own reduction, you need to declare this reduction to OpenMP.

With user-defined reductions, the programmer specifies the function that does the elementwise comparison. We
discuss two strategies:

1. In non-Object-Oriented (OO) languages you can define a function, and declare that to be a reduction
operator with the declare reduction construct.

2. In OO languages (C++ and Fortran2003) you can overload ordinary operators for types, including class
objects.

20.4.1 Reduction functions

This takes two steps.

1. You need a function of two arguments that returns the result of the comparison. You can do this yourself,
but, especially with the C++ standard library, you can use functions such as std::vector::insert.

2. Specifying how this function operates on two variables omp_out and omp_in, corresponding to the par-
tially reduced result and the new operand respectively. The new partial result should be left in omp_out.

3. Optionally, you can specify the value to which the reduction should be initialized.

This is the syntax of the definition of the reduction, which can then be used in multiple reduction clauses.

#pragma omp declare reduction
( identifier : typelist : combiner )
[initializer(initializer-expression)]

where:

identifier is a name; this can be overloaded for different types, and redefined in inner scopes.
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typelist is a list of types.
combiner is an expression that updates the internal variable omp_out as function of itself and omp_in.
initializer sets omp_priv to the identity of the reduction; this can be an expression or a brace initializer.

Fortran note 21: Reduction declaration. The declaration statement has to be in the declaration section of your sub-
program.

20.4.1.1 Explicit expressions

For very simple cases:

for (i=0; i<N; i++) {
if (abs(data[i]) < result) {

result = abs(data[i]);
}

}

you can declare the reduction through an expression:

// reductexpr.c
#pragma omp declare reduction\
(minabs : int : \
omp_out = abs(omp_in) > omp_out ? omp_out : abs(omp_in) ) \

initializer (omp_priv=LARGENUM)

and use that in the reduction clause:

#pragma omp parallel for reduction(minabs:result)

for the above loop

for (i=0; i<N; i++) {
if (abs(data[i]) < result) {

result = abs(data[i]);
}

}

C++ note 14: Lambda expressions in declared reductions. You can use lambda expressions in the explicit expression
for a declared reduction:

// reductexpr.cxx
#pragma omp declare reduction\
(minabs : int : \
omp_out = \

[] (int x,int y) -> int { \
return abs(x) > abs(y) ? abs(y) : abs(x); } \

(omp_in,omp_out) ) \
initializer (omp_priv=limit::max())

You can not assign the lambda expression to a variable and use that, because omp_in/out are the only
variables allowed in the explicit expression.
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20.4.1.2 Reduction functions

For instance, recreating the maximum reduction would look like this:

// ireduct.c
int mymax(int r,int n) {
// r is the already reduced value
// n is the new value
int m;
if (n>r) {

m = n;
} else {

m = r;
}
return m;

}
#pragma omp declare reduction \
(rwz:int:omp_out=mymax(omp_out,omp_in)) \
initializer(omp_priv=INT_MIN)
m = INT_MIN;

#pragma omp parallel for reduction(rwz:m)
for (int idata=0; idata<ndata; idata++)

m = mymax(m,data[idata]);

Exercise 20.9. Write a reduction routine that operates on an array of nonnegative integers, finding
the smallest nonzero one. If the array has size zero, or entirely consists of zeros, return -1.

C++ note 15: Reduction over iterators. Support for C++ iterators

#pragma omp declare reduction \
(merge // identifier
: std::vector<int> // typelist
: omp_out.insert(omp_out.end(), omp_in.begin(),

omp_in.end()) // combiner
)

C++ note 16: Templated reductions. You can reduce with a templated function if you put both the declaration and
the reduction in the same templated function:

template<typename T>
T generic_reduction( vector<T> tdata ) {
#pragma omp declare reduction \
(rwzt:T:omp_out=reduce_without_zero<T>(omp_out,omp_in)) \
initializer(omp_priv=-1.f)

T tmin = -1;
#pragma omp parallel for reduction(rwzt:tmin)
for (int id=0; id<tdata.size(); id++)

tmin = reduce_without_zero<T>(tmin,tdata[id]);
return tmin;

};

which is then called with specific data:

auto tmin = generic_reduction<float>(fdata);

C++ note 17: Example: reduction over a map. Reduction over a std::map by merging thread-local maps:
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// charcount.cxx
template<typename key>
class bincounter : public map<key,int> {
public:
// merge this with other map
void operator+=

( const bincounter<key>& other ) {
for ( auto [k,v] : other )

if ( map<key,int>::contains(k) )
this->at(k) += v;

else
this->insert( {k,v} );

};
// insert one char in this map
void inc(char k) {
if ( map<key,int>::contains(k) )

this->at(k) += 1;
else

this->insert( {k,1} );
};

};

/*
* Reduction loop in main program
*/

bincounter<char> charcount;
#pragma omp parallel for reduction(+ :

↪charcount)
for ( int i=0; i<text.size(); i++ )

charcount.inc( text[i] );

20.4.2 Overloaded operators

Fortran note 22: Reductions on derived types. Reduction can be applied to any derived type that has the reduction
operator defined.

!! reducttype.F90
Type inttype

integer :: value = 0
end type inttype
Interface operator(+)

module procedure addints
end Interface operator(+)

Type(inttype),dimension(nsize) :: intarray
Type(inttype) :: intsum = inttype(0)
!$OMP declare

↪reduction(+:inttype:omp_out=omp_out+omp_in)
!$OMP parallel do reduction(+:intsum)
do i=1,nsize

intsum = intsum + intarray(i)
end do
!$OMP end parallel do

But note the extra declare clause.

C++ note 18: Reduction on class objects. Reduction can be applied to any class for which the reduction operator is
defined as operator+ or whichever operator the case may be.

// reductclass.cxx
class Thing {
private:
float x{0.f};

public:
Thing() = default;
Thing( float x ) : x(x) {};
Thing operator+

( const Thing& other ) {

return Thing( x + other.x );
};

};

Victor Eijkhout 373



20. OpenMP topic: Reductions

vector< Thing >
things(500,Thing(1.f) );

Thing result(0.f);
#pragma omp parallel for \

reduction( +:result )
for ( const auto& t : things )

result = result + t;

A default constructor is required for the internally used init value; see figure 20.1.

20.5 Scan / prefix operations
A ‘scan’ or prefix operation is like a reduction, except that you’re interested in the partial results. For this OpenMP,
as of OpenMP-5.0, has the scan directive. This needs the following:

• The reduction clause gets a modifier inscan:

#pragma omp parallel for reduction(inscan,+:sumvar)

• In the body of the parallel loop there is a scan directive that allows you to store the partial results. For
inclusive scans the reduction variable is updated before the scan pragma:

sumvar // update
#pragma omp scan inclusive(sumvar)

partials[i] = sumvar

For exclusive scans the reduction variable is updated after the scan pragma:

partials[i] = sumvar
#pragma omp scan inclusive(sumvar)

sumvar // update
Code:

// scanintsum.c
partial_sum=0;
#pragma omp parallel for \
reduction(inscan,+:partial_sum)
for (int i=0; i<nthreads; i++) {

partial_sum += amounts[i];
# pragma omp scan inclusive(partial_sum)

inc_partials[i] = partial_sum;
}
partial_sum=0;
#pragma omp parallel for \
reduction(inscan,+:partial_sum)
for (int i=0; i<nthreads; i++) {

exc_partials[i] = partial_sum;
# pragma omp scan exclusive(partial_sum)

partial_sum += amounts[i];
}

Output:

Summing : 1 2 3 4 5 6 7 8
Inclusive: 1 3 6 10 15 21 28 36
Exclusive: 0 1 3 6 10 15 21 28

20.6 Reductions and floating-point math
The mechanisms that OpenMP uses to make a reduction parallel go against the strict rules for floating point expres-
sion evaluation in C; see HPC book, section-3.7.7. OpenMP ignores this issue: it is the programmer’s job to ensure
proper rounding behavior.
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20.7 Reductions in C++ standard algorithms
C++ note 19: Reductions on parallel standard algorithms. In section 19.4.2 you saw how certain loop constructs can

be realized in C++ through the execution policy argument of the standard algorithms. The same holds for
reductions.

missing snippet reduceprimeomp
missing snippet reduceprimecpp
Threads: 1
TBB: Time: 391 msec
Stat: Time: 390 msec
Dyn: Time: 389 msec

Threads: 25
TBB: Time: 20 msec
Stat: Time: 17 msec
Dyn: Time: 17 msec

Threads: 51
TBB: Time: 13 msec
Stat: Time: 9 msec
Dyn: Time: 8 msec

Threads: 76
TBB: Time: 14 msec
Stat: Time: 8 msec
Dyn: Time: 5 msec

Threads: 102
TBB: Time: 76 msec
Stat: Time: 5 msec
Dyn: Time: 4 msec

Threads: 128
TBB: Time: 80 msec
Stat: Time: 4 msec
Dyn: Time: 3 msec
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OpenMP topic: Work sharing

The declaration of a parallel region establishes a team of threads. This offers the possibility of parallelism, but to
actually get meaningful parallel activity you need something more. OpenMP uses the concept of a work sharing
construct: a way of dividing parallelizable work over a team of threads.

You have already seen loop parallelism as a way of distributing parallel work in chapter 19. We will now discuss
other work sharing constructs.

21.1 Work sharing constructs
The work sharing constructs are:

• for (for C) or do (for Fortran): The threads divide up the loop iterations among themselves; see 19.1.
• sections: The threads divide a fixed number of sections between themselves; see section 21.2.
• single The section is executed by a single thread; section 21.3.
• task: See chapter 24.
• workshare. This can parallelize Fortran array syntax; section 21.4.

21.2 Sections
A parallel loop is an example of independent work units that are numbered. If you have a pre-determined number of
independent work units, the sections is more appropriate. In a sections construct can be any number of section
constructs. These need to be independent, and they can be execute by any available thread in the current team,
including having multiple sections done by the same thread.

#pragma omp sections
{
#pragma omp section
// one calculation

#pragma omp section
// another calculation

}

This construct can be used to divide large blocks of independent work. Suppose that in the following line, both f(x)
and g(x) are big calculations:

y = f(x) + g(x) + h(x)
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You could then write

// sections.c
#pragma omp parallel sections
{
#pragma omp section
fx = f(1.);
#pragma omp section
gx = g(1.);
#pragma omp section
hx = h(1.);

}
float s = fx+gx+hx;

Instead of using two temporaries, you could also use a critical section; see section 23.2.2. However, the best solution
is have a reduction clause on the parallel sections directive. You could then write

float s=0;
#pragma omp parallel sections reduction(+:s)
{
#pragma omp section
s += f(1.);
#pragma omp section
s += g(1.);
#pragma omp section
s += h(1.);

}

21.3 Single thread execution
OpenMP has two mechanisms for letting a code section be executed by only a single thread. (Note: that is different
from critical section which are executed by a single thread at a time.) The single directive is to be used for sections
that are part of the control flow, since it has an implicit concluding barrier. The master and masked directives are
similar, but assign the execution to the primary thread, and have no concluding barrier.

21.3.1 Single

The single pragma limits the execution of a block to a single thread. This can for instance be used to print tracing
information or doing I/O operations.

#pragma omp parallel
{
#pragma omp single

printf("We are starting this section!\n");
// parallel stuff

}

Another use of single is to perform initializations in a parallel region:

int a;
#pragma omp parallel
{
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#pragma omp single
a = f(); // some computation

#pragma omp sections
// various different computations using a

}

The point of the single directive in this last example is that the computation needs to be done only once, because
of the shared memory. Since it’s a work sharing construct there is an implicit barrier after it, which guarantees that
all threads have the correct value in their local memory (see section 23.4).

Exercise 21.1. What is the difference between this approach and how the same computation would
be parallelized in MPI?

Solution to exercise 21.1. In MPI you could let one processor execute a = f() and then broadcast it. How-
ever, you might as well let everyone compute this redundantly.

21.3.2 Masked/master

The masked and master directives also enforces execution on a single thread, specifically the primary thread of the
team. This is not a work sharing construct, and therefore does not have the synchronization through the implicit
barrier.

Remark 37 The masked directive is new in OpenMP-5.1. The master directive is deprecated as of OpenMP-5.2.

Exercise 21.2. Modify the above code to read:

int a;
#pragma omp parallel
{
#pragma omp master

a = f(); // some computation
#pragma omp sections

// various different computations using a
}

This code is no longer correct. Explain.

Solution to exercise 21.2. The master directive does not have an implicit barrier, so other threads may use
the value of a before it is set by the master thread.

The masked directive has a filter clause, that can be used to select other threads than the primary:

#pragma omp masked filter(2) // thread #2

21.3.3 More

Above we motivated the single directive as a way of initializing shared variables. It is also possible to use single
to initialize private variables. In that case you add the copyprivate clause. This is a good solution if setting the
variable takes I/O.

Exercise 21.3. Give two other ways to initialize a private variable, with all threads receiving the
same value. Can you give scenarios where each of the three strategies would be preferable?

Solution to exercise 21.3.
• The variable could be computed outside the parallel region, using copyin or firstprivate

to set the private variables. This makes sense if the computation is fairly short.
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• The initialization could be done redundantly. This requires the computation to have no
side-effects.

• Inside a single you can use nested parallelism.

21.4 Fortran array syntax parallelization
The parallel do directive is used to parallelize loops, and this applies to both C and Fortran. However, Fortran also
has implied loops in its array syntax. To parallelize array syntax you can use the workshare directive.

The workshare directive exists only in Fortran. It can be used to parallelize the implied loops in array syntax, as
well as forall loops.

We compare two version of 𝐶 ← 𝐶 + 𝐴 × 𝐵 (where all operations are elementwise), running on TACC Frontera up
to 56 cores.

Workshare based:

!! workshare2d.F90
!$omp parallel workshare
C = A*B + C
!$omp end parallel workshare

SIMD’ized loop

!$omp parallel do simd
do i=1,dim

do j=1,dim
C(i,j) = C(i,j) + A(i,j) * B(i,j)

end do
end do
!$omp end parallel do simd

With results:

SIMD times :
0.07115 0.04053 0.02498 0.01609 0.01210 0.01247 0.01765 0.02689
Speedup:
1 1.75549 2.84828 4.422 5.88017 5.70569 4.03116 2.64597

Workshare times:
0.06188 0.03186 0.01625 0.00867 0.00619 0.00379 0.00354 0.00373
Speedup:
1 1.94225 3.808 7.13725 9.99677 16.3272 17.4802 16.5898
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OpenMP topic: Controlling thread data

In a parallel region there are two types of data: private and shared. In this sections we will see the various way you
can control what category your data falls under; for private data items we also discuss how their values relate to
shared data.

22.1 Shared data

In a parallel region, any data declared outside it will be shared: any thread using a variable x will access the same
memory location associated with that variable.

Example:

int x = 5;
#pragma omp parallel
{

x = x+1;
printf("shared: x is %d\n",x);

}

All threads increment the same variable, so after the loop it will have a value of five plus the number of threads; or
maybe less because of the data races involved. This issue is discussed in HPC book, section-2.6.1.5; see 23.2.2 for a
solution to data races in OpenMP.

22.2 Private data

In the C/C++ language it is possible to declare variables inside a lexical scope; roughly: inside curly braces. This
concept extends to OpenMP parallel regions and directives: any variable declared in a block following an OpenMP
directive will be local to the executing thread.

In the following example, each thread creates a private variable x and sets it to a unique value:
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Code:

// private.c
int x=5;
#pragma omp parallel num_threads(4)
{
int t = omp_get_thread_num(),

x = t+1;
printf("Thread %d sets x to %d\n",t,x);

}
printf("Outer x is still %d\n",x);

Output:

Thread 3 sets x to 4
Thread 2 sets x to 3
Thread 0 sets x to 1
Thread 1 sets x to 2
Outer x is still 5

After the parallel region the outer variable x will still have the value 5: there is no storage association between the
private variable and global one.

Fortran note 23: Private variables in parallel region. The Fortran language does not have this concept of scope, so
you have to use a private clause:

Code:

!! private.F90
x=5

!$omp parallel private(x,t) num_threads(4)
t = omp_get_thread_num()
x = t+1
print '("Thread ",i2," sets x to ",i2)',t,x

!$omp end parallel
print '("Outer x is still ",i2)',x

Output:

Thread 0 sets x to 1
Thread 2 sets x to 3
Thread 3 sets x to 4
Thread 1 sets x to 2
Outer x is still 5

C++ note 20: Privatizing class members. Class members can only be privatized from (non-static) class methods.

In this example f can not be static:

// private.cxx
class foo {
private:
int x;

public:
void f() {

#pragma omp parallel private(x)
somefunction(x);

};
};

You can not privatize just a member:

// privateno.cxx
class foo { public: int x; };
int main() {

foo thing;
#pragma omp parallel private(thing.x) // NOPE

The private directive declares data to have a separate copy in the memory of each thread. Such private variables
are initialized as they would be in a main program. Any computed value goes away at the end of the parallel region.
(However, see lastprivate below.) Thus, you should not rely on any initial value, or on the value of the outer
variable after the region.

Victor Eijkhout 381



22. OpenMP topic: Controlling thread data

int x = 5;
#pragma omp parallel private(x)
{

x = x+1; // dangerous
printf("private: x is %d\n",x);

}
printf("after: x is %d\n",x);

Data that is declared private with the private directive is put on a separate stack per thread. The OpenMP standard
does not dictate the size of these stacks, but beware of stack overflow. A typical default is a few megabytes;
you can control it with the environment variable OMP_STACKSIZE. (You can find the current value by setting
OMP_DISPLAY_ENV.) Its values can be literal or with suffixes:

123 456k 567K 678m 789M 246g 357G

Remark 38 The OpenMP stack size also plays a role in reductions on arrays; section 20.2.2.

A normal Unix process also has a stack, but this is independent of the OpenMP stacks for private data. You can query
or set the Unix stack with ulimit:

[] ulimit -s
64000
[] ulimit -s 8192
[] ulimit -s
8192

The Unix stack can grow dynamically as space is needed. This does not hold for the OpenMP stacks: they are
immediately allocated at their requested size. Thus it is important not too make them too large.

22.3 Data in dynamic scope

Functions that are called from a parallel region fall in the dynamic scope of that parallel region. The rules for variables
in that function are as follows:

• Any variables locally defined to the function are private.

• static variables in C and save variables in Fortran are shared.

• The function arguments inherit their status from the calling environment.

Fortran note 24: Saved variables. Variables in subprograms are private, as in C, except if the have the Save attribute.
This attribute is implicitly given to any variable that has value-initialized.

In the following example we have two almost identical routines, except that the first does
value-initialization on the local variable, thereby in effect making it shared. The second routine does
not have that problem.
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Code:

subroutine savehello
use omp_lib
implicit none
integer :: thread = -1
thread = omp_get_thread_num()
print *,"Hello from",thread

end subroutine savehello
subroutine finehello
use omp_lib
implicit none
integer :: thread
thread = omp_get_thread_num()
print *,"World from",thread

end subroutine finehello

Output:

Hello from 3
Hello from 3
Hello from 3
Hello from 3
World from 0
World from 1
World from 2
World from 3

22.4 Temporary variables in a loop
It is common to have a variable that is set and used in each loop iteration:

#pragma omp parallel for
for ( ... i ... ) {

x = i*h;
s = sin(x); c = cos(x);
a[i] = s+c;
b[i] = s-c;

}

By the above rules, the variables x,s,c are all shared variables. However, the values they receive in one iteration
are not used in a next iteration, so they behave in fact like private variables to each iteration.

• In both C and Fortran you can declare these variables private in the parallel for directive.
• In C you can also define the variables locally inside the loop.

Sometimes, even if you forget to declare these temporaries as private, the code may still give the correct output.
That is because the compiler can sometimes eliminate them from the loop body, since it detects that their values
are not otherwise used.

22.5 Default
There are default rules for whether data in OpenMP constructs is private or shared, and you can control this explic-
itly.

First the default behavior:

• Variables declared outside a a parallel region are shared as described above;
• Loop variables in an omp for are private;
• Local variables in the parallel region are private.

You can alter this default behavior with the default clause:
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#pragma omp parallel default(shared) private(x)
{ ... }
#pragma omp parallel default(private) shared(matrix)
{ ... }

and if you want to play it safe:

#pragma omp parallel default(none) private(x) shared(matrix)
{ ... }

• The shared clause means that all variables from the outer scope are shared in the parallel region; any
private variables need to be declared explicitly. This is the default behavior.

• The private clause means that all outer variables become private in the parallel region. They are not
initialized; see the next option. Any shared variables in the parallel region need to be declared explicitly.
This value is not available in C.

• The firstprivate clause means all outer variables are private in the parallel region, and initialized
with their outer value. Any shared variables need to be declared explicitly. This value is not available
in C.

• The none option is good for debugging, because it forces you to specify for each variable in the parallel
region whether it’s private or shared. Also, if your code behaves differently in parallel from sequential
there is probably a data race. Specifying the status of every variable is a good way to debug this.

22.6 First and last private
Above, you saw that private variables are completely separate from any variables by the same name in the sur-
rounding scope. However, there are two cases where you may want some storage association between a private
variable and a global counterpart.

First of all, private variables are created with an undefined value. You can force their initialization with
firstprivate.

int t=2;
#pragma omp parallel firstprivate(t)
{

t += f( omp_get_thread_num() );
g(t);

}

The variable t behaves like a private variable, except that it is initialized to the outside value.

Remark 39 Variables are firstprivate by default in tasks; see chapter 24.

Secondly, you may want a private value to be preserved to the environment outside the parallel region. This really
only makes sense in one case, where you preserve a private variable from the last iteration of a parallel loop, or the
last section in an sections construct. This is done with lastprivate:

#pragma omp parallel for \
lastprivate(tmp)

for (int i=0; i<N; i+) {
tmp = ......
x[i] = .... tmp ....

}
..... tmp ....
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22.7 Array data

The rules for arrays are slightly different from those for scalar data:

1. Statically allocated data, that is with a syntax like

int array[100];
integer,dimension(:) :: array(100}

can be shared or private, depending on the clause you use.

2. Dynamically allocated data, that is, created with malloc or allocate, can only be shared.

Example of the first type: each thread gets a private copy of the array, properly initialized.
Code:

int array[nthreads];
for (int i=0; i<nthreads; i++)

array[i] = 0;

#pragma omp parallel firstprivate(array)
{
int t = omp_get_thread_num();
array[t] = t+1;

}

Output:

Executing: OMP_PROC_BIND=true
↪OMP_NUM_THREADS=4 ./alloc

Array result:
0:0, 1:0, 2:0, 3:0,

Of course, since only the private copy is altered, the original array is unaffected.

On the other hand, in the following example each thread gets a private pointer, but all pointers point to the same
object:
Code:

// alloc.c
int *array =
(int*) malloc(nthreads*sizeof(int));

for (int i=0; i<nthreads; i++)
array[i] = 0;

#pragma omp parallel firstprivate(array)
{
int t = omp_get_thread_num();

// ptr arith: needs private array
array += t;
array[0] = t;

}
// ... print the array

Output:

Array result:
0:0, 1:1, 2:2, 3:3,

C++ note 21: Vectors are copied, unlike arrays. Compare
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Code:

// alloc.c
int *array =

(int*) malloc(nthreads*sizeof(int));
for (int i=0; i<nthreads; i++)

array[i] = 0;

#pragma omp parallel firstprivate(array)
{

int t = omp_get_thread_num();
// ptr arith: needs private array

array += t;
array[0] = t;

}
// ... print the array

Output:

Array result:
0:0, 1:1, 2:2, 3:3,

and
Code:

vector<int> array(nthreads);
#pragma omp parallel firstprivate(array)
{

int t = omp_get_thread_num();
array[t] = t+1;

}
// ... print the array

Output:

Missing output for privvector

22.8 Persistent data through threadprivate
Most data in OpenMP parallel regions is either inherited from the master thread and therefore shared, or temporary
within the scope of the region and fully private. There is also a mechanism for thread-private data, which is not
limited in lifetime to one parallel region. The threadprivate pragma is used to declare that each thread is to have
a private copy of a variable:

#pragma omp threadprivate(var)

The variable needs be:

• a file or static variable in C,
• a static class member in C++, or
• a program variable or common block in Fortran.

22.8.1 Thread private initialization

If each thread needs a different value in its threadprivate variable, the initialization needs to happen in a parallel
region.

In the following example a team of 7 threads is created, all of which set their thread-private variable. Later, this
variable is read by a larger team: the variables that have not been set are undefined, though often simply zero:
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// threadprivate.c
static int tp;
#pragma omp threadprivate(tp)

int main(int argc,char **argv) {

#pragma omp parallel num_threads(7)
tp = omp_get_thread_num();

#pragma omp parallel num_threads(9)
printf("Thread %d has %d\n",omp_get_thread_num(),tp);

Fortran note 25: Private common blocks. Named common blocks can be made thread-private with the syntax

$!OMP threadprivate( /blockname/ )

Example:
Code:

!! threadprivate.F90
common /threaddata/tp
integer :: tp

!$omp threadprivate(/threaddata/)

Output:

Thread 0 sets x to 1
Thread 2 sets x to 3
Thread 3 sets x to 4
Thread 1 sets x to 2
Outer x is still 5

On the other hand, if the thread private data starts out identical in all threads, the copyin clause can be used:

#pragma omp threadprivate(private_var)

private_var = 1;
#pragma omp parallel copyin(private_var)

private_var += omp_get_thread_num()

If one thread needs to set all thread private data to its value, the copyprivate clause can be used:

#pragma omp parallel
{
...

#pragma omp single copyprivate(private_var)
private_var = read_data();
...

}

Threadprivate variables require OMP_DYNAMIC to be switched off.

22.8.2 Thread private example
The typical application for thread-private variables is in random number generators. A random number generator
needs saved state, since it computes each next value from the current one. To have a parallel generator, each thread
will create and initialize a private ‘current value’ variable. This will persist even when the execution is not in a
parallel region; it gets updated only in a parallel region.
Exercise 22.1. Calculate the area of the Mandelbrot set by random sampling. Initialize the random

number generator separately for each thread; then use a parallel loop to evaluate the points.
Explore performance implications of the different loop scheduling strategies.
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C++ note 22: Threadprivate random number generators. The new C++ random header has a threadsafe generator, by
virtue of the statement in the standard that no STL object can rely on global state. The usual idiom can
not be made threadsafe because of the initialization:

static random_device rd;
static mt19937 rng(rd);

However, the following works:

// privaterandom.cxx
static random_device rd;
static mt19937 rng;
#pragma omp threadprivate(rd)
#pragma omp threadprivate(rng)

int main() {

#pragma omp parallel
rng = mt19937(rd());

C++ note 23: Threadprivate random use. Based on the previous note, you can use the generator safely and indepen-
dently:

#pragma omp parallel
{

stringstream res;
uniform_int_distribution<int> percent(1, 100);
res << "Thread " << omp_get_thread_num() << ": " << percent(rng) << "\n";
cout << res.str();

}

22.9 Allocators
OpenMP was initially designed for shared memory. With accelerators (see chapter 27), non-coherent memory was
added to this. In the OpenMP-5 standard, the story is further complicated, to account for new memory types such
as high-bandwidth memory and non-volatile memory.

There are several ways of using the OpenMP memory allocators.

• First, in a directory on a static array:

float A[N], B[N];
#pragma omp allocate(A) \

allocator(omp_large_cap_mem_alloc)

• As a clause on private variables:

#pragma omp task private(B) allocate(omp_const_mem_alloc: B)

• With omp_alloc, using a (possibly user-defined) allocator.

Next, there are memory spaces. The binding between OpenMP identifiers and hardware is implementation defined.
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22.9.1 Pre-defined types

Allocators: omp_default_mem_alloc, omp_large_cap_mem_alloc, omp_const_mem_alloc, omp_high_bw_mem_alloc,
omp_low_lat_mem_alloc, omp_cgroup_mem_alloc, omp_pteam_mem_alloc, omp_thread_mem_alloc.

Memory spaces: omp_default_mem_space, omp_large_cap_mem_space, omp_const_mem_space,
omp_high_bw_mem_space, omp_low_lat_mem_space.
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Chapter 23

OpenMP topic: Synchronization

In the constructs for declaring parallel regions above, you had little control over in what order threads executed
the work they were assigned. This section will discuss synchronization constructs: ways of telling threads to bring
a certain order to the sequence in which they do things.

• critical: a section of code can only be executed by one thread at a time; see 23.2.2.
• atomicAtomic update of a single memory location. Only certain specified syntax patterns are supported.
This was added in order to be able to use hardware support for atomic updates.

• barrier: section 23.1.
• locks: section 23.3.
• flush: section 23.4.

Loop-related synchronization constructs were discussed earlier:

• ordered: section 19.7.
• nowait: section 19.8.

23.1 Barrier
A barrier defines a point in the code where all active threads will stop until all threads have arrived at that point.
With this, you can guarantee that certain calculations are finished. For instance, in this code snippet, computation
of y can not proceed until another thread has computed its value of x.

#pragma omp parallel
{
int mytid = omp_get_thread_num();
x[mytid] = some_calculation();
y[mytid] = x[mytid]+x[mytid+1];

}

This can be guaranteed with a barrier pragma:

#pragma omp parallel
{
int mytid = omp_get_thread_num();
x[mytid] = some_calculation();

#pragma omp barrier
y[mytid] = x[mytid]+x[mytid+1];

}
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23.1.1 Implicit barriers

Apart from the barrier directive, which inserts an explicit barrier, OpenMP has implicit barriers after a work sharing
construct; see section 21.3. Thus the following code is well defined:

#pragma omp parallel
{
#pragma omp for
for (int mytid=0; mytid<number_of_threads; mytid++)

x[mytid] = some_calculation();
#pragma omp for
for (int mytid=0; mytid<number_of_threads-1; mytid++)

y[mytid] = x[mytid]+x[mytid+1];
}

You can also put each parallel loop in a parallel region of its own, but there is some overhead associated with creating
and deleting the team of threads in between the regions.

At the end of a parallel region the team of threads is dissolved and only the primary thread continues. Therefore,
there is an implicit barrier at the end of a parallel region. This barrier behavior can be canceled with the nowait
clause.

You will often see the idiom

#pragma omp parallel
{
#pragma omp for nowait
for (i=0; i<N; i++)

a[i] = // some expression
#pragma omp for
for (i=0; i<N; i++)

b[i] = ...... a[i] ......

Here the nowait clause implies that threads can start on the second loop while other threads are still working on
the first. Since the two loops use the same schedule here, an iteration that uses a[i] can indeed rely on it that that
value has been computed.

23.1.2 A barrier idiom

Replacing implicit barriers by explicit can be used to make larger parallel regions and thereby cutting down on
thread creation cost:

Multiple parallel regions:

#pragma omp parallel
// some workshare

#pragma omp parallel
// another workshare

Merged into one:

#pragma omp parallel
{

// some workshare
#pragma omp barrier
// another workshare

}

For example, although while loops are strictly parallelizable, you can enclose the loop in a parallel region and use
barriers to synchronize:
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#pragma omp parallel
{
while ( /* something * ) {
// single thread code
#pragma omp barrier
#pragma omp for

for ( /* ... */ ) ...
}

}

23.2 Mutual exclusion
Sometimes it is necessary to limit a piece of code so that it can be executed by only one tread at a time. Such a piece
of code is called a critical section, and OpenMP has several mechanisms for realizing this.

23.2.1 Race conditions

OpenMP, being based on shared memory, has a potential for race conditions. These happen when two threads ac-
cess the same data item, with at least one access a write. The problem with race conditions is that programmer
convenience runs counter to efficient execution.

For a simple example:
Code:

// race.c
#pragma omp parallel for shared(counter)

for (int i=0; i<count; i++)
counter += f(counter,i);

printf("Counter should be %d, is %d\n",
count,counter);

Output:

On 1 threads:
Counter should be 100000, is 100000
On 2 threads:
Counter should be 100000, is 100000
On 4 threads:
Counter should be 100000, is 75000
On 8 threads:
Counter should be 100000, is 87500
On 12 threads:
Counter should be 100000, is 100000

The basic rule about multiple-thread access of a single data item is:

Any memory location that is written by one thread, can not be read by another thread in the
same parallel region, if no synchronization is done.

To start with that last clause: any workshare construct ends with an implicit barrier , so data written before that
barrier can safely be read after it.

23.2.2 critical and atomic

There are two pragmas for critical sections: critical and atomic. Both denote atomic operations in a technical sense.
The first one is general and can contain an arbitrary sequence of instructions; the second one is more limited but
has performance advantages.

Beginning programmers are often tempted to use critical for updates in a loop:
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#pragma omp parallel
{
int mytid = omp_get_thread_num();
double tmp = some_function(mytid);
// This Works, but Not Best Solution:

#pragma omp critical
sum += tmp;

}

but this should really be done with a reduction clause, which will be far more efficient.

Figure 23.1: Idle time induced by a critical section

Figure fig:omp-idle illustrates how a critical section induces idle time: threads have to wait at the initial barrier until
its their turn to enter the critical section. In effect, the execution becomes sequential!

A good use of critical sections is doing file writes or database updates.

Exercise 23.1. Consider a loop where each iteration updates a variable.

#pragma omp parallel for shared(result)
for ( i ) {

result += some_function_of(i);
}

Discuss qualitatively the difference between:
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• turning the update statement into a critical section, versus
• letting the threads accumulate into a private variable tmp as above, and summing
these after the loop.

Do an Ahmdal-style quantitative analysis of the first case, assuming that you do 𝑛 iterations
on 𝑝 threads, and each iteration has a critical section that takes a fraction 𝑓 . Assume the
number of iterations 𝑛 is a multiple of the number of threads 𝑝. Also assume the default
static distribution of loop iterations over the threads.

Solution to exercise 23.1. The first solution has non-parallel work per iteration, the second only once for
the whole loop.
If you have 𝑝 iterations,

• the parallel fraction takes time 𝑓 ,
• the critical section takes time 𝑝(1 − 𝑓 ).

With the default static chunking of 𝑛/𝑝 iterations per thread, 𝑛 iterations takes
• (𝑛/𝑝)𝑓 for the parallelizable part,
• (𝑛/𝑝) ⋅ (1 − 𝑓 ) for the critical section, on each of 𝑝 processors, gives a total of 𝑛(1 − 𝑓 )

Speedup is

𝑆𝑝 = 𝑇1/𝑇𝑝 = 𝑛
(𝑛/𝑝)𝑓 + 𝑛(1 − 𝑓 ) = 𝑝

𝑓 + 𝑝(1 − 𝑓 ) → 1
1 − 𝑓

Critical sections are an easyway to turn an existing code into a correct parallel code. However, there are performance
disadvantages to critical sections, and sometimes a more drastic rewrite is called for.

A critical section works by acquiring a lock, which carries a substantial overhead. Furthermore, if your code has
multiple critical sections, they are all mutually exclusive: if a thread is in one critical section, the other ones are all
blocked.

The problem with critical sections being mutually exclusive can be mitigated by naming them:

#pragma omp critical (optional_name_in_parens)

On the other hand, the syntax for atomic sections is limited to the update of a single memory location, but such
sections are not exclusive and they can be more efficient, since they assume that there is a hardware mechanism for
making them critical. See the next section.

23.2.3 atomic construct

While the critical construct can enclose arbitrary blocks of code, the atomic clause has one of a limited number
of forms, for which hardware support is likely. Those consist of assigning to a variable:

x++;
// or:
x += y;

possibly combination with reading that variable:

v = x; x++;

There are various further refinements on the atomic specification:

1. omp atomic write is followed by a single assignment statement to a shared variable.
2. omp atomic read is followed by a single assignment statement from a shared variable.
3. omp atomic is equivalent to omp atomic update; it accomodates statements such as
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x++; x += 1.5;

4. omp atomic capture can accommodate a single statement similar to omp atomic update, or a block that
essentially combines a read and update form.

23.3 Locks
OpenMP also has the traditional mechanism of a lock. A lock is somewhat similar to a critical section: it guarantees
that some instructions can only be performed by one process at a time. However, a critical section is indeed about
code; a lock is about data. With a lock you make sure that some data elements can only be touched by one process
at a time.

23.3.1 Routines

Create/destroy:

void omp_init_lock(omp_lock_t *lock);
void omp_destroy_lock(omp_lock_t *lock);

Set and release:

void omp_set_lock(omp_lock_t *lock);
void omp_unset_lock(omp_lock_t *lock);

Since the set call is blocking, there is also

int omp_test_lock();

which returns true if the lock was successfully set; otherwise it return false and continues execution with the next
statement.

Unsetting a lock needs to be done by the thread that set it.

Here is a simple example:

Create and destroy:

// lock.c
omp_lock_t the_lock;
omp_init_lock( &the_lock );
omp_destroy_lock( &the_lock );

Use:

#pragma omp parallel
{
omp_set_lock( &the_lock );
sum += omp_get_thread_num();
omp_unset_lock( &the_lock );

}

Lock operations implicitly have a flush; see section 23.4.

Exercise 23.2. In the following code, one process sets array A and then uses it to update B; the other
process sets array B and then uses it to update A. Argue that this code can deadlock. How
could you fix this?
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#pragma omp parallel shared(a, b, nthreads, locka, lockb)
#pragma omp sections nowait

{
#pragma omp section

{
omp_set_lock(&locka);
for (i=0; i<N; i++)

a[i] = ..

omp_set_lock(&lockb);
for (i=0; i<N; i++)

b[i] = .. a[i] ..
omp_unset_lock(&lockb);
omp_unset_lock(&locka);
}

#pragma omp section
{
omp_set_lock(&lockb);
for (i=0; i<N; i++)

b[i] = ...

omp_set_lock(&locka);
for (i=0; i<N; i++)

a[i] = .. b[i] ..
omp_unset_lock(&locka);
omp_unset_lock(&lockb);
}

} /* end of sections */
} /* end of parallel region */

23.3.2 Example: Mandelbrot set

Section 49.2.2 has an approach to the Mandelbrot set based locking a FIFO that has the coordinates to be processed.

23.3.3 Example: object with atomic update

OO languages such as C++ allow for syntactic simplification, for instance building the locking and unlocking actions
into the update operator.

C++ note 24: Lock inside overloaded operator.

// lockobject.cxx
class atomic_int {
private:

omp_lock_t the_lock;
int _value{0};

public:
atomic_int() {
omp_init_lock(&the_lock);

};
atomic_int( const atomic_int& )

= delete;
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atomic_int& operator=( const atomic_int& )
= delete;

~atomic_int() {
omp_destroy_lock(&the_lock);

};

Running this:

atomic_int my_object;
vector<std::thread> threads;
for (int ithread=0;

ithread<NTHREADS;
ithread++) {

threads.push_back
( std::thread(

[=,&my_object] () {
for (int iop=0; iop<nops; iop++)

my_object += 1; } ) );
}
for ( auto &t : threads )

t.join();

23.3.4 Example: histogram / binning

See section 30.1.

23.3.5 Nested locks

A lock as explained above can not be locked if it is already locked. A nested lock can be locked multiple times by
the same thread before being unlocked.

• omp_init_nest_lock
• omp_destroy_nest_lock
• omp_set_nest_lock
• omp_unset_nest_lock
• omp_test_nest_lock

23.4 Relaxed memory model

flush

• There is an implicit flush of all variables at the start and end of a parallel region.
• There is a flush at each barrier, whether explicit or implicit, such as at the end of a work sharing.
• At entry and exit of a critical section
• When a lock is set or unset.

Victor Eijkhout 397



23. OpenMP topic: Synchronization

23.5 Example: Fibonacci computation
The Fibonacci sequence is recursively defined as

𝐹(0) = 1, 𝐹 (1) = 1, 𝐹 (𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2) for 𝑛 ≥ 2.
We start by sketching the basic single-threaded solution. The naive code looks like:

int main() {
value = new int[nmax+1];
value[0] = 1;
value[1] = 1;
fib(10);

}

int fib(int n) {
int i, j, result;
if (n>=2) {

i=fib(n-1); j=fib(n-2);
value[n] = i+j;

}
return value[n];

}

However, this is inefficient, since most intermediate values will be computed more than once. We solve this by
keeping track of which results are known:

...
done = new int[nmax+1];
for (i=0; i<=nmax; i++)

done[i] = 0;
done[0] = 1;
done[1] = 1;
...

int fib(int n) {
int i, j;
if (!done[n]) {

i = fib(n-1); j = fib(n-2);
value[n] = i+j; done[n] = 1;

}
return value[n];

}

The OpenMP parallel solution calls for two different ideas. First of all, we parallelize the recursion by using tasks
(section 24:

int fib(int n) {
int i, j;
if (n>=2) {

#pragma omp task shared(i) firstprivate(n)
i=fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j=fib(n-2);

#pragma omp taskwait
value[n] = i+j;
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}
return value[n];

}

This computes the right solution, but, as in the naive single-threaded solution, it recomputes many of the interme-
diate values.

A naive addition of the done array leads to data races, and probably an incorrect solution:

int fib(int n) {
int i, j, result;
if (!done[n]) {

#pragma omp task shared(i) firstprivate(n)
i=fib(n-1);

#pragma omp task shared(i) firstprivate(n)
j=fib(n-2);

#pragma omp taskwait
value[n] = i+j;
done[n] = 1;

}
return value[n];

}

For instance, there is no guarantee that the done array is updated later than the value array, so a thread can think
that done[n-1] is true, but value[n-1] does not have the right value yet.

One solution to this problem is to use a lock, and make sure that, for a given index n, the values done[n] and
value[n] are never touched by more than one thread at a time:

int fib(int n)
{
int i, j;
omp_set_lock( &(dolock[n]) );
if (!done[n]) {

#pragma omp task shared(i) firstprivate(n)
i = fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fib(n-2);

#pragma omp taskwait
value[n] = i+j;
done[n] = 1;

}
omp_unset_lock( &(dolock[n]) );
return value[n];

}

This solution is correct, optimally efficient in the sense that it does not recompute anything, and it uses tasks to
obtain a parallel execution.

However, the efficiency of this solution is only up to a constant. A lock is still being set, even if a value is already
computed and therefore will only be read. This can be solved with a complicated use of critical sections, but we will
forego this.
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OpenMP topic: Tasks

Tasks are a mechanism that OpenMP uses behind the scenes: if you specify something as being a task, OpenMP will
create a ‘block of work’: a section of code plus the data environment in which it occurred. This block is set aside
for execution at some later point. Thus, task-based code usually looks something like this:

#pragma omp parallel
{
// generate a bunch of tasks

# pragma omp taskwait
// the result from the tasks is now available

}

For instance, a parallel loop was always implicitly translated to something like:

Sequential loop:

for (int i=0; i<N; i++)
f(i);

Parallel loop:

for (int ib=0; ib<nblocks; ib++) {
int first=... last=... ;

# pragma omp task
for (int i=first; i<last; i++)

f(i)
}
#pragma omp taskwait
// the results from the loop are available

24.1 Task generation
If we stick with this example of implementing a parallel loop through tasks, the next question is: precisely who
generates the tasks? The following code has a serious problem:

// WRONG. DO NOT WRITE THIS
#pragma omp parallel
for (int ib=0; ib<nblocks; ib++) {
int first=... last=... ;

# pragma omp task
for (int i=first; i<last; i++)

f(i)
}
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because the parallel region creates a team, and each thread in the team executes the task-generating code. Instead,
we use the following idiom:

#pragma omp parallel
#pragma omp single
for (int ib=0; ib<nblocks; ib++) {
// setup stuff

# pragma omp task
// task stuff

}

1. A parallel region creates a team of threads;
2. a single thread then creates the tasks, adding them to a queue that belongs to the team,
3. and all the threads in that team (possibly including the one that generated the tasks)

Btw, the actual task queue is not visible to the programmer. Another aspect that is out of the programmer’s con-
trol is the exact timing of the execution of the task: this is up to a task scheduler , which operates invisible to the
programmer.

The task mechanism allows you to do things that are hard or impossible with the loop and section constructs. For
instance, a while loop traversing a linked list can be implemented with tasks:

Code Execution

p = head_of_list(); one thread traverses the list
while (!end_of_list(p)) {
#pragma omp task a task is created,
process( p ); one for each element
p = next_element(p); the generating thread goes on without waiting
} the tasks are executed while

more are being generated.

Another concept that was hard to parallelize earlier is the ‘while loop’. This does not fit the requirement for OpenMP
parallel loops that the loop bound needs to be known before the loop executes.

Exercise 24.1. Use tasks to find the smallest factor of a large number (using 2999 ⋅ 3001 as test case):
generate a task for each trial factor.

• Turn the factor finding block into a task.
• Run your program a number of times:
for i in `seq 1 1000` ; do ./taskfactor ; done | grep -v 2999
Does it find the wrong factor? Why? Try to fix this.

• Once a factor has been found, you should stop generating tasks. Let tasks that should
not have been generated, meaning that they test a candidate larger than the factor
found, print out a message.

Solution to exercise 24.1.

// primetasks.c
void try_as_factor( int i ) {

if (the_factor>0) {
printf("screech ... %d\n",i);
return;

}

if (bignum%i==0) {

#pragma omp critical
{

printf("found %d\n",i);
the_factor = i;

}
}
return;

}
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int main() {

#pragma omp parallel
#pragma omp single

for (int i=2; i<bignum; i++) {
if (the_factor>0) break;

#pragma omp task
try_as_factor(i);

}
#pragma omp taskwait

return 0;
}

24.2 Task data
Treatment of data in a task is somewhat subtle. The basic problem is that a task gets created at one time, and executed
at some later time. Thus, if shared data is accessed, does the task see the value at creation time or at execution time?
In fact, both possibilities make sense depending on the application, so we need to discuss the rules which possibility
applies when.

The first rule is that shared data is shared in the task, but private data becomes firstprivate. To see the distinction,
consider two code fragments.

int count = 100;
#pragma omp parallel
#pragma omp single
{
while (count>0) {

# pragma omp task
{

int countcopy = count;
if (count==50) {

sleep(1);
printf("%d,%d\n",

count,countcopy);
} // end if

} // end task
count--;

} // end while
} // end single

#pragma omp parallel
#pragma omp single
{

int count = 100;
while (count>0) {

# pragma omp task
{
int countcopy = count;
if (count==50) {

sleep(1);
printf("%d,%d\n",

count,countcopy);
} // end if

} // end task
count--;

} // end while
} // end single

In the first example, the variable count is declared outside the parallel region and is therefore shared. When the
print statement is executed, all tasks will have been generated, and so count will be zero. Thus, the output will
likely be 0,50.

In the second example, the count variable is private to the thread creating the tasks, and so it will be firstprivate
in the task, preserving the value that was current when the task was created.

24.3 Task synchronization
Even though the above segment looks like a linear set of statements, it is impossible to say when the code after the
task directive will be executed. This means that the following code is incorrect:
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x = f();
#pragma omp task
{ y = g(x); }
z = h(y);

Explanation: when the statement computing z is executed, the task computing y has only been scheduled; it has
not necessarily been executed yet.

24.3.1 Deferred vs undeferred tasks

Tasks are unusally ‘deferred’: meaning that they are executed at some undetermined point in the future. Tasks
can also be undeferred, meaning that they are executed synchronously, and the creating thread does not progress
beyond them until they are fully executed.

Prime example of undeferred tasks: with if clause

#pragma omp task if (level>5)
{
...

}

Note that, even though the body of the task is executed as if it were inlined, a task is stil created, with all its data
space implications.

24.3.2 Undeferred task waiting

In order to have a guarantee that a deferred task is finished, you can first of all use the taskwait directive. The
following creates two tasks, which can be executed in parallel, and then waits for the results:

Code Execution

x = f(); the variable x gets a value
#pragma omp task

two tasks are created with the current value of x{ y1 = g1(x); }
#pragma omp task
{ y2 = g2(x); }
#pragma omp taskwait the thread waits until the tasks are finished
z = h(y1)+h(y2); the variable z is computed using the task results

The task pragma is followed by a structured block. Each time the structured block is encountered, a new task
is generated. On the other hand taskwait is a standalone directive; the code that follows is just code, it is not a
structured block belonging to the directive.

You can indicate task dependencies in several ways:

1. Using the ‘task wait’ directive you can explicitly indicate the join of the forked tasks. The instruction
after the wait directive will therefore be dependent on the spawned tasks.

2. The taskgroup directive is discussed in section 24.3.1.
3. The taskloop directive is discussed in section 24.3.2.
4. Each OpenMP task can have a depend clause, indicating what data dependency of the task; section 24.4. By

indicating what data is produced or absorbed by the tasks, the scheduler can construct the dependency
graph for you.
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24.3.3 Task groups

The taskgroup directive, followed by a structured block, ensures completion of all tasks created in the block, even
if recursively created.

A task group is somewhat similar to having a taskwait directive after the block. The big difference is that that
taskwait directive does not wait for tasks that are recursively generated, while a taskgroup does.

24.3.4 Task loop

The taskloop directive prefaces a for/do loop, just like an for pragma. The difference is that now every iteration
is turned into a task, rather than groups of iterations as in the for case. The end of the loop is a synchronization
point: statements after the loop are only executed when all tasks from the loop are finished.

There is a mast taskloop directive that is shorthand for a master containing only a taskloop.

24.4 Task dependencies
It is possible to put a partial ordering on tasks through use of the depend clause. For example, in

#pragma omp task
x = f()

#pragma omp task
y = g(x)

it is conceivable that the second task is executed before the first, possibly leading to an incorrect result. This is
remedied by specifying:

#pragma omp task depend(out:x)
x = f()

#pragma omp task depend(in:x)
y = g(x)

• These dependencies only hold between sibling tasks.
• The depending data items of the various tasks are either identical or disjoint. In particular, dependencies
on different sections of an array are not allowed, though a compiler may not always catch this.

Exercise 24.2. Consider the following code:

for i in [1:N]:
x[0,i] = some_function_of(i)
x[i,0] = some_function_of(i)

for i in [1:N]:
for j in [1:N]:

x[i,j] = x[i-1,j]+x[i,j-1]

• Observe that the second loop nest is not amenable to OpenMP loop parallelism.
• Can you think of a way to realize the computation with OpenMP loop parallelism?
Hint: you need to rewrite the code so that the same operations are done in a different
order.

• Use tasks with dependencies to make this code parallel without any rewriting: the
only change is to add OpenMP directives.
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Solution to exercise 24.2.
• Both inner and outer loop have dependencies.
• You can rewrite to use wavefronts.

• #pragma omp task depend(out:x[i,j]) depend(in:x[i-j,j],x[i,j-1])

Tasks dependencies are used to indicated how two uses of one data item relate to each other. Since either use can
be a read or a write, there are four types of dependencies.

RaW (Read after Write) The second task reads an item that the first task writes. The second task has to be exe-
cuted after the first:

... omp task depend(OUT:x)
foo(x)

... omp task depend( IN:x)
foo(x)

WaR (Write after Read) The first task reads and item, and the second task overwrites it. The second task has to
be executed second to prevent overwriting the initial value:

... omp task depend( IN:x)
foo(x)

... omp task depend(OUT:x)
foo(x)

WaW (Write after Write) Both tasks set the same variable. Since the variable can be used by an intermediate
task, the two writes have to be executed in this order.

... omp task depend(OUT:x)
foo(x)

... omp task depend(OUT:x)
foo(x)

RaR (Read after Read) Both tasks read a variable. Since neither tasks has an ‘out’ declaration, they can run in
either order.

... omp task depend(IN:x)
foo(x)

... omp task depend(IN:x)
foo(x)

24.5 Task reduction
The reduction clause only pertains to ordinary parallel loops, not to taskgroup loops of tasks. To do a reduction
over computations in tasks you need the task_reduction clause (a OpenMP-5.0 feature):

#pragma omp taskgroup task_reduction(+:sum)

The task group can contain both task that contribute to the reduction, and ones that don’t. The former type needs
a clause in_reduction:

#pragma omp task in_reduction(+:sum)

As an example, here the sum ∑100
𝑖=1 𝑖 is computed with tasks:
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// taskreduct.c
#pragma omp parallel
#pragma omp single
{
#pragma omp taskgroup task_reduction(+:sum)
for (int itask=1; itask<=bound; itask++) {
#pragma omp task in_reduction(+:sum)
sum += itask;
}

}

24.6 More

24.6.1 Scheduling points

Normally, a task stays tied to the thread that first executes it. However, at a task scheduling point the thread may
switch to the execution of another task created by the same team.

• There is a scheduling point after explicit task creation. This means that, in the above examples, the thread
creating the tasks can also participate in executing them.

• There is a scheduling point at taskwait and taskyield.

On the other hand a task created with them untied clause on the task pragma is never tied to one thread. This means
that after suspension at a scheduling point any thread can resume execution of the task. If you do this, beware that
the value of a thread-id does not stay fixed. Also locks become a problem.

Example: if a thread is waiting for a lock, with a scheduling point it can suspend the task and work on another task.

while (!omp_test_lock(lock))
#pragma omp taskyield
;

24.6.2 Hints for performance improvement

If a task involves only a small amount of work, the scheduling overhead may negate any performance gain. There
are two ways of executing the task code directly:

• The if clause will only create a task if the test is true:

#pragma omp task if (n>100)
f(n)

• The if clause may still lead to recursively generated tasks. On the other hand, final will execute the
code, and will also skip any recursively created tasks:

#pragma omp task final(level<3)

If you want to indicate that certain tasks are more important than others, use the priority clause:

#pragma omp task priority(5)

where the priority is any non-negative scalar less than OMP_MAX_TASK_PRIORITY.
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24.6.3 Task canceling
It is possible (in OpenMP-4.0) to cancel tasks. This is useful when tasks are used to perform a search: the task that
finds the result first can cancel any outstanding search tasks. See section 18.3 for details.
Exercise 24.3. Modify the prime finding example to use cancel.

24.7 Examples
24.7.1 Recursive matrix-matrix multiplication
Large matrices can be multiplied recursively using the formula

(𝐶11 𝐶12
𝐶21 𝐶22

) (𝐴11 𝐴12
𝐴21 𝐴22

) (𝐵11 𝐵12
𝐵21 𝐵22

)

with
𝐶11 = 𝐴11 ⋅ 𝐵11 + 𝐴12 ⋅ 𝐵21

et cetera. You can implement this by creating four tasks, each of which can create another four.

C++ note 25: Use mdspan for submatrices. For the data structure, use mdspan.

24.7.2 Fibonacci
As an example of the use of tasks, consider computing an array of Fibonacci values:

// taskgroup0.c
for (int i=2; i<N; i++)
{

fibo_values[i] = fibo_values[i-1]+fibo_values[i-2];
}

If you simply turn each calculation into a task, results will be unpredictable (confirm this!) since tasks can be
executed in any sequence. To solve this, we put dependencies on the tasks:

// taskgroup2.c
for (int i=2; i<N; i++)

#pragma omp task \
depend(out:fibo_values[i]) \
depend(in:fibo_values[i-1],fibo_values[i-2])

{
fibo_values[i] = fibo_values[i-1]+fibo_values[i-2];

}

24.7.3 Binomial coefficients
Exercise 24.4. An array of binomial coefficients can be computed as follows:

// binomial1.c
for (int row=1; row<=n; row++)
for (int col=1; col<=row; col++)
if (row==1 || col==1 || col==row)

array[row][col] = 1;
else

array[row][col] = array[row-1][col-1] + array[row-1][col];
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Putting a single task group around the double loop, and use depend clauses to make the
execution satisfy the proper dependencies.

Solution to exercise 24.4.

// binomial1p.c
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup
{

for (int row=1; row<=n; row++)
for (int col=1; col<=row; col++)

if (row==1 || col==1 || col==row)
#pragma omp task depend(out:array[row][col])

array[row][col] = 1;
else

#pragma omp task depend(in:array[row-1][col-1],array[row-1][col])
↪depend(out:array[row][col])

array[row][col] = array[row-1][col-1] + array[row-1][col];
} // end taskgroup

} // end single
} // end parallel
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Chapter 25

OpenMP topic: Affinity

25.1 OpenMP thread affinity control
The matter of thread affinity becomes important on multi-socket nodes; see the example in section 25.2.

