Roman Trobec, Bostjan Slivnik,
Patricio Buli¢, Borut Robic

Introduction to Parallel
Computing: From Algorithms to
Programming on State-of-the-Art
Platforms

— Monograph —

July 2, 2018

Springer

To all who make our lives worthwhile.

Preface

This monograph is an overview of practical parallel computing and starts with the
basic principles and rules which will enable the reader to design efficient parallel
programs for solving various computational problems on the state-of-the-art com-
puting platforms.

The book too was written in parallel. The opening Chapter 1: "Why do we need
parallel programming” has been shaped by all of us during instant communication
immediately after the idea of writing such a book had cropped up. In fact, the first
chapter was an important motivation for our joint work. We spared no effort in
incorporating of our teaching experience into this book.

The book consists of three parts: Foundations, Programming, and Engineering,
each with a specific focus:

e Part I, Foundations, provides the motivation for embarking on a study of parallel
computation (Chapter 1) and an introduction to parallel computing (Chapter 2)
that covers parallel computer systems, the role of communication, complexity of
parallel problem-solving, and the associated principles and laws.

e Part II, Programming, first discusses shared-memory platforms and openMP
(Chapter 3), then proceeds to message passing library (Chapter 4), and finally to
massively parallel processors (Chapter 5). Each chapter describes the methodol-
ogy and practical examples for immediate work on a personal computer.

e Part III, Engineering, illustrates parallel solving of computational problems on
three selected problems from three fields: Computing the number m (Chapter 6)
from mathematics, Solving the heat equation (Chapter 7) from physics, and Seam
carving (Chapter 8) from computer science. The book concludes with some final
remarks and perspectives (Chapter 9).

To enable readers to immediately start gaining practice in parallel computing,
Appendix A provides hints for making a personal computer ready to execute paral-
lel programs under Linux, macOS, and MS Windows.

vii

viii Preface

Specific contributions of the authors are as follows:

e Roman Trobec started the idea of writing a practical textbook, useful for students
and programmers on a basic and advanced levels. He has contributed Chapter 4:
”MPI processes and messaging”’, Chapter 9: “Final remarks and perspectives”,
and to chapters of Part III.

e Bostjan Slivnik has contributed Chapter 3: ”Programming multi-core and shared
memory multiprocessors using OpenMP”. He has also contributed to Chapter 1
and chapters of Part III.

e Patricio Buli¢ has contributed Chapter 5: ”OpenCL for massively parallel graphic
processors” and Chapter 8: ”Engineering: Parallel implementation of Seam Carv-
ing.” His contribution is also in Chapter 1 and chapters of Part III.

e Borut Robic¢ has coordinated our work and cared about the consistency of the
book text. He has contributed Chapter 2: “Overview of parallel systems” and to
Chapter 1: "Why do we need parallel programming.”

The spectrum of book topics ranges from implementations to efficient applica-
tions of parallel processors on different platforms. The book covers shared memory
many-core processors, shared memory multi-core processors, and interconnected
distributed computers. Chapters of Parts I and II are quite independent and can be
read in any order, while chapters of Part III are related to previous chapters and are
intended to be a final reading.

The target audience comprises undergraduate and graduate students; engineers,
programmers and industrial experts acting in companies that develop software with
an intention to add parallel capabilities for increased performance; research institu-
tions that develop and test computationally intensive software with parallel software
codes; universities and educational institutions that teach courses on parallel com-
puting. The book may also be interesting and useful for the wider public in the part
where basic principles and benefits of parallel approaches are presented.

For the readers who wish to be promptly updated with current achievements in
the field of parallel computing, we will maintain this information on the book web
page. There, also a pool of questions and homeworks will be available and main-
tained according to experiences and feedbacks from readers.

We are grateful to all our colleagues who have contributed to this book through
discussions or by reading and commenting parts of the text, in particular to Matjaz
Depolli for his assistance in testing the exemplar programs, and to Andrej Brodnik
for his fruitful suggestions and comments.

For their support of our work, we are indebted to the Jozef Stefan Institute,
Faculty of Computer and Information Science of the University of Ljubljana, and
the Slovenian Research Agency.

Ljubljana, Roman Trobec, Bostjan Slivnik,
June 2018 Patricio Bulié¢, Borut Robi¢

Contents

Part I Foundations

1

Why do we need parallel programming
1.1 Why - every computer is a parallel computer....................
1.2 How - there are three prevailing types of parallelism
1.3 What - time consuming computations can be sped up.............
1.4 And this book - why would youreadit?........................

Overview of parallel systems
2.1 History of parallel computing, systems and programming
2.2 Modeling parallel computationcc..ovviiiinn....
2.3 Multiprocessor modelscoiiiiiiiiii i
2.3.1 The Parallel Random Access Machine...................
2.3.2 The Local-Memory Machine
2.3.3 The Memory-Module Machine
2.4 The impact of communicationccoiieeeennnn....
2.4.1 Interconnection networks,
2.4.2 Basic properties of interconnection networks
2.4.3 Classification of interconnection networks
2.4.4 Topologies of interconnection networks
2.5 Parallel computational complexity,
2.5.1 Problem instances and their sizes
2.5.2 Number of processing units vs. size of problem instances. . .
2.5.3 The class NC of efficiently parallelizable problems
2.6 Laws and theorems of parallel computation.....................
2.6.1 Brent’stheoremi i,
2.6.2 Amdahl'slaw i
2.7 EBXEICISES ..ttt ettt e
2.8 Bibliographicalnotes i

Part II Programming

Contents

Programming multi-core and shared memory multiprocessors

using OpenMP 49
3.1 Shared memory programming model 49
3.2 Using OpenMP to write multithreaded programs 51
3.2.1 Compiling and running an OpenMP program 52
3.2.2 Monitoring an OpenMP program 54
3.3 Parallelization of loopsc i i 55
3.3.1 Parallelizing loops with independent iterations 56
3.3.2 Combining the results of parallel iterations 64
3.3.3 Distributing iterations among threads 73
3.3.4 The details of parallel loops and reductions 78
34 Parallel taskso 80
3.4.1 Running independent tasks in parallel 80
3.4.2 Combining the results of parallel tasks 85
3.5 Exercises and mini projectsueeeeiiiinneeennnnn... 87
3.6 Bibliographic notesouiiiiiiin i 89
MPI processes and messagingc.ciiiiiiiiinan. 91
4.1 Distributed memory computers can execute in parallel............ 91
4.2 Programmer’s VIBWoueuruunn ettt 92
4.3 Message passing interface il 93
4.3.1 MPIoperation SyntaxXceuuveunneenneennnenn. 96
432 MPIdatatypesooumiiiniiiiiiii i 97
433 MPlerrorhandling. ..., 99
4.3.4 Make your computer ready forusing MPI................ 99
4.3.5 Running and configuring MPI processes 99
4.4 Basic MPIoperationsooiiiiiiiiiiiiinan. 102
4.4.1 MPI_INIT (int *argc, char *x*argv) 102
442 MPI_FINALIZE () .ottt 102
443 MPI_COMM_SIZE (COMM, SiZ€) . .@vvvrmrenennannnn... 102
444 MPI_COMM_RANK (comm, Tamk)vouvenennenennnn. 102
4.5 Process-to-process COmmunicationc..uuueennn. 103
4.5.1 MPI_SEND (buf, count, datatype, dest, tag,
FeTe3 111 104
452 MPI_RECV (buf, count, datatype, source, tag,
COMM, StALUS) &ttt vttt ettt ettt e 105

4.5.3 MPI_SENDRECV (sendbuf, sendcount, sendtype,
dest, sendtag, recvbuf, recvcount, recvtype,

source, recvtag, comm, status).................. 107

4.5.4 Measuring performances, 108

4.6 Collective MPI communicationovuuneunenn... 111
4.6.1 MPI_BARRIER (COMM)'iiuiininennnnnnnnn. 111

4.6.2 MPI_BCAST (4mbuf, incnt, intype, root, comm) .. 112
4.6.3 MPI_GATHER (inbuf, incnt, intype, outbuf,
outcnt, outtype, root, comm) 113

Contents xi

4.6.4 MPI_SCATTER (inbuf, incnt, intype, outbuf,

outcnt, outtype, root, comm) 113

4.6.5 Collective MPI data manipulations. 114

4.7 Communication and computation overlap 118
477.1 Communication modescccoiiiiiinnnn.... 119
4772 Sources of deadlocks L 122
473 Some subsidiary features of message-passing............. 126
474 MPI communicatorsuuueeeteaneeeennn... 128

4.8 How effective are your MPI programs? 133
4.9 Exercises and mini projectseuiiiiiiiiiiiaeean. 134
4.10 Bibliographical NOtesouituiiiiine i 136
OpenCL for massively parallel graphic processors 137
5.1 AnatomyofaGPU i, 137
5.1.1 Introduction to GPU evolution 138

512 AmodernGPUo 142

5.1.3 Scheduling threads on compute units 143
5.1.4 Memory hierarchyon GPU 146

5.2 Programmer’s VIEWuuuetttutnn e, 149
52,1 OpenCL e 149

5.2.2 Heterogeneous SyStemoeeeuiunneeeennn.. 150
5.23 Executionmodel......... i 150
524 Memorymodel i, 152

5.3 Programming inOpenCL 154
5.3.1 A simple example: vector addition 154
5.3.2 Sum of arbitrary long vectors 178

5.3.3 DotproductinOpenCL 180

5.3.4 Dot product in OpenCL using local memory.............. 184

5.3.5 Naive matrix multiplication in OpenCL.................. 190
5.3.6 Tiled matrix multiplication in OpenCL 194

54 EBXEICISES ..ttt it 199
5.5 Bibliographicalnotest 200

Part III Engineering

6

Engineering: Parallel computation of the number 7 203
6.1 OpenMP 205
6.2 MPIL. ... 208
6.3 OpenCL e 211
Engineering: Parallel solution of 1-D heat equation 215
T 0penMP ... 219

T2 MPL. .o 220

xii Contents
8 Engineering: Parallel implementation of Seam Carving 227
8.1 Energycalculation.......... i, 228

8.2 Seamidentification it 230

8.3 Seamlabelingandremoval, 233

84 SeamcarvingonGPU...... i, 235
8.4.1 SeamcarvingonCPU, 235

8.4.2 SeamcarvinginOpenCL 238

9 Final remarks and perspectives, 245
A Hints for making your computer a parallel machine................ 247
Al LINUX .ot 247

A2 macOS ... 249

A3 MS WINAOWS . .ottt e e 251
References. i 255

Part 1
Foundations

In Part I, we first provide the motivation for delving into the realm of parallel
computation and especially of parallel programming. There are several reasons for
doing so: first, our computers are already parallel; secondly, parallelism can be of
great practical value when it comes to solving computationally demanding prob-
lems from various areas; and finally, there is inertia in the design of contemporary
computers which keeps parallelism a key ingredient of future computers.

The second chapter provides an introduction to parallel computing. It describes
different parallel computer systems and formal models for describing such systems.
Then, various patterns for interconnecting processors and memories are described
and the role of communication is emphasized. All these issues have impact on the
execution time required to solve computational problems. Thus, we introduce the
necessary topics of the parallel computational complexity. Finally, we present some
laws and principles that govern parallel computation.

Chapter 1
Why do we need parallel programming

Abstract The aim of this chapter is to give a motivation for the study of parallel
computing and in particular parallel programming. Contemporary computers are
parallel and there are various reasons for that. Parallelism comes in three differ-
ent prevailing types which share common underlying principles. Most importantly,
parallelism can help us solve demanding computational problems.

1.1 Why - every computer is a parallel computer

Nowadays all computers are essentially parallel. This means that within every op-
erating computer there always exist various activities which, one way or another,
run in parallel, at the same time. Parallel activities may arise and come to an end
independently of each other—or, they may be created purposely to involve simul-
taneous performance of various operations whose interplay will eventually lead to
the desired result. Informally, the parallelism is the existence of parallel activities
within a computer and their use in achieving a common goal. The parallelism is
found on all levels of a modern computer’s architecture:

e First, parallelism is present deep in the processor microarchitecture. In the past,
processors ran programs by repeating the so-called instruction cycle, a sequence
of four steps: (i) reading and decoding an instruction; (if) finding data needed to
process the instruction; (iii) processing the instruction; and (iv) writing the result
out. Since step (if) introduced lengthy delays which were due to the arriving data,
much of research focused on designs that reduced these delays and in this way
increased the effective execution speed of programs. Over the years, however,
the main goal has become the design of a processor capable of execution of
several instructions simultaneously. The workings of such a processor enabled
detection and exploitation of parallelism inherent in instruction execution. These
processors allowed even higher execution speeds of programs, regardless of the
processor and memory frequency.

4 1 Why do we need parallel programming

e Second, any commercial computer, tablet and smartphone contains a processor
with multiple cores, each of which is capable of running its own instruction
stream. If the streams are designed so that the cores collaborate in running an
application, the application is run in parallel and may be considerably sped up.

e Third, many servers contain a several multicore processors. Such a server is
capable of running a service in parallel, and also several services in parallel.

e Finally, even consumer level computers contain graphic processors capable of
running hundreds or even thousands of threads in parallel. Processors capable of
coping with such a large parallelism are necessary to support graphic animation.

There are many reasons for making modern computers parallel:

e First, it is not possible to increase processor and memory frequencies indefi-
nitely, at least not with the current silicon-based technology. Therefore, to in-
crease computational power of computers new architectural and organizational
concepts are needed.

e Second, power consumption rises with processor frequency while the energy
efficiency decreases. However, if the computation is performed in parallel at
lower processor speed, the undesirable implications of frequency increase can
be avoided.

o Finally, parallelism has become a part of any computer and this is likely to remain
unchanged due to simple inertia: parallelism can be done and it sells well.

1.2 How - there are three prevailing types of parallelism

During the last decades, many different parallel computing systems appeared on
the market. First they have been sold as supercomputers dedicated to solving spe-
cific scientific problems. Perhaps the most known are the computers made by Cray
and Connection Machine Corporation. But as mentioned above, the parallelism has
spread all the way down into the consumer market and all kinds of handheld devices.

Various parallel solutions gradually evolved into modern parallel systems that
exhibit at least one of the three prevailing types of parallelism:

e First, shared memory systems, i.e., systems with multiple processing units at-
tached to a single memory.

e Second, distributed systems, i.e., systems consisting of many computer units,
each with its own processing unit and its physical memory, that are connected
with fast interconnection networks.

e Third, graphic processor units used as co-processors for solving general pur-
pose numerically intensive problems.

Apart from the parallel computer systems that have become ubiquitous, ex-
tremely powerful supercomputers continue to dominate the parallel computing
achievements. Supercomputers can be found on the Top 500 list of the fastest com-
puter systems ever built and even today they are the joy and pride of the world
SUpErpowers.

1.3 What - time consuming computations can be sped up 5

But the underlying principles of parallel computing are the same regardless of
whether the top supercomputers or consumer devices are being programmed. The
programming principles and techniques gradually evolved during all these years.
Nevertheless, the design of parallel algorithms and parallel programming are still
considered to be an order of magnitude harder than the design of sequential algo-
rithms and sequential-program development.

Relating to the three types of parallelism introduced above, three different ap-
proaches to parallel programming exist: threads model for shared memory systems,
message passing model for distributed systems, and stream based model for GPUs.

1.3 What - time consuming computations can be sped up

To see how parallelism can help you solve problems, it is best to look at examples.
In this section, we will briefly discuss the so-called n-body problem.

The n-body problem

The classical n-body problem is the problem of predicting the individual motions
of a group of objects that interact with each other by gravitation. Here is a more
accurate statement of the problem:

The classical n-body problem

Given the position and momentum of each member of a group of bodies at an
initial instant, compute their positions and velocities for all future instances.

While the classical n-body problem was motivated by the desire to understand
the motions of the Sun, Moon, planets and the visible stars, it is nowadays used to
comprehend the dynamics of globular cluster star systems. In this case, the usual
Newton mechanics, which governs the moving of bodies, must be replaced by the
Einsteins general relativity theory, which makes the problem even more difficult.
We will, therefore, refrain from dealing with this version of the problem and focus
on the classical version as introduced above and on the way it is solved on a parallel
computer.

So how can we solve a given classical n-body problem? Let us first describe in
what form we expect the solution of the problem. As mentioned above, the classical
n-body problem assumes the classical, Newton’s mechanics, which we all learned in
school. Using this mechanics, a given instance of the n-body problem is described
as a particular system of 6 differential equations that, for each of n bodies, define
its location (x(z),y(¢),z(t)) and momentum (mvy(t),mvy(t),mv,(¢)) at an instant z.

6 1 Why do we need parallel programming

The solution of this system is the sought-for description of the evolution of the

n-body system at hand. Thus, the question of solvability of a particular classical n-

body problem boils down to the question of solvability of the associated system of

differential equations that are finally transformed into a system of linear equations.
Today we know that

e if n = 2, the classical n-body problem always has analytical solution, simply
because the associated system of equations has an analytic solution.

e if n > 2, analytic solutions exist just for certain initial configurations of n bodies.

e [n general, however, n-body problems cannot be solved analytically.

It follows that, in general, the n-body problem must be solved numerically, by
using appropriate numerical methods for solving systems of differential equations.

Can we always succeed in this? The numerical methods numerically integrate the
differential equations of motion. To obtain the solution, such methods require time
which grows proportionally to n>. We say that the methods have time complexity of
the order O(nz). At first sight, this seems to be rather promising; however, there is a
large hidden factor in this O(n?). Because of this factor, only the instances of the n-
body problem with small values of n can be solved using these numerical methods.
To extend solvability to larger values of n, methods with smaller time complexity
must be found. One such is the Barnes-Hut method with time complexity O(nlogn).
But, again, only the instances with limited (though larger) values of n can be solved.
For large values of n, numerical methods become prohibitively time consuming.

Unfortunately, the values of n are in practice usually very large. Actually, they are
too large for the above mentioned numerical methods to be of any practical value.

What can we do in this situation? Well, at this point parallel computation enters
the stage. The numerical methods which we use for solving systems of differential
equations associated with the n-body problem are usually programmed for single-
processor computers. But if we have at our disposal a parallel computer with many
processors, it is natural to consider using all of them so that they collaborate and
Jjointly solve systems of differential equations. To achieve that, however, we must
answer several nontrivial questions: (i) How can we partition a given numerical
method into subtasks? (ii) Which subtasks should each processor perform? (iii) How
should each processor collaborate with other processors? And then, of course, (iv)
How will we code all of these answers in the form of a parallel program, a program
capable of running on the parallel computer and exploiting its resources.

The above questions are not easy, to be sure, but there have been designed paral-
lel algorithms for the above numerical methods, and written parallel programs that
implement the algorithms for different parallel computers. For example, J. Dubinsky
et al. designed a parallel Barnes-Hut algorithm and parallel program which divides
the n-body system into independent rectangular volumes each of which is mapped
to a processor of a parallel computer. The parallel program was able to simulate evo-
lution of n-body systems consisting of n = 640000 to n = 1100000 bodies. It turned
out that, for such systems, the optimal number of processing units was 64. At that
number the processors were best load-balanced and communication between them
was minimal.

1.4 And this book - why would you read it? 7

1.4 And this book - why would you read it?

We believe that this book could provide the fist step in the process of attaining the
ability to efficiently solve, on a parallel computer, not only the n-body problem
but also many other computational problems of a myriad of scientific and applied
problems whose high computational and/or data complexities make them virtually
intractable even on the fastest sequential computers.

Chapter 2
Overview of parallel systems

Abstract In this chapter we overview the most important basic notions, concepts,
and theoretical results concerning parallel computation.

2.1 History of parallel computing, systems and programming

Let IT be an arbitrary computational problem which is to be solved by a computer.
Usually our first objective is to design an algorithm for solving I1. Clearly, the class
of all algorithms is infinite, but we can partition it into two subclasses, the class of
all sequential algorithms and the class of all parallel algorithms.! While a sequential
algorithm performs one operation in each step, a parallel algorithm may perform
multiple operations in a single step. In this book, we will be mainly interested in
parallel algorithms. So, our objective is to design a parallel algorithm for II.

Let P be an arbitrary parallel algorithm. We say that there is parallelism in
P. The parallelism in P can be exploited by various kinds of parallel computers.
For instance, multiple operations of P may be executed simultaneously by multiple
processing units of a parallel computer C;; or, perhaps, they may be executed by
multiple pipelined functional units of a single-processor computer C,. After all, P
can always be sequentially executed on a single-processor computer Csz, simply by
executing P’s potentially parallel operations one by one in succession.

Let C(p) be a parallel computer of the kind C which contains p processing units.
Naturally, we expect the performance of P on C(p) to depend both on C and p.
We must, therefore, clearly distinguish between the potential parallelism in P on
the one side, and the actual capability of C(p) to execute, in parallel, multiple oper-
ations of P, on the other side. So the performance of the algorithm P on the parallel
computer C(p) depends on C(p)’s capability to exploit P’s potential parallelism.

! There are also other divisions that partition the class of all algorithms according to other cri-
teria, such as exact and non-exact algorithms; or deterministic and non-deterministic algorithms.
However, in this book we will not divide algorithms systematically according to these criteria.

10 2 Overview of parallel systems

Before we continue, we must unambiguously define what we really mean by the
term “performance” of a parallel algorithm P. Intuitively, the “performance" might
mean the time required to execute P on C(p); this is called the parallel execution
time (or, parallel runtime) of P on C(p), which we will denote by

Tpar.

Alternatively, we might choose the “performance” to mean how many times is the
parallel execution of P on C(p) faster than the sequential execution of P; this is
called the speedup of P on C(p),

So parallel execution of P on C(p) is S-times faster than sequential execution of
P. Next, we might be interested in how much of the speedup S is, on average, due
to each of the processing units. Put differently, the term “performance” might be
understood as the average contribution of each of the p processing units of C(p) to
the speedup; this is called the efficiency of P on C(p),

E def 5
p
Since Tpar < Tseq < P Tpar, it follows that speedup is bounded above by and effi-
ciency is bounded above by
E <1.

This means that, for any C and p, the parallel execution of P on C(p) can be at most
p times faster than the execution of P on a single processor. And the efficiency of the
parallel execution of P on C(p) can be at most 1. (This is when each processing unit
is continually engaged in the execution of P, thus contributing 1-th to its speedup.)
Later, in Section 2.5, we will involve one more parameter to these definitions.

From the above definitions we see that both speedup and efficiency depend on
Thyar, the parallel execution time of P on C(p). This raises new questions:

How do we determine Tp,,?
How does T, depend on C (the kind of a parallel computer) ?
Which properties of C must we take into account in order to determine Ty, ?

These are important general questions about parallel computation which must be an-
swered prior to embarking on a practical design and analysis of parallel algorithms.
The way to answer these questions is to appropriately model parallel computation.

2.2 Modeling parallel computation 11

2.2 Modeling parallel computation

Parallel computers vary greatly in their organization. We will see in the next section
that their processing units may or may not be directly connected one to another;
some of the processing units may share a common memory while the others may
only own local (private) memories; the operation of the processing units may be syn-
chronized by a common clock, or they may run each at its own pace. Furthermore,
usually there are architectural details and hardware specifics of the components,
all of which show up during the actual design and use of a computer. And finally,
there are technological differences, which manifest in different clock rates, memory
access times etc. Hence, the following question arises:

Which properties of parallel computers must be considered
and which may be ignored in the design and analysis of parallel algorithms?

To answer the question, we apply ideas similar to those discovered in the case of
sequential computation. There, various models of computation were discovered.”
In short, the intention of each of these models was to abstract the relevant properties
of the (sequential) computation from the irrelevant ones.

In our case, a model called the Random Access Machine (RAM) is particularly
attractive. Why? The reason is that RAM distills the important properties of the
general-purpose sequential computers, which are still extensively used today, and
which have actually been taken as the conceptual basis for modeling of parallel
computing and parallel computers. Figure 2.1 shows the structure of the RAM.

Here is a brief description of RAM:

e The RAM consists of a processing unit and a memory. The memory is a po-
tentially infinite sequence of equally sized locations mq,my,.... The index i is
called the address of m;. Each location is directly accessible by the processing
unit: given an arbitrary i, reading from m; or writing to m; is accomplished in
constant time. Registers are a sequence ry...r, of locations in the processing
unit. Registers are directly accessible. Two of them have special roles. Program
counter pc (= rp) contains the address of the location in the memory which con-
tains the instruction to be executed next. Accumulator a (= r;) is involved in
the execution of each instruction. Other registers are given roles as needed. The
program is a finite sequence of instructions (similar to those in real computers).

e Before the RAM is started, the following is done: (a) a program is loaded into
successive locations of the memory starting with, say, myg; (b) input data are writ-
ten into empty memory locations, say after the last program instruction.

2 Some of these models of computation are the p-recursive functions, recursive functions, A-
calculus, Turing machine, Post machine, Markov algorithms, and RAM.

12 2 Overview of parallel systems

e From now on, the RAM operates independently in a mechanical stepwise fashion
as instructed by the program. Let pc = k at the beginning of a step. (Initially,
k = 0.) From the location my, the instruction I is read and started. At the same
time, pc is incremented. So, when I is completed, the next instruction to be
executed is in my4, unless I was one of the instructions that change pc (e.g.
jump instructions).

PROCESSING UNIT

registers

pc=r k
a=r,

y
LI I [T T T T

Fig. 2.1: The RAM model of computation has a memory M (containing program
instructions and data) and a processing unit P (executing instructions on data).

So the above question boils down to the following question:
What is the appropriate model of parallel computation?

It turned out that finding an answer to this question is substantially more challenging
than it was in the case of sequential computation. Why? Since there are many ways
to organize parallel computers, there are also many ways to model them; and what is
difficult is to select a single model that will be appropriate for all parallel computers.

As a result, in the last decades, researchers proposed several models of parallel
computation. However, no common agreement has been reached about which is the
right one. In the following, we describe those that are based on RAM.?

3 In fact, currently the research is being pursued also in other, non-conventional directions, which
do not build on RAM or any other conventional computational models (listed in previous footnote).
Such are, for example, dataflow computation and quantum computation.

2.3 Multiprocessor models 13

2.3 Multiprocessor models

A multiprocessor model is a model of parallel computation that builds on the RAM
model of computation; that is, it generalizes the RAM. How does it do that?

It turns out that the generalization can be done in three essentially different ways
resulting in three different multiprocessor models. Each of the three models has
some number p (> 2) of processing units, but the models differ in the organization
of their memories and in the way the processing units access the memories.

The models are called the

e Parallel Random Access Machine (PRAM),
e Local Memory Machine (LMM), and
e Modular Memory Machine (MMM).

Let us describe them.

2.3.1 The Parallel Random Access Machine

The Parallel Random Access Machine, in short PRAM model, has p processing
units that are all connected to a common unbounded shared memory (Fig. 2.2). Each
processing unit can, in one step, access any location (word) in the shared memory
by issuing a memory request directly to the shared memory.

The PRAM model of parallel computation is idealized in several respects. First,
there is no limit on the number p of processing units, except that p is finite. Next,
also idealistic is the assumption that a processing unit can access any location in the
shared memory in one single step. Finally, for words in the shared memory it is only
assumed that they are of the same size; otherwise they can be of arbitrary finite size.

Note that in this model there is no interconnection network for transferring mem-
ory requests and data back and forth between processing units and shared memory.
(This will radically change in the other two models, the LMM (see Sect.2.3.2) and
the MMM (see Sect.2.3.3).)

SHARED MEMORY

Fig. 2.2: The PRAM model of parallel computation: p processing units share an un-
bounded memory. Each processing unit can in one step access any memory location

14 2 Overview of parallel systems

However, the assumption that any processing unit can access any memory loca-
tion in one step is unrealistic. To see why, suppose that processing units P; and P;
simultaneously issue instructions I; and I; where both instructions intend to access
(for reading from or writing to) the same memory location L (see Fig. 2.3).

SHARED MEMORY

Fig. 2.3: Hazards of simultaneous access to a location. Two processing units simul-
taneously issue instructions each of which needs to access the same location L

Even if a truly simultaneous physical access to L had been possible, such an
access could have resulted in unpredictable contents of L. Imagine what would be
the contents of L after simultaneously writing 3 and 5 into it. Thus, it is reasonable
to assume that, eventually, actual accesses of I; and I; to L are somehow, on the
fly serialized (sequentialized) by hardware so that I; and I; physically access L one
after the other.

Does such an implicit serialization neutralize all hazards of simultaneous access
to the same location? Unfortunately not so. The reason is that the order of physical
accesses of I; and I; to L is unpredictable: after the serialization, we cannot know
whether I; will physically access L before or after 1;.

Consequently, also the effects of instructions I; and I; are unpredictable (Fig. 2.3).
Why? If both P; and P; want to read simultaneously from L, the instructions I; and
I; will both read the same contents of L, regardless of their serialization, so both
processing units will receive the same contents of L—as expected. However, if one
of the processing units wants to read from L and the other simultaneously wants
to write to L, then the data received by the reading processing unit will depend
on whether the reading instruction has been serialized before or after the writing
instruction. Moreover, if both P; and P; simultaneously attempt to write to L, the
resulting contents of L will depend on how I; and I; have been serialized, i.e., which
of I; and I; was the last to physically write to L.

In sum, simultaneous access to the same location may end in unpredictable data
in the accessing processing units as well as in the accessed location.

In view of these findings it is natural to ask: Does this unpredictability make the
PRAM model useless? The answer is no, as we will see shortly.

2.3 Multiprocessor models 15

The variants of PRAM

The above issues led researchers to define several variations of PRAM that differ in

i) which sorts of simultaneous accesses to the same location are allowed; and

ii) the way in which unpredictability is avoided when simultaneously accessing the
same location.

The variations are called the

e Exclusive Read Exclusive Write PRAM (EREW-PRAM),
e Concurrent Read Exclusive Write PRAM (CREW-PRAM), and
e Concurrent Read Concurrent Write PRAM (CRCW-PRAM).

We now describe them into more detail:

o EREW-PRAM. This is the most realistic of the three variations of the PRAM
model. The EREW-PRAM model does not support simultaneous accessing to
the same memory location; if such an attempt is made, the model stops execut-
ing its program. Accordingly, the implicit assumption is that programs running
on EREW-PRAM never issue instructions that would simultaneously access the
same location; that is, any access to any memory location must be exclusive.
So the construction of such programs is the responsibility of algorithm design-
ers.

e CREW-PRAM. This model supports simultaneous reads from the same memory
location but requires exclusive writes to it. Again, the burden of constructing such
programs is on the algorithm designer.

o CRCW-PRAM. This is the least realistic of the three versions of the PRAM
model. The CRCW-PRAM model allows simultaneous reads from the same
memory location, simultaneous writes to the same memory location, and simul-
taneous reads from and writes to the same memory location. However, to avoid
unpredictable effects, different additional restrictions are imposed on simultane-
ous writes. This yields the following versions of the model CRCW-PRAM:

— CONSISTENT-CRCW-PRAM. Processing units may simultaneously attempt
to write to L, but it is assumed that they all need to write the same value to L.
To guarantee that is, of course, the responsibility of the algorithm designer.

— ARBITRARY-CRCW-PRAM. Processing units may simultaneously attempt
to write to L (not necessarily the same value), but it is assumed that only one
of them will succeed. Which processing unit will succeed is not predictable,
so the programmer must take this into account when designing the algorithm.

— PRIORITY-CRCW-PRAM. There is a priority order imposed on the pro-
cessing units; e.g., the processing unit with smaller index has higher priority.
Processing units may simultaneously attempt to write to L, but it is assumed
that only the one with the highest priority will succeed. Again, algorithm de-
signer must foresee and mind every possible situation during the execution.

16 2 Overview of parallel systems

— FUSION-CRCW-PRAM. Processing units may simultaneously attempt to
write to L, but it is assumed that
o first a particular operation, denoted by o, will be applied on-the-fly to all
the values vy, vy, ...,V to be written to L, and
< only then the result v ov; o --- o vy of the operation o will be written to L.

The operation o is assumed to be associative and commutative, so that the
value of the expression viovyo---ov; does not dependent on the order of
performing the operations o. Examples of the operation o are the sum (+),
product (-), maximum (max), minimum (min), logical conjunction (A), and
logical disjunction (V).

* The relative power of the variants

As the restrictions of simultaneous access to the same location are relaxed when we
pass from EREW-PRAM to CREW-PRAM and then to CRCW-PRAM, the variants
of PRAM are becoming less and less realistic. On the other hand, as the restrictions
are dropped, it is natural to expect that the variants may be gaining in their power.
So we pose the following question:

Do EREW-PRAM, CREW-PRAM and CRCW-PRAM differ in their power?

The answer is yes, but not too much. The foggy “too much” is clarified in the next
Theorem, where CRCW-PRAM(p) denotes the CRCW-PRAM with p processing
units, and similarly for the EREW-PRAM(p). Informally, the theorem tells us that
by passing from the EREW-PRAM(p) to the “more powerful’ CRCW-PRAM(p)
the parallel execution time of a parallel algorithm may reduce by some factor;
however, this factor is bounded above and, indeed, it is at most of the order O(log p).

Theorem 2.1. Every algorithm for solving a computational problem II on the
CRCW-PRAM(p) is at most O(log p)-times faster than the fastest algorithm for
solving II on the EREW-PRAM(p).

Proof Idea. We first show that CONSISTENT-CRCW-PRAM(p)’s simultaneous
writings to the same location can be performed by EREW-PRAM(p) in O(logp)
steps. Consequently, EREW-PRAM can simulate CRCW-PRAM, with slowdown
factor O(log p). Then we show that this slowdown factor is tight, that is, there exists
a computational problem IT for which the slowdown factor is actually © (logp).
Such a I is, for example, the problem of finding the maximum of n numbers. U

2.3 Multiprocessor models 17

Relevance of the PRAM model

We have explained why the PRAM model is unrealistic in the assumption of an
immediately addressable, unbounded shared memory. Does this necessarily mean
that the PRAM model is irrelevant for the purposes of practical implementation of
parallel computation? The answer depends on what we expect from the PRAM model
or, more generally, how we understand the role of theory.

When we strive to design an algorithm for solving a problem IT on PRAM, our
efforts may not end up with a practical algorithm, ready for solving II. However,
the design may reveal something inherent to IT, namely, that IT is parallelizable.
In other words, the design may detect in I subproblems some of which could,
at least in principle, be solved in parallel. In this case it usually proves that such
subproblems are indeed solvable in parallel on the most liberal (and unrealistic)
PRAM, the CRCW-PRAM.

At this point the importance of Theorem 2.1 becomes apparent: we can replace
CRCW-PRAM by the realistic EREW-PRAM and solve IT on the latter. (All of that
at the cost of a limited degradation in the speed of solving IT.)

In sum, the relevance of PRAM is reflected in the following method:

1. Design a program P for solving IT on the model CRCW-PRAM(p), where p
may depend on the problem IT. Note that the design of P for CRCW-PRAM is
expected to be easier than the design for EREW-PRAM, simply because CRCW-
PRAM has no simultaneous-access restrictions to be taken into account.

2. Run P on EREW-PRAM(p), which is assumed to be able to simulate simultane-
ous accesses to the same location.

3. Use Theorem 2.1 to guarantee that the parallel execution time of P on EREW-
PRAM(p) is at most O(log p)-times higher than it would be on the less realistic
CRCW-PRAM(p).

2.3.2 The Local-Memory Machine

The LMM model has p processing units, each with its own local memory (Fig. 2.4).
The processing units are connected to a common interconnection network. Each
processing unit can access its own local memory directly. In contrast, it can access
a non-local memory (i.e., local memory of another processing unit) only by sending
a memory request through the interconnection network.

The assumption is that all local operations, including accessing the local mem-
ory, take unit time. In contrast, the time required to access a non-local memory
depends on

e the capability of the interconnection network and

e the pattern of coincident non-local memory accesses of other processing units as
the accesses may congest the interconnection network.

18 2 Overview of parallel systems

INTERCONNECTION NETWORK

it 1

Fig. 2.4: The LMM model of parallel computation has p processing units each with
its local memory. Each processing unit directly accesses its local memory and can
access other processing unit’s local memory via the interconnection network.

2.3.3 The Memory-Module Machine

The MMM model (Fig. 2.5) consists of p processing units and m memory modules
each of which can be accessed by any processing unit via a common interconnection
network. There are no local memories to processing units. A processing unit can ac-
cess the memory module by sending a memory request through the interconnection
network.

It is assumed that the processing units and memory modules are arranged in such
a way that—when there are no coincident accesses—the time for any processing
unit to access any memory module is roughly uniform. However, when there are
coincident accesses, the access time depends on
e the capability of the interconnection network and

e the pattern of coincident memory accesses.