Thread placement can be controlled with two environment variables:

• the environment variable OMP_PROC_BIND describes how threads are bound to OpenMP places; while
• the variable OMP_PLACES describes these places in terms of the available hardware.
• When you’re experimenting with these variables it is a good idea to set OMP_DISPLAY_ENV to true, so
that OpenMP will print out at runtime how it has interpreted your specification. The examples in the
following sections will display this output.

25.1.1 Thread binding

The variable OMP_PLACES defines a series of places to which the threads are assigned, and OMP_PROC_BIND describes
how threads are tied to those places.

Typical values for OMP_PLACES are

• socket: threads are bound to a socket, but can be moved between cores in the socket;
• core: threads are bound to a core, but can be moved between hyperthreads in the core;
• thread: threads are bound to a specific hyper-thread.

Values for OMP_PROC_BIND are implementation-defined, but typically:

• master: threads are bound to the same place as the master thread;
• close: subsequent thread numbers are placed close together in the defined places;
• spread: subsequent thread numbers are maxially spread over places;
• true: threads are bound to their initial placement;
• false: threads are not bound to their initial placement;

where the values master,close,spread are ordained by the standard, and the others depend on the implementation.

There is no runtime function for setting the binding, but the Internal Control Variable (ICV) bind-var can be re-
trieved with omp_get_proc_bind. The binding can also be set with the proc_bind clause on the parallel directive,
with values master,close,spread.

Example: if you have two sockets and you define

OMP_PLACES=sockets
then
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• thread 0 goes to socket 0,
• thread 1 goes to socket 1,
• thread 2 goes to socket 0 again,
• and so on.

On the other hand, if the two sockets have a total of sixteen cores and you define

OMP_PLACES=cores
OMP_PROC_BIND=close
then

• thread 0 goes to core 0, which is on socket 0,
• thread 1 goes to core 1, which is on socket 0,
• thread 2 goes to core 2, which is on socket 0,
• and so on, until thread 7 goes to core 7 on socket 0, and
• thread 8 goes to core 8, which is on socket 1,
• et cetera.

The value OMP_PROC_BIND=close means that the assignment goes successively through the available places. The
variable OMP_PROC_BIND can also be set to spread, which spreads the threads over the places. With

OMP_PLACES=cores
OMP_PROC_BIND=spread
you find that

• thread 0 goes to core 0, which is on socket 0,
• thread 1 goes to core 8, which is on socket 1,
• thread 2 goes to core 1, which is on socket 0,
• thread 3 goes to core 9, which is on socket 1,
• and so on, until thread 14 goes to core 7 on socket 0, and
• thread 15 goes to core 15, which is on socket 1.

So you see that OMP_PLACES=cores and OMP_PROC_BIND=spread very similar to OMP_PLACES=sockets. The
difference is that the latter choice does not bind a thread to a specific core, so the operating system can move
threads about, and it can put more than one thread on the same core, even if there is another core still unused.

The value OMP_PROC_BIND=master puts the threads in the same place as the master of the team. This is convenient
if you create teams recursively. In that case you would use the dproc clause rather than the environment variable,
set to spread for the initial team, and to master for the recursively created team.

25.1.2 Effects of thread binding

Let’s consider two example program. First we consider the program for computing 𝜋 , which is purely compute-
bound.

#threads close/cores spread/sockets spread/cores

1 0.359 0.354 0.353
2 0.177 0.177 0.177
4 0.088 0.088 0.088
6 0.059 0.059 0.059
8 0.044 0.044 0.044

12 0.029 0.045 0.029
16 0.022 0.050 0.022
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We see pretty much perfect speedup for the OMP_PLACES=cores strategy; with OMP_PLACES=socketswe probably
get occasional collisions where two threads wind up on the same core.

Next we take a program for computing the time evolution of the heat equation:

𝑡 = 0, 1, 2, … ∶ ∀𝑖 ∶ 𝑥 (𝑡+1)
𝑖 = 2𝑥 (𝑡)

𝑖 − 𝑥 (𝑡)
𝑖−1 − 𝑥 (𝑡)

𝑖+1

This is a bandwidth-bound operation because the amount of computation per data item is low.

#threads close/cores spread/sockets spread/cores

1 2.88 2.89 2.88
2 1.71 1.41 1.42
4 1.11 0.74 0.74
6 1.09 0.57 0.57
8 1.12 0.57 0.53

12 0.72 0.53 0.52
16 0.52 0.61 0.53

Again we see that OMP_PLACES=sockets gives worse performance for high core counts, probably because
of threads winding up on the same core. The thing to observe in this example is that with 6 or 8 cores the
OMP_PROC_BIND=spread strategy gives twice the performance of OMP_PROC_BIND=close.

The reason for this is that a single socket does not have enough bandwidth for all eight cores on the socket. Therefore,
dividing the eight threads over two sockets gives each thread a higher available bandwidth than putting all threads
on one socket.

25.1.3 Place definition

There are three predefined values for the OMP_PLACES variable: sockets, cores, threads. You have already
seen the first two; the threads value becomes relevant on processors that have hardware threads. In that case,
OMP_PLACES=cores does not tie a thread to a specific hardware thread, leading again to possible collisions as in
the above example. Setting OMP_PLACES=threads ties each OpenMP thread to a specific hardware thread.

There is also a very general syntax for defining places that uses a

location:number:stride
syntax. Examples:

• OMP_PLACES="{0:8:1},{8:8:1}"
is equivalent to sockets on a two-socket design with eight cores per socket: it defines two places, each
having eight consecutive cores. The threads are then places alternating between the two places, but not
further specified inside the place.

• The setting cores is equivalent to
OMP_PLACES="{0},{1},{2},...,{15}"

• On a four-socket design, the specification
OMP_PLACES="{0:4:8}:4:1"
states that the place 0,8,16,24 needs to be repeated four times, with a stride of one. In other words,
thread 0 winds up on core 0 of some socket, the thread 1 winds up on core 1 of some socket, et cetera.

25.1.4 Binding possibilities

Values for OMP_PROC_BIND are: false, true, master, close, spread.
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• false: set no binding
• true: lock threads to a core
• master: collocate threads with the master thread
• close: place threads close to the master in the places list
• spread: spread out threads as much as possible

This effect can be made local by giving the dproc clause in the parallel directive.

A safe default setting is

export OMP_PROC_BIND=true
which prevents the operating system from migrating a thread. This prevents many scaling problems.

Good examples of thread placement on the Intel Knight’s Landing: https://software.intel.com/en-us/
articles/process-and-thread-affinity-for-intel-xeon-phi-processors-x200

As an example, consider a code where two threads write to a shared location.

// sharing.c
#pragma omp parallel
{ // not a parallel for: just a bunch of reps
for (int j = 0; j < reps; j++) {

#pragma omp for schedule(static,1)
for (int i = 0; i < N; i++){

#pragma omp atomic
a++;

}

}
}

There is now a big difference in runtime depending on how close the threads are. We test this on a processor with
both cores and hyperthreads. First we bind the OpenMP threads to the cores:

OMP_NUM_THREADS=2 OMP_PLACES=cores OMP_PROC_BIND=close ./sharing
run time = 4752.231836usec
sum = 80000000.0
Next we force the OpenMP threads to bind to hyperthreads inside one core:

OMP_PLACES=threads OMP_PROC_BIND=close ./sharing
run time = 941.970110usec
sum = 80000000.0
Of course in this example the inner loop is pretty much meaningless and parallelism does not speed up anything:

OMP_NUM_THREADS=1 OMP_PLACES=cores OMP_PROC_BIND=close ./sharing
run time = 806.669950usec
sum = 80000000.0
However, we see that the two-thread result is almost as fast, meaning that there is very little parallelization overhead.

25.2 First-touch
The affinity issue shows up in the first-touch phenomemon.
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A little background knowledge. Memory is organized in memory pages, and what we think of as ‘addresses’ really
are virtual addresses, mapped to physical addresses through a page table.

This means that data in your program can be anywhere in physical memory. In particular, on a dual socket node,
the memory can be mapped to either of the sockets.

The next thing to know is that memory allocated with malloc and like routines is not immediately mapped; that
only happens when data is written to it. In light of this, consider the following OpenMP code:

double *x = (double*) malloc(N*sizeof(double));

for (i=0; i<N; i++)
x[i] = 0;

#pragma omp parallel for
for (i=0; i<N; i++)
.... something with x[i] ...

Since the initialization loop is not parallel it is executed by the main thread, making all the memory associated with
the socket of that thread. Subsequent access by the other socket will then access data from memory not attached to
that socket, which induces a considerable delay, and performance degradation.

25.2.1 Example

Let’s consider an example. We make the initialization parallel subject to an option:

// heat.c
#pragma omp parallel if (init>0)
{

#pragma omp for
for (int i=0; i<N; i++)

y[i] = x[i] = 0.;
x[0] = 0; x[N-1] = 1.;

}

If the initialization is not parallel, the array will be mapped to the socket of the master thread; if it is parallel, it may
be mapped to different sockets, depending on where the threads run.

As a simple application we run a heat equation, which is parallel, though not embarassingly so:

for (int it=0; it<1000; it++) {
#pragma omp parallel for
for (int i=1; i<N-1; i++)

y[i] = ( x[i-1]+x[i]+x[i+1] )/3.;
#pragma omp parallel for
for (int i=1; i<N-1; i++)

x[i] = y[i];
}

On the TACC Frontera machine, with dual 28-core Intel Cascade Lake processors, we use the following settings:

export OMP_PLACES=cores
export OMP_PROC_BIND=close
# no parallel initialization
make heat && OMP_NUM_THREADS=56 ./heat
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# yes parallel initialization
make heat && OMP_NUM_THREADS=56 ./heat 1

This gives us a remarkable difference in runtime:
• Sequential init: avg=2.089, stddev=0.1083
• Parallel init: avg=1.006, stddev=0.0216

This large difference will be mitigated for algorithms with higher arithmetic intensity.
Exercise 25.1. How do the OpenMP dynamic schedules relate to this issue?

25.2.2 Solution in C++
The problem with realizing first-touch in C++ is that std::vector fills its allocation with default values. This is
known as ‘value-initialization’, and it makes

vector<double> x(N);

equivalent to the non-parallel allocation and initialization above.

Here is a solution.

C++ note 26: Uninitialized containers. Default initialization is a problem. We make a template for uninitialized
types:

// heatalloc.cxx
template<typename T>
struct uninitialized {

uninitialized() {};
T val;
constexpr operator T() const {return val;};
T operator=( const T&& v ) { val = v; return val; };

};

so that we can create vectors that behave normally:

vector<uninitialized<double>> x(N),y(N);

#pragma omp parallel for
for (int i=0; i<N; i++)

y[i] = x[i] = 0.;
x[0] = 0; x[N-1] = 1.;

Running the code with the regular definition of a vector, and the above modification, reproduces the runtimes of
the C variant above.

Another option is to wrap memory allocated with new in a unique_ptr:

// heatptr.cxx
unique_ptr<double[]> x( new double[N] );
unique_ptr<double[]> y( new double[N] );

#pragma omp parallel for
for (int i=0; i<N; i++) {

y[i] = x[i] = 0.;
}
x[0] = 0; x[N-1] = 1.;
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Note that this gives fairly elegant code, since square bracket indexing is overloaded for unique_ptr. The only disad-
vantage is that we can not query the size of these arrays. Or do bound checking with at, but in high performance
contexts that is usually not appropriate anyway.

25.2.3 Remarks

You could move pages with move_pages.

By regarding affinity, in effect you are adopting an SPMD style of programming. You could make this explicit by
having each thread allocate its part of the arrays separately, and storing a private pointer as threadprivate [20].
However, this makes it impossible for threads to access each other’s parts of the distributed array, so this is only
suitable for total data parallel or embarrassingly parallel applications.

25.3 Affinity control outside OpenMP
There are various utilities to control process and thread placement.

Process placement can be controlled on the Operating system level by numactl (the TACC utility tacc_affinity
is a wrapper around this) on Linux (also taskset); Windows start/affinity.

Corresponding system calls: pbing on Solaris, sched_setaffinity on Linux, SetThreadAffinityMask onWin-
dows.

Corresponding environment variables: SUNW_MP_PROCBIND on Solaris, KMP_AFFINITY on Intel.

The Intel compiler has an environment variable for affinity control:

export KMP_AFFINITY=verbose,scatter
values: none,scatter,compact

For gcc:

export GOMP_CPU_AFFINITY=0,8,1,9
For the Sun compiler :

SUNW_MP_PROCBIND

25.4 Tests
We take a simple loop and consider the influence of binding parameters.

// speedup.c
#pragma omp parallel for

for (int ip=0; ip<N; ip++) {
for (int jp=0; jp<M; jp++) {

double f = sin( values[ip] );
values[ip] = f;

}
}
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Figure 25.1: Speedup as function of thread count, Lonestar 6 cluster, different binding parameters

25.4.1 Lonestar 6

Lonestar 6, dual socket AMD Milan, total 112 cores: figure 25.1.

25.4.2 Frontera

Intel Cascade Lake, dual socket, 56 cores total; figure 25.2.

For all core counts to half the total, performance for all binding strategies seems equal. After that , close and
spread perform equally, but the speedup for the false value gives erratic numbers.

25.4.3 Stampede2 skylake

Dual 24-core Intel Skylake; figure 25.3.

We see that close binding gives worse performance than spread. Setting binding to false only gives bad perfor-
mance for large core counts.

25.4.4 Stampede2 Knights Landing

We test on a single socket 68-core processor: the Intel Knights Landing.
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Figure 25.2: Speedup as function of thread count, Frontera cluster, different binding parameters

Since this is a single socket design, we don’t distinguish between the close and spread binding. However, the
binding value of true shows good speedup – in fact beyond the core count – while false gives worse performance
than in other architectures.

25.4.5 Longhorn

Dual 20-core IBM Power9, 4 hyperthreads; 25.5

Unlike the Intel processors, here we use the hyperthreads. Figure 25.5 shows dip in the speedup at 40 threads. For
higher thread counts the speedup increases to well beyond the physical core count of 40.
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Figure 25.3: Speedup as function of thread count, Stampede2 skylake cluster, different binding parameters
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Chapter 26

OpenMP topic: SIMD processing

You can declare a loop to be executable with vector instructions with simd.

Remark 40 Depending on your compiler, it may be necessary to give an extra option enabling SIMD:
• -fopenmp-simd for GCC / Clang, and
• -qopenmp-simd for ICC.

The simd pragma has the following clauses:

• safelen($n$): limits the number of iterations in a SIMD chunk. Presumably useful if you combine
parallel for simd.

• linear: lists variables that have a linear relation to the iteration parameter.
• aligned: specifies alignment of variables.

If your SIMD loop includes a function call, you can declare that the function can be turned into vector instructions
with declare simd

If a loop is both multi-threadable and vectorizable, you can combine directives as pragma omp parallel for
simd.

Compilers can be made to report whether a loop was vectorized:

LOOP BEGIN at simdf.c(61,15)
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

LOOP END
with such options as -Qvec-report=3 for the Intel compiler.

Performance improvements of these directives need not be immediately obvious. In cases where the operation is
bandwidth-limited, using simd parallelism may give the same or worse performance as thread parallelism.

The following function can be vectorized:

// simdfunctions.c
#pragma omp declare simd
double cs(double x1,double x2,double y1,double y2) {
double

inprod = x1*x2+y1*y2,
xnorm = sqrt(x1*x1 + x2*x2),
ynorm = sqrt(y1*y1 + y2*y2);

return inprod / (xnorm*ynorm);
}
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#pragma omp declare simd uniform(x1,x2,y1,y2) linear(i)
double csa(double *x1,double *x2,double *y1,double *y2, int i) {
double

inprod = x1[i]*x2[i]+y1[i]*y2[i],
xnorm = sqrt(x1[i]*x1[i] + x2[i]*x2[i]),
ynorm = sqrt(y1[i]*y1[i] + y2[i]*y2[i]);

return inprod / (xnorm*ynorm);
}

Compiling this the regular way

# parameter 1(x1): %xmm0
# parameter 2(x2): %xmm1
# parameter 3(y1): %xmm2
# parameter 4(y2): %xmm3

movaps %xmm0, %xmm5 5 <- x1
movaps %xmm2, %xmm4 4 <- y1
mulsd %xmm1, %xmm5 5 <- 5 * x2 = x1 * x2
mulsd %xmm3, %xmm4 4 <- 4 * y2 = y1 * y2
mulsd %xmm0, %xmm0 0 <- 0 * 0 = x1 * x1
mulsd %xmm1, %xmm1 1 <- 1 * 1 = x2 * x2
addsd %xmm4, %xmm5 5 <- 5 + 4 = x1*x2 + y1*y2
mulsd %xmm2, %xmm2 2 <- 2 * 2 = y1 * y1
mulsd %xmm3, %xmm3 3 <- 3 * 3 = y2 * y2
addsd %xmm1, %xmm0 0 <- 0 + 1 = x1*x1 + x2*x2
addsd %xmm3, %xmm2 2 <- 2 + 3 = y1*y1 + y2*y2
sqrtsd %xmm0, %xmm0 0 <- sqrt(0) = sqrt( x1*x1 + x2*x2 )
sqrtsd %xmm2, %xmm2 2 <- sqrt(2) = sqrt( y1*y1 + y2*y2 )
which uses the scalar instruction mulsd: multiply scalar double precision.

With a declare simd directive:

movaps %xmm0, %xmm7
movaps %xmm2, %xmm4
mulpd %xmm1, %xmm7
mulpd %xmm3, %xmm4
which uses the vector instruction mulpd: multiply packed double precision, operating on 128-bit SSE2 registers.

Compiling for the Intel Knight’s Landing gives more complicated code:

# parameter 1(x1): %xmm0
# parameter 2(x2): %xmm1
# parameter 3(y1): %xmm2
# parameter 4(y2): %xmm3

vmulpd %xmm3, %xmm2, %xmm4 4 <- y1*y2
vmulpd %xmm1, %xmm1, %xmm5 5 <- x1*x2
vbroadcastsd .L_2il0floatpacket.0(%rip), %zmm21
movl $3, %eax set accumulator EAX
vbroadcastsd .L_2il0floatpacket.5(%rip), %zmm24
kmovw %eax, %k3 set mask k3
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vmulpd %xmm3, %xmm3, %xmm6 6 <-y1*y1 (stall)
vfmadd231pd %xmm0, %xmm1, %xmm4 4 <- 4 + x1*x2 (no reuse!)
vfmadd213pd %xmm5, %xmm0, %xmm0 0 <- 0 + 0*5 = x1 + x1*(x1*x2)
vmovaps %zmm21, %zmm18 #25.26 c7
vmovapd %zmm0, %zmm3{%k3}{z} #25.26 c11
vfmadd213pd %xmm6, %xmm2, %xmm2 #24.29 c13
vpcmpgtq %zmm0, %zmm21, %k1{%k3} #25.26 c13
vscalefpd .L_2il0floatpacket.1(%rip){1to8}, %zmm0, %zmm3{%k1} #25.26 c15
vmovaps %zmm4, %zmm26 #25.26 c15
vmovapd %zmm2, %zmm7{%k3}{z} #25.26 c17
vpcmpgtq %zmm2, %zmm21, %k2{%k3} #25.26 c17
vscalefpd .L_2il0floatpacket.1(%rip){1to8}, %zmm2, %zmm7{%k2} #25.26 c19
vrsqrt28pd %zmm3, %zmm16{%k3}{z} #25.26 c19
vpxorq %zmm4, %zmm4, %zmm26{%k3} #25.26 c19
vrsqrt28pd %zmm7, %zmm20{%k3}{z} #25.26 c21
vmulpd {rn-sae}, %zmm3, %zmm16, %zmm19{%k3}{z} #25.26 c27 stall 2
vscalefpd .L_2il0floatpacket.2(%rip){1to8}, %zmm16, %zmm17{%k3}{z} #25.26 c27
vmulpd {rn-sae}, %zmm7, %zmm20, %zmm23{%k3}{z} #25.26 c29
vscalefpd .L_2il0floatpacket.2(%rip){1to8}, %zmm20, %zmm22{%k3}{z} #25.26 c29
vfnmadd231pd {rn-sae}, %zmm17, %zmm19, %zmm18{%k3} #25.26 c33 stall 1
vfnmadd231pd {rn-sae}, %zmm22, %zmm23, %zmm21{%k3} #25.26 c35
vfmadd231pd {rn-sae}, %zmm19, %zmm18, %zmm19{%k3} #25.26 c39 stall 1
vfmadd231pd {rn-sae}, %zmm23, %zmm21, %zmm23{%k3} #25.26 c41
vfmadd213pd {rn-sae}, %zmm17, %zmm17, %zmm18{%k3} #25.26 c45 stall 1
vfnmadd231pd {rn-sae}, %zmm19, %zmm19, %zmm3{%k3} #25.26 c47
vfmadd213pd {rn-sae}, %zmm22, %zmm22, %zmm21{%k3} #25.26 c51 stall 1
vfnmadd231pd {rn-sae}, %zmm23, %zmm23, %zmm7{%k3} #25.26 c53
vfmadd213pd %zmm19, %zmm18, %zmm3{%k3} #25.26 c57 stall 1
vfmadd213pd %zmm23, %zmm21, %zmm7{%k3} #25.26 c59
vscalefpd .L_2il0floatpacket.3(%rip){1to8}, %zmm3, %zmm3{%k1} #25.26 c63 stall 1
vscalefpd .L_2il0floatpacket.3(%rip){1to8}, %zmm7, %zmm7{%k2} #25.26 c65
vfixupimmpd $112, .L_2il0floatpacket.4(%rip){1to8}, %zmm0, %zmm3{%k3} #25.26 c65
vfixupimmpd $112, .L_2il0floatpacket.4(%rip){1to8}, %zmm2, %zmm7{%k3} #25.26 c67
vmulpd %xmm7, %xmm3, %xmm0 #25.26 c71
vmovaps %zmm0, %zmm27 #25.26 c79
vmovaps %zmm0, %zmm25 #25.26 c79
vrcp28pd {sae}, %zmm0, %zmm27{%k3} #25.26 c81
vfnmadd213pd {rn-sae}, %zmm24, %zmm27, %zmm25{%k3} #25.26 c89 stall 3
vfmadd213pd {rn-sae}, %zmm27, %zmm25, %zmm27{%k3} #25.26 c95 stall 2
vcmppd $8, %zmm26, %zmm27, %k1{%k3} #25.26 c101 stall 2
vmulpd %zmm27, %zmm4, %zmm1{%k3}{z} #25.26 c101
kortestw %k1, %k1 #25.26 c103
je ..B1.3 # Prob 25% #25.26 c105
vdivpd %zmm0, %zmm4, %zmm1{%k1} #25.26 c3 stall 1
vmovaps %xmm1, %xmm0 #25.26 c77
ret #25.26 c79

#pragma omp declare simd uniform(op1) linear(k) notinbranch
double SqrtMul(double *op1, double op2, int k) {
return (sqrt(op1[k]) * sqrt(op2));
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}
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Chapter 27

OpenMP topic: Offloading

This chapter explains the mechanisms for offloading work to a Graphics Processing Unit (GPU), introduced in
OpenMP-4.0.

The memory of a processor and that of an attached GPU are not coherent: there are separate memory spaces and
writing data in one is not automatically reflected in the other.

OpenMP transfers data (or maps it) when you enter an target construct.

#pragma omp target
{
// do stuff on the GPU

}

You can test whether the target region is indeed executed on a device with omp_is_initial_device:

#pragma omp target
if (omp_is_initial_device()) printf("Offloading failed\n");

27.0.1 Targets and tasks

The target clause causes OpenMP to create a target task. This is a task running on the host, dedicated to managing
the offloaded region.

The target region is executed by a new initial task. This is distinct from the initial task that executes the main
program.

The task that created the target task is called the generating task.

By default, the generating task is blocked while the task on the device is running, but adding the targetnowait
clause makes it asynchronous. This requires a taskwait directive to synchronize host and device.

27.1 Data on the device
• Scalars are treated as firstprivate, that is, they are copied in but not out.
• Stack arrays tofrom.
• Heap arrays are not mapped by default.

For explicit mapping with map:
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#pragma omp target map(...)
{
// do stuff on the GPU

}

The following map options exist:

• map(to: x,y,z) copy from host to device when entering the target region.
• map(from: x,y,z) copy from devince to host when exiting the target region.
• map(tofrom: x,y,z) is equivalent to combining the previous two.
• map(allo: x,y,z) allocates data on the device.

Fortran note 26: Array sizes in map clause. If the compiler can deduce the array bounds and size, it is not necessary
to specify them in the ‘map’ clause.

Data transfer to a device is probably slow, so mapping the data at the start of an offloaded section of code is probably
not the best idea. Additionally, in many cases data will stay resident on the device throughout several iterations of,
for instance, a time-stepping PDE solver. For such reasons, it is possible to move data onto, and off from, the device
explicitly, using the enter data and exit data directives.

#pragma omp target enter data map(to: x,y)
#pragma omp target
{
// do something

}
#pragma omp target enter data map(from: x,y)

Also update to (synchronize data from host to device), update from (synchronize data to host from device).

27.2 Execution on the device
For parallel execution of a loop on the device use the teams clause:

#pragma omp target teams distribute parallel do

On GPU devices and the like, there is a structure to threads:

• threads are grouped in teams, and they can be synchronized only within these teams;
• teams are groups in leagues, and no synchronization between leagues is possible inside a target region.

The combination teams distribute splits the iteration space over teams. By default a static schedule is used, but
the option dist_schedule can be used to specify a different one. However, this combination only gives the chunk of
space to the master thread in each team. Next we need parallel for or parallel do to spread the chunk over
the threads in the team.

When creating teams, it’s often useful to limit the number of threads in each with thread_limit. This can also be
set with the OMP_THREAD_LIMIT environment variable. The value can be queried with omp_get_thread_limit.
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Chapter 28

OpenMP remaining topics

28.1 Runtime functions, environment variables, internal control variables
OpenMP has a number of settings that can be set through environment variables, and both queried and set through
library routines. These settings are called Internal Control Variables (ICVs): an OpenMP implementation behaves as
if there is an internal variable storing this setting.

The runtime functions are:

• Counting threads and cores: omp_set_num_threads, omp_get_num_threads, omp_get_max_threads,
omp_get_num_procs; see section 17.5.

• Querying the current thread: omp_get_thread_num, omp_in_parallel
• omp_get_cancellation
• omp_set_dynamic
• omp_get_dynamic
• omp_set_nested
• omp_get_nested
• omp_get_wtime
• omp_get_wtick
• omp_set_schedule
• omp_get_schedule
• omp_set_max_active_levels
• omp_get_max_active_levels
• omp_get_thread_limit
• omp_get_level
• omp_get_active_level
• omp_get_ancestor_thread_num
• omp_get_team_size

Here are the OpenMP environment variables:

• OMP_CANCELLATION Set whether cancellation is activated; see section 18.3. Can be queried with
omp_get_cancellation but there is no routine for setting the value.

• OMP_DISPLAY_ENV Show OpenMP version (section 28.7) and environment variables.
• OMP_DEFAULT_DEVICE Set the device used in target regions
• OMP_DYNAMICDynamic adjustment of threads. Set and querywith omp_set_dynamic and omp_get_dynamic
respectively.

• OMP_MAX_ACTIVE_LEVELS Set the maximum number of nested parallel regions; section 18.2. Access with
omp_set_max_active_levels and omp_get_max_active_levels.
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• OMP_NESTED Use of nested parallel regions. Access with omp_set_nested and omp_get_nested. Depre-
cated: use ‘active levels’ instead.

• OMP_MAX_TASK_PRIORITY Set the maximum task priority value; section 24.6.2.
• OMP_NUM_THREADS Specifies the number of threads to use
• OMP_PROC_BIND Whether theads may be moved between CPUs; section 25.1.
• OMP_PLACES Specifies on which CPUs the theads should be placed; section 25.1.
• OMP_STACKSIZE Set default thread stack size; section 22.2.
• OMP_SCHEDULE How threads are scheduled; section 19.3.
• OMP_THREAD_LIMIT Set the maximum number of threads; see section 27.2.
• OMP_WAIT_POLICY How waiting threads are handled; ICV wait-policy-var. Values: ACTIVE for keeping
threads spinning, PASSIVE for possibly yielding the processor when threads are waiting. There is no
runtime function for setting this.

There are 4 ICVs that behave as if each thread has its own copy of them. The default is implementation-defined
unless otherwise noted.

• It may be possible to adjust dynamically the number of threads for a parallel region. Variable:
OMP_DYNAMIC; routines: omp_set_dynamic, omp_get_dynamic.

• If a code contains nested parallel regions, the inner regions may create new teams, or they may be
executed by the single thread that encounters them. Variable: OMP_NESTED; routines omp_set_nested,
omp_get_nested. Allowed values are TRUE and FALSE; the default is false.

• The number of threads used for an encountered parallel region can be controlled. Variable:
OMP_NUM_THREADS; routines omp_set_num_threads, omp_get_max_threads.

• The schedule for a parallel loop can be set. Variable: OMP_SCHEDULE; routines omp_set_schedule,
omp_get_schedule.

Nonobvious syntax:

export OMP_SCHEDULE="static,100"

Other settings:

• omp_get_num_threads: query the number of threads active at the current place in the code; this can be
lower than what was set with omp_set_num_threads. For a meaningful answer, this should be done in a
parallel region.

• omp_get_thread_num
• omp_in_parallel: test if you are in a parallel region.
• omp_get_num_procs: query the physical number of cores available.

Other environment variables:

• OMP_STACKSIZE controls the amount of space that is allocated as per-thread stack. This is used as space
for private variables, see section 22.2, or reductions, see section 20.2.2.

• OMP_WAIT_POLICY determines the behavior of threads that wait, for instance for critical section:
– ACTIVE puts the thread in a spin-lock, where it actively checks whether it can continue;
– PASSIVE puts the thread to sleep until the Operating System (OS) wakes it up.

The ‘active’ strategy uses CPU while the thread is waiting; on the other hand, activating it after the
wait is instantaneous. With the ‘passive’ strategy, the thread does not use any CPU while waiting, but
activating it again is expensive. Thus, the passive strategy only makes sense if threads will be waiting
for a (relatively) long time.

• OMP_PROC_BIND with values TRUE and FALSE can bind threads to a processor. On the one hand, doing so
can minimize data movement; on the other hand, it may increase load imbalance.
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28.2 Timing

OpenMP has a wall clock timer routine omp_get_wtime

double omp_get_wtime(void);

The starting point is arbitrary and is different for each program run; however, in one run it is identical for all threads.
This timer has a resolution given by omp_get_wtick.

Exercise 28.1. Use the timing routines to demonstrate speedup from using multiple threads.
• Write a code segment that takes a measurable amount of time, that is, it should take a
multiple of the tick time.

• Write a parallel loop and measure the speedup. You can for instance do this

for (int use_threads=1; use_threads<=nthreads; use_threads++) {
#pragma omp parallel for num_threads(use_threads)

for (int i=0; i<nthreads; i++) {
.....

}
if (use_threads==1)

time1 = tend-tstart;
else // compute speedup

• In order to prevent the compiler from optimizing your loop away, let the body
compute a result and use a reduction to preserve these results.

28.3 Thread safety

With OpenMP it is relatively easy to take existing code and make it parallel by introducing parallel sections. If
you’re careful to declare the appropriate variables shared and private, this may work fine. However, your code may
include calls to library routines that include a race condition; such code is said not to be thread-safe.

For example a routine

static int isave;
int next_one() {
int i = isave;
isave += 1;
return i;
}

...
for ( .... ) {
int ivalue = next_one();

}

has a clear race condition, as the iterations of the loop may get different next_one values, as they are supposed
to, or not. This can be solved by using an critical pragma for the next_one call; another solution is to use an
threadprivate declaration for isave. This is for instance the right solution if the next_one routine implements a
random number generator .
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28.4 Performance and tuning
The performance of an OpenMP code can be influenced by the following.

Amdahl effects Your code needs to have enough parts that are parallel (see HPC book, section-2.2.3). Sequential
parts may be sped up by having them executed redundantly on each thread, since that keeps data locally.

Dynamism Creating a thread team takes time. In practice, a team is not created and deleted for each parallel
region, but creating teams of different sizes, or recursize thread creation, may introduce overhead.

Load imbalance Even if your program is parallel, you need to worry about load balance. In the case of a parallel
loop you can set the schedule clause to dynamic, which evens out the work, but may cause increased
communication.

Communication Cache coherence causes communication. Threads should, as much as possible, refer to their own
data.

• Threads are likely to read from each other’s data. That is largely unavoidable.
• Threads writing to each other’s data should be avoided: it may require synchronization, and it
causes coherence traffic.

• If threads can migrate, data that was local at one time is no longer local after migration.
• Reading data from one socket that was allocated on another socket is inefficient; see section 25.2.

Affinity Both data and execution threads can be bound to a specific locale to some extent. Using local data is
more efficient than remote data, so you want to use local data, and minimize the extent to which data or
execution can move.

• See the above points about phenomena that cause communication.
• Section 25.1.1 describes how you can specify the binding of threads to places. There can, but does
not need, to be an effect on affinity. For instance, if an OpenMP thread can migrate between hard-
ware threads, cached data will stay local. Leaving an OpenMP thread completely free to migrate
can be advantageous for load balancing, but you should only do that if data affinity is of lesser
importance.

• Static loop schedules have a higher chance of using data that has affinity with the place of execu-
tion, but they are worse for load balancing. On the other hand, the nowait clause can aleviate some
of the problems with static loop schedules.

Binding You can choose to put OpenMP threads close together or to spread them apart. Having them close together
makes sense if they use lots of shared data. Spreading them apart may increase bandwidth. (See the
examples in section 25.1.2.)

Synchronization Barriers are a form of synchronization. They are expensive by themselves, and they expose load
imbalance. Implicit barriers happen at the end of worksharing constructs; they can be removed with
nowait.
Critical sections imply a loss of parallelism, but they are also slow as they are realized through operating
system functions. These are often quite costly, taking many thousands of cycles. Critical sections should
be used only if the parallel work far outweighs it.

28.5 Accelerators
In OpenMP-4.0 there is support for offloading work to an accelerator or co-processor :

#pragma omp target [clauses]

with clauses such as

• data: place data
• update: make data consistent between host and device
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28.6 Tools interface
The OpenMP-5.0 defines a tools interface. This means that routines can be defined that get called by the OpenMP
runtime. For instance, the following example defines callback that are evaluated when OpenMP is initialized and
finalized, thereby giving the runtime for the application.

int ompt_initialize(ompt_function_lookup_t lookup, int initial_device_num,
ompt_data_t *tool_data) {

printf("libomp init time: %f\n",
omp_get_wtime() - *(double *)(tool_data->ptr));

*(double *)(tool_data->ptr) = omp_get_wtime();
return 1; // success: activates tool

}

void ompt_finalize(ompt_data_t *tool_data) {
printf("application runtime: %f\n",

omp_get_wtime() - *(double *)(tool_data->ptr));
}

ompt_start_tool_result_t *ompt_start_tool(unsigned int omp_version,
const char *runtime_version) {

static double time = 0; // static defintion needs constant assigment
time = omp_get_wtime();
static ompt_start_tool_result_t ompt_start_tool_result = {

&ompt_initialize, &ompt_finalize, {.ptr = &time}};
return &ompt_start_tool_result; // success: registers tool

}

(Example courtesy of https://git.rwth-aachen.de/OpenMPTools/OMPT-Examples.)

28.7 OpenMP standards
Here is the correspondence between the value of OpenMP versions (given by the _OPENMP macro) and the standard
versions:

• OpenMP-3.1
– proc bind environment variable
– extensions to tasks

• OpenMP-4.0
– procbind clause, places environment variable
– simd directives
– device directives for GPUs
– taskgroups
– depend clause on tasks
– cancel
– user-defined reductions

• 201511 OpenMP-4.5, Many extensions of existing constructs.
• 201611 Technical report 4: information about the OpenMP-5.0 but not yet mandated.
• 201811 OpenMP-5.0

– Better support for C11, C++11/14/18, Fortran2008
– Non-rectangular loop nests.
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– scan extended to have in/exclusive versions
– reduction on tasks, taskloops.
– memory spaces.

• 202011 OpenMP-5.1,
• 202111 OpenMP-5.2.

// version.c
int standard = _OPENMP;
printf("Supported OpenMP standard:

↪%d\n",standard);
switch (standard) {
case 201511: printf("4.5\n");
break;

case 201611: printf("Technical report 4:
↪information about 5.0 but not yet
↪mandated.\n");

break;

case 201811: printf("5.0\n");
break;

case 202011:
printf("5.1\n");
break;

case 202111: printf("5.2\n");
break;

default:
printf("Unrecognized version\n");
break;

}

The openmp.orgwebsite maintains a record of which compilers support which standards: https://www.openmp.
org/resources/openmp-compilers-tools/.

28.8 Memory model

28.8.1 Dekker’s algorithm

A standard illustration of the weak memory model is Dekker’s algorithm. We model that in OpenMP as follows;

// weak1.c
int a=0,b=0,r1,r2;
#pragma omp parallel sections shared(a, b, r1, r2)
{
#pragma omp section
{

a = 1;
r1 = b;
tasks++;

}
#pragma omp section
{

b = 1;
r2 = a;
tasks++;

}
}

Under any reasonable interpretation of parallel execution, the possible values for r1,r2 are 1, 1 0, 1 or 1, 0. This is
known as sequential consistency: the parallel outcome is consistent with a sequential execution that interleaves the
parallel computations, respecting their local statement orderings. (See also HPC book, section-2.6.1.6.)

However, running this, we get a small number of cases where 𝑟1 = 𝑟2 = 0. There are two possible explanations:
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1. The compiler is allowed to interchange the first and second statements, since there is no dependence
between them; or

2. The thread is allowed to have a local copy of the variable that is not coherent with the value in memory.

We fix this by flushing both a,b:

// weak2.c
int a=0,b=0,r1,r2;
#pragma omp parallel sections shared(a, b, r1, r2)
{
#pragma omp section
{

a = 1;
#pragma omp flush (a,b)

r1 = b;
tasks++;

}
#pragma omp section
{

b = 1;
#pragma omp flush (a,b)

r2 = a;
tasks++;

}
}

.
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Chapter 29

OpenMP Review

29.1 Concepts review

29.1.1 Basic concepts

• process / thread / thread team
• threads / cores / tasks
• directives / library functions / environment
variables

29.1.2 Parallel regions

execution by a team

29.1.3 Work sharing

• loop / sections / single / workshare
• implied barrier
• loop scheduling, reduction
• sections
• single vs master
• (F) workshare

29.1.4 Data scope

• shared vs private, C vs F
• loop variables and reduction variables
• default declaration
• firstprivate, lastprivate

29.1.5 Synchronization

• barriers, implied and explicit
• nowait
• critical sections
• locks, difference with critical

29.1.6 Tasks

• generation vs execution
• dependencies
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29.2 Review questions

29.2.1 Directives

What do the following program output?

int main() {
printf("procs %d\n",
omp_get_num_procs());

printf("threads %d\n",
omp_get_num_threads());

printf("num %d\n",
omp_get_thread_num());

return 0;
}

int main() {
#pragma omp parallel

{
printf("procs %d\n",
omp_get_num_procs());

printf("threads %d\n",
omp_get_num_threads());

printf("num %d\n",
omp_get_thread_num());

}
return 0;

}

Program main
use omp_lib
print *,"Procs:",&
omp_get_num_procs()

print *,"Threads:",&
omp_get_num_threads()

print *,"Num:",&
omp_get_thread_num()

End Program

Program main
use omp_lib

!$OMP parallel
print *,"Procs:",&
omp_get_num_procs()

print *,"Threads:",&
omp_get_num_threads()

print *,"Num:",&
omp_get_thread_num()

!$OMP end parallel
End Program
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29.2.2 Parallelism

Can the following loops be parallelized? If so, how? (Assume that all arrays are already filled in, and that there are
no out-of-bounds errors.)

// variant #1
for (i=0; i<N; i++) {

x[i] = a[i]+b[i+1];
a[i] = 2*x[i] + c[i+1];

}

// variant #2
for (i=0; i<N; i++) {

x[i] = a[i]+b[i+1];
a[i] = 2*x[i+1] + c[i+1];

}

// variant #3
for (i=1; i<N; i++) {

x[i] = a[i]+b[i+1];
a[i] = 2*x[i-1] + c[i+1];

}

// variant #4
for (i=1; i<N; i++) {

x[i] = a[i]+b[i+1];
a[i+1] = 2*x[i-1] + c[i+1];

}

! variant #1
do i=1,N

x(i) = a(i)+b(i+1)
a(i) = 2*x(i) + c(i+1)

end do

! variant #2
do i=1,N

x(i) = a(i)+b(i+1)
a(i) = 2*x(i+1) + c(i+1)

end do

! variant #3
do i=2,N

x(i) = a(i)+b(i+1)
a(i) = 2*x(i-1) + c(i+1)

end do

! variant #3
do i=2,N

x(i) = a(i)+b(i+1)
a(i+1) = 2*x(i-1) + c(i+1)

end do
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29.2.3 Data and synchronization

29.2.3.1

What is the output of the following fragments? Assume that there are four threads.

// variant #1
int nt;
#pragma omp parallel
{
nt = omp_get_thread_num();
printf("thread number: %d\n",nt);
}

// variant #2
int nt;
#pragma omp parallel private(nt)
{
nt = omp_get_thread_num();
printf("thread number: %d\n",nt);
}

// variant #3
int nt;
#pragma omp parallel
{

#pragma omp single
{
nt = omp_get_thread_num();
printf("thread number: %d\n",nt);
}

}

// variant #4
int nt;
#pragma omp parallel

{
#pragma omp master

{
nt = omp_get_thread_num();
printf("thread number: %d\n",nt);
}

}

// variant #5
int nt;
#pragma omp parallel

{
#pragma omp critical

{
nt = omp_get_thread_num();
printf("thread number: %d\n",nt);
}

}

! variant #1
integer nt

!$OMP parallel
nt = omp_get_thread_num()
print *,"thread number:",nt

!$OMP end parallel

! variant #2
integer nt

!$OMP parallel private(nt)
nt = omp_get_thread_num()
print *,"thread number:",nt

!$OMP end parallel

! variant #3
integer nt

!$OMP parallel
!$OMP single

nt = omp_get_thread_num()
print *,"thread number:",nt

!$OMP end single
!$OMP end parallel
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! variant #4
integer nt

!$OMP parallel
!$OMP master

nt = omp_get_thread_num()
print *,"thread number:",nt

!$OMP end master
!$OMP end parallel

! variant #5
integer nt

!$OMP parallel
!$OMP critical

nt = omp_get_thread_num()
print *,"thread number:",nt

!$OMP end critical
!$OMP end parallel

29.2.3.2

The following is an attempt to parallelize a serial code. Assume that all variables and arrays are defined. What errors
and potential problems do you see in this code? How would you fix them?

#pragma omp parallel
{

x = f();
#pragma omp for
for (i=0; i<N; i++)

y[i] = g(x,i);
z = h(y);

}

!$OMP parallel
x = f()

!$OMP do
do i=1,N

y(i) = g(x,i)
end do

!$OMP end do
z = h(y)

!$OMP end parallel

Solution to exercise 29.0.
• x needs to be private or the computation of f needs to be single
• if x is private, there needs to be a barrier before the loop
• note 1: if the f computation is single, there is automatically a barrier
• note 2: at the end of a loop there is always a barrier, so none needs to be inserted

438 Parallel Computing – r428



29.2. Review questions

29.2.3.3

Assume two threads. What does the following program output?

int a;
#pragma omp parallel private(a) {
...
a = 0;
#pragma omp for
for (int i = 0; i < 10; i++)
{
#pragma omp atomic
a++; }

#pragma omp single
printf("a=%e\n",a);

}

29.2.4 Reductions

29.2.4.1

Is the following code correct? Is it efficient? If not, can you improve it?

#pragma omp parallel shared(r)
{
int x;
x = f(omp_get_thread_num());

#pragma omp critical
r += f(x);

}

29.2.4.2

Compare two fragments:

// variant 1
#pragma omp parallel reduction(+:s)
#pragma omp for
for (i=0; i<N; i++)

s += f(i);

// variant 2
#pragma omp parallel
#pragma omp for reduction(+:s)

for (i=0; i<N; i++)
s += f(i);

! variant 1
!$OMP parallel reduction(+:s)
!$OMP do
do i=1,N

s += f(i);
end do

!$OMP end do
!$OMP end parallel

! variant 2
!$OMP parallel
!$OMP do reduction(+:s)

do i=1,N
s += f(i);

end do
!$OMP end do
!$OMP end parallel
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Do they compute the same thing?
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29.2.5 Barriers

Are the following two code fragments well defined?

#pragma omp parallel
{
#pragma omp for
for (mytid=0; mytid<nthreads; mytid++)

x[mytid] = some_calculation();
#pragma omp for
for (mytid=0; mytid<nthreads-1; mytid++)

y[mytid] = x[mytid]+x[mytid+1];
}

#pragma omp parallel
{
#pragma omp for
for (mytid=0; mytid<nthreads; mytid++)

x[mytid] = some_calculation();
#pragma omp for nowait
for (mytid=0; mytid<nthreads-1; mytid++)

y[mytid] = x[mytid]+x[mytid+1];
}

29.2.6 Data scope

The following program is supposed to initialize as many rows of the array as there are threads.

int main() {
int i,icount,iarray[100][100];
icount = -1;

#pragma omp parallel private(i)
{

#pragma omp critical
{ icount++; }
for (i=0; i<100; i++)

iarray[icount][i] = 1;
}
return 0;

}

Program main
integer :: i,icount,iarray(100,100)
icount = 0

!$OMP parallel private(i)
!$OMP critical

icount = icount + 1
!$OMP end critical

do i=1,100
iarray(icount,i) = 1

end do
!$OMP end parallel
End program

Describe the behavior of the program, with argumentation,

• as given;
• if you add a clause private(icount) to the parallel directive;
• if you add a clause firstprivate(icount).

What do you think of this solution:

#pragma omp parallel private(i)
↪shared(icount)

{
#pragma omp critical

{ icount++;
for (i=0; i<100; i++)

iarray[icount][i] = 1;
}

}

return 0;
}
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!$OMP parallel private(i) shared(icount)
!$OMP critical

icount = icount+1
do i=1,100

iarray(icount,i) = 1
end do

!$OMP critical
!$OMP end parallel

29.2.7 Tasks

Fix two things in the following example:

#pragma omp parallel
#pragma omp single
{
int x,y,z;

#pragma omp task
x = f();

#pragma omp task
y = g();

#pragma omp task
z = h();
printf("sum=%d\n",x+y+z);

}

integer :: x,y,z
!$OMP parallel
!$OMP single

!$OMP task
x = f()

!$OMP end task

!$OMP task
y = g()

!$OMP end task

!$OMP task
z = h()

!$OMP end task

print *,"sum=",x+y+z
!$OMP end single
!$OMP end parallel

Solution to exercise 29.0.
• x,y,z need to be shared;
• taskwait missing

29.2.8 Scheduling

Compare these two fragments. Do they compute the same result? What can you say about their efficiency?

#pragma omp parallel
#pragma omp single
{
for (i=0; i<N; i++) {
#pragma omp task

x[i] = f(i)
}
#pragma omp taskwait

}

#pragma omp parallel
#pragma omp for schedule(dynamic)

{
for (i=0; i<N; i++) {

x[i] = f(i)
}

}
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How would you make the second loop more efficient? Can you do something similar for the first loop?
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Chapter 30

OpenMP Exercises and examples

30.1 Histograms
A histogram is a way of counting a large number of objects into a small number of bins:

for ( i /* lots of cases */ )
bin[ property(i) ]++;

Without a specific application, we let the bin number be random:

// histogramwrong.c
for ( long int experiment=0; experiment<nexperiments; ++experiment ) {
int bin = rand_r(&seed)%nbins;
bins[bin]++;

}

(Here we use rand_r as a threadsafe variant of rand.)
Exercise 30.1. Realize this code by only a putting a parallel region around it. Observe that the sum

over the bins is not the total number of cases executed. Why is this?
Experiment with number of threads and bins.

The simplest correct solution to this code uses a reduction. See section 20.2.2 for the syntax.

Exercise 30.2. Use a reduction to get the right result of the histogram.
Investigate runtime as a function of the number of threads and bins.
C++ only: can you make a histogram class with an overloaded plus-operator?

Solution to exercise 30.2.

// histogramreduct.c
#pragma omp parallel reduction(+:bins[0:nbins])

A different solution would be the use of locks; section 23.3. Here we would have a lock for each bin:

// histogramlock.c
omp_lock_t locks[nbins];

and each time we want to update a bit, we first lock it.
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Exercise 30.3. Write correct histogramming code using locks.
Investigate runtime as a function of the number of threads and bins.
C++ only: can you make a bin class that incorporates the lock? Overload the increment
operator, or use an increment function to set/unset the lock.

Did you see the runtime go down as a function of increasing number of bins? Can you explain?

30.2 N-body problems
So-called N-body problems come up with we describe the interactions between a, probably large, number of entities
under a force such as gravity. Examples are molecular dynamics and star clusters.

While clever algorithms exist that take into account the decay of the force over distance, we here consider the naive
algorithm that explicitly computes all interactions.

A particle has 𝑥, 𝑦 coordinates and a mass 𝑐. For two particles (𝑥1, 𝑦1, 𝑐1), (𝑥2, 𝑦2, 𝑐2) the force on particle 1 from
particle 2 is:

⃖⃗𝐹12 = 𝑐1 ⋅ 𝑐2
√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

⋅ 𝑟12

where 𝑟12 is the unit vector pointing from particle 2 to 1. With 𝑛 particles, each particle 𝑖 feels a force

⃖⃗𝐹𝑖 = ∑
𝑗≠𝑖

⃖⃗𝐹𝑖𝑗 .

Let’s start with a couple of building blocks.

// molecularstruct.c
struct point{ double x,y; double c; };
struct force{ double x,y; double f; };

/* Force on p1 from p2 */
struct force force_calc( struct point p1,struct point p2 ) {
double dx = p2.x - p1.x, dy = p2.y - p1.y;
double f = p1.c * p2.c / sqrt( dx*dx + dy*dy );
struct force exert = {dx,dy,f};
return exert;

}

Force accumulation:

void add_force( struct force *f,struct force g ) {
f->x += g.x; f->y += g.y; f->f += g.f;

}
void sub_force( struct force *f,struct force g ) {

f->x -= g.x; f->y -= g.y; f->f += g.f;
}

In C++ we can have a class with an addition operator and such:
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// molecular.cxx
class force {
private:
double _x{0.},_y{0.}; double _f{0.};

public:
force() {};
force(double x,double y,double f)
: _x(x),_y(y),_f(f) {};

force operator+( const force& g ) {
return { _x+g._x, _y+g._y, _f+g._f };

}

For reference, this is the sequential code:

for (int ip=0; ip<N; ip++) {
for (int jp=ip+1; jp<N; jp++) {
struct force f = force_calc(points[ip],points[jp]);
add_force( forces+ip,f );
sub_force( forces+jp,f );

}
}

Here ⃖⃗𝐹𝑖𝑗 is only computed for 𝑗 > 𝑖, and then added to both ⃖⃗𝐹𝑖 and ⃖⃗𝐹𝑗 .
In C++ we use the overloaded operators:

for (int ip=0; ip<N; ip++) {
for (int jp=ip+1; jp<N; jp++) {

force f = points[ip].force_calc(points[jp]);
forces[ip] += f;
forces[jp] -= f;

}
}

Exercise 30.4. Argue that both the outer loop and the inner are not directly parallelizable.

Solution to exercise 30.4. The outer loop has conflicting jp writes, the inner loop has conflicting ip writes.
We will now explore a number of different strategies for parallelization. All tests are done on the TACC Frontera
cluster, which has dual-socket Intel Cascade Lake nodes, with a total of 56 cores. Our code uses 10 thousand particles,
and each interaction evaluation is repeated 10 times to eliminate cache loading effects.

30.2.1 Solution 1: no conflicting writes

In our first attempt at an efficient parallel code, we compute the full 𝑁 2 interactions. One solution would be to
compute the ⃖⃗𝐹𝑖𝑗 interactions for all 𝑖, 𝑗, so that there are no conflicting writes.

for (int ip=0; ip<N; ip++) {
struct force sumforce;
sumforce.x=0.; sumforce.y=0.; sumforce.f=0.;

#pragma omp parallel for reduction(+:sumforce)
for (int jp=0; jp<N; jp++) {
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if (ip==jp) continue;
struct force f = force_calc(points[ip],points[jp]);
sumforce.x += f.x; sumforce.y += f.y; sumforce.f += f.f;

} // end parallel jp loop
add_force( forces+ip, sumforce );

} // end ip loop

In C++ we use the fact that we can reduce on any class that has an addition operator:

for (int ip=0; ip<N; ip++) {
force sumforce;
#pragma omp parallel for reduction(+:sumforce)
for (int jp=0; jp<N; jp++) {
if (ip==jp) continue;
force f = points[ip].force_calc(points[jp]);
sumforce += f;

} // end parallel jp loop
forces[ip] += sumforce;

} // end ip loop

This increases the scalar work by a factor of two, but surprisingly, on a single thread the run time improves: we
measure a speedup of 6.51 over the supposedly ‘optimal’ code.
Exercise 30.5. What would be an explanation?
Solution to exercise 30.5. The ip accesses have better cacheline and TLB usage.
However, increasing the number of threads has limited benefits for this strategy. Figure 30.1 shows that the speedup
is not only sublinear: it actually decreases with increasing core count.
Exercise 30.6. What would be an explanation?
Solution to exercise 30.6. The loop is too short to keep a large number of cores happy.

30.2.2 Solution 2: using atomics
Next we try to parallelize the outer loop.

#pragma omp parallel for schedule(guided,4)
for (int ip=0; ip<N; ip++) {
for (int jp=ip+1; jp<N; jp++) {

struct force f = force_calc(points[ip],points[jp]);
add_force( forces+ip,f );
sub_force( forces+jp,f );

}
}

To deal with the conflicting jp writes, we make the writes atomic:

void sub_force( struct force *f,struct force g ) {
#pragma omp atomic

f->x -= g.x;
#pragma omp atomic

f->y -= g.y;
#pragma omp atomic

f->f += g.f;
}
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Figure 30.1: Speedup of reduction variant over sequential

This works fairly well, as figure 30.2 shows.

30.2.3 Solution 3: all interactions atomic

But if we decide to use atomic updates, we can take the full square loop, collapse the two loops, and make every
write atomic.

#pragma omp parallel for collapse(2)
for (int ip=0; ip<N; ip++) {

for (int jp=0; jp<N; jp++) {
if (ip==jp) continue;
struct force f = force_calc(points[ip],points[jp]);
add_force( forces+ip, f );

} // end parallel jp loop
} // end ip loop

Figure 30.3 shows that this is pretty close to perfect.

Everything in one plot in figure 30.4.
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30.3 Tree traversal
OpenMP tasks are a great way of handling trees.

In post-order tree traversal you visit the subtrees before visiting the root. This is the traversal that you use to find
summary information about a tree, for instance the sum of all nodes, and the sums of nodes of all subtrees:

for all children 𝑐 do
compute the sum 𝑠𝑐

𝑠 ← ∑𝑐 𝑠𝑐
Another example is matrix factorization:

𝑆 = 𝐴33 − 𝐴31𝐴−111𝐴13 − 𝐴32𝐴−122𝐴23

where the two inverses 𝐴−111 , 𝐴−122 can be computed independently and recursively.

30.4 Depth-first search
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In this section we look at the ‘eight queens’ problem, as
an example of Depth First Search (DFS): is it possible to put
eight queens on a chess board so that none of them threaten
each other? With DFS, the search space of possibilities is
organized as a tree – each partial solution leads to several
possibilities for the next steps – which is traversed in a par-
ticular manner: a chain of possibilities is extended as far as
feasible, after which the search backtracks to the next chain.

The sequential implementation is easy enough. The main
program fires off:

placement initial; initial.fill(empty);
auto solution = place_queen(0,initial);

where I hope you can take the details on trust.

The recursive call then has this structure:

optional<placement> place_queen(int iqueen,const placement& current) {
for (int col=0; col<N; col++) {

placement next = current;
next.at(iqueen) = col;
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if (feasible(next)) {
if (iqueen==N-1)
return next;

auto attempt = place_queen(iqueen+1,next);
if (attempt.has_value())
return attempt;

} // end if(feasible)
}
return {};

};

(This uses the C++17 optional header.) At each iqueen level we

• go through a loop of all column positions;
• filter out positions that are not feasible;
• report success if this was the last level; or
• recursively continue the next level otherwise.

This problem seems a prime candidate for OpenMP tasks, so we start with the usual idiom for the main program:

placement initial; initial.fill(empty);
optional<placement> eightqueens;
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#pragma omp parallel
#pragma omp single
eightqueens = place_queen(0,initial);

We create a task for each column, and since they are in a loop we use taskgroup rather than taskwait.

#pragma omp taskgroup
for (int col=0; col<N; col++) {

placement next = current;
next.at(iqueen) = col;

#pragma omp task firstprivate(next)
if (feasible(next)) {
// stuff
} // end if(feasible)

}

However, the sequential program had return and break statements in the loop, which is not allowed in workshare
constructs such as taskgroup. Therefore we introduce a return variable, declared as shared:

// queens0.cxx
optional<placement> result = {};
#pragma omp taskgroup
for (int col=0; col<N; col++) {

placement next = current;
next.at(iqueen) = col;
#pragma omp task firstprivate(next) shared(result)
if (feasible(next)) {
if (iqueen==N-1) {

result = next;
} else { // do next level

auto attempt = place_queen(iqueen+1,next);
if (attempt.has_value()) {

result = attempt;
}

} // end if(iqueen==N-1)
} // end if(feasible)

}
return result;

So that was easy, this computes the right solution, and it uses OpenMP tasks. Done?

Actually this runs very slowly because, now that we’ve dispensed with all early breaks from the loop, we in effect
traverse the whole search tree. (It’s not quite breadth-first, though.) Figure 30.5 shows this for 𝑁 = 12with the Intel
compiler (version 2019) in the left panel, and the GNU compiler (version 9.1) in the middle. In both cases, the blue
bars give the result for the code with only the taskgroup directive, with time plotted as function of core count.

We see that, for the Intel compiler, running time indeed goes down with core count. So, while we compute too much
(the whole search space), at least parallelization helps. With a number of threads greater than the problem size, the
benefit of parallelization disappears, which makes some sort of sense.

We also see that the GCC compiler is really bad at OpenMP tasks: the running time actually increases with the
number of threads.

Fortunately, with OpenMP-4 we can break out of the loop with a cancel of the task group:
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Figure 30.5: Using taskgroups for 𝑁 = 12; left Intel compiler, right GCC

// queenfinal.cxx
if (feasible(next)) {
if (iqueen==N-1) {

result = next;
#pragma omp cancel taskgroup

} else { // do next level
auto attempt = place_queen(iqueen+1,next);
if (attempt.has_value()) {

result = attempt;
#pragma omp cancel taskgroup
}

} // end if (iqueen==N-1)
} // end if (feasible)

Surprisingly, this does not immediately give a performance improvement. The reason for this is that cancellation is
disabled by default, and we have to set the environment variable
OMP_CANCELLATION=true
With that, we get very good performance, as figure 30.6 shows, which lists sequential time, and multicore running
time on the code with cancel directives. Running time is now approximately the same as the sequential time. Some
questions are still left:

• Why does the time go up with core count?
• Why is the multicore code slower than the sequential code, and would the parallel code be faster than
sequential if the amount of scalar work (for instance in the feasible function) would be larger?

One observation not reported here is that the GNU compiler has basically the same running time with and without
cancellation. This is again shows that the GNU compiler is really bad at OpenMP tasks.
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Figure 30.6: Using taskgroup cancelling, Intel compiler

30.5 Filtering array elements
Let’s assume we have an array of elements (integers, for the sake of the argument) and we want to construct a
subarray of only those elements that satisfy some test

bool f(int);

C++ note 27: List filtering example. We will do this example only in C++ because of its ease of handling
std::vectors.

The sequential code is as follows:

vector<int> data(100);
// fil the data
vector<int> filtered;
for ( auto e : data ) {
if ( f(e) )

filtered.push_back(e);
}
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There are two problems here. First is the race condition on the filtered array. Even if we fix this with a critical region,
there remains the lack of ordering of inserted elements.

The key to the solution is to let each thread have a local array, and then to concatenate these:

#pragma omp parallel
{

vector<int> local;
# pragma omp for
for ( auto e : data ) {
if ( f(e) ) {

local.push_back(e);
}

}
filtered += local;

}

where we have used an append operation on vectors:

// filterreduct.cxx
template<typename T>
vector<T>& operator+=( vector<T>& me, const vector<T>& other ) {

me.insert( me.end(),other.begin(),other.end() );
return me;

};

30.5.1 Attempt 1: reduction

We could use the plus-is operation to declare a reduction:

#pragma omp declare reduction\
( \

+:vector<int>:omp_out += omp_in \
) \

initializer( omp_priv = vector<int>{} )

The problem here is that OpenMP reductions can not be declared non-commutative, so the contributions from the
threads may not appear in order.
Code:

#pragma omp parallel \
reduction(+ : filtered)
{

vector<int> local;
# pragma omp for

for ( auto e : data )
if ( f(e) )

local.push_back(e);
filtered += local;

}

Output:

Mod 5: 80 85 90 95 100 5 10 15 20 25
↪30 35 40 45 50 55 60 65 70 75
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30.5.2 Attempt 2: sequential appending
If we don’t use a reduction, but do the appending explicitly, we first of all have to make this operation into a critical
section. Secondly, we have to impose the correct ordering.

Here is an attempt to do this by keeping a shared counter:
Code:

// filteratomic.cxx
# pragma omp critical

if (threadnum==ithread) {
filtered += local;
ithread++;

Output:

Mod 5: 5 10 15 20 25 30 35 40 45 50

The problem here is that threads who decide it’s not their turn will simply skip the append operation: there is no
way to tell them to wait their turn. (You could experiment with a while loop. Try it.)

The best solution is to use a completely different mechanism.

30.5.3 Attempt 3: using tasks
With a task it becomes possible to have a spin-wait loop:
Code:

# pragma omp task \
shared(filtered,ithread)

{
// wait your turn

while (threadnum>ithread) {
# pragma omp taskyield

}
// merge

filtered += local;
ithread++;

}

Output:

Mod 5: 5 10 15 20 25 30 35 40 45 50 55
↪60 65 70 75 80 85 90 95 100

30.6 Thread synchronization
Let’s do a producer-consumer model1. This can be implemented with sections, where one section, the producer, sets
a flag when data is available, and the other, the consumer, waits until the flag is set.

#pragma omp parallel sections
{
// the producer
#pragma omp section
{
... do some producing work ...
flag = 1;

}
// the consumer

1. This example is from Intel’s excellent OMP course by Tim Mattson

456 Parallel Computing – r428



30.6. Thread synchronization

#pragma omp section
{
while (flag==0) { }
... do some consuming work ...

}
}

One reason this doesn’t work, is that the compiler will see that the flag is never used in the producing section, and
that is never changed in the consuming section, so it may optimize these statements, to the point of optimizing
them away.

The producer then needs to do:

... do some producing work ...
#pragma omp flush
#pragma atomic write

flag = 1;
#pragma omp flush(flag)

and the consumer does:

#pragma omp flush(flag)
while (flag==0) {
#pragma omp flush(flag)

}
#pragma omp flush

This code strictly speaking has a race condition on the flag variable.

The solution is to make this an atomic operation and use an atomic pragma here: the producer has

#pragma atomic write
flag = 1;

and the consumer:

while (1) {
#pragma omp flush(flag)
#pragma omp atomic read

flag_read = flag
if (flag_read==1) break;

}
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Chapter 31

PETSc basics

31.1 What is PETSc and why?
PETSc is a library with a great many uses, but for now let’s say that it’s primarily a library for dealing with the
sort of linear algebra that comes from discretized PDEs. On a single processor, the basics of such computations can
be coded out by a grad student during a semester course in numerical analysis, but on large scale issues get much
more complicated and a library becomes indispensible.

PETSc’s prime justification is then that it helps you realize scientific computations at large scales, meaning large
problem sizes on large numbers of processors.

There are two points to emphasize here:
• Linear algebra with dense matrices is relatively simple to formulate. For sparse matrices the amount of
logistics in dealing with nonzero patterns increases greatly. PETSc does most of that for you.

• Linear algebra on a single processor, even a multicore one, is managable; distributed memory parallelism
is much harder, and distributed memory sparse linear algebra operations are doubly so. Using PETSc will
save you many, many, Many! hours of coding over developing everything yourself from scratch.

Remark 41 The PETSc library has hundreds of routines. In this chapter and the next few we will only touch on a basic
subset of these. The full list of man pages can be found at https://petsc.org/release/docs/manualpages/
singleindex.html. Each man page comes with links to related routines, as well as (usually) example codes for that
routine.

31.1.1 What is in PETSc?
The routines in PETSc (of which there are hundreds) can roughly be divided in these classes:

• Basic linear algebra tools: dense and sparse matrices, both sequential and parallel, their construction and
simple operations.

• Solvers for linear systems, and to a lesser extent nonlinear systems; also time-stepping methods.
• Profiling and tracing: after a successful run, timing for various routines can be given. In case of failure,
there are traceback and memory tracing facilities.

31.1.2 Programming model
PETSc, being based on MPI, uses the SPMD programming model (section 2.1), where all processes execute the same
executable. Even more than in regular MPI codes, this makes sense here, since most PETSc objects are collectively
created on some communicator, often MPI_COMM_WORLD. With the object-oriented design (section 31.1.3) this means
that a PETSc program almost looks like a sequential program.
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MatMult(A,x,y); // y <- Ax
VecCopy(y,res); // r <- y
VecAXPY(res,-1.,b); // r <- r - b

This is sometimes called sequential semantics.

31.1.3 Design philosophy
PETSc has an object-oriented design, even though it is written in C. There are classes of objects, such as Mat for
matrices and Vec for Vectors, but there is also the KSP (for ”Krylov SPace solver”) class of linear system solvers, and
PetscViewer for outputting matrices and vectors to screen or file.

Part of the object-oriented design is the polymorphism of objects: after you have created a Mat matrix as sparse or
dense, all methods such as MatMult (for the matrix-vector product) take the same arguments: the matrix, and an
input and output vector.

This design where the programmer manipulates a ‘handle’ also means that the internal of the object, the actual
storage of the elements, is hidden from the programmer. This hiding goes so far that even filling in elements is not
done directly but through function calls:

VecSetValue(i,j,v,mode)
MatSetValue(i,j,v,mode)
MatSetValues(ni,is,nj,js,v,mode)

31.1.4 Language support

31.1.4.1 C/C++

PETSc is implemented in C, so there is a natural interface to C. There is no separate C++ interface.

31.1.4.2 Fortran

A Fortran90 interface exists. The Fortran77 interface is only of interest for historical reasons.

To use Fortran, include both a module and a cpp header file:
#include "petsc/finclude/petscXXX.h"
use petscXXX
(here XXX stands for one of the PETSc types, but including petsc.h and using use petsc gives inclusion of the
whole library.)

Variables can be declared with their type (Vec, Mat, KSP et cetera), but internally they are Fortran Type objects so
they can be declared as such.

Example:

#include "petsc/finclude/petscvec.h"
use petscvec
Vec b
type(tVec) x

The output arguments of many query routines are optional in PETSc. While in C a generic NULL can be passed,
Fortran has type-specific nulls, such as PETSC_NULL_INTEGER, PETSC_NULL_OBJECT.
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31.1.4.3 Python

A python interface was written by Lisandro Dalcin. It can be added to to PETSc at installation time; section 31.3.

This book discusses the Python interface in short remarks in the appropriate sections.

31.1.5 Documentation
PETSc comes with a manual in pdf form and web pages with the documentation for every routine. The starting
point is the web page https://petsc.org/release/documentation/.

There is also a mailing list with excellent support for questions and bug reports.

TACC note. For questions specific to using PETSc on TACC resources, submit tickets to the TACC or XSEDE
portal.

31.2 Basics of running a PETSc program
31.2.1 Compilation
A PETSc compilation needs a number of include and library paths, probably too many to specify interactively.
The easiest solution is to create a makefile and load the standard variables and compilation rules. (You can use
$PETSC_DIR/share/petsc/Makefile.user for inspiration.)

Throughout, we will assume that variables PETSC_DIR and PETSC_ARCH have been set. These depend on your local
installation; see section 31.3.

In the easiest setup, you leave the compilation to PETSc and your make rules only do the link step, using CLINKER
or FLINKER for C/Fortran respectively:
include ${PETSC_DIR}/lib/petsc/conf/variables
include ${PETSC_DIR}/lib/petsc/conf/rules
program : program.o

${CLINKER} -o $@ $^ ${PETSC_LIB}
The two include lines provide the compilation rule and the library variable.

You can use these rules:
% : %.F90

$(LINK.F) -o $@ $^ $(LDLIBS)
%.o: %.F90

$(COMPILE.F) $(OUTPUT_OPTION) $<
% : %.cxx

$(LINK.cc) -o $@ $^ $(LDLIBS)
%.o: %.cxx

$(COMPILE.cc) $(OUTPUT_OPTION) $<

## example link rule:
# app : a.o b.o c.o
# $(LINK.F) -o $@ $^ $(LDLIBS)
(The PETSC_CC_INCLUDES variable contains all paths for compilation of C programs; correspondingly there is
PETSC_FC_INCLUDES for Fortran source.)

If don’t want to include those configuration files, you can find out the include options by:
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cd $PETSC_DIR
make getincludedirs
make getlinklibs
and copying the results into your compilation script.

There is an example makefile $PETSC_DIR/share/petsc/Makefile.user you can take for inspiration. Invoked
without arguments it prints out the relevant variables:

[c:246] make -f ! $PETSC_DIR/share/petsc/Makefile.user
CC=/Users/eijkhout/Installation/petsc/petsc-3.13/macx-clang-debug/bin/mpicc
CXX=/Users/eijkhout/Installation/petsc/petsc-3.13/macx-clang-debug/bin/mpicxx
FC=/Users/eijkhout/Installation/petsc/petsc-3.13/macx-clang-debug/bin/mpif90
CFLAGS=-Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -fstack-protector -Qunused-arguments -fvisibility=hidden -g3
CXXFLAGS=-Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -fstack-protector -fvisibility=hidden -g
FFLAGS=-m64 -g
CPPFLAGS=-I/Users/eijkhout/Installation/petsc/petsc-3.13/macx-clang-debug/include -I/Users/eijkhout/Installation/petsc/petsc-3.13/include
LDFLAGS=-L/Users/eijkhout/Installation/petsc/petsc-3.13/macx-clang-debug/lib -Wl,-rpath,/Users/eijkhout/Installation/petsc/petsc-3.13/macx-clang-debug/lib
LDLIBS=-lpetsc -lm
TACC note. On TACC clusters, a petsc installation is loaded by commands such as

module load petsc/3.16
Use module avail petsc to see what configurations exist. The basic versions are

# development
module load petsc/3.11-debug
# production
module load petsc/3.11

Other installations are real versus complex, or 64bit integers instead of the default 32. The command

module spider petsc
tells you all the available petsc versions. The listed modules have a naming convention such as
petsc/3.11-i64debug where the 3.11 is the PETSc release (minor patches are not included in this
version; TACC aims to install only the latest patch, but generally several versions are available), and
i64debug describes the debug version of the installation with 64bit integers.

31.2.2 Running

PETSc programs use MPI for parallelism, so they are started like any other MPI program:

mpiexec -n 5 -machinefile mf \
your_petsc_program option1 option2 option3

TACC note. On TACC clusters, use ibrun.

31.2.3 Initialization and finalization

PETSc has an call that initializes both PETSc andMPI, so normally you would replace MPI_Init by PetscInitialize
(figure 31.1). Unlike with MPI, you do not want to use a NULL value for the argc,argv arguments, since PETSc
makes extensive use of commandline options; see section 38.3.

// init.c
PetscCall( PetscInitialize
(&argc,&argv,(char*)0,help) );
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Figure 31.1 PetscInitialize
C:
PetscErrorCode PetscInitialize

(int *argc,char ***args,const char file[],const char help[])

Input Parameters:
argc - count of number of command line arguments
args - the command line arguments
file - [optional] PETSc database file.
help - [optional] Help message to print, use NULL for no message

Fortran:
call PetscInitialize(file,ierr)

Input parameters:
ierr - error return code
file - [optional] PETSc database file,

use PETSC_NULL_CHARACTER to not check for code specific file.

int flag;
MPI_Initialized(&flag);
if (flag)

printf("MPI was initialized by PETSc\n");
else

printf("MPI not yet initialized\n");

There are two further arguments to PetscInitialize:

1. the name of an options database file; and
2. a help string, that is displayed if you run your program with the -h option.

Fortran note 27: Petsc Initialization. The Fortran version has no arguments for commandline options; however, you
can pass a file of database options:

PetscInitialize(filename,ierr)

If none is specified, give PETSC_NULL_CHARACTER as argument.

For passing help information there is a variant that takes a help string:
Code:

!! mainhelp.F90
Character(len=50) :: help = "This program

↪demonstrates help info"
help = trim(help) // NEW_LINE('A')
call PetscInitialize(PETSC_NULL_CHARACTER,help,ierr)
CHKERRA(ierr)

Output:

This program demonstrates help info

If your main program is in C, but some of your PETSc calls are in Fortran files, it is necessary to call
PetscInitializeFortran after PetscInitialize.

!! init.F90
call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
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CHKERRA(ierr)
call MPI_Initialized(flag,ierr)
CHKERRA(ierr)
if (flag) then

print *,"MPI was initialized by PETSc"

Python note 37: Init, and with commandline options. The following works if you don’t need commandline options.

from petsc4py import PETSc

To pass commandline arguments to PETSc, do:

import sys
from petsc4py import init
init(sys.argv)
from petsc4py import PETSc

After initialization, you can use MPI_COMM_WORLD or PETSC_COMM_WORLD (which is created by MPI_Comm_dup and used
internally by PETSc):

MPI_Comm comm = PETSC_COMM_WORLD;
MPI_Comm_rank(comm,&mytid);
MPI_Comm_size(comm,&ntids);

Python note 38: Communicator object.

comm = PETSc.COMM_WORLD
nprocs = comm.getSize(self)
procno = comm.getRank(self)

The corresponding call to replace MPI_Finalize is PetscFinalize. You can elegantly capture and return the error
code by the idiom

return PetscFinalize();

at the end of your main program.

31.3 PETSc installation

PETSc has a large number of installation options. These can roughly be divided into:

1. Options to describe the environment inwhich PETSc is being installed, such as the names of the compilers
or the location of the MPI library;

2. Options to specify the type of PETSc installation: real versus complex, 32 versus 64-bit integers, et cetera;
3. Options to specify additional packages to download.

For an existing installation, you can find the options used, and other aspects of the build history, in the
configure.log / make.log files:

$PETSC_DIR/$PETSC_ARCH/lib/petsc/conf/configure.log
$PETSC_DIR/$PETSC_ARCH/lib/petsc/conf/make.log
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31.3.1 Versions

PETSc is up to version 3.18.x as of this writing. Older versions may miss certain routines, or display certain bugs.
However, older versions may also contain routines and keywords that have subsequently been removed. PETSc
version are not backwards compatible!

The version is stored in macros PETSC_VERSION, PETSC_VERSION_MAJOR, PETSC_VERSION_MINOR,
PETSC_VERSION_SUBMINOR.

For testing, the following macros are defined: PETSC_VERSION_EQ/LT/LE/GT/GE Example:

// cudainit316.c
#include <petsc.h>
#if PETSC_VERSION_LT(3,17,0)
#else
#error This program uses APIs abandoned in 3.17
#endif

31.3.2 Debug

For any set of options, you will typically make two installations: one with -with-debugging=yes and once no.
See section 38.1.1 for more detail on the differences between debug and non-debug mode.

31.3.3 Environment options

Compilers, compiler options, MPI.

While it is possible to specify -download_mpich, this should only be done on machines that you are certain do not
already have an MPI library, such as your personal laptop. Supercomputer clusters are likely to have an optimized
MPI library, and letting PETSc download its own will lead to degraded performance.

31.3.4 Variants

• Scalars: the option -with-scalar-type has values real, complex; -with-precision has values single,
double, __float128, __fp16.

31.4 External packages
PETSc can extend its functionality through external packages such as mumps, Hypre, fftw. These can be specified
in two ways:

1. Referring to an installation already on your system:
--with-hdf5-include=${TACC_HDF5_INC}
--with-hf5_lib=${TACC_HDF5_LIB}

2. By letting petsc download and install them itself:
--with-parmetis=1 --download-parmetis=1

Python note 39: petsc4py interface. The Python interface (section 31.1.4.3) can be installed with the option

--download-petsc4py=<no,yes,filename,url>
This is easiest if your python already includes mpi4py; see section 1.5.4.
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Remark 42 There are two packages that PETSc is capable of downloading and install, but that you may want to avoid:
• fblaslapack: this gives you BLAS/LAPACK through the Fortran ‘reference implementation’. If you have

an optimized version, such as Intel’s mkl available, this will give much higher performance.
• mpich: this installs a MPI implementation, which may be required for your laptop. However, supercomputer

clusters will already have an MPI implementation that uses the high-speed network. PETSc’s downloaded
version does not do that. Again, finding and using the already installed software may greatly improve your
performance.

31.4.1 Slepc

Most external packages add functionality to the lower layers of Petsc. For instance, the Hypre package adds some
preconditioners to Petsc’s repertoire (section 35.1.7.3), while Mumps (section 35.2) makes it possible to use the LU
preconditioner in parallel.

On the other hand, there are packages that use Petsc as a lower level tool. In particular, the eigenvalue solver package
Slepc [28] can be installed through the options

--download-slepc=<no,yes,filename,url>
Download and install slepc current: no

--download-slepc-commit=commitid
The commit id from a git repository to use for the build of slepc current: 0

--download-slepc-configure-arguments=string
Additional configure arguments for the build of SLEPc

The slepc header files wind up in the same directory as the petsc headers, so no change to your compilation rules
are needed. However, you need to add -lslepc to the link line.
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32.1 Distributed objects
PETSc is based on the SPMDmodel, and all its objects act like they exist in parallel, spread out over all the processes.
Therefore, prior to discussing specific objects in detail, we briefly discuss how PETSc treats distributed objects.

For a matrix or vector you need to specify the size. This can be done two ways:

• you specify the global size and PETSc distributes the object over the processes, or
• you specify on each process the local size

If you specify both the global size and the local sizes, PETSc will check for consistency.

For example, if you have a vector of 𝑁 components, or a matrix of 𝑁 rows, and you have 𝑃 processes, each process
will receive 𝑁/𝑃 components or rows if 𝑃 divides evenly in 𝑁 . If 𝑃 does not divide evenly, the excess is spread over
the processes.

Theway the distribution is done is by contiguous blocks: with 10 processes and 1000 components in a vector, process
0 gets the range 0⋯ 99, process 1 gets 1⋯ 199, et cetera. This simple scheme suffices for many cases, but PETSc has
facilities for more sophisticated load balancing.

32.1.1 Support for distributions

Once an object has been created and distributed, you do not need to remember the size or the distribution yourself:
you can query these with calls such as VecGetSize, VecGetLocalSize.

The corresponding matrix routines MatGetSize, MatGetLocalSize give both information for the distributions in 𝑖
and 𝑗 direction, which can be independent. Since a matrix is distributed by rows, MatGetOwnershipRange only gives
a row range.
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Figure 32.1 PetscSplitOwnership
PetscSplitOwnership

Synopsis
#include "petscsys.h"
PetscErrorCode PetscSplitOwnership

(MPI_Comm comm,PetscInt *n,PetscInt *N)

Collective (if n or N is PETSC_DECIDE)

Input Parameters
comm - MPI communicator that shares the object being divided
n - local length (or PETSC_DECIDE to have it set)
N - global length (or PETSC_DECIDE)

// split.c
N = 100; n = PETSC_DECIDE;
PetscSplitOwnership(comm,&n,&N);
PetscPrintf(comm,"Global %d, local %d\n",N,n);

N = PETSC_DECIDE; n = 10;
PetscSplitOwnership(comm,&n,&N);
PetscPrintf(comm,"Global %d, local %d\n",N,n);

While PETSc objects are implemented using local memory on each process, conceptually they act like global objects,
with a global indexing scheme. Thus, each process can query which elements out of the global object are stored
locally. For vectors, the relevant routine is VecGetOwnershipRange, which returns two parameters, low and high,
respectively the first element index stored, and one-more-than-the-last index stored.

This gives the idiom:

VecGetOwnershipRange(myvector,&low,&high);
for (int myidx=low; myidx<high; myidx++)
// do something at index myidx

These conversions between local and global size can also be done explicitly, using the PetscSplitOwnership (fig-
ure 32.1) routine. This routine takes two parameter, for the local and global size, and whichever one is initialized to
PETSC_DECIDE gets computed from the other.

32.2 Scalars
Unlike programming languages that explicitly distinguish between single and double precision numbers, PETSc has
only a single scalar type: PetscScalar. The precision of this is determined at installation time. In fact, a PetscScalar
can even be a complex number if the installation specified that the scalar type is complex.

Even in applications that use complex numbers there can be quantities that are real: for instance, the norm of a
complex vector is a real number. For that reason, PETSc also has the type PetscReal. There is also an explicit
PetscComplex.

Furthermore, there is

Victor Eijkhout 469



32. PETSc objects

#define PETSC_BINARY_INT_SIZE (32/8)
#define PETSC_BINARY_FLOAT_SIZE (32/8)
#define PETSC_BINARY_CHAR_SIZE (8/8)
#define PETSC_BINARY_SHORT_SIZE (16/8)
#define PETSC_BINARY_DOUBLE_SIZE (64/8)
#define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)

32.2.1 Integers

Integers in PETSc are likewise of a size determined at installation time: PetscInt can be 32 or 64 bits. The latter
possibility is useful for indexing into large vectors and matrices. Furthermore, there is a PetscErrorCode type for
catching the return code of PETSc routines; see section 38.1.2.

For compatibility with other packages there are two more integer types:

• PetscBLASInt is the integer type used by the Basic Linear Algebra Subprograms (BLAS) / Linear Alge-
bra Package (LAPACK) library. This is 32-bits if the -download-blas-lapack option is used, but it can
be 64-bit if MKL is used. The routine PetscBLASIntCast casts a PetscInt to PetscBLASInt, or returns
PETSC_ERR_ARG_OUTOFRANGE if it is too large.

• PetscMPIInt is the integer type of the MPI library, which is always 32-bits. The routine PetscMPIIntCast
casts a PetscInt to PetscMPIInt, or returns PETSC_ERR_ARG_OUTOFRANGE if it is too large.

Many external packages do not support 64-bit integers.

32.2.2 Complex

Numbers of type PetscComplex have a precision matching PetscReal.

Form a complex number using PETSC_i:

PetscComplex x = 1.0 + 2.0 * PETSC_i;

The real and imaginary part can be extract with the functions PetscRealPart and PetscImaginaryPartwhich return
a PetscReal.

There are also routines VecRealPart and VecImaginaryPart that replace a vector with its real or imaginary part
respectively. Likewise MatRealPart and MatImaginaryPart.

32.2.3 MPI Scalars

For MPI calls, MPIU_REAL is the MPI type corresponding to the current PetscReal.

For MPI calls, MPIU_SCALAR is the MPI type corresponding to the current PetscScalar.

For MPI calls, MPIU_COMPLEX is the MPI type corresponding to the current PetscComplex.

32.2.4 Booleans

There is a PetscBool datatype with values PETSC_TRUE and PETSC_FALSE.
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Figure 32.2 VecCreate
C:
PetscErrorCode VecCreate(MPI_Comm comm,Vec *v);

F:
VecCreate( comm,v,ierr )
MPI_Comm :: comm
Vec :: v
PetscErrorCode :: ierr

Python:
vec = PETSc.Vec()
vec.create()
# or:
vec = PETSc.Vec().create()

Figure 32.3 VecDestroy
Synopsis
#include "petscvec.h"
PetscErrorCode VecDestroy(Vec *v)

Collective on Vec

Input Parameters:
v -the vector

32.3 Vec: Vectors
Vectors are objects with a linear index. The elements of a vector are floating point numbers or complex numbers
(see section 32.2), but not integers: for that see section 32.5.1.

32.3.1 Vector construction

Constructing a vector takes a number of steps. First of all, the vector object needs to be created on a communicator
with VecCreate (figure 32.2)

Python note 40: Vector creation. In python, PETSc.Vec() creates an object with null handle, so a subsequent
create() call is needed. In C and Fortran, the vector type is a keyword; in Python it is a member of
PETSc.Vec.Type.

## setvalues.py
comm = PETSc.COMM_WORLD
x = PETSc.Vec().create(comm=comm)
x.setType(PETSc.Vec.Type.MPI)

The corresponding routine VecDestroy (figure 32.3) deallocates data and zeros the pointer. (This and all other De-
stroy routines are collective because of underlying MPI technicalities.)

The vector type needs to be set with VecSetType (figure 32.4).

The most common vector types are:

Victor Eijkhout 471



32. PETSc objects

Figure 32.4 VecSetType
Synopsis:
#include "petscvec.h"
PetscErrorCode VecSetType(Vec vec, VecType method)

Collective on Vec

Input Parameters:
vec- The vector object
method- The name of the vector type

Options Database Key
-vec_type <type> -Sets the vector type; use -help for a list of available types

• VECSEQ for sequential vectors, that is, living on a single process; This is typically created on the
MPI_COMM_SELF or PETSC_COMM_SELF communicator.

• VECMPI for a vector distributed over the communicator. This is typically created on the MPI_COMM_WORLD
or PETSC_COMM_WORLD communicator, or one derived from it.

• VECSTANDARD is VECSEQ when used on a single process, or VECMPI on multiple.

You may wonder why these types exist: you could have just one type, which would be as parallel as possible. The
reason is that in a parallel run you may occasionally have a separate linear system on each process, which would
require a sequential vector (and matrix) on each process, not part of a larger linear system.

Once you have created one vector, you can make more like it by VecDuplicate,

VecDuplicate(Vec old,Vec *new);

or VecDuplicateVecs

VecDuplicateVecs(Vec old,PetscInt n,Vec **new);

for multiple vectors. For the latter, there is a joint destroy call VecDestroyVecs:

VecDestroyVecs(PetscInt n,Vec **vecs);

(which is different in Fortran).

32.3.2 Vector layout

Next in the creation process the vector size is set with VecSetSizes (figure 32.5). Since a vector is typically dis-
tributed, this involves the global size and the sizes on the processors. Setting both is redundant, so it is possible to
specify one and let the other be computed by the library. This is indicated by setting it to PETSC_DECIDE.

Python note 41: Vector size. Use PETSc.DECIDE for the parameter not specified:

x.setSizes([2,PETSc.DECIDE])

The size is queried with VecGetSize (figure 32.6) for the global size and VecGetLocalSize (figure 32.6) for the local
size.

Each processor gets a contiguous part of the vector. Use VecGetOwnershipRange (figure 32.7) to query the first index
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Figure 32.5 VecSetSizes
C:
#include "petscvec.h"
PetscErrorCode VecSetSizes(Vec v, PetscInt n, PetscInt N)
Collective on Vec

Input Parameters
v :the vector
n : the local size (or PETSC_DECIDE to have it set)
N : the global size (or PETSC_DECIDE)

Python:
PETSc.Vec.setSizes(self, size, bsize=None)
size is a tuple of local/global

Figure 32.6 VecGetSize
VecGetSize / VecGetLocalSize

C:
#include "petscvec.h"
PetscErrorCode VecGetSize(Vec x,PetscInt *gsize)
PetscErrorCode VecGetLocalSize(Vec x,PetscInt *lsize)

Input Parameter
x -the vector

Output Parameters
gsize - the global length of the vector
lsize - the local length of the vector

Python:
PETSc.Vec.getLocalSize(self)
PETSc.Vec.getSize(self)
PETSc.Vec.getSizes(self)

Figure 32.7 VecGetOwnershipRange
#include "petscvec.h"
PetscErrorCode VecGetOwnershipRange(Vec x,PetscInt *low,PetscInt *high)

Input parameter:
x - the vector

Output parameters:
low - the first local element, pass in NULL if not interested
high - one more than the last local element, pass in NULL if not interested

Fortran note:
use PETSC_NULL_INTEGER for NULL.
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Figure 32.8 VecAXPY
Synopsis:
#include "petscvec.h"
PetscErrorCode VecAXPY(Vec y,PetscScalar alpha,Vec x)

Not collective on Vec

Input Parameters:
alpha - the scalar
x, y - the vectors

Output Parameter:
y - output vector

Figure 32.9 VecView
C:
#include "petscvec.h"
PetscErrorCode VecView(Vec vec,PetscViewer viewer)

for ascii output use:
PETSC_VIEWER_STDOUT_WORLD

Python:
PETSc.Vec.view(self, Viewer viewer=None)

ascii output is default or use:
PETSc.Viewer.STDOUT(type cls, comm=None)

on this process, and the first one of the next process.

In general it is best to let PETSc take care of memory management of matrix and vector objects, including allocating
and freeing the memory. However, in cases where PETSc interfaces to other applications it maybe desirable to create
a Vec object from an already allocated array: VecCreateSeqWithArray and VecCreateMPIWithArray.

VecCreateSeqWithArray
(MPI_Comm comm,PetscInt bs,
PetscInt n,PetscScalar *array,Vec *V);

VecCreateMPIWithArray
(MPI_Comm comm,PetscInt bs,
PetscInt n,PetscInt N,PetscScalar *array,Vec *vv);

As you will see in section 32.4.1, you can also create vectors based on the layout of a matrix, using MatCreateVecs.

32.3.3 Vector operations

There are many routines operating on vectors that you need to write scientific applications. Examples are: norms,
vector addition (including BLAS-type ‘AXPY’ routines: VecAXPY (figure 32.8)), pointwise scaling, inner products.
A large number of such operations are available in PETSc through single function calls to VecXYZ routines.

For debugging purpoases, the VecView (figure 32.9) routine can be used to display vectors on screen as ascii output,

// fftsine.c
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PetscCall( VecView(signal,PETSC_VIEWER_STDOUT_WORLD) );
PetscCall( MatMult(transform,signal,frequencies) );
PetscCall( VecScale(frequencies,1./Nglobal) );
PetscCall( VecView(frequencies,PETSC_VIEWER_STDOUT_WORLD) );

but the routine call also use more general PetscViewer objects, for instance to dump a vector to file.

Here are a couple of representative vector routines:

PetscReal lambda;
ierr = VecNorm(y,NORM_2,&lambda); CHKERRQ(ierr);
ierr = VecScale(y,1./lambda); CHKERRQ(ierr);

Exercise 32.1. Create a vector where the values are a single sine wave. using VecGetSize,
VecGetLocalSize, VecGetOwnershipRange. Quick visual inspection:
ibrun vec -n 12 -vec_view
(There is a skeleton for this exercise under the name vec.)

Solution to exercise 32.1. Different appraoches to the solution:

PetscInt globalsize;
VecGetSize(x,&globalsize);
for (int index=0; index<globalsize; index++) {

PetscScalar value = ... index ...;
VecSetValue( x,index,value, INSERT_VALUES );

}
VecAssemblyBegin(x);
VecAssemblyEnd(x);

This works, but values get set multiple times, which is not elegant, and there is a lot of message
traffic in the assembly.

PetscInt localsize,myfirst,mylast;
VecGetLocalSize(x,&localsize);
VecGetOwnershipRange(x,&myfirst,&mylast);
for (int index=0; index<localsize; index++) {

PetscScalar value = ... myfirst+index ...;
VecSetValue( x,myfirst+index,value, INSERT_VALUES );

}
VecAssemblyBegin(x);
VecAssemblyEnd(x);

This set only local values, by iterating precisely of the local array.

PetscInt myfirst,mylast;
VecGetOwnershipRange(x,&myfirst,&mylast);
for (int index=myfirst; index<mylast; index++) {

PetscScalar value = ... index ...;
VecSetValue( x,index,value, INSERT_VALUES );

}
VecAssemblyBegin(x);
VecAssemblyEnd(x);

Also great.
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Figure 32.10 VecDot
Synopsis:
#include "petscvec.h"
PetscErrorCode VecDot(Vec x,Vec y,PetscScalar *val)

Collective on Vec

Input Parameters:
x, y - the vectors

Output Parameter:
val - the dot product

Figure 32.11 VecScale
Synopsis:
#include "petscvec.h"
PetscErrorCode VecScale(Vec x, PetscScalar alpha)

Not collective on Vec

Input Parameters:
x - the vector
alpha - the scalar

Output Parameter:
x - the scaled vector

Figure 32.12 VecNorm
C:
#include "petscvec.h"
PetscErrorCode VecNorm(Vec x,NormType type,PetscReal *val)
where type is

NORM_1, NORM_2, NORM_FROBENIUS, NORM_INFINITY

Python:
PETSc.Vec.norm(self, norm_type=None)

where norm is variable in PETSc.NormType:
NORM_1, NORM_2, NORM_FROBENIUS, NORM_INFINITY or
N1, N2, FRB, INF
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Exercise 32.2. Use the routines VecDot (figure 32.10), VecScale (figure 32.11) and VecNorm
(figure 32.12) to compute the inner product of vectors x,y, scale the vector x, and check its
norm:

𝑝 ← 𝑥 𝑡𝑦
𝑥 ← 𝑥/𝑝
𝑛 ← ‖𝑥‖2

Python note 42: Vector operations. The plus operator is overloaded so that

x+y

is defined.

x.sum() # max,min,....
x.dot(y)
x.norm(PETSc.NormType.NORM_INFINITY)

32.3.3.1 Split collectives

MPI is capable (in principle) of ‘overlapping computation and communication’, or latency hiding. PETSc supports
this by splitting norms and inner products into two phases.

• Start inner product / norm with VecDotBegin / VecNormBegin;
• Conclude inner product / norm with VecDotEnd / VecNormEnd;

Even if you achieve no overlap, it is possible to use these calls to combine a number of ‘collectives’: do the Begin
calls of one inner product and one norm; then do (in the same sequence) the End calls. This means that only a single
reduction is performed on a two-word package, rather than two separate reductions on a single word.

32.3.4 Vector elements

Setting elements of a traditional array is simple. Setting elements of a distributed array is harder. First of all, VecSet
sets the vector to a constant value:

ierr = VecSet(x,1.); CHKERRQ(ierr);

In the general case, setting elements in a PETSc vector is done through a function VecSetValue (figure 32.13) for
setting elements that uses global numbering; any process can set any elements in the vector. There is also a routine
VecSetValues (figure 32.14) for setting multiple elements. This is mostly useful for setting dense subblocks of a
block matrix.

We illustrate both routines by setting a single element with VecSetValue, and two elements with VecSetValues. In
the latter case we need an array of length two for both the indices and values. The indices need not be successive.

i = 1; v = 3.14;
VecSetValue(x,i,v,INSERT_VALUES);
ii[0] = 1; ii[1] = 2; vv[0] = 2.7; vv[1] = 3.1;
VecSetValues(x,2,ii,vv,INSERT_VALUES);
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Figure 32.13 VecSetValue
Synopsis
#include <petscvec.h>
PetscErrorCode VecSetValue

(Vec v,PetscInt row,PetscScalar value,InsertMode mode);

Not Collective

Input Parameters
v- the vector
row- the row location of the entry
value- the value to insert
mode- either INSERT_VALUES or ADD_VALUES

Figure 32.14 VecSetValues
Synopsis
#include "petscvec.h"
PetscErrorCode VecSetValues

(Vec x,PetscInt ni,const PetscInt
ix[],const PetscScalar y[],InsertMode iora)

Not Collective

Input Parameters:
x - vector to insert in
ni - number of elements to add
ix - indices where to add
y - array of values
iora - either INSERT_VALUES or ADD_VALUES, where

ADD_VALUES adds values to any existing entries, and
INSERT_VALUES replaces existing entries with new values

Fortran note 28: Setting values. The value/values routines work the same way in Fortran. Note that despite type
checking, using the ‘values’ routine and passing scalars, is allowed:

Python note 43: Setting vector values. Single element:

x.setValue(0,1.)

Multiple elements:

x.setValues( [2*procno,2*procno+1], [2.,3.] )

Using VecSetValue for specifying a local vector element corresponds to simple insertion in the local array. However,
an element that belongs to another process needs to be transferred. This done in two calls: VecAssemblyBegin
(figure 32.15) and VecAssemblyEnd.

if (myrank==0) then
do vecidx=0,globalsize-1

vecelt = vecidx
call VecSetValue(vector,vecidx,vecelt,INSERT_VALUES,ierr)

end do
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Figure 32.15 VecAssemblyBegin
#include "petscvec.h"
PetscErrorCode VecAssemblyBegin(Vec vec)
PetscErrorCode VecAssemblyEnd(Vec vec)

Collective on Vec

Input Parameter
vec -the vector

Figure 32.16 VecGetArray
// vecarray.c
PetscScalar const *in_array;
PetscScalar *out_array;
VecGetArrayRead(x,&in_array);
VecGetArray(y,&out_array);
PetscInt localsize;
VecGetLocalSize(x,&localsize);
for (int i=0; i<localsize; i++)
out_array[i] = 2*in_array[i];

VecRestoreArrayRead(x,&in_array);
VecRestoreArray(y,&out_array);

end if
call VecAssemblyBegin(vector,ierr)
call VecAssemblyEnd(vector,ierr)

(If you know theMPI library, you’ll recognize that the first call corresponds to posting nonblocking send and receive
calls; the second then contains thewait calls. Thus, the existence of these separate calls make latency hiding possible.)

VecAssemblyBegin(myvec);
// do work that does not need the vector myvec
VecAssemblyEnd(myvec);

Elements can either be inserted with INSERT_VALUES, or added with ADD_VALUES in the VecSetValue / VecSetValues
call. You can not immediately mix these modes; to do so you need to call VecAssemblyBegin / VecAssemblyEnd in
between add/insert phases.

32.3.4.1 Explicit element access

Since the vector routines cover a large repertoire of operations, you hardly ever need to access the actual elements.
Should you still need those elements, you can use VecGetArray (figure 32.16) for general access or VecGetArrayRead
(figure 32.16) for read-only.

PETSc insists that you properly release this pointer again with VecRestoreArray (figure 32.17) or
VecRestoreArrayRead (figure 32.17).

In the following example, a vector is scaled through direct array access. Note the differing calls for the source and
target vector, and note the const qualifier on the source array:
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Figure 32.17 VecRestoreArray
C:
#include "petscvec.h"
PetscErrorCode VecRestoreArray(Vec x,PetscScalar **a)

Logically Collective on Vec

Input Parameters:
x- the vector
a- location of pointer to array obtained from VecGetArray()

Fortran90:
#include <petsc/finclude/petscvec.h>
use petscvec
VecRestoreArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

Input Parameters:
x- vector
xx_v- the Fortran90 pointer to the array

// vecarray.c
PetscScalar const *in_array;
PetscScalar *out_array;
VecGetArrayRead(x,&in_array);
VecGetArray(y,&out_array);
PetscInt localsize;
VecGetLocalSize(x,&localsize);
for (int i=0; i<localsize; i++)

out_array[i] = 2*in_array[i];
VecRestoreArrayRead(x,&in_array);
VecRestoreArray(y,&out_array);

This example also uses VecGetLocalSize to determine the size of the data accessed. Even running in a distributed
context you can only get the array of local elements. Accessing the elements from another process requires explicit
communication; see section 32.5.2.

There are some variants to the VecGetArray operation:

• VecReplaceArray (figure 32.18) frees the memory of the Vec object, and replaces it with a different array.
That latter array needs to be allocated with PetscMalloc.

• VecPlaceArray (figure 32.18) also installs a new array in the vector, but it keeps the original array; this
can be restored with VecResetArray.

Putting the array of one vector into another has a common application, where you have a distributed vector, but
want to apply PETSc operations to its local section as if it were a sequential vector. In that case you would create a
sequential vector, and VecPlaceArray the contents of the distributed vector into it.

Fortran note 29: F90 array access through pointer. There are routines such as VecGetArrayF90 (with corresponding
VecRestoreArrayF90) that return a (Fortran) pointer to a one-dimensional array.

!! vecset.F90
Vec :: vector
PetscScalar,dimension(:),pointer :: elements
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Figure 32.18 VecPlaceArray
Replace the storage of a vector by another array
Synopsis

#include "petscvec.h"
PetscErrorCode VecPlaceArray(Vec vec,const PetscScalar array[])
PetscErrorCode VecReplaceArray(Vec vec,const PetscScalar array[])

Input Parameters
vec - the vector
array - the array

call VecGetArrayF90(vector,elements,ierr)
write (msg,10) myrank,elements(1)

10 format("First element on process",i3,":",f7.4,"\n")
call PetscSynchronizedPrintf(comm,msg,ierr)
call PetscSynchronizedFlush(comm,PETSC_STDOUT,ierr)
call VecRestoreArrayF90(vector,elements,ierr)

!! vecarray.F90
PetscScalar,dimension(:),Pointer :: &

in_array,out_array
call VecGetArrayReadF90( x,in_array,ierr )
call VecGetArrayF90( y,out_array,ierr )
call VecGetLocalSize( x,localsize,ierr )
do index=1,localsize

out_array(index) = 2*in_array(index)
end do
call VecRestoreArrayReadF90( x,in_array,ierr )
call VecRestoreArrayF90( y,out_array,ierr )

Python note 44: Vector access.

x.getArray()
x.getValues(3)
x.getValues([1, 2])

32.3.5 File I/O

As mentioned above, VecView can be used for displaying a vector on the terminal screen. However, viewers are
actually much more general. As explained in section 38.2.2, they can also be used to export vector data, for instance
to file.

The converse operation, to load a vector that was exported in this manner, is VecLoad.

Since these operations are each other’s inverses, usually you don’t need to know the file format. But just in case:

PetscInt VEC_FILE_CLASSID
PetscInt number of rows
PetscScalar *values of all entries
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Figure 32.19 MatCreate
C:
PetscErrorCode MatCreate(MPI_Comm comm,Mat *v);

Python:
mat = PETSc.Mat()
mat.create()
# or:
mat = PETSc.Mat().create()

Figure 32.20 MatSetType
#include "petscmat.h"
PetscErrorCode MatSetType(Mat mat, MatType matype)

Collective on Mat

Input Parameters:
mat- the matrix object
matype- matrix type

Options Database Key
-mat_type <method> -Sets the type; use -help for a list of available methods (for instance, seqaij)

That is, the file starts with a magic number, then the number of vector elements, and subsequently all scalar values.

32.4 Mat: Matrices
PETSc matrices come in a number of types, sparse and dense being the most important ones. Another possibility is
to have the matrix in operation form, where only the action 𝑦 ← 𝐴𝑥 is defined.

32.4.1 Matrix creation

Creating a matrix also starts by specifying a communicator on which the matrix lives collectively: MatCreate (fig-
ure 32.19)

Set the matrix type with MatSetType (figure 32.20). The main choices are between sequential versus distributed and
dense versus sparse, giving types: MATMPIDENSE, MATMPIAIJ, MATSEQDENSE, MATSEQAIJ.

Distributed matrices are partitioned by block rows: each process stores a block row, that is, a contiguous set of
matrix rows. It stores all elements in that block row. In order for a matrix-vector product to be executable, both the
input and output vector need to be partitioned conforming to the matrix.

While for dense matrices the block row scheme is not scalable, for matrices from PDEs it makes sense. There, a
subdivision by matrix blocks would lead to many empty blocks.

Just as with vectors, there is a local and global size; except that that now applies to rows and columns. Set sizes with
MatSetSizes (figure 32.21) and subsequently query them with MatSizes (figure 32.22). The concept of local column
size is tricky: since a process stores a full block row you may expect the local column size to be the full matrix size,
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Figure 32.1: Matrix partitioning by block rows

Figure 32.21 MatSetSizes
C:
#include "petscmat.h"
PetscErrorCode MatSetSizes(Mat A,

PetscInt m, PetscInt n, PetscInt M, PetscInt N)

Input Parameters
A : the matrix
m : number of local rows (or PETSC_DECIDE)
n : number of local columns (or PETSC_DECIDE)
M : number of global rows (or PETSC_DETERMINE)
N : number of global columns (or PETSC_DETERMINE)

Python:
PETSc.Mat.setSizes(self, size, bsize=None)
where 'size' is a tuple of 2 global sizes
or a tuple of 2 local/global pairs

but that is not true. The exact definition will be discussed later, but for square matrices it is a safe strategy to let the
local row and column size to be equal.

Instead of querying a matrix size and creating vectors accordingly, the routine MatCreateVecs (figure 32.23) can be
used. (Sometimes this is even required; see section 32.4.9.)

32.4.2 Nonzero structure

In case of a dense matrix, once you have specified the size and the number of MPI processes, it is simple to determine
how much space PETSc needs to allocate for the matrix. For a sparse matrix this is more complicated, since the
matrix can be anywhere between completely empty and completely filled in. It would be possible to have a dynamic
approach where, as elements are specified, the space grows; however, repeated allocations and re-allocations are
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Figure 32.22 MatSizes
C:
#include "petscmat.h"
PetscErrorCode MatGetSize(Mat mat,PetscInt *m,PetscInt *n)
PetscErrorCode MatGetLocalSize(Mat mat,PetscInt *m,PetscInt *n)

Python:
PETSc.Mat.getSize(self) # tuple of global sizes
PETSc.Mat.getLocalSize(self) # tuple of local sizes
PETSc.Mat.getSizes(self) # tuple of local/global size tuples

Figure 32.23 MatCreateVecs
Synopsis
Get vector(s) compatible with the matrix, i.e. with the same parallel layout

#include "petscmat.h"
PetscErrorCode MatCreateVecs(Mat mat,Vec *right,Vec *left)

Collective on Mat

Input Parameter
mat - the matrix

Output Parameter;
right - (optional) vector that the matrix can be multiplied against
left - (optional) vector that the matrix vector product can be stored in

inefficient. For this reason PETSc puts a small burden on the programmer: you need to specify a bound on how
many elements the matrix will contain.

We explain this by looking at some cases. First we consider a matrix that only lives on a single process. You would
then use MatSeqAIJSetPreallocation (figure 32.24). In the case of a tridiagonal matrix you would specify that each
row has three elements:

MatSeqAIJSetPreallocation(A,3, PETSC_NULLPTR);

If the matrix is less regular you can use the third argument to give an array of explicit row lengths:

int *rowlengths;
// allocate, and then:
for (int row=0; row<nrows; row++)

rowlengths[row] = // calculation of row length
MatSeqAIJSetPreallocation(A,PETSC_NULLPTR,rowlengths);

In case of a distributed matrix you need to specify this bound with respect to the block structure of the matrix.
As illustrated in figure 32.2, a matrix has a diagonal part and an off-diagonal part. The diagonal part describes the
matrix elements that couple elements of the input and output vector that live on this process. The off-diagonal part
contains the matrix elements that are multiplied with elements not on this process, in order to compute elements
that do live on this process.

The preallocation specification now has separate parameters for these diagonal and off-diagonal parts: with
MatMPIAIJSetPreallocation (figure 32.24). you specify for both either a global upper bound on the number of
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Figure 32.24 MatSeqAIJSetPreallocation
#include "petscmat.h"
PetscErrorCode MatSeqAIJSetPreallocation
(Mat B,PetscInt nz,const PetscInt nnz[])

PetscErrorCode MatMPIAIJSetPreallocation
(Mat B,PetscInt d_nz,const PetscInt d_nnz[],
PetscInt o_nz,const PetscInt o_nnz[])

Input Parameters

B - the matrix
nz/d_nz/o_nz - number of nonzeros per row in matrix or

diagonal/off-diagonal portion of local submatrix
nnz/d_nnz/o_nnz - array containing the number of nonzeros in the various rows of

the sequential matrix / diagonal / offdiagonal part of the local submatrix
or NULL (PETSC_NULL_INTEGER in Fortran) if nz/d_nz/o_nz is used.

Python:
PETSc.Mat.setPreallocationNNZ(self, [nnz_d,nnz_o] )
PETSc.Mat.setPreallocationCSR(self, csr)
PETSc.Mat.setPreallocationDense(self, array)

B

Diagonal block has on−processor
connections

Off−diagonal block
has off−processor connections

A

Figure 32.2: The diagonal and off-diagonal parts of a matrix

nonzeros, or a detailed listing of row lengths. For the matrix of the Laplace equation, this specification would seem
to be:

MatMPIAIJSetPreallocation(A, 3, PETSC_NULLPTR, 2, PETSC_NULLPTR);

However, this is only correct if the block structure from the parallel division equals that from the lines in the domain.
In general it may be necessary to use values that are an overestimate. It is then possible to contract the storage by
copying the matrix.

Specifying bounds on the number of nonzeros is often enough, and not too wasteful. However, if many rows have
fewer nonzeros than these bounds, a lot of space iswasted. In that case you can replace the PETSC_NULLPTR arguments
by an array that lists for each row the number of nonzeros in that row.
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Figure 32.25 MatSetValue
C:
#include <petscmat.h>
PetscErrorCode MatSetValue(

Mat m,PetscInt row,PetscInt col,PetscScalar value,InsertMode mode)

Input Parameters
m : the matrix
row : the row location of the entry
col : the column location of the entry
value : the value to insert
mode : either INSERT_VALUES or ADD_VALUES

Python:
PETSc.Mat.setValue(self, row, col, value, addv=None)
also supported:
A[row,col] = value

Figure 32.26 MatAssemblyBegin
C:
#include "petscmat.h"
PetscErrorCode MatAssemblyBegin(Mat mat,MatAssemblyType type)
PetscErrorCode MatAssemblyEnd(Mat mat,MatAssemblyType type)

Input Parameters
mat- the matrix
type- type of assembly, either MAT_FLUSH_ASSEMBLY

or MAT_FINAL_ASSEMBLY

Python:
assemble(self, assembly=None)
assemblyBegin(self, assembly=None)
assemblyEnd(self, assembly=None)

there is a class PETSc.Mat.AssemblyType:
FINAL = FINAL_ASSEMBLY = 0
FLUSH = FLUSH_ASSEMBLY = 1

32.4.3 Matrix elements

You can set a single matrix element with MatSetValue (figure 32.25) or a block of them, where you supply a set of
𝑖 and 𝑗 indices, using MatSetValues.

After setting matrix elements, the matrix needs to be assembled. This is where PETSc moves matrix elements to
the right processor, if they were specified elsewhere. As with vectors this takes two calls: MatAssemblyBegin (fig-
ure 32.26) and MatAssemblyEnd (figure 32.26) which can be used to achieve latency hiding.

Elements can either be inserted (INSERT_VALUES) or added (ADD_VALUES). You can not immediately mix these modes;
to do so you need to call MatAssemblyBegin / MatAssemblyEnd with a value of MAT_FLUSH_ASSEMBLY.