0009

INTERCONNECTION NETWORK

Fig. 2.5: The MMM model of parallel computation has p processing units and m
memory modules. Each processing unit can access any memory module via the
interconnection network. There are no local memories to the processing units.

2.4 The impact of communication 19

2.4 The impact of communication

We have seen that both LMM model and MMM model explicitly use interconnec-
tion networks to convey memory requests to the non-local memories (see Fig. 2.4
and Fig. 2.5). In this section we focus on the role of an interconnection network in a
multiprocessor model and its impact on the the parallel time complexity of parallel
algorithms.

2.4.1 Interconnection networks

Since the dawn of parallel computing, the major hallmark of a parallel system have
been the type of the central processing unit (CPU) and the interconnection network.
This is now changing. Recent experiments have shown that execution times of most
real world parallel applications are becoming more and more dependent on the com-
munication time rather than on the calculation time. So, as the number of coop-
erating processing units or computers increases, the performance of interconnec-
tion networks is becoming more important than the performance of the processing
unit. Specifically, the interconnection network has great impact on the efficiency and
scalability of a parallel computer on most real world parallel applications. In other
words, high performance of an interconnection network may ultimately reflect in
higher speedups, because such an interconnection network can shorten the overall
parallel execution time as well as increase the number of processing units that can
be efficiently exploited.

The performance of an interconnection network depends on several factors.
Three of the most important are the routing, the flow-control algorithms, and the
network topology. Here routing is the process of selecting a path for traffic in an
interconnection network; flow control is the process of managing the rate of data
transmission between two nodes to prevent a fast sender from overwhelming a slow
receiver; and network topology is the arrangement of the various elements, such as
communication nodes and channels, of an interconnection network.

For the routing and flow-control algorithms efficient techniques are already
known and used. In contrast, network topologies haven’t been adjusting to changes
in technological trends as promptly as the routing and flow-control algorithms. This
is one reason that many network topologies which were discovered soon after the
very birth of parallel computing are still being widely used. Another reason is
the freedom that end users have when they are choosing the appropriate network
topology for the anticipated usage. (Due to modern standards, there is no such free-
dom in picking or altering routing or flow-control algorithms.) As a consequence,
a further step in performance increase can be expected to come from the improve-
ments in the topology of interconnection networks. For example, such improve-
ments should enable interconnection networks to dynamically adapt to the current
application in some optimal way.

20 2 Overview of parallel systems

2.4.2 Basic properties of interconnection networks

We can classify interconnection networks in many ways and characterize them by
various parameters. For defining most of these parameters, graph theory is the most
elegant mathematical framework. More specifically, an interconnection network can
be modeled as a graph G(N,C), where N is a set of communication nodes and C
is a set of communication links (or, channels) between the communication nodes.
Based on this graph-theoretical view of interconnection networks, we can define
parameters that represent both topological properties and performance properties
of interconnection networks. Let us describe both kinds of properties.

Topological properties of interconnection networks

The most important topological properties of interconnection networks, defined by
graph-theoretical notions, are the

node degree,
regularity,

symmetry,

diameter,

path diversity, and
expansion scalability.

In the following we define each of them and give comments where appropriate:

e The node degree is the number d of channels through which a communication
node is connected to other communication nodes. Notice, that node degree in-
cludes only the ports for the network communication, although a communication
node also needs ports for the connection to the processing element(s) and ports
for service or maintenance channels.

e An interconnection network is said to be regular if all communication nodes
have the same node degree; that is, there is a d > 0 such that every communication
node has node degree d.

e An interconnection network is said to be symmetric if all communication nodes
possess the “same view” of the network; that is, there is a homomorphism that
maps any communication node to any other communication node. In a symmetric
interconnection network, the load can be evenly distributed through all commu-
nication nodes, thus reducing congestion problems. Many real implementations
of interconnection networks are based on symmetric regular graphs because of
their fruitful topological properties that lead to a simple routing and fair load
balancing under the uniform traffic.

e In order to move from a source node to a destination node, a packet must traverse
through a series of elements, such as routers or switches, that together comprise
a path (or, route) between the source and the destination node. The number of
communication nodes traversed by the packet along this path is called the hop

2.4 The impact of communication 21

count. In the best case, two nodes communicate through the path which has the
minimum hop count, /, taken over all paths between the two nodes. Since / may
vary with the source and destination nodes, we also use the average distance,
lavg, which is average [taken over all possible pairs of nodes. An important char-
acteristic of any topology is the diameter, /,,,,, which is the maximum of all the
minimum hop counts, taken over all pairs of source and destination nodes.

e In an interconnection network, there may exist multiple paths between two nodes.
In such case, the nodes can be connected in many ways. A packet starting at
source node will have at its disposal multiple routes to reach the destination
node. The packet can take different routes (or even different continuations of
a traversed part of a route) depending on the current situation in the network. An
interconnection network that has high path diversity offers more alternatives
when packets need to seek their destinations and/or avoid obstacles.

e Scalability is (i) the capability of a system to handle a growing amount of work,
or (ii) the potential of the system to be enlarged to accommodate that growth. The
scalability is important at every level. For example, the basic building block must
be easily connected to other blocks in a uniform way. Moreover, the same build-
ing block must be used to build interconnection networks of different sizes, with
only a small performance degradation for the maximum-size parallel computer.
Interconnection networks have important impact on scalability of parallel com-
puters that are based on the LMM or MMM multiprocessor model. To appreciate
that, note that scalability is limited if node degree is fixed.

Performance properties of interconnection networks

The main performance properties of interconnection networks are the

e channel bandwidth,
e bisection bandwidth, and
e latency.

We now define each of them and give comments where appropriate:

e Channel bandwidth, in short bandwidth, is the amount of data that is, or theo-
retically could be, communicated through a channel in a given amount of time.
In most cases, the channel bandwidth can be adequately determined by using
a simple model of communication which advocates that the communication
time f.,mm, needed to communicate given data through the channel, is the sum
ts + 14 of the start-up time 7, needed to set-up the channel’s software and hard-
ware, and the data transfer time 74, where #4 = mt,,, the product of the number
of words making up the data, m, and the transfer time per one word, #,,. Then
the channel bandwidth is 1/z,.

e A given interconnection network can be cut into two (almost) equal-sized compo-
nents. Generally, this can be done in many ways. Given a cut of the interconnec-
tion network, the cut-bandwidth is the sum of channel bandwidths of all chan-

22 2 Overview of parallel systems

nels connecting the two components. The smallest cut-bandwidth is called the
bisection bandwidth (BBW) of the interconnection network. The correspond-
ing cut is the worst-case cut of the interconnection network. Occasionally, the
bisection bandwidth per node (BBWN) is needed; we define it as BBW divided
by |N|, the number of nodes in the network. Of course, both BBW and BBWN
depend on the topology of the network and the channel bandwidths. All in all,
increasing the bandwidth of the interconnection network can have as beneficial
effects as increasing the CPU clock (recall Sect. 2.4.1).

e Latency is the time required for a packet to travel from the source node to the
destination node. Many applications, especially those using short messages, are
latency sensitive in the sense that efficiencies of these applications strongly de-
pend on the latency. For such applications, their software overhead may become a
major factor that influences the latency. Ultimately, the latency is bounded below
by the time in which light traverses the physical distance between two nodes.

The transfer of data from a source node to a destination node is measured in
terms of various units which are defined as follows:

e packet, the smallest amount of data that can be transferred by hardware,

e FLIT (flow control digit), the amount of data used to allocate the buffer space in
some flow-control techniques;

e PHIT (physical digit), the amount of data that can be transferred in a single cycle.

These units are closely related to the bandwidth and to the latency of the network.

Mapping interconnection networks into real space

An interconnection network of any given topology, even if defined in an abstract

higher-dimensional space, eventually has to be mapped into the physical, three-

dimensional (3D) space. This means that all the chips and printed-circuit boards
making up the interconnection network must be allocated physical places.

Unfortunately, this is not a trivial task. The reason is that mapping usually has
to optimize certain, often contradicting, criteria while at the same time respecting
various restrictions. Here are some examples:

e One such restriction is that the numbers of I/O pins per chip or per printed-
circuit board are bounded above. A usual optimization criterion is that, in order
to prevent the decrease of data rate, cables be as short as possible. But due to
significant sizes of hardware components and due to physical limitations of 3D-
space, mapping may considerably stretch certain paths, i.e., nodes that are close
in higher-dimensional space may be mapped to distant locations in 3D-space.

e We may want to map processing units that communicate intensively as close
together as possibly, ideally on the same chip. In this way we may minimize
the impact of communication. Unfortunately, the construction of such optimal
mappings is NP-hard optimization problem.

e An additional criterion may be that the power consumption is minimized.

2.4 The impact of communication 23

2.4.3 Classification of interconnection networks

Interconnection networks can be classified into direct and indirect networks. Here
are the main properties of each kind.

Direct networks

A network is said to be direct when each node is directly connected to its neighbors.
How many neighbors can a node have? In a fully connected network, each of the
n = |N| nodes is directly connected to /! the other nodes, so each node has n— 1
neighbors. (See Fig.2.6.)

Fig. 2.6: A fully connected network with n = 8 nodes.

Since such a network has Jn(n— 1) = @(n?) direct connections, it can only be
used for building systems with small numbers n of nodes. When 7 is large, each node
is directly connected to a proper subset of other nodes, while the communication to
the remaining nodes is achieved by routing messages through intermediate nodes.
An example of such a direct interconnection network is the hypercube; see Fig. 2.13
on p. 29.

Indirect networks

An indirect network connects the nodes through switches. Usually, it connects pro-
cessing units on one end of the network and memory modules on the other end of the
network. The simplest circuit for connecting processing units to memory modules is
the fully connected crossbar switch (Fig.2.7). Its advantage is that it can establish
a connection between processing units and memory modules in an arbitrary way.

24 2 Overview of parallel systems

99—

o
@

PROCESSING UNITS

) 69 69 69 69 69 (9 69

MEMORY MODULES

Fig. 2.7: A fully connected crossbar switch connecting 8 nodes to 8 nodes.

At each intersection of a horizontal and vertical line is a crosspoint. A crosspoint
is a small switch that can be electrically opened (o) or closed (e), depending on
whether the horizontal and vertical lines are to be connected or not. In Fig. 2.7 we
see eight crosspoints closed simultaneously, allowing connections between the pairs
(P1, My), (P2, M3), (P3, Ms), (P4, My), (Ps, M3), (Ps, Mg), (P7, Mg) and (Pg, M7) at
the same time. Many other combinations are also possible.

Unfortunately, the fully connected crossbar has too large complexity to be used
for connecting large numbers of input and output ports. Specifically, the number of
crosspoints grows as pm, where p and m are the numbers of processing units and
memory modules, respectively. For p = m = 1000 this amounts to a million cross-
points which is not feasible. (Nevertheless, for medium-sized systems, a crossbar
design is workable, and small fully connected crossbar switches are used as basic
building blocks within larger switches and routers.)

This is why indirect networks connect the nodes through many switches. The
switches themselves are usually connected to each other in stages, using a regular
connection pattern between the stages. Such indirect networks are called the multi-
stage interconnection networks; we will describe them in more detail on p. 30.

Indirect networks can be further classified as follows:

e A non-blocking network can connect any idle source to any idle destination,
regardless of the connections already established across the network. This is due
to the network topology which ensures the existence of multiple paths between
the source and destination.

e A blocking rearrangeable networks can rearrange the connections that have
already been established across the network in such a way that a new connec-
tion can be established. Such a network can establish all possible connections
between inputs and outputs.

2.4 The impact of communication 25

e In ablocking network, a connection that has been established across the network
may block the establishment of a new connection between a source and desti-
nation, even if the source and destination are both free. Such a network cannot
always provide a connection between a source and an arbitrary free destination.

The distinction between direct and indirect networks is less clear nowadays. Ev-
ery direct network can be represented as an indirect network since every node in
the direct network can be represented as a router with its own processing element
connected to other routers. However, for both direct and indirect interconnection
networks, the full crossbar, as an ideal switch, is the heart of the communications.

2.4.4 Topologies of interconnection networks

It is not hard to see that there exist many network topologies capable of intercon-
necting p processing units and m memory modules (see Exercises). However, not
every network topology is capable of conveying memory requests quickly enough
to efficiently back up parallel computation. Moreover, it turns out that the network
topology has a large influence on the performance of the interconnection network
and, consequently, of parallel computation. In addition, network topology may incur
considerable difficulties in the actual construction of the network and its cost.

In the last few decades, researchers have proposed, analyzed, constructed, tested,
and used various network topologies. We now give an overview of the most no-
table or popular ones: the bus, the mesh, the 3D-mesh, the torus, the hypercube, the
multistage network and the fat tree.

The bus

This is the simplest network topology. See Fig.2.8. It can be used in both local-
memory machines (LMMs) and memory-module machines (MMMEs). In either case,
all processing units and memory modules are connected to a single bus. In each step,
at most one piece of data can be written onto the bus. This can be a request from a
processing unit to read or write a memory value, or it can be the response from the
processing unit or memory module that holds the value.

= 0006

Fig. 2.8: The bus is the simplest network topology.

26 2 Overview of parallel systems

When in a memory-module machine a processing unit wants to read a memory
word, it must first check to see if the bus is busy. If the bus is idle, the processing unit
puts the address of the desired word on the bus, issues the necessary control signals,
and waits until the memory puts the desired word on the bus. If, however, the bus
is busy when a processing unit wants to read or write memory, the processing unit
must wait until the bus becomes idle. This is where drawbacks of the bus topology
become apparent. If there is a small number of processing units, say two or three,
the contention for the bus is manageable; but for larger numbers of processing units,
say 32, the contention becomes unbearable because most of the processing units
will wait most of the time.

To solve this problem we add a local cache to each processing unit. The cache
can be located on the processing unit board, next to the processing unit chip, inside
the processing unit chip, or some combination of all three. In general, caching is
not done on an individual word basis but on the basis of blocks that consist of, say,
64 bytes. When a word is referenced by a processing unit, the word’s entire block
is fetched into the local cache of the processing unit. After that many reads can be
satisfied out of the local cache. As a result, there will be less bus traffic, and the
system will be able to support more processing units.

We see, that the practical advantages of using buses are that (i) they are simple
to build, and (ii) it is relatively easy to develop protocols that allow processing units
to cache memory values locally (because all processing units and memory modules
can observe the traffic on the bus). The obvious disadvantage of using a bus is that
the processing units must take turns accessing the bus. This implies that as more
processing units are added to a bus, the average time to perform a memory access
grows proportionately with the number of processing units.

The ring

The ring is among the simplest and the oldest interconnection networks. Given n
nodes, they are arranged in linear fashion so that each node has a distinct label i,
where 0 < i < n— 1. Every node is connected to two neighbors, one to the left and
one to the right. Thus, a node labeled i is connected to the nodes labeled i + 1 modn
and i — I modn (see Fig. 2.9). The ring is used in local-memory machines (LMMs).

Fig. 2.9: A ring. Each node represents a processor unit with local memory

2.4 The impact of communication 27

2D-mesh

A two-dimensional mesh is an interconnection network that can be arranged in rect-
angular fashion, so that each switch in the mesh has a distinct label (i, j), where
0<i<X—1and 0< j<Y —1. (See Fig.2.10.) The values X and Y determine
the lengths of the sides of the mesh. Thus, the number of switches in a mesh is XY.
Every switch, except those on the sides of the mesh, is connected to six neighbors:
one to the north, one to the south, one to the east, and one to the west. So a switch
labeled (i, j), where 0 < i <X —l and 0 < j <Y — 1, is connected to the switches
labeled (i, j+1), (i,j— 1), (i+1,j),and (i — 1,).

Meshes typically appear in local-memory machines (LMMs): a processing unit
(along with its local memory) is connected to each switch, so that remote memory
accesses are made by routing messages through the mesh.

Fig. 2.10: A 2D-mesh. Each node represents a processor unit with local memory

2D-torus (toroidal 2D-mesh)

In the 2D-mesh, the switches on the sides have no connections to the switches on
the opposite sides. The interconnection network that compensates for this is called
the toroidal mesh, or just torus when d = 2. (See Fig.2.11.) Thus, in torus every
switch located at (i, j) is connected to four other switches, which are located at
(i,j+1modY), (i,j—1modY), (i+1modX, j) and (i — I modX, j).

Toruses appear in local-memory machines (LMMs): to each switch is connected
a processing unit with its local memory. Each processing unit can access any remote
memory by routing messages through the torus.

28 2 Overview of parallel systems

Fig. 2.11: A 2D-torus. Each node represents a processor unit with local memory

3D-mesh and 3D-torus

A three-dimensional mesh is similar to two-dimensional. (See Fig.2.12.) Now each
switch in a mesh has a distinct label (i, j,k), where 0 <i <X —1,0<j<Y -1,
and 0 < k < Z—1. The values X, Y and Z determine the lengths of the sides of the
mesh, so the number of switches in it is XYZ. Every switch, except those on the
sides of the mesh, is now connected to six neighbors: one to the north, one to the
south, one to the east, one to the west, one up, and one down. Thus, a switch labeled
(i,j,k), where 0 <i<X—1,0< j<Y¥Y—1and 0 <k <Z—1,is connected to the
switches (i, j+1,k), (i,j—1,k), (i+1,j,k), (i—1, j,k), (i,j,k+1) and (i, j,k—1).
Such meshes typically appear in LMMs.

We can expand a 3D-mesh into a toroidal 3D-mesh by adding edges that connect
nodes located at the opposite sides of the 3D-mesh. (Picture omitted.) A switch
labeled (i, j,k) is connected to the switches (i + 1 modX, j,k), (i — ImodX, j,k),
(i,j+ 1modY,k), (i, j — 1modY,k), (i, j,k+ 1modZ) and (i, j,k— 1modZ).

3D-meshes and toroidal 3D-meshes are used in local-memory machines (LMMs).

A

J

Fig. 2.12: A 3D-mesh. Each node represents a processor unit with local memory

2.4 The impact of communication 29

Hypercube

A hypercube is an interconnection network that has n = 2% nodes, for some b > 0.

(See Fig.2.13.) Each node has a distinct label consisting of b bits. Two nodes are

connected by a communication link if an only if their labels differ in precisely one

bit location. Hence, each node of a hypercube has b = log, n neighbors.
Hypercubes are used in local-memory machines (LMMs).

i

Fig. 2.13: A hypercube. Each node represents a processor unit with local memory

* The k-ary d-cube family of network topologies

Interestingly, the ring, the 2D-torus, the 3D-torus, the hypercube, and many other
topologies all belong to one larger family of k-ary d-cube topologies.

Given k > 1 and d > 1, the k-ary d-cube topology is a family of certain “gridlike”
topologies that share the fashion in which they are constructed. In other words, the
k-ary d-cube topology is a generalization of certain topologies. The parameter d is
called the dimension of these topologies and & is their side length, the number of
nodes along each of the d directions. The fashion in which the k-ary d-cube topology
is constructed is defined inductively (on the dimension d):

A k-ary d-cube is constructed from k other k-ary (d — 1)-cubes
by connecting the nodes with identical positions into rings.

This inductive definition enables us to systematically construct actual k-ary d-cube
topologies and analyze their topological and performance properties. For instance,
we can deduce that a k-ary d-cube topology contains n = k¢ communication nodes
and ¢ = dn = dk? communication links, while the diameter is /,zy = % and the
average distance between two nodes is l;,; = l”% (if k even) or I, = d (% — ﬁ)
(if k odd). Unfortunately, in spite of their simple recursive structure, the k-ary d-
cubes have a poor expansion scalability.

30 2 Overview of parallel systems

Multistage network

A multistage network connects one set of switches, called the input switches, to an-
other set, called the output switches. The network achieves this through a sequence
of stages, where each stage consists of switches. (See Fig.2.14.) In particular, the
input switches form the first stage, and the output switches form the last stage. The
number d of stages is called the depth of the multistage network. Usually, a multi-
stage network allows to send a peace of data from any input switch to any output
switch. This is done along a path that traverses all the stages of the network in order
from 1 to d. There are many different multistage network topologies.

Multistage networks are frequently used in memory-module machines (MMMs);
there, processing units are attached to input switches, and memory modules are
attached to output switches.

PROCESSING UNITS

C ‘¢' ~. ‘. Ist stage
= 4»4» <]
><><><
=S
‘ >) 2nd stage

D C D 3rd stage
D) g g) 4th stage
() (49 (5 (4 () (4

MEMORY MODULES

Fig. 2.14: A 4-stage interconnection network capable of connecting 8 processing
units to 8§ memory modules. Each switch O can establish a connection between
arbitrary pair of input and output channels.

2.4 The impact of communication 31

Fat tree

A fat tree is a network whose structure is based on that of a tree. (See Fig.2.15.)
However, in contrast to the usual tree where edges have the same thickness, in a fat
tree, edges that are nearer the root of the tree are "fatter" (thicker) than edges that
are further down the tree. The idea is that each node of a fat tree may represent many
network switches, and each edge may represent many communication channels. The
more channels an edge represents, the larger is its capacity and the fatter is the edge.
So the capacities of the edges near the root of the fat tree are much larger than the
capacities of the edges near the leaves.

Fat trees can be used to construct local-memory machines (LMMs): processing
units along with their local memories are connected to the leaves of the fat tree, so
that a message from one processing unit to another first travels up the tree to the
least common ancestor of the two processing units and then down the tree to the
destination processing unit.

(A £
[RESN
RN

i A

A SN

OO
A
QO O O O OO
EEEEEEEEEEEEEE®E

PROCESSING UNITS WITH LOCAL MEMORIES

Fig. 2.15: A fat-tree. Each switch O can establish a connection between arbitrary
pair of incident channels.

32 2 Overview of parallel systems

2.5 Parallel computational complexity

In order to examine the complexity of computational problems and their parallel
algorithms, we need some new basic notions. We will now introduce a few of these.

2.5.1 Problem instances and their sizes

Let IT be a computational problem. In practice we are usually confronted with a
particular instance of the problem II. The instance is obtained from IT by replacing
the variables in the definition of IT with actual data. Since this can be done in many
ways, each way resulting in a different instance of I, we see that the problem IT
can be viewed as a set of all the possible instances of I1.

To each instance w of I we can associate a natural number which we call the
size of the instance 7 and denote by

size(T).

Informally, size(7) is roughly the amount of space needed to represent 7 in some
way accessible to a computer. and, in practice, depends on the problem II.

For example, if we choose II = “sort a given finite sequence of numbers,” then
m="“sort 09274563 is an instance of II and size(n) = 8, the number of num-
bers to be sorted. If, however, IT = “Is the n a prime number?”, then “Is the 17 a
prime number?” is an instance 7 of IT with size(7) = 5, the numebr of bits in the
binary representation of 17. And if IT is a problem about graphs, then the size of an
instance of IT is often defined as the number of nodes in the actual graph.

Why do we need sizes of instances? When we examine how fast an algorithm A
for a problem IT is, we usually want to know how A’s execution time depends on the
size of instances of IT that are input to A. More precisely, we want to find a function

T(n)

whose value at n will represent the execution time of A on instances of size n.
As a matter of fact, we are mostly interested in the rate of growth of 7'(n), that
is, how quickly T (n) grows when n grows.

For example, if we find that 7' (n) = n, then A’s execution time is a linear function
of n, so if we double the size of problem instances, A’s execution time doubles too.
More generally, if we find that 7'(n) = n“™" (const > 1), then A’s execution time is
a polynomial function of n; if we now double the size of problem instances, then
A’s execution time multiplies by 2°°. If, however, we find that T (n) = 2", which is
an exponential function of n, then things become dramatic: doubling the size n of
problem instances causes A to run 2"-times longer! So, doubling the size from 10 to
20 and then to 40 and 80, the execution time of A increases 2!° (= thousand) times,
then 220 (~ million) times, and finally 2*° (= thousand billion) times.

2.5 Parallel computational complexity 33

2.5.2 Number of processing units vs. size of problem instances

In Section 2.1, we defined the parallel execution time Ty, speedup S, and efficiency
E of a parallel program P for solving a problem IT on a computer C(p) with p
processing units. Let us augment these definitions so that they will involve the size
n of the instances of IT. As before, the program P for solving IT and the computer
C(p) are tacitly understood, so we omit the corresponding indexes to simplify the
notation. We obtain the parallel execution time Tpar(n), speedup S(n), and efficiency
E(n) of solving I1’s instances of size n:

S(n) el

So let us pick an arbitrary zn and suppose that we are only interested in solving in-
stances of IT whose size is n. Now, if there are foo few processing units in C(p), i.e.,
p is too small, the potential parallelism in the program P will not be fully exploited
during the execution of P on C(p), and this will reflect in low speedup S(n) of P.
Likewise, if C(p) has roo many processing units, i.e., p is too large, some of the
processing units will be idling during the execution of the program P, and again this
will reflect in low speedup of P. This raises the following question that obviously
deserves further consideration:

How many processing units p should have C(p),
so that, for all instances of I1 of size n, the speedup of P will be maximal?

It is reasonable to expect that the answer will depend somehow on the type of C, that
is, on the multiprocessor model (see Sect. 2.3) underlying the parallel computer C.
Until we choose the multiprocessor model, we may not be able to obtain answers
of practical value to the above question. Nevertheless, we can make some general
observations that hold for any type of C. First observe that, in general, if we let n
grow then p must grow too; otherwise, p would eventually become too small relative
to n, thus making C(p) incapable of fully exploiting the potential parallelism of P.
Consequently, we may view p, the number of processing units that are needed to
maximize speedup, to be some function of n, the size of the problem instance at
hand. In addition, intuition and practice tell us that a larger instance of a problem
requires at least as many processing units as required by a smaller one. In sum, we
can set

p=f(n),

where f : N — N is some nondecreasing function, i.e., f(n) < f(n+ 1), for all n.

34 2 Overview of parallel systems

Second, let us examine how quickly can f(n) grow as n grows? Suppose that
f(n) grows exponentially. Well, researchers have proved that if there are expo-
nentially many processing units in a parallel computer then this necessarily incurs
long communication paths between some of them. Since some communicating pro-
cessing units become exponentially distant from each other, the communication
times between them increase correspondingly and, eventually, blemish the theo-
retically achievable speedup. The reason for all of that is essentially in our real,
3-dimensional space, because

e cach processing unit and each communication link occupies some non-zero vol-
ume of space, and

o the diameter of the smallest sphere containing exponentially many processing
units and communication links is also exponential.

In sum, exponential number of processing units is impractical and leads to theoreti-
cally tricky situations.

Suppose now that f(n) grows polynomially, i.e., f is a polynomial function of .
Calculus tells us that if poly(n) and exp(n) are a polynomial and an exponential
function, respectively, then there is an n’ > 0 so that poly(n) < exp(n) for all n > n’;
that is, poly(n) is eventually dominated by exp(n). In other words, we say that
a polynomial function poly(n) asymptotically grows slower than an exponential
function exp(n). Note that poly(n) and exp(n) are two arbitrary functions of n.

So we have f(n) = poly(n) and consequently the number of processing units is

p = poly(n),

where poly(n) is a polynomial function of n. Here we tacitly discard polynomial
functions of “unreasonably” large degrees, e.g. n'%. Indeed, we are hoping for much
lower degrees, such as 2, 3, 4 or so, which will yield realistic and affordable numbers
p of processing units.

In summary, we have obtained an answer to the question above which—because
of the generality of C and II, and due to restrictions imposed by nature and
economy—falls short of our expectation. Nevertheless, the answer tells us that p
must be some polynomial function (of a moderate degree) of n.

We will apply this to Theorem 2.1 (p. 16) right away in the next section.

2.5.3 The class NC of efficiently parallelizable problems

Let P be an algorithm for solving a problem IT on CRCW-PRAM(p). According
to Theorem 2.1, the execution of P on EREW-PRAM(p) will be at most O(log p)-
times slower than on CRCW-PRAM(p). Let us use the observations from previous
section and require that p = poly(n). It follows that log p = logpoly(n) = O(logn).
To appreciate why, see Exercises in Sect. 2.7.

2.5 Parallel computational complexity 35

Combined with Theorem 2.1 this means that for p = poly(n) the execution of P on
EREW-PRAM(p) will be at most O(logn)-times slower than on CRCW-PRAM(p).

But this also tells us that, when p = poly(n), choosing a model from the models
CRCW-PRAM(p), CREW-PRAM(p), and EREW-PRAM(p) to execute a program
affects the execution time of the program by a factor of the order O(logn), where n
is the size of the problem instances to be solved. In other words:

The execution time of a program does not vary too much
as we choose the variant of PRAM that will execute it.

This motivates us to introduce a class of computational problems containing
all the problems that have “fast” parallel algorithms requiring “reasonable” num-
bers of processing units. But what do “fast” and “reasonable” really mean? We
have seen in previous section that the number of processing units is reasonable
if it is polynomial in n. As for the meaning of “fast”, a parallel algorithm is con-
sidered to be fast if its parallel execution time is polylogarithmic in n. That is fine,
but what does now “polylogarithmic” mean? Here is the definition.

Definition 2.1. A function is polylogarithmic in 7 if it is polynomial in logn,
i.e., if itis ag(logn)* + a1 (logn)*=! +--- 4+ ay (logn)' +ag, for some k > 1.

We usually write log’n instead of (logn)’ to avoid clustering of parentheses. The
sum alogn+ay_1og " 'n+- - - +ag is asymptotically bounded above by O(logk n).
To see why, consider Exercises in Sect. 2.7.

We are ready to formally introduce the class of problems we are interested in.

Definition 2.2. Let NC be the class of computational problems solvable in
polylogarithmic time on PRAM with polynomial number of processing units.

If a problem IT is in the class NC, then it is solvable in polylogarithmic parallel time
with polynomially many processing units regardless of the variant of PRAM used
to solve I1. In other words, the class NC is robust, insensitive to the variations of
PRAM. How can we see that? If we replace one variant of PRAM with another, then
by Theorem 2.1 IT’s parallel execution time O(logk n) can only increase by a factor
O(logn) to O(logk™! n) which is still polylogarithmic.

In sum, NC is the class of efficiently parallelizable computational problems.

36 2 Overview of parallel systems

Example 2.1. Suppose that we are given the problem II = “add n given numbers.”
Then 7 = “add numbers 10, 20, 30, 40, 50, 60, 70, 80” is an instance of size(7) = 8
of the problem II. Let us now focus on all instances of size 8, that is, instances of
the form 7 = “add numbers a;,ay,a3,aq4,as,aq,a7,ag.”

The fastest sequential algorithm for computing the sum a; +a +a3 + a4 +as +
ag + a7 + ag requires Tseq(8) =7 steps, with each step adding the next number to the
sum of the previous ones.

In parallel, however, the numbers ay,a»,as,as,as,aq,a7,ag can be summed in
just T, (8) = 3 parallel steps using % = 4 processing units which communicate in a
tree-like pattern as depicted in Fig. 2.16. In the first step, s = 1, each processing unit
adds two adjacent input numbers. In each next step, s > 2, two adjacent previous
partial results are added to produce a new, combined partial result. This combining
of partial results in a tree-like manner continues until 2°*! > 8. In the first step,
s =1, all of the four processing units are engaged in computation; in step s = 2, two
processing units (P3 and Py4) start idling; and in step s = 3, three processing units
(P2, P3 and Py) are idle.

In general, instances 7r(n) of IT can be solved in parallel time Ty, = [logn]| =
O(logn) with [5] = O(n) processing units communicating in similar tree-like pat-

terns. Hence, IT € NC and the associated speedup is S(n) = ;‘g;’; =0(5g) O
or

a, a, as n as ag ay ag
S O B) OO
a;ta, aztay as +ax a;tag
Q
ajtaytastay astagtastag

a;taytasytaytastagta;tag

Fig. 2.16: Adding eight numbers in parallel with four processing units.

Notice that, in the above example, the efficiency of the tree-like parallel addition
of n numbers is quite low, E(n) = 0(@). The reason for this is obvious: only
half of the processing units engaged in a parallel step s will be engaged in the next
parallel step s+ 1, while all the other processing units will be idling until the end of

computation. This issue will be addressed in the next section by Brent’s Theorem.

2.6 Laws and theorems of parallel computation 37

2.6 Laws and theorems of parallel computation

In this section we describe the Brent’s theorem, which is useful in estimating the
lower bound on the number of processing units that are needed to keep a given
parallel time complexity. Then we focus on the Amdahl’s law, which is used for
predicting the theoretical speedup of a parallel program whose different parts allow
different speedups.

2.6.1 Brent’s theorem

Brent’s theorem enables us to quantify the performance of a parallel program when
the number of processing units is reduced.

Let M be a PRAM of an arbitrary type and containing unspecified number of
processing units. More specifically, we assume that the number of processing units
is always sufficient to cover all the needs of any parallel program.

When a parallel program P is run on M, different numbers of operations of P are
performed, at each step, by different processing units of M. Suppose that a total of

w

operations are performed during the parallel execution of P on M (W is also called
the work of P), and denote the parallel runtime of P on M by

Toar, m(P).
Let us now reduce the number of processing units of M to some fixed number
p
and denote the obtained machine with the reduced number of processing units by
R.

R is a PRAM of the same type as M which can use, in every step of its operation, at
most p processing units.

Let us now run P on R. If p processing units cannot support, in every step of the
execution, all the potential parallelism of P, then the parallel runtime of P on R,

Tpar, R (P))

may be larger than T, m(P). Now the question raises: Can we quantify Ty, g (P)?
The answer is given by Brent’s Theorem which states that

Tk (P) = o(v;/ + TpaI,M(P)> .

38 2 Overview of parallel systems

Proof. Let W; be the number of P’s operations performed by M in ith step and 7 :=
Tour, m(P). Then Y./ W; = W. To perform the W; operations of the ith step of M, R

needs [%] steps. So the number of steps which R makes during its execution of P
i T R (P) = XL [] < XL, (% +1) < LEL Wit T =Y 4 Ty m(P). O

Applications of Brent’s theorem

Brent’s Theorem is useful when we want to reduce the number of processing units as
much as possible while keeping the parallel time complexity. For example, we have
seen in Example 2.1 on p. 36 that we can sum up n numbers in parallel time O(logn)
with O(n) processing units. Can we do the same with asymptotically less processing
units? Yes, we can. Brent’s Theorem tells us that O(n/logn) processing units suffice
to sum up n numbers in O(logn) parallel time. See Exercises in Sect. 2.7.

2.6.2 Amdahl’s law

Intuitively, we would expect that doubling the number of processing units should
halve the parallel execution time; and doubling the number of processing units again
should halve the parallel execution time once more. In other words, we would expect
that the speedup from parallelization is a linear function of the number of processing
units (see Fig. 2.17).

16 [speedup

processing units

— &8 ®© v o ¥ ®
D - |

256

]
)

Fig. 2.17: Expected (linear) speedup as a function of the number of processing units.

However, linear speedup from parallelization is just a desirable optimum which is
not very likely to become a reality. Indeed, in reality very few parallel algorithms
achieve it. Most of parallel programs have a speedup which is near-linear for small
numbers of processing elements, and then flattens out into a constant value for large
numbers of processing elements (see Fig. 2.18).

2.6 Laws and theorems of parallel computation 39

16 [speedup

processing units

— a8 ®© v O ¥ ® © o
—~ cn O a w»n =
- a n

Fig. 2.18: Actual speedup as a function of the number of processing units.

Setting the stage

How can we explain this unexpected behavior? The clues for the answer will be
obtained from two simple examples.

e FExample 1. Let P be a sequential program processing files from disk as follows:
— Pis asequence of two parts, P = P P»;
— P; scans the directory of the disk, creates a list of file names, and hands the
list over to P»;
— P, passes each file from the list to the processing unit for further processing.

Note: P; cannot be sped up by adding new processing units, because scanning the
disk directory is intrinsically sequential process. In contrast, P> can be sped up by
adding new processing units; for example, each file can be passed to a separate
processing unit. In sum, a sequential program can be viewed as a sequence of
two parts that differ in their parallelizability, i.e., amenability to parallelization.

e Example 2. Let P be as above. Suppose that the (sequential) execution of P takes
20 minutes, where the following holds (see Fig. 2.19):

— the non-parallelizable P runs 2 minutes;
— the parallelizable P> runs /8 minutes.

Note: since only P> can benefit from additional processing units, the parallel
execution time Tieq (P) of the whole P cannot be less than the time Tseq(Pl) taken
by the non-parallelizable part P; (that is, 2 minutes), regardless of the number
of additional processing units engaged in the parallel execution of P. In sum, if
parts of a sequential program differ in their potential parallelisms, they differ in
their potential speedups from the increased number of processing units, so the
speedup of the whole program will depend on their sequential runtimes.

40 2 Overview of parallel systems

Py)
d
?2“ 18

Fig. 2.19: P consists of a non-parallelizable P; and a parallelizable . On one pro-
cessing unit, P; runs 2 minutes and P runs 18 minutes.

The clues that the above examples brought to light are recapitulated as follows:
In general, a program P executed by a parallel computer can be split into two parts,

e part P; which does not benefit from multiple processing units, and
e part P> which does benefit from multiple processing units;

e besides P»’s benefit, also the sequential execution times of P; and P influence
the parallel execution time of the whole P (and, consequently, P’s speedup).

Derivation

We will now assess quantitatively how the speedup of P depends on P;’s and P>’s
sequential execution times and their amenability to parallelization and exploitation
of multiple processing units.

Let T;q(P) be the sequential execution time of P. Because P = P P, a sequence
of parts P; and P>, we have

T;eq(P) - Y;eq(Pl)+];eq(P2)a

where Tieq(P1) and Tieq(P>) are the sequential execution times of P; and P», respec-
tively (see Fig.2.20).

P Py
"
Tseq(Pl) Tseq(P2)

Fig. 2.20: P consists of a non-parallelizable P; and a parallelizable P. On a single
processing unit Py requires Tieq(Py) time and P> requires Tyeq(P2) time to complete.

2.6 Laws and theorems of parallel computation 41

When we actually employ additional processing units in the parallel execution of
P, it is the execution of P, that is sped up by some factor s > 1, while the execution of
Py does not benefit from additional processing units. In other words, the execution
time of P is reduced from Tieq(P2) to %Tseq(Pz), while the execution time of P,
remains the same, Tyq(P1). So, after the employment of additional processing units
the parallel execution time Ticq(P) of the whole program P is

1
Toar(P) = Tieq(P1) + ;Tseq(PZ)-
The speedup S(P) of the whole program P can now be computed from definition,

Tieq(P)

S(P) = TuP)

We could stop here; however, it is usual to express S(P) in terms of b, the fraction
of Tieq(P) during which parallelization of P is beneficial. In our case

Tseq (P 2)
Teeq(P)

b=

Plugging this in the expression for S(P), we finally obtain the Amdahl’s Law

1

S(P) = ——.
) 1-b+2

Some comments on Amdahl’s law

Strictly speaking, the speedup in the Amdahl’s Law is a function of three variables,
P, b and s, so it would be more appropriately denoted by S(P,b,s). Here b is the
fraction of the time during which the sequential execution of P can benefit from
multiple processing units. If multiple processing units are actually available and
exploited by P, the part of P that exploits them is sped up by the factor s > 1. Since
s is only the speedup of a part of the program P, the speedup of the whole P cannot
be larger than s; specifically, it is given by S(P) of the Amdahl’s Law.

From the Amdahl’s Law we see that

which tells us that a small part of the program which cannot be parallelized will limit
the overall speedup available from parallelization. For example, the overall speedup
S that the program P in Fig. 2.19 can possibly achieve by parallelizing the part P, is

bounded above by S < 1 Le =10.
20

42 2 Overview of parallel systems

Note that in the derivation of the Amdahl’s Law nothing is said about the size of
the problem instance solved by the program P. It is implicitly assumed that the prob-
lem instance remains the same, and that the only thing we carry out is parallelization
of P and then application of the parallelized P on the same problem instance. Thus,
Amdahl’s law only applies to cases where the size of the problem instance is fixed.

Amdahl’s law at work

Suppose that 70% of a program execution can be sped up if the program is paral-
lelized and run on 16 processing units instead of one. What is the maximum speedup
that can be achieved by the whole program? What is the maximum speedup if we
increase the number of processing units to 32, then to 64, and then to 1287

In this case we have b = 0.7, the fraction of the sequential execution that can be
parallelized; and 1 — b = 0.3, the fraction of calculation that cannot be parallelized.
The speedup of the parallelizable fraction is s. Of course, s < p, where p is the
umber of processing units. By Amdahl’s Law the speedup of the whole program is

1 1 1

= = < =291
1-b+2 03+% " 0344

If we double the number of processing units to 32 we find that the maximum
achievable speedup is 3.11:

1 1 1
= = <
b 0.7 0.7
l—b—‘rE 03+T 0.34‘37

=3.11,

and if we double it once again to 64 processing units, the maximum achievable
speedup becomes 3.22:

1 1 1

= = < - 3.22.
b 0.7 0.7
1—b+§ 0.3+T 0.3"‘1‘@

Finally, if we double the number of processing units even to 128, the maximum
speedup we can achieve is

1 1 1
- =327,

p— = <
b 0.7 0.
17b+§ 0'3+T 0.3+m

In this case doubling the processing power only slightly improves the speedup.
Therefore, using more processing units is not necessarily the optimal approach.

Note that this complies with actual speedups of realistic programs as we have
depicted in Fig.2.18.

2.6 Laws and theorems of parallel computation 43

* A generalization of Amdahl’s law

Until now we assumed that there are just two parts of of a given program, of which
one cannot benefit from multiple processing units and the other can. We now assume
that the program is a sequence of three parts, each of which could benefit from
multiple processing units. Our goal is to derive the speedup of the whole program
when the program is executed by multiple processing units.

Py Py Py

P []

TP TPy TPy

seq seq
Fig. 2.21: P consists of three differently parallelizable parts.

So let P = P P, P; be a program which is a sequence of three parts P;, P, and Ps.
See Fig.2.21. Let Tseq(P1) be the time during which the sequential execution of
P spends executing part Py. Similarly we define Tseq(P>) and Tseq(P3). Then the
sequential execution time of P is

Tseq(P) = Tseq(P1) + Tseq(P2) + Tseq(P3)-

But we want to run P on a parallel computer. Suppose that the analysis of P
shows that P; could be parallelized and sped up on the parallel machine by factor
s1 > 1. Similarly, P and P; could be sped up by factors s, > 1 and s3 > 1, respec-
tively. So we parallelize P by parallelizing each of the three parts Pj, P>, and P,
and run P on the parallel machine. The parallel execution of P takes Tpar(P) time,
where Tpar(P) = Tpar(P]) + Tpar(Pz) + Tpar(P3). But Tpa_r(Pl) = %Tseq(Pl), and
similarly for Tpar(P2) and Tpar(Ps). It follows that

1 1 1
Toar(P) = —T; P, —Tseq (P — T P;).
par(P) 5 seq(1)‘i‘s2 seq(2)+S3 seq(Ps)

Tieq(P)
Tpar (P) ’
We can obtain a more informative expression for S(P). Let b; be the fraction of
Tseq(P) during which the sequential execution of P executes P;; thatis, by = ?L(I;l))'
seq
Similarly we define b, and b3. Applying this in the definition of S(P) we obtain

_ Tseq(P) 1
Tpar(P) %‘ + % + %

Now the speedup of P can easily be computed from its definition, S(P) =

S(P)

Generalization to programs which are sequences of arbitrary number of parts P; is
straightforward. In reality, programs typically consist of several parallelizable parts
and several non-parallelizable (serial) parts. We easily handle this by setting s; > 1.

44

2 Overview of parallel systems

2.7 Exercises

. How many pairwise interactions must be computed when solving the n-body

problem if we assume that interactions are symmetric?

. Give an intuitive explanation why Tpar < Tseq < p-Tpar, where Tpar and Tseq

are the parallel and sequential execution times of a program, respectively, and p
is the number of processing units used during the parallel execution.

. Can you estimate the number of different network topologies capable of inter-

connecting p processing units P; and m memory modules M ;? Assume that each
topology should provide, for every pair (P;,M;), a path between P; and M.

. Let P be an algorithm for solving a problem IT on CRCW-PRAM(p). According

to Theorem 2.1, the execution of P on EREW-PRAM(p) will be at most O(log p)-
times slower than on CRCW-PRAM(p). Now suppose that p = poly(n), where n
is the size of a problem instance. Prove that log p = O(logn).

. Prove that the sum aglog“n + a;_log" " 'n+--- +aq is asymptotically bounded

above by O(logkn).

. Prove that O(n/logn) processing units suffice to sum up n numbers in O(logn)

parallel time.

Hint: Assume that the numbers are summed up with a tree-like parallel algorithm
described in Example 2.1. Use Brent’s Theorem with W =n—1 and T = logn
and observe that by reducing the number of processing units to p := nlogn, the
tree-like parallel algorithm will retain its O(logn) parallel time complexity.

. True or false:

a) The definition of the parallel execution time is: “execution time = computation
time + communication time + idle time.”

b) A simple model of the communication time is:“communication time = set-up
time + data transfer time.”

c¢) Suppose that the execution time of a program on a single processor is 77, and
the execution time of the same parallelized program on p processors is 7,. Then,
the speedup and efficiency are S = 71 /7, and E = §/p, respectively.

d) If speedup S < p then E > 1.

. True or false:

a) If processing units are identical, then in order to minimize parallel execution
time, the work (or, computational load) of a parallel program should be parti-
tioned into equal parts and distributed among the processing units.

b) If processing units differ in their computational power, then in order to min-
imize parallel execution time, the work (or, computational load) of a parallel
program should be distributed evenly among the processing units.

c¢) Searching for such distributions is called load balancing.

. Why must be the load of a parallel program evenly distributed among processors?
10.

Determine the bisection bandwidths of 1D-mesh (chain of computers with bidi-
rectional connections), 2D-mesh, 3D-mesh, and the hypercube.

2.8 Bibliographical notes 45

11.

12.

13.

Let a program P be composed of a part R that can be ideally parallelized, and of a
sequential part S; that is, P = RS. On a single processor, S takes 10% of the total
execution time and during the remaining 90% of time R could run in parallel.

a) What is the maximal speedup reachable with unlimited number of processors?
b) How is this law called?

Moore’s law states that computer performance doubles every 1.5 year. Suppose
that the current computer performance is Perf = 10'3. When will be, according
to this law, 10 times greater (that is, 10 x Perf)?

A problem IT comprises two subproblems, I'Tj and I'l,, which are solved by pro-
grams P; and P», respectively. The program P; would run 1000 seconds on the
computer C; and 2000 seconds on the computer C,, while P, would require 2000
and 3000 seconds on C| and C,, respectively. The computers are connected by a
1000-km long optical fiber link capable of transferring data at 100 MB/sec with
10 msec latency. The programs can execute concurrently but must transfer either
a) 10 MB of data 20,000 times or b) 1 MB of data twice during the execution.
What is the best configuration and approximate runtimes in cases a) and b)?

2.8 Bibliographical notes

In presenting the topics in this Chapter we have strongly leaned on Trobec at al. [26]
and Atallah and Blanton [3]. On the computational models of sequental computation
see Robic¢ [22]. Interconnection networks are discussed in great detail in Dally and
Towles [6], Duato et al. [7], Trobec [25] and Trobec at al. [26]. The dependence
of execution times of real world parallel applications on the performance of the
interconnection networks is discussed in Grama et al. [12].

Part 11
Programming

In Part II is devoted to programming of parallel computers. It is designed in a way
that every reader can exploit the parallelism of its own computer, either on multi-
cores with shared memory, or on a set of interconnected computers, or on a graphic
processing units. The knowledge and experience obtained can be beneficial in even-
tual further, more advanced applications, which will run on many-core computers,
computing clusters, or heterogeneous computers with computing accelerators.

We start in Chapter 3 with multi-core and shared memory multiprocessors, which
is the architecture of almost all contemporary computers, that are likely the easiest
to program with an adequate methodology. The programming such systems is intro-
duced using OpenMP, a widely used and ever expanding application programming
interface well suited for the implementation of multithreaded programs. It is shown
how the combination of properly designed compiler directives and library functions
can provide a programming environment where the programmer can focus mostly
on the program and algorithms and less on the details of the underlying computer
architecture. A lot of practical examples are provided, which help the reader to un-
derstand the basic principles and to get a further motivation for fully exploiting
available computing resources.

Next, in Chapter 4, distributed memory computers are considered. They cannot
communicate through the shared memory therefore messages are used for the coor-
dination of parallel tasks that run on geographically distributed but interconnected
processors. Definition of processes with their management and communication are
well defined by a platform-independent message passing interface (MPI) specifica-
tion. The MPI library is introduced from the practical point of view, with basic set
of operations that enable the implementation of parallel programs. Simple example
programs should serve as an aid for a smooth start of using MPI and as motivation
for developing more complex applications.

Finally, in Chapter 5, we provide an introduction to the concepts of massively
parallel programming on GPUs and heterogeneous systems. Almost all contempo-
rary desktop computers are multi-core processor with a GPU units. Thus we need
a programming environment in which a programmer can write programs and run
them on either a GPU, or on a multi-core CPU, or on both. Again, several practi-
cal examples are given that help and assist the readers in acquiring knowledge and
experience in programming GPUs, using OPenCL environment.

Chapter 3

Programming multi-core and shared memory
multiprocessors using OpenMP

Abstract Of many different parallel and distributed systems, multi-core and shared
memory multiprocessors are most likely the easiest to program if only the right
approach is taken. In this chapter programming such systems is introduced using
OpenMP, a widely used and ever expanding application programming interface well
suited for the implementation of multithreaded programs. It is shown how the com-
bination of properly designed compiler directives and library functions can provide
a programming environment where the programmer can focus mostly on the pro-
gram and algorithms and less on the details of the underlying computer system.

3.1 Shared memory programming model

From the programmer’s point of view, a model of a shared memory multiproces-
sor contains a number of independent processors all sharing a single main memory
as shown in Figure 3.1. Each processor can directly access any data location in the
main memory and at any time different processors can execute different instruc-
tions on different data since each processor is driven by its own control unit. Using
Flynn’s taxonomy of parallel systems, this model is referred to as MIMD, i.e., mul-
tiple instruction multiple data.

..................

MEMORY

Fig. 3.1: A model of a shared-memory multiprocessor.

Although of paramount importance when the parallel system is to be fully uti-
lized to achieve the maximum speedup possible, many details like cache or the in-

49

50 3 Programming multi-core and shared memory multiprocessors using OpenMP

ternal structure of the main memory are left out of this model to keep it simple and
general. Using a simple and general model also simplifies the design and implemen-
tation of portable programs that can be optimized for a particular system once the
parallel system specifications are known.

Most modern CPUs are multi-core processors and therefore consist of a num-
ber of independent processing units called cores. Moreover, these CPUs support (si-
multaneous) multithreading (SMT) so that each core can (almost) simultaneously
execute multiple independent streams of instructions called threads. To a program-
mer each core within each processor acts as several logical cores each able to run
its own program or a thread within a program independently.

Today, mobile, desktop and server CPUs typically contain 2 to 24 cores and with
multithreading support, they can run 4 to 48 threads simultaneously. For instance, a
dual core mobile Intel i7 processor with hyper-threading (Intel’s SMT) consists of 2
(physical) cores and thus provides 4 logical cores. Likewise, a quad-core Intel Xeon
processor with hyper-threading provides 8 logical cores and a system with two such
CPUs provides 16 logical cores as shown in Figure 3.2. If the common use of cer-
tain resources like bus or cache is set aside, each logical core can execute its own
thread independently. Regardless of the physical implementation, a programmer can
assume that such system contains 16 logical cores each acting as an individual pro-
cessor as shown in Figure 3.1 where n = 16.

PROCESSOR PROCESSOR

CORE CORE CORE CORE CORE CORE CORE CORE

FoTEFP030605066

MEMORY

Fig. 3.2: A parallel system with two quad-core CPUs supporting simultaneous mul-
tithreading contains 16 logical cores all connected to the same memory.

Apart from multi-core CPUs, manycore processors comprising tens or hundreds
of physical cores are also available. Intel Xeon Phi, for instance, provides 60 to 72
physical cores able to run 240 to 288 threads simultaneously.

The ability of modern systems to execute multiple threads simultaneously using
different processors or (logical) cores comes with a price. As individual threads
can access any memory location in the main memory and to execute instruction
streams independently may result in a race condition, i.e., a situation where the
result depends on precise timing of read and write accesses to the same location in
the main memory. Assume, for instance, that two threads must increase the value
stored at the same memory location, one by 1 and the other by 2 so that in the end

3.2 Using OpenMP to write multithreaded programs 51

it is increased by 3. Each thread reads the value, increases it and writes it back. If
these three instructions are first performed by one thread and then by the other, the
correct result is produced. But because threads execute instructions independently,
the sequences of these three instructions executed by each thread may overlap in
time as illustrated in Figure 3.3. In such situations, the result is both incorrect and
undefined: in either case, the value in the memory will be increased by either 1 or 2
but not by 1 and 2.

READ INC WRITE
Pl 1 1 1

TIME : . . >
P2 READ INC WRITE
p1 READ INC WRITE

TIME - — >
P2 READ INC WRITE

Fig. 3.3: Two examples of a race condition when two threads attempt to increase the
the value at the same location in the main memory.

To avoid the race condition, exclusive access to the shared address in the main
memory must be ensured using some mechanism like locking using semaphores or
atomic access using read-modify-write instructions. If locking is used, each thread
must lock the access to the shared memory location before modifying it and unlock
it afterwards as illustrated in Figure 3.4. If a thread attempts to lock something that
the other thread has already locked, it must wait until the other thread unlocks it.
This approach forces one thread to wait but guarantees the correct result.

LOCK UNLOCK
P1 |READ INC WRITE|
TIME ' ' L : : : ,
P2 | e READ INC WRITE
rock (wet) UNLOCK

Fig. 3.4: Preventing race conditions as illustrated in Figure 3.3 using locking.

The peripheral devices are not shown in Figures 3.1 and 3.2. It is usually assumed
that all threads can access all peripheral devices but it is again up to software to
resolve which thread can access each device at any given time.

3.2 Using OpenMP to write multithreaded programs

A parallel program running on a shared memory multiprocessor usually consists
of multiple threads. The number of threads may vary during program execution
but at any time each thread is being executed on one logical core. If there are less

52 3 Programming multi-core and shared memory multiprocessors using OpenMP

threads than logical cores, some logical cores are kept idle and the system is not fully
utilized. If there are more threads than logical cores, the operating system applies
multitasking among threads running on the same logical cores. During program
execution the operating system may perform load balancing, i.e., it may migrate
threads from one logical core to another in an attempt to keep all logical cores
equally utilized.

A multithreaded program can be written in different programming languages us-
ing many different libraries and frameworks. On UNIX, for instance, one can use
pthreads in almost any decent programming language, but the resulting program is
littered with low-level details that the compiler could have taken care of, and is not
portable. Hence, it is better to use something dedicated to writing parallel programs.

One such thing is OpenMP, a parallel programming environment best suitable
for writing parallel programs that are to be run on shared memory systems. It is not
yet another programming language but an add-on to an existing language, usually
Fortran or C/C++. In this book, OpenMP atop of C will be used.

The application programming interface (API) of OpenMP is a collection of

compiler directives,
supporting functions, and
shell variables.

OpenMP compiler directives tell the compiler about the parallelism in the source
code and provide instructions for generating the parallel code, i.e., the multi-
threaded translation of the source code. In C/C++, directives are always expressed
as #pragmas. Supporting functions enable programmers to exploit and control the
parallelism during the execution of a program. Shell variables permit tunning of
compiled programs to a particular parallel system.

3.2.1 Compiling and running an OpenMP program

To illustrate different kinds of OpenMP API elements we will start with a simple
program in Listing 3.1.

#include <stdio.h>
#include <omp.h>

int main() {
printf ("Hello, world:");
#pragma omp parallel
printf (" %d", omp_get_thread_num ());
printf ("\n");
return O;

}

Listing 3.1: “Hello world” program, OpenMP style.

This program starts as a single thread that first prints out the salutation. Once
the execution reaches the omp parallel directive, several additional threads are

3.2 Using OpenMP to write multithreaded programs 53

OpenMP: parallel regions

A parallel region within a program is specified as

#pragma omp parallel [clause [[,] clause]...]
structured-block
A team of threads is formed and the thread that encountered the omp parallel
directive becomes the master thread within this team. The structured-block is
executed by every thread in the team. It is either a single statement, possibly
compound, with a single entry at the top and a single exit at the bottom, or an-
other OpenMP construct. At the end there is an implicit barrier, i.e., only after
all threads have finished, the threads created by this directive are terminated and
only the master resumes execution.

A parallel region might be refined by a list of clauses, for instance

e num_threads (integer) specifies the number of threads that should execute
structured-block in parallel.

Some other clauses applicable to omp parallel will be introduced later.

created alongside the existing one. All threads, the initial thread and the newly cre-
ated threads, together form a team of threads. Each thread in the newly established
team of threads executes the statement immediately following the directive: in this
example it just prints out its unique thread number obtained by calling OpenMP
function omp_get_thread_num. When all threads have done that, threads created
by the omp parallel directive are terminated and the program continues as a sin-
gle thread that prints out a single new line character and terminates the program by
executing return O.

To compile and run the program shown in Listing 3.1 using GNU GCC C/C++
compiler, use the command-line option -fopenmp as follows:

$ gcc -fopenmp -o hello-world hello-world.c
$ env OMP_NUM_THREADS=8 ./hello-world

(See Appendix A for instructions on how to make OpenMP operational on Linux,
macOS and MS Windows.)

In this program the number of threads is not specified explicitly. Hence, the num-
ber of threads matches the value of the shell variable OMP_NUM_THREADS. Setting
the value of OMP_NUM_THREADS to 8, the program might print out

Hello, world: 2 517 6 0 3 4

Without OMP_NUM_THREADS being set, the program would set the number of
threads to match the number of logical cores threads can run on. For instance, on a
CPU with 2 cores and hyper-threading, 4 threads would be used and a permutation
of numbers from 0 to 3 would be printed out.

Once the threads are started, it is up to a particular OpenMP implementation and
especially the underlying operating system to carry out scheduling and to resolve

54 3 Programming multi-core and shared memory multiprocessors using OpenMP

OpenMP: controlling the number of threads

Once a program is compiled, the number of threads can be controlled using the
following shell variables:

e (OMP_NUM_THREADS comma-separated-list-of-positive-integers

e (OMP_THREAD_LIMIT positive-integer

The first one sets the number of threads the program should use (or how many
threads should be used at every nested level of parallel execution). The second
one limits the number of threads a program can use (and takes the precedence
over OMP_NUM_THREADS).

Within a program, the following functions can be used to control the number of

threads:

e void omp_set_num_threads() sets the number of threads used in the
subsequent parallel regions without explicit specification of the number of
threads;

e int omp_get_num_threads () returns the number of threads in the current
team relating to the innermost enclosing parallel region;

e int omp_get_max_threads() returns the maximal number of threads
available to the subsequent parallel regions;

e int omp_get_thread_num() returns the thread number of the calling
thread within the current team of threads.

competition for the single standard output the permutation is printed on. Hence, if
the program is run several times, a different permutation of thread numbers will
most likely be printed out each time. Try it.

3.2.2 Monitoring an OpenMP program

During the design, development and debugging of parallel programs reasoning
about parallel algorithms and how to encode them better rarely suffices. To under-
stand how an OpenMP program actually runs on a multi-core system, it is best to
monitor and measure the performance of the program. Even more, this is the sim-
plest and the most reliable way to know how many cores your program actually runs
on.

Let us use the program in Listing 3.2 as an illustration. The program starts several
threads, each of them printing out one Fibonacci number computed using the naive
and time-consuming recursive algorithm.

On most operating systems it is usually easy to measure the running time of a
program execution. For instance, compiling the above program and running it using
time utility on Linux as

$ gcc —fopenmp -02 -o fibonacci fibonacci.c

TSI

10
1

14

3.3 Parallelization of loops 55

#include <stdio.h>
#include <omp.h>

long fib (int n) { return (n < 2 7 1 : fib (n - 1) + fib (n - 2)); }
int main () {
int n = 45;

#pragma omp parallel
{

int t = omp_get_thread_num ();
printf ("%d: %1d\n", t, fib (n + t));

return O;

}

Listing 3.2: Computing some Fibonacci numbers.

$ env OMP_NUM_THREADS=8 time ./fibonacci

yields some Fibonacci numbers and then, as the last line of output, the information
about the program’s running time:

106.46 real 298.45 user 0.29 sys

(See Appendix A for instructions on how to measure time and monitor the execution
of a program on Linux, macOS and MS Windows.)

The user and system time amount to the total time that all logical cores together
spent executing the program. In the example above, the sum of the user and system
time is bigger than the real time, i.e., the elapsed or wall-clock time. Hence, various
parts of the program must have run on several logical cores simultaneously.

Most operating systems provide system monitors that among other metrics show
the amount of computation performed by individual cores. This might be very infor-
mative during OpenMP program development, but be careful as most system mon-
itor reports the overall load on an individual logical core, i.e., load of all programs
running on a logical core.

Using a system monitor while the program shown in Listing 3.2 is run on other-
wise idle system, one can observe the load on individual logical cores during pro-
gram execution. As threads finish one after another, one can observe how the load
on individual logical cores drops as the execution proceeds. Towards the end of ex-
ecution, with only one thread remaining, it can be seen how the operating system
occasionally migrates the last thread from one logical core to another.

3.3 Parallelization of loops

Most CPU-intensive programs for solving scientific or technical problems spend
most of their time running loops so it is best to start with some examples illustrating
what OpenMP provides for the efficient and portable implementation of parallel
loops.

1o

10

2| #include <omp.h>

56 3 Programming multi-core and shared memory multiprocessors using OpenMP

3.3.1 Parallelizing loops with independent iterations

To avoid obscuring the explanation of parallel loops in OpenMP with unnecessary
details, we start with a trivial example of a loop parallelization: consider printing
out all integers from 1 to some user specified value, say max, in no particular order.
The parallel program is shown in Listing 3.3.

#include <stdio.h>

int main (int argc, char *argv[]) {

int max; sscanf (argv([1], "%d", &max);
#pragma omp parallel for
for (int i = 1; i <= max; i++)

printf ("%d: %d\n", omp_get_thread_num (), i);
return O;

}

Listing 3.3: Printing out all integers from 1 to max in no particular order.

The program in Listing 3.3 starts as a single initial thread. The value max is
read and stored in variable max. The execution then reaches the most important part
of the program, namely the for loop which actually prints out the numbers (each
preceded by the number of a thread that prints it out). But the omp parallel for
directive in line 6 specifies that the for loop must be executed in parallel, i.e., its
iterations must be divided among and executed by multiple threads running on all
available processing units. Hence, a number of slave threads is created, one per
each available processing unit or as specified explicitly (minus one that the initial
thread runs on). The initial thread becomes the master thread and together with the
newly created slave threads the team of threads is formed. Then,

e iterations of the parallel for loop are divided among threads where each iteration
is executed by the thread it has been assigned to, and

e once all iterations have been executed, all threads in the team are synchronized
at the implicit barrier at the end of the parallel for loop and all slave threads are
terminated.

Finally, the execution proceeds sequentially and the master thread terminates the
program by executing return 0. The execution of the program in Listing 3.3 is
illustrated in Figure 3.5.

Several observation must be made regarding the program in Listing 3.3 (and ex-
ecution of parallel for loops in general). First, the program in Listing 3.3 does not
specify how the iterations should be divided among threads (as explicit scheduling
of iterations will be described later). In such cases, most OpenMP implementations
divide the entire iteration space into chunks where each chunk containing a subin-
terval of all iterations is executed by one thread. Note, however, that this must not
be the case as if left unspecified, it is up to a particular OpenMP implementation to
do as it likes.

3.3 Parallelization of loops 57

OpenMP: parallel loops

A parallel for loops are declared as

Th

#pragma omp for [clause [[,] clause]...]
for-loops

is directive, which must be used within a parallel region, specifies that itera-

tions of one or more nested for loops will be executed by the team of threads
within the parallel region (omp parallel for is a shorthand for writing a for
loop that itself encompasses the entire parallel region). Each for loop among
for-loops associated with the omp for directive must be in the canonical form.
In C, that means that

the loop variable is made private to each thread in the team and must be either
(unsigned) integer or a pointer,

the loop variable should not be modified during the execution of any itera-
tion;

e the condition in the for loop must be a simple relational expression,
e the increment in the for loop must specify a change by constant additive

expression;
the number of iterations of all associated loops must be known before the
start of the outermost for loop.

A clause is a specification that further describes a parallel loop, for instance

collapse (integer) specifies how many outermost for loops of for-loops
are associated with the directive and thus parallelized together;

nowait eliminates the implicit barrier and thus synchronization at the end of
for-loops.

Some other clauses applicable to omp parallel for will be introduced later.

Second, once the iteration space is divided into chunks, all iterations of an in-

dividual chunk are executed sequentially, one iteration after another. And third, the
seq.
exec.
e e <— thread creation
omp parallel for
elg(aerc'. EE executed by multiple
threads
R X X I ¥ thread termination
o —— at implicit barrier
ek |threads
v

Fig. 3.5: Execution of the program for printing out integers as implemented in List-

58 3 Programming multi-core and shared memory multiprocessors using OpenMP

OpenMP: data sharing

Various data sharing clauses might be used in omp parallel directive to spec-

ify whether and how data are shared among threads:

e shared(list) specifies that each variable in the list is shared by all threads
in a team, i.e., all threads share the same copy of the variable;

e private(list) specifies that each variable in the list is private to each thread
in a team, i.e., each thread has its own local copy of the variable;

o firstprivate(list) is like private but each variable listed is initialized
with the value it contained when the parallel region was encountered;

e lastprivate(list) is like private but when the parallel region ends each
variable listed is updated with its final value within the parallel region.

No variable listed in these clauses can be a part of another variable.

If not specified otherwise,

e automatic variables declared outside a parallel construct are shared,
e automatic variables declared within a parallel construct are private,
e static and dynamically allocated variables are shared.

Race conditions, e.g., resulting from different life times of lastprivate vari-
ables or updating shared variables, must be avoided explicitly by using OpenMP
constructs described later on.

parallel for loop variable i is made private in each thread executing a chunk of iter-
ations as each thread must have its own copy of i. On the other hand, variable max
can be shared by all threads as it is set before and is only read within the parallel
region.

However, the most important detail that must be paid attention to is that the over-
all task of printing out all integers from 1 to max in no particular order can be
divided into N totally independent subtasks of almost the same size. In such cases,
the parallelization is trivial.

As the access to the standard output is serialized, printing out integers does not
happen as parallel as it might seen. Therefore an example of truly parallel computa-
tion follows.

Example 3.1. Vector addition

Consider vector addition. The function implementing it is shown in Listing 3.4.
Write a program for testing it. As vector addition is not a complex computation at
all, use long vectors and perform a large number of vector additions to measure and
monitor it.

The structure of function vectAdd is very similar to the program for printing out
integers shown in Listing 3.3: a simple parallel for loop where the result of one iter-
ation is completely independent of the results produced by other loops. Even more,
different iterations access different array elements, i.e., they read from and write to
completely different memory locations. Hence, no race conditions can occur. t

3.3 Parallelization of loops 59

double* vectAdd (double *c, double *a, double *b, int n) {
#pragma omp parallel for

for (int i = 0; i < n; i++)
4 c[il = af[il + b[il;
5 return c;

6| ¥

Listing 3.4: Parallel vector addition.

Consider now printing out all pairs of integers from 1 to max in no particular
order, something that calls for two nested for loops. As all iterations of both nested
loops are independent, either loop can be parallelized while the other is not. This is
achieved by placing the omp parallel for directive in front of the loop targeted
for parallelization. For instance, the program with the outer for loop parallelized is
shown in Listing 3.5.

#include <stdio.h>
#include <omp.h>

int max; sscanf (argv([1], "%d", &max);
#pragma omp parallel for
for (int i = 1; i <= max; i++)
8 for (int j = 1; j <= max; j++)
9 printf ("%d: (%d,%d)\n", omp_get_thread_num (), i, j);
10 return O;

| r

4| int main (int argc, char *argv[]) {
6

Listing 3.5: Printing out all pairs of integers from 1 to max in no particular order
by parallelizing the outermost for loop only.

Assume all pairs of integers from 1 to max are arranged in a square table. If
4 threads are used and max = 6, each iteration of the parallelized outer for loop
prints out a few lines of the table as illustrated in Figure 3.6 (a). Note that the first
two threads are assigned twice as much work than the other two threads which, if
run on 4 logical cores, will have to wait idle until the first two complete as well.

However, there are two other ways of parallelizing nested loops. First, the two
nested for loops can be collapsed in order to be parallelized together using clause
collapse(2) as shown in Listing 3.6.

#include <stdio.h>
2| #include <omp.h>

(| int main (int argc, char *argv[]) {

5 int max; sscanf (argv[1], "%d", &max);

6 #pragma omp parallel for collapse(2)
for (int i = 1; i <= max; i++)

8 for (int j = 1; j <= max; j++)

9 printf ("%d: (%d,%d)\n", omp_get_thread_num (), i, j);
10 return O;

| ¥

Listing 3.6: Printing out all pairs of integers from 1 to max in no particular order
by parallelizing both for loops together.

60 3 Programming multi-core and shared memory multiprocessors using OpenMP

() (b ©

Fig. 3.6: Partition of the problem domain when all pairs of integers from 1 to 6
must be printed using 4 threads: (a) if only the outer for loop is parallelized, (b) if
both for loops are parallelized together, and (c) if both for loops are parallelized
separately.

Because of the clause collapse(2) in line 6 the compiler merges the two nested
for loops into one and parallelizes the resulting single loop. The outer for loop
running from 1 to max and max inner for loops running from 1 to max as well, are
replaced by a single loop running from 1 to max?. All max” iterations are divided
among available threads together. As only one loop is parallelized, i.e., the one that
comprises iterations of both nested for loops, the execution of the program in List-
ing 3.6 still follows the pattern illustrated in Figure 3.5. For instance, if max = 6, all
36 iterations of the collapsed single loop are divided among 4 thread as shown in
Figure 3.6 (b). Compared with the program in Listing 3.5, the work is more evenly
distributed among threads.

The other method of parallelizing nested loops is by parallelizing each for loop
separately as shown in Listing 3.7.

#include <stdio.h>
#include <omp.h>
int main (int argc, char xargv[]) {
int max; sscanf (argv([1], "%d", &max);
#pragma omp parallel for
for (int i = 1; i <= max; i++) {
#pragma omp parallel for
for (int j = 1; j <= max; j++) {
printf ("%d: (%d,%d)\n", omp_get_thread_num (), i, j);
}
}
return O0;
}

Listing 3.7: Printing out all pairs of integers from 1 to max in no particular order
by parallelizing each nested for loop separately.

To have one parallel region within the other as shown in Listing 3.7 active at
the same time, nesting of parallel regions must be enabled first. This is achieved by

3.3 Parallelization of loops 61

OpenMP: nested parallelism

Nested parallelism is enabled or disabled by setting the shell variable

e OMP_NESTED nested

where nested is either true or false. Within a program, this can be achieved

usign the following two functions:

e void omp_set_nested(int nested) enables or disables nested paral-
lelism;

e int omp_get_nested() tells whether nested parallelism is enabled or dis-
abled.

The number of threads at each nested level can be set by calling function

omp_set_num_threads or by setting OMP_NUM_THREADS. In the latter case,

if a list of integers is given each integer specifies the number of threads at a

successive nesting level.

calling omp_set_nested(1) before mtxMul is called or by setting OMP_NESTED
to true. Once nesting is activated, iterations of both loops are executed in parallel
separately as illustrated in Figure 3.7. Compare Figures 3.5 and 3.7 and note how
many more threads are created and terminated in the latter, i.e., if nested loops are
parallelized separately.

----------------------- outer omp parallel for threads
seq J
exec
77777777 ooy
~ ~ ~

seq 1
exec
inner omp parallel for threads -

Fig. 3.7: The execution of the program for printing out all pairs of integers using
separately parallelized nested loops as implemented in Listing 3.7.

10

62 3 Programming multi-core and shared memory multiprocessors using OpenMP

By setting OMP_NUM_THREADS=2, 2 and running the program in Listing 3.7, the
team of two (outer) threads is established to execute 3 iterations of the outer loop
each as they would even if nesting was disabled. Each iteration of the outer loop
must compute one line of the table and thus establishes a team of two (inner) threads
to execute 3 iterations of the inner loop each. The table of pairs to be printed out is
divided among threads as shown in Figure 1.6 (c). However, be careful while inter-
preting the output: threads of every iteration of the inner loop are counted from 0
onward because function omp_get_thread_num always returns the thread number
relative to its team.