PETSc sparse matrices are very flexible: you can create them empty and then start adding elements. However, this
is very inefficient in execution since the OS needs to reallocate the matrix every time it grows a little. Therefore,
PETSc has calls for the user to indicate how many elements the matrix will ultimately contain.
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Figure 32.27 MatGetRow
Synopsis:

#include "petscmat.h"
PetscErrorCode MatGetRow

(Mat mat,PetscInt row,
PetscInt *ncols,const PetscInt *cols[],const PetscScalar *vals[])

PetscErrorCode MatRestoreRow
(Mat mat,PetscInt row,
PetscInt *ncols,const PetscInt *cols[],const PetscScalar *vals[])

Input Parameters:
mat - the matrix
row - the row to get

Output Parameters
ncols - if not NULL, the number of nonzeros in the row
cols - if not NULL, the column numbers
vals - if not NULL, the values

MatSetOption(A, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE)

32.4.3.1 Element access

If you absolutely need access to the matrix elements, there are routines such as MatGetRow (figure 32.27). With this,
any process can request, using global row numbering, the contents of a row that it owns. (Requesting elements that
are not local requires the different mechanism of taking submatrices; section 32.4.6.)

Since PETSc is geared towards sparse matrices, this returns not only the element values, but also the column num-
bers, as well as the mere number of stored columns. If any of these three return values are not needed, they can be
unrequested by setting the parameter passed to PETSC_NULLPTR.

PETSc insists that you properly release the row again with MatRestoreRow (figure 32.27).

It is also possible to retrieve the full Compressed Row Storage (CRS) contents of the local matrix with
MatDenseGetArray, MatDenseRestoreArray, MatSeqAIJGetArray, MatSeqAIJRestoreArray. (Routines MatGetArray /
MatRestoreArray are deprecated.)

32.4.4 Matrix viewers

Matrices can be ‘viewed’ (see section 38.2.2 for a discussion of the PetscViewer mechanism) in a variety of ways,
starting with the MatView call. However, often it is more convenient to use online options such as

yourprogram -mat_view
yourprogram -mat_view draw
yourprogram -ksp_mat_view draw
where -mat_view is activated by the assembly routine, while -ksp_mat_view shows only the matrix used as operator
for a KSP object. Without further option refinements this will display the matrix elements inside the sparsity pattern.
Using a sub-option draw will cause the sparsity pattern to be displayed in an X11 window.
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Figure 32.28 MatMult
Synopsis
#include "petscmat.h"
PetscErrorCode MatMult(Mat mat,Vec x,Vec y)
PetscErrorCode MatMultTranspose(Mat mat,Vec x,Vec y)

Neighbor-wise Collective on Mat

Input Parameters
mat - the matrix
x - the vector to be multiplied

Output Parameters
y - the result

Figure 32.29 MatMultAdd
Synopsis
#include "petscmat.h"
PetscErrorCode MatMultAdd(Mat mat,Vec x,Vec y,Vec z)

Neighbor-wise Collective on Mat

Input Parameters
mat - the matrix
x, y - the vectors

Output Parameters
z -the result

Notes
The vectors x and z cannot be the same.

32.4.5 Matrix operations

32.4.5.1 Matrix-vector operations

In the typical application of PETSc, solving large sparse linear systems of equations with iterative methods, matrix-
vector operations are most important. Foremost there is the matrix-vector product MatMult (figure 32.28) and the
transpose product MatMultTranspose (figure 32.28). (In the complex case, the transpose product is not the Hermitian
matrix product; for that use MatMultHermitianTranspose.)

For the BLAS gemv semantics 𝑦 ← 𝛼𝐴𝑥 + 𝛽𝑦 , MatMultAdd (figure 32.29) computes 𝑧 ← 𝐴𝑥 + 𝑦 .

32.4.5.2 Matrix-matrix operations

There is a number of matrix-matrix routines such as MatMatMult.

32.4.6 Submatrices
Given a parallel matrix, there are two routines for extracting submatrices:

• MatCreateSubMatrix creates a single parallel submatrix.
• MatCreateSubMatrices creates a sequential submatrix on each process.
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Figure 32.30 MatCreateShell
#include "petscmat.h"
PetscErrorCode MatCreateShell

(MPI_Comm comm,
PetscInt m,PetscInt n,PetscInt M,PetscInt N,
void *ctx,Mat *A)

Collective

Input Parameters:
comm- MPI communicator
m- number of local rows (must be given)
n- number of local columns (must be given)
M- number of global rows (may be PETSC_DETERMINE)
N- number of global columns (may be PETSC_DETERMINE)
ctx- pointer to data needed by the shell matrix routines

Output Parameter:
A -the matrix

Figure 32.31 MatShellSetOperation
#include "petscmat.h"
PetscErrorCode MatShellSetOperation

(Mat mat,MatOperation op,void (*g)(void))

Logically Collective on Mat

Input Parameters:
mat- the shell matrix
op- the name of the operation
g- the function that provides the operation.

32.4.7 Shell matrices

In many scientific applications, a matrix stands for some operator, and we are not intrinsically interested in the
matrix elements, but only in the action of the matrix on a vector. In fact, under certain circumstances it is more
convenient to implement a routine that computes the matrix action than to construct the matrix explicitly.

Maybe surprisingly, solving a linear system of equations can be handled this way. The reason is that PETSc’s iterative
solvers (section 35.1) only need the matrix-times-vector (and perhaps the matrix-transpose-times-vector) product.

PETSc supports this mode of working. The routine MatCreateShell (figure 32.30) declares the argument to be a
matrix given in operator form.

32.4.7.1 Shell operations

The next step is then to add the custom multiplication routine, which will be invoked by MatMult:
MatShellSetOperation (figure 32.31)

The routine that implements the actual product should have the same signature as MatMult, accepting a matrix and
two vectors. The key to realizing your own product routine lies in the ‘context’ argument to the create routine. With
MatShellSetContext (figure 32.32) you pass a pointer to some structure that contains all contextual information you
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Figure 32.32 MatShellSetContext
Synopsis
#include "petscmat.h"
PetscErrorCode MatShellSetContext(Mat mat,void *ctx)

Input Parameters
mat - the shell matrix
ctx - the context

Figure 32.33 MatShellGetContext
#include "petscmat.h"
PetscErrorCode MatShellGetContext(Mat mat,void *ctx)

Not Collective

Input Parameter:
mat -the matrix, should have been created with MatCreateShell()

Output Parameter:
ctx -the user provided context

need. In your multiplication routine you then retrieve this with MatShellGetContext (figure 32.33).

What operation is specified is determined by a keyword MATOP_<OP> where OP is the name of the matrix routine,
minus the Mat part, in all caps.

MatCreate(comm,&A);
MatSetSizes(A,localsize,localsize,matrix_size,matrix_size);
MatSetType(A,MATSHELL);
MatSetFromOptions(A);
MatShellSetOperation(A,MATOP_MULT,(void*)&mymatmult);
MatShellSetContext(A,(void*)Diag);
MatSetUp(A);

(The call to MatSetSizes needs to come before MatSetType.)

32.4.7.2 Shell context

Setting the context means passing a pointer (really: an address) to some allocated structure

struct matrix_data mystruct;
MatShellSetContext( A, &mystruct );

The routine signature has this argument as a void* but it’s not necessary to cast it to that. Getting the context
means that a pointer to your structure needs to be set

struct matrix_data *mystruct;
MatShellGetContext( A, &mystruct );

Somewhat confusingly, the Get routine also has a void* argument, even though it’s really a pointer variable.
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32.4.8 Multi-component matrices

For multi-component physics problems there are essentially two ways of storing the linear system

1. Grouping the physics equations together, or
2. grouping the domain nodes together.

In both cases this corresponds to a block matrix, but for a problem of 𝑁 nodes and 3 equations, the respective
structures are:

1. 3 × 3 blocks of size 𝑁 , versus
2. 𝑁 × 𝑁 blocks of size 3.

The first case can be pictured as

(
𝐴00 𝐴01 𝐴02
𝐴10 𝐴11 𝐴12
𝐴20 𝐴21 𝐴22

)

and while it looks natural, there is a computational problem with it. Preconditioners for such problems often look
like

(
𝐴00

𝐴11
𝐴22

) or (
𝐴00
𝐴10 𝐴11
𝐴20 𝐴21 𝐴22

)

With the block-row partitioning of PETSc’s matrices, this means at most a 50% efficiency for the preconditioner
solve.

It is better to use the second scheme, which requires the MATMPIBIJ format, and use so-called field-split precondi-
tioners; see section 35.1.7.3.5.

32.4.9 Fourier transform

The Fast Fourier Transform (FFT) can be considered a matrix-vector multiplication. PETSc supports this by letting
you create a matrix with MatCreateFFT. This requires that you add an FFT library, such as fftw, at configuration
time; see section 31.4.

FFT libraries may use padding, so vectors should be created with MatCreateVecsFFTW, not with an independent
VecSetSizes.

The fftw library does not scale the output vector, so a forward followed by a backward pass gives a result that is too
large by the vector size.

// fftsine.c
PetscCall( VecView(signal,PETSC_VIEWER_STDOUT_WORLD) );
PetscCall( MatMult(transform,signal,frequencies) );
PetscCall( VecScale(frequencies,1./Nglobal) );
PetscCall( VecView(frequencies,PETSC_VIEWER_STDOUT_WORLD) );

One full cosine wave:

1.
0.809017 + 0.587785 i
0.309017 + 0.951057 i
-0.309017 + 0.951057 i
-0.809017 + 0.587785 i

-1. + 1.22465e-16 i
-0.809017 - 0.587785 i
-0.309017 - 0.951057 i
0.309017 - 0.951057 i
0.809017 - 0.587785 i
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Frequency 𝑛 = 1 amplitude ≡ 1:

-2.22045e-17 + 2.33487e-17 i
1. - 9.23587e-17 i
2.85226e-17 + 1.56772e-17 i
-4.44089e-17 + 1.75641e-17 i

-3.35828e-19 + 3.26458e-18 i
0. - 1.22465e-17 i
-1.33873e-17 + 3.26458e-18 i
-4.44089e-17 + 7.59366e-18 i
7.40494e-18 + 1.56772e-17 i
0. + 1.8215e-17 i

Strangely enough, the backward pass does not need to be scaled:

Vec confirm;
PetscCall( VecDuplicate(signal,&confirm) );
PetscCall( MatMultTranspose(transform,frequencies,confirm) );
PetscCall( VecAXPY(confirm,-1,signal) );
PetscReal nrm;
PetscCall( VecNorm(confirm,NORM_2,&nrm) );
PetscPrintf(MPI_COMM_WORLD,"FFT accuracy %e\n",nrm);
PetscCall( VecDestroy(&confirm) );

32.5 Index sets and Vector Scatters
In the PDE type of applications that PETSc was originally intended for, vector data can only be real or complex: there
are no vector of integers. On the other hand, integers are used for indexing into vector, for instance for gathering
boundary elements into a halo region, or for doing the data transpose of an FFT operation.

To support this, PETSc has the following object types:

• An IS object describes a set of integer indices;
• a VecScatter object describes the correspondence between a group of indices in an input vector and a
group of indices in an output vector.

32.5.1 IS: index sets

An IS object contains a set of PetscInt values. It can be created with

• ISCreate for creating an empty set;
• ISCreateStride for a strided set;
• ISCreateBlock for a set of contiguous blocks, placed at an explicitly given list of starting indices.
• ISCreateGeneral for an explicitly given list of indices.

For example, to describe odd and even indices (on two processes):

// oddeven.c
IS oddeven;
if (procid==0) {

PetscCall( ISCreateStride(comm,Nglobal/2,0,2,&oddeven) );
} else {

PetscCall( ISCreateStride(comm,Nglobal/2,1,2,&oddeven) );
}

After this, there are various query and set operations on index sets.

You can read out the indices of a set by ISGetIndices and ISRestoreIndices.
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Figure 32.34 VecScatterCreate
Synopsis
Creates a vector scatter context. Collective on Vec

#include "petscvec.h"
PetscErrorCode VecScatterCreate(Vec xin,IS ix,Vec yin,IS iy,VecScatter *newctx)

Input Parameters:
xin : a vector that defines the layout of vectors from which we scatter
yin : a vector that defines the layout of vectors to which we scatter
ix : the indices of xin to scatter (if NULL scatters all values)
iy : the indices of yin to hold results (if NULL fills entire vector yin)

Output Parameter
newctx : location to store the new scatter context

32.5.2 VecScatter: all-to-all operations

A VecScatter object is a generalization of an all-to-all operation. However, unlike MPI MPI_Alltoall, which for-
mulates everything in terms of local buffers, a VecScatter is more implicit in only describing indices in the input
and output vectors.

The VecScatterCreate (figure 32.34) call has as arguments:

• An input vector. From this, the parallel layout is used; any vector being scattered from should have this
same layout.

• An IS object describingwhat indices are being scattered; if thewhole vector is rearranged, PETSC_NULLPTR
(Fortran: PETSC_NULL_IS) can be given.

• An output vector. From this, the parallel layout is used; any vector being scattered into should have this
same layout.

• An IS object describing what indices are being scattered into; if the whole vector is a target,
PETSC_NULLPTR can be given.

As a simple example, the odd/even sets defined above can be used to move all components with even index to
process zero, and the ones with odd index to process one:

VecScatter separate;
PetscCall( VecScatterCreate
(in,oddeven,out,NULL,&separate) );

PetscCall( VecScatterBegin
(separate,in,out,INSERT_VALUES,SCATTER_FORWARD) );

PetscCall( VecScatterEnd
(separate,in,out,INSERT_VALUES,SCATTER_FORWARD) );

Note that the index set is applied to the input vector, since it describes the components to be moved. The output
vector uses PETSC_NULLPTR since these components are placed in sequence.

Exercise 32.3. Modify this example so that the components are still separated odd/even, but now
placed in descending order on each process.

Exercise 32.4. Can you extend this example so that process 𝑝 receives all indices that are multiples
of 𝑝? Is your solution correct if Nglobal is not a multiple of nprocs?
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32.5.2.1 More VecScatter modes

There is an added complication, in that a VecScatter can have both sequential and parallel input or output vectors.
Scattering onto process zero is also a popular option.

32.6 AO: Application Orderings
PETSc’s decision to partition a matrix by contiguous block rows may be a limitation in the sense an application can
have a natural ordering that is different. For such cases the AO type can translate between the two schemes.

32.7 Partitionings
By default, PETSc uses partitioning of matrices and vectors based on consecutive blocks of variables. In regular
cases that is not a bad strategy. However, for some matrices a permutation and re-division can be advantageous.
For instance, one could look at the adjacency graph, and minimize the number of edge cuts or the sum of the edge
weights.

This functionality is not built into PETSc, but can be provided by graph partitioning packages such as ParMetis or
Zoltan. The basic object is the MatPartitioning, with routines for

• Create and destroy: MatPartitioningCreate, MatPartitioningDestroy;
• Setting the type MatPartitioningSetType to an explicit partitioner, or something generated as the dual
or a refinement of the current matrix;

• Apply with MatPartitioningApply, giving a distribued IS object, which can then be used in
MatCreateSubMatrix to repartition.

Illustrative example:

MatPartitioning part;
MatPartitioningCreate(comm,&part);
MatPartitioningSetType(part,MATPARTITIONINGPARMETIS);
MatPartitioningApply(part,&is);
/* get new global number of each old global number */
ISPartitioningToNumbering(is,&isn);
ISBuildTwoSided(is,PETSC_NULLPTR,&isrows);
MatCreateSubMatrix(A,isrows,isrows,MAT_INITIAL_MATRIX,&perA);

Other scenario:

MatPartitioningSetAdjacency(part,A);
MatPartitioningSetType(part,MATPARTITIONINGHIERARCH);
MatPartitioningHierarchicalSetNcoarseparts(part,2);
MatPartitioningHierarchicalSetNfineparts(part,2);
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Chapter 33

Grid support

PETSc’s DM objects raise the abstraction level from the linear algebra problem to the physics problem: they allow
for a more direct expression of operators in terms of their domain of definition. In this section we look at the DMDA
‘distributed array’ objects, which correspond to problems defined on Cartesian grids. Distributed arrays make it
easier to construct the coefficient matrix of an operator that is defined as a stencil on a 1/2/3-dimensional Cartesian
grid.

The main creation routine exists in three variants that mostly differ their number of parameters. For instance,
DMDACreate2d has parameters along the x,y axes. However, DMDACreate1d has no parameter for the stencil type,
since in 1D those are all the same, or for the process distribution.

33.1 Grid definition
A two-dimensional grid is created with DMDACreate2d (figure 33.1)

DMDACreate2d( communicator,
x_boundary,y_boundary,
stenciltype,
gridx,gridy, procx,procy, dof,width,
partitionx,partitiony,
grid);

• Boundary type is a value of type DMBoundaryType. Values are:
– DM_BOUNDARY_NONE
– DM_BOUNDARY_GHOSTED,
– DM_BOUNDARY_PERIODIC,

• The stencil type is of type DMStencilType, with values
– DMDA_STENCIL_BOX,
– DMDA_STENCIL_STAR.

(See figure 33.1.)
• The gridx,gridy values are the global grid size. This can be set with commandline options
-da_grid_x/y/z.

• The procx,procy variables are an explicit specification of the processor grid. Failing this specification,
PETSc will try to find a distribution similar to the domain grid.

• dof indicates the number of ‘degrees of freedom’, where 1 corresponds to a scalar problem.
• width indicates the extent of the stencil: 1 for a 5-point stencil or more general a 2nd order stencil for
2nd order PDEs, 2 for 2nd order discretizations of a 4th order PDE, et cetera.
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Figure 33.1 DMDACreate2d
#include "petscdmda.h"
PetscErrorCode DMDACreate2d(MPI_Comm comm,

DMBoundaryType bx,DMBoundaryType by,DMDAStencilType stencil_type,
PetscInt M,PetscInt N,PetscInt m,PetscInt n,PetscInt dof,
PetscInt s,const PetscInt lx[],const PetscInt ly[],
DM *da)

Input Parameters

comm - MPI communicator
bx,by - type of ghost nodes: DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_PERIODIC.
stencil_type - stencil type: DMDA_STENCIL_BOX or DMDA_STENCIL_STAR.
M,N - global dimension in each direction of
m,n - corresponding number of processors in each dimension (or PETSC_DECIDE)
dof - number of degrees of freedom per node
s - stencil width
lx, ly - arrays containing the number of

nodes in each cell along the x and y coordinates, or NULL.

Output Parameter

da -the resulting distributed array object

Figure 33.2 DMDAGetLocalInfo
#include "petscdmda.h"
PetscErrorCode DMDAGetLocalInfo(DM da,DMDALocalInfo *info)

• partitionx,partitiony are arrays giving explicit partitionings of the grid over the processors, or
PETSC_NULLPTR for default distributions.

Code:

// dmrhs.c
DM grid;
PetscCall( DMDACreate2d

( comm,
DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,
DMDA_STENCIL_STAR,
100,100,
PETSC_DECIDE,PETSC_DECIDE,
1,
1,
NULL,NULL,
&grid
) );

PetscCall( DMSetFromOptions(grid) );
PetscCall( DMSetUp(grid) );
PetscCall( DMViewFromOptions(grid,NULL,"-dm_view") );

Output:

ld: warning: dylib
↪(/Users/eijkhout/Installation/petsc/petsc-3.16.4/macx-clang-debug/lib/libmpifort.dylib)
↪was built for newer macOS
↪version (11.5) than being linked
↪(11.0)

[0] Local = 0-50 x 0-50, halo = 0-51 x
↪0-51

[1] Local = 50-100 x 0-50, halo =
↪49-100 x 0-51

[2] Local = 0-50 x 50-100, halo = 0-51
↪x 49-100

[3] Local = 50-100 x 50-100, halo =
↪49-100 x 49-100

After you define a DM object, each process has a contiguous subdomain out of the total grid. You can query its size
and location with DMDAGetCorners, or query that and all other information with DMDAGetLocalInfo (figure 33.2),
which returns an DMDALocalInfo (figure 33.3) structure.
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Figure 33.1: Star and box stencils

(A DMDALocalInfo struct is the same for 1/2/3 dimensions, so certain fields may not be applicable to your specific
PDE.)

Figure 33.2: Illustration of various fields of the DMDALocalInfo structure

33.1.1 Associated vectors

Using the fields in this structure, each process can now iterate over its own subdomain. For instance, the ‘top left’
corner of the owned subdomain is at xs,ys and the number of points is xm,ym (see figure 33.2), so we can iterate
over the subdomain as:

for (int j=info.ys; j<info.ys+info.ym; j++) {
for (int i=info.xs; i<info.xs+info.xm; i++) {
// actions on point i,j

}
}

On each point of the domain, we describe the stencil at that point. First of all, we now have the information to
compute the 𝑥, 𝑦 coordinates of the domain points:

PetscReal **xyarray;
PetscCall( DMDAVecGetArray(grid,xy,&xyarray) );
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Figure 33.3 DMDALocalInfo
typedef struct {

PetscInt dim,dof,sw;
PetscInt mx,my,mz; /* global number of grid points in each direction */
PetscInt xs,ys,zs; /* starting point of this processor, excluding ghosts */
PetscInt xm,ym,zm; /* number of grid points on this processor, excluding ghosts */
PetscInt gxs,gys,gzs; /* starting point of this processor including ghosts */
PetscInt gxm,gym,gzm; /* number of grid points on this processor including ghosts */
DMBoundaryType bx,by,bz; /* type of ghost nodes at boundary */
DMDAStencilType st;
DM da;

} DMDALocalInfo;

Fortran Notes - This should be declared as

DMDALocalInfo :: info(DMDA_LOCAL_INFO_SIZE)

and the entries accessed via

info(DMDA_LOCAL_INFO_DIM)
info(DMDA_LOCAL_INFO_DOF) etc.

The entries bx,by,bz, st, and da are not accessible from Fortran.

for (int j=info.ys; j<info.ys+info.ym; j++) {
for (int i=info.xs; i<info.xs+info.xm; i++) {

PetscReal x = i*hx, y = j*hy;
xyarray[j][i] = x*y;

}
}
PetscCall( DMDAVecRestoreArray(grid,xy,&xyarray) );

In some circumstances, we want to perform stencil operations on the vector of a DMDA grid. This requires having
the halo region. Above, you already saw the gxs,gxm and other quantities relating to the halo of each process’
subdomain.

What we need is a way to make vectors that contain these halo points.

• You can make a traditonal vector corresponding to a grid with DMCreateGlobalVector; if you need this
vector only for a short while, use DMGetGlobalVector and DMRestoreGlobalVector.

• You can make a vector including halo points with DMCreateLocalVector; if you need this vector only for
a short while, use DMGetLocalVector and DMRestoreLocalVector.

• If you have a ‘global’ vector, you can made the corresponding ‘local’ vector, filling in its halo points, with
DMGlobalToLocal; after operating on a local vector, you can copy its non-halo part back to a global vector
with DMLocalToGlobal.

Here we set up a local vector for operations:

Vec ghostvector;
PetscCall( DMGetLocalVector(grid,&ghostvector) );
PetscCall( DMGlobalToLocal(grid,xy,INSERT_VALUES,ghostvector) );
PetscReal **xyarray,**gh;
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PetscCall( DMDAVecGetArray(grid,xy,&xyarray) );
PetscCall( DMDAVecGetArray(grid,ghostvector,&gh) );
// computation on the arrays
PetscCall( DMDAVecRestoreArray(grid,xy,&xyarray) );
PetscCall( DMDAVecRestoreArray(grid,ghostvector,&gh) );
PetscCall( DMLocalToGlobal(grid,ghostvector,INSERT_VALUES,xy) );
PetscCall( DMRestoreLocalVector(grid,&ghostvector) );

The actual operations involve some tests for the actual presence of the halo:

for (int j=info.ys; j<info.ys+info.ym; j++) {
for (int i=info.xs; i<info.xs+info.xm; i++) {

if (info.gxs<info.xs && info.gys<info.ys)
if (i-1>=info.gxs && i+1<=info.gxs+info.gxm &&

j-1>=info.gys && j+1<=info.gys+info.gym )
xyarray[j][i] =
( gh[j-1][i] + gh[j][i-1] + gh[j][i+1] + gh[j+1][i] )
/4.;

33.1.2 Associated matrix

We construct a matrix on a DMDA by constructing a stencil on every (𝑖, 𝑗) coordinate on a process:

for (int j=info.ys; j<info.ys+info.ym; j++) {
for (int i=info.xs; i<info.xs+info.xm; i++) {
PetscReal x = i*hx, y = j*hy;
...
// set the row, col, v values
ierr = MatSetValuesStencil(A,1,&row,ncols,col,v,INSERT_VALUES);CHKERRQ(ierr);

}
}

Eachmatrix element row,col is a combination of two MatStencil objects. Technically, this is a structwithmembers
i,j,k,s for the domain coordinates and the number of the field.

MatStencil row;
row.i = i; row.j = j;

We could construct the columns in this row one by one, but MatSetValuesStencil can set multiple rows or columns
at a time, so we construct all columns at the same time:

MatStencil col[5];
PetscScalar v[5];
PetscInt ncols = 0;
/**** diagonal element ****/
col[ncols].i = i; col[ncols].j = j;
v[ncols++] = 4.;
/**** off diagonal elements ****/
....

The other ‘legs’ of the stencil need to be set conditionally: the connection to (𝑖 − 1, 𝑗) is missing on the top row of
the domain, and the connection to (𝑖, 𝑗 − 1) is missing on the left column. In all:
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// grid2d.c
for (int j=info.ys; j<info.ys+info.ym; j++) {
for (int i=info.xs; i<info.xs+info.xm; i++) {
MatStencil row,col[5];
PetscScalar v[5];
PetscInt ncols = 0;
row.j = j; row.i = i;
/**** local connection: diagonal element ****/
col[ncols].j = j; col[ncols].i = i; v[ncols++] = 4.;
/* boundaries: top and bottom row */
if (i>0) {col[ncols].j = j; col[ncols].i = i-1; v[ncols++] = -1.;}
if (i<info.mx-1) {col[ncols].j = j; col[ncols].i = i+1; v[ncols++] = -1.;}
/* boundary left and right */
if (j>0) {col[ncols].j = j-1; col[ncols].i = i; v[ncols++] = -1.;}
if (j<info.my-1) {col[ncols].j = j+1; col[ncols].i = i; v[ncols++] = -1.;}

PetscCall( MatSetValuesStencil(A,1,&row,ncols,col,v,INSERT_VALUES) );
}

}

33.2 Constructing a vector on a grid
A DMDA object is a description of a grid, so we now need to concern how to construct a linear system defined on that
grid.

We start with vectors: we need a solution vector and a right-hand side. Here we have two options:

1. we can build a vector from scratch that has the right structure; or
2. we can use the fact that a grid object has a vector that can be extracted.

33.2.1 Create confirming vector

If we create a vector with VecCreate and VecSetSizes, it is easy to get the global size right, but the default par-
titioning will probably not be conformal to the grid distribution. Also, getting the indexing scheme right is not
trivial.

First of all, the local size needs to be set explicitly, using information from the DMDALocalInfo object:

Vec xy;
PetscCall( VecCreate(comm,&xy) );
PetscCall( VecSetType(xy,VECMPI) );
PetscInt nlocal = info.xm*info.ym, nglobal = info.mx*info.my;
PetscCall( VecSetSizes(xy,nlocal,nglobal) );

After this, you don’t use VecSetValues, but set elements directly in the raw array, obtained by DMDAVecGetArray:

PetscReal **xyarray;
PetscCall( DMDAVecGetArray(grid,xy,&xyarray) );
for (int j=info.ys; j<info.ys+info.ym; j++) {
for (int i=info.xs; i<info.xs+info.xm; i++) {

PetscReal x = i*hx, y = j*hy;
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xyarray[j][i] = x*y;
}

}
PetscCall( DMDAVecRestoreArray(grid,xy,&xyarray) );

33.2.2 Extract vector from DMDA

33.2.3 Refinement

The routine DMDASetRefinementFactor can be activated with the options -da_refine or separately
-da_refine_x/y/z for the directions.

33.3 Vectors of a distributed array
A distributed array is similar to a distributed vector, so there are routines of extracting the values of the array in the
form of a vector. This can be done in two ways: of ways. (The routines here actually pertain to the more general DM
‘Data Management’ object, but we will for now discuss them in the context of DMDA.)

1. You can create a ‘global’ vector, defined on the same communicator as the array, and which is disjointly
partitioned in the same manner. This is done with DMCreateGlobalVector:

PetscErrorCode DMCreateGlobalVector(DM dm,Vec *vec)

2. You can create a ‘local’ vector, which is sequential and defined on PETSC_COMM_SELF, that has not only
the points local to the process, but also the ‘halo’ region with the extent specified in the definition of the
DMDACreate call. For this, use DMCreateLocalVector:

PetscErrorCode DMCreateLocalVector(DM dm,Vec *vec)

Values can be moved between local and global vectors by:

• DMGlobalToLocal: this establishes a local vector, including ghost/halo points from a disjointly
distributed global vector. (For overlapping communication and computation, use DMGlobalToLocalBegin
and DMGlobalToLocalEnd.)

• DMLocalToGlobal: this copies the disjoint parts of a local vector back into a global vector. (For overlapping
communication and computation use DMLocalToGlobalBegin and DMLocalToGlobalEnd.)

33.4 Matrices of a distributed array
Once you have a grid, can create its associated matrix:

DMSetUp(grid);
DMCreateMatrix(grid,&A)

With this subdomain information you can then start to create the coefficient matrix:
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DM grid;
PetscInt i_first,j_first,i_local,j_local;
DMDAGetCorners(grid,&i_first,&j_first,NULL,&i_local,&j_local,NULL);
for ( PetscInt i_index=i_first; i_index<i_first+i_local; i_index++) {
for ( PetscInt j_index=j_first; j_index<j_first+j_local; j_index++) {
// construct coefficients for domain point (i_index,j_index)
}

}

Note that indexing here is in terms of the grid, not in terms of the matrix.

For a simple example, consider 1-dimensional smoothing. From DMDAGetCorners we need only the parameters in
𝑖-direction:

// grid1d.c
PetscInt i_first,i_local;
PetscCall( DMDAGetCorners(grid,&i_first,NULL,NULL,&i_local,NULL,NULL) );
for (PetscInt i_index=i_first; i_index<i_first+i_local; i_index++) {

We then use a single loop to set elements for the local range in 𝑖-direction:
MatStencil row = {0},col[3] = {{0}};
PetscScalar v[3];
PetscInt ncols = 0;
row.i = i_index;
col[ncols].i = i_index; v[ncols] = 2.;
ncols++;
if (i_index>0) { col[ncols].i = i_index-1; v[ncols] = 1.; ncols++; }
if (i_index<i_global-1) { col[ncols].i = i_index+1; v[ncols] = 1.; ncols++; }
PetscCall( MatSetValuesStencil(A,1,&row,ncols,col,v,INSERT_VALUES) );

502 Parallel Computing – r428



Chapter 34

Finite Elements support

34.1 General Data Management

ierr = DMCreate(PETSC_COMM_WORLD, &dm);
ierr = DMSetType(dm, DMPLEX);

A DMPLEX is by default two-dimensional. Use

plexprogram -dm_plex_dim k

for other dimensions. In two dimensions there are three levels of cells:

• 0-cells are vertices,
• 1-cells are edges, and
• 2-cells are triangles.

The default 2 × 2 grid has, sequentially:
Code:

ierr = DMSetFromOptions(dm);
ierr = PetscObjectSetName((PetscObject) dm, "Sphere");
ierr = DMViewFromOptions(dm, NULL, "-dm_view");

Output:

mpiexec -n 1 plexsphere -dm_view
DM Object: Sphere 1 MPI processes

type: plex
Sphere in 2 dimensions:

Number of 0-cells per rank: 9
Number of 1-cells per rank: 16
Number of 2-cells per rank: 8

Labels:
celltype: 3 strata with value/size

↪(0 (9), 3 (8), 1 (16))
depth: 3 strata with value/size (0

↪(9), 1 (16), 2 (8))
marker: 1 strata with value/size (1

↪(16))
Face Sets: 1 strata with value/size

↪(1 (8))

and parallel:
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Code:

ierr = DMSetFromOptions(dm);
ierr = PetscObjectSetName((PetscObject) dm, "Sphere");
ierr = DMViewFromOptions(dm, NULL, "-dm_view");

Output:

mpiexec -n 4 plexsphere -dm_view
DM Object: Sphere 4 MPI processes

type: plex
Sphere in 2 dimensions:

Number of 0-cells per rank: 5 5 6 4
Number of 1-cells per rank: 6 6 6 5
Number of 2-cells per rank: 2 2 2 2

Labels:
depth: 3 strata with value/size (0

↪(5), 1 (6), 2 (2))
celltype: 3 strata with value/size

↪(0 (5), 1 (6), 3 (2))
marker: 1 strata with value/size (1

↪(7))
Face Sets: 1 strata with value/size

↪(1 (3))

For larger grids:

plexprogram -dm_plex_box_faces 4,4

Graphics output from

plexprogram -dm_view draw -draw_pause 20

plexprogram -dm_view :outputfile.tex:ascii_latex \
-dm_plex_view_scale 4
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34.1.1 Matrix from dmplex

Loop over batch of elements (e):
Loop over element matrix entries (f,fc,g,gc –> i,j:

Loop over quadrature points (q):
Make u_q and gradU_q (loops over fields,Nb,Ncomp)
elemMat[i,j] += 𝜓 𝑓 𝑐

𝑓 (𝑞)𝑔(0)
𝑓 𝑐,𝑔𝑐(𝑢, ∇𝑢)𝜙𝑔𝑐𝑔 (𝑞)

+𝜓 𝑓 𝑐
𝑓 (𝑞) ⋅ 𝑔(1)𝑤𝑓 𝑐,𝑔𝑐,𝑑𝑔(𝑢, ∇𝑢)∇𝜙𝑔𝑐𝑔 (𝑞)

+∇𝜓 𝑓 𝑐
𝑓 (𝑞) ⋅ 𝑔(2)

𝑓 𝑐,𝑔𝑐,𝑑𝑓 (𝑢, ∇𝑢)𝜙𝑔𝑐𝑔 (𝑞)
+∇𝜓 𝑓 𝑐

𝑓 (𝑞) ⋅ 𝑔(3)
𝑓 𝑐,𝑔𝑐,𝑑𝑓 ,𝑑𝑔(𝑢, ∇𝑢)∇𝜙𝑔𝑐𝑔 (𝑞)

// plexsphere.c
ierr = DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
ierr = PetscSectionCreate(PetscObjectComm((PetscObject) dm), &s);
ierr = DMSetLocalSection(dm, s);
ierr = PetscSectionDestroy(&s);

ierr = PetscSectionSetNumFields(s, 1);
ierr = PetscSectionSetFieldComponents(s, 0, 1);
ierr = PetscSectionSetChart(s, vStart, vEnd);
// printf("start-end: %d -- %d\n",vStart,vEnd);
for (v = vStart; v < vEnd; ++v) {

ierr = PetscSectionSetDof(s, v, 1);
ierr = PetscSectionSetFieldDof(s, v, 0, 1);

}
ierr = PetscSectionSetUp(s);
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Chapter 35

PETSc solvers

Probably the most important activity in PETSc is solving a linear system. This is done through a solver object: an
object of the class KSP. (This stands for Krylov SPace solver.) The solution routine KSPSolve takes a matrix and a
right-hand-side and gives a solution; however, before you can call this some amount of setup is needed.

There two very different ways of solving a linear system: through a direct method, essentially a variant of Gaussian
elimination; or through an iterative method that makes successive approximations to the solution. In PETSc there
are only iterative methods. We will show how to achieve direct methods later. The default linear system solver in
PETSc is fully parallel, and will work on many linear systems, but there are many settings and customizations to
tailor the solver to your specific problem.

35.1 KSP: linear system solvers

35.1.1 Math background

Many scientific applications boil down to the solution of a system of linear equations at some point:

?𝑥 ∶ 𝐴𝑥 = 𝑏

The elementary textbook way of solving this is through an LU factorization, also known as Gaussian elimination:

𝐿𝑈 ← 𝐴, 𝐿𝑧 = 𝑏, 𝑈 𝑥 = 𝑧.

While PETSc has support for this, its basic design is geared towards so-called iterative solution methods. Instead of
directly computing the solution to the system, they compute a sequence of approximations that, with luck, converges
to the true solution:

while not converged
𝑥𝑖+1 ← 𝑓 (𝑥𝑖)

The interesting thing about iterative methods is that the iterative step only involves the matrix-vector product:

while not converged
𝑟𝑖 = 𝐴𝑥𝑖 − 𝑏
𝑥𝑖+1 ← 𝑓 (𝑟𝑖)

This residual is also crucial in determining whether to stop the iteration: since we (clearly) can not measure the
distance to the true solution, we use the size of the residual as a proxy measurement.
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Figure 35.1 KSPCreate
C:
PetscErrorCode KSPCreate(MPI_Comm comm,KSP *v);

Python:
ksp = PETSc.KSP()
ksp.create()
# or:
ksp = PETSc.KSP().create()

The remaining point to know is that iterative methods feature a preconditioner . Mathematically this is equivalent
to transforming the linear system to

𝑀−1𝐴𝑥 = 𝑀−1𝑏
so conceivably we could iterate on the transformed matrix and right-hand side. However, in practice we apply the
preconditioner in each iteration:

while not converged
𝑟𝑖 = 𝐴𝑥𝑖 − 𝑏
𝑧𝑖 = 𝑀−1𝑟𝑖
𝑥𝑖+1 ← 𝑓 (𝑧𝑖)

In this schematic presentationwe have left the nature of the 𝑓 () update function unspecified. Here, many possibilities
exist; the primary choice here is of the iterative method type, such as ‘conjugate gradients’, ‘generalized minimum
residual’, or ‘bi-conjugate gradients stabilized’. (We will go into direct solvers in section 35.2.)

Quantifying issues of convergence speed is difficult; see HPC book, section-5.5.14.

35.1.2 Solver objects

First we create a KSP object, which contains the coefficient matrix, and various parameters such as the desired
accuracy, as well as method specific parameters: KSPCreate (figure 35.1).

After this, the basic scenario is:

Vec rhs,sol;
KSP solver;
KSPCreate(comm,&solver);
KSPSetOperators(solver,A,A);
KSPSetFromOptions(solver);
KSPSolve(solver,rhs,sol);
KSPDestroy(&solver);

using various default settings. The vectors and the matrix have to be conformly partitioned. The KSPSetOperators
call takes two operators: one is the actual coefficient matrix, and the second the one that the preconditioner is
derived from. In some cases it makes sense to specify a different matrix here. (You can retrieve the operators with
KSPGetOperators.) The call KSPSetFromOptions can cover almost all of the settings discussed next.

KSP objects have many options to control them, so it is convenient to call KSPView (or use the commandline option
-ksp_view) to get a listing of all the settings.
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Figure 35.2 KSPSetTolerances
#include "petscksp.h"
PetscErrorCode KSPSetTolerances

(KSP ksp,PetscReal rtol,PetscReal abstol,PetscReal dtol,PetscInt maxits)

Logically Collective on ksp

Input Parameters:
ksp- the Krylov subspace context
rtol- the relative convergence tolerance, relative decrease in the
(possibly preconditioned) residual norm
abstol- the absolute convergence tolerance absolute size of the
(possibly preconditioned) residual norm
dtol- the divergence tolerance, amount (possibly preconditioned)
residual norm can increase before KSPConvergedDefault() concludes that
the method is diverging
maxits- maximum number of iterations to use

Options Database Keys
-ksp_atol <abstol>- Sets abstol
-ksp_rtol <rtol>- Sets rtol
-ksp_divtol <dtol>- Sets dtol
-ksp_max_it <maxits>- Sets maxits

35.1.3 Tolerances
Since neither solution nor solution speed is guaranteed, an iterative solver is subject to some tolerances:

• a relative tolerance for when the residual has been reduced enough;
• an absolute tolerance for when the residual is objectively small;
• a divergence tolerance that stops the iteration if the residual grows by too much; and
• a bound on the number of iterations, regardless any progress the process may still be making.

These tolerances are set with KSPSetTolerances (figure 35.2), or options -ksp_atol, -ksp_rtol, -ksp_divtol,
-ksp_max_it. Specify to PETSC_DEFAULT to leave a value unaltered.

In the next section we will see how you can determine which of these tolerances caused the solver to stop.

35.1.4 Why did my solver stop? Did it work?
On return of the KSPSolve routine there is no guarantee that the system was successfully solved. Therefore, you
need to invoke KSPGetConvergedReason (figure 35.3) to get a KSPConvergedReason parameter that indicates what
state the solver stopped in:

• The iteration can have successfully converged; this corresponds to reason> 0;
• the iteration can have diverged, or otherwise failed: reason< 0;
• or the iteration may have stopped at the maximum number of iterations while still making progress;
reason= 0.

For more detail, KSPConvergedReasonView (before version 3.14: KSPReasonView) can print out the reason in readable
form; for instance

KSPConvergedReasonView(solver,PETSC_VIEWER_STDOUT_WORLD);
// before 3.14:
KSPReasonView(solver,PETSC_VIEWER_STDOUT_WORLD);
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Figure 35.3 KSPGetConvergedReason
C:
PetscErrorCode KSPGetConvergedReason

(KSP ksp,KSPConvergedReason *reason)
Not Collective

Input Parameter
ksp -the KSP context

Output Parameter
reason -negative value indicates diverged, positive value converged,
see KSPConvergedReason

Python:
r = KSP.getConvergedReason(self)
where r in PETSc.KSP.ConvergedReason

Figure 35.4 KSPSetType
#include "petscksp.h"
PetscErrorCode KSPSetType(KSP ksp, KSPType type)

Logically Collective on ksp

Input Parameters:
ksp : the Krylov space context
type : a known method

(This can also be activated with the -ksp_converged_reason commandline option.)

In case of successful convergence, you can use KSPGetIterationNumber to report how many iterations were taken.

The following snippet analyzes the status of a KSP object that has stopped iterating:

// shellvector.c
PetscInt its; KSPConvergedReason reason;
Vec Res; PetscReal norm;
ierr = KSPGetConvergedReason(Solve,&reason);
ierr = KSPConvergedReasonView(Solve,PETSC_VIEWER_STDOUT_WORLD);
if (reason<0) {
PetscPrintf(comm,"Failure to converge: reason=%d\n",reason);

} else {
ierr = KSPGetIterationNumber(Solve,&its);
PetscPrintf(comm,"Number of iterations: %d\n",its);

}

35.1.5 Choice of iterator

There are many iterative methods, and it may take a few function calls to fully specify them. The basic routine is
KSPSetType (figure 35.4), or use the option -ksp_type.

Here are some values (the full list is in petscksp.h:
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Figure 35.5 KSPMatSolve
PetscErrorCode KSPMatSolve(KSP ksp, Mat B, Mat X)

Input Parameters
ksp - iterative context
B - block of right-hand sides

Output Parameter
X - block of solutions

• KSPCG: only for symmetric positive definite systems. It has a cost of both work and storage that is constant
in the number of iterations.
There are variants such as KSPPIPECG that are mathematically equivalent, but possibly higher performing
at large scale.

• KSPGMRES: a minimization method that works for nonsymmetric and indefinite systems. However, to
satisfy this theoretical property it needs to store the full residual history to orthogonalize each compute
residual to, implying that storage is linear, and work quadratic, in the number of iterations. For this
reason, GMRES is always used in a truncated variant, that regularly restarts the orthogonalization. The
restart length can be set with the routine KSPGMRESSetRestart or the option -ksp_gmres_restart.

• KSPBCGS: a quasi-minimization method; uses less memory than GMRES.

Depending on the iterative method, there can be several routines to tune its workings. Especially if you’re still
experimenting with what method to choose, it may be more convenient to specify these choices through comman-
dline options, rather than explicitly coded routines. In that case, a single call to KSPSetFromOptions is enough to
incorporate those.

35.1.6 Multiple right-hand sides

For the case of multiple right-hand sides, use KSPMatSolve (figure 35.5).

35.1.7 Preconditioners

Another part of an iterative solver is the preconditioner . The mathematical background of this is given in sec-
tion 35.1.1. The preconditioner acts to make the coefficient matrix better conditioned, which will improve the con-
vergence speed; it can even be that without a suitable preconditioner a solver will not converge at all.

35.1.7.1 Background

The mathematical requirement that the preconditioner 𝑀 satisfy 𝑀 ≈ 𝐴 can take two forms:

1. We form an explicit approximation to 𝐴−1; this is known as a sparse approximate inverse.
2. We form an operator 𝑀 (often given in factored or other implicit) form, such that 𝑀 ≈ 𝐴, and solving a

system 𝑀𝑥 = 𝑦 for 𝑥 can be done relatively quickly.

In deciding on a preconditioner, we now have to balance the following factors.

1. What is the cost of constructing the preconditioner? This should not be more than the gain in solution
time of the iterative method.

2. What is the cost per iteration of applying the preconditioner? There is clearly no point in using a precon-
ditioner that decreases the number of iterations by a certain amount, but increases the cost per iteration
much more.
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3. Many preconditioners have parameter settings that make these considerations even more complicated:
low parameter values may give a preconditioner that is cheaply to apply but does not improve conver-
gence much, while large parameter values make the application more costly but decrease the number of
iterations.

35.1.7.2 Usage

Unlike most of the other PETSc object types, a PC object is typically not explicitly created. Instead, it is created as
part of the KSP object, and can be retrieved from it.

PC prec;
KSPGetPC(solver,&prec);
PCSetType(prec,PCILU);

Beyond setting the type of the preconditioner, there are various type-specific routines for setting various parameters.
Some of these can get quite tedious, and it is more convenient to set them through commandline options.

35.1.7.3 Types

Method PCType Options Database Name

Jacobi PCJACOBI jacobi
Block Jacobi PCBJACOBI bjacobi
SOR (and SSOR) PCSOR sor
SOR with Eisenstat trick PCEISENSTAT eisenstat
Incomplete Cholesky PCICC icc
Incomplete LU PCILU ilu
Additive Schwarz PCASM asm
Generalized Additive Schwarz PCGASM gasm
Algebraic Multigrid PCGAMG gamg
Balancing Domain Decomposition
by Constraints Linear solver

PCBDDC bddc

Use iterative method PCKSP ksp
Combination of preconditioners PCCOMPOSITE composite
LU PCLU lu
Cholesky PCCHOLESKY cholesky
No preconditioning PCNONE none
Shell for user-defined PC PCSHELL shell

Here are some of the available preconditioner types.

The Hypre package (which needs to be installed during configuration time) contains itself several preconditioners.
In your code, you can set the preconditioner to PCHYPRE, and use PCHYPRESetType to one of: euclid, pilut, parasails,
boomeramg, ams, ads. However, since these preconditioners themselves have options, it is usually more convenient
to use commandline options:
-pc_type hypre -pc_hypre_type xxxx

35.1.7.3.1 Sparse approximate inverses The inverse of a sparse matrix (at least, those from PDEs) is typically
dense. Therefore, we aim to construct a sparse approximate inverse.

PETSc offers two such preconditioners, both of which require an external package.

Victor Eijkhout 511



35. PETSc solvers

• PCSPAI. This is a preconditioner that can only be used in single-processor runs, or as local solver in a
block preconditioner; section 35.1.7.3.3.

• As part of the PCHYPRE package, the parallel variant parasails is available.
-pc_type hypre -pc_hypre_type parasails

35.1.7.3.2 Incomplete factorizations The 𝐿𝑈 factorization of a matrix stemming from PDEs problems has several
practical problems:

• It takes (considerably) more storage space than the coefficient matrix, and
• it correspondingly takes more time to apply.

For instance, for a three-dimensional PDE in 𝑁 variables, the coefficient matrix can take storage space 7𝑁 , while
the 𝐿𝑈 factorization takes 𝑂(𝑁 5/3).
For this reason, often incompletely 𝐿𝑈 factorizations are popular.

• PETSc has of itself a PCILU type, but this can only be used sequentially. This may sound like a limitation,
but in parallel it can still be used as the subdomain solver in a block methods; section 35.1.7.3.3.

• As part of Hypre, pilut is a parallel ILU.

There are many options for the ILU type, such as PCFactorSetLevels (option -pc_factor_levels), which sets the
number of levels of fill-in allowed.

35.1.7.3.3 Block methods Certain preconditioners seem almost intrinsically sequential. For instance, an ILU so-
lution is sequential between the variables. There is a modest amount of parallelism, but that is hard to explore.

Taking a step back, one of the problems with parallel preconditioners lies in the cross-process connections in the
matrix. If only those were not present, we could solve the linear system on each process independently. Well, since
a preconditioner is an approximate solution to begin with, ignoring those connections only introduces an extra
degree of approxomaticity.

There are two preconditioners that operate on this notion:

• PCBJACOBI: block Jacobi. Here each process solves locally the system consisting of the matrix coefficients
that couple the local variables. In effect, each process solves an independent system on a subdomain.
The next question is then what solver is used on the subdomains. Here any preconditioner can be used,
in particular the ones that only existed in a sequential version. Specifying all this in code gets tedious,
and it is usually easier to specify such a complicated solver through commandline options:
-pc_type jacobi -sub_ksp_type preonly \

-sub_pc_type ilu -sub_pc_factor_levels 1
(Note that this also talks about a sub_ksp: the subdomain solver is in fact a KSP object. By setting its
type to preonly we state that the solver should consist of solely applying its preconditioner.)
The block Jacobi preconditioner can asympotically only speed up the system solution by a factor relating
to the number of subdomains, but in practice it can be quite valuable.

• PCASM: additive Schwarz method. Here each process solves locally a slightly larger system, based on the
local variables, and one (or a few) levels of connections to neighboring processes. In effect, the processes
solve system on overlapping subdomains. This preconditioner can asympotically reduce the number of
iterations to 𝑂(1), but that requires exact solutions on the subdomains, and in practice it may not happen
anyway.

Figure 35.1 illustrates these preconditioners both in matrix and subdomain terms.
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Figure 35.1: Illustration of block Jacobi and Additive Schwarz preconditioners: left domains and subdo-
mains, right the corresponding submatrices

35.1.7.3.4 Multigrid preconditioners

• There is a Algebraic MultiGrid (AMG) type built into PETSc: PCGAMG;
• the external packages Hypre and ML have AMG methods.
• There is a general Multi-Grid (MG) type: PCMG.

35.1.7.3.5 Field split preconditioners For background refer to section 32.4.8.

Exercise 35.1. The example code ksp.c generates a five-point matrix, possibly nonsymmetric, on a
unit square. Your assignment is to explore the convergence behavior of different solvers on
linear systems with this coefficient matrix.
The example code takes two commandline arguments:

• -n 123 set the domain size, meaning that the matrix size will be the square of that;
• -unsymmetry .5 introduces a skew-symmetric component to the matrix.

Investigate the following:
• Some iterative methods, such as Conjugate Gradients (CG), are only mathematically
defined for symmetric (and positive definite) matrices. How tolerant are iterative
methods actually towards nonsymmetry?

• The number of iterations can sometimes be proved to depend on the condition number
of the matrix, which is itself related to the size of the matrix. Can you find a relation
between the matrix size and the number of iterations?

• A more sophisticated iterative methods (for instance, increasing the GMRES restart
length) or a more sophisticated preconditioner (for instance using more fill levels in an
ILU preconditioner), may lead to fewer iterations. (Does it, actually?) But it will not
necessarily give a faster solution time, since each iteration is now more expensive.

See section 35.1.1 for the background on this, as well as the various specific subsections.
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35.1.7.3.6 Shell preconditioners You already saw that, in an iterative methods, the coefficient matrix can be given
operationally as a shell matrix; section 32.4.7. Similarly, the preconditioner matrix can be specified operationally by
specifying type PCSHELL.

This needs specification of the application routine through PCShellSetApply:

PCShellSetApply(PC pc,PetscErrorCode (*apply)(PC,Vec,Vec));

and probably specification of a context pointer through PCShellSetContext:

PCShellSetContext(PC pc,void *ctx);

The application function then retrieves this context with PCShellGetContext:

PCShellGetContext(PC pc,void **ctx);

If the shell preconditioner requires setup, a routine for this can be specified with PCShellSetSetUp:

PCShellSetSetUp(PC pc,PetscErrorCode (*setup)(PC));

35.1.7.3.7 Combining preconditioners It is possible to combine preconditioners with PCCOMPOSITE

PCSetType(pc,PCCOMPOSITE);
PCCompositeAddPC(pc,type1);
PCCompositeAddPC(pc,type2);

By default, the preconditioners are applied additively; for multiplicative application

PCCompositeSetType(PC pc,PCCompositeType PC_COMPOSITE_MULTIPLICATIVE);

35.1.8 Customization: monitoring and convergence tests

PETSc solvers can do various callbacks to user functions.

35.1.8.1 Convergence tests

For instance, you can set your own convergence test with KSPSetConvergenceTest.

KSPSetConvergenceTest
(KSP ksp,
PetscErrorCode (*test)(

KSP ksp,PetscInt it,PetscReal rnorm,
KSPConvergedReason *reason,void *ctx),

void *ctx,PetscErrorCode (*destroy)(void *ctx));

This routines accepts

• the custom stopping test function,
• a ‘context’ void pointer to pass information to the tester, and
• optionally a custom destructor for the context information.

By default, PETSc behaves as if this function has been called with KSPConvergedDefault as argument.
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35.1.8.2 Convergence monitoring

There is also a callback for monitoring each iteration. It can be set with KSPMonitorSet.

KSPMonitorSet
(KSP ksp,
PetscErrorCode (*mon)(

KSP ksp,PetscInt it,PetscReal rnorm,void *ctx),
void *ctx,PetscErrorCode (*mondestroy)(void**));

By default no monitor is set, meaning that the iteration process runs without output. The option -ksp_monitor
activates printing a norm of the residual. This corresponds to setting KSPMonitorDefault as the monitor.

This actually outputs the ‘preconditioned norm’ of the residual, which is not the L2 norm, but the
square root of 𝑟 𝑡𝑀−1𝑟 , a quantity that is computed in the course of the iteration process. Specifying
KSPMonitorTrueResidualNorm (with corresponding option -ksp_monitor_true_residual) as the monitor prints
the actual norm √𝑟 𝑡 𝑟 . However, to compute this involves extra computation, since this quantity is not normally
computed.

35.1.8.3 Auxiliary routines

KSPGetSolution KSPGetRhs KSPBuildSolution KSPBuildResidual

KSPGetSolution(KSP ksp,Vec *x);
KSPGetRhs(KSP ksp,Vec *rhs);
KSPBuildSolution(KSP ksp,Vec w,Vec *v);
KSPBuildResidual(KSP ksp,Vec t,Vec w,Vec *v);

35.2 Direct solvers
PETSc has some support for direct solvers, that is, variants of LU decomposition. In a sequential context, the PCLU
preconditioner can be use for this: a direct solver is equivalent to an iterative method that stops after one precon-
ditioner application. This can be forced by specifying a KSP type of KSPPREONLY.

Distributed direct solvers are more complicated. PETSc does not have this implemented in its basic code, but it
becomes available by configuring PETSc with the scalapack library.

You need to specify which package provides the LU factorization:

PCFactorSetMatSolverType(pc, MatSolverType solver )

where the solver variable is of type MatSolverType, and can be MATSOLVERMUMS and such when specified in source:

// direct.c
PetscCall( KSPCreate(comm,&Solver) );
PetscCall( KSPSetOperators(Solver,A,A) );
PetscCall( KSPSetType(Solver,KSPPREONLY) );
{
PC Prec;
PetscCall( KSPGetPC(Solver,&Prec) );
PetscCall( PCSetType(Prec,PCLU) );
PetscCall( PCFactorSetMatSolverType(Prec,MATSOLVERMUMPS) );

}
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Figure 35.6 KSPSetFromOptions
Synopsis

#include "petscksp.h"
PetscErrorCode KSPSetFromOptions(KSP ksp)

Collective on ksp

Input Parameters
ksp - the Krylov space context

As specified on the commandline

yourprog -ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps
the choices are mumps, superlu, umfpack, or a number of others. Note that availability of these packages depends
on how PETSc was installed on your system.