Example 3.2. Matrix multiplication

Another example from linear algebra is matrix by matrix multiplication. The
classical algorithm, based on the definition, encompasses two nested for loops used
to compute 1 independent dot products (and each dot product is computed using
yet another, innermost, for loop).

Hence, the structure of the matrix multiplication code resembles the code shown
in Listings 3.5, 3.6 and 3.7 except that the simple code for printing out the pair of
integers is replaced by yet another for loop for computing the dot product.

The function implementing multiplication of two square matrices where the two
outermost for loops are collapsed and parallelized together, is shown in Listing 3.8.
As before, write a program for testing it.

double **mtxMul (double **c, double **a, double **b, int n) {
#pragma omp parallel for collapse(2)
for (int i = 0; i < n; i++)
for (int j = 0; j < nj; j++) {
c[il[j] = 0.0;
for (int k = 0; k < n; k++)
c[il[j] = c[i1[j] + alillk] * bl[kI[jl;
¥
return c;

}

Listing 3.8: Matrix multiplication where the two outermost loops are parallelized
together.

The other way of parallelizing matrix multiplication is shown in Listing 3.9.

double **mtxMul (double **c, double **a, double **b, int n) {
#pragma omp parallel for
for (int i = 0; i < n; i++)
#pragma omp parallel for
for (int j = 0; j < n; j++) {
c[il[jl = 0.0;
for (int k = 0; k < n; k++)
cl[il[j1 = c[il[j1 + alillk]l * b[k1[jI;
}

return c;

}

Listing 3.9: Matrix multiplication where the two outermost loops are parallelized

separately.

3.3 Parallelization of loops 63

Writing functions for matrix multiplication where only one of the two outermost
forloops is parallelized, either outer of inner, is left as an exercise. 0.

Example 3.3. Convay’s Game of Life

Both examples so far have been taken from linear algebra. Let us now consider
something different: Conway’s Game of life. It is a zero-player game played on a
(finite) plane of square cells, each of which is either “dead” or “alive”. At each step
in time a new generation of cells arises where

each live cell with fewer than two neighbours dies of underpopulation,
each live cell with two or three neighbours lives on,

each live cell with more than three neighbours dies of overpopulation, and
each dead cell with three neighbours becomes a live cell.

It is assumed that each cell has eight neighbours, four along its sides and four on its
corners.

Once the initial generation is set, all the subsequent generations can be com-
puted. Sometimes the population of live cells die out, sometimes it turns into a static
colony, other times it oscillates forever. Even more sophisticated patterns can appear
including traveling colonies and colony generators. Figure 3.8 shows an evolution
of an oscillating colony on the 10 x 10 plane.

[|| [| HEE [||
| | | NN || | | |
u || HE EEN N _EEE u ||
| | | | |

| | | | [|
nE . [||| [| [| [|||
| | n
|| ||
HE NN
HE EE N
initial gen. 1st gen. 2nd gen. 98th gen. 99th gen. 100th gen. 101st gen.

Fig. 3.8: Conway’s Game of Life: a particular initial population turns into an oscil-
lating one.

The program for computing Convay’s Game of life is too long to be included en-
tirely, but its core is shown in Listing 3.10. To understand it, observe the following:

variable gens contains the number of generations to be computed;
the current generation is stored in a two dimensional array plane containing
size X size cells;

e the next generation is computed into a two dimensional array aux_plane con-
taining size X size cells;

e both two dimensional arrays, i.e., plane and aux_plane, are allocated as a one
dimensional array of pointers to rows of two dimensional plane;

e function neighbors returns the number of neighbors of the cell in the plane
specified by the first argument of size specified by the second argument at posi-
tion specified by the third and fourth arguments.

Except for the omp parallel for directive, the code in Listing 3.10 is the same
as if it was written for the sequential execution: the (outermost) while loop runs

64 3 Programming multi-core and shared memory multiprocessors using OpenMP

over all generations to be computed while the inner two loops are used to compute
the next generation and store it in aux_plane given the current generation in plane.
More precisely, the rules of the game are implemented in the switch statement in
lines 6-11: the case for plane[i] [j]1==0 implements the rule for dead cells and
the case for plane[i] [j]==1 implements the rules for live cells. Once the new
generation has been computed, the arrays are swapped so that the generation just
computed becomes the current one.

The omp parallel for directive in line 2 is used to specify that the iterations
of the two for loops in lines 3—12 can be performed simultaneously. By inspecting
the code it becomes clear that just like in matrix multiplication every iteration of
the outer for loop computes one row of the plane representing the next generation
and that every iteration of the inner loop computes a single cell of the the next
generation. As array plane is read only and the (i, j)-th iteration of the collapsed
loop is the only one writing to the (i, j)-th cell of array aux_plane, there can be no
race conditions and there are no dependencies among iterations.

The implicit synchronization at the end of the parallelized loop nest is crucial.
Without synchronization, if the master thread performed the swap in line 13 before
other threads finished the computation within both for loops, it would cause all
other threads to mess up the computation profoundly.

Finally, instead of parallelizing the two for loops together it is also possible
to parallelize them separately just like in matrix multiplication. But the outermost
loop, i.e., while loop, cannot be parallelized as every iteration (except the first one)
depends on the result of the previous one. O

3.3.2 Combining the results of parallel iterations

In most cases, however, individual loop iterations aren’t entirely independent as they
are used to solve a single problem together and thus each iteration contributes its part
to the combined solution. Most often then not partial results of different iterations
must be combined together.

while (gens-- > 0) {
#pragma omp parallel for collapse(2)
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++) {
int neighs = neighbors (plane, size, i, j);

6 switch (planel[il[jl) {
7 case 0: aux_planel[il[j] = (meighs == 3);
8 break;
9 case 1: aux_plane[i]l[j] = (neighs == 2) || (neighs == 3);
10 break;
1 }
12 }
13 char **tmp_plane = aux_plane; aux_plane = plane; plane = tmp_plane;
14 }

Listing 3.10: Computing generations of Convay’s Game of Life.

3.3 Parallelization of loops 65

If integers from the given interval are to be added instead of printed out, all
subtasks must somehow cooperate to produce the correct sum. The first parallel
solution that comes to mind is shown in Listing 3.11. It uses a single variable sum
where the result is to be accumulated.

#include <stdio.h>

3 int main (int argc, char *argv[]) {

4 int max; sscanf (argv([1], "%d", &max);
5 int sum = O;

6 #pragma omp parallel for

7 for (int i = 1; i <= max; i++)

8 sum = sum + 1i;

9 printf ("%d\n", sum);
10 return O;

| ¥

Listing 3.11: Summation of integers from a given interval using a single shared
variable — wrong.

Again, iterations of the parallel for loop are divided among multiple threads. In
all iterations, threads use the same shared variable sum on both sides of assignment
in line 8, i.e., they read from and write to the same memory location. As illustrated in
Figure 3.9 where every box containing =+ denotes the assignment sum = sum + i,
the accesses to variable sum overlap and the program is very likely to encounter race
conditions illustrated in Figure 3.3.

***************** <+— thread creation

omp parallel for:
accesses to sum in sum = sum + i
overlap and cause race conditions

thread termination
at implicit barrier

Fig. 3.9: Execution of the summation of integers as implemented in Listing 3.11.

Indeed, if this program is run multiple times using several threads, it is very likely
that it will not always produce the same result. In other words, from time to time it
will produce the wrong result. Try it.

To avoid race conditions, the assignment sum = sum + i can be put inside a
critical section — a part of a program that is performed by at most one thread at

66 3 Programming multi-core and shared memory multiprocessors using OpenMP

a time. This is achieved by the omp critical directive which is applied to the
statement or a block immediately following it. The program using critical sections
is shown in Listing 3.12.

1| #include <stdio.h>

int main (int argc, char *argv[]) {

4 int max; sscanf (argv[1], "%d", &max);
5 int sum = 0;

6 #pragma omp parallel for

7 for (int i = 1; i <= max; i++)

8 #pragma omp critical

9 sum = sum + 1i;

10 printf ("%d\n", sum);
11 return O;

2| ¥

Listing 3.12: Summation of integers from a given interval using a critical section
— slow.

The program works correctly because the omp critical directive performs
locking around the code it contains, i.e., the code that accesses variable sum, as
illustrated in Figure 3.4 and thus prevents race conditions. However, the use of crit-
ical sections in this program makes the program slow because at every moment at
most one thread performs the addition and assignment while all other threads are
kept waiting as illustrated in Figure 3.10.

It is worth comparing the running times of the programs shown in Listings
3.11 and 3.12. On a fast multi-core processor, a large value for max possibly causing
an overflow is needed so that the difference can be observed.

Another way to avoid race conditions is to use atomic access to variables as
shown in Listing 3.13.

1| #include <stdio.h>

int main (int argc, char *argv[]) {

4 int max; sscanf (argv[1], "%d", &max);
5 int sum = O0;

6 #pragma omp parallel for

for (int i = 1; i <= max; i++)

8 #pragma omp atomic

9 sum = sum + 1i;

10 printf ("%d\n", sum);

1 return O;

2|}

Listing 3.13: Summation of integers from a given interval using a atomic variable
access — faster.

Although sum is a single variable shared by all threads in the team, the program
computes the correct result as the omp atomic directive instructs the compiler to
generate code where sum = sum + i update is performed as a single atomic oper-
ation (possibly using a hardware supported read-modify-write instructions).

3.3 Parallelization of loops 67

seq
exec
. A Tttt Tatdaiatatata et <— thread creation
EH
=4
EH
=4
=4
=H omp parallel for:
par. EY N to avoid race conditions
exec. =7 only one thread at a time
can perform sum = sum + i
=+
=+
e o
B B N R thread termination
. at implicit barrier
ok threads
v

Fig. 3.10: Execution of the summation of integers as implemented in Listing 3.12.

The concepts of a critical section and atomic accesses to a variable are very
similar, except that an atomic access is much simpler and thus usually faster than
a critical section that can contain much more elaborate computation. Hence, the
program in Listing 3.13 is essentially executed as illustrated in Figure 3.10.

OpenMP: critical sections
A critical section is decared as

#pragma omp critical [(name) [hint Chint)]]
structured-block
The structured-block is guaranteed to be executed by a single thread at a time.
A critical section can be given name, an identifier with external linkage so that
different tasks can implement their own implementation of the same critical
section. A named critical section can be given a constant integer expression hint
to establish a detailed control underlying locking.

3| int main (int argc, char *argv([]) {

68 3 Programming multi-core and shared memory multiprocessors using OpenMP

To prevent race conditions and to avoid locking or explicit atomic access to vari-
ables at the same time, OpenMP provides a special operation called reduction. Us-
ing it, the program in Listing 3.11 is rewritten to the program shown in Listing 3.14.

#include <stdio.h>

int max; sscanf (argv([1], "%d", &max);
int sum = 0;
#pragma omp parallel for reduction (+:sum)
for (int n = 1; n <= max; n++)
sum = sum + n;
printf ("%d\n", sum);
return O;

}

Listing 3.14: Summation of integers from a given interval using reduction — fast.

The additional clause reduction (+:sum) states that 7" private variables sum are
created, one variable per thread. The computation within each thread is performed
using the private variable sum and only when the parallel for loop has finished are
the private variables sum added to variable sum declared in line 5 and printed out in
line 9. The compiler and the OpemMP runtime system perform the final summation
of local variables sum in a way suitable for the actual target architecture.

The program in Listing 3.14 is executed as shown in Figure 3.11. At first glance
it is similar to the execution of the incorrect program in Listing 3.11, but there are
no race conditions because in line 8§ each thread uses its own private variable sum.

OpenMP: atomic access

Atomic access to a variable within expression-stmt is declared as

#pragma omp atomic [seq_cst [,]] atomic-clause [[,] seq_cst]
expression-stmt
or
#pragma omp atomic [seq_cst]
expression-stmt
when update is assumed. The omp atomic directive enforces an exclusive ac-
cess to a storage location among all threads in the binding thread set without
regard to the teams to which the threads belong.

The three most important atomic-clauses are the following:

e read causes an atomic read of x in statements of the form expr = x;

e write causes an atomic write to x in statements of the form x = expr;

e update causes an atomic update of x in statements of the form ++x, x++,
--x, X——, X = x binop expr, x = expr binop x, x binop= expr.

If seq_cst is used, an implicit flush operation of atomically accessed variable

is performed after statement-expr.

3.3 Parallelization of loops 69

OpenMP: reduction

Technically, reduction is yet another data sharing attribute specified by
reduction (reduction-identifier : list)

clause.

For each variable in the list, a private copy is created in each thread of a parallel
region, and initialized to a value specified by the reduction-identifier. At the end
of a parallel region, the original variable is updated with values of all private
copies using the operation specified by the reduction-identifier.

The reduction-identifier may be +, -, &, |, ~, &&, | |, min, and max. For * and
&& the initial value is 1; for min and max the initial value is the largest and the
smallest value of the variable’s type, respectively; for all other operations, the
initial value is 0.

At the end of the parallel for loop, however, these private variables are added to the
global variable sum.

***************** <+— thread creation

omp parallel for:
each thread owns a local copy
of reduction variable sum

thread termination
at implicit barrier

Fig. 3.11: Execution of the summation of integers as implemented in Listing 3.14.

Example 3.4. Computing © by numerical integration

There are many problems that require combining results of loop iterations. Let us
start with a numerical integration in one dimension. Suppose we want to compute
number 7 by computing the area of the unit circle defined by equation x> 4 y> = 1.
Converting it to its explicit form y = v/1 — x, we want to compute number 7 using

the equation
1
7r:4/\/1—x2dx
0

as illustrated in Figure 3.12.

70 3 Programming multi-core and shared memory multiprocessors using OpenMP

224y =1 y=+1-—22

Fig. 3.12: Integrating y = v/1 — x2 numerically from 0 to 1.

The integral on the right hand side of the equation above is computed numer-
ically. Therefore, the interval [0,1] is cut into N intervals [yi, %(l +1)] where
0 <i< (N —1) for some chosen number of itervals N. To keep the program simple,
the left Riemann sum is chosen: the area of each rectangle is computed as the width
of a rectangle, i.e., 1/N, multiplied by the function value computed in the left-end
point of the interval, i.e., /1 — (i/N)2. Thus,

N—-1

1
/\/1_x2dx;:«, Z
0

i=0

for large enough N.
The program for computing 7 using the sum on the right hand side of the ap-
proximation is shown in Listing 3.15.

#include <stdio.h>
#include <math.h>

int main (int argc, char *argv[]) {
int intervals; sscanf (argv([1], "%d", &intervals);
double integral = 0.0;
double dx = 1.0 / intervals;
#pragma omp parallel for reduction(+:integral)

for (int i = 0; i < intervals; i++) {
double x = i * dx;
double fx = sqrt (1.0 - x * x);
integral = integral + fx * dx;

}

double pi = 4 * integral;
printf ("%20.181f\n", pi);
return O;

Listing 3.15: Computing 7 by integrating /1 — xZ from 0 to 1.

Despite the elements of numerical integration, the program in Listing 3.15 is
remarkably similar to the program in Listing 3.14: after all, this numerical integra-

3.3 Parallelization of loops 71

tion is nothing but a sumation of rectangle areas. Nevertheless, one important detail
should not be missed: unlike intervals, integral, and dx variables x and fx
must be thread private.

At this point it is perhaps worth showing once again that not every loop can be
parallelized. By rewriting lines 7—13 of Listing 3.15 to code shown in Listing 3.16
a multiplication inside the loop was replaced by addition.

double x = 0.0;
#pragma omp parallel for reduction(+:integral)

for (int i = 0; i < intervals; i++) {
double fx = sqrt (1.0 - x * x);
integral = integral + fx * dx;
X = x + dx;

}

Listing 3.16: Computing 7 by integrating v/1 —x% from O to 1 using a non-
paralellizable loop.

This works well if the program is run by only one thread (set OMP_NUM_THREADS
to 1), but produces the wrong result if multiple threads are used. The reason is that
the iterations are no longer independent: the value of x is propagated from one itera-
tion to another so the next iteration cannot be performed until the previous has been
finished. However, the omp parallel for directive in line 2 of Listing 3.16 states
that the loop can and should be parallelized. The programmer unwisely requested
the parallelization and took the responsibility for ensuring the loop can indeed be
parallelized too lighty. O

Example 3.5. Computing 7 using random shooting

Another way of computing 7 is to shoot randomly into a square [0, 1] x [0,1] and
count how many shots hit inside the unit circle and how many do not. The ratio of
hits vs. all shots is an approximation of the area of the unit circle within [0, 1] x [0, 1].
As each shot is independent of another, shots can be distributed among different
threads. Figure 3.13 illustrates this idea if two threads are used. The implementation,
for any number of threads, is shown in Listing 3.17.

From the parallel programming view, the program in Listing 3.17 is basically
simple: num_shots are shot within the parallel for loop in lines 17-23 and the
number of hits is accumulated in variable num_shots. Furthermore, it also resem-
bles the program in Listing 3.14: the results of independent iterations combined
together to yield the final result.

The most intricate part of the program is generating random shots. The usual ran-
dom generators, i.e., rand or random, are not reentrant or thread-safe: they should
not be called in multiple threads because they use a single hidden state that is mod-
ified on each call regardless of the thread the call is made in. To avoid this problem,
function rnd has been written: it takes a seed, modifies it and returns a random value
in the interval [0, 1). Hence, a distinct seed for each thread is created in lines 12-14
where OpenMP function omp_get_max_threads is used to obtain the number of
future threads that will be used in the parallel for loop later on. Using these seeds,
the program contains one distinct random generator for each thread.

72 3 Programming multi-core and shared memory multiprocessors using OpenMP

1

1

0 1 0 1 0 1

Fig. 3.13: Computing 7 by random shooting: different threads shoot independently,
but the final result is a combination all shots.

1| #include <stdio.h>
2| #include <stdlib.h>
3] #include <omp.h>

5| double rnd (unsigned int *seed) {

6 *seed = (1140671485 * (*seed) + 12820163) % (1 << 24);
7 return ((double) (xseed)) / (1 << 24);

s}

10| int main (int argc, char x*argv[]) {

int num_shots; sscanf (argv[1], "%d", &num_shots);

12 unsigned int seeds[omp_get_max_threads()];

13 for (int thread 0; thread < omp_get_max_threads(); thread++)
14 seeds [thread] thread;

15 int num_hits = 0;

16 #pragma omp parallel for reduction(+:num_hits)

17 for (int shot = 0; shot < num_shots; shot++) {

18 int thread = omp_get_thread_num();

19 double x = rnd (&seeds[thread]);

20 double y = rnd (&seeds[thread]);

21 if (x * x + y * y <= 1) num_hits = num_hits + 1;

}

23 double pi = 4.0 * (double)num_hits / (double)num_shots;
24 printf ("%20.181f\n", pi);

25 return O;

Listing 3.17: Computing 7 by random shooting using a parallel loop.

The rate of convergence towards 7 is much lower than if numerical integration
is used. However, this example shows how simple it is to implement a wide class of
Monte Carlo methods if random generator is applied correctly: one must only run all
random based individual experiments, e.g., shots into [0,1] x [0, 1] in lines 18-20,
and aggregate the results, e.g., count the number of hits within the unit circle.

As long as the number of individual experiments is known in advance and the
complexity of individual experiments is approximately the same, the approach in
presented in Listing 3.17 suffices. Otherwise, a more sophisticated approach is
needed, but more about that later.

Before proceeding, we can rewrite the program in Listing 3.17 to a simpler one.
By splitting the omp parallel and omp for we can define the thread-local seed
inside the parallel region as shown in Listing 3.19.

3.3 Parallelization of loops 73

#include <stdio.h>
2| #include <stdlib.h>
3| #include <omp.h>

double rnd (unsigned int *seed) {
6 *seed = (1140671485 * (xseed) + 12820163) % (1 << 24);
return ((double) (xseed)) / (1 << 24);

s+

9

10| int main (int argc, char *argv([]) {

11 int num_shots; sscanf (argv([1], "%d", &num_shots);
12 int num_hits = 0;

13 #pragma omp parallel

15 unsigned int seed = omp_get_thread_num();
16 #pragma omp for reduction (+:num_hits)
17 for (int shot = 0; shot < num_shots; shot++) {

18 double x = rnd (&seed);

19 double y = rnd (&seed);

20 if (x * x + y * y <= 1) num_hits = num_hits + 1;
21 ¥

» }

23 double pi = 4.0 * (double)num_hits / (double)num_shots;
24 printf ("%20.181f\n", pi);
2 return O;

Listing 3.18: Computing 7 by random shooting using a parallel loop.

Let us demonstrate that computing 7 by random shooting into [0,1] x [0, 1] and
counting the shots inside the unit circle can also be encoded differently as shown in
Listing 3.19, but at its core it stays the same.

Namely, the parallel regions, one per each available thread, specified by the
omp parallel directive in line 13 are used instead of the parallel for loop (see
also Listings 3.1 and 3.2). Within each parallel region, the seed for the thread-local
random generator is generated in lines 15. Then, the number of shots that must be
carried out by the thread is computed in lines 16—18 and finally all shots are per-
formed in a thread-local sequential while loop in lines 19-23. Unlike the iterations
of the parallel par loop in Listing 3.18 the iterations of the while loop do not
contain a call of function omp_get_thread_num. However, the aggregation of the
results obtained by the parallel regions, i.e., the number of hits, is done using the
reduction in the same way as in Listing 3.18. O

3.3.3 Distributing iterations among threads

So far no attention has been paid on how iterations of a parallel loop, or of a several
collapsed parallel loops, are distributed among different threads in a single team
of threads. However, OpenMP allows the programmer to specify several different
iteration scheduling strategies.

Consider computing the sum of integers from a given interval again using the
program shown in Listing 3.14. This time, however, the program will be modi-

74 3 Programming multi-core and shared memory multiprocessors using OpenMP

1| #include <stdio.h>
#include <stdlib.h>
#include <omp.h>

double rnd (unsigned int *seed) {

*seed = (1140671485 * (*seed) + 12820163) 7 (1 << 24);
return ((double) (*seed)) / (1 << 24);

i

9

0| int main (int argc, char *argv([]) {

11 int num_shots; sscanf (argv([1], "%d", &num_shots);

12 int num_hits = 0;

13 #pragma omp parallel reduction(+:num_hits)

14

15 unsigned int seed = omp_get_thread_num ();

16 int loc_shots = (num_shots / omp_get_num_threads ()) +
17 ((num_shots % omp_get_num_threads () > omp_get_thread_num ())
18 ? 1 : 0);

19 while (loc_shots-- > 0) {

20 double x = rnd (seed);

1 double y = rnd (seed);

if (x * x + y * y <= 1) num_hits = num_hits + 1;

3 }

24 }

5 double pi = 4.0 * (double)num_hits / (double)num_shots;

26 printf ("%1f\n", pi);

27 return O;

28| F

Listing 3.19: Computing 7 by random shooting using parallel sections.

fied as shown in Listing 3.20. First, the schedule (runtime) clause is added to
the omp for directive in line 8. It allows the iteration schedule strategy to be de-
fined once the program is started using the shell variable OMP_SCHEDULE. Second,
in line 10 each iteration prints out the the number of thread that executes it. And
third, different iterations take different time to execute as specified by the argument
of function sleep in line 11: iterations 1, 2, and 3 require 2, 3, and 4 seconds,
respectively, while all other iterations require just 1 second.

#include <stdio.h>
#include <unistd.h>
#include <omp.h>

int main (int argc, char *argv[]) {
int max; sscanf (argv([1], "%d", &max);
long int sum = 0;
8 #pragma omp parallel for reduction(+:sum) schedule(runtime)
9 for (int i = 1; i <= max; i++) {
10 printf ("%2d @ %d\n", i, omp_get_thread_num());
) sleep (1 < 4 7 i + 1 : 1);

o U kW

12 sum = sum + i;

13 ¥

14 printf ("%1ld\n", sum);
15 return O;

6] }

Listing 3.20: Summation of integers from a given interval where iteration
scheduling strategy is determined in runtime.

3.3 Parallelization of loops 75

OpenMP: scheduling parallel loop iterations

Distributing iterations of parallel loops among team threads is controlled by the

schedule clause. The most important options are:

e schedule(static): The iterations are divided into chunks each containing
approximately the same number of iterations and each thread is given at most
one chunk.

e schedule(static,chunk_size): The iterations are divided into chunks
where each chunk contains chunk_size iterations. Chunks are then assigned
to threads in a round-robin fashion.

e schedule(dynamic,chunk size): The iterations are divided into chunks
where each chunk contains chunk_size iterations. Chunks are assigned to
threads dynamically: each thread takes one chunk at a time out of the com-
mon pool of chunks, executes it and requests a new chunk until the pool is
empty.

e schedule(auto): The selection of the scheduling strategy is left to the com-
piler and the runtime system.

e schedule(runtime): The scheduling strategy is specified at run time using
the shell variable OMP_SCHEDULE.

If no schedule clause is present in the omp for directive, the compiler and

runtime system are allowed to choose the scheduling strategy on their own.

Suppose 4 threads are being used and max = 14:

e If OMP_SCHEDULE=static, the iterations are divided into chunks each contain-
ing approximately the same number of iterations and each thread is given at most
one chunk. One possible static distribution of 14 iterations among 4 threads
(but not the only one, see [18]) is

To:{1,2,3,4} T1:{5,6,7,8} T1:{9,10,11} T3:{12,13,14}
—_—— —_——— —_———— [—
10 secs 4 secs 3 secs 3 secs

Thread Tj is assigned all the most time consuming iterations: although iteration
when i equals 4 takes 1 second, iterations when i is either 1, 2, or 3 require 2, 3,
and 4 seconds, respectivelly. Each iteration assigned to any other thread thakes
only 1 second. Hence, thread Tj finishes much later than all other threads as can
be seen in Figure 3.14.

e If OMP_SCHEDULE=static,1 or OMP_SCHEDULE=static, 2, the iterations are
divided into chunks containing 1 or 2 iterations, respectivelly. Chunks are then
assigned to threads in a round-robin fashion as

To:{1;5;9;13} T1:{2;6;10;14} T»:{3;7;11} T3:{4;8;12}
—— ——

5 secs 6 secs 6 secs 3 secs

or

76 3 Programming multi-core and shared memory multiprocessors using OpenMP

S mmm
{nmm

m5] o [7]E]

0] e 4]

0 L 2 3 4 5 6 7 8 9 10 time

u

Fig. 3.14: A distribution of 14 iterations among 4 threads where iterations 1, 2 and 3
require more time than other iterations, using static iteration scheduling strategy.

Tl 4] 8 J[12] Tyl 7] 8]

Bl 3 J7]u] 1o 5][6 [13]14]

nl 2 Jo o] nl 3 Jafuhe]

w1 5] 9]1s] w1 2 Jo]ho]
C ; i‘i i) ‘ ‘ ‘ ‘ 7

) 1 2 4 5 6 7 time 0 1 2 3 4 5 6 7 time

Fig. 3.15: A distribution of 14 iterations among 4 threads where iterations 1, 2 and 3
require more time than other iterations, using static,1 (left) and static, 2 (right)
iteration scheduling strategies.

Tp:{1,2;9,10} Ti:{3,4;11,12} T»:{5,6;13,14} T3:{7,8}
| S — ~——

7 secs 7 secs 4 secs 2 secs
where semicolon separates different chunks assigned to the same thread.
As shown in Figure 3.15 the running times of different threads differ less than if
simple static scheduling is used. Furthermore, the overall running time is reduced
from 10 seconds to 6 or 7 seconds, depending on the chunk size.

e [f OMP_SCHEDULE=dynamic,1 or OMP_SCHEDULE=dynamic,?2, the iterations
are divided into chunks containing 1 or 2 iterations, respectivelly. Chunks are
assigned to threads dynamically: each thread takes one chunk at a time out of the
common pool of chunks, executes it and requests a new chunk until the pool is
empty. Hence, two possible dynamic assigments, for chunks consisting of 1 and
2 iterations, respectivelly, are

To:{1;6;9;13} T1:{2;8;12} T»:{3;11} T3:{4;5;7;10;14}
—_——— —— —— [—
5 secs 5 secs 5 secs 5 secs

or
To:{1,2} T1:{3,4} T5:{5,6:9,10;13,14} T5:{7,8;11,12}
~—— ~—— —_——— —_———
5 secs 5 secs 6 secs 4 secs

The scheduling of iterations is ilustrated in Figure 3.16: the overall running is
further reduced to 5 or 6 seconds, again depending on the chunk size. The overall

3.3 Parallelization of loops 77

running time of 5 seconds is the minimal possible as each thread performs the
same amount of work.

AR npmm
¢ BRDmEmn

n 1 o]o] K anas ‘
0 1 2 3

4 5 6 7 time 0 1 2 3 4 5 6 7 time

Fig. 3.16: A distribution of 14 iterations among 4 threads where iterations 1, 2 and 3
require more time than other iterations, using dynamic,1 (left) and dynamic,2
(right) iteration scheduling strategies.

Example 3.6. Mandelbrot set

The appropriate choice of iteration scheduling strategy always depends on the
problem that is being solved. To see why the iteration scheduling strategy matters,
consider computing the Mandelbrot set. It is defined as

M = {c; limsup|z,| <2 where 20 =0 A 7,11 =22 +¢}
n—yoo

and shown in Figure 3.17.

Fig. 3.17: The Mandelbrot set in the complex plane [—2.6,+1.0] x [—1.2i,+1.2i]
(black) and its complement (white, light and dark gray). The darkness of each point
indicates the time needed to establish whether a point belongs to the Mandelbrot set
or not.

78 3 Programming multi-core and shared memory multiprocessors using OpenMP

The Mandelbrot set can be computed using the program shown in Listing 3.21
which generates a picture consisting of i_sizex j_size pixels. For each pixel the
sequence 7,11 = z2 + ¢ where ¢ represents the pixel coordinates in the complex
plane, is iterated until it either diverges (|z,41| > 2) or the maximum number of
iterations (max_iters, defined in advance) is reached.

#pragma omp parallel for collapse(2) schedule(runtime)
for (int i = 0; i < i_size; i++) {
for (int j = 0; j < j_size; j++) {
// printf ("# (}d,%d) t=)d\n", i, j, omp_get_thread_num());
double c_re = min_re + i * d_re;
double c_im min_im + j * d_im;

double z_re

double z_im

int iters = =

while ((z_re * z_re + z_im * z_im <= 4.0) &&
(iters < max_iters)) {

0.0;
0.0;

o non

double new_z_re = z_re * z_re - z_im * z_im + c_re;
double new_z_im = 2 *x z_re * z_im + c_im;
Z_re = new_z_re; z_im = new_z_im;
iters = iters + 1;
picture[il[j] = iters;

Listing 3.21: Computing the Mandelbrot set.

To produce Figure 3.17, max_iters has been set to 100. Each point of the black
region, i.e., within the Mandelbrot set, takes 100 iterations to compute. However,
each point within the dark gray region requires more than 10 yet less than 100
iterations. Likewise, each point within the light gray region requires more than 5
and less than 10 iterations and all the rest, i.e., points colored white, require at most
5 iterations each. As different points and thus different iterations of the collapsed
for loops in lines 2 and 3 require significantly different amount of computation, it
matters what iteration scheduling strategy is used. Namely, if static, 100 is used
instead of simply static, the running time is reduced by approximatelly 30 percent;
the choice of dynamic, 100 reduces the running time even more. Run the program
and measure its running time under different iteration scheduling strategies. O

3.3.4 The detalils of parallel loops and reductions

The parallel for loop and reduction operation are so important in OpenMP pro-
gramming that they should be studied and understood in detail.

Let’s return to the program for computing the sum of integers from 1 to max as
shown in Listing 3.14. If it assumed that 7', the number of threads, divides max and
the static iteratin scheduling startegy is used, the program can be rewritten into
the one shown in Listing 3.22. (See exercises for the case when T does not divide
max.)

3.3 Parallelization of loops 79

#include <stdio.h>
2| #include <omp.h>

4| int main (int argc, char *argv[]) {

5 int max; sscanf (argv[1], "%d", &max);
6 int ts = omp_get_max_threads ();

if (max % ts != 0) return 1;

8 int sums[ts];

9 #pragma omp parallel

11 int t = omp_get_thread_num ();
12 int lo = (max / ts) * (t + 0) + 1;

int hi (max / ts) * (t + 1) + 0;
14 sums [t] = 0;
15 for (int i = lo; i <= hi; i++)
16 sums [t] = sums[t] + i;
17 }
18 int sum = 0

H
19 for (int t = 0; t < ts; t++) sum = sum + sums[t];
20 printf ("%d\n", sum);
21 return O;

11}

Listing 3.22: Implementing efficient summation of integers by hand using simple
reduction.

The initial thread first obtains 7', the number of threads available (using OpenMP
function omp_get_max_threads), and creates an array sums of variables used for
summation within each thread. Although the array sums is going to be shared by all
threads, each thread will access only one of its T elements.

Reaching omp parallel region the master thread creates (T — 1) slave threads
to run alongside the master thread. Each thread, master or slave, first computes its
subinterval (lines 11-12), initializes its local summation variable to O (line 13) and
then executes its thread-local sequential for loop (line 14—15). Once all threads
have finished computing local sums, only the master thread is left alive. It adds the
local summation variables and prints the result. The overall execution is performed
as shown in Figure 3.9. However, no race conditions appear becuase each thread
uses its own summation variable, i.e., the t-th thread uses the t-th element sums [t]
of array sums.

From the implementation point of view, the program in Listing 3.22 uses array
sums instead of thread-local summation variables and performs the reduction by the
master thread only. Array sums is created by the master thread before creating slave
threads so that the explicit reduction, which is performed in line 18 after the slave
threads have been terminated and their local variables (t, 1o, hi, and n) have been
lost, can be implemented.

Furtermore, the reduction is performed by adding local summation variables, i.e.,
elements of sums, one after another to variable sum. This takes O(7T') time and works
fine if the number of threads is small, e.g., T =4 or T = 8. However, if there are a
few hundred threads, a solution shown in Listing 3.23 that works in time O(log, T')
and produces the result in sums [0], is often preferred (unless the target system
architecture requires even more sophisticated method).

80 3 Programming multi-core and shared memory multiprocessors using OpenMP

}
for (int d = 1; d < ts; d = d * 2)
#pragma omp parallel for
for (int t = 0; t < ts; t =t + 2 % d)

Listing 3.23: Implementing efficient summation of integers by hand using simple
reduction.

The idea behind the code shown in Listing 3.23 is illustrated in Figure 3.18. In
Listing 3.23 variable d contains the distance between elements of array sums being
added, and as it doubles in each iteration, there are [log, T'] iterations of the outer
loop. Variable t denotes the left element of each pair being added in the inner loop.
But as the inner loop is performed in parallel by at least T' /2 threads which operate
on distinct elements of array sums, all additions in the inner loop are performed
simultaneously, i.e., in time O(1).

Fig. 3.18: Computing the reduction in time O(log, T') using 7' /2 threads when T =
12.

Note that either method used for computing the reduction uses (7 — 1) additions.
However, in the first method (line 18 of Listing 3.22) additions are performed one
after another while in the second method (Listing 3.23) certain additions can be
performed simultaneously.

3.4 Parallel tasks

Although most parallel programs spend most of their time running parallel loops,
this is not always the case. Hence, it is worth exploring how a program consisting
of different tasks can be parallelized.

3.4.1 Running independent tasks in parallel

As above where parallelization of loops that need not combine the results of its
iterations was explained first, we start with explanation of tasks where cooperation
is not needed.

2| #include <omp.h>

3.4 Parallel tasks 81

Consider computing the sum of integers from 1 to max one more time. At the
end of a previous section it was shown how iterations of a single parallel for loop
are distributed among threads. This time, however, the interval from 1 to max is
split into a number of mutually disjoint subintervals. For each subinterval a task that
first computes the sum of all integers of a subinterval and then adds the sum of the
subinterval to the global sum, is used.

The idea is implemented as the program in Listing 3.24. For the sake of simplic-
ity, it is assumed that 7', denoting the number of tasks and stored in variable tasks,
divides max.

#include <stdio.h>

int main (int argc, char *argv[]) {
int max; sscanf (argv[1], "%d", &max);
int tasks; sscanf (argv[2], "%d", &tasks);
if (max % tasks != 0) return 1;
int sum = 0;
#pragma omp parallel
{

#pragma omp single
for (int t = 0; t < tasks; t++) {
#pragma omp task

int local_sum = 0;

int lo = (max / tasks) * (t + 0) + 1;

int hi = (max / tasks) * (t + 1) + 0;

// printf ("Jd: Jd..Zd\n", omp_get_thread_num(), lo, hi);

for (int i = lo; i <= hi; i++)
local_sum = local_sum + i;
#pragma omp atomic
sum = sum + local_sum;
}

}
}
printf ("%d\n", sum);
return O;

}

Listing 3.24: Implementing summation of integers by using a fixed number of
tasks.