35.3 Control through command line options
From the above you may get the impression that there are lots of calls to be made to set up a PETSc linear system
and solver. And what if you want to experiment with different solvers, does that mean that you have to edit a
whole bunch of code? Fortunately, there is an easier way to do things. If you call the routine KSPSetFromOptions
(figure 35.6) with the solver as argument, PETSc will look at your command line options and take those into account
in defining the solver. Thus, you can either omit setting options in your source code, or use this as a way of quickly
experimenting with different possibilities. Example:

myprogram -ksp_max_it 200 \
-ksp_type gmres -ksp_type_gmres_restart 20 \
-pc_type ilu -pc_type_ilu_levels 3

516 Parallel Computing – r428



Chapter 36

PETSC nonlinear solvers

36.1 Nonlinear systems
Nonlinear system solving means finding the zero of a general nonlinear function, that is:

?
𝑥
∶ 𝑓 (𝑥) = 0

with 𝑓 ∶ ℝ𝑛 − ℝ𝑛. In the special case of a linear function,

𝑓 (𝑥) = 𝐴𝑥 − 𝑏,
we solve this by any of the methods in chapter 35.

The general case can be solved by a number of methods, foremost Newton’s method, which iterates

𝑥𝑛+1 = 𝑥𝑛 − 𝐹(𝑥𝑛)−1𝑓 (𝑥𝑛)
where 𝐹 is the Hessian 𝐹𝑖𝑗 = 𝜕𝑓𝑖/𝜕𝑥𝑗 .
You see that you need to specify two functions that are dependent on your specific problem: the objective function
itself, and its Hessian.

36.1.1 Basic setup

The PETSc nonlinear solver object is of type SNES: ‘simple nonlinear equation solver’. As with linear solvers, we
create this solver on a communicator, set its type, incorporate options, and call the solution routine SNESSolve
(figure 36.1):

Vec value_vector,solution_vector;
/* vector creation code missing */
SNES solver;
SNESCreate( comm,&solver );
SNESSetFunction( solver,value_vector,formfunction, NULL );
SNESSetFromOptions( solver );
SNESSolve( solver,NULL,solution_vector );

The function has the type

PetscErrorCode formfunction(SNES,Vec,Vec,void*)
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Figure 36.1 SNESSolve
#include "petscsnes.h"
PetscErrorCode SNESSolve(SNES snes,Vec b,Vec x)

Collective on SNES

Input Parameters
snes - the SNES context
b - the constant part of the equation F(x) = b, or NULL to use zero.
x - the solution vector.

where the parameters are:

• the solver object, so that you can access to its internal parameters
• the 𝑥 value at which to evaluate the function
• the result vector 𝑓 (𝑥) for the given input
• a context pointer for further application-specific information.

Example:

PetscErrorCode evaluation_function( SNES solver,Vec x,Vec fx, void *ctx ) {
const PetscReal *x_array;
PetscReal *fx_array;
VecGetArrayRead(fx,&fx_array);
VecGetArray(x,&x_array);
for (int i=0; i<localsize; i++)

fx_array[i] = pointfunction( x_array[i] );
VecRestoreArrayRead(fx,&fx_array);
VecRestoreArray(x,&x_array);

};

Comparing the above to the introductory description you see that the Hessian is not specified here. An analytic
Hessian can be dispensed with if you instruct PETSc to approximate it by finite differences:

𝐻(𝑥)𝑦 ≈ 𝑓 (𝑥 + ℎ𝑦) − 𝑓 (𝑥)
ℎ

with ℎ some finite diference. The commandline option -snes_fd forces the use of this finite difference approxima-
tion. However, it may lead to a large number of function evaluations. The option -snes_fd_color applies a coloring
to the variables, leading to a drastic reduction in the number of function evaluations.

If you can form the analytic Jacobian / Hessian, you can specify it with SNESSetJacobian (figure 36.2), where the
Jacobian is a function of type SNESJacobianFunction (figure 36.3).

Specifying the Jacobian:

Mat J;
ierr = MatCreate(comm,&J); CHKERRQ(ierr);
ierr = MatSetType(J,MATSEQDENSE); CHKERRQ(ierr);
ierr = MatSetSizes(J,n,n,N,N); CHKERRQ(ierr);
ierr = MatSetUp(J); CHKERRQ(ierr);
ierr = SNESSetJacobian(solver,J,J,&Jacobian,NULL); CHKERRQ(ierr);
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Figure 36.2 SNESSetJacobian
#include "petscsnes.h"
PetscErrorCode SNESSetJacobian(SNES snes,Mat Amat,Mat Pmat,PetscErrorCode (*J)(SNES,Vec,Mat,Mat,void*),void *ctx)

Logically Collective on SNES

Input Parameters
snes - the SNES context
Amat - the matrix that defines the (approximate) Jacobian
Pmat - the matrix to be used in constructing the preconditioner, usually the same as Amat.
J - Jacobian evaluation routine (if NULL then SNES retains any previously set value)
ctx - [optional] user-defined context for private data for the Jacobian evaluation routine

Figure 36.3 SNESJacobianFunction
#include "petscsnes.h"
PetscErrorCode SNESJacobianFunction(SNES snes,Vec x,Mat Amat,Mat Pmat,void *ctx);

Collective on snes

Input Parameters
x - input vector, the Jacobian is to be computed at this value
ctx - [optional] user-defined Jacobian context

Output Parameters
Amat - the matrix that defines the (approximate) Jacobian
Pmat - the matrix to be used in constructing the preconditioner, usually the same as Amat.

36.2 Time-stepping
For cases

𝑢𝑡 = 𝐺(𝑡, 𝑢)
call TSSetRHSFunction.

#include "petscts.h"
PetscErrorCode TSSetRHSFunction

(TS ts,Vec r,
PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),
void *ctx);

For implicit cases
𝐹(𝑡, 𝑢, 𝑢𝑡) = 0

call TSSetIFunction

#include "petscts.h"
PetscErrorCode TSSetIFunction

(TS ts,Vec r,TSIFunction f,void *ctx)
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Chapter 37

PETSc GPU support

37.1 Installation with GPUs
PETSc can be configured with options

--with-cuda --with-cudac=nvcc?
You can test the presence of CUDA with:

// cudainstalled.c
#ifndef PETSC_HAVE_CUDA
#error "CUDA is not installed in this version of PETSC"
#endif

Some GPUs can accomodate MPI by being directly connected to the network through GPUDirect Remote Memory
Access (RMA). If not, use this runtime option:

-use_gpu_aware_mpi 0
More conveniently, add this to your .petscrc file; section 38.3.3.

37.2 Setup for GPU
GPUs need to be initialized. This can be done implicitly when a GPU object is created, or explicitly through
PetscDeviceInitialize. (PETSc versions before PETSc-3.17 had an explicit routine PetscCUDAInitialize.)

// cudainit.c
PetscDeviceType cuda = PETSC_DEVICE_CUDA;
ierr = PetscDeviceInitialize(cuda);
PetscBool has_cuda;
has_cuda = PetscDeviceInitialized(cuda);

37.3 Distributed objects
Objects such as matrices and vectors need to be create explicitly with a CUDA type. After that, most PETSc calls
are independent of the presence of GPUs.

Should you need to test, there is a CPP macro PETSC_HAVE_CUDA.
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37.4. Other

37.3.1 Vectors
Analogous to vector creation as before, there are specific create calls VecCreateSeqCUDA,
VecCreateMPICUDAWithArray, or the type can be set in VecSetType:

// kspcu.c
#ifdef PETSC_HAVE_CUDA

ierr = VecCreateMPICUDA(comm,localsize,PETSC_DECIDE,&Rhs);
#else

ierr = VecCreateMPI(comm,localsize,PETSC_DECIDE,&Rhs);
#endif

The type VECCUDA is sequential or parallel dependent on the run; specific types are VECSEQCUDA, VECMPICUDA.

37.3.2 Matrices
ierr = MatCreate(comm,&A);
#ifdef PETSC_HAVE_CUDA
ierr = MatSetType(A,MATMPIAIJCUSPARSE);
#else
ierr = MatSetType(A,MATMPIAIJ);
#endif

Dense matrices can be created with specific calls MatCreateDenseCUDA, MatCreateSeqDenseCUDA, or by setting types
MATDENSECUDA, MATSEQDENSECUDA, MATMPIDENSECUDA.

Sparse matrices: MATAIJCUSPARSE which is sequential or distributed depending on how the program is started. Spe-
cific types are: MATMPIAIJCUSPARSE, MATSEQAIJCUSPARSE.

37.3.3 Array access
All sorts of ‘array’ operations such as MatDenseCUDAGetArray, VecCUDAGetArray,

Set PetscMalloc to use the GPU: PetscMallocSetCUDAHost, and switch back with PetscMallocResetCUDAHost.

37.4 Other
The memories of a CPU and GPU are not coherent. This means that routines such as PetscMalloc1 can not imme-
diately be used for GPU allocation. Use the routines PetscMallocSetCUDAHost and PetscMallocResetCUDAHost to
switch the allocator to GPU memory and back.

// cudamatself.c
Mat cuda_matrix;
PetscScalar *matdata;
ierr = PetscMallocSetCUDAHost();
ierr = PetscMalloc1(global_size*global_size,&matdata);
ierr = PetscMallocResetCUDAHost();
ierr = MatCreateDenseCUDA
(comm,
global_size,global_size,global_size,global_size,
matdata,
&cuda_matrix);
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Chapter 38

PETSc tools

38.1 Error checking and debugging

38.1.1 Debug mode

During installation (see section 31.3), there is an option of turning on debugmode. An installationwith debug turned
on:

• Does more runtime checks on numerics, or array indices;
• Does a memory analysis when you insert the CHKMEMQ macro (section 38.1.3);
• Has the macro PETSC_USE_DEBUG set to 1.

38.1.2 Error codes

PETSc performs a good amount of runtime error checking. Some of this is for internal consistency, but it can also
detect certain mathematical errors. To facilitate error reporting, the following scheme is used.

Every PETSc call returns an error code; typically zero for success, and non-zero for various conditions. You should
wrap each such function call in the PetscCall macro:

PetscCall( SomePetscRoutine( arguments ) );

(In many codes you may see a macro CHKERRQ; which was the mechanism pre-PETSc-3.18; see section 38.1.2.2.) This
macro detects any error code, reports it, and exits the current routine.

For a good traceback, surround the executable part of any subprogram with PetscFunctionBeginUser and
PetscFunctionReturn, where the latter has the return value as parameter. (The routine PetscFunctionBegin does
the same, but should only be used for PETSc library routines.)

38.1.2.1 Error throwing

You can effect your own error return by using the variadic function SETERRQ (figure 38.1). (Before PETSc-3.17 there
were separate functions SETERRQ1, SETERRQ2, et cetera.)

Example. We write a routine that sets an error:

// backtrace.c
PetscErrorCode this_function_bombs() {
PetscFunctionBegin;
SETERRQ(PETSC_COMM_SELF,1,"We cannot go on like this");
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Figure 38.1 SETERRQ
#include <petscsys.h>
PetscErrorCode SETERRQ (MPI_Comm comm,PetscErrorCode ierr,char *message)
PetscErrorCode SETERRQ1(MPI_Comm comm,PetscErrorCode ierr,char *formatmessage,arg1)
PetscErrorCode SETERRQ2(MPI_Comm comm,PetscErrorCode ierr,char *formatmessage,arg1,arg2)
PetscErrorCode SETERRQ3(MPI_Comm comm,PetscErrorCode ierr,char *formatmessage,arg1,arg2,arg3)

Input Parameters:
comm - A communicator, so that the error can be collective
ierr - nonzero error code, see the list of standard error codes in include/petscerror.h
message - error message in the printf format
arg1,arg2,arg3 - argument (for example an integer, string or double)

PetscFunctionReturn(0);
}

Running this gives, in process zero, the output

[0]PETSC ERROR: We cannot go on like this
[0]PETSC ERROR: See https://www.mcs.anl.gov/petsc/documentation/faq.html for trouble shooting.
[0]PETSC ERROR: Petsc Release Version 3.12.2, Nov, 22, 2019
[0]PETSC ERROR: backtrace on a [computer name]
[0]PETSC ERROR: Configure options [all options]
[0]PETSC ERROR: #1 this_function_bombs() line 20 in backtrace.c
[0]PETSC ERROR: #2 main() line 30 in backtrace.c
Fortran note 30: Backtrace on error. In Fortran the backtrace is not quite as elegant.

!! backtrace.F90
Subroutine this_function_bombs(ierr)
implicit none
integer,intent(out) :: ierr

SETERRQ(PETSC_COMM_SELF,1,"We cannot go on like this")
ierr = -1

end Subroutine this_function_bombs

[0]PETSC ERROR: ----- Error Message ------------------------------
[0]PETSC ERROR: We cannot go on like this
[....]
[0]PETSC ERROR: #1 User provided function() line 0 in User file

Remark 43 In this example, the use of PETSC_COMM_SELF indicates that this error is individually generated on a process;
use PETSC_COMM_WORLD only if the same error would be detected everywhere.

Exercise 38.1. Look up the definition of SETERRQ1. Write a routine to compute square roots that is
used as follows:

x = 1.5; ierr = square_root(x,&rootx); CHKERRQ(ierr);
PetscPrintf(PETSC_COMM_WORLD,"Root of %f is %f\n",x,rootx);
x = -2.6; ierr = square_root(x,&rootx); CHKERRQ(ierr);
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PetscPrintf(PETSC_COMM_WORLD,"Root of %f is %f\n",x,rootx);

This should give as output:
Root of 1.500000 is 1.224745
[0]PETSC ERROR: ----- Error Message ----------------------------------------------
[0]PETSC ERROR: Cannot compute the root of -2.600000
[...]
[0]PETSC ERROR: #1 square_root() line 23 in root.c
[0]PETSC ERROR: #2 main() line 39 in root.c

38.1.2.2 Legacy error checking

In PETSc versions pre-PETSc-3.18, errors were handled slightly differently.

1. Every PETSc routine is a function returning a parameter of type PetscErrorCode.
2. Calling the macro CHKERRQ on the error code will cause an error to be printed and the current routine to

be terminated. Recursively this gives a traceback of where the error occurred.

PetscErrorCode ierr;
ierr = AnyPetscRoutine( arguments ); CHKERRQ(ierr);

3. Other error checking macros are CHKERRABORT which aborts immediately, and CHKERRMPI.

Fortran note 31: Error code handling. In the main program, use CHKERRA and SETERRA. Also beware that these error
‘commands’ are macros, and after expansion may interfere with Fortran line length, so they should only
be used in .F90 files.

C++ note 28: Exception handling. The macro CHCKERCXX handles exceptions.

38.1.3 Memory corruption

PETSc has its own memory management (section 38.5) and this facilitates finding memory corruption errors. The
macro CHKMEMQ (CHKMEMA in void functions) checks all memory that was allocated by PETSc, either internally or
throug the allocation routines, for corruption. Sprinkling this macro through your code can detect memory problems
before they lead to a segfault.

This testing is only done if the commandline argument -malloc_debug (-malloc_test in debugmode) is supplied,
so it carries no overhead for production runs.

38.1.3.1 Valgrind

Valgrind is rather verbose in its output. To limit the number of processs that run under valgrind:

mpiexec -n 3 valgrind --track-origins=yes ./app -args : -n 5 ./app -args

38.2 Program output
PETSc has as variety of mechanisms to export or visualize program data. We will consider a few possibilities here.
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Figure 38.2 PetscPrintf
C:
PetscErrorCode PetscPrintf(MPI_Comm comm,const char format[],...)

Fortran:
PetscPrintf(MPI_Comm, character(*), PetscErrorCode ierr)

Python:
PETSc.Sys.Print(type cls, *args, **kwargs)
kwargs:
comm : communicator object

Figure 38.3 PetscSynchronizedPrintf
C:
PetscErrorCode PetscSynchronizedPrintf(

MPI_Comm comm,const char format[],...)

Fortran:
PetscSynchronizedPrintf(MPI_Comm, character(*), PetscErrorCode ierr)

python:
PETSc.Sys.syncPrint(type cls, *args, **kargs)
kwargs:
comm : communicator object
flush : if True, do synchronizedFlush
other keyword args as for python3 print function

38.2.1 Screen I/O

Printing screen output in parallel is tricky. If two processes execute a print statement at more or less the same time
there is no guarantee as to in what order they may appear on screen. (Even attempts to have them print one after
the other may not result in the right ordering.) Furthermore, lines from multi-line print actions on two processes
may wind up on the screen interleaved.

38.2.1.1 printf replacements

PETSc has two routines that fix this problem. First of all, often the information printed is the same on all processes,
so it is enough if only one process, for instance process 0, prints it. This is done with PetscPrintf (figure 38.2).

If all processes need to print, you can use PetscSynchronizedPrintf (figure 38.3) that forces the output to appear
in process order.

To make sure that output is properly flushed from all system buffers use PetscSynchronizedFlush (figure 38.4)
where for ordinary screen output you would use stdout for the file.

Fortran note 32: Print string construction. Fortran does not have the variable-number-of-arguments mechanism
from C, so you can only use PetscPrintf on a buffer that you construct with a Write statement:

Character*80 :: message
write(message,10) xnorm,ynorm
10 format("Norm x: ",f6.3,", y: ",f6.3,"\n")
call PetscPrintf(comm,message,ierr)
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Figure 38.4 PetscSynchronizedFlush
C:
PetscErrorCode PetscSynchronizedFlush(MPI_Comm comm,FILE *fd)
fd : output file pointer, needs to be valid on process zero

Fortran:
PetscSynchronizedFlush(comm,fd,err)
Integer :: comm
fd is usually PETSC_STDOUT
PetscErrorCode :: err

python:
PETSc.Sys.syncFlush(type cls, comm=None)

Figure 38.5 PetscViewerRead
Synopsis

#include "petscviewer.h"
PetscErrorCode PetscViewerRead(PetscViewer viewer, void *data, PetscInt num, PetscInt *count, PetscDataType dtype)

Collective

Input Parameters
viewer - The viewer
data - Location to write the data
num - Number of items of data to read
datatype - Type of data to read

Output Parameters
count -number of items of data actually read, or NULL

Fortran note 33: Printing and newlines. The Fortran calls are only wrappers around C routines, so you can use \n
newline characters in the Fortran string argument to PetscPrintf.

The file to flush is typically PETSC_STDOUT.

Python note 45: Petsc print and python print. Since the print routines use the python print call, they automatically
include the trailing newline. You don’t have to specify it as in the C calls.

38.2.1.2 scanf replacement

Using scanf in Petsc is tricky, since integers and real numbers can be of different sizes, depending on the installation.
Instead, use PetscViewerRead (figure 38.5), which operates in terms of PetscDataType.

38.2.2 Viewers

In order to export PETSc matrix or vector data structures there is a PetscViewer object type. This is a quite general
concept of viewing: it encompasses ascii output to screen, binary dump to file, or communication to a running
Matlab process. Calls such as MatView or KSPView accept a PetscViewer argument.

In cases where this makes sense, there is also an inverse ‘load’ operation. See section 32.3.5 for vectors.
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Some viewers are predefined, such as PETSC_VIEWER_STDOUT_WORLD for ascii rendering to standard out. (In C, spec-
ifying zero or NULL also uses this default viewer; for Fortran use PETSC_NULL_VIEWER.)

38.2.2.1 Viewer types

For activities such as dumping to file you first need create the viewer with PetscViewerCreate and set its type with
PetscViewerSetType.

PetscViewerCreate(comm,&viewer);
PetscViewerSetType(viewer,PETSCVIEWERBINARY);

Popular types include PETSCVIEWERASCII, PETSCVIEWERBINARY, PETSCVIEWERSTRING, PETSCVIEWERDRAW,
PETSCVIEWERSOCKET, PETSCVIEWERHDF5, PETSCVIEWERVTK; the full list can be found in include/petscviewer.h.

38.2.2.2 Viewer formats

Viewers can take further format specifications by using PetscViewerPushFormat:

PetscViewerPushFormat
(PETSC_VIEWER_STDOUT_WORLD,
PETSC_VIEWER_ASCII_INFO_DETAIL);

and afterwards a corresponding PetscViewerPopFormat

Python note 46: HDF5 file generation.

## hdf5.py
file_name = "hdf5.dat"
viewer = PETSc.Viewer().createHDF5(file_name, 'w', comm)
x.view(viewer)
viewer = PETSc.Viewer().createHDF5(file_name, 'r', comm)
x.load(viewer)

38.2.2.3 Commandline option for viewers

Petsc objects viewers can be activated by calls such as MatView, but often it is more convenient to do this through
commandline options, such as -mat_view, -vec_view, or -ksp_view. By default, these output to stdout in ascii
form, but this can be controlled by further option values:

program -mat_view binary:matrix.dat
where binary forces a binary dump (ascii is the default) and a file name is explicitly given.

Binary dump may not be supported for all datatypes, in particular DM. For that case, do

program -dm_view draw \
-draw_pause 20

which pops up an X11 window, for the duration of the indicated pause.

If a viewer needs to be triggered at a specific location, calls such as VecViewFromOptions can be used. These routines
all have a similar calling sequence:
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#include "petscsys.h"
PetscErrorCode PetscObjectViewFromOptions(PetscObject obj,PetscObject bobj,const char

↪optionname[])
PetscErrorCode VecViewFromOptions(Vec A,PetscObject obj,const char name[])

AOViewFromOptions, DMViewFromOptions, ISViewFromOptions, ISLocalToGlobalMappingViewFromOptions,
KSPConvergedReasonViewFromOptions, KSPViewFromOptions, MatPartitioningViewFromOptions,
MatCoarsenViewFromOptions, MatViewFromOptions, PetscObjectViewFromOptions,
PetscPartitionerViewFromOptions, PetscDrawViewFromOptions, PetscRandomViewFromOptions,
PetscDualSpaceViewFromOptions, PetscSFViewFromOptions, PetscFEViewFromOptions,
PetscFVViewFromOptions, PetscSectionViewFromOptions, PCViewFromOptions, PetscSpaceViewFromOptions,
PFViewFromOptions, PetscLimiterViewFromOptions, PetscLogViewFromOptions, PetscDSViewFromOptions,
PetscViewerViewFromOptions, SNESConvergedReasonViewFromOptions, SNESViewFromOptions,
TSTrajectoryViewFromOptions, TSViewFromOptions, TaoLineSearchViewFromOptions, TaoViewFromOptions,
VecViewFromOptions, VecScatterViewFromOptions,

38.2.2.4 Naming objects

A helpful facility for viewing is to name an object: that name will then be displayed when the object is viewed.

Vec i_local;
ierr = VecCreate(comm,&i_local); CHKERRQ(ierr);
ierr = PetscObjectSetName((PetscObject)i_local,"space local"); CHKERRQ(ierr);

giving:

Vec Object: space local 4 MPI processes
type: mpi

Process [0]
[ ... et cetera ... ]

38.3 Commandline options
PETSc has as large number of commandline options, most of which we will discuss later. For now we only mention
-log_summary which will print out profile of the time taken in various routines. For these options to be parsed, it is
necessary to pass argc,argv to the PetscInitialize call.

38.3.1 Adding your own options

You can add custom commandline options to your program. Various routines such as PetscOptionsGetInt scan the
commandline for options and set parameters accordingly. For instance,

// ksp.c
PetscBool flag;
PetscInt domain_size = 100;
ierr = PetscOptionsGetInt
(NULL,NULL,"-n",&domain_size,&flag);

PetscPrintf(comm,"Using domain size %d\n",domain_size);
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declares the existence of an option -n to be followed by an integer.

Now executing

mpiexec yourprogram -n 5
will

1. set the flag to true, and
2. set the parameter domain_size to the value on the commandline.

Omitting the -n option will leave the default value of domain_size unaltered.

For flags, use PetscOptionsHasName.

Python note 47: Petsc options. In Python, do not specify the initial hyphen of an option name. Also, the functions
such as getInt do not return the boolean flag; if you need to test for the existence of the commandline
option, use:

hasn = PETSc.Options().hasName("n")
There is a related mechanism using PetscOptionsBegin / PetscOptionsEnd:

// optionsbegin.c
PetscOptionsBegin(comm,NULL,"Parameters",NULL);
PetscCall( PetscOptionsInt("-i","i value",__FILE__,i_value,&i_value,&i_flag) );
PetscCall( PetscOptionsInt("-j","j value",__FILE__,j_value,&j_value,&j_flag) );
PetscOptionsEnd();
if (i_flag)
PetscPrintf(comm,"Option `-i' was used\n");

if (j_flag)
PetscPrintf(comm,"Option `-j' was used\n");

The selling point for this approach is that running your code with

mpiexec yourprogram -help
will display these options as a block. Together with a ton of other options, unfortunately.

38.3.2 Options prefix

Inmany cases, your codewill have only one KSP solver object, so specifying -ksp_view or -ksp_monitorwill display /
trace that one. However, you may have multiple solvers, or nested solvers. You may then not want to display all of
them.

As an example of the nest solver case, consider the case of a block jacobi preconditioner , where the block is itself
solved with an iterative method. You can trace that one with --sub_ksp_monitor.

The sub_ is an option prefix, and you can defined your own with KSPSetOptionsPrefix. (There are similar routines
for other PETSc object types.)

Example:

KSPCreate(comm,&time_solver);
KSPCreate(comm,&space_solver);
KSPSetOptionsPrefix(time_solver,"time_");
KSPSetOptionsPrefix(space_solver,"space_");
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Figure 38.6 PetscTime
Synopsis
Returns the CPU time in seconds used by the process.

#include "petscsys.h"
#include "petsctime.h"
PetscErrorCode PetscGetCPUTime(PetscLogDouble *t)
PetscErrorCode PetscTime(PetscLogDouble *v)

You can then use options -time_ksp_monitor and such. Note that the prefix does not have a leading dash, but it
does have the trailing underscore.

Similar routines: MatSetOptionsPrefix, PCSetOptionsPrefix, PetscObjectSetOptionsPrefix,
PetscViewerSetOptionsPrefix, SNESSetOptionsPrefix, TSSetOptionsPrefix, VecSetOptionsPrefix, and some
more obscure ones.

38.3.3 Where to specify options

Commandline options can obviously go on the commandline. However, there are more places where they can be
specified.

Options can be specified programmatically with PetscOptionsSetValue:

PetscOptionsSetValue( NULL, // for global options
"-some_option","value_as_string");

Options can be specified in a file .petscrc in the user’s home directory or the current directory.

Finally, an environment variable PETSC_OPTIONS can be set.

The rc file is processed first, then the environment variable, then any commandline arguments. This parsing is done
in PetscInitialize, so any values from PetscOptionsSetValue override this.

38.4 Timing and profiling
PETSc has a number of timing routines that make it unnecessary to use system routines such as getrusage or
MPI routines such as MPI_Wtime. The main (wall clock) timer is PetscTime (figure 38.6). Note the return type of
PetscLogDouble which can have a different precision from PetscReal.

The routine PetscGetCPUTime is less useful, since it measures only time spent in computation, and ignores things
such as communication.

38.4.1 Logging

Petsc does a lot of logging on its own operations. Additionally, you can introduce your own routines into this log.

The simplest way to display statistics is to run with an option -log_view. This takes an optional file name argument:

mpiexec -n 10 yourprogram -log_view :statistics.txt
The corresponding routine is PetscLogView.

530 Parallel Computing – r428



38.5. Memory management

Figure 38.7 PetscMalloc1
Synopsis
Allocates an array of memory aligned to PETSC_MEMALIGN

C:
#include <petscsys.h>
PetscErrorCode PetscMalloc1(size_t m1,type **r1)

Input Parameter:
m1 - number of elements to allocate (may be zero)

Output Parameter:
r1 - memory allocated

Figure 38.8 PetscFree
Synopsis
Frees memory, not collective

C:
#include <petscsys.h>
PetscErrorCode PetscFree(void *memory)

Input Parameter:
memory - memory to free (the pointer is ALWAYS set to NULL upon sucess)

38.5 Memory management
Allocate the memory for a given pointer: PetscNew, allocate arbitrary memory with PetscMalloc, allocate a number
of objects with PetscMalloc1 (figure 38.7) (this does not zero the memory allocated, use PetscCalloc1 to obtain
memory that has been zeroed); use PetscFree (figure 38.8) to free.

PetscInt *idxs;
PetscMalloc1(10,&idxs);
// better than:
// PetscMalloc(10*sizeof(PetscInt),&idxs);
for (PetscInt i=0; i<10; i++)

idxs[i] = f(i);
PetscFree(idxs);

Allocated memory is aligned to PETSC_MEMALIGN.

The state of memory allocation can be written to file or standard out with PetscMallocDump. The commandline
option -malloc_dump outputs all not-freed memory during PetscFinalize.

38.5.1 GPU allocation

The memories of a CPU and GPU are not coherent. This means that routines such as PetscMalloc1 can not imme-
diately be used for GPU allocation. See section 37.4 for details.
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Chapter 39

PETSc topics

39.1 Communicators
PETSc has a ‘world’ communicator, which by default equals MPI_COMM_WORLD. If you want to run PETSc on a subset
of processes, you can assign a subcommunicator to the variable PETSC_COMM_WORLD in between the calls to MPI_Init
and PetscInitialize. Petsc communicators are of type PetscComm.
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OTHER PROGRAMMING MODELS



There are many other programming systems for parallelism. In particular threading models are a dime a dozen.

Here we discussion:

• Co-array Fortran (CAF): a distributed parallel mode for Fortran arrays; chapter 40.
• Kokkos and Sycl, two heterogeneous programming models that target both multicore and accelerator
programming (and Field Programmable Gate Arrays (FPGAs) in the case of Sycl); chapters 41 and 42
respectively.

• Python multiprocessing; chapter 43.

Comparing these to the systems already discussed above we can remark:

• CAF is one of the very few alternatives to MPI where it comes to distributed memory programming. Its
treatment of Cartesian arrays is more elegant; otherwise it lacks much MPI functionality.

• Kokkos and Sycl are competitors to OpenMP offloading; chapter 27. Switching between CPU and GPU
modes is easier in these systems than in OpenMP.

• The python multiprocessing toolbox is more task-base then the mpi4py module in Python.

Among the various threading models in existence we mention

• pthreads, which is more geared to systems programming than scientific computing; see HPC book,
section-2.6.1.3.

• C++ has a native thread library; see Programming book, section-25.1. There is also the execution policy
mechanism for the C++ standard library ‘algorithms’.

• Intel TBB is often used as a lower layer for other threading implementations, such as the native C++
parallel execution policies.

Parallelism models we do not discuss include

• Compute-Unified Device Architecture (CUDA) which targets GPUs.
• NVIDIA Collective Communication Library (NCCL), which optimized MPI collectives for GPUs.
• Chapel, a completely independent language for parallel computing; see HPC book, section-2.6.5.5. On
the topic of parallel languages, see more generally HPC book, section-2.6.5.
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Chapter 40

Co-array Fortran

This chapter explains the basic concepts of CAF, and helps you get started on running your first program.

40.1 History and design
https://en.wikipedia.org/wiki/Coarray_Fortran

40.2 Compiling and running
CAF is built on the same SPMD design as MPI. Where MPI talks about processes or ranks, CAF calls the running
instances of your program images.

The Intel compiler uses the flag -coarray=xxx with values single, shared, distributed gpu.

It is possible to bake the number of ‘images’ into the executable, but by default this is not done, and it is determined
at runtime by the variable FOR_COARRAY_NUM_IMAGES.

CAF can not be mixed with OpenMP.

40.3 Basics
Co-arrays are defined by giving them, in addition to the Dimension, a Codimension

Complex,codimension(*) :: number
Integer,dimension(:,:,:),codimension[-1:1,*] :: grid

This means we are respectively declaring an array with a single number on each image, or a three-dimensional grid
spread over a two-dimensional processor grid.

Traditional-like syntax can also be used:

Complex :: number[*]
Integer :: grid(10,20,30)[-1:1,*]

Unlike MPI, which normally only supports a linear process numbering, CAF allows for multi-dimensional process
grids. The last dimension is always specified as *, meaning it is determined at runtime.
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40.3.1 Image identification

As in other models, in CAF one can ask how many images/processes there are, and what the number of the current
one is, with num_images and this_image respectively.

!! hello.F90
write(*,*) "Hello from image ", this_image(), &

"out of ", num_images()," total images"

If you call this_image with a co-array as argument, it will return the image index, as a tuple of cosubscripts,
rather than a linear index. Given such a set of subscripts, image_index will return the linear index.

The functions lcobound and ucobound give the lower and upper bound on the image subscripts, as a linear index,
or a tuple if called with a co-array variable.

40.3.2 Remote operations

The appeal of CAF is that moving data between images looks (almost) like an ordinary copy operation:

real :: x(2)[*]
integer :: p
p = this_image()
x(1)[ p+1 ] = x(2)[ p ]

Exchanging grid boundaries is elegantly done with array syntax:

Real,Dimension( 0:N+1,0:N+1 )[*] :: grid
grid( N+1,: )[p] = grid( 0,: )[p+1]
grid( 0,: )[p] = grid( N,: )[p-1]

40.3.3 Synchronization

The fortran standard forbids race conditions:
If a variable is defined on an image in a segment, it shall not be referenced, defined or become
undefined in a segment on another image unless the segments are ordered.

That is, you should not cause them to happen. The language and runtime are certainly not going to help yu with
that.

Well, a little. After remote updates you can synchronize images with the sync call. The easiest variant is a global
synchronization:

sync all

Compare this to a wait call after MPI nonblocking calls.

More fine-grained, one can synchronize with specific images:

sync images( (/ p-1,p,p+1 /) )

While remote operations in CAF are nicely one-sided, synchronization is not: if image p issues a call

sync(q)
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then q also needs to issue a mirroring call to synchronize with p.

As an illustration, the following code is not a correct implementation of a ping-pong:

!! pingpong.F90
sync all
if (procid==1) then

number[procid+1] = number[procid]
else if (procid==2) then

number[procid-1] = 2*number[procid]
end if
sync all

We can solve this with a global synchronization:

sync all
if (procid==1) &

number[procid+1] = number[procid]
sync all
if (procid==2) &

number[procid-1] = 2*number[procid]
sync all

or a local one:

if (procid==1) &
number[procid+1] = number[procid]

if (procid<=2) sync images( (/1,2/) )
if (procid==2) &

number[procid-1] = 2*number[procid]
if (procid<=2) sync images( (/2,1/) )

Note that the local sync call is done on both images involved.

Example of how you would synchronize a collective:

if ( this_image() .eq. 1 ) sync images( * )
if ( this_image() .ne. 1 ) sync images( 1 )

Here image 1 synchronizes with all others, but the others don’t synchronize with each other.

if (procid==1) then
sync images( (/procid+1/) )

else if (procid==nprocs) then
sync images( (/procid-1/) )

else
sync images( (/procid-1,procid+1/) )

end if

40.3.4 Collectives

Collectives are not part of CAF as of the 2008 Fortran standard.
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Chapter 41

Kokkos

Much of this material is based on the Kokkos Tutorial that Jeff Miles and Christian Trott gave April 21-24, 2020.

41.1 Compilation
Include file:

// hello.cxx
#include "Kokkos_Core.hpp"

Discoverable in CMake:

find_package(Kokkos REQUIRED)
target_link_libraries(myTarget Kokkos::kokkos)

Either set CMAKE_PREFIX_PATH or add

-DKokkos_ROOT=<Kokkos Install Directory>/lib64/cmake/Kokkos

Maybe:

-DCMAKE_CXX_COMPILER=<Kokkos Install Directory>/bin/nvcc_wrapper

See https://kokkos.org/kokkos-core-wiki/ProgrammingGuide/Compiling.html

41.2 Parallel code execution
In parallel execution we basically have two issues:

1. The parallel structure of the algorithm; that’s what we discuss in this section.
2. the memory structure of how the data is laid out; this will be discussed in section 41.3.

The algorithmic parallel structure is indicated with the following constructs.

Kokkos::parallel_for
Kokkos::parallel_reduce
Kokkos::parallel_scan
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41.2. Parallel code execution

41.2.1 Example: 1D loop

Hello world:

Kokkos::parallel_for
( 10,
[](int i){ cout << "hello " << i << "\n"; }
);

The two arguments of parallel_for are:

• The number of iterations,
• A function of the iteration number. You can use a function pointer here, but often we will use lambda
expressions.

Optionally, the parallel construct takes a string argument that can be used for naming.

41.2.2 Reduction

Reductions add a parameter to the construct: the reduction variable. Here is the traditional calculation of 𝜋 by
integration:

double pi{0.};
int n{100};
Kokkos::parallel_reduce
( "PI",

n,
KOKKOS_LAMBDA ( int i, double& partial ) {
double h = 1./n, x = i*h;
partial += h * sqrt( 1-x*x );

},
pi
);

• The parallel construct has an optional name. This is useful for profiling and debugging.
• Instead of an explicit lambda capture, we use KOKKOS_LAMBDA which does a [=] capture, and adds clauses
for GPU execution, if needed.

• The lambda expression now takes two parameters: the iteration number, and the reduction variable. This
is the thread-private variable, not the final one.

• The final argument is the global reduction variable.

For reductions other than summing, a reducer is needed.

// reduxmax.cxx
double max=0.;
Kokkos::parallel_reduce
( npoints,

KOKKOS_LAMBDA (int i,double& m) {
if (x(i)>m)

m = x(i);
},

Kokkos::Max<double>(max)
);

cout << "max: " << max << "\n";

Victor Eijkhout 539



41. Kokkos

41.2.3 Examples: Multi-D loops

You can of course parallelize over the outer loop, and do the inner loops in the functor. This code computes 𝑟 ← 𝑦 𝑡𝐴𝑥 :
Kokkos::parallel_reduce( "yAx", N,

KOKKOS_LAMBDA ( int j, double &update ) {
double temp2 = 0;

for ( int i = 0; i < M; ++i ) {
temp2 += A[ j * M + i ] * x[ i ];

}

update += y[ j ] * temp2;
},
result

);

You can also leave all the loops to Kokkos, with an RangePolicy or MDRangePolicy. Here you indicate the rank (as
in: number of dimensions) of the object, as well as arrays of first/last values. In the above examples

Kokkos::parallel_reduce( N, ... );
// equivalent:
Kokkos::parallel_reduce( Kokkos:RangePolicy<>(0,N), ... );

An example with a higher rank than one:

// matyax.cxx
Kokkos::parallel_reduce
( "ytAx product",

Kokkos::MDRangePolicy<Kokkos::Rank<2>>( {0,0}, {m,n} ),
KOKKOS_LAMBDA (int i,int j,double &partial ) {

partial += yvec(i) * matrix(i,j) * xvec(j); },
sum
);

Note the multi-D indexing in this example: this parenthesis notation gets translated to the correct row/column-
major depending on whether the code runs on a CPU or GPU; see section 19.6.2.

41.3 Data
One of the problems Kokkos addresses is the coherence of data between main processor and attached devicees such
GPUs. This is handled through the Kokkos::View mechanism.

// matsum.cxx
int m=10,n=100;
Kokkos::View<double**> matrix("flat",m,n);
assert( matrix.extent(0)==10 );

These act like C++ shared_ptr, so capturing them by value gives you the data by reference anyway. Storage is
automatically freed, RAII-style, when they go out of scope.

Indexing is best done with a Fortran-style notation:
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matrix(i,j)

which makes indexing in your algorithm independent of the actual layout.

Compile-time dimensions can be accomodated:

View<double*[2]> tallskinny("tallthin",100);
View<double*[2][3]> tallthin(100);

with the compile-time dimensions trailing. Naming is optional.

Methods:

• extent(int) gives the extent in a certain dimensions;
• data gives a raw pointer to the data.

41.3.1 Data layout

The view declaration has an optional template argument for the data layout.

View<double***, Layout, Space> name(...);

Values are

• LayoutLeft where, Fortran-style, the leftmost index is stride 1; this is the default for CudaSpace.
• LayoutRight where, C-style, the leftmost index is stride 1; this is the default for HostSpace.
• LayoutStride, LayoutTiled and others.
• User-defined.

Practically speaking, the traversal of a two-dimensional array is now a function of

• the layout, possible determined by the memory space, and
• the indexing in in the functor:

Kokkos:parallel_whatever(
N,
KOKKOS_LAMBDA ( size_t i ) {

matrix(i,j) or matrix(j,i); }
);

It is probably best to stick with this Rule of Thumb:

With a layout determined by the memory space,
let the iterator index be first,
and let loops inside the functor range over subsequent indexes.

41.4 Execution and memory spaces
The body of the functor can be executed on the CPU or on a GPU. Those are the execution spaces. Kokkos needs to
be installed with support for such spaces.

To indicate that a function or lambda expression can be executed on more than one possible execution space:

• use KOKKOS_LAMBDA as the capture for lambda expressions, or
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• prefix explicitly defined functions with KOKKOS_INLINE_FUNCTION.

Execution spaces can be explicitly indicated using the RangePolicy keyword:

Kokkos::parallel_for
( Kokkos::RangePolicy<>( 0,10 ), # default execution space
[] (int i) {} );

Kokkos::parallel_for
( Kokkos::RangePolicy<SomeExecutionSpace>( 0,10 ),
[] (int i) {} );

The default

Kokkos::parallel_for( N, ...

is equivalent to

Kokkos::parallel_for( RangePolicy<>(N), ...

41.4.1 Memory spaces

Where data is stored is an independent story. Each execution space has a memory space. When creating a View, you
can optionally indicate a memory space argument:

View<double***,MemorySpace> data(...);

Available memory spaces include: HostSpace, CudaSpace, CudaUVMSpace. Leaving out the memory space argument
is equivalent to

View<double**,DefaultExecutionSpace::memory_space> x(1,2);

Examples:

View<double*,HostSpace> hostarray(5);
View<double*,CudaSpace> cudaarray(5);

The CudaSpace is only available if Kokkos has been configured with CUDA

41.4.2 Space coherence

Kokkos never makes implicit deep copies, so you can not immediately run a functor in the Cuda execution space
on a view in Host space.

You can create a mirror of CUDA data on the host:

CuMatrix matrix(m,n);
CuMatrix::HostMirror hostmatrix =

Kokkos::create_mirror_view(matrix);
// populate matrix on the host
for (i) for (j) hostmatrix(i,j) = ....;
// deep copy to GPU
Kokkos::deep_copy(matrix,hostmatrix);
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// do something on the GPU
Kokkos:parallel_whatever(

RangePolicy<CudaSpace>( 0,n ),
some lambda );

// if needed, deep copy back.

41.5 Configuration
An accelerator-free installation with OpenMP:

cmake \
-D Kokkos_ENABLE_SERIAL=ON -D Kokkos_ENABLE_OPENMP=ON

Threading is not compatible with OpenMP:

-D Kokkos_ENABLE_THREADS=ON
Cuda installation:

cmake \
-D Kokkos_ENABLE_CUDA=ON -D Kokkos_ARCH_TURING75=ON -D Kokkos_ENABLE_CUDA_LAMBDA=ON

41.6 Stuff
There are init/finalize calls, which are not always needed.

// pi.cxx
Kokkos::initialize(argc,argv);
Kokkos::finalize();

41.6.1 OpenMP integration

Cmake flag to enable OpenMP: -D Kokkos_ENABLE_OPENMP=ON

After that, all the usual OpenMP environment variables work.

Alternatively:

int nthreads = Kokkos::OpenMP::concurrency();
Kokkos::initialize(Kokkos::InitializationSettings().set_num_threads(nthreads))

Parallelism control:

--kokkos-threads=123 # threads
--kokkos-numa=45 # numa regions
--kokkos-device=6 * GPU id to use
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Sycl, OneAPI, DPC++

This chapter explains the basic concepts of Sycl/Dpc++, and helps you get started on running your first program.

• SYCL is a C++-based language for portable parallel programming.
• Data Parallel C++ (DPCPP) is Intel’s extension of Sycl.
• OneAPI is Intel’s compiler suite, which contains the DPCPP compiler.

Intel DPC++ extension. The various Intel extensions are listed here: https://spec.oneapi.com/versions/
latest/elements/dpcpp/source/index.html#extensions-table

42.1 Logistics
Headers:

#include <CL/sycl.hpp>

You can now include namespace, but with care! If you use

using namespace cl;

you have to prefix all SYCL class with sycl::, which is a bit of a bother. However, if you use

using namespace cl::sycl;

you run into the fact that SYCL has its own versions of many Standard Template Library (STL) commands, and so
you will get name collisions. The most obvious example is that the cl::sycl name space has its own versions of
cout and endl. Therefore you have to use explicitly std::cout and std::end. Using the wrong I/O will cause tons
of inscrutable error messages. Additionally, SYCL has its own version of free, and of several math routines.

Intel DPC++ extension.

using namespace sycl;

544

https://spec.oneapi.com/versions/latest/elements/dpcpp/source/index.html#extensions-table
https://spec.oneapi.com/versions/latest/elements/dpcpp/source/index.html#extensions-table


42.2. Platforms and devices

42.2 Platforms and devices
Since DPCPP is cross-platform, we first need to discovers the devices.

First we list the platforms:

// devices.cxx
std::vector<sycl::platform> platforms = sycl::platform::get_platforms();
for (const auto &plat : platforms) {
// get_info is a template. So we pass the type as an `arguments`.

std::cout << "Platform: "
<< plat.get_info<sycl::info::platform::name>() << " "
<< plat.get_info<sycl::info::platform::vendor>() << " "
<< plat.get_info<sycl::info::platform::version>()
<< '\n';

Then for each platform we list the devices:

std::vector<sycl::device> devices = plat.get_devices();
for (const auto &dev : devices) {

std::cout << "-- Device: "
<< dev.get_info<sycl::info::device::name>()

//<< (dev.is_host() ? ": is the host" : "")
<< (dev.is_cpu() ? ": is a cpu" : "")
<< (dev.is_gpu() ? ": is a gpu" : "")
<< std::endl;

You can query what type of device you are dealing with by is_cpu, is_gpu. (The function is_host was deprecated
in SYCL-2020.)

42.3 Queues
The execution mechanism of SYCL is the queue: a sequence of actions that will be executed on a selected device. The
only user action is submitting actions to a queue; the queue is executed at the end of the scope where it is declared.

Queue execution is asynchronous with host code.

42.3.1 Device selectors

You need to select a device on which to execute the queue. A single queue can only dispatch to a single device.

A queue is coupled to one specific device, so it can not spread work over multiple devices. You can find a default
device for the queue with

sycl::queue myqueue;

The following example explicitly assigns the queue to the CPU device using the sycl::cpu_selector.

// cpuname.cxx
sycl::queue myqueue( sycl::cpu_selector_v );
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Remark 44 Pre-SYCL-2020: the sycl::host_selector bypasses any devices and make the code run on the host.

cpu_selector is deprecated in SYCL-2020, replaced by cpu_selector_v.

It is good for your sanity to print the name of the device you are running on:

// devname.cxx
std::cout << myqueue.get_device().get_info<sycl::info::device::name>()

<< std::endl;

If you try to select a device that is not available, a sycl::runtime_error exception will be thrown.

Intel DPC++ extension.

#include "CL/sycl/intel/fpga_extensions.hpp"
fpga_selector

42.3.2 Queue submission and execution

It seems that queue kernels will also be executed when only they go out of scope, but not the queue:

// doubler.cxx
sycl::range<1> mySize{SIZE};
sycl::buffer<int, 1> bufferA(myArray.data(), mySize);
myqueue.submit
( [&](sycl::handler &myHandle) {

auto deviceAccessorA =
bufferA.get_access<sycl::access::mode::read_write>(myHandle);

} // queue goes out of scope, executes

42.3.3 Kernel ordering

Kernels are not necessarily executed in the order in which they are submitted. You can enforce this by specifying
an in-order queue:

sycl::queue myqueue{property::queue::inorder()};

42.4 Kernels
One kernel per submit.

myqueue.submit( [&] ( handler &commandgroup ) {
commandgroup.parallel_for<uniquename>

( range<1>{N},
[=] ( id<1> idx ) { ... idx }

)
} );
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Note that the lambda in the kernel captures by value. Capturing by reference makes no sense, since the kernel is
executed on a device.

cgh.single_task(
[=]() {
// kernel function is executed EXACTLY once on a SINGLE work-item

});

The submit call results in an event object:

auto myevent = myqueue.submit( /* stuff */ );

This can be used for two purposes:

1. It becomes possible to wait for this specific event:

myevent.wait();

2. It can be used to indicate kernel dependencies:

myqueue.submit( [=] (handler &h) {
h.depends_on(myevent);
/* stuff */
} );

42.5 Parallel operations

42.5.1 Loops

cgh.parallel_for(
range<3>(1024,1024,1024),
// using 3D in this example
[=](id<3> myID) {
// kernel function is executed on an n-dimensional range (NDrange)

});

cgh.parallel_for(
nd_range<3>( {1024,1024,1024},{16,16,16} ),
// using 3D in this example
[=](nd_item<3> myID) {
// kernel function is executed on an n-dimensional range (NDrange)

});

cgh.parallel_for_work_group(
range<2>(1024,1024),
// using 2D in this example
[=](group<2> myGroup) {
// kernel function is executed once per work-group

});

grp.parallel_for_work_item(
range<1>(1024),
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// using 1D in this example
[=](h_item<1> myItem) {
// kernel function is executed once per work-item

});

In SYCL-2020 offsets on nd_range are deprecated.

42.5.1.1 Loop bounds: ranges

SYCL adopts the modern C++ philosophy that one does not iterate over by explicitly enumerating indices, but by
indicating their range. This is realized by the range class, which is templated over the number of space dimensions.

sycl::range<2> matrix{10,10};

Some compilers are sensitive to the type of the integer arguments:

sycl::range<1> array{ static_cast<size_t>(size)} ;

42.5.1.2 Loop indices

Kernels such as parallel_for expects two arguments:

• a range over which to index; and
• a lambda of one argument: an index.

There are several ways of indexing. The id<nd> class of multi-dimensional indices.

myHandle.parallel_for<class uniqueID>
( mySize,

[=]( id<1> index ) {
float x = index.get(0) * h;
deviceAccessorA[index] *= 2.;

}
)

cgh.parallel_for<class foo>(
range<1>{D*D*D},
[=](id<1> item) {

xx[ item[0] ] = 2 * item[0] + 1;
}

)

While the C++ vectors remain one-dimensional, DPCPP allows you to make multi-dimensional buffers:

std::vector<int> y(D*D*D);
buffer<int,1> y_buf(y.data(), range<1>(D*D*D));
cgh.parallel_for<class foo2D>

(range<2>{D,D*D},
[=](id<2> item) {

yy[ item[0] + D*item[1] ] = 2;
}
);
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Intel DPC++ extension. There is an implicit conversion from the one-dimensional sycl::id<1> to size_t, so

[=](sycl::id<1> i) {
data[i] = i;

}

is legal, which in SYCL requires

data[i[0]] = i[0];

42.5.1.3 Multi-dimensional indexing

// stencil2d.cxx
sycl::range<2> stencil_range(N, M);
sycl::range<2> alloc_range(N + 2, M + 2);
std::vector<float>

input(alloc_range.size()),
output(alloc_range.size());
sycl::buffer<float, 2> input_buf(input.data(), alloc_range);
sycl::buffer<float, 2> output_buf(output.data(), alloc_range);

constexpr size_t B = 4;
sycl::range<2> local_range(B, B);
sycl::range<2> tile_range = local_range + sycl::range<2>(2, 2); // Includes boundary cells
auto tile = local_accessor<float, 2>(tile_range, h); // see templated def'n above

We first copy global data into an array local to the work group:

sycl::id<2> offset(1, 1);
h.parallel_for
( sycl::nd_range<2>(stencil_range, local_range, offset),
[=] ( sycl::nd_item<2> it ) {

// Load this tile into work-group local memory
sycl::id<2> lid = it.get_local_id();
sycl::range<2> lrange = it.get_local_range();
for (int ti = lid[0]; ti < B + 2; ti += lrange[0]) {

for (int tj = lid[1]; tj < B + 2; tj += lrange[1]) {
int gi = ti + B * it.get_group(0);
int gj = tj + B * it.get_group(1);
tile[ti][tj] = input[gi][gj];

}
}

Global coordinates in the input are computed from the nd_item’s coordinate and group:

[=] ( sycl::nd_item<2> it ) {
for (int ti ... ) {
for (int tj ... ) {
int gi = ti + B * it.get_group(0);
int gj = tj + B * it.get_group(1);
... = input[gi][gj];
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Local coordinates in the tile, including boundary, I DON’T QUITE GET THIS YET.

[=] ( sycl::nd_item<2> it ) {
sycl::id<2> lid = it.get_local_id();
sycl::range<2> lrange = it.get_local_range();
for (int ti = lid[0]; ti < B + 2; ti += lrange[0]) {
for (int tj = lid[1]; tj < B + 2; tj += lrange[1]) {

tile[ti][tj] = ..

42.5.2 Task dependencies

Each submit call can be said to correspond to a ‘task’. Since it returns a token, it becomes possible to specify task
dependencies by refering to a token as a dependency in a later specified task.

queue myQueue;
auto myTokA = myQueue.submit

( [&](handler& h) {
h.parallel_for<class taskA>(...);

}
);

auto myTokB = myQueue.submit
( [&](handler& h) {

h.depends_on(myTokA);
h.parallel_for<class taskB>(...);

}
);

42.5.3 Race conditions

Sycl has the same problems with race conditions that other shared memory system have:

// sum1d.cxx
auto array_accessor =

array_buffer.get_access<sycl::access::mode::read>(h);
auto scalar_accessor =

scalar_buffer.get_access<sycl::access::mode::read_write>(h);
h.parallel_for<class uniqueID>
( array_range,
[=](sycl::id<1> index)
{

scalar_accessor[0] += array_accessor[index];
}
); // end of parallel for

To get this working correctly would need either a reduction primitive or atomics on the accumulator. The 2020
proposed standard has improved atomics.

// reduct1d.cxx
auto input_values = array_buffer.get_access<sycl::access::mode::read>(h);
auto sum_reduction = sycl::reduction( scalar_buffer,h,std::plus<>() );
h.parallel_for
( array_range,sum_reduction,
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[=]( sycl::id<1> index,auto& sum )
{

sum += input_values[index];
}
); // end of parallel for

42.5.4 Reductions

Reduction operations were added in the the SYCL 2020 Provisional Standard, meaning that they are not yet finalized.

Here is one approach, which works in hipsycl:

// reductscalar.cxx
auto reduce_to_sum =

sycl::reduction( sum_array, static_cast<float>(0.), std::plus<float>() );
myqueue.parallel_for// parallel_for<reduction_kernel<T,BinaryOp,__LINE__>>
( array_range, // sycl::range<1>(input_size),

reduce_to_sum, // sycl::reduction(output, identity, op),
[=] (sycl::id<1> idx, auto& reducer) { // type of reducer is impl-dependent, so use auto
reducer.combine(shared_array[idx[0]]); //(input[idx[0]]);

//reducer += shared_array[idx[0]]; // see line 216: add_reducer += input0[idx[0]];
} ).wait();

Here a sycl::reduction object is created from the target data and the reduction operator. This is then passed to
the parallel_for and its combine method is called.

42.6 Memory access

Memory treatment in SYCL is a little complicated, because is (at the very least) host memory and device memory,
which are not necessarily coherent.

There are also three mechanisms:

• Unified Shared Memory, based on ordinary C/C++ ‘star’-pointers.
• Buffers, using the buffer class; this needs the accessor class to access the data.
• Images.