Computing the sum is performed in the parallel block in lines 9-25. The for
loop in line 12 creates all T tasks where each task is defined by the code in lines
13-23. Once the tasks are created, it is more or less up to OpenMP’s runtime system
to schedule tasks and execute them.

The important thing, however, is that the for loop in line 12 is executed by only
one thread as otherwise each thread would create its own set of T tasks. This is
achieved by placing the for loop in line 12 under the OpenMP directive single.

The OpenMP directive task in line 13 specifies that the code in lines 14-23 is
to be executed as a single task. The local sum is initialized to 0 and the subinterval
bounds are computed from the task number, i.e., t. The integers of the subinterval
are added up and the local sum is added to the global sum using atomic section to
prevent a race condition between two different tasks.

82 3 Programming multi-core and shared memory multiprocessors using OpenMP

Note that when a new task is created, the execution of the task that created the
new task continues without delay; once created, the new task has a life of its own.
Namely, when the master thread in Listing 3.24 executes the for loop, it creates
one new task in each iteration, but the iterations (and thus creation of new tasks) are
executed one after another without waiting for the newly created tasks to finish (in
fact, it would make no sense at all to wait for them to finish). However, all tasks must
finish before the parallel region can end. Hence, once the global sum is printed
out in line 26 of Listing 3.24, all tasks has already finished.

The difference between the approaches taken in the previous and this section can
be told in yet another way. Namely, when iterations of a single parallel for loop are
distributed among threads, tasks, one per thread, are created implicitly. But when
a number of explicit tasks is used, the loop itself is split among tasks that are then
distributed among threads.

Example 3.7. Fibonacci numbers

Computing the first max Fibonacci numbers using the time consuming recursive
formula can be pretty naive, especially if a separate call of the recursive function is
used for each of them. Nevertheless, it shows how to use the advantage of tasks.

The program in Listing 3.25 shows how this can be done. Note again that a single
thread within a parallel region starts all tasks, one per each number. As the program
is written, smaller Fibonacci numbers, i.e., forn = 1,2,. .., are computed first while
the largest are left to be computed later.

The time needed to compute the n-th Fibonacci number using function f£ib in
line 4 of Listing 3.25 is of order O(1.6"). Hence, the the time complexity of in-

OpenMP: tasks

A task is declared using the directive
#pragma omp task [clause [[,] clause]...]
structured-block
The task directive creates a new task that executes structured-block. The new
task can be executed immediately or can be deferred. A deferred task can be
later executed by any thread in the team.

The task directive can be further refined by a number of clauses, the most

important being the following ones:

e final (scalar-logical-expression) causes, if scalar-logical-expression eval-
uates to frue, that the created task does not generate any new tasks any more,
i.e., the code of would-be-generated new subtasks is included in and thus
executed within this task;

e if ([task: [scalar-logical-expression) causes, if scalar-logical-expression
evaluates to false, that an undeferred task is created, i.e., the created task
suspends the creating task until the created task is finished.

For other clauses see OpenMP specification.

2| #include <omp.h>

3.4 Parallel tasks 83

OpenMP: limiting execution to a single thread
Within a parallel section, the directive

#pragma omp single [clause [[,] clause] ...]
structured-block
causes structured-block to be executed by exactly one thread in a team (not
necessarily the master thread). If not specified otherwise, all other threads wait
idle at the implicit barrier at the end of the single directive.

The most important clauses are the following:

e private(list) specifies that each variable in the Iist is private to the code
executed within the single dircetive;

e nowait removes the implicit barrier at the end of the single directive and
thus allows other threads in the team to proceed without waiting for the code
under the single directive to finish.

#include <stdio.h>

long fib (int n) { return (n < 2 7 1 : fib (n - 1) + fib (n - 2)); }

int main (int argc, char *argv[]) {
int max; sscanf (argv([1], "%d", &max);
#pragma omp parallel
#pragma omp single
for (int n = 1; n <= max; n++)
#pragma omp task
printf ("%d: %d %1d\n", omp_get_thread_num(), n, fib (n));
return O;

}

Listing 3.25: Computing Fibonacci numbers using OpenMP’s tasks: smaller tasks,
i.e., for smaller Fibonacci numbers are created first.

dividual tasks grows exponentially with n. Therefore it is perhaps better to create
(and thus carry out) tasks in reverse order, the most demanding first and the least
demanding last as shown in Listing 3.26. Run both programs, heck this hypothesis
out and investigate which tasks get carried out by which thread. U

for (int n = max; n >= 1; n--)
#pragma omp task
printf ("%d: %d\n", omp_get_thread_num(), n);

Listing 3.26: Computing Fibonacci numbers using OpenMP’s tasks: smaller tasks,
i.e., for smaller Fibonacci numbers are created last.

Converting a parallel for loop into a set of tasks is not very interesting and in
most cases does not help either. The real power of tasks, however, can be appreciated
when the number and the size of individual tasks cannot be known in advance. In

84 3 Programming multi-core and shared memory multiprocessors using OpenMP

other words, when the problem or the algorithm demands that tasks are created
dynamically.

Example 3.8. Quicksort
A good and simple, yet well-known example of this kind is sorting using the
Quicksort algorithm [5]. The parallel version using tasks is shown in Listing 3.27.

void par_gsort (char **data, int lo, int hi,
int (*compare) (const char *, const charx*)) {
if (lo > hi) return;
int 1 = lo;
int h = hi;
char *p = datal(hi + lo) / 2];
while (1 <= h) {
while (compare (datalll, p) < 0) 1l++;
while (compare (datalh]l, p) > 0) h--;
if (1 <= h) {
char *tmp = datal[l]; datal[l] = datal[h]; datal[h] = tmp;
1++; h--3;
}
}
#pragma omp task final(h - lo < 1000)
par_gsort (data, lo, h, compare);
#pragma omp task final(hi - 1 < 1000)
par_gsort (data, 1, hi, compare);

Listing 3.27: The parallel implementation of the Quicksort algorithm where each
recursive call is performed as a new task.

The partition part of the algorithm, implemented in lines 4—14 of Listing 3.27,
is the same as in the sequential version. The recursive calls, thou, are modified be-
cause they can be performed independently, i.e., at the same time. Each of the two
recursive calls is therefore executed as its own task.

However, no matter how efficient creating new tasks is, it takes time. Creating a
new task only makes sense if a part of the table that must be sorted using a recursive
call is big enough. In Listing 3.27, the clause final in lines 15 and 17 is used to
prevent creating new tasks for parts of table that contain less that 1000 elements. The
threshold 1000 has been chosen by experience; choosing the best threshold depends
on many factors (the number of elements, the time needed to compare two elements,
the implementation of OpenMP’s tasks, ...). The experimental way of choosing it
shall be, to some extend, covered in the forthcoming chapters.

There is an analogy with the sequential algorithm: recursion takes time as well
and to speed up the sequential Quicksort algorithm, the insertion sort is used once
the number of elements falls below a certain threshold.

There should be no confusion about the arguments for function par_gsort.
However, function par_qgsort must be called within a parallel region by exactly
one thread as shown in Linsting 3.28.

As the Quicksort algorithm itself is rather efficient, i.e., it runs in time O(nlogn),
a sufficient number of elements must be used to see that the parallel version actually
outperforms the sequential one. The comparison of runnning times is summarized
in Table 3.1. By comparing the running times of the sequential version with the

3.4 Parallel tasks 85

#pragma omp parallel
#pragma omp single
par_gsort (strings, O, num_strings - 1, compare);

Listing 3.28: The call of the parallel implementation of the Quicksort algorithm.

parallel version running within a single thread, one can estimate the time needed to
create and destroy OpenMP’s threads.

n SEQ PAR
(1 thread) (4 threads) (8 threads)
10° 0.05s 0.07 s 0.04 s 0.04 s
100 0.79 s 0.99 s 044 s 0.32s
107 11.82s 12.47 s 4.27s 3.57s
108 201.13 s 218.14s 71.90s 61.81s

Table 3.1: The comparison of the running time of the sequential and parallel version
of the Quicksort algorithm when sorting n random strings of max length 64 using a
quad-core processor with multithreading.

Using 4 or 8 threads the parallel version is definitely faster, although the speed
up is not proportional to the number of threads used. Note that the partition of the
table in lines 4—14 of Listing 3.27 is performed sequentially and recall the Amdahl
law. t

3.4.2 Combining the results of parallel tasks

In a number of cases parallel tasks cannot be left to execute independently of each
other and leave its results in some global or shared variable. In such situation the
programmer must take care of the life span of each individual task. The next example
illustrates this.

Example 3.9. Quicksort revisited

Let us consider the Quicksort algorithm as an example again and modify it so
that it returns the number of element pairs swapped during the partition phases.

Counting swaps during the partition phase in a sequential program is trivial. For
instance, as shown in Listing 3.29 three new variables can be introduced, namely
count, locount and hicount, that contain the number of swaps in the current
partition phase and the total numbers of swaps in recursive calls, respectivelly. (In
the sequential program this could be done with a single counter, but having three
counters instead is more appropriate for the developing of the parallel version.)

In the parallel version the modification is not much harder, but a few things must
be taken care of. First, as recursive calls in lines 16 and 18 of Listing 3.27 change

86 3 Programming multi-core and shared memory multiprocessors using OpenMP

int par_gsort (char *x*data, int lo, int hi,
int (*compare) (const char *, const charx)) {
if (lo > hi) return O0;
int 1 = lo;
int h = hi;
char *p = datal[(hi + 1lo) / 2];
int count = 0;
while (1 <= h) {
while (compare (datalll, p) < 0) l++;
while (compare (datalhl, p) > 0) h--;
if (1 <= h) {
count++;
char *tmp = datal[l]; datal[l] = datal[h]; datal[h] = tmp;
lararg ln==g
}
}
int locount, hicount;
#pragma omp task shared(locount) final(h - lo < 1000)

locount = par_qgsort (data, lo, h, compare);
#pragma omp task shared(hicount) final(hi - 1 < 1000)
hicount = par_qgsort (data, 1, hi, compare);

#pragma omp taskwait
return count + locount + hicount;

}

Listing 3.29: The call of the parallel implementation of the Quicksort algorithm.

to assignment statements in lines 19 in 21 of Listing 3.29, the values of variables
locount and hicount are set in two newly created tasks and must therefore be
shared among the creating and the created tasks. This is achieved using shared
clause in lines 18 and 20.

Second, remember that once the new tasks in lines 18—19 and 20-21 are created,
the task that has just created them continues. To prevent it from computing the sum
of all three counters and returning the result when variables locount and hicount
might not have been set yet, the taskwait directive is used. It represents an explicit
barrier: all tasks created by the task executing it must finish before that task can
continue.

At the end of the parallel section is an implicit barrier before all tasks created
within the parallel section must finish just like all iterations of a parallel loop must.
Hence, in Listing 3.24 there is no need for an explicit barrier using taskwait. [J

OpenMP: explicit task barrier
An explicit task barrier is created by the following directive:
#pragma omp taskwait
It specifies a point in the program the task waits until all its subtasks are finished.

3.5 Exercises and mini projects 87

3.5 Exercises and mini projects

Exercises

10.

. Modify the program in Listing 3.1 so that it uses a team of 5 threads within the

parallel region by default. Investigate how shell variables OMP_NUM_THREADS
and OMP_THREAD_LIMIT influence the execution of the original and modified
program.

. If run with one thread per logical core, threads started by the program in List-

ings 3.1 print out their thread numbers in random order while threads started by
the program in Listing 3.2 always print out their results in the same order. Explain
why.

. Suppose two 100 x 100 matrices are to be multiplied using 8 threads. How many

dot products, i.e., operations performed by the innermost for loop, must each
thread compute if different approaches to parallelizing the two outermost for
loops of matrix multiplication illustrated in Figure 3.6 are used?

. Draw a 3D graph with the size of the square matrix along one independent axis,

e.g., from 1 to 100, and the number of available threads, e.g., from 1 to 16, along
the other showing the ratio between the number of dot products computed by the
most and the least loaded thread for different approaches to parallelizing the two
outermost for loops of matrix multiplication illustrated in Figure 3.6.

. Modify the programs for matrix multiplication based on different loop paral-

lelization methods to compute C = A - BT instead of C = A - B. Compare the run-
ning time of the original and modified programs.

. Suppose 4 threads are being used when the program in Listing 3.20 and max =

20. Determine which iteration will be performed by which thread if static,1,
static,2 or static,3 is used as a iteration scheduling strategy. Try without
running the program first. (Assume that iterations 1, 2 and 3 require 2, 3 and 4
units of time while all other iterations require just 1 unit of time.)

. Suppose 4 threads are being used when the program in Listing 3.20 and max =

20. Determine which iteration will be performed by which thread if dynamic, 1,
dynamic,2 or dynamic, 3 is used as a iteration scheduling strategy. Is the solu-
tion uniquely defined? (Assume that iterations 1, 2 and 3 require 2, 3 and 4 units
of time while all other iterations require just 1 unit of time.)

. Modify lines 12 and 13 in Listing 3.22 so that the program works correctly even

if T, the number of threads, does not divide max. The number of iterations of the
for loop in lines 15 and 16 should not differ by more than 1 for any two threads.
Modify the program in Listing 3.22 so that the modified program implements
static, c iteration scheduling strategy instead of static as is the case in List-
ing 3.22. The chunk size ¢ must be a constant declared in the program.

Modify the program in Listing 3.22 so that the modified program implements
dynamic, c iteration scheduling strategy instead of static as is the case in List-
ing 3.22. The chunk size ¢ must be a constant declared in the program.

88

11.

12.

13.

14.

3 Programming multi-core and shared memory multiprocessors using OpenMP

Hint: Use a shared counter of iterations that functions as a queue of not yet
scheduled iterations outside the parallel section.

While computing the sum of all elements of sums in Listing 3.23, the program
creates new threads within every iteration of the outer loop. Rewrite the code so
that creation of new threads in every iteration of the outer loop is avoided.

Try rewriting the programs in Listings 3.25 and 3.26 using parallel for loops
instead of OpenMP’s tasks to mimic the behavior of the original program as
close as possible. Find out which iteration scheduling strategy should be used.
Compare the running time of programs using parallel for loops with those that
use OpenMP’s tasks.

Modify the program in Listing 3.27 so that it does not use £inal but works in
the same way.

Check the OpenMP specification and rewrite the program in Listing 3.24 using
the taskloop directive.

Mini projects

P1. Write a multicore program that uses CYK algorithm [13] to parse a string of

symbols. The inputs are a context-free grammar G in Chomsky Normal Form
and a string of symbols. At the end, the program should print YES if the string of
symbols can be derived by the rules of the grammar and NO otherwise.

Write a sequential program (no OpenMP directives at all) as well. Compare the
running time of the sequential program with the running time of the multicore
program and compute the speedup for different grammars and different string
lengths.

Hint: Observe that in the classical formulation of CYK algorithm the iterations
of the outermost loop must be performed one after another but that iterations
of the second outermost loop are independent and offer a good opportunity for
parallelization.

P2. Write a multicore program for the “all-pairs shortest paths” problem [5]. The

input is a weighted graph with no negative cycles and the expected output are
lengths of the shortest paths between all pairs of vertices (where the length of a
path is a sum of weights along the edges that the path consists of).

Write a sequential program (no OpenMP directives at all) as well. Compare the
running time of the sequential program with the running time of the multicore
program and compute the speedup achieved

1. for different number of cores and different number of threads per core, and
2. for different number of vertices and different number of edges.

Hint 1: Take the Bellman-Ford algorithm for all-pairs shortest paths [5] and con-
sider its matrix multiplication formulation. For a graph G = (V, E) your program
should achieve at least time O(|V|*), but you can do better and achieve time

3.6 Bibliographic notes 89

O(|V|*1og, |V]). In neither case should you ignore the cache performance: allo-
cate matrices carefully.

Hint 2: Instead of using the Bellman-Ford algorithm, you can try parallelizing
the Floyd-Warshall algorithm that runs in time O(|V|*) [5]. How fast is the pro-
gram based on the Floyd-Warshall algorithm compared with the one that uses the
O(|V|*) or O(|V|*log, |V |) Bellman-Ford algorithm?

3.6 Bibliographic notes

The primary source of information including all details of OpenMP API is available
at OpenMP web site [20] where the complete specification [18] and a collection of
examples [19] are available. OpenMP version 4.5 is used in this book as version 5.0
is still being worked on by OpenMP Architecture Review Board. The summary card
for C/C++ is also available at OpenMP web site.

As standards and specifications are usually hard to read, one might consider some
book wholly dedicated to programming using OpenMP. Although relatively old and
thus lacking the most of the modern OpenMP features, the book by Rohit Chandra
et al. [4] provides a nice introduction to underlying ideas upon which OpenMP is
based upon and the basic OpenMP constructs. A more recent and comprehensive
description of OpenMP, version 4.5, can be found in the book by Ruud van der Pas
etal. [21].

Chapter 4
MPI processes and messaging

Abstract Distributed memory computers cannot communicate through a shared
memory. Therefore, messages are used to coordinate parallel tasks that eventu-
ally run on geographically distributed but interconnected processors. Processes as
well as their management and communication are well defined by a platform-
independent message passing interface (MPI) specification. MPI is introduced from
the practical point of view, with a set of basic operations that enable implementation
of parallel programs. We will give simple example programs that will serve as an
aid for a smooth start of using MPI and as motivation for developing more complex
applications.

4.1 Distributed memory computers can execute in parallel

We know from previous chapters that there are two main differences between the
shared memory and distributed memory computer architectures. The first difference
is in the price of communication: the time needed to exchange a certain amount of
data between two or more processors is in favor of shared memory computers, as
these can usually communicate much faster than the distributed memory computers.
The second difference, which is in the number of processors that can cooperate ef-
ficiently, is in favor of distributed memory computers. Usually, our primary choice
when computing complex tasks will be to engage a large number of fastest available
processors, but the communication among them poses additional limitations. Co-
operation among processors implies communication or data exchange among them.
When the number of processors must be high (e.g., more than eight) to reduce the
execution time, the speed of communication becomes a crucial performance factor.

There is a significant difference in the speed of data movement between two
computing cores within a single multicore computer, depending on the location of
data to be communicated. This is because the data can be stored in registers, cache
memory, or system memory, which can differ by up to two orders of magnitude if
their access times are considered. The differences in the communication speed get

91

92 4 MPI processes and messaging

even more pronounced in the interconnected computers, again by orders of magni-
tude, but this now depends on the technology and topology of the interconnection
networks and on the geographical distance of the cooperating computers.

Taking into account the above facts, complex tasks can be executed efficiently
either (i) on a small number of extremely fast computers or (ii) on a large num-
ber of potentially slower interconnected computers. In this chapter, we focus on
the presentation and usage of the Message Passing Interface (MPI), which en-
ables system-independent parallel programming. The well-established MPI stan-
dard! includes process creation and management, language bindings for C and For-
tran, point-to-point and collective communications, and group and communicator
concepts. Newer MPI standards are trying to better support the scalability in future
extreme-scale computing systems, because currently, the only feasible option for in-
creasing the computing power is in increased number of cooperating processors. Ad-
vanced topics, as one-sided communications, extended collective operations, pro-
cess topologies, external interfaces, etc., are also covered by these standards, but are
beyond the scope of this book.

The final goal of this chapter is advise users how to employ the basic MPI prin-
ciples in the solution of complex problems with a large number of processes that
exchange application data through messages.

4.2 Programmer’s view

Programmers have to be aware that the cooperation among processes implies the
data exchange. The total execution time is consequently a sum of computation and
communication time. Algorithms with only local communication between neigh-
boring processors are faster and more scalable than the algorithms with the global
communication among all processors. Therefore, the programmer’s view of a prob-
lem that will be parallelized has to incorporate a wide number of aspects, e.g. data
independency, communication type and frequency, balancing the load among pro-
cessors, balancing between communication and computation, overlapping commu-
nication and computation, synchronous or asynchronous program flow, stopping cri-
teria, and others.

Most of the above issues that are related to communication are efficiently solved
by the MPI specification. Therefore, we will identify the mentioned aspects and de-
scribe efficient solutions through the standardized MPI operations. Further sections
should not be considered as an MPI reference guide or MPI library implementation
manual. We will just try to rise the interest of readers, through simple and illustrative
examples, and to show how some of the typical problems can be efficiently solved
by the MPI methodology.

1" Against potential ambiguities, some segments of text are reproduced from: A Message-Passing
Interface Standard (Version 3.1), © 1993, 1994, 1995, 1996, 1997, 2008, 2009, 2012, 2015, by
University of Tennessee, Knoxville, Tennessee.

4.3 Message passing interface 93

4.3 Message passing interface

The standardization effort of a message passing interface (MPI) library began in
nineties and is one of the most successful project of the software standardization. Its
driving force was, from the beginning, a cooperation between academia and industry
that has been created with the MPI standardization forum.

The MPI library interface is a specification, not an implementation. The MPI is
not a language, and all MPI operations are expressed as functions, subroutines, or
methods, according to the appropriate language bindings for C and Fortran, which
are a part of the MPI standard. The MPI standard defines the syntax and seman-
tics of library operations that support the message-passing model, independently of
program language or compiler specification.

Since the word "PARAMETER” is a keyword in the Fortran language, the MPI
standard uses the word “argument” to denote the arguments to a subroutine. It is
expected that C programmers will understand the word “argument”, which has no
specific meaning in C, as a ”parameter”, thus allowing to avoid unnecessary confu-
sion for Fortran programmers.

An MPI program consists of autonomous processes that are able to execute their
own code in the sense of multiple instruction multiple data (MIMD) paradigm. An
MPI process can be interpreted in this sense as a program counter that addresses
their program instructions in the system memory, which implies that the program
codes executed by each process have not to be the same.

The processes communicate via calls to MPI communication operations, inde-
pendently of operating system. The MPI can be used in a wide range of programs
written in C or Fortran. Based on the MPI library specifications several efficient MPI
library implementations have been developed, either in open-source in the public
domain. The success of the project is evidenced by a coherent development of the
parallel software projects that are portable between different computing environ-
ments, e.g. parallel computers, clusters, and heterogeneous networks, and scalable
along wide numbers of cooperating processors, from one to millions. Finally, the
MPI interface is designed for end users, parallel library writers and developers of
parallel software tools.

Any MPI program should have operations to initialize execution environment
and to control starting and terminating procedures of all generated processes. MPI
processes can be collected into groups of specific size that can communicate in its
own environment where each message sent in a context must be received only in the
same context. A process group and context together form an MPI communicator.
A process is identified by its rank in the group associated with a communicator.
There is a default communicator MPI_COMM_WORLD whose group encompass all ini-
tial processes, and whose context is default. Two essential questions arise early in
any MPI parallel program: "How many processes are participating in computation?”
and ”Which are their identities?”” Both questions will be answered after calling two
specialized MPI operations.

The basic MPI communication is characterized by two fundamental MPI oper-
ations MPI_SEND and MPI_RECV that provide sends and receives of process data,

10
11

14

2| #include <stdio.h>
;)| #include "mpi.h"

94 4 MPI processes and messaging

represented by numerous data types. Besides the data transfer these two operations
synchronize the cooperating processes in time instants where communication has to
be established, e.g. a process cannot proceed if the expected data has not arrived.
Further, a sophisticated addressing is supported within a group of ranked processes
that are a part of a communicator. A single program may use several communica-
tors, which manage common or separated MPI processes. Such a concept enables
to use different MPI based parallel libraries that can communicate independently,
without interference, within a single parallel program.

Even that the most of parallel algorithms can be implemented by just a few
MPI operations, the MPI-1 standard offers a set of more than 120 operations for
elegant and efficient programming, including operations for collective and asyn-
chronous communication in numerous topologies of interconnected computers. The
MPI library is well documented from its beginning and constantly developing. The
MPI-2 provides standardized process startup, dynamic process creation and man-
agement, improved data types, one-sided communication and versatile input/output
operations. The MPI-3 standard introduces non blocking collective communication
that enable communication-computation overlapping and the MPI Shared Memory
(SHM) model that enables efficient programming of hybrid architectures, e.g. a net-
work of multicore computing nodes.

Complete MPI is quite a large library with 128 MPI-1 operations, with twice as
much in MPI-2 and even more in MPI-3. We will start with only six basic operations
and further add a few from the complete MPI set for greater flexibility in the parallel
programming. However, to fulfil the desires of this textbook one need to master
just a few dozens of MPI operations that will be described in more details in the
following sections.

Very well organized documentation can be found on several web-pages, for ex-
ample on the following link: http://www.mcs.anl.gov/research/projects/
mpi/tutorial/mpiexmpl/contents.html with assignments, solution, program
output and many useful hints and additional links. The latest MPI standard and fur-
ther information about MPI are available on http://www.mpi-forum.org/.

Example 4.1. Hello World MPI program
We will proceed with a minimal MPI program in C programming language. Its
implementation is shown in Listing 4.1.

#include "stdafx.h"

int main(int argc, char *xargv)

//int main(argc, argv)

//int argc;

//char **arguv;

{
int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
printf ("Hello world from process %d of %d processes.\n", rank, size);
MPI_Finalize();

4.3 Message passing interface 95

16 return O;

7] ¥

Listing 4.1: ”Hello world” MPI program MSMPIHello.ccp in C programming
syntax.

The “Hello World” has been written in C programming language, hence the
three-line preamble should be commented and replaced by: int main(int argc,
char **argv), if C++ compiler is used. The “Hello World” code looks like a stan-
dard C code with several additional lines with MPI_ prefix, which are calls to global
MPI operations that are executed on all processes. Note, that some MPI operations,
that will be introduced later, could be local, i.e. executed on a single process.

The “Hello World” code in Listing 4.1 is the same for all processes. It has to
be compiled only once to be executed on all active processes. Such a methodology
could simplify the development of parallel programs. Run the program with:

$ mpiexec -n 3 MSMPIHello

from Command prompt of the host process, at the path of directory where MSMPI-
Hello.exe is located. The program should output three “Hello World” messages,
each with a process identification data.

All non-MPI procedures are local, e.g. printf in the above example. It runs on
each process and prints separate "Hello World” notice. If one would prefer to have
only a notice from a specific process, e.g. 0, an extra if (rank == 0) statement
should be inserted. Let us comment the rest of the above code:

e #include "stdafx.h" is needed because the MS Visual Studio compiler has
been used,

e #include <stdio.h> is needed because of printf, which is used later in the
program,

e #include "mpi.h" provides basic MPI definition of named constants, types,
and function prototypes, and must be included in any MPI program.

The above MPI program, including definition of variables, will be executed in all
active processes. The number of processes will be determined by parameter -n of
the MPI execution utility mpiexec, usually provided by the MPI library implemen-
tation.

e MPI_Init initializes the MPI execution environment and MPI_Finalize exits
the MPI,

e MPI_Comm_size(MPI_COMM_WORLD, &size) returns size, which is the num-
ber of started processes, and

e MPI_Comm_rank (MPI_COMM_WORLD, &rank) that returns rank, i.e. an ID of
each process.

e MPI operations return a status of the execution success; in C routines as the value
of the function, which is not considered in the above C program, and in Fortran
routines as the last argument of the function call (see Listing 4.2).

96 4 MPI processes and messaging

Depending on the number of processes, the printf function will run on each
process, which will print a separate "Hello World” notice. If all processes will print
the output, we expect size lines with ”"Hello World” notice, one from each pro-
cess. Note that the order of the printed notices is not known in advance, because
there is no guaranty about the ordering of the MPI processes. We will address this
topic, in more details, later in this chapter. Note also that in this simple example no
communication between processes has been required.

O

For comparison, a version of “Hello World” MPI program in Fortran program-
ming language is given in Listing 4.2:

program hello_world
>| include ’/usr/include/mpif.h’
3| integer ierr, num_procs, my_id

call MPI_INIT (ierr)
6| call MPI_COMM_RANK (MPI_COMM_WORLD, my_id, ierr)
7| call MPI_COMM_SIZE (MPI_COMM_WORLD, num_procs, ierr)

s| print *, "Hello world from process ", my_id, " of ", num_procs
9] call MPI_FINALIZE (ierr)

0| stop

11| end

Listing 4.2: "Hello world” MPI program OMPIHello.f in Fortran programming
language.

Note that capitalized MPI_ prefix is used again in the names of MPI operations,
which are also capitalized in Fortran syntax, but the different header file mpif.h is
included. MPI operations return a status of execution success, i.e. ierr in the case
of Fortran program.

4.3.1 MPI operation syntax

The MPI standard is independent of specific programming languages. To stress this
fact capitalized MPI operation names will be used in the definition of MPI opera-
tions. MPI operation arguments, in a language-independent notation, are marked as:
IN - for input values that may be used by the operation, but not updated;
OUT - for output values that may be updated by the operation, but not used as input
value;
INOUT - for arguments that may be used and/or updated by the MPI operation. An
argument, used as IN by some processes and as OUT by other processes is also
marked as INOUT, even that it is not used for input and for output in a single call.
For shorter specifications of MPI operations, the following notation is used for
descriptive names of arguments:

IN arguments are in normal text, e.g. buf, sendbuf, MPI_COMM_WORLD, etc.

4.3 Message passing interface 97

OUT arguments are in underlined text, e.g. rank, recbuf, etc.

INOUT arguments are in underlined italic text, e.g inbuf, request, etc.

The examples of MPI programs, in the rest of this chapter, are given in C pro-
gramming language. Below are some terms and conventions that are implemented
with C program language binding:

e Function names are equal to the MPI definitions but with the MPI_ prefix and the
first letter of the function name in upper case, e.g. MPI_Finalize().

e The status of execution success of MPI operations is returned as integer return
codes, e.g. ierr = MPI_Finalize(). The return code can be an error code or
MPI_SUCCESS for successful competition, defined in the file mpi . h, Note that all
predefined constants and types are fully capitalized.

e Operation arguments IN are usually passed by value with an exception of the
send buffer, which is determined by its initial address. All OUT and INOUT
arguments are passed by reference (as pointers), e.g.

MPI_Comm_size (MPI_COMM_WORLD, &size).

4.3.2 MPI data types

MPI communication operations specify the message data length in terms of number
of data elements, not in terms of number of bytes. Specifying message data elements
is machine independent and closer to the application level. In order to retain machine
independent code, the MPI standard defines its own basic data types that can be used
for the specification of message data values, and correspond to the basic data types
of the host language.

As MPI does not require that communicating processes use the same represen-
tation of data, i.e. data types, it needs to keep track of possible data types through
the build-in basic MPI data types. For more specific applications, MPI offers oper-
ations to construct custom data types, e.g. array of (int, float) pairs, and many
other options. Even that the type casting between a particular language and the MPI
library may represent a significant overhead, the portability of MPI programs sig-
nificantly benefits.

Some basic MPI data types, that correspond to the adequate C or Fortran data
types, are listed in Table 4.1. Details on advanced structured and custom data types
can be found in the before mentioned references.

The data types MPI_BYTE and MPI_PACKED do not correspond to a C or a For-
tran data type. A value of type MPI_BYTE consists of a byte, i.e. 8 binary digits. A
byte is uninterpreted and is different from a character. Different machines may have
different representations for characters, or may use more than one byte to represent
characters. On the other hand, a byte has the same binary value on all machines. If
the size and representation of data is known, the fastest way is the transmission of
raw data, for example, by using an elementary MPI data type MPI_BYTE.

98 4 MPI processes and messaging

Table 4.1: Some MPI data types corresponding to C and Fortran data types.

[MPI data type|C data type[MPI data type [Fortran data type |
MPI_INT int MPI_INTEGER INTEGER

MPI_SHORT short int MPI_REAL REAL

MPI_LONG long int MPI_DOUBLE_PRECISION|DOUBLE PRECISION
MPI_FLOAT float MPI_COMPLEX COMPLEX
MPI_DOUBLE |double MPI_LOGICAL LOGICAL

MPI_CHAR char MPI_CHARACTER CHARACTER
MPI_BYTE / MPI_BYTE /

MPI_PACKED / MPI_PACKED /

The MPI communication operations have involved only buffers containing a con-
tinuous sequence of identical basic data types. Often, one wants to pass messages
that contain values with different data types, e.g. a number of integers followed
by a sequence of real numbers; or one wants to send non-contiguous data, e.g.
a sub-block of a matrix. The type MPI_PACKED is maintained by MPI_PACK or
MPI_UNPACK operations, which enable to pack different types of data into a con-
tiguous send buffer and to unpack it from a contiguous receive buffer.

A more efficient alternative is a usage of derived data types for construction of
custom message data. The derived data types allow, in most cases, to avoid explicit
packing and unpacking, which requires less memory and time. A user specifies in
advance the layout of data types to be sent or received and the communication
library can directly accesses a non-continuous data. The simplest non-contiguous
datatype is the vector type, constructed with MPI_Type_vector. For example, a
sender process has to communicate the main diagonal of an N X N array of integers,
declared as:

int matrix[N] [N];

which is stored in a row-major layout. A continuous derived datatype diagonal can
be constructed:

MPI_Datatype MPI_diagonal;
that specifies the main diagonal as a set of integers:
MPI_Type_vector (N, 1, N+1, MPI_INT, &diagonal);

where their count is N, block length is 1, and stride is N+1. The receiver process
receives the data as a contiguous block. There are further options that enable the
construction of sub-arrays, structured data, irregularly strided data, etc.

If all data of an MPI program is specified by MPI types it will support data trans-
fer between processes on computers with different memory organization and differ-
ent interpretations of elementary data items, e.g. in heterogeneous platforms. The
parallel programs, designed with MPI data types, can be easily ported even between
computers with unknown representations of data. Further, the custom application-

4.3 Message passing interface 99

oriented data types can reduce the number of memory-to-memory copies or can be
tailored to a dedicated hardware for global communication.

4.3.3 MPI error handling

The MPI standard assumes a reliable and error free underlying communication plat-
form therefore, it does not provide mechanisms for dealing with failures in the com-
munication system. For example, a message sent is always received correctly, and
the user need not check for transmission errors, time-outs, or similar. Similarly, MPI
does not provide mechanisms for handling processor failures. A program error can
follow an MPI operation call with incorrect arguments, e.g. non-existing destination
in a send operation, exceeding available system resources, or similar.

Most of MPI operation calls return an error code that indicates the completion
status of the operation. Before the error value is returned, the current MPI error han-
dler is called, which, by default, aborts all MPI processes. However, MPI provides
mechanisms for users to change this default and to handle recoverable errors. One
can specify that no MPI error is fatal, and handle the returned error codes by custom
error-handling routines.

4.3.4 Make your computer ready for using MPI

In order to test the presented theory we need to install first the necessary software
that will make our computer ready for running and testing MPI programs. In Ap-
pendix A of this book, readers will find short instructions for the installation of free
MPI supporting software for either for Linux, macOS or MS Windows powered
computers. Beside a compiler for selected program language, an MPI implemen-
tation of the MPI standard is needed with a method for running MPI programs.
Please, refer the instruction in Appendix A and run your first "Hello Word" MPI
program. Then you can proceed here in order to find some further hints for running
and testing simple MPI programs, either on a single multicore computer or on a set
of interconnected computers.

4.3.5 Running and configuring MPI processes

Any MPI library will provide you with the mpiexec (or mpirun) program that can
launch one or more MPI applications on a single computer or on a set of intercon-
nected computers (hosts). The program has many options that are standardized to
some extent, but one is advised to check actual program options with mpiexec -
help. Most common options are -n <num_processes>, ~host or -machinefile.

100 4 MPI processes and messaging

An MPI program executable MyMPIprogram.exe can be launched on a local
host and on three processes with:

$ mpiexec -n 3 MyMPIprogram

MPI will automatically distribute processes among the available core, which can be
specified by option -cores <num_cores_per_host> Alternatively, the program
can be launched on two interconnected computers, on each with four processes,
with:

$ mpiexec -host 2 hostl 4 host2 4 MyMPIprogram

For more complex managing of cooperation processes, a separate configuration
file can be used. The processes available for the MPI can be specified by using -
machinefile option to mpiexec. With this option, a text file, e.g. myhostsfile,
lists computers on which to launch MPI processes. The hosts are listed one per line,
identified either with a computer name or with its IP address. An MPI program, e.g.
MyMPIprogram, can be executed, for example on three processes, with:

$ mpiexec -machinefile myhostsfile -n 3 MyMPIprogram

Single computer

The configuration file can be used for a specification of processes on a single com-
puter or on a set of interconnected computers. For each host, the number of pro-
cesses to be used on that host can be defined by a number that follows a computer
name. For example, on a computer with a single core, the following configuration
file defines four processes per computing core:

localhost 4

If your computer has, for example, four computing cores, MPI processes will be
distributed among the cores automatically, or in a way specified by the user in the
MPI configuration file, which supports, in this case, the execution of the MPI par-
allel program on a single computer. The configuration file could have the following
structure:

localhost
localhost
localhost
localhost

specifying that a single process will run on each computing core if mpiexec option
-n 4 is used, or two processes will run on each computing core if -n 8 is used, etc.
Note, that there are further alternative options for configuring MPI processes that
are usually described in more details in ~help options of a specific MPI implemen-
tation.

4.3 Message passing interface 101

Your computer is now ready for the coding and testing more useful MPI programs
that will be discussed in following sections. Before that, some further hints are given
for the execution of MPI programs on a set of interconnected computers.

Interconnected computers

If you are testing your program on a computer network you may select several com-
puters to perform defined processes and run and test your code. The configuration
file must be edited in a way that all cooperating computers are listed. Suppose that
four computers will cooperate, each with two computing cores. The configuration
file: myhostsfile should contain names or IP addresses of these computers, e.g.:

computer_namel
computer_name?2
192.20.301.77

computer_name4

each in a separate line, and with the first name belonging to the name of the local
host, i.e. the computer from which the MPI program will be started, by mpiexec.

Let us execute our MPI program MyMPIprogram on a set of computers in a net-
work, e.g. connected with an Ethernet. Editing, compiling and linking process is
the same as in the case of a single computer. However, the MPI executable should
available to all computers, e.g. by a manual copying of the MPI executable on the
same path on all computers, or more systematically, through a shared disk.

On MS Windows, a service for managing the local MPI processes, e.g. smpd dae-
mons should be started by: smpd -d on all cooperating computers before launching
MPI programs. The cooperating computers should have the same version of the
MPI library installed, and the compiled MPI executable should be compatible with
the computing platforms (32 or 64 bits) on all computers. The command from the
master host:

$mpiexec -machinefile myhostsfile \\MasterHost\share\MyMPIprog

will enable to run the program on a set of processes, eventually located on different
computers, as has been specified in the configuration file myhostsfile.

Note also, that the a potential user should be granted with rights for executing
the programs on selected computers. One will need a basic user account and an
access to the MPI executable that must be located on the same path on all comput-
ers. In Linux, this can be accomplished automatically by placing the executable in
/home/username/ directory. Finally, a method that allow automatic login, e.g. in
Linux, SSH login without password, is needed, to enable automatic login between
cooperating computers.

The described approach is independent on the technology of the interconnec-
tion network. The interconnected computers can be multicore computers, comput-
ing clusters connected by Gigabit Ethernet or Infiniband, or computers in a home
network connected by Wi-Fi.

102 4 MPI processes and messaging

4.4 Basic MPI operations

Let us recall the presented issues in a more systematic way by a brief description
of four basic MPI operations. Two trivial operations without MPI arguments will
initiate and shut down the MPI environment. Next two operations will answer the
questions: "How many processes will cooperate?” and ”"Which is my ID among
them?” Note that all four operations are called from all processes of the current
communicator.

4.4.1 MPI_INIT (int *argc, char *x*argv)

The operation initiates an MPI library and environment. The arguments argc and
argv are required in C language binding only, where they are parameters of the
main C program.

4.4.2 MPI_FINALIZE ()

The operation shuts down the MPI environment. No MPI routine can be called
before MPI_INIT or after MPI_FINALIZE, with one exception MPI_INITIALIZED
(flag), which queries if MPI_INIT has been called.

4.4.3 MPI_COMM_SIZE (comm, size)

The operation determines the number of processes in the current communicator.
The input argument comm is the handle of communicator; the output argument size
returned by the operation MPI_COMM_SIZE is the number of processes in the group
of comm. If comm is MPI_COMM_WORLD then it represents the number of all active
MPI processes.

4.4.4 MPI_COMM_RANK (comm, rank)

The operation determines the identifier of the current process within a communi-
cator. The input argument comm is the handle of the communicator; the output ar-
gument rank is an ID of the process from comm, which is in the range from 0 to
size-1.

4.5 Process-to-process communication 103

In the following sections, some of the frequently used communication MPI oper-
ations are described briefly. There is no intention to provide an MPI user manual in
its complete version, instead, this short description should be just a first motivation
for beginners to write an MPI program that will effectively harness his computer,
and to further explore the beauty and usefulness of the MPI approach.

4.5 Process-to-process communication

We know from previous chapters that a traditional process is associated with a pri-
vate program counter of its private address space. Processes may have multiple pro-
gram threads, associated with separate program counters, which share a single pro-
cess’s address space. The message passing model formalizes the communication
between processes that have separate address spaces. The process-to-process com-
munication has to implement two essential tasks: data movement and synchroniza-
tion of processes, therefore it requires cooperation of sender and receiver processes.
Consequently, every send operation expects a pairing/matching receive operation.
The cooperation is not always apparent in the program, which may hinder the un-
derstanding of the MPI code.

A schematic presentation of a communication between sender Process_0 and
receiver Process_1 is shown in Fig. 4.1. In this case optional intermediate message
buffers are used in order to enable sender Process_0 to continue immediately after
it initiates the send operation. However, Process_0 will have to wait on the return
from the previous call, before it can send a new message. On the receiver side, Pro-
cess_1 can do some useful work instead of idling while waiting on the matching
message reception. It is a communication system that must ensure that the message
will be reliably transferred between both processes. If the processes have been cre-
ated on a single computer, the actual communication will be probably implemented
through a shared memory. If the processes reside on two distant computers, then
the actual communication might be performed through an existing interconnection
network using, e.g. TCP/IP communication protocol.

Although that blocking send/receive operations enable a simple way for syn-
chronization of processes, they could introduce unnecessary delays in cases where
sender and receiver do not reach communication point at the same real time. For
example, if Process_0 issues a send call significantly before the matching receive
call in Process_1, Process_0 will start waiting to the actual message data trans-
fer. In the same way, processes’ idling can happen if a process that produces many
messages is much faster than the consumer process. Message buffering may allevi-
ates the idling to some extent, but if the amount of data exceeds the capacity of the
message buffer, which can always happen, Process_0 will be blocked again.

The next concern of the blocking communication are deadlocks. For example, if
Process_0 and Process_1 initiate their send calls in the same time, they will be
blocked forever by waiting a matching receive calls. Fortunately, there are several

104 4 MPI processes and messaging

May | Send?
Process_0 Process_1
sent Yes, go!
message data
Process_0
buffer waiting on
Communication system expected
det) L
waiting on T
receive data(2)
complete | data(1) |11
confirmation I Process 1
buffer
received
Message received message data
Time

Fig. 4.1: Communication between two processes awakes both of them while trans-
ferring data from sender Process_0 to receiver Process_1, possibly with a set of
shorter sub-messages.

ways for alleviating such situations, which will be described in more details near
the end of Section 4.7.

Before an actual process-to-process transfer of data happens, several issues have
to be specified, e.g. how will message data be described, how processes will be
identified, how the receiver recognizes/screens messages, when the operations will
complete. The MPI_SEND and MPI_RECV operations are responsible for the imple-
mentation of the above issues.

4.5.1 MPI_SEND (buf, count, datatype, dest, tag, comm)

The operation, invoked by a blocking call MPI_SEND in the sender process source,
will not complete until there is a matching MPI_RECV in receiver process dest,
identified by a corresponding rank. The MPI_RECV will empty the input send buffer
buf of matching MPI_SEND. The MPI_SEND will return when the message data has
been delivered to the communication system and the send buffer buf of the sender
process source can be reused. The send buffer is specified by the following argu-
ments: buf - pointer to the send buffer, count - number of data items, and datatype
- type of data items. The receiver process is addressed by an envelope that consists
of arguments dest, which is the rank of receiver process within all processes in the
communicator comm, and of a message tag.

The message tags provide a mechanism for distinguishing between different
messages for the same receiver process identified by destination rank. The tag
is an integer in the range [0, UB] where UB, defined in mpi.h, can be found by
querying the predefined constant MPI_TAG_UB. When a sender process has to send
more separate messages to a receiver process, the sender process will distinguish

4.5 Process-to-process communication 105

them by using tags, which will allow receiver process to efficiently screening its
messages. For example, if a receiver process has to distinguish between messages
from a single source process, a message tag will serve an additional means for mes-
sages differentiation. MPI_ANY_TAG is a constant pre-defined in mpi .h, which can
be considered as a "wild-card", where all tags will be accepted.

4.5.2 MPI_RECV (buf, count, datatype, source, tag,
comm, status)

This operation waits until the communication system delivers a message with
matching datatype, source, tag, and comm. Messages are screened at the re-
ceiving part based on specific source, which is a rank of the sender process
within communicator comm, or not screened at all on source by equating it with
MPI_ANY_SOURCE. The same screening is performed with tag, or if screening on
tag is not necessary, by using MPI_ANY_TAG, instead. After return from MPI_RECV
the output buffer buf is emptied and can be reused.

The number of received data items of datatype must be equal of fewer as speci-
fied by count, which must be positive or zero. Receiving more data items results an
error. In such cases, the output argument status contains further information about
the error. The entire set of arguments: count, datatype, source, tag and comm,
must match between the sender process and the receiver process to initiate actual
message passing. When a message, posted by a sender process, has been collected
by a receiver process, the message is said to be completed, and the program flows
of the receiver and the sender processes may continue.

Most implementations of the MPI libraries copy the message data out of the user
buffer, which was specified in the MPI program, into some other intermittent system
or network buffer. When the user buffer can be reused by the application, the call to
MPI_SEND will return. This may happen before the matching MPI_RECV is called or
it may not, depending on the message data length.

Example 4.2. Ping-pong message transfer

Let us check the behaviour of the MPI_SEND and MPI_RECV operations on your
computer, if the message length grows. Two processes will exchange messages that
will become longer and longer. Each process will report when the expected mes-
sage has been sent, which means that it was also received. The code of the MPI
program MSMPImessage.cpp is shown in Listing 4.3. Note, that there is a single
program for both processes. A first part of the program, that determines the number
of cooperating processes, is executed on both processes, which must be two. Then
the program splits in two parts, first for process of rank = 0 and second of process
of rank = 1. Each process sends and receives a message with appropriate calls to
the MPI operations. We will see in the following, how the order of these two calls
impacts the program execution.

106 4 MPI processes and messaging

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
int main(int argc, charx argv[])
{
int numprocs , rank, tag = 100, msg_size=64;
char x*buf;
MPI_Status status;
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
if (numprocs != 2) {
printf ("The number of processes must be two!\n");
MPI_Finalize () ;
return (0) ;
}
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
printf ("MPI process %d started...\n", rank);
fflush(stdout) ;
while (msg_size < 10000000) {

msg_size = msg_size *2;
buf = (char #*)malloc(msg_size * sizeof (char));
if (rank == 0) {

MPI_Send (buf, msg_size, MPI_BYTE, rank+1, tag, MPI_COMM_WORLD) ;
printf ("Message of length %d to process %d\n",msg_size,rank+1);
fflush(stdout) ;

MPI_Recv(buf, msg_size, MPI_BYTE, rank+1l, tag,MPI_COMM_WORLD,

&status) ;
}
if (rank == 1) {
// MPI_Recv (buf, msg_size, MPI_BYTE, rank-1, tag, MPI_COMM_WORLD,
// &status) ;

MPI_Send (buf, msg_size, MPI_BYTE, rank-1, tag, MPI_COMM_WORLD) ;
printf ("Message of length %d to process %d\n",msg_size,rank-1);
fflush(stdout);

MPI_Recv(buf, msg_size, MPI_BYTE, rank-1, tag, MPI_COMM_WORLD,

&status) ;
}
free (buf);
}
MPI_Finalize () ;

}

Listing 4.3: Verification of MPI_SEND and MPI_RECV operations on your computer.
The output of this program should be as follows:

$ mpiexec -n 2 MPImessage

MPI process 0O started...

MPI process 1 started...

Message of length 128 send to process 1.
Message of length 128 returned to process O.
Message of length 256 send to process 1.
Message of length 256 returned to process O.
Message of length 512 send to process 1.
Message of length 512 returned to process O.
Message of length 1024 send to process 1.
Message of length 1024 returned to process O.
Message of length 2048 send to process 1.
Message of length 2048 returned to process 0.

4.5 Process-to-process communication 107

Message of length 4096 returned to process O.
Message of length 4096 send to process 1.
Message of length 8192 returned to process 0.
Message of length 8192 send to process 1.
Message of length 16384 send to process 1.
Message of length 16384 returned to process O.
Message of length 32768 send to process 1.
Message of length 32768 returned to process 0.
Message of length 65536 send to process 1.
Message of length 65536 returned to process O.

The program blocks at the message length 65536, which is in some relation with
the capacity of the MPI data buffer in the actual MPI implementation. When the
message exceed it, MPI_Send in both processes block and enter a deadlock. If we
just change the order of MPI_Send and MPI_Recv by comment lines 36-37 and un-
comment lines 31-32 in process with rank = 1, all expected messages until the
length 16777216 are transferred correctly. Some further discussion about the rea-
sons for such a behaviour will be provided later, in Section 4.7. O

4.5.3 MPI_SENDRECV (sendbuf, sendcount, sendtype, dest,
sendtag, recvbuf, recvcount, recvtype, source,
recvtag, comm, status)

The MPI standard specifies several additional operations for message transfer that
are a combination of basic MPI operations. They are useful for writing more com-
pact programs. For example, operation MPI_SENDRECV combines a sending of mes-
sage to destination process dest and a receiving of another message from process
source, in a single call in sender and receiver process; however, with two distinct
message buffers: sendbuf, which acts as an input, and recvbuf, which is an output.
Note, that buffers’ sizes and types of data can be different.

The send-receive operation is particularly effective for executing a shift operation
across a chain of processes. If blocking MPI_SEND and MPI_RECV are used, then one
needs to order them correctly, for example - even processes send, then receive, odd
processes receive first, then send - so as to prevent cyclic dependencies that may lead
to deadlocks. By using MPI_SENDRECV the communication subsystem will manage
these issues alone.

There are further advanced communication operations that are a composition
of basic MPI operations. For example MPI_SENDRECV_REPLACE (buf, count,
datatype, dest, sendtag, source, recvtag, comm, status) operationim-
plements the functionality the MPI_SENDRECV, but uses only a single message
buffer. The operation is therefore useful in cases with send and receive messages
of the same length and of the same data type.

108 4 MPI processes and messaging

Seven basic MPI operations

Many parallel programs can be written and evaluated just by using the following
seven MPI operations that have been overviewed in the previous sections:

MPI_INIT,
MPI_FINALIZE,
MPI_COMM_SIZE,
MPI_COMM_RANK,
MPI_SEND,
MPI_RECV,
MPI_WTIME.

4.5.4 Measuring performances

The elapsed time (wall-clock) between two points in an MPI program can be mea-
sured by using operation MPI_WTIME (). Its use is self-explanatory through a short
segment of an MPI program example:

double start, finish;
start = MPI_Wtime ();
... //VMPI program segment to be clocked
finish = MPI_Wtime ();
printf ("Elapsed time is %f\n", finish - start);

We are now ready to write a simple example of a useful MPI program that will
measure the speed of communication channel between two processes. The program
is presented, in more details, in the next subsection.

Example 4.3. Measuring communication bandwidth

Let us design a simple MPI program, which will measure the communication
channel bandwidth, i.e. the amount of data transferred in a specified time interval,
by using MPI communication operations MPTI_SEND and MPI_RECV. As shown in
Fig. 4.2, we will generate two processes, either on a single computer or on two
interconnected computers. In the first case, the communication channel will be a
data-bus that “connects” the processes through their shared memory, while in the
second case the communication channel will be an Ethernet link between computers.

The process with rank = 0 will send a message, with a specified number of
doubles, to the process with rank = 1. The communication time is a sum of the
communication start-up time #; and the message transfer time, i.e. the transfer time
per word ¢,, times message length. We could expect that with shorter messages the
bandwidth will be lower because a significant part of communication time will be
spent on setting-up the software and hardware of the message communication chan-
nel, i.e. on the start-up time #;. On the other hand, with long messages, the data

4.5 Process-to-process communication 109

transfer time will dominate, hence, we could expect that the communication band-
width will approach to a theoretical value of the communication channel. Therefore,
the length of messages will vary from just a few data items to very long messages.
The test will be repeated nloop times, with shorter messages, in order to get more
reliable average results.

Process_0 Process_1
]
inbuf buf []
MPI_SEND(buf...) MPI_RECV (buf...)
] outbuf
Messages of increasing length

Fig. 4.2: A simple methodology for measurement of process-to-process communi-
cation bandwidth.

Considering the above methodology, an example of MPI program MSMPIbw. cpp,
for measuring the communication bandwidth, is given in Listing 4.4. We have again
a single program but slightly different codes for the sender and the receiver pro-
cess. The essential part, message passing, starts in the sender process with a call to
MPI_Send, which will be matched in the receiver process by a call to corresponding
MPI_Recv.

#include "stdafx.h"

>| #include <stdio.h>

3| #include <stdlib.h>

| #include "mpi.h"

5| #define NUMBER_OF_TESTS 10 //for more reliable average results

7| int main(int argc, char* argv[])

s {

9 double *buf ;

10 int rank, numprocs;
1 int n;

12 double Bil, B2A3

13 int j, k, nloop;

14 MPI_Status status;

15 MPI_Init (&argc, &argv);
16 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

if (numprocs != 2) {
18 printf ("The number of processes must be two!\n");
19 return (0) ;
20 ¥
21 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
2 if (rank == 0) {
23 printf ("\tn\ttime [sec]\tRate [Mb/sec]l\n");
24 ¥

25 for (n = 1; n < 100000000; n *= 2) { //message length doubles

26 nloop = 1000000 / n;

2 if (nloop < 1) nloop = 1; //just a single loop for long messages.
28 buf = (double *)malloc(n * sizeof (double));

29 if ('buf) {

30 printf ("Could not allocate message buffer of size %d\n", n);

110 4 MPI processes and messaging

MPI_Abort (MPI_COMM_WORLD, 1);

}
for (k = 0; k < NUMBER_OF_TESTS; k++) {
if (rank == 0) {
tl = MPI_Wtime();
for (j = 0; j < nloop; j++) {//send message nloop times
MPI_Send(buf, n, MPI_DOUBLE, 1, k, MPI_COMM_WORLD) ;
}
t2 = (MPI_Wtime() - t1) / nloop;
}
else if (ramnk == 1) {
for (j = 0; j < nloop; j++) {//receive message nloop times
MPI_Recv(buf, n, MPI_DOUBLE, O, k, MPI_COMM_WORLD, &status);
}
}
}
if (rank == 0) { //calculate bandwidth

double bandwidth;
bandwidth = n * sizeof (double)*1.0e-6 * 8 / t2; //in Mb/sec
printf ("\t%10d\t%10.8£\t%8.2f\n", n, t2, bandwidth);

free (buf) ;
¥
MPI_Finalize();
return O;

}

Listing 4.4: MPI program for measuring bandwidth of a communication channel.

The output of the MPI program from Listing 4.4, which has been executed on two
processes, each running on one of two computer cores that communicate through
the shared memory, is shown in Fig. 4.3a with a screen-shot of rank = 0 process
user terminal, and in Fig. 4.3b with a corresponding bandwidth graph. The results
confirmed our expectations. The bandwidth is poor with short messages and reaches
the whole capacity of the memory access with longer messages.

If we assume that with very short messages, the majority of time is spent for
the communication set-up, we can read from Fig. 4.3a (first line of data) that the
set-up time was 0.35 us. The set-up time starts increasing when the messages be-
come longer than 32 of doubles. A reason could be that processes communicates
until know through the fastest cache memory. Then the bandwidth increases until
message length 512 of doubles. A reason for a drop at this length could be cache
memory incoherences. The bandwidth converges then to 43 Gb/s, which could be
a limit of cache memory access. If message lengths are increased above 524 thou-
sands of doubles, the bandwidth is becoming lower and stabilizes at around 17 Gb/s,
eventually because of a limit in shared memory access. Note, that the above merits
are strongly related to a specific computer architecture and may therefore signifi-
cantly differ among different computers. (]

You are encourage to run the same program on your computer, and compare the
obtained results with the results from Fig. 4.3. You may also run the same program
on two interconnected computers, e.g. by Ethernet or Wi-Fi, and try to explain the
obtained differences in results, taking into account a limited speed of your connec-
tion. Note, that the maximum message lengths n could be made shorter in the case
of slower communication channels.

4.6 Collective MPI communication 111

time [sec]

bandwidth [Mb/s]

102 ' ‘ ‘
10° 102 10* 108 108
Message length [#doubles]
a) b)

Fig. 4.3: The bandwidth of a communication channel between two processes on
a single computer that communicate through shared memory. a) message length,
communication time and bandwidth, all in numbers; b) corresponding graph of the
communication bandwidth.

4.6 Collective MPI communication

The communication operations, described in the previous sections, are called from a
single process, identified by a rank, which has to be explicitly expressed in the MPI
program, e.g. by a statement if (my_id == rank). The MPI collective operations
are called by all processes in a communicator. Typical tasks that can be elegantly
implemented in this way are: global synchronization, reception of a local data item
from all cooperating processes in the communicator and a lot of others, some of
them described in this section.

4.6.1 MPI_BARRIER (comm)

This operation is used to synchronize the execution of a group of processes speci-
fied within the communicator comm. When a process reach this operation it has to
wait until all other processes have reached the MPI_BARRIER. In other words, no
process returns from MPI_BARRIER until all processes have called it. Note that the
programmer is responsible that all processes from communicator comm will really
call to MPI_BARRIER.

The barrier is a simple way of separating two phases of a computation to ensure
that messages generated in different phases do not interfere. Note again, that the
MPI_BARRIER is a global operation that invokes all processes therefore it could be

112 4 MPI processes and messaging

time-consuming. In many cases the call to MPI_BARRIER should be avoided by an
appropriate use of explicit addressing options, e.g. tag, source, or comm.

4.6.2 MPI_BCAST (%nbuf, incnt, intype, root, comm)

The operation implements a one-to-all broadcast operation whereby a single named
process root sends its data to all other processes in the communicator, including to
itself. Each process receives this data from the root process, which can be of any
rank. At the time of call, the input data are located in inbuf of process root and
consists of incnt data items of a specified intype. This implies that the number of
data items must be exactly the same at input and output side. After the call, the data
are replicated in inbuf as output data of all remaining processes. As inbuf is used
as an input argument at the root process, but as an output argument in all remaining
processes, it is of the INOUT type.

A schematic presentation of data broadcast after the call to MPI_BCAST is shown
in Fig. 4.4 for a simple case of three processes, where the process with rank = 0 is
the root process. Arrows symbolizes the required message transfer. Note, that all
processes have to call MPI_BCAST to complete the requested data relocation.

Process_0 (root) Process_1 Process_2
inbuf | Do |
MéI_BCA 9T MPI_BCAST MPI_BCAST

) outbut
4

Fig. 4.4: Root process replicates the data from its input buffer in the output buffers
of all processes.

Note, that the functionality of MPI_BCAST could be implemented, in the above
example, by three calls to MPI_SEND in the root process and by a single corre-
sponding MPI_RECV call in any process. Usually, such an implementation will be
less efficient than the original MPI_BCAST. All collective communications could be
time consuming. Their efficiency is strongly related with the topology and perfor-
mance of interconnection network.

4.6 Collective MPI communication 113

4.6.3 MPI_GATHER (inbuf, incnt, intype, outbuf, outcnt,
outtype, root, comm)

All-to-one collective communication is implemented by MPI_GATHER. This oper-
ation is also called by all processes in the communicator. Each process, including
root process, sends its input data located in inbuf that consists of incnt data items
of a specified intype, to the root process, which can be of any rank. Note, that
the communication data can be different in count and type for each process. How-
ever, the root process has to allocate enough space, through its output buffer, that
suffices for all expected data. After the return from MPI_GATHER in all processes,
the data are collected in outbuf of the root processes.

A schematic presentation of data relocation after the call to MPI_GATHER is
shown in Fig. 4.5 for the case of three processes, where process with rank = 0
is the root process. Note again, that all processes have to call MPT_GATHER to com-
plete the requested data relocation.

Process_0 (root) Process_1 Process_2

inbuf

MPI_GATHER MPI_GATHER

Fig. 4.5: Root process collects the data from input buffers of all processes in its
output buffer.

4.6.4 MPI_SCATTER (inbuf, incnt, intype, outbuf,
outcnt, outtype, root, comm)

This operation works inverse to MPI_GATHER, i.e. it scatters data from inbuf of
process root to outbuf of all remaining processes, including itself. Note, that the
count outcnt and type outtype of the data in each of the receiver processes are
the same, so, data is scattered into equal segments.

A schematic presentation of data relocation after the call to MPI_SCATTER is
shown in Fig. 4.6 for the case of three processes, where process with rank = 0
is the root process. Note again, that all processes have to call MPI_SCATTER to
complete the requested data relocation.

There are also more complex collective operations, e.g. MPI_GATHERV and
MPI_SCATTERV that allow a varying count of process data from each process and
permit some options for process data placement on the root process. Such extensions

114 4 MPI processes and messaging

Process_0 (root) Process_1 Process_2

MPI_SCATTER MPI_SCATTER

outout
A Z

Fig. 4.6: Root process scatters the data from its input buffer to output buffers of all
processes in its output buffer.

are possible by changing the incnt and outcnt arguments from a single integer to
an array of integers, and by providing a new array argument displs for specifying
the displacement relative to root buffers at which to place the processes’ data.

4.6.5 Collective MPI data manipulations

Instead of just relocating data between processes, MPI provides a set of operations
that perform several simple manipulations on the transferred data. These operations
represent a combination of collective communication and computational manipula-
tion in a single call and therefore simplify MPI programs.

Collective MPI operations for data manipulation are based on data reduction
paradigm that involves reducing a set of numbers into a smaller set of numbers
via a data manipulation. For example, three pairs of numbers: {5, 1}, {3, 2}, {7, 6},
each representing the local data of a process, can be reduced in a pair of maximum
numbers, i.e. {7, 6}, or in a sum of all pair numbers, i.e. {15, 9}, and in the same
way for other reduction operations defined by MPI:

- MPI_MAX, MPI_MIN; return either maximum or minimum data item,

- MPI_SUM, MPI_PROD; return either sum or product of aligned data items,

- MPI_LAND, MPI_LOR, MPI_BAND, MPI_BOR; return logical or bitwise AND or OR
operation across the data items,

- MPI_MAXLOC, MPI_MINLOC; return the maximum or minimum value and the rank
of the process that owns it.

- The MPI library enables to define custom reduction operations, which could be
interesting for advanced readers (see references in Section 4.10 for details).

The MPI operation that implements all kind of data reductions is:
MPI_REDUCE (inbuf, outbuf, count, type, op, root, comm).

The MPI_REDUCE operation implements manipulation op on matching data items
in input buffer inbuf from all processes in the communicator comm. The results
of the manipulation are stored in the output buffer outbuf of process root. The

4.6 Collective MPI communication 115

functionality of MPI_REDUCE is in fact an MPI_GATHER followed by manipulation
op in process root. Reduce operations are implemented on a per-element basis,
i.e. i-th elements from each process’ inbuf are combined into the i-th element in
outbuf of process root.

A schematic presentation of the MPI_REDUCE functionality before and after the
call:

MPI_REDUCE (inbuf,outbuf,2,MPI_INT, MPI_SUM,0,MPI_COMM_WORLD)

is shown in Fig. 4.7. Before the call, inbuf of three processes with ranks 0, 1, and 2
were: {5, 1}, {3, 2}, and {7, 6}, respectively. After the call to the MPI_REDUCE the
value in outbuf of root process is {15, 9}.

Process_0 (root) Process_1 Process_2

L% [CEVE) inbuf
MPI_REDUCE(..
AM, . ¢

MPI_REDUCE(...
MPI_SUM, ...

%
»
[
||
-
[S)
~
"
)

Fig. 4.7: Root process collects the data from input buffers of all processes, performs
per-element MPI_SUM manipulation, and saves the result in its output buffer.

In many parallel calculations, a global problem domain is divided into subdo-
mains that are assigned to corresponding processes. Often, an algorithm requires
that all processes take a decision based on the global data. For example, an iterative
calculation can stop when the maximal solution error reaches a specified value. An
approach to the implementation of the stopping criteria could be the calculation of
maximal subdomain errors and collection of them in a root process, which will
evaluate a stopping criteria and broadcast the final result/decision to all processes.
MPI provides a specialized operation for this task, i.e.:

MPI_ALLREDUCE (inbuf, outbuf, count, type, op, comm),

which improves simplicity and efficiency to MPI programs. It works as MPI_REDUCE
followed by MPI_BCAST. Note that the argument root is not needed any more
because the final result has to be available to all processes in the communicator.
For the same inbuf data as in Fig. 4.7 and with MPI_SUM manipulation, a call to
MPI_ALLREDUCE will produce the result {15, 9}, in output buffers of all processes
in the communicator.

Example 4.4. Parallel computation of &

We know that for an efficient parallel execution on multiple processors implies
that a complex task has to be decomposed in sub-tasks of similar complexity that
have to be executed in parallel on all available processors. Consider again a compu-
tation of 7 by a numerical integration of 4 folx/l — x2dx, which represents the area

116 4 MPI processes and messaging

of a circle with radius one that is equal to 7. A detailed description of this task is
given in Section 3. We divide the interval [0, 1] into N sub-intervals of equal width.
The area of sub-intervals is calculated in this case slightly different, by a multipli-
cation of sub-interval width with the evaluated integrand yi in the central point xi
of each sub-interval. Finally, all sub-areas are summed-up by a partial sum. The
schematic presentation of the described methodology is shown in Fig. 4.8 a) with
ten sub-intervals with central points xi = [0.05,0.1,...,0.95].

If we have p available processes and p is much smaller than the number of sub-
intervals N, which is usually the case if we need an accurate solution, the calculation
load has to be distributed among all available processes, in a balanced way, for
efficient execution. One possible approach is to assign each p-th sub-interval to
a specific process. For example, a process with rank = myID will calculate the
following sub-intervals: i = myID+ 1, i+ p, i+2p, until i + (k— 1)p < N, where
k= [N/p]. In the case of N > p, and N is dividable by p, k = N/p, and each
process calculates N/p intervals. Otherwise, a small unbalance in the calculation is
introduced, because some processes have to calculate one additional sub-interval,
while remaining processes will already finish their calculation. After the calculation
of the area of sub-intervals, p partial sums are reduced to a global sum, i.e. by
sending MPI messages to a root process. The global sum approximates 7, which
should be now computed faster and more accurate if more intervals are used.

A simple case for two processes and ten intervals is shown in Fig. 4.8 b). Five
sub-intervals {1,3,5,7,9}, marked in grey, are integrated by rank 0 process and the
other five sub-intervals {2,4,6,8,10}, marked in dark, are integrated by rank 1 pro-
cess.

0 of 02 03 04 05 06 07 08 09 0 01 0z 03 04 05 06 07 D08 03 1
Avea of subdarnains vank=0(light gray) and rank=1(dark gray)

a) b)

Fig. 4.8: a) Discretization of interval [0, 1] in 10 sub-intervals for numerical integra-
tion of quarter circle area; b)Decomposition for two parallel processes: light-grey
sub-intervals are sub-domain of rank O process; dark-grey sub-intervals of rank 1
process.

4.6 Collective MPI communication 117

An example of an MPI program that implements parallel computation of 7, for
an arbitrary p and N, in C programming language, is given in Listing 4.5:

1| #include "stdafx.h"

2| #include <stdio.h>

3| #include <math.h>

4| #include "mpi.h"

5| int main(int argc, char *argv[])

ol {

7 int done = 0, n, myid, numprocs, ij;

8 double PI25DT = 3.141592653589793238462643;
9 double pi, h, sum, x, start, finish;

10 MPI_Init (&argc, &argv);

1 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
12 MPI_Comm_rank (MPI_COMM_WORLD, &myid);

13 while (!domne) {

14 if (myid == 0) {

15 printf ("Enter the number of intervals: (0 quits) ");
16 fflush(stdout) ;

17 scanf_s ("%d", &n);

18 start = MPI_Wtime();

19 }

20 //ezecute in all active processes

21 MPI_Bcast (&n, 1, MPI_INT, O, MPI_COMM_WORLD);

2 if (n == 0) domne = 1;

23 h = 1.0 / (double)n;

2 sum = 0.0;

25 for (i = myid + 1; i <= n; i += numprocs) {

26 x = h * ((double)i - 0.5);
27 sum += 4.0 * h * sqrt(1.0 - x*x);

o8 }
29 MPI_Reduce (&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, O, MPI_COMM_WORLD);
30 if (myid == 0) {

31 finish = MPI_Wtime () ;

printf ("Pi is app. %.16f, Error is %.16f\n",pi,fabs(pi-PI25DT));
33 printf ("Elapsed time is %f\n", finish - start);
34 ¥

35 ¥

| MPI_Finalize();

37 return O;

38| F

Listing 4.5: MPI program in C for parallel computation of 7.

Let us open a Terminal window and a Task manager window (see Fig. 4.9), where
we see that the computer used has four cores, eight logical processors and is utilized
by a background task for 17%. After running the compiled program for the cal-
culation of 7 value on a single process and with 10° intervals, the execution time
is about 31.4s and the CPU utilization increases to 30%. In the case of four pro-
cesses, the execution time drops to 7.9s and utilization increases to 70%. Running
the program on 8 processes further speed-up is noticed, by the execution time 5.1s
and CPU utilization 100%, because all computational resources of the computer are
now fully utilized. From prints in the terminal window, it is evident that the value
7 was calculated with similar accuracy in all cases. With our simple MPI program,
we achieved a speed-up a bit higher than 6, which is excellent!

O

Recall, that we have parallelized the computation of 7 by distributing the compu-
tation of sub-intervals areas among cooperating processes. In this simple example,

118 4 MPI processes and messaging

MINGWE4:/c/Users/Roman/source/repos/MSMPIPi/x64/Debug - m] X B

tory Startup Users Details Services

CPU intel(R) Core(™™) i7 CPU 860 @ 2.80GHz

¢ Utilzation 100%

Processes Threads Handles
210 2919 118612
Up time

9:13:38:24

w o

Fig. 4.9: Screenshots of Terminal window and Task manager indicating timing of
the program for calculation of 7 and the computer utilization history.

our, initially continuous, computation domain was interval [0, 1]. The domain was
disretized into N sub-intervals. Then a 1-D domain decomposition was used to di-
vide the whole domain into p sub-domains, where p is the number of cooperating
processes that did the actual computation. Finally, the partial results have been as-
sembles in a selected host process and output as a final result. This is the most often
used approach for the paralelization in numerical analysis. It can be applied for
the operations on large vectors or matrices, for solutions of systems of equations,
for solutions of partial differential equations (PDE), and similar. A more detailed
methodology and analysis pf the parallel program will be given in Part III.

4.7 Communication and computation overlap

Contemporary computers have separate communication and calculation resources,
therefore they are able to execute both tasks in parallel, which is a significant poten-
tial for improving an MPI program efficiency. For example, instead of just waiting
for a data transmission to be completed, a certain part of calculation could be done
that could be eventually required in the next computing step. If a process can per-
form useful work while some long communication is in progress, overall execution
time might be reduced. This approach is often termed as a hiding latency.

Various communication modes are available in MPI that enable hiding latency,
but they require correct usage to avoid communication deadlock or program shut-
down. The measures for managing potential deadlocks of communication operations
are addressed in more details in a separate subsection. Finally, a single MPI program
in the ecosystems of more communicators is presented. More advanced topics, e.g.
a virtual shared memory emulation through so called MPI windows, which could
simplify the programming and improve the execution efficiency, are beyond the

4.7 Communication and computation overlap 119

Quite enough MPI operations

We are now quite familiar with enough operations for coding simpler MPI pro-
grams and for evaluating their performances. A list of corresponding MPI oper-
ations is shown below:

Basic MPI operations:

MPI_INIT, MPI_FINALIZE,
MPI_COMM_SIZE, MPI_COMM_RANK,
MPI_SEND, MPI_RECV,

MPI operations for collective communication:

MPI_BARRIER,
MPI_BCAST, MPI_GATHER, MPI_SCATTER,
MPI_REDUCE, MPI_ALLREDUCE,

Control MPI operations:

MPI_WTIME, MPI_STATUS,
MPI_INITIALIZED.

scope of this book and are well covered by continual evolving MPI standard, which
should be ultimate reference of enthusiastic programmers.