Table 42.1: Memory types and treatments

Location allocation coherence copy to/from device

Host malloc explicit transfer queue::memcpy
malloc_host coherent host/device

Device malloc_device explicit transfer queue::memcpy
Shared malloc_shared coherent host/device
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42.6.1 Unified shared memory

Memory allocated with malloc_host is visible on the host:

// outshared.cxx
floattype
*host_float = (floattype*)malloc_host( sizeof(floattype),ctx ),
*shar_float = (floattype*)malloc_shared( sizeof(floattype),dev,ctx );

cgh.single_task
( [=] () {

shar_float[0] = 2 * host_float[0];
sout << "Device sets " << shar_float[0] << sycl::endl;

} );

Device memory is allocated with malloc_device, passing the queue as parameter:

// reductimpl.cxx
floattype
*host_float = (floattype*)malloc( sizeof(floattype) ),
*devc_float = (floattype*)malloc_device( sizeof(floattype),dev,ctx );
[&](sycl::handler &cgh) {

cgh.memcpy(devc_float,host_float,sizeof(floattype));
}

Note the corresponding free call that also has the queue as parameter.

Note that you need to be in a parallel task. The following gives a segmentation error:

[&](sycl::handler &cgh) {
shar_float[0] = host_float[0];

}

Ordinary memory, for instance from malloc, has to be copied in a kernel:

[&](sycl::handler &cgh) {
cgh.memcpy(devc_float,host_float,sizeof(floattype));

}
[&](sycl::handler &cgh) {

sycl::stream sout(1024, 256, cgh);
cgh.single_task
(
[=] () {

sout << "Number " << devc_float[0] << sycl::endl;
}
);

} // end of submitted lambda
free(host_float);
sycl::free(devc_float,myqueue);

42.6.2 Buffers and accessors

Arrays need to be declared in a way such that they can be access from any device.
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// forloop.cxx
std::vector<int> myArray(SIZE);

sycl::range<1> mySize{myArray.size()};
sycl::buffer<int, 1> bufferA(myArray.data(), myArray.size());

Remark 45 sycl::range takes a size_t parameter; specifying an int may give a compiler warning about a narrow-
ing conversion.

Inside the kernel, the array is then unpacked from the buffer:

myqueue.submit( [&] ( sycl::handler &h ) {
auto deviceAccessorA =

bufferA.get_access<sycl::access::mode::read_write>(h);

However, the get_access function results in a sycl::accessor, not a pointer to a simple type. The precise type is
templated and complicated, so this is a good place to use auto.

Accessors can have a mode associated: sycl::access::mode::read sycl::access::mode::write

Intel DPC++ extension.

array<floattype,1> leftsum{0.};
#ifdef __INTEL_CLANG_COMPILER

sycl::buffer leftbuf(leftsum);
#else

sycl::range<1> scalar{1};
sycl::buffer<floattype,1> leftbuf(leftsum.data(),scalar);

Intel DPC++ extension. There are modes

// standard
sycl::accessor acc = buffer.get_access<sycl::access::mode:write>(h);
// dpcpp extension
sycl::accessor acc( buffer,h,sycl::read_only );
sycl::accessor acc( buffer,h,sycl::write_only );

42.6.2.1 Multi-D buffers

To create a multi-dimensional buffer object, use a sycl::range to specify the dimensions:

// jordan.cxx
vector<double> matrix(vecsize*vecsize);
sycl::range<2> mat_range{vecsize,vecsize};
sycl::buffer<double,2> matrix_buffer( matrix.data(),mat_range );

42.6.3 Querying

The function get_range can query the size of either a buffer or an accessor:
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// range2.cxx
sycl::buffer<int, 2>

a_buf(a.data(), sycl::range<2>(N, M)),
b_buf(b.data(), sycl::range<2>(N, M)),
c_buf(c.data(), sycl::range<2>(N, M));

sycl::range<2>
a_range = a_buf.get_range(),
b_range = b_buf.get_range();

if (a_range==b_range) {

sycl::accessor c = c_buf.get_access<sycl::access::mode::write>(h);

sycl::range<2> c_range = c.get_range();
if (a_range==c_range) {

h.parallel_for
( a_range,

[=]( sycl::id<2> idx ) {
c[idx] = a[idx] + b[idx];

} );

42.7 Parallel output
There is a sycl::cout and sycl::endl.

// hello.cxx
[&](sycl::handler &cgh) {

sycl::stream sout(1024, 256, cgh);
cgh.parallel_for<class hello_world>
(
sycl::range<1>(global_range), [=](sycl::id<1> idx) {

sout << "Hello, World: World rank " << idx << sycl::endl;
}); // End of the kernel function

}

Since the end of a queue does not flush stdout, it may be necessary to call sycl::queue::wait

myQueue.wait();

42.8 Other
Exceptions:

try {
sycl::whatever

} catch ( sycl::errc::runtime &e ) { ....}

554 Parallel Computing – r428



42.9. DPCPP extensions

Deprecated as of SYCL-2020:

} catch ( sycl::runtime_error &e ) { ... }

42.9 DPCPP extensions
Intel has made some extensions to SYCL:

• Unified Shared Memory,
• Ordered queues.

42.10 Intel devcloud notes
qsub -I for interactive session.

gdb-oneapi for debugging.

https://community.intel.com/t5/Intel-oneAPI-Toolkits/ct-p/oneapi for support.

42.11 Examples

42.11.1 Kernels in a loop

The following idiom works:

sycl::event last_event = queue.submit( [&] (sycl::handler &h) {
for (int iteration=0; iteration<N; iteration++) {

last_event = queue.submit( [&] (sycl::handler &h) {
h.depends_on(last_event);

42.11.2 Stencil computations

The problem with stencil computations is that only interior points are updated. Translated to SYCL: we need to
iterate over a subrange of the range over which the buffer is defined. First let us define these ranges:

// jacobi1d.cxx
sycl::range<1> unknowns(N);
sycl::range<1> with_boundary(N + 2);
std::vector<float>

old_values(with_boundary.size(),0.),
new_values(with_boundary.size(),0.);

old_values.back() = 1.; new_values.back() = 1.;

Note the boundary value 1. on the right boundary.

Restricting the iteration to the interior points is done through the offset parameter of the parallel_for:
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sycl::id<1> offset(1);
h.parallel_for

( unknowns, offset,
[=] (sycl::id<1> idx) {

int i = idx[0];
float self = old_array[i];
float left = old_array[i - 1];
float righ = old_array[i + 1];
new_array[i] = (self + left + righ) / 3.0f;

} );
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Chapter 43

Python multiprocessing

Python has a multiprocessing toolbox. This is a parallel processing library that relies on subprocesses, rather than
threads.

43.1 Software and hardware
The multiprocessing toolbox does its own hardware detection; it uses a single node, and however many cores
the system tells it there are.

## pool.py
nprocs = mp.cpu_count()
print(f"I detect {nprocs} cores")

43.2 Process
A process is an object that will execute a python function:

## quicksort.py
import multiprocessing as mp
import random
import os

def quicksort( numbers ) :
if len(numbers)==1:

return numbers
else:

median = numbers[0]
left = [ i for i in numbers if i<median ]
right = [ i for i in numbers if i>=median ]
with mp.Pool(2) as pool:

[sortleft,sortright] = pool.map( quicksort,[left,right] )
return sortleft.append( sortright )

if __name__ == '__main__':
numbers = [ random.randint(1,50) for i in range(32) ]
process = mp.Process(target=quicksort,args=[numbers])
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process.start()
process.join()

Creating a process does not start it: for that use the start function. Execution of the process is not guaranteed until
you call the join function on it:

if __name__ == '__main__':
for p in processes:

p.start()
for p in processes:

p.join()

By making the start and join calls less regular than in a loop like this, arbitrarily complicated code can be produced.

43.2.1 Arguments
Arguments can be passed to the function of the process with the args keyword. This accepts a list (or tuple) of
arguments, leading to a somewhat strange syntax for a single argument:

proc = Process(target=print_func, args=(name,))

43.2.2 Process details
Note the test on __main__: the processes started read the current file in order to execute the function specified.
Without this clause, the import would first execute more process start calls, before getting to the function execution.

Processes have a name that you can retrieve as current_process().name. The default is Process-5 and such, but
you can specify custom names:

Process(name="Your name here")

The target function of a process can get hold of that process with the current_process function.

Of course you can also query os.getpid() but that does not offer any further possibilities.

def say_name(iproc):
print(f"Process {os.getpid()} has name: {mp.current_process().name}")

if __name__ == '__main__':
processes = [ mp.Process(target=say_name,name=f"proc{iproc}",args=[iproc])

for iproc in range(nprocs) ]

43.3 Pools and mapping
Often you want a number of processes to do apply to a number of arguments, for instance in a parameter sweep. For
this, create a Pool object, and apply the map method to it:

pool = mp.Pool( nprocs )
results = pool.map( print_value,range(1,2*nprocs) )

Note that this is also the easiest way to get return values from a process, which is not directly possible with a
Process object. Other approaches are using a shared object, or an object in a Queue or Pipe object; see below.
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43.4 Shared data
The best way to deal with shared data is to create a Value or Array object, which come equipped with a lock for
safe updating.

pi = mp.Value('d')
pi.value = 0

For instance, one could stochastically calculate 𝜋 by

1. generating random points in [0, 1)2, and
2. recording how many fall in the unit circle, after which
3. 𝜋 is 4× the ratio between points in the circle and the total number of points.

## pi.py
def calc_pi1(pi,n):

for i in range(n):
x = random.random()
y = random.random()
with pi.get_lock():

if x*x+y*y<1:
pi.value += 1.

Exercise 43.1. Do you see a way to improve the speed of this calculation?

Solution to exercise 43.1.

def calc_pi2(pi,n):
count = 0
for i in range(n):

x = random.random()
y = random.random()
if x*x+y*y<1:

count += 1
with pi.get_lock():

pi.value += count

43.4.1 Pipes

A pipe, object type Pipe, corresponds to what used to be called a channel in older parallel programming systems:
a First-In / First-Out (FIFO) object into which one process can place items, and from which another process can take
them. However, a pipe is not associated with any particular pair: creating the pipe gives the entrace and exit from
the pipe

q_entrance,q_exit = mp.Pipe()

And they can be passed to any process

producer1 = mp.Process(target=add_to_pipe,args=([1,q_entrance]))
producer2 = mp.Process(target=add_to_pipe,args=([2,q_entrance]))
printer = mp.Process(target=print_from_pipe,args=(q_exit,))

which can then can put and get items, using the send and recv commands.
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## pipemulti.py
def add_to_pipe(v,q):

for i in range(10):
print(f"put {v}")
q.send(v)
time.sleep(1)

q.send("END")

def print_from_pipe(q):
ends = 0
while True:

v = q.recv()
print(f"Got: {v}")
if v=="END":

ends += 1
if ends==2:

break
print("pipe is empty")

43.4.2 Queues
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Chapter 44

Exploring computer architecture

There is much that can be said about computer architecture. However, in the context of parallel programming we
are mostly concerned with the following:

• How many networked nodes are there, and does the network have a structure that we need to pay
attention to?

• On a compute node, how many sockets (or other Non-Uniform Memory Access (NUMA) domains) are
there?

• For each socket, how many cores and hyperthreads are there? Are caches shared?

44.1 Tools for discovery
An easy way for discovering the structure of your parallel machine is to use tools that are written especially for
this purpose.

44.1.1 Intel cpuinfo

The Intel compiler suite comes with a tool cpuinfo that reports on the structure of the node you are running on. It
reports on the number of packages, that is: sockets, cores, and threads.

44.1.2 hwloc

The open source package hwloc does similar reporting to cpuinfo, but it has been ported to many platforms. Addi-
tionally, it can generate ascii and pdf graphic renderings of the architecture.
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Chapter 45

Hybrid computing

So far, you have learned to use MPI for distributed memory and OpenMP for shared memory parallel programming.
However, distribute memory architectures actually have a shared memory component, since each cluster node is
typically of a multicore design. Accordingly, you could program your cluster using MPI for inter-node and OpenMP
for intra-node parallelism.

You now have to find the right balance between processes and threads, since each can keep a core fully busy.
Complicating this story, a node can have more than one socket, and corresponding NUMA domain. Figure 45.1

Figure 45.1: Three modes of MPI/OpenMP usage on a multi-core cluster

illustrates three modes: pure MPI with no threads used; one MPI process per node and full multi-threading; two
MPI processes per node, one per socket, and multiple threads on each socket.
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45.1 Concurrency
With hybrid multi-process / multi-thread computing, one thing that goes out the door is the sequential semantics
of each MPI process. For instance, the fact that messages between a single sender and a single receiver are non-
overtaking no longer holds if the messages originated in different threads.

// anytag.c
#pragma omp parallel sections

{
#pragma omp section

MPI_Isend
( &x,1,MPI_DOUBLE,

receiver,xtag,comm,requests+0);
#pragma omp section

MPI_Isend
( &y,1,MPI_DOUBLE,

receiver,ytag,comm,requests+1);
}

↪MPI_Waitall(2,requests,MPI_STATUSES_IGNORE);

#pragma omp section
MPI_Irecv
( &xy1,1,MPI_DOUBLE,

sender, MPI_ANY_TAG, comm,
↪requests+0);

#pragma omp section
MPI_Irecv
( &xy2,1,MPI_DOUBLE,

sender, MPI_ANY_TAG, comm,
↪requests+1);
}
MPI_Waitall(2,requests,statuses);

Messages from simultaneous threads are said to be concurrent: there is no temporal or causal relationship between
them.

45.2 Affinity
In the preceeding chapters wemostly considered all MPI nodes or OpenMP thread as being in one flat pool. However,
for high performance you need to worry about affinity: the question of which process or thread is placed where,
and how efficiently they can interact.

Here are some situations where you affinity becomes a concern.

• In pure MPI mode processes that are on the same node can typically communicate faster than processes
on different nodes. Since processes are typically placed sequentially, this means that a scheme where
process 𝑝 interacts mostly with 𝑝+1will be efficient, while communication with large jumps will be less
so.

• If the cluster network has a structure (processor grid as opposed to fat-tree), placement of processes has
an effect on program efficiency. MPI tries to address this with graph topology; section 11.2.

• Even on a single node there can be asymmetries. Figure 45.2 illustrates the structure of the four sockets
of the Ranger supercomputer (no longer in production). Two cores have no direct connection.
This asymmetry affects both MPI processes and threads on that node.

• Another problem with multi-socket designs is that each socket has memory attached to it. While every
socket can address all the memory on the node, its local memory is faster to access. This asymmetry
becomes quite visible in the first-touch phenomemon; section 25.2.

• If a node has fewer MPI processes than there are cores, you want to be in control of their placement.
Also, the operating system can migrate processes, which is detrimental to performance since it negates
data locality. For this reason, utilities such as numactl (and at TACC tacc_affinity) can be used to
pin a thread or process to a specific core.

• Processors with hyperthreading or hardware threads introduce another level or worry about where
threads go.
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45.3. What does the hardware look like?

Figure 45.2: The NUMA structure of a Ranger node

45.3 What does the hardware look like?
If you want to optimize affinity, you should first know what the hardware looks like. The hwloc utility is valuable
here [11] (https://www.open-mpi.org/projects/hwloc/).

Figure 45.3 depicts a Stampede compute node, which is a two-socket Intel Sandybridge design; figure 45.4 shows
a Stampede largemem node, which is a four-socket design. Finally, figure 45.5 shows a Lonestar5 compute node,
a two-socket design with 12-core Intel Haswell processors with two hardware threads each.

45.4 Affinity control
See chapter 25 for OpenMP affinity control.

45.5 Discussion
The performance implications of the pure MPI strategy versus hybrid are subtle.

• First of all, we note that there is no obvious speedup: in a well balanced MPI application all cores are
busy all the time, so using threading can give no immediate improvement.

• Both MPI and OpenMP are subject to Amdahl’s law that quantifies the influence of sequential code; in
hybrid computing there is a new version of this law regarding the amount of code that is MPI-parallel,
but not OpenMP-parallel.

• MPI processes run unsynchronized, so small variations in load or in processor behavior can be tolerated.
The frequent barriers in OpenMP constructs make a hybrid code more tightly synchronized, so load
balancing becomes more critical.

• On the other hand, in OpenMP codes it is easier to divide the work into more tasks than there are threads,
so statistically a certain amount of load balancing happens automatically.

• Each MPI process has its own buffers, so hybrid takes less buffer overhead.
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Figure 45.3: Structure of a Stampede compute node

Exercise 45.1. Review the scalability argument for 1D versus 2D matrix decomposition in HPC book,
section-7.2. Would you get scalable performance from doing a 1D decomposition (for
instance, of the rows) over MPI processes, and decomposing the other directions (the
columns) over OpenMP threads?

Solution to exercise 45.1. No. You’d still get the too-large messages between MPI processes.
Another performance argument we need to consider concerns message traffic. If let all threads make MPI calls (see
section 13.1) there is going to be little difference. However, in one popular hybrid computing strategy we would
keep MPI calls out of the OpenMP regions and have them in effect done by the master thread. In that case there
are only MPI messages between nodes, instead of between cores. This leads to a decrease in message traffic, though
this is hard to quantify. The number of messages goes down approximately by the number of cores per node, so this
is an advantage if the average message size is small. On the other hand, the amount of data sent is only reduced if
there is overlap in content between the messages.

Limiting MPI traffic to the master thread also means that no buffer space is needed for the on-node communication.

45.6 Processes and cores and affinity
In OpenMP, threads are purely a software construct and you can create however many you want. The hardware
limit of the available cores can be queried with omp_get_num_procs (section 17.5). How does that work in a hybrid
context? Does the ‘proc’ count return the total number of cores, or does the MPI scheduler limit it to a number
exclusive to each MPI process?
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Figure 45.4: Structure of a Stampede largemem four-socket compute node
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Figure 45.5: Structure of a Lonestar5 compute node

The following code fragment explore this:

// procthread.c
int ncores;
#pragma omp parallel
#pragma omp master
ncores = omp_get_num_procs();

int totalcores;
MPI_Reduce(&ncores,&totalcores,1,MPI_INT,MPI_SUM,0,comm);
if (procid==0) {

printf("Omp procs on this process: %d\n",ncores);
printf("Omp procs total: %d\n",totalcores);

}

Running this with Intel MPI (version 19) gives the following:

---- nprocs: 14
Omp procs on this process: 4
Omp procs total: 56
---- nprocs: 15
Omp procs on this process: 3
Omp procs total: 45
---- nprocs: 16
Omp procs on this process: 3
Omp procs total: 48
We see that

• Each process get an equal number of cores, and
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45.7. Practical specification

• Some cores will go unused.

While the OpenMP ‘proc’ count is such that the MPI processes will not oversubscribe cores, the actual placement
of processes and threads is not expressed here. This assignment is known as affinity and it is determined by the
MPI/OpenMP runtime system. Typically it can be controlled through environment variables, but one hopes the
default assignment makes sense. Figure 45.6 illustrates this for the Intel Knights Landing:

Figure 45.6: Process and thread placement on an Intel Knights Landing

• Placing four MPI processes on 68 cores gives 17 cores per process.
• Each process receives a contiguous set of cores.
• However, cores are grouped in ‘tiles’ of two, so processes 1 and 3 start halfway a tile.
• Therefore, thread zero of that process is bound to the second core.

45.7 Practical specification
Say you use 100 cluster nodes, each with 16 cores. You could then start 1600 MPI processes, one for each core, but
you could also start 100 processes, and give each access to 16 OpenMP threads.

In your slurm scripts, the first scenario would be specified -N 100 -n 1600, and the second as

#$ SBATCH -N 100
#$ SBATCH -n 100

export OMP_NUM_THREADS=16

Victor Eijkhout 569



45. Hybrid computing

There is a third choice, in between these extremes, that makes sense. A cluster node often has more than one socket,
so you could put one MPI process on each socket, and use a number of threads equal to the number of cores per
socket.

The script for this would be:

#$ SBATCH -N 100
#$ SBATCH -n 200

export OMP_NUM_THREADS=8
ibrun tacc_affinity yourprogram
The tacc_affinity script unsets the following variables:

export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0
export VIADEV_ENABLE_AFFINITY=0
If you don’t use tacc_affinity you may want to do this by hand, otherwise mvapich2 will use its own affinity
rules.
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Chapter 46

Support libraries

There are many libraries related to parallel programming to make life easier, or at least more interesting, for you.

46.1 SimGrid
SimGrid [17] is a simulator for distributed systems. It can for instance be used to explore the effects of architectural
parameters. It has been used to simulate large scale operations such as High Performance Linpack (HPL) [4].

46.2 Other
ParaMesh

Global Arrays

Hdf5 and Silo
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Chapter 47

A Style Guide to Project Submissions

Here are some guidelines for how to submit assignments and projects. As a general rule, consider programming as
an experimental science, and your writeup as a report on some tests you have done: explain the problem you’re
addressing, your strategy, your results.

47.1 General approach
As a general rule, consider programming as an experimental science, and your writeup as a report on some tests
you have done: explain the problem you’re addressing, your strategy, your results.

Turn in a writeup in pdf form (Word and text documents are not acceptable) that was generated from a text pro-
cessing program such (preferably) LATEX. For a tutorial, see Tutorials book, section-15.

47.2 Style
Your report should obey the rules of proper English.

• Observing correct spelling and grammar goes without saying.
• Use full sentences.
• Try to avoid verbiage that is disparaging or otherwise inadvisable. The Google developer documentation

style guide [12] is a great resource.

47.3 Structure of your writeup
47.3.1 Write as if it’s an article
Consider this project writeup an opportunity to practice writing a scientific article.

Start with the obvious stuff.
• Your writeup should have a title. Not ‘Project’ or ‘parallel programming’, but something like ’Paralleliza-
tion of Chronosynclastic Enfundibula in MPI’.

• Author and contact information. This differs per publication. Here it is: your name, EID, TACC username,
and email.

• Introductory section that is high level: what is the problem, what did you do, what did you find.
• Conclusion: what do your findings mean, what are limitations, opportunities for future extensions.
• Bibliography.
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47.4. The parallel part

47.3.2 Consider your audience

An article is written for a specific audience: a journal, a conference, or in this case: your instructors. So don’t go
into details that mean nothing to your audience, and try giving them what they find interesting.

In other words: give enough background on your application, but not too much. You’re not writing for your thesis
supervisor, you’re writing to interested outsiders to your field.

On the other hand, your instructors know everything about parallelism. So don’t show a differential equation and
say ‘and I made this parallel with OpenMP’. Go into detail how you translated your problem into something com-
putational, and then show relevant bits of code.

That does not mean that turning in the code is sufficient, nor code plus sample output. Write an article.

47.3.3 Observe, measure, hypothesize, deduce

Treat your project as if it is a scientific investigation of some phenomenon. Formulate hypotheses as to what you
expect to observe, report on your observations, and draw conclusions.

Quite often your program will display unexpected behaviour. It is important to note this, and hypothesize what the
reason might be for your observed behaviour.

In most applications of computing machinery we care about the efficiency with which we find the solution. Thus,
make sure that you do measurements. In general, make observations that allow you to judge whether your program
behaves the way you would expect it to.

47.3.4 Reporting

Your report should include both code snippets and graphs.

Screenshots of code snippets are not acceptable. Use at least a verbatim/monospace mode in your text processor,
but better, use the LATEX listings package or equivalent.

Graphs can be generated any number of ways. Kudos if you can figure out the LATEX tikz package, but Matlab,
gnuplot, Excel, or Google Sheets are all acceptable. Again: no screenshots.

For parallel runs you can, but are not required to, use TAU plots; see Tutorials book, section-18.

47.3.5 Repository organization

If you submit your work through a repository have your pdf file at the top level; organize your sources in clearly
named subdirectories. Object files and binaries should not be in a repository since they are dependent on hardware
and things like compilers.

47.4 The parallel part
The parallelization part is the most important of your writeup. So don’t write 3 pages about your application and
1 about the parallel code. Discuss in detail:

• What is the parallel structure of your problem? Relate the code structure to the application structure.
• Did you use MPI or OpenMP? Why?
• What kind of parallelism did you use? Mostly MPI collectives or point-to-point operations? OpenMP
loop parallelism or tasks? Why?
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47.4.1 Performance
The most important reason for parallel programming is to achieve faster performance.

To measure the efficiency of your code, run for a range of processor/core counts. Do you aim for strong or weak
scaling?

Make sure your problem is large enough to overcome the overhead of parallelization. Can you run several problem
sizes at a given core/process count?

How much speedup are you expecting for your application, given its structure? How much are you getting? If your
speedup is low, reason where the problem might lie.

47.4.2 Running your code
A single run doesn’t prove anything. For a good report, you need to run your code for more than one input dataset
(if available) and in more than one processor configuration. When you choose problem a size, bear the following
factors in mind.

• Parallelism introduces overhead, hundreds of cycles for an OpenMP barrier, or a few microseconds for
an MPI message. So the amount of work in a parallel region, or between messages, probably needs to be
in the thousands of operations.

• Various things in the system introduce random fluctuations, timings that are too small may be meaning-
less. As a rule of thumb, a timed sections needs to take at least on the order of a second.

• There are various startup phenomena in a parallel code, such as OpenMP thread creation, or allocation
of dynamic memory. Make sure you only time the relevant bit of your code; if in doubt, put a loop around
it to take multiple measurements, and use an average time.

When you run a code in parallel, beware that on clusters the behaviour of a parallel code will always be different
between one node and multiple nodes. On a single node the MPI implementation is likely optimized to use the
shared memory. This means that results obtained from a single node run will be unrepresentative. In fact, in timing
and scaling tests you will often see a drop in (relative) performance going from one node to two. Therefore you
need to run your code in a variety of scenarios, using more than one node.

47.4.3 Graphs
In parallel programming, speedup and scaling are the test of how good your work is. So it’s up to you to report this
as well as you can.

The numbers are not the point of a graph: the point is the conclusions you can draw from them. Thus, if you do a
scaling analysis, a graph reporting runtimes should make this point visible. In particular, do not use a linear time
axis, as curved graphs are hard to read. Try to find a way to compare your results to a straight line, such as constant
time, or linearly increasing speedup.

It is up to you to decide what quantity to report. This may depend on your application.

Use enough data points! Writing a short script to run your program multiple times takes very little time.

47.5 Remarks
47.5.1 Parallel performance or the lack thereof
In a perfect world, the performance of your code should grow with the number of available resources. If your
program shows disappointing performance, consider the following.
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47.5. Remarks

Synchronizing OpenMP threads at the end of a parallel region takes maybe a few hundred cycles. This means that
the amount of work in that region should be considerably more.

If your OpenMP program stops scaling at a certain core count, consider affinity settings; section 25.1.

MPI messages takes a couple of microseconds. Again, this implies that the amount of work between messages needs
to be large enough.

47.5.2 Code formatting

Included code snippets should be readable. At aminimum you could indent the code correctly in an editor before you
include it in a verbatim environment. (Screenshots of your terminal window are a decidedly suboptimal solution.)
But it’s better to use the listing package which formats your code, include syntax coloring. For instance,

\lstset{language=C++} % or Fortran or so
\begin{lstlisting}
for (int i=0; i<N; i++)
s += 1;

\end{lstlisting}
With output:

for (int i=0; i<N; i++)
s += 1;
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Warmup Exercises

We start with some simple exercises.

48.1 Hello world
For background, see section 2.3.

First of all we need to make sure that you have a working setup for parallel jobs. The example program
helloworld.c does the following:
// helloworld.c
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&ntids);
MPI_Comm_rank(MPI_COMM_WORLD,&mytid);
printf("Hello, this is processor %d out of %d\n",mytid,ntids);
MPI_Finalize();
Compile this program and run it in parallel. Make sure that the processors do not all say that they are processor
0 out of 1!

48.2 Trace output
We want to make trace files of the parallel runs, for which we’ll use the TAU utility of the University of Oregon.
(For documentation, go to http://www.cs.uoregon.edu/Research/tau/docs.php.) Here are the steps:

• Load two modules:
module load tau
module load jdk64

• Recompile your program with make yourprog. You’ll notice a lot more output: that is the TAU prepro-
cessor.

• Now run your program, setting environment variables TAU_TRACE and TAU_PROFILE to 1, and TRACEDIR
and PROFILEDIR to where you want the output to be. Big shortcut: do
make submit EXECUTABLE=yourprog
for a batch job or
make idevrun EXECUTABLE=yourprog
for an interactive parallel run. These last two set all variables for you. See if you can find where the
output went…

• Now you need to postprocess the TAU output. Do make tau EXECUTABLE=yourprog and you’ll get a
file taulog_yourprog.slog2 which you can view with the jumpshot program.
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48.3 Collectives
It is a good idea to be able to collect statistics, so before we do anything interesting, we will look at MPI collectives;
section 3.1.

Take a look at time_max.cxx. This program sleeps for a random number of seconds:

wait = (int) ( 6.*rand() / (double)RAND_MAX );
tstart = MPI_Wtime();
sleep(wait);
tstop = MPI_Wtime();
jitter = tstop-tstart-wait;

and measures how long the sleep actually was:

if (mytid==0)
sendbuf = MPI_IN_PLACE;

else sendbuf = (void*)&jitter;
MPI_Reduce(sendbuf,(void*)&jitter,1,MPI_DOUBLE,MPI_MAX,0,comm);

In the code, this quantity is called ‘jitter’, which is a term for random deviations in a system.

Exercise 48.1. Change this program to compute the average jitter by changing the reduction
operator.

Exercise 48.2. Now compute the standard deviation

𝜎 = √
∑𝑖(𝑥𝑖 − 𝑚)2

𝑛
where 𝑚 is the average value you computed in the previous exercise.

• Solve this exercise twice: once by following the reduce by a broadcast operation and
once by using an Allreduce.

• Run your code both on a single cluster node and on multiple nodes, and inspect the
TAU trace. Some MPI implementations are optimized for shared memory, so the trace
on a single node may not look as expected.

• Can you see from the trace how the allreduce is implemented?

Exercise 48.3. Finally, use a gather call to collect all the values on processor zero, and print them out.
Is there any process that behaves very differently from the others?

For each exercise, submit code, a TAU trace, and an analysis of what you see in the traces. Submit your work by
leaving a code, graphics, and a writeup in your repository.

48.4 Linear arrays of processors
In this section you are going to write a number of variations on a very simple operation: all processors pass a data
item to the processor with the next higher number.

• In the file linear-serial.c you will find an implementation using blocking send and receive calls.
• You will change this code to use non-blocking sends and receives; they require an MPI_Wait call to
finalize them.

• Next, you will use MPI_Sendrecv to arrive at a synchronous, but deadlock-free implementation.
• Finally, you will use two different one-sided scenarios.

In the reference code linear-serial.c, each process defines two buffers:
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// linear-serial.c
int my_number = mytid, other_number=-1.;
where other_number is the location where the data from the left neighbour is going to be stored.

To check the correctness of the program, there is a gather operation on processor zero:

int *gather_buffer=NULL;
if (mytid==0) {
gather_buffer = (int*) malloc(ntids*sizeof(int));
if (!gather_buffer) MPI_Abort(comm,1);

}
MPI_Gather(&other_number,1,MPI_INT,

gather_buffer,1,MPI_INT, 0,comm);
if (mytid==0) {

int i,error=0;
for (i=0; i<ntids; i++)
if (gather_buffer[i]!=i-1) {
printf("Processor %d was incorrect: %d should be %d\n",

i,gather_buffer[i],i-1);
error =1;

}
if (!error) printf("Success!\n");
free(gather_buffer);

}

48.4.1 Coding with blocking calls

Passing data to a neighbouring processor should be a very parallel operation. However, if we code this naively, with
MPI_Send and MPI_Recv, we get an unexpected serial behaviour, as was explained in section 4.1.4.

if (mytid<ntids-1)
MPI_Ssend( /* data: */ &my_number,1,MPI_INT,

/* to: */ mytid+1, /* tag: */ 0, comm);
if (mytid>0)
MPI_Recv( /* data: */ &other_number,1,MPI_INT,

/* from: */ mytid-1, 0, comm, &status);
(Note that this uses an Ssend; see section 15.8 for the explanation why.)

Exercise 48.4. Compile and run this code, and generate a TAU trace file. Confirm that the execution
is serial. Does replacing the Ssend by Send change this?

Let’s clean up the code a little.

Exercise 48.5. First write this code more elegantly by using MPI_PROC_NULL.

48.4.2 A better blocking solution

The easiest way to prevent the serialization problem of the previous exercises is to use the MPI_Sendrecv call. This
routine acknowledges that often a processor will have a receive call whenever there is a send. For border cases
where a send or receive is unmatched you can use MPI_PROC_NULL.

Exercise 48.6. Rewrite the code using MPI_Sendrecv. Confirm with a TAU trace that execution is
no longer serial.
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Note that the Sendrecv call itself is still blocking, but at least the ordering of its constituent send and recv are no
longer ordered in time.

48.4.3 Non-blocking calls

The other way around the blocking behaviour is to use Isend and Irecv calls, which do not block. Of course, now
you need a guarantee that these send and receive actions are concluded; in this case, use MPI_Waitall.
Exercise 48.7. Implement a fully parallel version by using MPI_Isend and MPI_Irecv.

48.4.4 One-sided communication

Another way to have non-blocking behaviour is to use one-sided communication. During a Put or Get operation,
execution will only block while the data is being transferred out of or into the origin process, but it is not blocked
by the target. Again, you need a guarantee that the transfer is concluded; here use MPI_Win_fence.

Exercise 48.8. Write two versions of the code: one using MPI_Put and one with MPI_Get. Make
TAU traces.

Investigate blocking behaviour through TAU visualizations.

Exercise 48.9. If you transfer a large amount of data, and the target processor is occupied, can you
see any effect on the origin? Are the fences synchronized?
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Chapter 49

Mandelbrot set

If you’ve never heard the name Mandelbrot set, you probably recognize the picture; figure 49.1 Its formal definition

Figure 49.1: The Mandelbrot set

is as follows:

A point 𝑐 in the complex plane is part of the Mandelbrot set if the series 𝑥𝑛 defined by

{𝑥0 = 0
𝑥𝑛+1 = 𝑥2𝑛 + 𝑐

satisfies
∀𝑛 ∶ |𝑥𝑛 | ≤ 2.

It is easy to see that only points 𝑐 in the bounding circle |𝑐| < 2 qualify, but apart from that it’s hard to say much
without a lot more thinking. Or computing; and that’s what we’re going to do.
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In this set of exercises you are going to take an example program mandel_main.cxx and extend it to use a variety
of MPI programming constructs. This program has been set up as a manager-worker model: there is one manager
processor (for a change this is the last processor, rather than zero) which gives out work to, and accepts results
from, the worker processors. It then takes the results and constructs an image file from them.

49.1 MPI solutions

49.1.1 Invocation

The mandel_main program is called as

mpirun -np 123 mandel_main steps 456 iters 789
where the steps parameter indicates how many steps in 𝑥, 𝑦 direction there are in the image, and iters gives the
maximum number of iterations in the belong test.

If you forget the parameter, you can call the program with

mandel_serial -h
and it will print out the usage information.

49.1.2 Tools

The driver part of the Mandelbrot program is simple. There is a circle object that can generate coordinates

class circle {
public :
circle(double stp,int bound);
void next_coordinate(struct coordinate& xy);
int is_valid_coordinate(struct coordinate xy);
void invalid_coordinate(struct coordinate& xy);

and a global routine that tests whether a coordinate is in the set, at least up to an iteration bound. It returns zero if
the series from the given starting point has not diverged, or the iteration number in which it diverged if it did so.

int belongs(struct coordinate xy,int itbound) {
double x=xy.x, y=xy.y; int it;
for (it=0; it<itbound; it++) {
double xx,yy;
xx = x*x - y*y + xy.x;
yy = 2*x*y + xy.y;
x = xx; y = yy;
if (x*x+y*y>4.) {

return it;
}

}
return 0;

}

In the former case, the point could be in the Mandelbrot set, and we colour it black, in the latter case we give it a
colour depending on the iteration number.
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if (iteration==0)
memset(colour,0,3*sizeof(float));

else {
float rfloat = ((float) iteration) / workcircle->infty;
colour[0] = rfloat;
colour[1] = MAX((float)0,(float)(1-2*rfloat));
colour[2] = MAX((float)0,(float)(2*(rfloat-.5)));

}

We use a fairly simple code for the worker processes: they execute a loop in which they wait for input, process it,
return the result.

void queue::wait_for_work(MPI_Comm comm,circle *workcircle) {
MPI_Status status; int ntids;
MPI_Comm_size(comm,&ntids);
int stop = 0;

while (!stop) {
struct coordinate xy;
int res;

MPI_Recv(&xy,1,coordinate_type,ntids-1,0, comm,&status);
stop = !workcircle->is_valid_coordinate(xy);
if (stop) break; //res = 0;
else {

res = belongs(xy,workcircle->infty);
}
MPI_Send(&res,1,MPI_INT,ntids-1,0, comm);

}
return;

}

A very simple solution using blocking sends on the manager is given:

// mandel_serial.cxx
class serialqueue : public queue {
private :
int free_processor;

public :
serialqueue(MPI_Comm queue_comm,circle *workcircle)
: queue(queue_comm,workcircle) {
free_processor=0;

};
/**

The `addtask' routine adds a task to the queue. In this
simple case it immediately sends the task to a worker
and waits for the result, which is added to the image.

This routine is only called with valid coordinates;
the calling environment will stop the process once
an invalid coordinate is encountered.

*/
int addtask(struct coordinate xy) {
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MPI_Status status; int contribution, err;

err = MPI_Send(&xy,1,coordinate_type,
free_processor,0,comm); CHK(err);

err = MPI_Recv(&contribution,1,MPI_INT,
free_processor,0,comm, &status); CHK(err);

coordinate_to_image(xy,contribution);
total_tasks++;
free_processor = (free_processor+1)%(ntids-1);

return 0;
};

Exercise 49.1. Explain why this solution is very inefficient. Make a trace of its execution that bears
this out.

Figure 49.2: Trace of a serial Mandelbrot calculation

49.1.3 Bulk task scheduling
The previous section showed a very inefficient solution, but that was mostly intended to set up the code base. If all
tasks take about the same amount of time, you can give each process a task, and then wait on them all to finish.
A first way to do this is with non-blocking sends.
Exercise 49.2. Code a solution where you give a task to all worker processes using non-blocking

sends and receives, and then wait for these tasks with MPI_Waitall to finish before you
give a new round of data to all workers. Make a trace of the execution of this and report on
the total time.
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You can do this by writing a new class that inherits from queue, and that provides its own
addtask method:

// mandel_bulk.cxx
class bulkqueue : public queue {
public :

bulkqueue(MPI_Comm queue_comm,circle *workcircle)
: queue(queue_comm,workcircle) {

You will also have to override the complete method: when the circle object indicates that all
coordinates have been generated, not all workers will be busy, so you need to supply the
proper MPI_Waitall call.

Figure 49.3: Trace of a bulk Mandelbrot calculation

49.1.4 Collective task scheduling

Another implementation of the bulk scheduling of the previous section would be through using collectives.

Exercise 49.3. Code a solution which uses scatter to distribute data to the worker tasks, and gather
to collect the results. Is this solution more or less efficient than the previous?

49.1.5 Asynchronous task scheduling

At the start of section 49.1.3 we said that bulk scheduling mostly makes sense if all tasks take similar time to
complete. In the Mandelbrot case this is clearly not the case.

Exercise 49.4. Code a fully dynamic solution that uses MPI_Probe or MPI_Waitany. Make an
execution trace and report on the total running time.
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Figure 49.4: Trace of an asynchronous Mandelbrot calculation

49.1.6 One-sided solution
Let us reason about whether it is possible (or advisable) to code a one-sided solution to computing the Mandelbrot
set. With active target synchronization you could have an exposure window on the host to which the worker tasks
would write. To prevent conflicts you would allocate an array and have each worker write to a separate location
in it. The problem here is that the workers may not be sufficiently synchronized because of the differing time for
computation.

Consider then passive target synchronization. Now the worker tasks could write to the window on the manager
whenever they have something to report; by locking the window they prevent other tasks from interfering. After a
worker writes a result, it can get new data from an array of all coordinates on the manager.

It is hard to get results into the image as they become available. For this, the manager would continuously have to
scan the results array. Therefore, constructing the image is easiest done when all tasks are concluded.

49.2 OpenMP solutions
49.2.1 Loop based
One could make a double loop over all coordinates, and use a dynamic or guided schedule.

49.2.2 Producer-consumer
You could also use a producer-consumer model: one thread generates coordinates, which the other threads then
process. To make this as asynchronous as possible, we keep a single FIFO object (in C++ one could use a deque)
with a lock on it: both the writing and reading threads lock the FIFO.
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This constant locking probably means that threads will keep each other from doing useful work part of the time.
This can be alleviated by writing and reading the FIFO with a block of values at a time.

[c205-013 cxx:30] for t in 2 3 4 5 6 ; do OMP_NUM_THREADS=$t ./mandeldeque -s .001 -l 10000 -b 10 ; done
================ #threads = 2 ================
Time: 62.9568
Number of points: 16000000
Interior: 1506920
Compute time: 60.288
================ #threads = 3 ================
Time: 33.2471
Compute time: 60.5359
================ #threads = 4 ================
Time: 23.6858
Compute time: 60.4749
================ #threads = 5 ================
Time: 19.2046
Compute time: 60.4396
================ #threads = 6 ================
Time: 16.7634
Compute time: 60.4717
Note that the aggregate compute time is more or less constant, and equals to the case with just one consumer thread.

Lower limits destroy scalability, and the aggregate time stays again constant, roughly equal to the external time.

Frontera:

[c208-022 cxx:14] for t in 2 3 4 5 6 ; do OMP_NUM_THREADS=$t ./mandeldeque -t $t -s .001 -l 1000 -b 20 ; done
================ #threads = 2 ================
Time: 8.01974
Number of points: 16000000
Interior: 1510209
Compute time: 6.47284
================ #threads = 3 ================
Time: 4.85859
Number of points: 16000000
Interior: 1510209
Compute time: 6.37375
================ #threads = 4 ================
Time: 4.31056
Number of points: 16000000
Interior: 1510209
Compute time: 6.40085
================ #threads = 5 ================
Time: 4.26642
Number of points: 16000000
Interior: 1510209
Compute time: 6.37777
================ #threads = 6 ================
Time: 4.18028
Number of points: 16000000
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Interior: 1510209
Compute time: 6.41134

Blocksize 200:
================ #threads = 2 ================
Time: 6.51065
Number of points: 16000000
Interior: 1510209
Compute time: 6.19076
================ #threads = 3 ================
Time: 3.44035
================ #threads = 4 ================
Time: 2.42226
================ #threads = 5 ================
Time: 1.90706
================ #threads = 6 ================
Time: 1.60447

Blocksize 2000:
================ #threads = 2 ================
Time: 6.50357
Number of points: 16000000
Interior: 1510209
Compute time: 6.43529
================ #threads = 3 ================
Time: 3.23416
================ #threads = 4 ================
Time: 2.21621
================ #threads = 5 ================
Time: 1.66643
================ #threads = 6 ================
Time: 1.36181

Four threads:

Eight:
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It’s not clear where the idle time in the beginning and end comes from.
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Chapter 50

Data parallel grids

In this section wewill gradually build a semi-realistic example program. To get you started some pieces have already
been written: as a starting point look at code/mpi/c/grid.cxx.

50.1 Description of the problem
With this example you will investigate several strategies for implementing a simple iterative method. Let’s say you
have a two-dimensional grid of datapoints 𝐺 = {𝑔𝑖𝑗 ∶ 0 ≤ 𝑖 < 𝑛𝑖, 0 ≤ 𝑗 < 𝑛𝑗} and you want to compute 𝐺′ where

𝑔′𝑖𝑗 = 1/4 ⋅ (𝑔𝑖+1,𝑗 + 𝑔𝑖−1,𝑗 + 𝑔𝑖,𝑗+1 + 𝑔𝑖,𝑗−1). (50.1)

This is easy enough to implement sequentially, but in parallel this requires some care.

Let’s divide the grid 𝐺 and divide it over a two-dimension grid of 𝑝𝑖 × 𝑝𝑗 processors. (Other strategies exist, but this
one scales best; see section HPC book, section-7.5.) Formally, we define two sequences of points

0 = 𝑖0 < ⋯ < 𝑖𝑝𝑖 < 𝑖𝑝𝑖+1 = 𝑛𝑖, 0 < 𝑗0 < ⋯ < 𝑗𝑝𝑗 < 𝑖𝑝𝑗+1 = 𝑛𝑗
and we say that processor (𝑝, 𝑞) computes 𝑔𝑖𝑗 for

𝑖𝑝 ≤ 𝑖 < 𝑖𝑝+1, 𝑗𝑞 ≤ 𝑗 < 𝑗𝑞+1.

From formula (50.1) you see that the processor then needs one row of points on each side surrounding its part of
the grid. A picture makes this clear; see figure 50.1. These elements surrounding the processor’s own part are called
the halo or ghost region of that processor.

The problem is now that the elements in the halo are stored on a different processor, so communication is needed
to gather them. In the upcoming exercises you will have to use different strategies for doing so.

50.2 Code basics
The program needs to read the values of the grid size and the processor grid size from the commandline, as well as
the number of iterations. This routine does some error checking: if the number of processors does not add up to the
size of MPI_COMM_WORLD, a nonzero error code is returned.
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Figure 50.1: A grid divided over processors, with the ‘ghost’ region indicated

ierr = parameters_from_commandline
(argc,argv,comm,&ni,&nj,&pi,&pj,&nit);

if (ierr) return MPI_Abort(comm,1);
From the processor parameters we make a processor grid object:

processor_grid *pgrid = new processor_grid(comm,pi,pj);
and from the numerical parameters we make a number grid:

number_grid *grid = new number_grid(pgrid,ni,nj);
Number grids have a number of methods defined. To set the value of all the elements belonging to a processor to
that processor’s number:

grid->set_test_values();
To set random values:

grid->set_random_values();
If you want to visualize the whole grid, the following call gathers all values on processor zero and prints them:

grid->gather_and_print();
Next we need to look at some data structure details.

The definition of the number_grid object starts as follows:

class number_grid {
public:
processor_grid *pgrid;
double *values,*shadow;

where values contains the elements owned by the processor, and shadow is intended to contain the values plus
the ghost region. So how does shadow receive those values? Well, the call looks like

grid->build_shadow();
and you will need to supply the implementation of that. Once you’ve done so, there is a routine that prints out the
shadow array of each processor
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grid->print_shadow();
In the file code/mpi/c/grid_impl.cxx you can see several uses of the macro INDEX. This translates from a two-
dimensional coordinate system to one-dimensional. Its main use is letting you use (𝑖, 𝑗) coordinates for indexing the
processor grid and the number grid: for processors you need the translation to the linear rank, and for the grid you
need the translation to the linear array that holds the values.

A good example of the use of INDEX is in the number_grid::relax routine: this takes points from the shadow array
and averages them into a point of the values array. (To understand the reason for this particular averaging, see HPC
book, section-4.2.3 andHPC book, section-5.5.3.) Note how the INDEXmacro is used to index in a ilength×jlength
target array values, while reading from a (ilength + 2) × (jlength + 2) source array shadow.
for (i=0; i<ilength; i++) {
for (j=0; j<jlength; j++) {
int c=0;
double new_value=0.;
for (c=0; c<5; c++) {

int ioff=i+1+ioffsets[c],joff=j+1+joffsets[c];
new_value += coefficients[c] *
shadow[ INDEX(ioff,joff,ilength+2,jlength+2) ];
}
values[ INDEX(i,j,ilength,jlength) ] = new_value/8.;

}
}
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N-body problems

N-body problems describe the motion of particles under the influence of forces such as gravity. There are many
approaches to this problem, some exact, some approximate. Here we will explore a number of them.

For background reading see HPC book, section-11.

51.1 Solution methods
It is not in the scope of this course to give a systematic treatment of all methods for solving the N-body problem,
whether exactly or approximately, so we will just consider a representative selection.

1. Full 𝑁 2 methods. These compute all interactions, which is the most accurate strategy, but also the most
computationally demanding.

2. Cutoff-based methods. These use the basic idea of the 𝑁 2 interactions, but reduce the complexity by
imposing a cutoff on the interaction distance.

3. Tree-based methods. These apply a coarsening scheme to distant interactions to lower the computational
complexity.

51.2 Shared memory approaches

51.3 Distributed memory approaches
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Chapter 52

Teaching guide

Based on two lectures per week, here is an outline of howMPI can be taught in a college course. Links to the relevant
exercises.

Topic Exercises Week

Block 1: SPMD and collectives

Intro: cluster structure hello: 2.1, 2.2
week 1

Functional parallelism commrank: 2.4, 2.5, prime: 2.6

Allreduce, broadcast 3.1, randommax: 3.2
week 2jordan: 3.9

Scan, Gather 3.14, scangather: 3.12, 3.16
week 3Block 2: Two-sided point-to-point

Send and receive pingpong: 4.1, rightsend: 4.4

Sendrecv bucketblock: 4.6, sendrecv: 4.8, 4.9
week 4

Nonblocking isendirecv: 4.13, isendirecvarray: 4.14
bucketpipenonblock: 4.11

week 5Block 3: Derived datatypes
Contiguous, Vector, Indexed stridesend: 6.4, cubegather: 6.6

Extent and resizing

Block 4: Communicators

Duplication, split procgrid: 7.1, 7.2
week 6

Groups

Block 5: I/O

File open, write, views blockwrite: 10.1, viewwrite 10.4
week 7Block 6: Neighborhood collectives

Neighbor allgather rightgraph: 11.2
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Chapter 53

Teaching from mental models

Distributed memory programming, typically through theMPI library, is the de facto standard for programming large
scale parallelism, with up to millions of individual processes. Its dominant paradigm of Single Program Multiple
Data (SPMD) programming is different from threaded and multicore parallelism, to an extent that students have a
hard time switching models. In contrast to threaded programming, which allows for a view of the execution with
central control and a central repository of data, SPMD programming has a symmetric model where all processes
are active all the time, with none privileged, and where data is distributed.

This model is counterintuitive to the novice parallel programmer, so care needs to be taken how to instill the proper
‘mental model’. Adoption of an incorrect mental model leads to broken or inefficient code.

We identify problems with the currently common way of teaching MPI, and propose a structuring of MPI courses
that is geared to explicit reinforcing the symmetric model. Additionally, we advocate starting from realistic scenar-
ios, rather than writing artificial code just to exercise newly-learned routines.

53.1 Introduction
The MPI library [25, 22] is the de facto tool for large scale parallelism as it is used in engineering sciences. In this
paper we want to discuss the manner it is usually taught, and propose a rethinking.

We argue that the topics are typically taught in a sequence that is essentially dictated by level of complexity in the
implementation, rather than by conceptual considerations. Our argument will be for a sequencing of topics, and
use of examples, that is motivated by typical applications of the MPI library, and that explicitly targets the required
mental model of the parallelism model underlying MPI.

We have written an open-source textbook [9] with exercise sets that follows the proposed sequencing of topics and
the motivating applications.

53.1.1 Short background on MPI

The MPI library dates back to the early days of cluster computing, the first half of the 1990s. It was an academic/in-
dustrial collaboration to unify earlier, often vendor-specific, message passing libraries. MPI is typically used to code
large-scale Finite Element Method (FEM) and other physical simulation applications, which share characteristics
of a relatively static distribution of large amounts of data – hence the use of clusters to increase size of the target
problem – and the need for very efficient exchange of small amounts of data.
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The main motivation for MPI is the fact that it can be scaled to more or less arbitrary scales, currently up to millions
of cores [1]. Contrast this with threaded programming, which is limited more or less by the core count on a single
node, currently about 70.

Considering this background, the target audience for MPI teaching consists of upper level undergraduate students,
graduate students, and even post-doctoral researchers who are engaging for the first time in large scale simulations.
The typical participant in an MPI course is likely to understand more than the basics of linear algebra and some
amount of numerics of Partial Diffential Equation (PDE).

53.1.2 Distributed memory parallelism
Corresponding to its origins in cluster computing, MPI targets distributed memory parallelism1. Here, network-
connected cluster nodes run codes that share no data, but synchronize through explicit messages over the network.
Its main model for parallelism is described as Single Program Multiple Data (SPMD): multiple instances of a single
program run on the processing elements, each operating on their own data. The MPI library then implements the
communication calls that allow processes to combine and exchange data.

While MPI programs can solve many or all of the same problems that can be solved with a multicore approach, the
programming approach is different, and requires an adjustment in the programmer’s ‘mental model’ [7, 30] of the
parallel execution. This paper addresses the question of how to teach MPI to best effect this shift in mindset.

Outline of this paper. We use section 53.2 to address explicitly the mental models that govern parallel thinking
and parallel programming, pointing out why MPI is different, and difficult initially. In section 53.3 we consider the
way MPI is usually taught, while in section 53.4 we offer an alternative that is less likely to lead to an incorrect
mental model.

Some details of our proposed manner of teaching are explored in sections 53.5, 53.6, 53.7. We conclude with discus-
sion in sections 53.8 and 53.9.

53.2 Implied mental models
Denning [8] argued how computational thinking consists in finding an abstract machine (a ‘computational model’)
that solves the problem in a simple algorithmic way. In our case of teaching parallel programming, the complication
to this story is that the problem to be solved is already a computational system. That doesn’t lessen the need
to formulate an abstract model, since the full explanation of MPI’s workings are unmanageable for a beginning
programmer, and often not needed for practical purposes.

In this section we consider in more detail the mental models that students may implicitly be working under, and the
problemswith them; targeting the rightmental model will then be the subject of later sections. The two (interrelated)
aspects of a correct mental model for distributed memory programming are control and synchronization. We here
discuss how these can be misunderstood by students.

53.2.1 The traditional view of parallelism
The problem with mastering the MPI library is that beginning programmers take a while to overcome a certain
mental model for parallelism. In this model, which we can call ‘sequential semantics’ (or more whimsically the ‘big
index finger’ model), there is only a single strand of execution2, which we may think of as a big index finger going
down the source code.

1. Recent additions to the MPI standard target shared memory too.
2. We carefully avoid the word ‘thread’ which carries many connotations in the context of parallel programming.
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This mental model corresponds closely to the way algorithms are described in the mathematical literature of par-
allelism, and it is actually correct to an extent in the context of threaded libraries such as OpenMP, where there is
indeed initially a single thread of execution, which in some places spawns a team of threads to execute certain sec-
tions of code in parallel. However, in MPI this model is factually incorrect, since there are always multiple processes
active, with none essentially priviliged over others, and no shared or central data store.

53.2.2 The misconceptions of centralized control
The sequential semantics mental model that, as described above, underlies much of the theoretical discussion of
parallelism, invites the student to adopt certain programming techniques, such as the master-worker approach to
parallel programming. While this is often the right approach with thread-based coding, where we indeed have a
master thread and spawned threads, it is usually incorrect for MPI. The strands of execution in an MPI run are
all long-living processes (as opposed to dynamically spawned threads), and are symmetric in their capabilities and
execution.

Lack of recognition of this process symmetry also induces students to solve problems by having a form of ‘central
data store’ on one process, rather than adopting a symmetric, distributed, storage model. For instance, we have seen
a student solve a data transposition problem by collecting all data on process 0, and subsequently distributing it
again in transposed form. While this may be reasonable3 in shared memory with OpenMP, with MPI it is unrealistic
in that no process is likely to have enough storage for the full problem. Also, this introduces a sequential bottleneck
in the execution.

In conclusion, we posit that beginning MPI programmers may suffer from a mental model that makes them insuf-
ficiently realize the symmetry of MPI processes, and thereby arrive at inefficient and nonscalable solutions.