4.7.1 Communication modes

MPI processes can communicate in four different communication modes: standard,
buffered, synchronous and ready. Each of these modes can be performed in blocking
or in non-blocking type, first being less eager to the amount of required memory for
message buffering, and second being often more efficient, because of an ability to
overlap the communication and computation tasks.

Blocking communication

A standard mode send call, described in Section 4.5 with operation MPI_SEND,
should be assumed as a blocking send, which will not return until the message data
and envelope have been safely stored away. The sender process can access and over-
write the send buffer with a new message. However, depending on the MPI imple-
mentation, short messages might still be buffered while longer messages might be

120 4 MPI processes and messaging

split and sent in shorter fragments, or they might be copied into a temporary com-
munication buffer (see Fig.4.1 for details).

Because the message buffering requires extra memory space and memory-to-
memory copying, implementations of MPI libraries do not guarantee the amount of
buffering therefore one has always to count on the possibility that send call will not
complete until a matching receive has been posted, and the data has been moved to
the receiver. In other words, the standard send call is non-local, i.e. may require
execution of an MPI operation in another process.

According to the MPI standard, a program is correct and portable if it does not
rely on system buffering in the standard mode. Buffering may improve the perfor-
mance of a correct program, but does not affect the result of the program. There
are three blocking send call modes, indicated by a single-letter prefix: MPI_BSEND,
MPI_SSEND, MPI_RSEND, with B for buffered, S for synchronous, and R for ready,
respectively. The send operation syntax is the same as in the standard send, e.g.
MPI_BSEND (buf, count, datatype, dest, tag, comm).

The buffered mode send is a standard send with a user-supplied message buffer-
ing. It will start independent of a matching receive and can complete before a
matching receive is posted. However, unlike the standard send, this operation is
local, i.e. its completion is independent on the matching receive. Thus, if a buffered
send is executed and no matching receive is posted, then the MPI will buffer
the outgoing message, to allow the send call to complete. It is a responsibility
of programmer to allocate enough buffer space for all subsequent MPI_BSEND by
calling MPI_BUFFER_ATTACH (bbuf, bsize). The buffer space bbuf cannot be
reused by subsequent MPI_BSENDs if they have not been completed by matching
MPI_RECVs, therefore it must be large enough to store all subsequent messages.

The synchronous mode send can start independently of a matching receive.
However, the send will complete successfully only if a matching receive operation
has started to receive the message sent by the synchronous send. Thus, the comple-
tion of a synchronous send not only indicates that the send buffer can be reused, but
also indicates that the receiver has reached a certain point in its execution, i.e. it has
started executing the matching receive. If both sends and receives are blocking oper-
ations then the use of the synchronous mode provides synchronous communication
semantics: a communication does not complete at either end before both processes
rendezvous at the communication. A send executed in this mode is non-local, be-
cause its competition requires a cooperation of sender and receiver processes.

The ready mode send may be started only if the matching receive has been al-
ready called. Otherwise, the operation is erroneous and its outcome is undefined. On
some systems, this allows the removal of a hand-shake operation that is otherwise
required, which could result in improved performance. In a correct program, a ready
send can be replaced by a standard send with no effect on the program results, but
with eventual improved performances.

The receive call MPI_RECV is always blocking, because it returns only after the
receive buffer contains the expected received message.

4.7 Communication and computation overlap 121

Non-blocking communication

Non-blocking send start calls are denoted by a leading letter I in the name of MPI
operation. They can use the same four modes as blocking sends: standard, buffered,
synchronous and ready, i.e. MPI_ISEND, MPI_IBSEND, MPI_ISSEND, MPI_IRSEND.
Sends of all modes, except ready, can be started whether a matching receive has
been posted or not; a non-blocking ready send can be started only if a matching
receive is posted. In all cases, the non-blocking send start call is local, i.e. it returns
immediately, irrespective of the status of other processes. Non-blocking communi-
cations return immediately request handles that can be waited on, or queried, by
specialized MPI operations that enables to wait or to test for their completion.

The syntax of the non-blocking MPI operations are the same as in the standard
communication mode, e.g.:

MPI_ISEND (buf, count, datatype, dest, tag, comm, request),or
MPI_IRECV (buf, count, datatype, dest, tag, comm, request),
except with an additional request handle that is used for later querying by send-
complete calls, e.g.:

MPI_WAIT (request, status),or

MPI_TEST (request, flag, status)

A non-blocking standard send call MPI_ISEND initiates the send operation, but
does not complete it, in a sense that it will return before the message is copied out
of the send buffer. A later separate call is needed to complete the communication,
i.e. to verify that the data has been copied out of the send buffer. In the meantime,
a computation can run concurrently. In the same way, a non-blocking receive call
MPI_IRECV initiates the receive operation, but does not complete it. The call will re-
turn before a message is stored into the receive buffer. A later separate call is needed
to verify that the data has been received into the receive buffer. While querying about
the reception of the complete message, a computation can run concurrently.

We can expect that a non-blocking send MPI_ISEND immediately followed
by send-complete call MPI_WAIT is functionally equivalent to a blocking send
MPI_SEND. One can wait on multiple requests, e.g. in a master/slave MPI program,
where the master waits either for all or for some slaves’ messages, using MPI oper-
ations:

MPI_WAITALL (count, array_of_requests, array_of_statuses), or
MPI_WAITSOME (incount, array_of_requests, outcount,
array_of_indices, array_of_statuses).

A send-complete call returns when data has been copied out of the send buffer.
It may carry additional meaning, depending on the send mode. For example, if the
send mode is synchronous, then the send can complete only if a matching receive
has started, i.e. a receive has been posted, and has been matched with the send. In
this case, the send-complete call is non-local. Note that a synchronous, non-blocking
send may complete, if matched by a non-blocking receive, before the receive com-
plete call occurs. It can complete as soon as the sender "knows” that the transfer
will complete, but before the receiver “knows” that the transfer will complete.

122 4 MPI processes and messaging

If the non-blocking send is in buffered mode then the message must be buffered
if there is no pending receive. In this case, the send-complete call is local, and must
succeed irrespective of the status of a matching receive. If the send mode is standard
then the send-complete call may return before a matching receive occurred, if the
message is buffered. On the other hand, the send-complete may not complete until
a matching receive occurred, and the message was copied into the receive buffer.
Some further facts or implications of the non-blocking communication mode are
listed below. Non-blocking sends can be matched with blocking receives, and vice-
versa. The completion of a send operation may be delayed, for a standard mode, and
must be delayed, for synchronous mode, until a matching receive is posted. The use
of non-blocking sends in these two cases allows the sender to proceed ahead of the
receiver, so that the computation is more tolerant of fluctuations in the speeds of the
two processes.

Non-blocking sends in the buffered and ready modes have a more limited impact.
A non-blocking send will return as soon as possible, whereas a blocking send will
return after the data has been copied out of the sender memory. The use of non-
blocking sends is advantageous in these cases only if data copying can be concurrent
with computation.

The message-passing model implies that a communication is initiated by the
sender. The communication will generally have lower overhead if a receive is al-
ready posted when the sender initiates the communication, e.g. message data can be
moved directly into the receive buffer, and there is no need to queue a pending send
request. However, a receive operation can complete only after the matching send has
occurred. The use of non-blocking receives allows one to achieve lower communi-
cation overheads without blocking the receiver while it waits for the send. There
are further, more advanced, approaches for optimized use of the communication
modes that are beyond the scope of this chapter; however, they are well documented
elsewhere (see Section 4.10).

4.7.2 Sources of deadlocks

We know from previous sections that after a call to receive operation, e.g. MPI_RECV,
the process will wait patiently until a matching MPI_SEND is posted. If the match-
ing send is never posted, the receive operation will wait forever in a deadlock. In
practice, the program will become unresponsive until some time limit is exceeded,
or the operating system will crash. The above situation can appear if two MPI_RECV
are issued in approximately the same time, on two different processes, that mutually
expect a matching send and are waiting to the matching messages, that will never
start and therefore never deliver the expected messages. Such a situation is shown
below with a segment from an MPI program, in C language, for process with rank
= 0 and rank =1, respectively:

if (rank == 0) {
MPI_Recv (rec_buf, count, MPI_BYTE, 1, tag, comm, &status);

4.7 Communication and computation overlap 123

MPI_Send (send_buf, count, MPI_BYTE, 1, tag, comm);

}

if (rank == 1) {
MPI_Recv (rec_buf, count, MPI_BYTE, O, tag, comm, &status);
MPI_Send (send_buf, count, MPI_BYTE, 0, tag, comm);

}

In the same way, if two blocking MPI_SENDs are issued in approximately the
same time, on process, e.g. with rank = 0 and rank =1, respectively, both fol-
lowed by a matching MPI_RECV, they will never finish if MPI_SENDs are imple-
mented without buffers. Even in the case that message buffering is implemented, it
will usually suffices only for shorter messages. With longer messages, a deadlock
situation could be expected, when the buffer space is exhausted, which was already
demonstrated in Listing 4.3.

The above situations are called unsafe” because they depend on the implementa-
tion of the MPI communication operations and on the availability of system buffers.
The portability of such unsafe programs may be limited.

Several solutions that can make an unsafe program “correct”. The simplest ap-
proach is to use the order of communication operations more carefully. For example,
in the given example, by a call to MPI_RECV, in process with rank = 0, first. Conse-
quently, with exchanging the order of two lines in the program segment for process
with rank = 0:

if (rank == 0) {
MPI_Send (send_buf, count, MPI_BYTE, 1, tag, comm);
MPI_Recv (rec_buf, count, MPI_BYTE, 1, tag, comm, &status);
}
if (rank == 1) {
MPI_Recv (rec_buf, count, MPI_BYTE, O, tag, comm, &status);
MPI_Send (send_buf, count, MPI_BYTE, O, tag, comm);
}

send and receive operations are automatically matched and deadlocks are avoided
in both processes.

An alternative approach is to supply receive buffer in the same time as the send
buffer, which can be done by operation MPI_SENDRECV. If we replace the MPI_RECV
and MPI_SEND pair by MPI_SENDRECV, in both processes, the deadlock is not pos-
sible, because four buffers will prevent eventual mutual waiting.

Next possibility is to use a pair of non-blocking operations MPI_IRECV, MPI_ISEND
in each process, with subsequent waiting in both processes to both requests by
MPI_WAITALL:

MPI_Request requests[2]

if (rank == 0) {
MPI_Irecv (rec_buf,count,MPI_BYTE,1,tag,comm,&requests[0]);

124 4 MPI processes and messaging

MPI_Isend(send_buf,count,MPI_BYTE,1,tag,comm,&requests[1]);
}
else if (rank == 1) {
MPI_Irecv (rec_buf,count,MPI_BYTE,O,tag,comm,&requests[0]);
MPI_Isend(send_buf,count,MPI_BYTE,O,tag,comn,&requests[1]);
}
MPI_Waitall (2, request, MPI_STATUSES_IGNORE) ;

The call to MPI_IRECV is issued first, which provides a receive data buffer that is
ready for the message that will arrive. This approach avoids extra memory copies of
data buffers, avoids deadlock situations and could therefore speed-up the program
execution.

Finally, non-blocking buffered send can be used MPI_BSEND with explicit allo-
cation of separate send buffers by MPI_BUFFER_ATTACH, however, this approach
needs extra memory.

Example 4.5. Hiding latency

We have learned that a blocking send will continue to wait until a matching re-
ceive will signal that it is ready to receive. In situations where a significant calcula-
tion work follows a send of a large message, and it does not interfere with the send
buffer, it might be more efficient to use non-blocking send. Now, the calculation
work following the send operation can start almost immediately after the send pro-
cess is initiated, and can continue to run while the send operation is pending. Simi-
larly, a non-blocking receive could be more efficient than its blocking counter-part
if work following the receive operation does not depend on the received message.

In some MPI programs, communication and calculation tasks can run concur-
rently, and consequently, can speed-up the program execution. Suppose that a mas-
ter process have to receive large messages from all slaves. Then, all processes have
to do an extensive calculation that is independent of data in the messages. If block-
ing communication is used, the execution time will be a sum of communication and
calculation time. If asynchronous, non-blocking communication is used, a part of
communication and calculation tasks could overlap, which could result in a shorter
execution time.

One way to implement the above task is to start a master process that will receiv-
ing messages from all slave processes, and then proceed with its calculation work.
The slave processes will send their messages and then start to calculate. The pro-
gram runs until all communication and calculation is done. A simple demonstration
code of overlapping communication and calculation is given in Listing 4.6.

2| #include <stdlib.h>
3| #include <math.h>

71 £

#include <mpi.h>

#include <stdio.h>
double other_work(int numproc)

int i; double a;
for (i = 0; i < 100000000/ numproc; i++) {

10
11

13
14
15
16
17
18
19

20

4.7 Communication and computation overlap

a = sin(sqrt(i)); //different amount of calculation
}
return a;
}
int main(int argc, char* argv([]) //number of processes must be > 1
{

int p, i, myid, tag=1, proc, ierr;
double start_p, run_time, start_c, comm_t, start_w, work_t, work_r;
double *buff = nullptr;

MPI_Request request;
MPI_Status status;

MPI_Init (&argc, &argv);

start_p = MPI_Wtime ();

MPI_Comm_rank (MPI_COMM_WORLD, &myid);
MPI_Comm_size (MPI_COMM_WORLD, &p);

#define master 0

#define MSGSIZE 100000000 //5000000 //different sizes of messages
buff = (double*)malloc (MSGSIZE * sizeof (double)); //allocate

if (myid == master) {

for (i = 0; i < MSGSIZE; i++) { //initialize message
buff[i] = 1;

}

start_c = MPI_Wtime ();

for (proc = 1; proc<p; proc++) {
#if 1

MPI_Irecv (buff, MSGSIZE, //non-blocking receive
MPI_DOUBLE, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, &request);
#endif
#if O
MPI_Recv (buff, MSGSIZE, //blocking receive
MPI_DOUBLE, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, &status);

#endif

¥

comm_t = MPI_Wtime() - start_c;

start_w = MPI_Wtime ();

work_r = other_work(p);

work_t = MPI_Wtime() - start_w;

MPI_Wait (&request, &status); //block until Irecv is done

else { //slave processes

start_c = MPI_Wtime ();
#if 1

MPI_Isend (buff, MSGSIZE, //non-blocking send

MPI_DOUBLE, master, tag, MPI_COMM_WORLD, &request);
#endif

#if O
MPI_Send (buff, MSGSIZE, //blocking send
MPI_DOUBLE, master, tag, MPI_COMM_WORLD) ;

#endif

comm_t = MPI_Wtime()-start_c;
start_w = MPI_Wtime ();

work_r = other_work(p);

work_t = MPI_Wtime ()-start_w;

MPI_Wait (&request, &status); //block until Isend is done
}
run_time = MPI_Wtime() - start_p;

printf ("Rank \t Comm[s] \t Calc[s] \t Totalls] \t Work_result\n");

work_r);
fflush(stdout); //to correctly finish all prints
free (buff);
MPI_Finalize () ;

125

printf (" %d\t %e\t %e\t %e\t %e\t\n", myid, comm_t, work_t, run_time,«

126 4 MPI processes and messaging

z“ }

Listing 4.6: Communication and calculation overlap

The program from Listing 4.6 has to be executed with at least two processes, one
master and one or more slaves. The non-blocking MPI_Isend call, in all processes,
returns immediately to the next program statement without waiting for the com-
munication task to complete. This enables tt other_work to proceed without delay.
Such a usage of non-blocking send (or receive), to avoid processor idling, has the
effect of "latency hiding", where MPI latency is the elapse time for an operation, e.g.
MPI_Isend, to complete. Note, that we have used MPI_ANY_SOURCE in the master
process to specify message source. This enables an arbitrary arrival order of mes-
sages, instead of a predefined sequence of processes, that can further speed-up the
program execution.

The output of this program should be as follows:

$ mpiexec -n 2 MPIhiding

Rank Comm[s] Calc[s] Total[s] Work_result
1 2.210910e-04 1.776894e+00 2.340671e+00 6.109991e-01
Rank Comm[s] Calc[s] Total [s] Work_result

0 1.692562e-05 1.747064e+00 2.340667e+00 6.109991e-01

Note, that the total execution time is longer than the calculation time. Te commu-
nication time is negligable, even that we have sent 100 millions of doubles. Please
use blocking MPI communication, compare the execution time and explain dif-
ferences. Please experiment with different number of processes, different message
length, different amount of calculation, and explain the behavior of the execution
time.

O

4.7.3 Some subsidiary features of message-passing

The MPI communication model is by default non-deterministic. The arrival order
of messages sent from two processes, A and B, to a third process, C, is not known
in advance.

The MPI communication is unfair. No matter how long a send process has been
pending, it can always be overtaken by a message sent from another sender process.
For example, if process A sends a message to process C, which executes a matching
receive operation, and process B sends a competing message that also matches the
receive operation in process C, only one of the sends will complete. It is the pro-
grammer’s responsibility to prevent "starvation" by ensuring that a computation is
deterministic, e.g. by forcing a reception of specific number of messages from all
competing processes.

The MPI communication is non-overtaking. If a sender process posts successive
messages to a receiver process, and a receive operation matches all messages, the

;| #include <stdio.h>

4.7 Communication and computation overlap 127

messages will be managed in the order as they were sent, i.e. the first sent message
will be received first, etc. Similarly, if a receiver process posts successive receives,
and all match the same message, then the messages will be received in the same
order as they have been sent. This requirement facilitates correct matching of a send
to a receive operation and guarantees that an MPI program is deterministic, if the
cooperating processes are single-threaded.

On the other hand, if an MPI process is multi-threaded, then the semantics of
thread execution may not define a relative order between send operations from dis-
tinct program threads. In the case of multi-threaded MPI processes, the messages
sent from different threads can be received in an arbitrary order. The same is valid
also for multi-threaded receive operations, i.e. successively sent messages will be
received in an arbitrary order.

Example 4.6. Fairness and overtaking of MPI communication

A simple demonstration example of some MPI communication features is given
in Listing 4.7. The master process is ready to receive 10* (size-1) messages, while
each of the slave processes want to send 10 messages to the master process, each
with a larger tag. The master process lists all received messages with their source
process ranks and their tags.

#include "stdafx.h"
#include "mpi.h"

int main(int argc, char *xargv)
{
int rank, size, i, buf[1];
MPI_Status status;

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
if (rank == 0) {
for (i = 0; i < 10*(size-1); i++) {
MPI_Recv(buf, 1, MPI_INT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status);
printf ("Msg from %d with tag %d\n",
status .MPI_SOURCE, status.MPI_TAG);
}
}
else { //rank > 0
for (i = 0; i < 10; i++)
MPI_Send(buf, 1, MPI_INT, O, i, MPI_COMM_WORLD) ;
}
MPI_Finalize();
return O;

}

Listing 4.7: Demonstration of unfairness and non-overtaking in MPI
communication.

The output of this program depends on the number of cooperating processes. For
the case of 3 processes it should be as follows:

$ mpiexec -n 3 MPIfairness
Msg from 1 with tag O

128 4 MPI processes and messaging

Msg from 1 with tag 1
Msg from 1 with tag 2
Msg from 1 with tag 3
Msg from 1 with tag 4
Msg from 1 with tag 5
Msg from 1 with tag 6
Msg from 1 with tag 7
Msg from 1 with tag 8
Msg from 1 with tag 9
Msg from 2 with tag O
Msg from 2 with tag 1
Msg from 2 with tag 2
Msg from 2 with tag 3
Msg from 2 with tag 4
Msg from 2 with tag 5
Msg from 2 with tag 6
Msg from 2 with tag 7
Msg from 2 with tag 8
Msg from 2 with tag 9

We see that all messages from process with rank 1 have been received first, even
that the process with rank 2 has also attempted to send its messages, so the commu-
nication was unfair. The order of received messages, identified by tags, is the same
as the order of sent messages, so the communication was non-overtaking. O

4.7.4 MPI communicators

All communication operations introduced in previous sections have used the de-
fault communicator MPI_COMM_WORLD, which incorporates all processes involved
and defines a default context. More complex parallel programs usually need more
process groups and contexts to implement various forms of sequential or parallel de-
composition of a program. Also, cooperation of different software developer groups
is much easier if they develop their software modules in distinct contexts. The MPI
library supports modular programming via its communicator mechanism that pro-
vides the “information hiding” and “local name space”, which are both needed in
modular programs.

We know from previous sections that any MPI communication operation spec-
ifies a communicator, which identifies a process group that can be engaged in
the communication and a context (tagging space) in which the communication oc-
curs. Different communicators can encapsulate the same or different process groups
but always with different context. The message context can be implemented as an
extended tag field, which enable to distinguish between messages from different
context. A communication operation can receive a message only if it was sent in

4.7 Communication and computation overlap 129

the same context, therefore, MPI processes that run in different contexts can not be
interfered by unwanted messages.

For example, in master-slave parallelization, master process manages the tasks
for slave processes. To distinguish between master and slave tasks, statements like
if (rank==master) and if (rank>master) for ranks in a default communicator
MPI_COMM_WORLD can be used. Alternatively, the processes of a default communi-
cator can be splitted in two new sub-communicators, each with a different group
of processes. First group of processes, eventually with a single process, performs
master tasks and the second group of processes, eventually with larger number of
processes, executes slave tasks. Note, that both sub-communicators are encapsulated
into a new communicator, while the default communicator still exists. A collective
communication is possible now in the default communicator or in the new commu-
nicator.

In a further example, a sequentially decomposed parallel program is schemati-
cally shown in Fig. 4.10. Each of the three vertical lines with blocks represents a
single process of the parallel program, i.e. P_0, P_1, and P_2. All three processes
form a single process group. The processes are decomposed in consecutive sequen-
tial program modules shown with blocks. Process-to-process communication calls
are shown with arrows. In Fig. 4.10a, all processes and their program modules run
in the same context, while in Fig. 4.10b, program modules, encircled by dashed
curves, run in two different contexts that were obtained by a duplication of the de-
fault communicator.

P_0 P_1 P_2 P_0 P_1 P_2
|| MPI_COMM_DUP | I
o o 32 | ©
© L 21N g A RN
3 [3 New_comm(1)| || 3 ik 3
o 3 o <1 3 /— o
o o L —1| & I o IQ.
IH Tl O | N ——i o
| [i |
I - -
- - . NS
~
g | T= 8 [~ ~ PE -
| o New_comm(2) | A=A - ~
3 B IN 3 | I3
o | 8 3
QL 3 L 3 |°') 2
IN ——ti 3 /’ 8_ N Q |
O 4 | I =N
| N '-_‘ N ——
N - | 1

a) b)

Fig. 4.10: Sequentially decomposed parallel program that runs on three processes.
a) processes run in the same context; b) processes run in two different contexts.

130 4 MPI processes and messaging

Fig. 4.10a shows that MPI processes P_0 and P_2 have finished sooner than P_1.
Dashed arrows denote messages that have been generated during subsequent com-
putation in P_O and P_2. The messages could be accepted by a sequential program
module P1_mod_1 of MPI process P_1, which is eventually NOT correct. A prob-
lem solution is shown in Fig. 4.10b. The program modules run here in two different
contexts, New_comm (1) and New_comm(2). The early messages will be accepted
now correctly by MPI receive operations in program module P1_mod_2 from com-
municator New_comm (2), which uses a distinct tag space that will correctly match
the problematic messages.

The MPI standard specifies several operations that support modular program-
ming. Two basic operations implement duplication or splitting of an existing com-
municator comm.

MPI_COMM_DUP (comm, new_comm)

is executed by each process from the parent communicator comm. It creates a
new communicator new_comm comprising the same process group but a new con-
text. This mechanism supports sequential composition of MPI programs, shown
in Fig. 4.10, by separating communication that is performed for different pur-
poses. Since all MPI communication is performed within a specified communicator,
MPI_COMM_DUP provides an effective way to create a new user-specified communi-
cator, e.g. for use by a specific program module or by a library, in order to prevent
interferences of messages.

MPI_COMM_SPLIT (comm, color, key, new_comm)

creates a new communicator new_comm from the initial communicator comm, com-
prising disjoint subgroups of processes with optional reordering of their ranks. Each
subgroup contains all processes of the same color, which is a non-negative argu-
ment. It can be MPI_UNDEFINED; in this case its corresponding process will not be
included in any of the new communicators. Within each subgroup, the processes
are ranked in the order defined by the value of corresponding argument key, i.e. a
lower value of key implies a lower value of rank, while equal process keys preserve
the original order of ranks. A new sub-communicator is created for each subgroup
and returned as a component of a new communicator new_comm. This mechanism
supports parallel decomposition of MPI programs. The MPI_COMM_SPLIT is a col-
lective communication operation with a functionality similar to MPT_ALLGATHER
to collect color and key from each process. Consequently, the MPT_COMM_SPLIT
operation must be executed by every process from the parent communicator comm,
however, every process is permitted to apply different values for color and key.

Remember that every call to MPI_COMM_DUP or MPI_COMM_SPLIT should be fol-
lowed by a call to MPI_COMM_FREE, which deallocates a communicator that can be
reused later. The MPI library can create a limited number of objects at a time and
not freeing them could result in a runtime error.

More flexible ways to create communicators, are based on MPI object MPI_GROUP.
A process group is an ordered set of process identifiers associated with an integer

4.7 Communication and computation overlap 131

rank. Process groups allow a subset of processes to communicate among them-
selves using local names and identifiers without interfering with other processes,
because groups do not have a context. Dedicated MPI operations can create groups
in a communicator by MPI_COMM_GROUP, obtain a group size of a calling pro-
cess by MPI_GROUP_SIZE, perform set operations between groups, e.g. union by
MPI_GROUP_UNION, etc., and create a new communicator from the existing group
by MPI_COMM_CREATE_GROUP.

There are many advanced MPI operations that support creation of communi-
cators and structured communication between processes within a communicator,
i.e. intra-communicator communication, and between processes from two different
communicators, i.e. inter-communicator communication. These topics are useful for
advanced programming, e.g. in the development of parallel libraries, which are not
covered in this book.

Example 4.7. Splitting MPI communicators

Let visualize now the presented concepts with a simple example. Suppose that
we would like to split a default communicator with eight processes ranked as rank
={0123456 7} to create two sets of process by a call to MPI_COMM_SPLIT,
as shown in Fig. 4.11. Two disjoint sets should include processes with odd and
even ranks, respectively. We therefore need two colors that can be created, for
example, with division of original ranks by modulo 2: color = rank¥2, which
results in corresponding processes’ colors = {01010 1 0 1}. Ranks of processes
in new groups are assigned according to process key. If corresponding keys are {0
0000000}, new process ranks in groups, new_gl and new_g2, are sorted in the
ascending order as in the initial communicator.

A call to MPI_COMM_SPLIT (MPI_COMM_WORLD, rank%2, O, &new_comm);
will partition the initial communicator with eight processes in two groups with four
processes, based on the color, which is, in this example, either O or 1. The groups,
identified by their initial ranks, are new_gl = {0 2 4 6} and new_g2 = {1 35 7}.
Because all process keys are 0, new process ranks of both groups are sorted in
ascending order as rank = {0 1 2 3}.

A simple MPI program MSMPIsplitt.cpp in Listing 4.8 implements the above
ideas. MPI_COMM_SPLIT is called by color = rank¥2, which is either O or 1. Con-
sequently, we get two process groups with four processes per group. Note, that the
new process ranks in both groups are equal to {0 1 2 3}, because the key = 0 in
all processes, and consequently, the original order of ranks remain the same. For an
additional test, the master process calculates the sum of processes’ ranks in each
new group of a new communicator, using the MPI_REDUCE operation. In this simple
example, the sum of ranks in both groups should be equal to 0+ 1+2+3 =6.

1| #include "stdafx.h"

2| #include <stdio.h>

3| #include "mpi.h"

4

5| int main(int argc, char xxargv)
ol {

int numprocs, org_rank, new_size, new_rank;

132 4 MPI processes and messaging

PO | P P2 | P3 | P4 | P5 | P6 | P7 | Ranksofprocesses
in MPI_COMM_WORLD

=0 = = = =| = =| =
c c=1 c=0 c=1 c=0 1 c=0 c=1 color = rank%2

k=0 =0 k=0 k=0 k=0 k=0 k=0 k=0 key = 0

MPI_Comm_split (MPI_COMM_WORLD, color, key, &new_comm);

Process groups of
two new_comm

P_O P_2 P_4 P
r 0 r_1

X 6 P P3
3 1

1 P_5 P
r2 r_ r 0 r_ r

7
2 r3

Fig. 4.11: Visualization of splitting the default communicator with eight processes
in two sub-communicators with disjoint sets of four processes.

MPI_Comm new_comm;

MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &org_rank);

MPI_Comm_split (MPI_COMM_WORLD, org_rank%2, O, &new_comm) ;
// MPI_Comm_split (MPI_COMM_WORLD , org_rank>=2, org_rank <=3,&new_comm) ;
MPI_Comm_size (new_comm, &new_size);
MPI_Comm_rank (new_comm, &new_rank);
printf (">MPI_COMM_WORLD’ process rank/size %d/%d has rank/size %d/%d <
in ’new_comm’\n", org_rank, numprocs, new_rank, new_size);

int sum_ranks; //calculate sum of ranks %n both mnew groups of mew_com
MPI_Reduce (&new_rank, &sum_ranks, 1, MPI_INT, MPI_SUM, O, new_comm);
if (new_rank == 0) {

printf ("Sum of ranks in ’new_com’: %d\n", sum_ranks);

}

MPI_Comm_free (&new_comm) ;
MPI_Finalize () ;
return O;

}

Listing 4.8: Splitting a default communicator in two process groups of a new
communicator. First group and second process groups include, respectively,
processes with even and odd ranks from the default communicator.

The output of compiled program from Listing 4.8, after running it on eight pro-
cesses, should be similar to:

$ mpiexec -n 8 MSMPIsplitt

’MPI_COMM_WORLD’ process rank/size 4/8 has rank/size 2/4 in ’new_comm’
’MPI_COMM_WORLD’ process rank/size 6/8 has rank/size 3/4 in ’new_comm’
’MPI_COMM_WORLD’ process rank/size 5/8 has rank/size 2/4 in ’new_comm’
’MPI_COMM_WORLD’ process rank/size 0/8 has rank/size 0/4 in ’new_comm’
Sum of ranks in ’new_com’: 6

’MPI_COMM_WORLD’ process rank/size 7/8 has rank/size 3/4 in ’new_comm’
’MPI_COMM_WORLD’ process rank/size 1/8 has rank/size 0/4 in ’new_comm’
Sum of ranks in ’new_com’: 6

’MPI_COMM_WORLD’ process rank/size 3/8 has rank/size 1/4 in ’new_comm’

4.8 How effective are your MPI programs? 133

’MPI_COMM_WORLD’ process rank/size 2/8 has rank/size 1/4 in ’new_comm’

The above output confirms our expectations. We have two process groups in the
new communicators, each comprising four processes with ranks 0 to 3. Both sums
of ranks in in process groups are 6, as expected. (]

For an exercise, suppose that we have seven processes in the default communica-
tor MPI_COMM_WORLD with initial ranks = {0 1 2 3 4 5 6}. Note, that for this case,
the program should be executed by mpiexec option -n 7. Let the color be (rank
>= 2) and key be (rank <= 3), which results in process colors={001111 1}
and keys={1111000}. After a call to MPI_COMM_SPLIT operation, two process
groups are created in new_comm, with two and five members, respectively. By using
initial rank for the processes identification, the processes in new groups are new_g1
={01} andnew_g2={23456}.

The new ranks of processes in both groups are determined according to corre-
sponding values of keys. Aligning the initial rank and key, we see for example,
that process with initial rank = 0 is aligned with key = 1, or process with initial
rank = 4 is aligned with key = 0, etc. Now, the keys can be assigned to process
groups as: key_gl = {1 1} and key_g2 = {1 1 0 0 0}. Because smaller values of
keys relate with smaller values of ranks, and because equal keys does not change
the original rank’s order, we get: rank_g1 = {0 1} and rank_g2={3401 2}. For
example, process with initial rank = 4 becomes a member of new_g2 with rank =
0. Obviously, the sums of ranks in both groups of the new communicator are 1 and
10, respectively. Please, feel free to adapt MPI program MSMPIsplitt.cpp from
Listing 4.8 in a way that it will implement the described example.

4.8 How effective are your MPI programs?

Already in the simple cases of MPI programs, one can analyse the speed-up as a
function of the problem size and as a function of the number of cooperating pro-
cesses.

The paralization of sequential problems can be guided by various methodologies
that provide the same quantitative results, however, in different execution time or
with different memory requirements. Some parallelization approaches are better for
smaller number of computing nodes and other for larger number of nodes. We are
looking for an optimal solution that is simple, efficient and scalable. A simple par-
allelization methodology, proposed by Ian Foster in his famous book "Designing
and Building Parallel Programs", is performed in four distinct stages: Partitioning,
Communication, Agglomeration, and Mapping (PCAM).

In the first two stages the sequential problem is decomposed into, as small as
possible, tasks and the required communication among the tasks is identified. The
available parallel execution platform is ignored for these two phases, because the
aim is a maximal decomposition, with the final goal, to improve concurrency and
scalability of the discovered parallel algorithms.

134 4 MPI processes and messaging

The third and fourth stages respect the ability of targeted parallel computer. The
identified fine-grained tasks have to be agglomerated to improve performance and
to reduce development costs. The last stage is devoted to the mapping of tasks on
real computers, taking into account locality of communication and balancing of
calculation load.

The developed parallel program speed-up, and consequently, its efficiency, and
scalability, depend mainly on the following three issues:

e balancing of computing and communication loads among processes,
e ratio between computing and communication, and
e computer architecture.

Further improvements in the parallelization efficiency could be obtained by an
overlapping of calculation with communication, in particular in problems with large
messages. Some of approaches to measure the performance of MPI programs are
presented in Part III.

4.9 Exercises and mini projects

Test Questions

1. True or false:
a) MPI is a message-passing library specification not a language or compiler
specification.
b) In the MPI model processes communicate only by shared memory.
¢) MPI is useful for an implementation of MIMD/SPMD parallelism.
d) A single MPI program is usually written that can run with a general number
of processes.
e) It is necessary to specify explicitly, which part of the MPI code will run with
specific processes.

2. True or false:
a) A group and context together form a communicator.
b) A default communicator MPI_COMM_WORLD contains in its group all initial
processes and its context is default.
¢) A process is identified by its rank in the group associated with a communicator.
d) Maximal rank is equal to size.

3. List, in the required order, a) MPI functions to control starting and terminating
procedures of MPI processes.
b) MPI functions for determining the number of participating processes and the
identifier of the current process.

4. Suppose that a process with rank 1 started the execution of MPI_SEND (buf,
5, MPI_INT, 4, 7, MPI_COMM_WORLD).
a) Which process has to start matching MPI_RECV to finish this communication?

4.9 Exercises and mini projects 135

10.

11.

12.

b) Write the adequate MPI_RECV.
¢) What will be received?

. Name the following definitions of the MPI communication semantics:

a) An operation may return before its completion, and before the user is allowed
to re-use resources (such as buffers) specified in the call.

b) Return from an operation call indicates that resources can safely be re-used.
¢) A call may require execution of an operation on another process, or commu-
nication with another process.

d) all processes in a group need to invoke the procedure.

. When a process makes a call to MPI_RECV, it will wait patiently until a matching

send is posted. If the matching send is never posted, the receive will wait forever.
a) Name this situation.
b) Describe a solution to the problem?

. Give a functional equivalent program segment using non-blocking send to im-

plement blocking MPI send operation: MPI_SEND.

. Name the following definitions of the MPI communication semantics:

a) If a sender posts two messages to the same receiver, and a receive operation
matches both messages, the message first posted will be chosen first.

b) No matter how long a send has been pending, it can always be overtaken by a
message sent from another process.

¢) Does the MPI implementation by itself guarantee fairness?

a) Implement a one-to-all MPI broadcast operation whereby a single named pro-
cess (root) sends the same data to all other processes.

b) Which process(es) has(have) to call this operation?

Suppose an M x N array of doubles stored in a C row-major layout in the sender
system memory.

a) Construct a continuous derived datatype MPI_newtype specifying a column
of the array.

b) Write an MPI_Send to send the first column of array. Try the same for the
second column. Note that the first stride starts now at array [0] [1].