53.2.3 The reality of distributed control
An MPI program run consists of multiple independent threads of control. One problem in recognizing this is that
there is only a single source code, so there is an inclination to envision the program execution as a single thread of
control: the above-mentioned ‘index finger’ going down the statements of the source. A second factor contributing
to this view is that a parallel code incorporates statements with values (int x = 1.5;) that are replicated over all
processes. It is easy to view these as centrally executed.

Interestingly, work by Ben-David Kolikant [2] shows that students with no prior knowledge of concurrency, when
invited to consider parallel activities, will still think in terms of centralized solutions. This shows that distributed
control, such as it appears in MPI, is counterintuitive and needs explicit enforcement in its mental model. In partic-
ular, we explicitly target process symmetry and process differentiation.

The centralized model can still be maintained inMPI to an extent, since the scalar operations that would be executed
by a single thread become replicated operations in the MPI processes. The distinction between sequential execution
and replicated execution escapes many students at first, and in fact, since nothing it gained by explaining this, we
do not do so.

53.2.4 The misconception of synchronization
Even with multiple threads of control and distributed data, there is still a temptation to see execution as ‘bulk syn-
chronous processing’ (BSP [29]). Here, the execution proceeds by supersteps, implying that processes are largely
synchronized. (The BSP model has several components more, which are usually ignored, notably one-sided com-
munication and processor oversubscription.)

3. To first order; second order effects such as affinity complicate this story.
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Supersteps as a computational model allow for small differences in control flow, for instance conditional inside a
big parallelizable loop, but otherwise imply a form of centralized control (as above) on the level of major algorithm
steps. However, codes using the pipeline model of parallelism, such idioms as

MPI_Recv( /* from: */ my_process-1)
// do some major work
MPI_Send( /* to : */ my_process+1)
fall completely outside either the sequential semantics or BSP model and require an understanding of one pro-
cess’ control being dependent on another’s. Gaining an mental model for this sort of unsynchronized execution is
nontrivial to achieve. We target this explicitly in section 53.5.1.

53.3 Teaching MPI, the usual way
The MPI library is typically taught as follows. After an introduction about parallelism, covering concepts such as
speedup and shared versus distributed memory parallelism, students learn about the initialization and finalization
routines, and the MPI_Comm_size and MPI_Comm_rank calls for querying the number of processes and the rank of
the current process.

After that, the typical sequence is

1. two-sided communication, with first blocking and later nonblocking variants;
2. collectives; and
3. any number of advanced topics such as derived data types, one-sided communication, subcommunica-

tors, MPI I/O et cetera, in no particular order.

This sequence is defensible from a point of the underlying implementation: the two-sided communication calls are
a close map to hardware behavior, and collectives are both conceptually equivalent to, and can be implemented as,
a sequence of point-to-point communication calls. However, this is not a sufficient justification for teaching this
sequence of topics.

53.3.1 Criticism

We offer three points of criticism against this traditional approach to teaching MPI.

First of all, there is no real reason for teaching collectives after two-sided routines. They are not harder, nor require
the latter as prerequisite. In fact, their interface is simpler for a beginner, requiring one line for a collective, as
opposed to at least two for a send/receive pair, probably surrounded by conditionals testing the process rank. More
importantly, they reinforce the symmetric process view, certainly in the case of the MPI_All... routines.

Our second point of criticism is regarding the blocking and nonblocking two-sided communication routines. The
blocking routines are typically taught first, with a discussion of how blocking behavior can lead to load unbalance
and therefore inefficiency. The nonblocking routines are then motivated from a point of latency hiding and solving
the problems inherent in blocking. In our view such performance considerations should be secondary. Nonblocking
routines should instead be taught as the natural solution to a conceptual problem, as explained below.

Thirdly, starting with point-to-point routines stems from a Communicating Sequential Processes (CSP)[14] view of
a program: each process stands on its own, and any global behavior is an emergent property of the run. This may
make sense for the teacher who know how concepts are realized ‘under the hood’, but it does not lead to additional
insight with the students. We believe that a more fruitful approach to MPI programming starts from the global
behavior, and then derives the MPI process in a top-down manner.
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53.3.2 Teaching MPI and OpenMP

In scientific computing, another commonly used parallel programming system is OpenMP [23]. OpenMP and MPI
are often taught together, with OpenMP taught earlier because it is supposedly easier, or because its parallelism
would be easier to grasp. Regardless our opinion on the first estimate, we argue that OpenMP should be taught after
MPI because of its ‘central control’ parallelism model. If students come to associate parallelism with a model that
has a ‘master thread’ and ‘parallel regions’ they will find it much harder to make idiomatic use of the symmetric
model of MPI.

53.4 Teaching MPI, our proposal
As alternative to the above sequence of introducing MPI concepts, we propose a sequence that focuses on practical
scenarios, and that actively reinforces the mental model of SPMD execution.

Such reinforcement is often an immediate consequence of our strategy of illustrating MPI constructs in the context
of an application: most MPI applications (as we shall briefly discuss next) operate on large ‘distributed objects’. This
immediately leads to a mental model of the workings of each process being the ‘projection’ onto that process of the
global calculation. The opposing view, where the overall computation is emergent from the individual processes, is
the CSP model mentioned above.

53.4.1 Motivation from applications

The typical application for MPI comes from Computational Science and Engineering, such as N-body problems,
aerodynamics, shallow water equations, Lattice Boltzman methods, weather modeling with Fast Fourier Transform.
Of these, the PDE based applications can readily be explained to need a number of MPI mechanisms.

Nonnumeric applications exist:

• Graph algorithms such as shortest-path or PageRank are straightforward to explain sequentially. How-
ever, the distributed memory algorithms need to be approached fundamentally different from the more
naive sharedmemory variants. Thus they require a good amount of background knowledge. Additionally,
they do not feature the regular communications that one-dimensional PDE applications have. Scalability
arguments make this story even more complicated. Thus, these algorithms are in fact a logical next topic
after discussion of parallel PDE algorithm.

• N-body problems, in their naive implementation, are easy to explain to any student who knows inverse-
square laws such as gravity. It is a good illustration of some collectives, but nothing beyond that.

• Sorting. Sorting algorithms based on a sorting network (this includes bubblesort, but not quicksort) can
be used as illustration. In fact, we use odd-even transposition sort as a ‘midterm’ exam assignment,
which can be solved with MPI_Sendrecv. Algorithms such as bitonic sort can be used to illustrate some
advanced concepts, but quicksort, which is relatively easy to explain as a serial algorithm, or even in
shared memory, is quite hard in MPI.

• Point-to-point operations can also be illustrated by graphics operations such as a ‘blur’, since these cor-
respond to a ‘stencil’ applied to a cluster of pixels. Unfortunately, this example suffers from the fact that
neither collectives, nor irregular communications have a use in this application. Also, using graphics to
illustrate simple MPI point-to-point communication is unrealistic in two ways: first, to start out simple
we have to posit a one-dimensional pixel array; secondly, graphics is hardly ever of the scale that ne-
cessitates distributed memory, so this example is far from ‘real world’. (Ray tracing is naturally done
distributed, but that has a completely different computational structure.)
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Based on this discussion of possible applications, and in view of the likely background of course attendants, we
consider Finite Difference solution of PDEs as a prototypical application that exercises both the simplest and more
sophisticated mechanisms. During a typical MPI training, even a one-day short course, we insert a lecture on sparse
matrices and their computational structure to motivate the need for various MPI constructs.

53.4.2 Process symmetry
Paradoxically, the first way to get students to appreciate the notion of process symmetry in MPI is to run a non-MPI
program. Thus, students are asked to write a ‘hello world’ program, and execute this with mpiexec, as if it were an
MPI program. Every process executes the print statement identically, bearing out the total symmetry between the
processes.

Next, students are asked to insert the initialize and finalize statements, with three different ‘hello world’ statements
before, between, and after them. This will prevent any notion of the code between initialization and finalization
being considered as an OpenMP style ‘parallel region’.

A simple test to show that while processes are symmetric they are not identical is offered by the exercise of using the
MPI_Get_processor_name function, which will have different output for some or all of the processes, depending
on how the hostfile was arranged.

53.4.3 Functional parallelism
The MPI_Comm_rank function is introduced as a way of distinguishing between the MPI processes. Students are
asked to write a program where only one process prints the output of MPI_Comm_size.

Figure 53.1:
Calculation of
𝜋/4 by Riemann
sums

Having different execution without necessarily different data is a case of ‘functional par-
allelism’. At this point there are few examples that we can assign. For instance, in order to
code the evaluation of an integral by Riemann sums (𝜋/4 = ∫1

0 √1 − 𝑥2𝑑𝑥 is a popular one)
would need a final sum collective, which has not been taught at this point.

A possible example would be primality testing, where each process tries to find a factor of
some large integer 𝑁 by traversing a subrange of [2, √𝑁 ], and printing a message if a factor
is found. Boolean satisfiability problems form another example, where again a search space
is partitioned without involving any data space; a process finding a satisfying input can
simply print this fact. However, this example requires background that students typically
don’t have.

53.4.4 Introducing collectives
At this point we can introduce collectives, for instance to find the maximum of a random
value that is computed locally on each process. This requires teaching the code for random
number generation and, importantly, setting a process-dependent random number seed. Generating random 2D
or 3D coordinates and finding the center of mass is an examples that requires a send and receive buffer of length
greater than 1, and illustrates that reductions are then done pointwise.

These examples evince both process symmetry and a first form of local data. However, a thorough treatment of
distributed parallel data will come in the discussion of point-to-point routines.

It is an interesting question whether we should dispense with ‘rooted’ collectives such as MPI_Reduce at first, and
start with MPI_Allreduce4 The latter is more symmetric in nature, and has a buffer treatment that is easier to

4. The MPI_Reduce call performs a reduction on data found on all processes, leaving the result on a ‘root’ process. With
MPI_Allreduce the result is left on all processes.
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explain; it certainly reinforces the symmetric mindset. There is also essentially no difference in efficiency.

Certainly, in most applications the ‘allreduce’ is the more common mechanism, for instance where the algorithm
requires computations such as

̄𝑦 ← ̄𝑥/‖ ̄𝑥‖
where 𝑥, 𝑦 are distributed vectors. The quantity ‖ ̄𝑥‖ is then needed on all processes, making the Allreduce the
natural choice. The rooted reduction is typically only used for final results. Therefore we advocate introducing both
rooted and nonrooted collectives, but letting the students initially do exercises with the nonrooted variants.

This has the added advantage of not bothering the students initially with the asymmetric treatment of the receive
buffer between the root and all other processes.

53.4.5 Distributed data

As motivation for the following discussion of point-to-point routines, we now introduce the notion of distributed
data. In its simplest form, a parallel program operates on a linear array the dimensions of which exceed the memory
of any single process.

Figure 53.2: A distributed array versus multiple local arrays

The lecturer stresses that the global structure of the distributed array is only ‘in the programmer’s mind’: each MPI
process sees an array with indexing starting at zero. The following snippet of code is given for the students to use
in subsequent exercises:

int myfirst = .....;
for (int ilocal=0; ilocal<nlocal; ilocal++) {

int iglobal = myfirst+ilocal;
array[ilocal] = f(iglobal);

}

At this point, the students can code a second variant of the primality testing exercise above, but with an array
allocated to store the integer range. Since collectives are now known, it becomes possible to have a single summary
statement from one process, rather than a partial result statement from each.

The inner product of two distributed vectors is a second illustration of working with distributed data. In this case,
the reduction for collecting the global result is slightly more useful than the collective in the previous examples.
For this example no translation from local to global numbering is needed.
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53.4.6 Point-to-point motivated from operations on distributed data

We now state the importance of local combining operations such as

𝑦𝑖 = (𝑥𝑖−1 + 𝑥𝑖 + 𝑥𝑖+1)/3∶ 𝑖 = 1, … , 𝑁 − 1

applied to an array. Students who know about PDEs will recognize that with different coefficients this is the heat
equation; for others a graphics ‘blur’ operation can be used as illustration, if they accept that a one-dimensional
pixel array is a stand-in for a true graphic.

Under the ’owner computes’ regime, where the process that stores location 𝑦𝑖 performs the full calculation of that
quantity, we see the need for communication in order to compute the first and last element of the local part of 𝑦 :

We then state that this data transfer is realized in MPI by two-sided send/receive pairs.

53.4.7 Detour: deadlock and serialization

The concept of ‘blocking’ is now introduced, and we discuss how this can lead to deadlock. A more subtle behavior
is ‘unexpected serialization’: processes interacting to give serial behavior on a code that conceptually should be
parallel. (The classroom protocol is discussed in detail in section 53.5.1.) For completeness, the ‘eager limit’ can be
discussed.

This introduces students to an interesting phenomenon in the concept of parallel correctness: a program may give
the right result, but not with the proper parallel efficiency. Asking a class to come up with a solution that does
not have a running time proportional the number of processes, will usually lead to at least one student suggesting
splitting processes in odd and even subsets. The limits to this approach, code complexity and the reliance on reg-
ular process connectivity, are explained to the students as a preliminary to the motivation for nonblocking sends;
section 53.4.10.

53.4.8 Detour: ping-pong

At this point we briefly abandon the process symmetry, and consider the ping-pong operation between two pro-
cesses A and B5. We ask students to consider what the ping-pong code looks like for A and, for B. Since we are
working with SPMD code, we arrive at a program where the A code and B code are two branches of a conditional.

We ask the students to implement this, and do timingwith MPI_Wtime. The implementation of the ping-pong is itself
a good exercises in SPMD thinking; finding the right sender/receiver values usually takes the students a nontrivial
amount of time. Many of them will initially write a code that deadlocks.

The concepts of latency and bandwidth can be introduced, as the students test the ping-pong code on messages of
increasing size. The concept of halfbandwidth can be introduced by letting half of all processes execute a ping-pong
with a partner process in the other half.

5. In this operations, process A sends to B, and B subsequenty sends to A. Thus the time for a message is half the time of a
ping-pong. It is not possible to measure a single message directly, since processes can not be synchronized that finely.
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53.4.9 Back to data exchange

The foregoing detours into the behavior of two-sided send and receive calls were necessary, but they introduced
asymmetric behavior in the processes. We return to the averaging operation given above, and with it to a code that
treats all processes symmetrically. In particular, we argue that, except for the first and last, each process exchanges
information with its left and right neighbor.

This could be implemented with blocking sends and receive calls, but students recognize how this could be some-
where between tedious and error-prone. Instead, to prevent deadlock and serialization as described above, we now
offer the MPI_Sendrecv routine6. Students are asked to implement the classroom exercise above with the sendrecv
routine. Ideally, they use timing or tracing to gather evidence that no serialization is happening.

As a nontrivial example (in fact, this takes enough programming that onemight assign it as an exam question, rather
than an exercise during a workshop) students can now implement an odd-even transposition sort algorithm using
MPI_Sendrecv as the main tool. For simplicity they can use a single array element per process. (If each process has
a subarray one has to make sure their solution has the right parallel complexity. It is easy to make errors here and
implement a correct algorithm that, however, performs too slowly.)

Note that students have at this point not done any serious exercises with the blocking communication calls, other
than the ping-pong. No such exercises will in fact be done.

53.4.10 Nonblocking sends

Nonblocking sends are now introduced as the solution to a specific problem: the above schemes required paired-up
processes, or careful orchestration of send and receive sequences. In the case of irregular communications this is no
longer possible or feasible. Life would be easy if we could declare ‘this data needs to be sent’ or ‘these messages are
expected’, and then wait for these messages collectively. Given this motivation, it is immediately clear that multiple
send or receive buffers are needed, and that requests need to be collected.

Implementing the three-point averaging with nonblocking calls is at this point an excellent exercise.

Note that we have here motivated the nonblocking routines to solve a symmetric problem. Doing this should teach
the students the essential point that each nonblocking call needs its own buffer and generates its own request.
Viewing nonblocking routines as a performance alternative to blocking routines is likely to lead to students re-
using buffers or failing to save the request objects. Doing so is a correctness bug that is very hard to find, and at
large scale it induces a memory leak since many requests objects are lost.

53.4.11 Taking it from here

At this point various advanced topics can be discussed. For instance, Cartesian topologies can be introduced, ex-
tending the linear averaging operation to a higher dimensional one. Subcommunicators can be introduced to apply
collectives to rows and columns of a matrix. The recursive matrix transposition algorithm is also an excellent ap-
plication of subcommunicators.

However, didactically these topics do not require the careful attention that the introduction of the basic concepts
needs, so we will not go into further detail here.

6. The MPI_Sendrecv call combines a send a receive operation, specifying for each process both a sending and receiving
communication. The execution guarantees that no deadlock or serialization will occur.
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53.5 ‘Parallel computer games’

Part of the problem in developing an accurate mental model of parallel computation is that there is no easy way
to visualize the execution. While sequential execution can be imagined with the ‘big index finger’ model (see sec-
tion 53.2.1), the possibily unsynchronized execution of an MPI program makes this a gross simplification. Running
a program in a parallel graphical environment (such as the DDT debugger or the Eclipse PTP IDE) would solve this,
but they introduce much learning overhead. Ironically, the low tech solution of

mpiexec -n 4 xterm -e gdb program

is fairly insightful, but having to learn gdb is again a big hurdle.

We have arrived at the somewhat unusual solution of having students act out the program in front of the class.
With each student acting out the program, any interaction is clearly visible to an extent that is hard to achieve any
other way.

53.5.1 Sequentialization

Our prime example is to illustrate the blocking behavior of MPI_Send and MPI_Recv7. Deadlock is easy enough to
understand as a consequence of blocking – in the simplest case of deadlock to processes are both blocked expecting
a receive from the other – but there are more subtle effects that will come as a surprise to students. (This was alluded
to in section 53.4.7.)

Consider the following basic program:

• Pass a data item to the next higher numbered process.

Note that this is conceptually a fully parallel program, so it should execute in time 𝑂(1) in terms of the number of
processes.

In terms of send and receive calls, the program becomes

• Send data to the next higher process;
• Receive data from the next lower process.

The final detail concerns the boundary conditions: the first process has nothing to receive and the last one has
nothing to send. This makes the final version of the program:

• If you are not the last process, send data to the next higher process; then
• If you are not the first process, receive data from the next lower process.

To have students act this out, we tell them to hold a pen in their right hand, and put the left hand in a pocket or
behind their back. Thus, they have only one ‘communication channel’. The ‘send data’ instruction becomes ‘turn to
your right and give your pen’, and ‘receive data’ becomes ‘turn to your left and receive a pen’.

Executing this program, the students first all turn to the right, and they see that giving data to a neighbor is not
possible because no one is executing the receive instruction. The last process is not sending, so moves on to the
receive instruction, after which the penultimate process can receive, et cetera.

This exercise makes the students see, better than any explanation or diagram, how a parallel program can compute
the right result, but with unexpectedly low performance because of the interaction of the processes. (In fact, we
have had explicit feedback that this game was the biggest lightbulb moment of the class.)

7. Blocking is defined as the process executing a send or receive call halting until the corresponding operation is executing.
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53.5.2 Ping-pong

While in general we emphasize the symmetry of MPI processes, during the discussion of send and receive calls we
act out the ping-pong operation (one process sending data to another, followed by the other sending data back),
precisely to demonstrate how asymmetric actions are handled. For this, two students throw a pen back and forth
between them, calling out ‘send’ and ‘receive’ when they do so.

The teacher then asks each student what program they executed, which is ‘send-receive’ for the one, and ‘receive-
send’ for the other student. Incorporating this in the SPMDmodel then leads to a codewith conditionals to determine
the right action for the right process.

53.5.3 Collectives and other games

Other operations can be acted out by the class. For instance, the teacher can ask one student to add the grades of all
students, as a proxy for a reduction operation. The class quickly sees that this will take a long time, and strategies
such as taking by-row sums in the classroom quickly suggest themselves.

We have at one point tried to have a pair of student act out a ‘race condition’ in shared memory programming, but
modeling this quickly became too complicated to be convincing.

53.5.4 Remaining questions

Even with our current approach, however, we still see students writing idioms that are contrary to the symmetric
model. For instance, they will write

for (p=0; p<nprocs; p++)
if (p==myrank)
// do some function of p

This code computes the correct result, and with the correct performance behavior, but it still shows a conceptual
misunderstanding. As one of the ‘parallel computer games’ (section 53.5) we have put a student stand in front of
the class with a sign ‘I am process 5’, and go through the above loop out loud (‘Am I process zero? No. Am I process
one? No.’) which quickly drives home the point about the futility of this construct.

53.6 Further course summary

We have taught MPI based on the above ideas in two ways. First, we teach an academic class, that covers MPI,
OpenMP, and general theory of parallelism in one semester. The typical enrollment is around 30 students, who
do lab exercises and a programming project of their own choosing. We also teach a two-day intensive workshop
(attendance 10–40 students depending on circumstances) of 6–8 hours per day. Students of the academic class are
typically graduate or upper level undergraduate students; the workshops get attendance from post-docs, academics,
and industry too. The typical background is applied math, engineering, physical sciences.

We cover the following topics, with division over two days in the workshop format:

• Day 1: familiarity with SPMD, collectives, blocking and nonblocking two-sided communication.
• Day 2: exposure to: sub-communicators, derived datatypes. Two of the following: MPI-I/O, one-sided
communication, process management, the profiling and tools interfaces, neighborhood collectives.
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53.6.1 Exercises

On day 1 the students do approximately 10 programming exercises, mostly finishing a skeleton code given by the
instructor. For the day 2 material students do two exercises per topic, again starting with a given skeleton. (Skeleton
codes are available as part of the repository [9].)

The design of these skeleton codes is an interesting problem in view of our concern with mental models. The
skeletons are intended to take the grunt work away from the students, to both indicate a basic code structure and
relieve them from making elementary coding errors that have no bearing on learning MPI. On the other hand, the
skeletons should leave enough unspecified that multiple solutions are possible, including wrong ones: we want
students to be confronted with conceptual errors in their thinking, and a too-far-finished skeleton would prevent
them from doing that.

Example: the prime finding exercise mentioned above (which teaches the notion of functional parallelim) has the
following skeleton:

int myfactor;
// Specify the loop header:
// for ( ... myfactor ... )
for (

/**** your code here ****/
) {

if (bignum%myfactor==0)
printf("Process %d found factor %d\n",

procno,myfactor);
}

This leaves open the possibility of both a blockwise and a cyclic distribution of the search space, as well as incorrect
solutions where each process runs through the whole search space.

53.6.2 Projects

Students in our academic course do a programming project in place of a final exam. Students can choose between
one of a set of standard projects, or doing a project of their own choosing. In the latter case, some students will
do a project in context of their graduate research, which means that they have an existing codebase; others will
write code from scratch. It is this last category, that will most clearly demonstrate their correct understanding of
the mental model underlying SPMD programs. However, we note that this is only a fraction of the students in our
course, a fraction made even smaller by the fact that we also give a choice of doing a project in OpenMP rather than
MPI. Since OpenMP is, at least to the beginning programmer, simpler to use, there is an in fact a clear preference
for it among the students who pick their own project.

53.7 Prospect for an online course
Currently the present author teaches MPI in the form of an academic course or short workshop, as outlined in
section 53.6. In both cases, lecture time is far less than lab time, making the setup very intensive in teacher time. It
also means that this setup is not scalable to a larger number of students. Indeed, while the workshops are usually
webcast, we have not sufficiently solved the problem of supporting remote students. (The Pittsburgh Supercom-
puting Center offers courses that have remotely located teaching assistants, which seems a promising approach.)
Such problems of support would be even more severe with an online course, where in-person support is completely
absent.
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53.8. Evaluation and discussion

One obvious solution to online teaching is automated grading: a student submits an exercise, which is then run
through a checker program that tests the correct output. Especially if the programming assignment takes input, a
checker script can uncover programming errors, notably in boundary cases.

However, the whole target of this paper is to uncover conceptual misunderstandings, for instance such as can lead to
correct results with sub-optimal performance. In a classroom situation such misunderstandings are quickly caught
and cleared up, but to achieve this in a context of automated grading we need to go further.

We have started experiments with actually parsing code submitted by the students. This effort started in a beginning
programming class taught by the present author, but is now being extended to the MPI courses.

It is possible to uncover misconceptions in students’ understanding by detecting the typical manifestations of such
misconceptions. For instance, the code in section 53.5.4 can be uncovered by detecting a loop where the upper
bound involves a variable that was set by MPI_Comm_size. Many MPI codes have no need for such a loop over all
processes, so detecting one leads to an alert for the student.

Note that no tools exist for such automated evaluation. The source code analysis needed falls far short of full
parsing. On the other hand, the sort of constructs is it supposed to detect, are normally not of interest to the writers
of compilers and source translators. This means that by writing fairly modest parsers (say, less than 200 lines of
python) we can perform a sophisticated analysis of the students’ codes. We hope to report on this in more detail in
a follow-up paper.

53.8 Evaluation and discussion
At the moment, no rigorous evaluation of the efficacy of the above ideas has been done. We intend to perform a
comparison between outcomes of the proposed way of teaching and the traditional way by comparing courses at
two (or more) different institutions and from different syllabi. The evaluation will then be based on evaluating the
independent programming project.

However, anecdotal evidence suggests that students are less likely to develop ‘centralized’ solutions as described
in section 53.2.2. This was especially the case in our semester-long course, where the students have to design and
implement a parallel programming project of their own choosing. After teaching the ‘symmetric’ approach, no
students wrote code based on a manager-worker model, or using centralized storage. In earlier semesters, we had
seen students do this, even though this model was never taught as such.

53.9 Summary
In this paper we have introduced a nonstandard sequence for presenting the basic mechanisms in MPI. Rather
than starting with sends and receives and building up from there, we start with mechanisms that emphasize the
inherent symmetry between processes in the SPMD programmingmodel. This symmetry requires a substantial shift
in mindset of the programmer, and therefore we target it explicitly.

In general, it is the opinion of this author that it pays off to teach from the basis of instilling a mental model, rather
than of presenting topics in some order of (perceived) complexity or sophistication.

Comparing our presentation as outlined above to the standard presentation, we recognize the downplaying of the
blocking send and receive calls. While students learn these, and in fact learn them before other send and receive
mechanisms, they will recognize the dangers and difficulties in using them, and will have the combined sendrecv
call as well as nonblocking routines as standard tools in their arsenal.
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List of acronyms

API Application Programmer Interface
AMG Algebraic MultiGrid
AVX Advanced Vector Extensions
BLAS Basic Linear Algebra Subprograms
BSP Bulk Synchronous Parallel
CAF Co-array Fortran
CPP C PreProcessor
CRS Compressed Row Storage
CSP Communicating Sequential Processes
CG Conjugate Gradients
CUDA Compute-Unified Device Architecture
DAG Directed Acyclic Graph
DFS Depth First Search
DPCPP Data Parallel C++
DSP Digital Signal Processing
FEM Finite Element Method
FIFO First-In / First-Out
FPU Floating Point Unit
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
FSA Finite State Automaton
GPU Graphics Processing Unit
HPC High-Performance Computing
HPF High Performance Fortran
HPL High Performance Linpack
ICV Internal Control Variable
LAPACK Linear Algebra Package
MG Multi-Grid
MIC Many Integrated Cores
MIMD Multiple Instruction Multiple Data
MPI Message Passing Interface
MPL Message Passing Layer
NCCL NVIDIA Collective Communication Library

MPMD Multiple Program Multiple Data
MTA Multi-Threaded Architecture
NIC Network Interface Card
NUMA Non-Uniform Memory Access
OO Object-Oriented
OOP Object-Oriented Programming
OS Operating System
PGAS Partitioned Global Address Space
PDE Partial Diffential Equation
PRAM Parallel Random Access Machine
RDMA Remote Direct Memory Access
RMA Remote Memory Access
SAN Storage Area Network
SaaS Software as-a Service
SFC Space-Filling Curve
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SLURM Simple Linux Utility for ResourceManagement
SM Streaming Multiprocessor
SMP Symmetric Multi Processing
SOR Successive Over-Relaxation
SP Streaming Processor
SPMD Single Program Multiple Data
SPD symmetric positive definite
SSE SIMD Streaming Extensions
STL Standard Template Library
TACC Texas Advanced Computing Center
TBB Thread Building Blocks
TLB Translation Look-aside Buffer
UMA Uniform Memory Access
UPC Unified Parallel C
URI Uniform Resource Identifier
WAN Wide Area Network
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Index

-malloc_debug, 524
-malloc_test, 524
.petscrc, 530

accelerator, 329
active target synchronization, 230, 235
address

physical, 290, 413
virtual, 290, 413

adjacency
graph, 494

affinity, 564, 569
process and thread, 564–565
thread

on multi-socket nodes, 409
alignment, 185
all-to-all, 40
alloc_mem, 255
allocate

and private/shared data, 385
allreduce, 40
AMD

Milan, 416
argc, 26, 29
argv, 26, 29
array

static, 98
asynchronous, 312
atomic operation, 390, 457

file, 270
MPI, 245–250
OpenMP, 392–395

bandwidth, 86
bisecection, 92

barrier
for timing, 315
implicit, 392
nonblocking, 84
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INDEX

Basic Linear Algebra Subprograms (BLAS), 470
batch

job, 16
scheduler, 16

Beowulf cluster, 15
block row, 482
Boolean satisfiability, 35
boost, 18
broadcast, 38
btl_openib_eager_limit, 104
btl_openib_rndv_eager_limit, 104
bucket brigade, 64, 91, 106
buffer

MPI, in C, 44
MPI, in Fortran, 45
MPI, in MPL, 46
MPI, in Python, 45
receive, 99

C
C11, 155
C99, 154
MPI bindings, see MPI, C bindings

C++
bindings, see MPI, C++ bindings
C++17, 358
C++20, 353, 358
C++23, 354
C++32, 357
first-touch, see first-touch, in C++
standard library, 177

vector, 177
C++ iterators

in OMP reduction, 372
c_sizeof, 161
cacheline, 366
callback, 514
cast, 45
channel, 559
Charmpp, 16
chunk, 356
chunk, 357
Clang, 421
clang, 17
client, 222
CLINKER, 462
cluster, 330
Codimension, 535
coherent memory, see memory, coherence
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INDEX

collective
split, 266

collectives, 38
neighborhood, 279, 317
nonblocking, 81

cancelling, 322
column-major storage, 169
combiner, 193
commandline arguments

bradcast, 51
of spawned process, 218

communication
asynchronous, 147
blocking, 101–106

vs nonblocking, 316
buffered, 148, 148, 317
local, 148
nonblocking, 112–126
nonlocal, 148
one-sided, 230–259
one-sided, implementation of, 259
partitioned, see partitioned,communication
persistent, 316
synchronous, 147
two-sided, 139

communicator, 31, 204–216
info object, 303
inter, 212, 212, 218

from socket, 225
intra, 212, 214
object, 32
peer, 212
variable, 31

compare-and-swap, 109
compiler, 180
completion, 252

local, 252
remote, 253

Compute-Unified Device Architecture (CUDA), 534
concurrency

and MPI, see MPI, concurrency and
condition number, 513
configure.log, 465
construct, 335
contention, 92
contention group, 342
contiguous

data type, 162
continue, 349
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INDEX

control variable
access, 297
handle, 296

core, 23, 330, 409
cosubscript, 536
cpp, 332
cpuinfo, 562
Cray

MPI, 17
T3E, 322

critical section, 365, 392, 428
flush at, 397

curly braces, 333
cycle, 349

Dalcin
Lisandro, 19, 462

data dependency, 403
Data Parallel C++ (DPCPP), 544
datatype, 153–197

big, 181–184
derived, 153, 162–261
different on sender and receiver, 167
predefined, 153–162

in C, 154
in Fortran, 155
in Python, 158

signature, 178
deadlock, 84, 98, 102, 112, 316, 318
debug_mt, 313
default, 255
Dekker’s algorithm, 432
dense linear algebra, 207
Depth First Search (DFS), 450
deque, 587
destructor, 204
directive, 333–334

C++ syntax, 333
end-of, 334

displacement unit, 256
distributed array, 36
distributed shared memory, 230
doubling

recursive, see recursive doubling

eager
limit, 102
send, 102

eager limit, 102–104, 316
eager send
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INDEX

and non-blocking, 104
edge

cuts, 494
weight, 494

envelope, see message, envelope
environment variables, 293
epoch, 236

access, 236, 238, 250
communication, 235
completion, 254
exposure, 236, 237
passive target, 250

error return, 18
ethernet, 18
execution policy, 358, 375
execution space, 541

false sharing, 366, 367
Fast Fourier Transform (FFT), 56, 491, 492
fat-tree, 564
fence, 236
fftw, 466, 491
Fibonacci sequence, 398–399
file

pointer
advance by write, 267
individual, 266

file system
shared, 261

first-touch, 412, 564
in C++, 414

five-point stencil, 84
FLINKER, 462
fork/join model, 331, 337, 403
Fortran

1-based indexing, 119
2008, 31
array syntax, 379
assumed-shape arrays in MPI, 311
fixed-form source, 334
forall loops, 379
Fortran2003, 370
Fortran2008, 128, 153, 163, 168, 240

MPI bindings, see MPI, Fortran2008 bindings
Fortran2018, 312
Fortran77, 77, 334

PETSc interface, 461
Fortran90, 21, 128, 156, 168

bindings, 19
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PETSc interface, 461
line length, 524
MPI bindings, see MPI, Fortran bindings
MPI equivalences of scalar types, 156
MPI issues, 311–312

gather, 38
Gauss-Jordan algorithm, 53
Gaussian elimination, 506
GCC, 421
gcc

thread affinity, 415
gemv, 488
getrusage, 530
ghost region, 591
Google

developer documentation style guide, 574
GPUDirect, 520
Gram-Schmidt, 44
graph

partitioning
packages, 494

topology, 279, 317, 564
unweighted, 280

grid
Cartesian, 272, 495
periodic, 272
processor, 564

group, 237
group of

processors, 238

halo, 591
update, 242

halo region, 492, 498
handshake, 318
hdf5, 261
heap, 336
heat equation, 411
Hessian, 517
hipsycl, 551
histogram, 444
hostname, 306
hwloc, 562, 565
hydra, 225
hyper-thread, 409
hyperthread, 352
hyperthreading, 564
Hypre, 466, 467, 511, 513

pilut, 512
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I/O
in OpenMP, 377

I_MPI_ASYNC_PROGRESS, 313
I_MPI_ASYNC_PROGRESS_THREADS, 313
I_MPI_EAGER_THRESHOLD, 104
I_MPI_SHM_EAGER_THRESHOLD, 104
IBM

Power9, 417
ibrun, 16, 221, 463
ICC, 421
image, 535
image_index, 536
immediate operation, 112
incomplete operation, see operation, incomplete
indexed

data type, 162
inner product, 44
input redirection

shell, 319
Intel, 317

Cascade Lake, 350, 358, 413, 416, 446
compiler

optimization report, 350
thread affinity, 415

compiler suite, 562
Haswell, 565
Knight’s Landing, 422

thread placement, 412
Knights Landing, 352, 416, 569
MPI, 17, 92, 104, 221, 312, 319, 568
Paragon, 312
Sandybridge, 330, 565
Skylake, 416
TBB, 534
Xeon PHI, 329

Internal Control Variable (ICV), 427–428
iso_c_binding, 161

Java, 15

KIND, 160
KMP_AFFINITY, 415
KMP_DETERMINISTIC_REDUCTION, 365
Kokkos

and OpenMP, 543

Laplace equation, 485
latency, 86, 323

hiding, 123, 316, 477, 479, 486
lcobound, 536
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league(OpenMP), 426
lexical scope, 380
Linear Algebra Package (LAPACK), 470
linked list, 401
linker

weak symbol, 315
listing, 577
listings, 575
load

balancing, 354
imbalance, 354

local
operation, 148, 149

local operation, 124
local refinement, 85
lock, 395, 395–397

flush at, 397
nested, 397

Lonestar5, 565
LU factorization, 356, 506

macports, 307
make.log, 465
malloc

and private/shared data, 385
malloc, 336, 413
manager-worker, 125, 128, 133, 583
Mandelbrot set, 35, 90, 387, 396, 582
matching, 318
matching queue, 135
matrix

sparse, 81, 487
transposition, 208

matrix-vector product, 506
dense, 63
sparse, 66

Mellanox, 317
memory

coherent, 254
high-bandwidth, 388
model, see window, memory, model
non-volatile, 388
page, 413
shared, MPI, 233

memory leak, 126
memory space, 542
message

collision, 317
count, 130
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envelope, 102, 136
non-overtaking, 129, 564
source, 99
status, 100, 126–133

error, 129
source, 128
tag, 129

synchronous, 102
tag, 98, 294

Message Passing Layer (MPL), 18, 34
messsage

target, 98
MKL, 470
mkl, 467
ML, 513
Monte Carlo codes, 35
move_pages, 415
MPI

accelerator memory allocation, 254
C bindings, 18
C++ bindings, 18
concurrency and, 564
concurrent Accumulate calls, 257
concurrent file operations, 263
constants, 320–321

compile-time, 320
link-time, 320

datatype
extent, 185
size, 161
subarray, 186
vector, 161

Fortran bindings, 18–19
Fortran issues, see Fortran, MPI issues
Fortran2008 bindings, 18–19
I/O, 310
initialization, 26
MPI-1, 272, 286
MPI-2, 218, 304, 309
MPI-3, 42, 81, 173, 177, 183, 245, 287, 311

C++ bindings removed, 18
Fortran2008 interface, 19

MPI-3.0, 295
MPI-3.1, 295, 320
MPI-3.2, 322
MPI-4, 18, 42, 161, 181, 209, 309
MPI-4.0, 295
MPI-4.1, 26, 126, 144, 150, 183, 209, 234, 254, 289, 305
Python bindings, 19
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semantics, 318
tools interface, 295–300, 315
version, 306

mpi, 255
mpi.h, 19, 26
MPI/O, 261–270
mpi4py, 534
mpi4py, 19, 34, 466
mpi_assert_memory_alloc_kinds, 255
mpi_f08, 19, 26, 127, 182, 240
mpi_hw_resource_type, 209
mpi_memory_alloc_kinds, 255
mpi_pset_name, 209
mpi_shared_memory, 209
mpicc, 17
mpich, 17
mpich, 319
mpicxx, 17
mpiexec

and environment variables, 293
options, 17
stdout/err of, 319

mpiexec, 16–18, 22, 25, 29, 199, 218, 221, 293, 319, 320, 602
mpif.h, 26
mpif90, 17
MPIR, 317
mpirun, 16, 29
mpirun, 320
MPL, 18

compiling and linking, 18
mulpd, 422
mulsd, 422
multicore, 331
Multiple Program Multiple Data (MPMD), 25, 320
multiprocessing, 557
Mumps, 467
mumps, 466
MV2_IBA_EAGER_THRESHOLD, 104
mvapich, 293
mvapich2, 104, 570

N-body problem, 445
name server, 224
nested parallelism, 341–343
netcdf, 261
network

card, 317
contention, 317
port
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oversubscription, 317
new, 336
Newton’s method, 517
node, 23

cluster, 329
non-blocking communication, 111
Non-Uniform Memory Access (NUMA), 563
norm

one, 80
np.frombuffer, 79
NULL, 295
null terminator, 301
null-terminator, 218, 222
num_images, 536
numactl, 415, 564
numerical integration, 367
Numpy, 158

1.20, 158
numpy, 19, 45, 159, 233
NVIDIA Collective Communication Library (NCCL), 534

od, 261
offloading

vs onloading, 317
omp

reduction, 364–374
roundoff, 365
user-defined, 370–374

OMP_DISPLAY_ENV, 409
OMP_NUM_THREADS, 293
OMP_PLACES, 409
OMP_PROC_BIND, 411
OneAPI, 544
onloading, see offloading, vs onloading
opaque handle, 31, 44
OpenMP, 287

accelerator support in, 430
co-processor support in, 430
compiling, 332
directive, see directive
environment variables, 333, 337, 427–428
library routines, 337
library routines, 427–428
macro, 332
OpenMP-3, 349
OpenMP-3.1, 368, 431
OpenMP-4, 452
OpenMP-4.0, 330, 407, 425, 430, 431
OpenMP-4.5, 368, 431
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OpenMP-5, 388
OpenMP-5.0, 352, 374, 405, 431
OpenMP-5.1, 356, 378, 432
OpenMP-5.2, 368, 378, 432
places, 409
running, 333
standard, 332
standard versions, 431–432
tasks, 400–408

data, 402
dependencies, 404–405
synchronization, 402–403

openmp.org, 432
OpenMPI, 17, 104, 209
operating system, 430
operation

non-local, 101
operator, 76–80

predefined, 76
user-defined, 78

option
prefix, 529

origin, 230, 238
overlapping computation and communication, see latency, hiding
owner computes, 95

package, 562
packing, 194
page

small, 290
table, 290, 413

page, memory, see memory, page
parallel

data, 415
embarrassingly, 415

parallel region, 331, 339–343, 376
dynamic scope, 342, 382
flush at, 397

parallel regions
nested, 428

parallelism
nested, 341

parameter sweep, 558
parasails, 512
ParMetis, 317, 494
partitioned communication, 145–147
passive target synchronization, 231, 247, 250
pbing, 415
persistent
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collectives, 143–145
communication, 145
point-to-point, 141–143

persistent communication, 111, see communication, persistent
PETSc, 317

interoperability with BLAS, 470
interoperability with MPI, 470
log files, 465
PETSc-3.17, 520, 522
PETSc-3.18, 522, 524

PETSC_OPTIONS, 530
pin a thread, 564
ping-pong, 96, 315, 537
pipe, 559
PMI_RANK, 319
PMI_SIZE, 319
point-to-point, 95
pointer

null, 61
polling, 120, 312
posting

of send/receive, 113
pragma, 333
preconditioner, 507, 510

block jacobi, 529
field-split, 491

prefix
operation, 374

prefix operation, 55
private variables, 337
proc_bind, 340
process, 23

set, 227
processes status of, 319
producer-consumer, 456, 587
progress

asynchronous, 123, 312
protocol, 102

rendezvous, 102
pthreads, 312, 534
PVM, 16, 218
Python

MPI bindigs, see MPI, Python bindings
PETSc interface, 462

queue
in-order, 546
SYCL, 545

race condition, 245, 292, 335, 364, 367, 429, 455, 457
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MPI_F_sync_reg, 312
MPI_Fetch_and_op, 245, 245, 247, 249, 253, 254
MPI_File, 211, 262
MPI_File_call_errhandler, 308
MPI_File_close, 262
MPI_File_delete, 263
MPI_File_get_errhandler, 270
MPI_File_get_group, 211
MPI_File_get_info, 304
MPI_File_get_size, 269

MPI_File_get_view, 269
MPI_File_iread, 266
MPI_File_iread_all, 266
MPI_File_iread_at, 266
MPI_File_iread_at_all, 266
MPI_File_iread_shared, 266, 269
MPI_File_iwrite, 266
MPI_File_iwrite_all, 266
MPI_File_iwrite_at, 266
MPI_File_iwrite_at_all, 266
MPI_File_iwrite_shared, 266, 269
MPI_FILE_NULL, 270
MPI_File_open, 40, 262, 304
MPI_File_preallocate, 269
MPI_File_read, 264, 271
MPI_File_read_all, 264
MPI_File_read_all_begin, 266
MPI_File_read_all_end, 266
MPI_File_read_at, 264
MPI_File_read_at_all, 264
MPI_File_read_ordered, 269
MPI_File_read_shared, 269, 271
MPI_File_seek, 263, 267, 271
MPI_File_seek_shared, 269, 271
MPI_File_set_atomicity, 270
MPI_File_set_errhandler, 270, 308
MPI_File_set_info, 304
MPI_File_set_size, 269
MPI_File_set_view, 268, 269, 271, 304
MPI_File_sync, 263
MPI_File_write, 264, 267, 269
MPI_File_write_all, 264
MPI_File_write_all_begin, 266
MPI_File_write_all_end, 266
MPI_File_write_at, 264, 266, 267
MPI_File_write_at_all, 264
MPI_File_write_ordered, 269
MPI_File_write_shared, 269
MPI_Finalize, 26, 27, 28, 225, 226, 465
MPI_Finalized, 27, 28, 229
MPI_Fint, 127
MPI_FLOAT, 154, 155
MPI_FLOAT_INT, 77
MPI_Free_mem, 234
MPI_Gather, 60, 60, 71, 72, 94, 172, 261
MPI_Gather_init, 144
MPI_Gatherv, 63, 72, 72, 176
MPI_Gatherv_init, 144
MPI_Get, 236, 241, 248, 251, 253, 256
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MPI_Get_accumulate, 244, 245, 245, 257
MPI_Get_address, 159, 177, 179, 256
MPI_Get_count, 127, 130, 134, 183
MPI_Get_elements, 131, 183
MPI_Get_elements_x, 131, 184, 184
MPI_Get_hw_resource_info, 209
MPI_Get_hw_resource_types, 209
MPI_Get_library_version, 229, 307
MPI_Get_processor_name, 28, 29, 31, 306
MPI_Get_version, 229, 306
MPI_GRAPH, 272
MPI_Graph_create, 286
MPI_Graph_get, 286
MPI_Graph_map, 286
MPI_Graph_neighbors, 286
MPI_Graph_neighbors_count, 286
MPI_Graphdims_get, 286
MPI_Group, 209, 209
MPI_Group_difference, 210
MPI_GROUP_EMPTY, 211
MPI_Group_excl, 210
MPI_Group_free, 211, 212
MPI_Group_incl, 210
MPI_GROUP_NULL, 211
MPI_HOST (deprecated), 305
MPI_Iallgather, 82
MPI_Iallgatherv, 82
MPI_Iallreduce, 82
MPI_Ialltoall, 82
MPI_Ialltoallv, 82
MPI_Ialltoallw, 82
MPI_Ibarrier, 81, 82, 84
MPI_Ibcast, 82
MPI_Ibsend, 148, 149, 151
MPI_IDENT, 201
MPI_Iexscan, 82
MPI_Igather, 82, 84
MPI_Igatherv, 82
MPI_IN_PLACE, 42, 49, 49, 61, 63, 110, 321
MPI_Ineighbor_allgather, 284
MPI_Ineighbor_allgatherv, 284
MPI_Ineighbor_alltoall, 284
MPI_Ineighbor_alltoallv, 284
MPI_Ineighbor_alltoallw, 284
MPI_Info, 143, 145, 209, 227, 234, 255, 257, 268, 289,

301, 304
MPI_Info_c2f, 229
MPI_Info_create, 229, 301
MPI_Info_create_env, 229

MPI_Info_delete, 229, 301
MPI_Info_dup, 229, 301
MPI_INFO_ENV, 29, 301, 303
MPI_Info_f2c, 229
MPI_Info_free, 229, 301
MPI_Info_get (deprecated), 301
MPI_Info_get, 229, 301
MPI_Info_get_nkeys, 229, 301
MPI_Info_get_nthkey, 229, 301
MPI_Info_get_string, 301
MPI_Info_get_valuelen (deprecated), 301
MPI_Info_get_valuelen, 229
MPI_INFO_NULL, 268
MPI_Info_set, 229, 301
MPI_Init, 26, 27–29, 225, 226, 292, 295, 301, 320, 463,

532
in Fortran, 312

MPI_Init_thread, 27, 225, 226, 292, 292, 293, 295, 301
MPI_Initialized, 28, 229
MPI_INT, 153, 155
MPI_INT16_T, 156
MPI_INT32_T, 156
MPI_INT64_T, 156
MPI_INT8_T, 156
MPI_INTEGER, 155, 156
MPI_INTEGER1, 156
MPI_INTEGER16, 155, 156
MPI_INTEGER2, 156
MPI_INTEGER4, 156
MPI_INTEGER8, 156
MPI_INTEGER_KIND, 321
MPI_Intercomm_create, 205, 212
MPI_Intercomm_merge, 215
MPI_IO, 305
MPI_Iprobe, 85, 134, 312, 313
MPI_Irecv, 82, 92, 112, 113, 114, 122, 123, 125, 128, 139,

141
MPI_Ireduce, 82
MPI_Ireduce_scatter, 82
MPI_Ireduce_scatter_block, 82
MPI_Irsend, 148
MPI_Is_thread_main, 292
MPI_Iscan, 82
MPI_Iscatter, 82, 83
MPI_Iscatterv, 82
MPI_Isend, 92, 112, 113, 114, 139, 141, 151, 244

in Python, 118
MPI_Isendrecv, 111
MPI_Isendrecv_replace, 111
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MPI_Issend, 147, 148
MPI_KEYVAL_INVALID , 321
MPI_LAND, 77
MPI_LASTUSEDCODE, 310
MPI_LOCK_EXCLUSIVE, 251, 321
MPI_LOCK_SHARED, 251, 321
MPI_LOGICAL, 156
MPI_LONG, 155
MPI_LONG_DOUBLE, 155
MPI_LONG_DOUBLE_INT, 77
MPI_LONG_INT, 77, 155
MPI_LONG_LONG_INT, 155
MPI_LOR, 77
MPI_LXOR, 77
MPI_MAX, 48, 56, 77
MPI_MAX_DATAREP_STRING, 321
MPI_MAX_ERROR_STRING, 310, 320
MPI_MAX_INFO_KEY, 301, 321
MPI_MAX_INFO_VAL, 321
MPI_MAX_LIBRARY_VERSION_STRING, 307, 320
MPI_MAX_OBJECT_NAME, 321
MPI_MAX_PORT_NAME, 222, 321
MPI_MAX_PROCESSOR_NAME, 29, 306, 320
MPI_MAXLOC, 77, 77
MPI_Message, 135
MPI_MIN, 56, 77
mpi_minimum_memory_alignment, 234, 289, 304
MPI_MINLOC, 77, 77
MPI_MODE_APPEND, 263
MPI_MODE_CREATE, 263
MPI_MODE_DELETE_ON_CLOSE, 263
MPI_MODE_EXCL, 263
MPI_MODE_NOCHECK, 252, 258
MPI_MODE_NOPRECEDE, 237, 242, 243, 258
MPI_MODE_NOPUT, 236, 243, 258
MPI_MODE_NOSTORE, 236, 242, 243, 258
MPI_MODE_NOSUCCEED, 237, 242, 243, 258
MPI_MODE_RDONLY, 263
MPI_MODE_RDWR, 263
MPI_MODE_SEQUENTIAL, 263, 264
MPI_MODE_UNIQUE_OPEN, 263
MPI_MODE_WRONLY, 263
MPI_Mprobe, 135
MPI_Mrecv, 135
MPI_Neighbor_allgather, 283, 284
MPI_Neighbor_allgather_init, 145
MPI_Neighbor_allgatherv, 284
MPI_Neighbor_allgatherv_init, 145
MPI_Neighbor_allreduce, 284

MPI_Neighbor_alltoall, 284
MPI_Neighbor_alltoall_init, 145
MPI_Neighbor_alltoallv, 284
MPI_Neighbor_alltoallv_init, 145
MPI_Neighbor_alltoallw, 284
MPI_Neighbor_alltoallw_init, 145
MPI_NO_OP, 77, 244, 247, 257
MPI_Offset, 154, 183, 266
MPI_OFFSET_KIND, 154, 269, 321
MPI_Op, 44, 56, 60, 76, 76, 78, 80, 239, 247, 310
MPI_Op_commutative, 80
MPI_Op_create, 59, 78, 80
MPI_Op_free, 80
MPI_OP_NULL, 80
MPI_Open_port, 222, 222
MPI_ORDER_C, 173, 174
MPI_ORDER_FORTRAN, 173, 174
MPI_Pack, 194, 194
MPI_Pack_size, 150, 196
MPI_PACKED, 154, 155, 156, 185, 194, 195
MPI_Parrived, 147
MPI_Pready, 145, 146
MPI_Pready_list, 146
MPI_Pready_range, 146
MPI_Precv_init, 147
MPI_Probe, 99, 124, 134, 134, 313
MPI_PROC_NULL, 98, 99, 106, 108, 109, 110, 122, 214,

239, 277, 305, 308, 321, 580
MPI_PROD, 48, 56, 77
MPI_Psend_init, 145, 146
MPI_Publish_name, 224
MPI_Put, 236, 239, 240, 242, 248, 249, 251–254
MPI_Query_thread, 292
MPI_Raccumulate, 244
MPI_REAL, 154, 156
MPI_REAL2, 156
MPI_REAL4, 156
MPI_REAL8, 156
MPI_Recv, 99, 99–101, 105, 106, 111, 123, 126, 128, 131,

312, 321
MPI_Recv_init, 141
MPI_Reduce, 47, 49, 70, 71, 94, 243
MPI_Reduce_init, 144
MPI_Reduce_local, 80
MPI_Reduce_scatter, 66, 69, 70, 94, 259
MPI_Reduce_scatter_block, 66, 68
MPI_Reduce_scatter_block_init, 144
MPI_Reduce_scatter_init, 144
MPI_REPLACE, 77, 243, 244, 247
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MPI_Request, 21, 81, 114, 125, 140, 143, 146, 147, 266
MPI_Request_free, 126, 126, 140, 144, 322
MPI_Request_get_status, 126, 313
MPI_Request_get_status_all, 126
MPI_Request_get_status_any, 126
MPI_Request_get_status_some, 126
MPI_REQUEST_NULL, 115, 125, 126
MPI_Rget, 244
MPI_Rget_accumulate, 244
MPI_ROOT, 214, 321
MPI_Rput, 244
MPI_Rsend, 148, 318
MPI_Rsend_init, 143
MPI_Scan, 55, 55, 56, 58
MPI_Scan_init, 144
MPI_Scatter, 59, 60, 94
MPI_Scatter_init, 144
MPI_Scatterv, 72
MPI_Scatterv_init, 144
MPI_SEEK_CUR, 263, 267, 268
MPI_SEEK_END, 263
MPI_SEEK_SET, 263, 270
MPI_Send, 82, 90, 97, 99, 101–103, 105, 106, 111, 123,

126, 181, 312, 318
MPI_Send_c, 181
MPI_Send_init, 141, 145
MPI_Sendrecv, 106, 108–111, 276, 580
MPI_Sendrecv_init, 111
MPI_Sendrecv_replace, 110
MPI_Sendrecv_replace_init, 111
MPI_Session_attach_buffer, 150
MPI_Session_call_errhandler, 229, 308
MPI_Session_create_errhandler, 227, 229
MPI_Session_detach_buffer, 150
MPI_Session_finalize, 226
MPI_Session_flush_buffer, 150
MPI_Session_get_info, 227
MPI_Session_get_nth_pset, 227
MPI_Session_get_num_psets, 227
MPI_Session_get_pset_info, 228
MPI_Session_init, 226, 227, 255
MPI_Session_set_errhandler, 308
MPI_SHORT, 155
MPI_SHORT_INT, 77
MPI_SIGNED_CHAR, 155
MPI_SIMILAR, 202
mpi_size, 228
MPI_Sizeof, 159, 161, 312
MPI_SOURCE, 122, 125, 127, 128, 132, 133

MPI_Ssend, 103, 147, 148, 318
MPI_Ssend_init, 143, 148
MPI_Start, 140, 141, 142, 143, 145
MPI_Startall, 140, 141, 142, 143
MPI_Status, 100, 108, 114, 116, 122, 125, 126, 127, 127,

132, 133, 264
MPI_Status_f082f, 127
MPI_Status_f2f08, 127
MPI_Status_get_source, 127
MPI_STATUS_IGNORE, 100, 101, 114, 122, 126, 320, 321
MPI_Status_set_source, 127
MPI_STATUS_SIZE, 321
MPI_STATUSES_IGNORE, 116, 122, 321
MPI_SUBARRAYS_SUPPORTED, 173, 321
MPI_SUBVERSION, 306, 321
MPI_SUCCESS, 20, 135, 151, 308, 309
MPI_SUM, 48, 56, 71, 77
MPI_T_BIND_NO_OBJECT, 295
MPI_T_category_changed, 300
MPI_T_category_get_categories, 299
MPI_T_category_get_cvars, 299
MPI_T_Category_get_events_...., 297
MPI_T_category_get_index, 299
MPI_T_category_get_info, 299, 300
MPI_T_category_get_num, 299
MPI_T_Category_get_num_events_...., 297
MPI_T_category_get_pvars, 299
MPI_T_cvar_get_index, 296
MPI_T_cvar_get_info, 295, 300
MPI_T_cvar_get_num, 295
MPI_T_cvar_handle_free, 296
MPI_T_cvar_read, 297
MPI_T_cvar_write, 297
MPI_T_ENUM_NULL, 295
MPI_T_ERR_INVALID_HANDLE, 298
MPI_T_ERR_INVALID_INDEX, 295
MPI_T_ERR_INVALID_NAME, 296
MPI_T_ERR_PVAR_NO_STARTSTOP, 299
MPI_T_ERR_PVAR_NO_WRITE, 299
MPI_T_Event_...., 297
MPI_T_finalize, 295
MPI_T_init_thread, 295
MPI_T_PVAR_ALL_HANDLES, 299, 299
MPI_T_PVAR_CLASS_AGGREGATE, 297
MPI_T_PVAR_CLASS_COUNTER, 297
MPI_T_PVAR_CLASS_GENERIC, 297
MPI_T_PVAR_CLASS_HIGHWATERMARK, 297
MPI_T_PVAR_CLASS_LEVEL, 297
MPI_T_PVAR_CLASS_LOWWATERMARK, 297
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MPI_T_PVAR_CLASS_PERCENTAGE, 297
MPI_T_PVAR_CLASS_SIZE, 297
MPI_T_PVAR_CLASS_STATE, 297
MPI_T_PVAR_CLASS_TIMER, 297
MPI_T_pvar_get_index, 298
MPI_T_pvar_get_info, 297, 298–300
MPI_T_pvar_get_num, 297
MPI_T_pvar_handle_alloc, 298
MPI_T_pvar_handle_free, 298
MPI_T_PVAR_HANDLE_NULL, 298
MPI_T_pvar_read, 299
MPI_T_pvar_readreset, 299
MPI_T_pvar_session_create, 298
MPI_T_pvar_session_free, 298
MPI_T_PVAR_SESSION_NULL, 298
MPI_T_pvar_start, 298, 298
MPI_T_pvar_stop, 298, 298
MPI_T_pvar_write, 299
MPI_T_Source_...., 297
MPI_TAG, 127, 129
MPI_TAG_UB, 98, 129, 305, 305
MPI_Test, 85, 125, 125, 266, 313, 322
MPI_Testall, 122, 125
MPI_Testany, 125
MPI_Testsome, 122, 125
MPI_THREAD_FUNNELED, 292
MPI_THREAD_MULTIPLE, 292, 293
MPI_THREAD_SERIALIZED, 292
MPI_THREAD_SINGLE, 292
MPI_Topo_test, 272, 274
MPI_Txxx, 229
MPI_Type_commit, 164
MPI_Type_contiguous, 164, 165
MPI_Type_create_f90_complex, 156
MPI_Type_create_f90_integer, 156
MPI_Type_create_f90_real, 156
MPI_Type_create_hindexed, 159, 176
MPI_Type_create_hindexed_block, 177
MPI_Type_create_keyval, 306
MPI_Type_create_resized, 188, 191
MPI_Type_create_struct, 164, 177
MPI_Type_create_subarray, 164, 171, 172
MPI_Type_delete_attr, 306
MPI_Type_extent (deprecated), 186
MPI_Type_free, 164
MPI_Type_get_attr, 304
MPI_Type_get_contents, 193
MPI_Type_get_envelope, 193
MPI_Type_get_extent, 185, 185, 186

MPI_Type_get_extent_c, 187
MPI_Type_get_extent_x, 184, 187
MPI_Type_get_true_extent, 186
MPI_Type_get_true_extent_c, 187
MPI_Type_get_true_extent_x, 184, 187
MPI_Type_hindexed, 164
MPI_Type_indexed, 164, 174, 177
MPI_Type_lb (deprecated), 186
MPI_Type_match_size, 160
MPI_Type_set_attr, 306
MPI_Type_size, 161
MPI_Type_struct, 177
MPI_Type_ub (deprecated), 186
MPI_Type_vector, 164, 166
MPI_TYPECLASS_COMPLEX, 160
MPI_TYPECLASS_INTEGER, 160
MPI_TYPECLASS_REAL, 160
MPI_UB, 180, 192
MPI_UINT16_T, 156
MPI_UINT32_T, 156
MPI_UINT64_T, 156
MPI_UINT8_T, 156
MPI_UNDEFINED, 207, 272, 321
MPI_UNEQUAL, 202
MPI_UNIVERSE_SIZE, 218, 305
MPI_Unpack, 194, 194
MPI_Unpublish_name, 225, 308
MPI_UNSIGNED, 155
MPI_UNSIGNED_CHAR, 155
MPI_UNSIGNED_LONG, 155
MPI_UNSIGNED_SHORT, 155
MPI_UNWEIGHTED, 280, 321
MPI_VAL, 153
MPI_VERSION, 306, 320, 321
MPI_Wait, 81, 114, 116, 122, 125, 142, 145, 147, 266, 322

in Python, 118
MPI_Wait..., 126, 128
MPI_Waitall, 116, 117, 122, 125, 129, 141, 142, 231

in Python, 118
MPI_Waitany, 119, 120, 122, 125
MPI_Waitsome, 122, 125
MPI_WEIGHTS_EMPTY, 280, 321
MPI_Win, 159, 211, 231, 287
MPI_Win_allocate, 233, 234, 235, 254, 257, 289
MPI_Win_allocate_shared, 233, 235, 254, 257, 288,

289, 289
MPI_Win_attach, 255
MPI_WIN_BASE, 257
MPI_Win_call_errhandler, 308
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MPI_Win_complete, 235, 238
MPI_Win_create, 159, 232, 233, 234, 250, 254, 255, 257,

289
MPI_Win_create_dynamic, 233, 255, 257
MPI_WIN_CREATE_FLAVOR, 257
MPI_Win_create_keyval, 306
MPI_Win_delete_attr, 306
MPI_Win_detach, 256
MPI_WIN_DISP_UNIT, 257
MPI_Win_fence, 235, 236, 250, 253, 258, 581
MPI_WIN_FLAVOR_ALLOCATE, 257
MPI_WIN_FLAVOR_CREATE, 257
MPI_WIN_FLAVOR_DYNAMIC, 257
MPI_WIN_FLAVOR_SHARED, 257
MPI_Win_flush, 253
MPI_Win_flush..., 244
MPI_Win_flush_all, 253
MPI_Win_flush_local, 253, 253
MPI_Win_flush_local_all, 253
MPI_Win_free, 231, 234, 235
MPI_Win_get_attr, 254, 304
MPI_Win_get_group, 211
MPI_Win_get_info, 303
MPI_Win_lock, 247, 250, 250, 251, 258
MPI_Win_lock_all, 250, 251, 252, 253, 258
MPI_Win_lockall, 258
MPI_WIN_MODEL, 254, 257
MPI_WIN_NULL, 235
MPI_Win_post, 237, 258
MPI_WIN_SEPARATE, 254
MPI_Win_set_attr, 306
MPI_Win_set_errhandler, 308
MPI_Win_set_info, 303
MPI_Win_shared_query, 288, 289, 290
MPI_WIN_SIZE, 257
MPI_Win_start, 238, 258
MPI_Win_sync, 254
MPI_Win_test, 237, 313
MPI_WIN_UNIFIED, 254
MPI_Win_unlock, 235, 251, 253
MPI_Win_unlock_all, 251, 252, 253
MPI_Win_wait, 235, 237, 237
MPI_Wtick, 314, 315
MPI_Wtime, 101, 313, 530
MPI_WTIME_IS_GLOBAL, 305, 314

nb_proc, 304
no_locks, 257
num_io_nodes, 304

OMPI_COMM_TYPE_SOCKET, 209

performance variable, 297–299
PMPI_..., 315
pvar, see performance variable

same_op, 257
same_op_no_op, 257
striping_factor, 304
striping_unit, 304

thread_support, 227

vector_layout, 166

wtime, 314
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58.1. From the standard document

58.1 From the standard document
This is an automatically generated list of every function, type, and constant in the MPI standard document. Where
these appear in this book, a page reference is given.

58.1.1 List of all functions

• MPI_Abort 27
• MPI_Accumulate 243
• MPI_Address ??
• MPI_Add_error_class 310
• MPI_Add_error_code 310
• MPI_Add_error_string 310
• MPI_Aint_add 159
• MPI_Aint_diff 159
• MPI_Allgather 63
• MPI_Allgatherv 72
• MPI_Allgatherv_init 144
• MPI_Allgather_init 144
• MPI_Alloc_mem 234
• MPI_Alloc_mem_cptr ??
• MPI_Allreduce 41
• MPI_Allreduce_init 143
• MPI_Alltoall 64
• MPI_Alltoallv 66
• MPI_Alltoallv_init 144
• MPI_Alltoallw ??
• MPI_Alltoallw_init 144
• MPI_Alltoall_init 144
• MPI_Attr_delete ??
• MPI_Attr_get 304
• MPI_Attr_put ??
• MPI_Accumulate 243
• MPI_Barrier 71
• MPI_Barrier_init 144
• MPI_Bcast 51
• MPI_Bcast_init 144
• MPI_Bsend 149
• MPI_Bsend_init 151
• MPI_Buffer_attach 150
• MPI_Buffer_detach 150
• MPI_Buffer_flush 150
• MPI_Buffer_iflush ??
• MPI_Cancel 321
• MPI_Cartdim_get 275
• MPI_Cart_coords 275
• MPI_Cart_create 273
• MPI_Cart_get 275
• MPI_Cart_map 278
• MPI_Cart_rank 275
• MPI_Cart_shift ??
• MPI_Cart_sub 277

• MPI_Close_port 222
• MPI_Comm_accept 222
• MPI_Comm_attach_buffer 150
• MPI_Comm_call_errhandler ??
• MPI_Comm_compare 201
• MPI_Comm_connect 223
• MPI_Comm_create 210
• MPI_Comm_create_errhandler 310
• MPI_Comm_create_from_group ??
• MPI_Comm_create_group 210
• MPI_Comm_create_keyval 306
• MPI_Comm_delete_attr 306
• MPI_Comm_detach_buffer 150
• MPI_Comm_disconnect 205
• MPI_Comm_dup 200
• MPI_Comm_dup_with_info 200
• MPI_Comm_flush_buffer 150
• MPI_Comm_free 205
• MPI_Comm_free_keyval 306
• MPI_Comm_get_attr 304
• MPI_Comm_get_errhandler 308
• MPI_Comm_get_info 303
• MPI_Comm_get_name ??
• MPI_Comm_get_parent 215
• MPI_Comm_group 209
• MPI_Comm_idup 200
• MPI_Comm_idup_with_info 200
• MPI_Comm_iflush_buffer ??
• MPI_Comm_join 225
• MPI_Comm_rank 33
• MPI_Comm_remote_size 215
• MPI_Comm_set_attr 304
• MPI_Comm_set_errhandler 308
• MPI_Comm_set_info 303
• MPI_Comm_set_name 200
• MPI_Comm_size 33
• MPI_Comm_spawn 218
• MPI_Comm_spawn_multiple 222
• MPI_Comm_split 206
• MPI_Comm_split_type 208
• MPI_Comm_test_inter 215
• MPI_Compare_and_swap 247
• MPI_Compare_and_swap 247
• MPI_Dims_create 273
• MPI_Dist_graph_create 280

• MPI_Dist_graph_create_adjacent ??
• MPI_Dist_graph_neighbors 285
• MPI_Dist_graph_neighbors_count 285
• MPI_Errhandler_create 309
• MPI_Errhandler_free 309
• MPI_Errhandler_get ??
• MPI_Errhandler_set ??
• MPI_Error_class ??
• MPI_Error_string 310
• MPI_Exscan 56
• MPI_Exscan_init 144
• MPI_Fetch_and_op 245
• MPI_File_call_errhandler 308
• MPI_File_close 262
• MPI_File_create_errhandler ??
• MPI_File_delete 263
• MPI_File_get_amode ??
• MPI_File_get_atomicity ??
• MPI_File_get_byte_offset ??
• MPI_File_get_errhandler ??
• MPI_File_get_group ??
• MPI_File_get_info ??
• MPI_File_get_position ??
• MPI_File_get_position_shared ??
• MPI_File_get_size 269
• MPI_File_get_type_extent ??
• MPI_File_get_view 269
• MPI_File_iread 266
• MPI_File_iread_all 266
• MPI_File_iread_at 266
• MPI_File_iread_at_all 266
• MPI_File_iread_shared 269
• MPI_File_iwrite 266
• MPI_File_iwrite_all 266
• MPI_File_iwrite_at 266
• MPI_File_iwrite_at_all 266
• MPI_File_iwrite_shared 269
• MPI_File_open 262
• MPI_File_preallocate 269
• MPI_File_read 264
• MPI_File_read_all 264
• MPI_File_read_all_begin 266
• MPI_File_read_all_end 266
• MPI_File_read_at 264
• MPI_File_read_at_all 264
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• MPI_File_read_at_all_begin ??
• MPI_File_read_at_all_end ??
• MPI_File_read_ordered 269
• MPI_File_read_ordered_begin ??
• MPI_File_read_ordered_end ??
• MPI_File_read_shared 269
• MPI_File_seek 263
• MPI_File_seek_shared 269
• MPI_File_set_atomicity 270
• MPI_File_set_errhandler 308
• MPI_File_set_info ??
• MPI_File_set_size 269
• MPI_File_set_view 268
• MPI_File_sync 263
• MPI_File_write 264
• MPI_File_write_all 264
• MPI_File_write_all_begin 266
• MPI_File_write_all_end 266
• MPI_File_write_at 266
• MPI_File_write_at_all 264
• MPI_File_write_at_all_begin ??
• MPI_File_write_at_all_end ??
• MPI_File_write_ordered 269
• MPI_File_write_ordered_begin ??
• MPI_File_write_ordered_end ??
• MPI_File_write_shared 269
• MPI_Finalize 26
• MPI_Finalized 28
• MPI_Free_mem 234
• MPI_F_sync_reg ??
• MPI_Gather 60
• MPI_Gatherv 72
• MPI_Gatherv_init 144
• MPI_Gather_init 144
• MPI_Get 241
• MPI_Get_accumulate 245
• MPI_Get_address 177
• MPI_Get_count 130
• MPI_Get_elements 131
• MPI_Get_elements_x 184
• MPI_Get_hw_resource_info 209
• MPI_Get_library_version 307
• MPI_Get_processor_name 29
• MPI_Get_version 306
• MPI_Graphdims_get 286
• MPI_Graph_create 286
• MPI_Graph_get 286
• MPI_Graph_map 286
• MPI_Graph_neighbors 286
• MPI_Graph_neighbors_count 286
• MPI_Grequest_complete ??
• MPI_Grequest_start ??
• MPI_Group_compare ??

• MPI_Group_excl 210
• MPI_Group_free ??
• MPI_Group_from_session_pset ??
• MPI_Group_incl 210
• MPI_Group_range_excl ??
• MPI_Group_range_incl ??
• MPI_Group_rank ??
• MPI_Group_size ??
• MPI_Group_translate_ranks ??
• MPI_Get_elements_c ??
• MPI_Iallgather 82
• MPI_Iallgatherv 82
• MPI_Iallreduce 82
• MPI_Ialltoall 82
• MPI_Ialltoallv 82
• MPI_Ialltoallw 82
• MPI_Ibarrier 84
• MPI_Ibcast 82
• MPI_Ibsend ??
• MPI_Iexscan 82
• MPI_Igather 82
• MPI_Igatherv 82
• MPI_Improbe ??
• MPI_Imrecv ??
• MPI_Ineighbor_allgather ??
• MPI_Ineighbor_allgatherv ??
• MPI_Ineighbor_alltoall ??
• MPI_Ineighbor_alltoallv ??
• MPI_Ineighbor_alltoallw ??
• MPI_Info_create 301
• MPI_Info_create_env ??
• MPI_Info_delete 301
• MPI_Info_dup 301
• MPI_Info_free 301
• MPI_Info_get 301
• MPI_Info_get_nkeys 301
• MPI_Info_get_nthkey 301
• MPI_Info_get_string 301
• MPI_Info_get_valuelen ??
• MPI_Info_set 301
• MPI_Init 26
• MPI_Initialized 28
• MPI_Init_thread 292
• MPI_Intercomm_create 212
• MPI_Intercomm_create_from_groups ??
• MPI_Intercomm_merge 215
• MPI_Iprobe 134
• MPI_Irecv 112
• MPI_Ireduce 82
• MPI_Ireduce_scatter 82
• MPI_Ireduce_scatter_block 82
• MPI_Irsend ??
• MPI_Iscan 82

• MPI_Iscatter 82
• MPI_Iscatterv 82
• MPI_Isend 112
• MPI_Isendrecv 111
• MPI_Isendrecv_replace 111
• MPI_Issend 147
• MPI_Is_thread_main 292
• MPI_Keyval_create ??
• MPI_Keyval_free ??
• MPI_Lookup_name ??
• MPI_Mprobe 135
• MPI_Mrecv 135
• MPI_Neighbor_allgather 283
• MPI_Neighbor_allgatherv ??
• MPI_Neighbor_allgatherv_init 145
• MPI_Neighbor_allgather_init 145
• MPI_Neighbor_alltoall ??
• MPI_Neighbor_alltoallv ??
• MPI_Neighbor_alltoallv_init 145
• MPI_Neighbor_alltoallw ??
• MPI_Neighbor_alltoallw_init 145
• MPI_Neighbor_alltoall_init 145
• MPI_Open_port 222
• MPI_Op_commutative 80
• MPI_Op_create 78
• MPI_Pack 194
• MPI_Pack_external ??
• MPI_Pack_size 196
• MPI_Parrived 147
• MPI_Pcontrol ??
• MPI_Pready 146
• MPI_Pready_list 146
• MPI_Pready_range 146
• MPI_Precv_init 147
• MPI_Probe 134
• MPI_Psend_init 145
• MPI_Publish_name 224
• MPI_Put 239
• MPI_Put 239
• MPI_Query_thread 292
• MPI_Raccumulate ??
• MPI_Recv 99
• MPI_Recv_init 141
• MPI_Reduce 47
• MPI_Reduce_init 144
• MPI_Reduce_local 80
• MPI_Reduce_scatter 69
• MPI_Reduce_scatter_block 66
• MPI_Reduce_scatter_block_init 144
• MPI_Reduce_scatter_init 144
• MPI_Register_datarep ??
• MPI_Remove_error_class ??
• MPI_Remove_error_code ??
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• MPI_Remove_error_string ??
• MPI_Request_free 126
• MPI_Request_get_status 126
• MPI_Request_get_status_all 126
• MPI_Request_get_status_any 126
• MPI_Request_get_status_some 126
• MPI_Rget ??
• MPI_Rget_accumulate ??
• MPI_Rput 244
• MPI_Rsend ??
• MPI_Scan 55
• MPI_Scan_init 144
• MPI_Scatter 60
• MPI_Scatterv 72
• MPI_Scatterv_init 144
• MPI_Scatter_init 144
• MPI_Send 97
• MPI_Sendrecv 106
• MPI_Send_init 141
• MPI_Session_attach_buffer 150
• MPI_Session_call_errhandler 308
• MPI_Session_create_errhandler 227
• MPI_Session_detach_buffer 150
• MPI_Session_finalize 226
• MPI_Session_flush_buffer 150
• MPI_Session_get_info 227
• MPI_Session_get_nth_pset 227
• MPI_Session_get_num_psets 227
• MPI_Session_iflush_buffer ??
• MPI_Session_init 226
• MPI_Sizeof 161
• MPI_Ssend 147
• MPI_Start 141
• MPI_Startall 141
• MPI_Status_get_error ??
• MPI_Status_get_source ??
• MPI_Status_get_tag ??
• MPI_Status_set_cancelled ??
• MPI_Status_set_elements ??
• MPI_Status_set_elements_x ??
• MPI_Status_set_error ??
• MPI_Status_set_source ??
• MPI_Status_set_tag ??
• MPI_Send 97
• MPI_Status_set_elements_c ??
• MPI_Test 125
• MPI_Testall 125
• MPI_Testany 125
• MPI_Testsome 125
• MPI_Test_cancelled ??
• MPI_Topo_test 274
• MPI_Type_commit 164
• MPI_Type_contiguous 165

• MPI_Type_create_darray ??
• MPI_Type_create_hindexed ??
• MPI_Type_create_hindexed_block 177
• MPI_Type_create_hvector ??
• MPI_Type_create_indexed_block ??
• MPI_Type_create_keyval 306
• MPI_Type_create_resized 188
• MPI_Type_create_struct 177
• MPI_Type_create_subarray 171
• MPI_Type_delete_attr 306
• MPI_Type_dup ??
• MPI_Type_extent ??
• MPI_Type_free 164
• MPI_Type_get_attr ??
• MPI_Type_get_contents 193
• MPI_Type_get_envelope 193
• MPI_Type_get_extent 185
• MPI_Type_get_extent_x 184
• MPI_Type_get_name ??
• MPI_Type_get_true_extent 186
• MPI_Type_get_true_extent_x 184
• MPI_Type_get_value_index ??
• MPI_Type_hindexed ??
• MPI_Type_hvector ??
• MPI_Type_indexed 174
• MPI_Type_lb ??
• MPI_Type_match_size 160
• MPI_Type_set_attr 306
• MPI_Type_set_name ??
• MPI_Type_size 161
• MPI_Type_size_x ??
• MPI_Type_struct ??
• MPI_Type_ub ??
• MPI_Type_vector 166
• MPI_T_category_changed 300
• MPI_T_category_get_categories 299
• MPI_T_category_get_cvars 299
• MPI_T_category_get_events ??
• MPI_T_category_get_index 299
• MPI_T_category_get_info 299
• MPI_T_category_get_num_events ??
• MPI_T_category_get_pvars 299
• MPI_T_cvar_get_index 296
• MPI_T_cvar_get_info 295
• MPI_T_cvar_get_num 295
• MPI_T_cvar_handle_alloc ??
• MPI_T_cvar_handle_free 296
• MPI_T_cvar_write 297
• MPI_T_enum_get_info ??
• MPI_T_enum_get_item ??
• MPI_T_event_callback_get_info ??
• MPI_T_event_callback_set_info ??
• MPI_T_event_copy ??

• MPI_T_event_get_index ??
• MPI_T_event_get_info ??
• MPI_T_event_get_source ??
• MPI_T_event_get_timestamp ??
• MPI_T_event_handle_alloc ??
• MPI_T_event_handle_free ??
• MPI_T_event_handle_get_info ??
• MPI_T_event_handle_set_info ??
• MPI_T_event_read ??
• MPI_T_event_register_callback ??
• MPI_T_event_set_dropped_handler ??
• MPI_T_finalize 295
• MPI_T_init_thread 295
• MPI_T_pvar_get_index 298
• MPI_T_pvar_get_info 297
• MPI_T_pvar_get_num 297
• MPI_T_pvar_handle_alloc 298
• MPI_T_pvar_handle_free 298
• MPI_T_pvar_read 299
• MPI_T_pvar_readreset ??
• MPI_T_pvar_reset ??
• MPI_T_pvar_start 298
• MPI_T_pvar_stop 298
• MPI_T_pvar_write ??
• MPI_T_source_get_info ??
• MPI_T_source_get_num ??
• MPI_T_source_get_timestamp ??
• MPI_Type_get_extent_c ??
• MPI_Type_get_true_extent_c ??
• MPI_Type_size_c ??
• MPI_Unpack 194
• MPI_Unpack_external ??
• MPI_Unpublish_name 225
• MPI_Wait 114
• MPI_Waitall 116
• MPI_Waitany 119
• MPI_Waitsome ??
• MPI_Win_allocate 233
• MPI_Win_allocate_cptr ??
• MPI_Win_allocate_shared 289
• MPI_Win_allocate_shared_cptr ??
• MPI_Win_attach 255
• MPI_Win_call_errhandler 308
• MPI_Win_complete 238
• MPI_Win_create 232
• MPI_Win_create_dynamic 255
• MPI_Win_create_errhandler ??
• MPI_Win_create_keyval 306
• MPI_Win_detach 256
• MPI_Win_fence 236
• MPI_Win_flush 253
• MPI_Win_flush_all ??
• MPI_Win_flush_local 253
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• MPI_Win_flush_local_all ??
• MPI_Win_free 234
• MPI_Win_get_attr 254
• MPI_Win_get_group ??
• MPI_Win_get_info 303
• MPI_Win_get_name ??
• MPI_Win_lock 250
• MPI_Win_lock_all 252
• MPI_Win_post ??

• MPI_Win_set_attr 306
• MPI_Win_set_info 303
• MPI_Win_shared_query 290
• MPI_Win_shared_query_cptr ??
• MPI_Win_start 238
• MPI_Win_sync 254
• MPI_Win_test 237
• MPI_Win_unlock 251
• MPI_Win_unlock_all 251

• MPI_Win_wait 237
• MPI_Wtick 314
• MPI_Wtime 313
• PMPI_ ??
• PMPI_Aint_add ??
• PMPI_Aint_diff ??
• PMPI_Isend ??
• PMPI_Wtick ??
• PMPI_Wtime ??

58.1.2 List of all dtypes

58.1.3 List of all ctypes

• MPI_Offset 266
• _Bool ??
• bool ??
• char ??

• double ??
• enum ??
• float ??
• int ??

• long ??

• short ??

• wchar_t ??

58.1.4 List of all ftypes

• ALLOCATABLE ??
• ASYNCHRONOUS ??
• BLOCK ??
• CHARACTER ??
• COMMON ??
• COMPLEX ??
• CONTAINS ??
• CONTIGUOUS ??
• C_F_POINTER ??
• C_PTR ??
• EXTERNAL ??
• FUNCTION ??

• IN ??
• INCLUDE ??
• INOUT ??
• INTEGER ??
• INTENT ??
• INTERFACE ??
• ISO_C_BINDING ??
• ISO_FORTRAN_ENV ??
• KIND ??
• LOGICAL ??
• MODULE ??
• MPI_User_function ??

• OPTIONAL ??
• OUT ??
• POINTER ??
• PROCEDURE ??
• REAL ??
• SEQUENCE ??
• TARGET ??
• TYPE ??
• USER_FUNCTION ??
• VOLATILE ??

58.1.5 List of all constants

• MPI_ADDRESS_KIND 159
• MPI_ANY_SOURCE 99
• MPI_ANY_TAG 100
• MPI_APPNUM 222
• MPI_ARGVS_NULL 222
• MPI_ARGV_NULL 219
• MPI_ASYNC_PROTECTS_NONBLOCKING ??
• MPI_BAND 77
• MPI_BOR 77
• MPI_BOTTOM ??
• MPI_BSEND_OVERHEAD 150
• MPI_BUFFER_AUTOMATIC 150
• MPI_BXOR 77
• MPI_CART 272

• MPI_COMBINER_CONTIGUOUS ??
• MPI_COMBINER_DARRAY ??
• MPI_COMBINER_DUP ??
• MPI_COMBINER_HINDEXED ??
• MPI_COMBINER_HINDEXED_BLOCK ??
• MPI_COMBINER_HINDEXED_INTEGER ??
• MPI_COMBINER_HVECTOR ??
• MPI_COMBINER_HVECTOR_INTEGER ??
• MPI_COMBINER_INDEXED ??
• MPI_COMBINER_INDEXED_BLOCK ??
• MPI_COMBINER_NAMED ??
• MPI_COMBINER_RESIZED ??
• MPI_COMBINER_STRUCT ??
• MPI_COMBINER_STRUCT_INTEGER ??

• MPI_COMBINER_SUBARRAY ??
• MPI_COMBINER_VALUE_INDEX ??
• MPI_COMBINER_VECTOR 194
• MPI_COMM_NULL ??
• MPI_COMM_SELF ??
• MPI_COMM_TYPE_HW_GUIDED ??
• MPI_COMM_TYPE_HW_UNGUIDED ??
• MPI_COMM_TYPE_RESOURCE_GUIDED ??
• MPI_COMM_TYPE_SHARED ??
• MPI_COMM_WORLD ??
• MPI_CONGRUENT 202
• MPI_COUNT_KIND ??
• MPI_DATATYPE_NULL 164
• MPI_DISPLACEMENT_CURRENT 268
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• MPI_DISTRIBUTE_BLOCK 174
• MPI_DISTRIBUTE_CYCLIC 174
• MPI_DISTRIBUTE_DFLT_DARG 174
• MPI_DISTRIBUTE_NONE 174
• MPI_DIST_GRAPH 272
• MPI_ERRCODES_IGNORE 218
• MPI_ERRHANDLER_NULL ??
• MPI_ERROR 129
• MPI_ERRORS_ABORT 309
• MPI_ERRORS_ARE_FATAL 309
• MPI_ERRORS_RETURN 309
• MPI_ERR_LASTCODE 308
• MPI_FILE_NULL ??
• MPI_FLOAT_INT 77
• MPI_F_ERROR ??
• MPI_F_SOURCE ??
• MPI_F_STATUSES_IGNORE ??
• MPI_F_STATUS_IGNORE ??
• MPI_F_STATUS_SIZE ??
• MPI_F_TAG ??
• MPI_GRAPH 272
• MPI_GROUP_EMPTY 211
• MPI_GROUP_NULL 211
• MPI_HOST ??
• MPI_IDENT ??
• MPI_INFO_ENV 303
• MPI_INFO_NULL ??
• MPI_INTEGER_KIND ??
• MPI_IN_PLACE 49
• MPI_IO ??
• MPI_KEYVAL_INVALID ??
• MPI_LAND 77
• MPI_LASTUSEDCODE 310
• MPI_LOCK_EXCLUSIVE ??
• MPI_LOCK_SHARED ??
• MPI_LOR 77
• MPI_LXOR 77
• MPI_MAX 77
• MPI_MAXLOC 77
• MPI_MAX_DATAREP_STRING ??
• MPI_MAX_ERROR_STRING 310
• MPI_MAX_INFO_KEY 301
• MPI_MAX_INFO_VAL ??
• MPI_MAX_LIBRARY_VERSION_STRING 307
• MPI_MAX_OBJECT_NAME ??
• MPI_MAX_PORT_NAME 222
• MPI_MAX_PROCESSOR_NAME ??
• MPI_MAX_PSET_NAME_LEN ??
• MPI_MAX_STRINGTAG_LEN ??
• MPI_MESSAGE_NO_PROC ??
• MPI_MESSAGE_NULL ??
• MPI_MIN 77
• MPI_MINLOC 77

• MPI_MODE_APPEND 263
• MPI_MODE_CREATE 263
• MPI_MODE_DELETE_ON_CLOSE 263
• MPI_MODE_EXCL 263
• MPI_MODE_NOCHECK 252
• MPI_MODE_NOPRECEDE 237
• MPI_MODE_NOPUT 236
• MPI_MODE_NOSTORE 236
• MPI_MODE_NOSUCCEED 237
• MPI_MODE_RDONLY 263
• MPI_MODE_RDWR 263
• MPI_MODE_SEQUENTIAL 263
• MPI_MODE_UNIQUE_OPEN 263
• MPI_MODE_WRONLY 263
• MPI_NO_OP 77
• MPI_OFFSET_KIND 154
• MPI_OP_NULL ??
• MPI_ORDER_C 173
• MPI_ORDER_FORTRAN 173
• MPI_PROC_NULL 109
• MPI_PROD 77
• MPI_REPLACE 243
• MPI_REQUEST_NULL ??
• MPI_ROOT ??
• MPI_SEEK_CUR 263
• MPI_SEEK_END 263
• MPI_SEEK_SET 263
• MPI_SESSION_NULL ??
• MPI_SHORT_INT 77
• MPI_SIMILAR 202
• MPI_SOURCE 128
• MPI_STATUSES_IGNORE ??
• MPI_STATUS_IGNORE 100
• MPI_STATUS_SIZE ??
• MPI_SUBARRAYS_SUPPORTED 173
• MPI_SUBVERSION 306
• MPI_SUCCESS 309
• MPI_SUM 77
• MPI_TAG 129
• MPI_TAG_UB 305
• MPI_THREAD_FUNNELED 292
• MPI_THREAD_MULTIPLE 292
• MPI_THREAD_SERIALIZED 292
• MPI_THREAD_SINGLE 292
• MPI_TYPECLASS_COMPLEX ??
• MPI_TYPECLASS_INTEGER ??
• MPI_TYPECLASS_REAL ??
• MPI_T_BIND_MPI_COMM ??
• MPI_T_BIND_MPI_DATATYPE ??
• MPI_T_BIND_MPI_ERRHANDLER ??
• MPI_T_BIND_MPI_FILE ??
• MPI_T_BIND_MPI_GROUP ??
• MPI_T_BIND_MPI_INFO ??

• MPI_T_BIND_MPI_MESSAGE ??
• MPI_T_BIND_MPI_OP ??
• MPI_T_BIND_MPI_REQUEST ??
• MPI_T_BIND_MPI_SESSION ??
• MPI_T_BIND_MPI_WIN ??
• MPI_T_BIND_NO_OBJECT 295
• MPI_T_CB_REQUIRE_ASYNC_SIGNAL_SAFE ??
• MPI_T_CB_REQUIRE_MPI_RESTRICTED ??
• MPI_T_CB_REQUIRE_NONE ??
• MPI_T_CB_REQUIRE_THREAD_SAFE ??
• MPI_T_CVAR_HANDLE_NULL ??
• MPI_T_ENUM_NULL ??
• MPI_T_PVAR_ALL_HANDLES 299
• MPI_T_PVAR_CLASS_AGGREGATE 297
• MPI_T_PVAR_CLASS_COUNTER 297
• MPI_T_PVAR_CLASS_GENERIC 297
• MPI_T_PVAR_CLASS_HIGHWATERMARK 297
• MPI_T_PVAR_CLASS_LEVEL 297
• MPI_T_PVAR_CLASS_LOWWATERMARK 297
• MPI_T_PVAR_CLASS_PERCENTAGE 297
• MPI_T_PVAR_CLASS_SIZE 297
• MPI_T_PVAR_CLASS_STATE 297
• MPI_T_PVAR_CLASS_TIMER 297
• MPI_T_PVAR_HANDLE_NULL 298
• MPI_T_PVAR_SESSION_NULL 298
• MPI_T_SCOPE_ALL ??
• MPI_T_SCOPE_ALL_EQ ??
• MPI_T_SCOPE_CONSTANT ??
• MPI_T_SCOPE_GROUP ??
• MPI_T_SCOPE_GROUP_EQ ??
• MPI_T_SCOPE_LOCAL ??
• MPI_T_SCOPE_READONLY ??
• MPI_T_SOURCE_ORDERED ??
• MPI_T_SOURCE_UNORDERED ??
• MPI_T_VERBOSITY_MPIDEV_ALL ??
• MPI_T_VERBOSITY_MPIDEV_BASIC ??
• MPI_T_VERBOSITY_MPIDEV_DETAIL ??
• MPI_T_VERBOSITY_TUNER_ALL ??
• MPI_T_VERBOSITY_TUNER_BASIC ??
• MPI_T_VERBOSITY_TUNER_DETAIL ??
• MPI_T_VERBOSITY_USER_ALL ??
• MPI_T_VERBOSITY_USER_BASIC ??
• MPI_T_VERBOSITY_USER_DETAIL ??
• MPI_UNDEFINED ??
• MPI_UNEQUAL 202
• MPI_UNIVERSE_SIZE 218
• MPI_UNWEIGHTED ??
• MPI_VERSION 306
• MPI_WEIGHTS_EMPTY 280
• MPI_WIN_BASE ??
• MPI_WIN_CREATE_FLAVOR ??
• MPI_WIN_DISP_UNIT ??
• MPI_WIN_FLAVOR_ALLOCATE ??
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• MPI_WIN_FLAVOR_CREATE ??
• MPI_WIN_FLAVOR_DYNAMIC ??
• MPI_WIN_FLAVOR_SHARED ??

• MPI_WIN_MODEL 254
• MPI_WIN_NULL ??
• MPI_WIN_SEPARATE ??

• MPI_WIN_SIZE ??
• MPI_WIN_UNIFIED ??
• MPI_WTIME_IS_GLOBAL ??

58.1.6 List of all callbacks

• COMM_COPY_ATTR_FUNCTION ??
• COMM_DELETE_ATTR_FUNCTION ??
• COPY_FUNCTION ??
• DELETE_FUNCTION ??
• MPI_Comm_copy_attr_function ??
• MPI_Comm_delete_attr_function ??

• MPI_Comm_errhandler_function ??
• MPI_Copy_function ??
• MPI_Datarep_conversion_function ??
• MPI_Datarep_conversion_function_c ??
• MPI_Delete_function ??
• MPI_File_errhandler_function ??

• MPI_Handler_function ??
• MPI_Session_errhandler_function ??
• MPI_Type_delete_attr_function ??
• MPI_User_function ??
• MPI_User_function_c ??
• MPI_Win_errhandler_function ??

58.2 MPI for Python

58.2.1 Buffer specifications

58.2.2 Listing of python routines

Class Comm: Class Cartcomm: Class
Distgraphcomm: Class Graphcomm:
Class Intercomm: Class Intracomm:
Class Topocomm: Class Group:

Class Request: Class Grequest: Class
Prequest: Class Status:

Class Win:

Class Datatype: Class File: Class Info:
Class Op:

Class Errhandler: Class Message:
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Index of OpenMP keywords

_OPENMP, 332, 431

aligned, 421
atomic, 392, 394, 457

barrier
cancelled by nowait, 362

barrier, 362, 390, 390
bind-var, 409

cancel, 343, 349, 407, 452, 453
chunk, 354
close, 409
collapse, 359, 360, 361
copyin, 387
copyprivate, 378, 387
core, 409
critical, 367, 392, 394, 429

declare, 370
declare simd, 421
default

firstprivate, 384
none, 384
private, 384
shared, 384

default, 383
depend, 403, 404, 408

dist_schedule, 426
do, 343, 346
dynamic, 430

false, 409
filter, 378
final, 406
firstprivate, 384, 402, 402, 425, 441
flush, 395, 397
for, 343, 345, 346, 367, 404

if, 406
implicit barrier

after single directive, 378
in_reduction, 405
inscan, 374

lastprivate, 363, 384
league, 426
linear, 421

masked, 340, 377, 378, 378
mast taskloop, 404
master, 292, 377, 378, 378, 404, 409, 410

nowait, 362, 391, 430, 430
num_threads, 337

omp
barrier

implicit, 391
omp for, 383
omp_alloc, 388
OMP_CANCELLATION, 343, 427
omp_cgroup_mem_alloc, 389
omp_const_mem_alloc, 389
omp_const_mem_space, 389
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OMP_DEFAULT_DEVICE, 427
omp_default_mem_alloc, 389
omp_default_mem_space, 389
omp_destroy_nest_lock, 397
OMP_DISPLAY_ENV, 382, 427
OMP_DYNAMIC, 387, 427, 428
omp_get_active_level, 342, 427
omp_get_ancestor_thread_num, 342, 427
omp_get_cancellation, 343, 427
omp_get_dynamic, 427, 428
omp_get_level, 342, 427
omp_get_max_active_levels, 341, 427
omp_get_max_threads, 337, 427, 428
omp_get_nested, 427, 428
omp_get_num_procs, 334, 337, 427, 428, 566
omp_get_num_threads, 334, 337, 339, 340, 427, 428
omp_get_proc_bind, 409
omp_get_schedule, 356, 427, 428
omp_get_team_size, 342, 427
omp_get_thread_limit, 342, 426, 427
omp_get_thread_num, 334, 339, 340, 427, 428
omp_get_wtick, 427, 429
omp_get_wtime, 427, 429
omp_high_bw_mem_alloc, 389
omp_high_bw_mem_space, 389
omp_in, 370, 371
omp_in_parallel, 343, 427, 428
omp_init_nest_lock, 397
omp_is_initial_device, 425
omp_large_cap_mem_alloc, 389
omp_large_cap_mem_space, 389
omp_low_lat_mem_alloc, 389
omp_low_lat_mem_space, 389
OMP_MAX_ACTIVE_LEVELS, 341, 427
OMP_MAX_TASK_PRIORITY, 406, 428
OMP_NESTED (deprecated), 341
OMP_NESTED, 428, 428
OMP_NUM_THREADS, 333, 334, 337, 428, 428
omp_out, 370, 371
OMP_PLACES, 409, 409, 411, 428
omp_priv, 371
OMP_PROC_BIND, 409, 409, 428
omp_pteam_mem_alloc, 389
omp_sched_affinity, 356
omp_sched_auto, 356
omp_sched_dynamic, 356
omp_sched_guided, 356, 357
omp_sched_runtime, 357
omp_sched_static, 356

omp_sched_t, 356
OMP_SCHEDULE, 355–357, 428, 428
omp_set_dynamic, 427, 428
omp_set_max_active_levels, 341, 427
omp_set_nest_lock, 397
omp_set_nested, 427, 428
omp_set_num_threads, 337, 427, 428
omp_set_schedule, 356, 427, 428
OMP_STACKSIZE, 369, 382, 428
omp_test_nest_lock, 397
OMP_THREAD_LIMIT, 426, 428
omp_thread_mem_alloc, 389
omp_unset_nest_lock, 397
OMP_WAIT_POLICY, 428, 428
openmp_version, 332
ordered, 361, 361

parallel, 333, 334, 339, 343, 345, 346, 367, 412, 441
parallel region

barrier at the end of, 391
pragma, see see under pragma name
priority, 406
private, 381, 382, 441
proc_bind, 410, 412
proc_bind, 409

reduction, 355, 364, 367, 368, 370, 371, 393, 405

safelen(𝑛), 421
scan, 374, 374, 432
schedule

auto, 355
chunk, 354
guided, 355
runtime, 355

schedule, 354, 356, 430
section, 376
sections, 341, 343, 364, 376, 384
simd, 421, 421
single, 377, 377, 438
socket, 409
spread, 409

target
enter data, 426
exit data, 426
map, 425
update from, 426
update to, 426

target, 425, 426
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task, 402, 403
task_reduction, 405
taskgroup, 343, 403, 404, 404, 405, 452
taskloop, 403, 404, 404
taskwait, 403, 404, 406, 425, 442, 452
taskyield, 406
team, 426
teams, 426
thread, 409
thread_limit, 426
threadprivate, 386, 415, 429
tofrom, 425
true, 409

untied, 406

wait-policy-var, 428
workshare, 379
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Index of PETSc keywords

--sub_ksp_monitor, 529
-da_grid_x, 495
-da_refine, 501
-da_refine_x, 501
-download-blas-lapack, 470
-download_mpich, 466
-ksp_atol, 508
-ksp_converged_reason, 509
-ksp_divtol, 508
-ksp_gmres_restart, 510
-ksp_mat_view, 487
-ksp_max_it, 508
-ksp_monitor, 515, 529
-ksp_monitor_true_residual, 515
-ksp_rtol, 508
-ksp_type, 509
-ksp_view, 507, 527, 529
-log_summary, 528
-log_view, 530
-malloc_dump, 531
-mat_view, 487, 527
-pc_factor_levels, 512
-snes_fd, 518
-snes_fd_color, 518
-vec_view, 527
-with-precision, 466
-with-scalar-type, 466

ADD_VALUES, 479, 486
AO, 494
AOViewFromOptions, 528

CHCKERCXX, 524
CHKERRA, 524
CHKERRABORT, 524
CHKERRMPI, 524
CHKERRQ, 522, 524
CHKMEMA, 524
CHKMEMQ, 522, 524

DM, 495, 496, 501, 527
DM_BOUNDARY_GHOSTED, 495
DM_BOUNDARY_NONE, 495
DM_BOUNDARY_PERIODIC, 495
DMBoundaryType, 495
DMCreateGlobalVector, 498, 501
DMCreateLocalVector, 498, 501
DMDA, 495, 498, 500, 501
DMDA_STENCIL_BOX, 495
DMDA_STENCIL_STAR, 495
DMDACreate1d, 495
DMDACreate2d, 495, 495
DMDAGetCorners, 496, 502
DMDAGetLocalInfo, 496
DMDALocalInfo, 496, 497, 500
DMDASetRefinementFactor, 501
DMDAVecGetArray, 500
DMGetGlobalVector, 498
DMGetLocalVector, 498
DMGlobalToLocal, 498, 501
DMGlobalToLocalBegin, 501
DMGlobalToLocalEnd, 501
DMLocalToGlobal, 498, 501
DMLocalToGlobalBegin, 501
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DMLocalToGlobalEnd, 501
DMPLEX, 503
DMRestoreGlobalVector, 498
DMRestoreLocalVector, 498
DMStencilType, 495
DMViewFromOptions, 528

INSERT_VALUES, 479, 486
IS, 494
ISCreate, 492
ISCreateBlock, 492
ISCreateGeneral, 492
ISCreateStride, 492
ISGetIndices, 492
ISLocalToGlobalMappingViewFromOptions, 528
ISRestoreIndices, 492
ISViewFromOptions, 528

KSP, 487, 506
KSPBuildResidual, 515
KSPBuildSolution, 515
KSPConvergedDefault, 514
KSPConvergedReason, 508
KSPConvergedReasonView, 508
KSPConvergedReasonViewFromOptions, 528
KSPCreate, 507
KSPGetConvergedReason, 508
KSPGetIterationNumber, 509
KSPGetOperators, 507
KSPGetRhs, 515
KSPGetSolution, 515
KSPGMRESSetRestart, 510
KSPMatSolve, 510
KSPMonitorDefault, 515
KSPMonitorSet, 515
KSPMonitorTrueResidualNorm, 515
KSPReasonView (deprecated), 508
KSPSetConvergenceTest, 514
KSPSetFromOptions, 507, 510, 516
KSPSetOperators, 507
KSPSetOptionsPrefix, 529
KSPSetTolerances, 508
KSPSetType, 509
KSPView, 507, 526
KSPViewFromOptions, 528

MAT_FLUSH_ASSEMBLY, 486
MATAIJCUSPARSE, 521
MatAssemblyBegin, 486, 486
MatAssemblyEnd, 486, 486

MatCoarsenViewFromOptions, 528
MatCreate, 482
MatCreateDenseCUDA, 521
MatCreateFFT, 491
MatCreateSeqDenseCUDA, 521
MatCreateShell, 489
MatCreateSubMatrices, 488
MatCreateSubMatrix, 488, 494
MatCreateVecs, 474, 483
MatCreateVecsFFTW, 491
MATDENSECUDA, 521
MatDenseCUDAGetArray, 521
MatDenseGetArray, 487
MatDenseRestoreArray, 487
MatGetArray (deprecated), 487
MatGetRow, 487
MatImaginaryPart, 470
MatMatMult, 488
MATMPIAIJ, 482
MATMPIAIJCUSPARSE, 521
MatMPIAIJSetPreallocation, 484
MATMPIBIJ, 491
MATMPIDENSE, 482
MATMPIDENSECUDA, 521
MatMult, 488, 489
MatMultAdd, 488
MatMultHermitianTranspose, 488
MatMultTranspose, 488
MatPartitioning, 494
MatPartitioningApply, 494
MatPartitioningCreate, 494
MatPartitioningDestroy, 494
MatPartitioningSetType, 494
MatPartitioningViewFromOptions, 528
MatRealPart, 470
MatRestoreArray (deprecated), 487
MatRestoreRow, 487
MATSEQAIJ, 482
MATSEQAIJCUSPARSE, 521
MatSeqAIJGetArray, 487
MatSeqAIJRestoreArray, 487
MatSeqAIJSetPreallocation, 484
MATSEQDENSE, 482
MATSEQDENSECUDA, 521
MatSetOptionsPrefix, 530
MatSetSizes, 482
MatSetType, 482
MatSetValue, 486
MatSetValues, 486
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MatSetValuesStencil, 499
MatShellGetContext, 490
MatShellSetContext, 489
MatShellSetOperation, 489
MatSizes, 482
MATSOLVERMUMS, 515
MatSolverType, 515
MatStencil, 499
MatView, 487, 526, 527
MatViewFromOptions, 528
MPIU_COMPLEX, 470
MPIU_REAL, 470
MPIU_SCALAR, 470

PCCOMPOSITE, 514
PCFactorSetLevels, 512
PCGAMG, 513
PCHYPRESetType, 511
PCMG, 513
PCSetOptionsPrefix, 530
PCSHELL, 514
PCShellGetContext, 514
PCShellSetApply, 514
PCShellSetContext, 514
PCShellSetSetUp, 514
PCViewFromOptions, 528
PETSC_ARCH, 462
PETSC_CC_INCLUDES, 462
PETSC_COMM_SELF, 472, 501, 523
PETSC_COMM_WORLD, 465, 472, 523
PETSC_DECIDE, 469, 472
PETSC_DEFAULT, 508
PETSC_DIR, 462
PETSC_ERR_ARG_OUTOFRANGE, 470
PETSC_FALSE, 470
PETSC_FC_INCLUDES, 462
PETSC_HAVE_CUDA, 520
PETSC_i, 470
PETSC_MEMALIGN, 531
PETSC_NULL_CHARACTER, 464
PETSC_NULL_INTEGER, 461
PETSC_NULL_IS, 493
PETSC_NULL_OBJECT, 461
PETSC_NULL_VIEWER, 527
PETSC_NULLPTR, 496
PETSC_STDOUT, 526
PETSC_TRUE, 470
PETSC_USE_DEBUG, 522
PETSC_VERSION, 466

PETSC_VERSION_EQ/LT/LE/GT/GE, 466
PETSC_VERSION_MAJOR, 466
PETSC_VERSION_MINOR, 466
PETSC_VERSION_SUBMINOR, 466
PETSC_VIEWER_STDOUT_WORLD, 527
PetscBLASInt, 470, 470
PetscBLASIntCast, 470
PetscBool, 470
PetscCall, 522
PetscCalloc1, 531
PetscComm, 532
PetscComplex, 469, 470
PetscCUDAInitialize, 520
PetscDataType, 526
PetscDeviceInitialize, 520
PetscDrawViewFromOptions, 528
PetscDSViewFromOptions, 528
PetscDualSpaceViewFromOptions, 528
PetscErrorCode, 470, 524
PetscFEViewFromOptions, 528
PetscFinalize, 465, 531
PetscFree, 531
PetscFunctionBegin, 522
PetscFunctionBeginUser, 522
PetscFunctionReturn, 522
PetscFVViewFromOptions, 528
PetscGetCPUTime, 530
PetscImaginaryPart, 470
PetscInitialize, 463, 464, 528, 530, 532
PetscInitializeFortran, 464
PetscInt, 470, 470, 492
petscksp.h, 509
PetscLimiterViewFromOptions, 528
PetscLogDouble, 530
PetscLogView, 530
PetscLogViewFromOptions, 528
PetscMalloc, 480, 521, 531
PetscMalloc1, 521, 531, 531
PetscMallocDump, 531
PetscMallocResetCUDAHost, 521, 521
PetscMallocSetCUDAHost, 521, 521
PetscMPIInt, 470, 470
PetscMPIIntCast, 470
PetscNew, 531
PetscObjectSetOptionsPrefix, 530
PetscObjectViewFromOptions, 528
PetscOptionsBegin, 529
PetscOptionsEnd, 529
PetscOptionsGetInt, 528

660 Parallel Computing – r428



PetscOptionsHasName, 529
PetscOptionsSetValue, 530, 530
PetscPartitionerViewFromOptions, 528
PetscPrintf, 525, 525, 526
PetscRandomViewFromOptions, 528
PetscReal, 160, 469, 470, 530
PetscRealPart, 470
PetscScalar, 160, 469, 470
PetscSectionViewFromOptions, 528
PetscSFViewFromOptions, 528
PetscSpaceViewFromOptions, 528
PetscSplitOwnership, 469
PetscSynchronizedFlush, 525
PetscSynchronizedPrintf, 525
PetscTime, 530
PetscViewer, 487, 526
PETSCVIEWERASCII, 527
PETSCVIEWERBINARY, 527
PetscViewerCreate, 527
PETSCVIEWERDRAW, 527
PETSCVIEWERHDF5, 527
PetscViewerPopFormat, 527
PetscViewerPushFormat, 527
PetscViewerRead, 526
PetscViewerSetOptionsPrefix, 530
PetscViewerSetType, 527
PETSCVIEWERSOCKET, 527
PETSCVIEWERSTRING, 527
PetscViewerViewFromOptions, 528
PETSCVIEWERVTK, 527
PFViewFromOptions, 528

SETERRA, 524
SETERRQ, 522
SETERRQ1, 522, 523
SETERRQ2, 522
SNES, 517
SNESConvergedReasonViewFromOptions, 528
SNESJacobianFunction, 518
SNESSetJacobian, 518
SNESSetOptionsPrefix, 530
SNESSolve, 517
SNESViewFromOptions, 528

TaoLineSearchViewFromOptions, 528
TaoViewFromOptions, 528
TSSetIFunction, 519
TSSetOptionsPrefix, 530
TSSetRHSFunction, 519
TSTrajectoryViewFromOptions, 528

TSViewFromOptions, 528

VecAssemblyBegin, 478, 479
VecAssemblyEnd, 478, 479
VecAXPY, 474
VecCreate, 471, 500
VecCreateMPICUDAWithArray, 521
VecCreateMPIWithArray, 474
VecCreateSeqCUDA, 521
VecCreateSeqWithArray, 474
VECCUDA, 521
VecCUDAGetArray, 521
VecDestroy, 471
VecDestroyVecs, 472
VecDot, 477
VecDotBegin, 477
VecDotEnd, 477
VecDuplicate, 472
VecDuplicateVecs, 472
VecGetArray, 479
VecGetArrayF90, 480
VecGetArrayRead, 479
VecGetLocalSize, 472, 475, 480
VecGetOwnershipRange, 472, 475
VecGetSize, 472, 475
VecImaginaryPart, 470
VecLoad, 481
VECMPI, 472
VECMPICUDA, 521
VecNorm, 477
VecNormBegin, 477
VecNormEnd, 477
VecPlaceArray, 480, 480
VecRealPart, 470
VecReplaceArray, 480
VecResetArray, 480
VecRestoreArray, 479
VecRestoreArrayF90, 480
VecRestoreArrayRead, 479
VecScale, 477
VecScatter, 493
VecScatterCreate, 493
VecScatterViewFromOptions, 528
VECSEQ, 472
VECSEQCUDA, 521
VecSet, 477
VecSetOptionsPrefix, 530
VecSetSizes, 472, 491, 500
VecSetType, 471, 521
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VecSetValue, 477, 477, 479
VecSetValues, 477, 477, 479, 500
VECSTANDARD, 472
VecView, 474, 481
VecViewFromOptions, 527, 528
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Chapter 61

Index of KOKKOS keywords

CudaSpace, 541, 542
CudaUVMSpace, 542

HostSpace, 541, 542

KOKKOS_INLINE_FUNCTION, 542
KOKKOS_LAMBDA, 541

LayoutLeft, 541
LayoutRight, 541
LayoutStride, 541
LayoutTiled, 541

MDRangePolicy, 540

RangePolicy, 540, 542
reducer, 539

View, 542
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Chapter 62

Index of SYCL keywords

accessor, 551, 553

buffer, 551

combine, 551
cout, 554
cpu_selector, 545, 546
cpu_selector_v, 546

endl, 554

free, 552

get_access, 553
get_range, 553

host_selector, 546

id<1>, 549
id<nd>, 548
is_cpu, 545
is_gpu, 545
is_host, 545

malloc, 552
malloc_device, 551, 552
malloc_host, 551, 552
malloc_shared, 551

nd_item, 549
nd_range, 548

offset, 555

parallel_for, 548, 551, 555

queue::memcpy, 551

range, 548, 548
read, 553
reduction, 551
runtime_error, 546

submit, 547

wait, 554
write, 553
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