Suppose four processes a, b, ¢, d, with corresponding oldrank in comm: 0, 1, 2, 3.
Let color=oldrank2 and coresponding key= 7, 1, 0, 3. Identify newgroups
of newcomm, sorted by newranks, after the execution of:

MPI_COMM_SPLIT (comm, color, key, newcomm).

Which types of parallel program composition are supported by:

a) MPI_COMM_DUP (comm, newcomm) and by

b) MPI_COMM_SPLIT (comm, color, key, newcomm)?

¢) Are the above operations examples of collective operations?

Mini projects

P1. Implement MPI program for a 2-D finite difference algorithm on a square do-

main with n X n = N points. Assume 5 points stencil (actual point and four
neighbors). Assume ghost boundary points in order to simplify the calculation

136 4 MPI processes and messaging

in border points (all stencils, including boundary points, are equal). Compare the
obtained results, after specified number of iterations, on a single MPI process
and on a parallel multi-core computer, e.g. with up to eight cores. Use the per-
formance models for calculation and communication to explain your results. Plot
the execution time as a function of the number of points N and as a function of
the number of processes p for, e.g. 10* time steps.

P2 . Use MPI point-to-point communication to implement the broadcast and reduce
functions. Compare the performance of your implementation with that of the
MPI global operations MPI_BCAST and MPI_REDUCE for different data sizes and
different number of processes. Use data sizes up to 10* doubles and up to all
available number of processes. Plot and explain obtained results.

P3 . Implement the summation of four vectors, each of N doubles, with an algorithm
similar to the reduction algorithm. The final sum should be available on all pro-
cesses. Use four processes. Each of them will initially generate its own vector.
Use MPI point-to-point communication to implement your version of the sum-
mation of the generated vector. Test your program for small and large vectors.
Comment results and compare the performance of your implementation with that
of the MPI_ALLREDUCE. Explain any differences.

4.10 Bibliographical notes

The primary source of MPI information is available at MPI Forum web site:
https://www.mpi-forum.org/ where the complete MPI library specifications
and documents are available. MPI features of Version 2.0 are mostly referenced
in this book as later versions include more advanced options, however, they are
backwards compatible with MPI 2.0.

Newer MPI standards [10] are trying to better support the scalability in future
extreme-scale computing systems using advanced topics as: one-sided communi-
cations, extended collective operations, process topologies, external interfaces, etc.
Advanced topics, e.g. a virtual shared memory emulation through so called MPI
windows, which could simplify the programming and improve the execution effi-
ciency, are beyond the scope of this book and are well covered by continual evolving
MPI standard, which should be ultimate reference of enthusiastic programmers.

More demanding readers are adviced to check several well-documented open
source references for further reading, e.g. for the MPI standard [16], for MPI imple-
mentations [1, 2], and many other internet sources for advanced MPI programming.

Note that besides the parallel algorithm, parallelization methodology [9], and
the computational performance of the cooperating computers, the parallel program
efficiency depends on the topology and speed of the interconnection network [26].

Chapter 5

OpenCL for massively parallel graphic
processors

Abstract This chapter aims to provide an introduction to the concepts of parallel
programming on GPUs and heterogeneous systems. Almost all desktop computers
ship with a quad-core processor and a GPU. Thus we need a programming environ-
ment in which a programmer can write programs and run them on either a GPU or
a quad-core CPU and a GPU. While central processing units (CPU) are designed
to handle complex tasks, such as time slicing, virtual machine emulation, complex
control flows and branching, security, etc., graphical processing units (GPUs) only
do one thing well. They handle billions of repetitive low level tasks. The first at-
tempts to use GPUs for general-purpose computing were incredibly difficult and
took a lot of time and dedication. However, today we have high level languages
(such as CUDA and OpenCL) that target the GPUs directly, so GPU programming
is rapidly becoming mainstream in the computer science community. In this chapter
we will learn how to program GPUs using OpenCL.

5.1 Anatomy of a GPU

In order to understand how to program massively parallel graphic processors, we
must first understand how they are built. In the first part of this chapter, we will look
behind the idea of processors in graphic processing units (GPU). The basic idea is
to have many (hundreds or even thousands) simpler and weaker processing units in
GPU instead of one or two powerful CPUs and let these many processors simulta-
neously perform the same instructions, but with different data. First, let’s learn how
a GPU is constructed. Then we will learn how we program graphic processing units
using the OpenCL language.

Processors in GPU differ from general-purpose CPUs in that they have a much
simpler structure that is designed to execute a hundreds of arithmetic instructions
simultaneously. To understand how to implement such an efficient massively paral-
lel processor, we will first briefly describe how general-purpose CPUs are built.
The simplified structure of a general-purpose single core CPU is presented in

137

138 5 OpenCL for massively parallel graphic processors

Figure 5.1a. It consists of the instruction fetch and instruction decode logic, an
arithmetic-logic unit (ALU) and the execution context. The fetch/decode logic is

Fetch/Decode Out-of-order Fetch/Decode
Branch predictor

it

ALU ALU
Pre-fetcher
Execution Execution
context Cache context
(registers) (registers)
(a) Basic structure of a general-purpose (b) Basic structure
single-core CPU. of a slim single-
core CPU.

Fig. 5.1: (a) A general-purpose single-core CPU. (b) A slimmed single-core CPU.

responsible for fetching the instructions from memory, decoding them in order to
prepare operands and select the required operation in ALU. The execution context
comprises the state of CPU such as a program counter, a stack pointer, a program-
status register and general purpose registers. Such a general-purpose single core
CPU with a single ALU and execution context can run a single instruction from an
instruction stream (thread) at a time. To increase the performance when executing a
single thread, general-purpose single core CPUs rely on out-of-order execution and
branch prediction to reduce stalls. However, execution units are of no use without the
instructions and the operands, which are stored in main memory. Transferring the
instructions and operands to and from main memory requires considerable amount
of power and time. This is addressed by the use of caches. Caches work on the
principle of either spatial or temporal locality. They work well when an instruction
stream is repeated many times (e.g. program loops) and when data is accessed from
relatively close memory words. ALUs and fetch/decode logic run at high speed,
consume little power and require few hardware resources to build them. Contrary
to execution units, a huge number of transistors is needed to build a cache (it may
occupy up to 50% of the total die area) and they are very expensive. It is also one of
the main energy absorbing element in general-purpose CPU.

5.1.1 Introduction to GPU evolution

To build a GPU that comprises tens or thousands CPUs, we need a slimmer design of
a CPU. For this reason all complex and large units should be removed from general-
purpose CPU: a branch predictor, out-of order logic, caches and a cache pre-fetcher.
Such a single core CPU with a slimmer design is presented in Figure 5.1b.

71}

5.1 Anatomy of a GPU 139

Now suppose we are running the following fragment of code on a slimmed
single-core CPU from Figure 5.1b:

void vectorAdd(float *vecA, float *vecB, float *vecC) {
int tid = 0;
while (tid < 128) {
vecC[tid] = vecA[tid] + vecB[tid];
tid += 1;
}

Listing 5.1: Vector addition

The C code in Listing 5.1 implements vector addition of two floating-point vectors,
each containing 128 elements. A slimmed CPU executes a single instruction stream
obtained after the compilation of the program in Listing 5.1. A compiled fragment
of the function VectorAdd that runs on a single core CPU is presented in Figure 5.2.
With the first two instructions in Figure 5.2 we clear the registers r2 and r3 (suppose

add r2,r0,r0 ; tid=0
add r3,r0,r0
add r4,r0,r0

Ll:

1fp £1,r3(vech) ; load vectors

Fetch/Decode

1fp f2,r3(vecB) ; vecA and vecB

4— addf f1,f1,f2 ; add adjacent elements
- sfp f1,r3(vecC) ; store in vecC
Execution addi r3,r3,#4
context addi r2,r2,%#1 ; tid=tid+1
(registers) slti r4,r2,#128 ;
bne rd,L1 ; loop back if tid<128

Fig. 5.2: A single instruction stream is executed on a single core CPU.

r0 iz a zero register). The register r2 is used to store loop counter (tid from List-
ing 5.1) while the register r3 contains offset in the vectors VecA and VecB. Within
the L1 loop CPU loads adjacent elements from the vectors VecA and VecB into the
floating-point registers £1 and £2, adds them and stores the result from the register
£1 into the vector VecC. After that we increment the offset in the register r3. Recall
that the vectors contain floating-point numbers, which are represented with 32 bits
(4 bytes), thus the offset is incremented by 4. At the end of the loop we increment
the loop counter (variable tid) in the register r2, compare the loop counter with the
value of 128 (the number of elements in each vector) and loop back if the counter is
smaller then the length of the vectors VecA and VecB.

Instead of using one slimmed CPU core from Figure 5.2, we can use two such
cores. Why? If we use two CPU cores form Figure 5.2, we will be able to exe-
cute two instruction streams fully in parallel (Figure 5.3). A two cores CPU from
Figure 5.3 replicates processing resources (Fetch/Decode logic, ALU and execution
context) and organizes them into two independent cores. When an application fea-
tures two instruction streams (i.e. two threads), a two cores CPU provides increased
throughput by simultaneously executing these instruction streams on each core. In

140 5 OpenCL for massively parallel graphic processors

the case of vector addition from Listing 5.1 we can now run two threads on each
core. In this case each thread will add 64 adjacent vector elements. Notice that both

add r2,r0,r0 addi r2,r0,464
add r3,r0,r0 addi r3,r0,#256
add r4.r0. 0 Fetch/Decode Fetch/Decode add ri.r0.z0

Ll: T1:
1fp f1,r3(vech) 1fp f1,r3(vecA)
1£fp 2,73 (vech) =P ALU ALU 4— 1fp £2,r3(vecB)
addf f1,f1,f2 addf f1,f1,f2
sfp‘fl,rJ(vecC) Execution Execution sfp.FI T3 (vecC)
addi r3,r3,#4 addi r3,r3,#4
addi r2,r2,#1 context context addi r2,r2,#1
slti rd,r2,#64 (registers) (registers) slti rd4,r2,4128
bne r4,L1 bne r4,L1

Fig. 5.3: Two instructions streams (two threads) are executed fully in parallel on two
CPU cores.

threads in Figure 5.3 have the same instruction stream but use different data. The
first thread adds the first 64 elements (the loop index tid in the register r2 iterates
from O to 63), while the second thread adds the last 64 elements (the loop index tid
in the register r2 iterates from 64 to 127).

We can achieve even higher performance by further replicating ALUs and ex-
ecution contexts as in Figure 5.4. Instead of replicating the complete CPU core
from Figure 5.2, we can replicate only ALU and execution context and leaving the
fetch/decode logic shared among ALUs. As the fetch/decode logic is shared, all
ALUs should execute the same operations contained in an instruction stream, but
they can use different input data. Figure 5.4 depicts such a core with eight ALUs,
eight execution contexts and shared fetch/decode logic. Such a core usually imple-
ments additional storage for data shared among the threads.

addi r2,r0,#tid ; tid
Fetch/Decode 4— addi r3,r0,#tid

slli r3,r3,#2 ; tid*4

ALU1 ALU3 ALU ALU7 Ll:
1lfp f1,r3(vecA) ; add two
1fp f2,r3(vecB) ; adjacent elements
Contexo‘ Contexz‘ ContexA‘ Contexs‘ addf £1,f1,£2 ; at tid index
sfp f1,r3(vecC)
Contex 1 ‘ Contex 3 ‘ Contex 5 ‘ Contex 7 ‘ addi r3,r3,#32
addi r2,r2,#8 ; tid=tid+s8
| Shared Data I slti r4,r2,#128
bne L1

Fig. 5.4: A GPU core with eight ALUs, eight execution contexts and shared fetch/de-
code logic.

On such a core we can add eight adjacent vector elements in parallel using one
instruction stream. The instruction stream is now shared across threads with identi-
cal program counters (PC). The same instruction is executed for each thread but on
different data. Thus, there is one ALU and one executon context per thread. Each

5.1 Anatomy of a GPU 141

Compute units and Processing elements

Terminology about processor cores in a modern GPU can be very confusing. The
meaning of a term depends on who manufactured a particular GPU. To make thing
simple, we opted for the following terminology. A compute unit can be considered
equivalent to cores in CPU. Compute units are the basic computational building blocks
of GPUs. CPU cores were designed for serial tasks like productivity applications, while
GPUs were designed for more parallel and graphics-intensive tasks like video editing,
gaming and rich Web browsing. Compute units have many ALUs and execution con-
text that share a common fetch/decode logic. ALUs execute same instructions in a
lock-step basis, i.e running the same instruction but on different data. These CUs im-
plement an entirely new instruction set that is much simpler for compilers and software
developers to use and delivers more consistent performance.

Top two GPU vendors, NVIDIA and AMD, use different names to describe compute
units and processing elements. A compute unit is a stream multiprocessor in a NVidia
GPU or a SIMD engine in an AMD GPU. A processing element is a stream processor
in a NVidia GPU or an ALU in an AMD GPU.

thread should now use its own ID (tid) to identify data which is to be used in in-
structions. The compiler for such a CPU core should be able to translate the code
from Listing 5.1 into the assembly code from Figure 5.4. When the first instruction
is fetched it is dispatched to all 8 ALUs within the core. Recall that each ALU has its
own set of registers (execution context) so each ALU would add its own tid to its
own register r2. The same holds also for the second and all following instructions
in the instruction stream. For example, the instruction:

1fp f1,r3(vech)

is executed on all ALUs at the same time. This instruction loads the element from
vector vecA at the address vecA+r3. Because the value in r3 is based on different
tid, each ALU will operate on different element form vector vecA. Most modern
GPUs use this approach where the cores execute scalar instructions but one instruc-
tion stream is shared across many threads.

In this book we well refer to a CPU core from Figure 5.4 as Compute Unit (CU)
and to ALU as Processing Element. Let’s summarize the key-features of computer
units. We can say that they are general-purpose processors, but they are designed
very differently than the general-purpose cores in CPUs: they support so-called
SIMD (Single Instruction Muliple Data) parallelism through replication of execu-
tion units (ALUs) and corresponding execution contexts, they do not support branch
prediction or speculative execution and they have less cache than general-purpose
CPUs.

We can further improve the execution speed of our vector addition problem repli-
cating compute units. Figure 5.5 shows a GPU containing 16 compute units. Using
16 compute units as in Figure 5.5 we can add 128 adjacent vector elements in par-
allel using one instruction stream. Each CU executes a code snippet in Figure 5.5,
which represents one thread. Let’s suppose that we run 128 threads and each thread

142 5 OpenCL for massively parallel graphic processors

add r3,r0,#tid

slli r3,r3,#2

1fp f1,r3(A) .

Loy 2 v3iveen, Each GPU core (CU) executes this code
addf f1,f1,f2

sfp f1,ri(vecC)

Fetch/Decode Fetch/Decode Fetch/Decode Fetch/Decode
1] [|| 1/ 1 [1/ [1/ [1] [| | 1 [
Contex 0 [Contex 2 || Contex 4 || Contex 6 | | contex 0 || Contex 2 [| Contex 4 || Contex 6 | [Contex 0 || Contex 2 || Contex 4 || Contex 6 | | contex 0 [contex 2 || contex 4 || contex &
Contex 1 [Contex 3 || Contex 5 || Contex 7 | | contex 1 [contex 3 [| Contex 5 || Contex 7 | [contex 1 || Contex 3 || Contex 5 |[Contex 7 | | contex 1 [Contex 3 || contex 5 || contex 7
| Shared Data | | Shared Data | | Shared Data | | Shared Data |

Fetch/Decode Fetch/Decode Fetch/Decode Fetch/Decode

Contex 0 (| Contex 2 || Contex 4 || Contex 6 | [Contex 0 || Contex 2 || contex 4 || Contex 6 | | Contex 0 || Contex 2 || Contex 4 || Contex 6 | [contex 0 || contex 2 || contex 4 || contex 6
Contex 1 || Contex 3 || Contex 5 || contex 7 | [contex 1 || ontex 3 || contex 5 || contex 7 | | contex 1 || Contex 3 || contex 5 || contex 7 | | contex 1 || ontex 3 || contex 5 |[contex 7
| Shared Data | | Shared Data | | Shared Data | | Shared Data |
Fetch/Decode Fetch/Decode Fetch/Decode Fetch/Decode
] [| 1/ 1 [11 [1] 1] [| | 1 I/
Contex 0 || Contex 2 || Contex 4 | Contex 6 [[Contex 0 || Contex 2 | Contex 4 || contex 6 | [cContex 0 || Contex 2 || contex 4 |[Contex 6 | | Contex 0 || contex 2 || contex 4 || contex &
Contex 1 (| Contex 3 || Contex 5 || Contex 7 | [contex 1 || ontex 3 || contex 5 || contex 7 | | contex 1 || Contex 3 || Contex 5 || contex 7 | [contex 1 || contex 3 || contex 5 || contex 7
[Shared Data | [Shared Data | [Shared Data | [Shared Data |

Fetch/Decode Fetch/Decode Fetch/Decode Fetch/Decode

Contex 0 (| Contex 2 || Contex 4 || Contex 6 Contex 0 (| Contex 2 || Contex 4 || Contex 6 Contex 0 [Contex 2 || Contex 4 || Contex 6 Contex 0 (| Contex 2 || Contex 4 || Contex 6
Contex 1 || Contex 3 || Contex 5 || Contex 7 Contex 1 || Contex 3 || Contex 5 || Contex 7 Contex 1 || Contex 3 || Contex 5 || Contex 7 Contex 1 || Contex 3 || Contex 5 || Contex 7
Shared Data Shared Data Shared Data Shared Data

Fig. 5.5: Sixteen streaming multiprocessors each containg eigth execution units and
eigth separate contexts.

has its own ID, tid, where tid is in range 0...127. The first two instructions load
the thread ID tid into r3 and multiply it by 4 (in order to obtain the correct offset
in floating-point vector). Now the register r3 that belongs to each thread contains
the offset of the vector element that will be accessed in that thread. Each thread then
adds two adjacent elements of vecA and vecB and stores the result into the corre-
sponding element of vecC. Because each compute units has 8 processing elements
(128 processing elements in total), there is no need for the loop. Hopefully, we are
now able to understand the basic idea behind modern GPUs: use as many ALUS as
possible and let ALUs execute same instructions in a lock-step basis, i.e running the
same instruction at the same time but on different data.

5.1.2 A modern GPU

A modern GPUs comprise tens of compute units. The efficiency of wide SIMD pro-
cessing allows GPUs to pack many CU cores densely with processing elements. For
example, the NVIDIA GeForce GTX780 GPU contains 2304 processing elements.
These processing elements are organized into 12 CU cores (192 PEs per CU). All

5.1 Anatomy of a GPU 143

modern GPUs maintain large numbers of execution contexts on chip to provide
maximal memory latency-hiding ability. This represents a significant departure from
CPU designs, which attempt to avoid or minimize stalls primarily using large, low-
latency data caches and complicated out-of-order execution logic. Each CU contains
thousands of 32-bit registers that are used to store execution context and are evenly
allocated to threads (or PEs). Registers are both the fastest and most plentiful mem-
ory in the compute unit. As an example, CU in NVIDIA GeForce GTX780 (Kepler
microarchitecture) contains 65,536 (64K) 32-bit registers. To achieve large-scale
multithreading, execution contexts must be compact. The number of thread contexts
supported by a CU core is limited by the size of on-chip execution context stor-
age. GPUs can manage many thread contexts (and provide maximal latency-hiding
ability) when threads use fewer resources. When threads require large amounts of
storage, the number of execution contexts (and latency-hiding ability) provided by
a GPU drops. Table 5.1 shows the structure of some of the modern NVIDIA GPUs.

Table 5.1: Comparison of NVIDIA GPU generations

GeForce GTX280 GeForce GTX580 GeForce GTX780

Microarchitecture Tesla Fermi Kepler
CUs 30 16 12
PEs 240 512 2304
PEs per CU 8 32 192
32-bit registers per CU 16K 32K 64K

5.1.3 Scheduling threads on compute units

The GPU device containing hundreds of simple processing elements is ideally suited
for computations that can be run in parallel. That is, data parallelism is optimally
handled on the GPU device. This typically involves arithmetic on large data sets
(such as vectors, matrices and images), where the same operation can be performed
across thousands, if not millions, of data elements at the same time. To exploit such
a huge parallelism, the programmers should partition their programs into thousands
of threads and schedule them among compute units. To make it easier to switch to
OpenCL later in this chapter, we will now define and use the same thread termi-
nology as OpenCL does. In that sense, we will use the term work-item (WI) for a
thread.

Work-items (or threads) are actually scheduled among compute units in two
steps:

1. First, a programmer explicitly, within a program, partitions work-items into
groups called work-groups (WG). A work-group is simply a block of work-

144 5 OpenCL for massively parallel graphic processors

Work-item (WI) and work-group (WG)

A work-item in OpenCL is actually a thread in terms of its control flow and its mem-
ory model. Work-items are organized into work-groups, which are the unit of work
scheduled onto compute units. Because of this, work-groups also define the set of
work-items that may share data using local memory and may synchronize at barriers.

items that are executed on the same compute unit. Besides that, a work-group also
represents a set of work-items that can be synchronized by means of using barri-
ers or memory fences. As a work-group runs on a compute-unit, all work-items
within a work-group are able to share local memory that is present within a com-
pute unit (this will be explained in more details in Subsection 5.1.4). After the
program has been compiled and sent to execution, the hardware scheduler (which
is a part of GPU) evenly assigns work-groups to compute-units. Work-groups ex-
ecute independently from each other on CUs. If there are more work-groups than
CUs, the work-groups are evenly assigned to CUs. Work-groups can be sched-
uled in any order by the hardware scheduler. In the following sections we will
learn how a programmer partitions a program into work-items and work-groups.
Figure5.6) shows how a multithreaded program is partitioned into work-groups
that are assigned to several CUs.

2. Secondly, the compute unit schedules and executes work-items from the same
work-group in groups of 32 parallel work-items called warps. When a compute
unit is given one or more work-groups to execute, it partitions them into warps
and each warp gets scheduled by a warp scheduler for execution. The way a
work-group is partitioned into warps is always the same; each warp contains
work-items of consecutive, increasing work-items IDs with the first warp con-
taining work-item 0. Individual work-items composing a warp start together at
the same program address, but they have their own instruction address counter
and register state and are therefore free to branch and execute independently.
However, the best performance is achieved when all work-items from the same
warp execute the same instructions.

A warp executes one common instruction at a time. It means that work-items in
a warp execute in a so-called lock-step basis, running the same instruction but on
different data. Full efficiency is thus realized when all 32 work-items in a warp exe-
cute the same instruction sequence. If work-items in a warp diverge via a conditional
branch (i.e. if we use conditional branches within the code executed by work-items),
the warp serially executes each branch path taken, disabling work-items that are not
on that path. When all branch paths complete, work-items converge back to the same
execution path.

At every instruction issue time, a warp scheduler selects a warp that has work-
items ready to execute its next instruction, and issues the instruction to those work-
items. Work-items that are ready to execute are called active work-items. The num-
ber of clock cycles it takes for a warp to be ready to execute its next instruction is

5.1 Anatomy of a GPU 145

Multithreaded Program
lwso HWGI chz Hwaa ‘

‘WGA HWGS HWGG HWG7‘

|
! }

GPU with 4 CUs GPU with 8 CUs
[cuo][cur][cuz][cus] [cuo[cur|[cuz][cus|[cua][cus|[cue]|[cu]
lwao ”WGI Hwaz ”wc;s] [weo“weluweznwcs”we4“wes”wee“we7]

[we4|[wes |[wee |[we7 |

Fig. 5.6: A programmer partitions a program into blocks of work-item (threads)
called work-groups. Work-groups execute independently from each other on CUs.
Generally, a GPU with more CUs will execute the program faster than a GPU with
fewer CUs.

Warp

A warp is a group of 32 work-items from the same work-group that are executed in
parallel at the same time. Work-items in a warp execute in a so-called lock-step basis.
Each warp contains work-items of consecutive, increasing work-items IDs. Individual
work-items composing a warp start together at the same program address, but they
have their own instruction address counter and register state and are therefore free to
branch and execute independently. However, the best performance is achieved when
all work-items from the same warp execute the same instructions.

called latency. Full utilization is achieved when all warp schedulers have some in-
struction to issue for some warp at every clock cycle during that latency period. In
that case we say that latency is completely hidden. The most common reason a warp
is not ready to execute its next instruction is that the instruction’s input operands are
not yet available. Another reason a warp is not ready to execute its next instruction
is that it is waiting at some memory fence or barrier. A barrier can force CU to idle
as more and more warps wait for other warps in the same work-group to complete
execution of instructions prior to the barrier. Full utilization is achieved when more
than one work-group is assigned to one CU, so that CU always have 32 work-items
from some work-group that are ready to execute and are not waiting at the barrier.
If processing elements within a CU remain idle during the period while a warp is
stalled, then a GPU is inefficiently utilized. Instead, GPUs maintain more execution
contexts on CU than they can simultaneously execute (recall that a huge register
file is used to store context for each work-item). In such a way, PEs can execute
instructions from active work-items when others are stalled. The execution context
(program counters, registers, etc) for each warp processed by a CU is maintained on-
chip during the entire lifetime of the warp. Therefore, switching from one execution

146 5 OpenCL for massively parallel graphic processors

WARP 7, INSTRUCTION 2

ELPRLLLLEEERLL LR RL L L LT

WARP 1, INSTRUCTION 3

PLCLPLELLLRLL L UL LR LEL L

WARP 3, INSTRUCTION 1

ECCLLLLEEERRLL L RLL LT EEL T

JWIL

WARP 3, INSTRUCTION 4

FELLRCLLLEEERRL L LR L LT

WARP 1, INSTRUCTION 6

PELLRLLLLEEERRLE LD EERLL L L LT

T

Fig. 5.7: Scheduling of warps within a compute unit. At every instruction issue
time, a warp scheduler selects a warp that has work-items ready to execute its next
instruction. Each warp always contains work-items of consecutive work-items IDs,
but warps are executed out-of-order.

Memory hierarchy on GPU

A GPU device has these five memory regions accessible from a single work-item:

e Registers

e Local Memory

e Texture Memory
o Constant Memory

e Global Memory

context to another has no cost. Also, having multiple resident work-groups per CU
can help reduce idling in the case of barriers, as warps from different work-groups
do not need to wait for each other at barriers.

5.1.4 Memory hierarchy on GPU

Modern GPUs have several memories that can be accessed from a single work-item.
Memory hierarchy of a modern GPU is shown in Figure 5.8. A memory hierarchy
has a number of levels of areas where work-items can place data. Each level has its
latency (i.e access time) as shown in Table 5.2.

5.1 Anatomy of a GPU 147

Ccu

[a}
[
[a}

U [@V)

N1

z

REGISTERS

REGISTERS |

REGISTERS

REGISTERS

15}
g
15}
g

=
i)
£

=
)
£

z
s
2
z
s
2

Fig. 5.8: Memory hierarchy on GPU

Table 5.2: Access time by memory level

Storage type Access time
Registers 1 cycle
Local Memory 1-32 cycles
Texture Memory ~500 cycles
Constant Memory ~500 cycles
Global Memory ~500 cycles

The GPU has thousands of registers per compute unit (CU). The registers are
at the first and also the most preferable level, as their access time is 1 cycle. Re-
call that GPU dedicates real registers to each and every work-item. The number of
registers per work-item is calculated at compile time. Depending on the particular
microarchitecture of a CU, there is 16 K, 32 K or 64 K registers for all work-items
within an CU. For example, with Kepler microarchitecture you get 64 K of registers
per CU. If you decide to partition your program such that there are 256 work-items
per work-group, and that there are four work-groups per CU, you will get 65536 /
(256*4) = 64 registers per work-item on a CU.

Each CU contains a small amount (64 kB) of very fast on-chip memory that
can be accessed from the work-items running at the particular CU. It is mainly
used for data interchange within a work-group running on CU. This memory is
called local or shared memory. Local memory acts as a user-controlled L1 cache.
Actually, on modern GPUs this on-chip memory can be used as a user-controlled

148 5 OpenCL for massively parallel graphic processors

Memory coalescing

Coalesced memory access or memory coalescing refers to combining multiple mem-
ory accesses into a single transaction. Grouping of work-items into warps is not only
relevant to computation, but also to global memory accesses. The GPU device coa-
lesces global memory loads and stores issued by work-items of a warp into as few
transactions as possible to minimize DRAM bandwidth. On the recent GPUs, every
successive 128 bytes (e.g. 32 single precision words) memory can be accessed by a
warp in a single transaction.

local memory or standard hardware-controlled L1 cache. For example, on Kepler
CUs this memory can be split of 48 KB local memory / 16 KB L1 cache. On CUs
with the Tesla microarchitecture there is 16 kB of local memory and no L1 cache.
Local memory has around one-fifth of the speed of registers.

The largest memory space on GPU is the global memory. The global memory
space is implemented in high-speed GDDR, or graphics dynamic memory, which
achieves very high bandwidth, but like all memory, has a high latency. GPU global
memory is global because it’s accessible from both the GPU and the CPU. It can
actually be accessed from any device on the PCI-E bus. For example, the GeForce
GTX780 GPU has 3GB of global memory implemented in GDDRS. Global mem-
ory resides in device DRAM and it is used for transfers between the host and device
as well as for the data input to and output from work-items running on CUs. Reads
and writes to global memory are always initiated from CU and are always 128 bytes
wide starting at the address aligned at 128-bytes boundary. The blocks of memory
that are accessed in one memory transactions are called segments. This has an ex-
tremely important consequence. If two work-items of the same warp access two data
that fall into the same 128-bytes segment, data is delivered in a single transaction. If
on the other hand there is data in a segment you fetch that no work-item requested
- it is being read anyway and you (probably) waste bandwidth. And if two work-
items from the same warp access two data that fall into two different 128-bytes
segments, two memory transactions are required. The important thing to remember
is that to ensure memory coalescing we want work-items from the same warp to ac-
cess contiguous elements in memory so to minimize the number of required memory
transactions.

There are also two additional read-only memory spaces within global memory
that are accessible by all work-items: constant memory and texture memory. The
constant memory space resides in device memory and is cached. This is where con-
stants and program arguments are stored. Constant memory has two special prop-
erties: first, it is cached, and second, it supports broadcasting a single value to all
work-items within a warp. This broadcast takes place in just a single cycle. Texture
memory is cached so an image read costs one memory read from device mem-
ory only on a cache miss, otherwise it just costs one read from the texture cache.
The texture cache is optimized for 2D spatial access pattern, so work-items of the

5.2 Programmer’s view 149

OpenCL kernel

Code that gets executed on a GPU device is called a kernel in OpenCL. The kernels are
written in a C dialect, which is mostly straightforward C with a lot of built-in functions
and additional data types. The body of a kernel function implements the computation
to be completed by all work-items.

same warp that read image addresses that are close together will achieve best per-
formance.

5.2 Programmer’s view

So far, we have learned how GPUs are built, what are compute units and processing
elements, how work-groups and work-items are scheduled on CUs, which memory
is present on a modern GPU, and what is the memory hierarchy of a modern GPU.
We have mentioned that a programmer is responsible for partitioning programs into
work-groups of work-items. In the following sections we will learn what is a pro-
grammer’s view of a heterogeneous system and how to use OpenCL to program for
a GPU.

5.2.1 OpenCL

OpenCL (Open Computing Language) is the open, royalty-free standard for cross-
platform, parallel programming of diverse processors found in personal comput-
ers, servers, mobile devices and embedded platforms. OpenCL is a framework for
writing programs that execute across heterogeneous platforms consisting of cen-
tral processing units (CPUs), graphics processing units (GPUs) and other types of
processors or hardware accelerators. OpenCL specifies:

e programming language for programming these devices, and
e application programming interface to control the platform and execute programs
on the compute devices.

OpenCL defines the OpenCL C programming language that is used to write compute
kernels - the C like functions that implements the task which is to be executed by
all work-items running on a GPU. Unfortunately, OpenCL has one significant
drawback: it’s not easy to learn. Even the most introductory application is difficult
for a newcomer to grasp. Prior to jump into OpenCL and take advantage of its
parallel-processing capabilities, an OpenCL developer needs to clearly understand

150 5 OpenCL for massively parallel graphic processors

three basic concepts: heterogeneous system (also called platform model), execution
model and memory model.

5.2.2 Heterogeneous system

A heterogeneous system (also called platform model) consists of a single Aost con-
nected to one or more OpenCL devices (e.g. GPUs, FPGA accelerators, DSP or even
CPU). The device is where the OpenCL kernels execute. A typical heterogeneous
system is shown in Figure 5.9. An OpenCL program consists of the host program,
that runs on the host (typically this is a desktop computer with a general-purpose
CPU), and one or more kernels that run on the OpenCL devices. The OpenCL device

Cu|[cu]... FPGA
cu|[cu]... GPU2 HOST
cu][cul... GPU1
EE| EE
HE R

HE| EEpg

Fig. 5.9: A heterogeneous system.

comprises several compute units. Each compute unit comprises tens or hundreds of
processing elements.

5.2.3 Execution model

The OpenCL execution model defines how kernels execute. The most important
concept to understand is NDRange (N-Dimensional Range) execution. The host
program invokes a kernel over an index space. An example of an index space
which is easy to understand is a for loop in C. In the for loop defined by the
statement for (int i=0; i<5; i++), any statements within this loop will execute
five times, with i=0,1,2,3,4. In this case the index space of the loop is [0,1,2,3,4].
In OpenCL, index space is called NDRange, and can have 1, 2, or 3-dimensions.
OpenCL kernel functions are executed exactly one time for each point in the
NDRange index space. This unit of work for each point in the NDRange is called
a work-item. Unlike for loops in C, where loop iterations are executed sequentially
and in-order, an OpenCL device is free to execute work-items in parallel and in

5.2 Programmer’s view 151

OpenCL execution model

The OpenCL Execution Model: Kernels are executed by one or more work-items.
Work-items are collected into work-groups and each work-group executes on a com-
pute unit. Kernels are invoked over an index space called NDRange. A work-item is a
single kernel instance at a point in the NDRange. NDRange defines the total number of
work-items that execute in parallel. In other words, each work-item executes the same
kernel function.

any order. Recall that work-items are not scheduled for execution individually onto
OpenCL devices. Instead, work-items are organized into work-groups, which are the
unit of work scheduled onto compute units. Because of this, work-groups also de-
fine the set of work-items that may share data using local memory. Synchronization
is possible only between the work-items in a work- group.

Work-items have unique global IDs from the index space. Work-items are further
grouped into work-groups and all work-items within a work-group are executed on
the same compute unit. Work-groups have a unique work-group ID and work-items
have a unique local ID within a work-group. NDRange defines the total number of
work-items that execute in parallel. This number is called global work size and must
be provided by a programmer before the kernel is submitted for execution. The num-
ber of work-items within a work-group is called local work size. The programmer
may also set the local work size at runtime. Work-items within a work-group can
communicate with each other and we can synchronize them. In addition, work-items
within a work-group are able to share memory. Once the local work size has been
determined, the NDRange (global work size) is divided automatically into work-
groups, and the work-groups are scheduled for execution on the device.

A kernel function is written on the host. The host program then compiles the
kernel and submits the kernel for execution on a device. The host program is thus
responsible for creating a collection of work-items, each of which uses the same
instruction stream defined by a single kernel. While the instruction stream is the
same, each work-item operates on different data. Also, the behavior of each work-
item may vary because of branch statements within the instruction stream.

Figure 5.10 shows an example of NDRange where each small square represents
a work-item. NDRange in Figure 5.10 is a 2-dimensional index space of size (GX,
GY). Each work-item within this NDRange has its own global index (gx,gy). For
example, the shaded square has global index (10, 12). The work items are grouped
into 2-dimensional work-groups. Each work-group contains 64 work-items and is of
size (LX, LY). Each work-item within a work-group has a unique local index (Iy,1y).
For example, the shaded square has local index (2,4). Also, each work-group has
its own work-group index (wy,w,). For example, the work-group containing the
shaded square has work-group index (1,1). And finally, the size of the NDRange
index space can be expressed with the number of work-groups in each dimension,
(WX, WY).

152 5 OpenCL for massively parallel graphic processors

Ly

GY=16

Wy

wx=1wy=1
X=8 \ v Yy

GX=16 gx=10,gy=12
Ix=2,ly=4

WX =2

Fig. 5.10: NDRange.

OpenCL memory model

The OpenCL memory model: Kernel data must be specifically placed in one of four
address spaces: global memory, constant memory, local memory, or private memory.
The location of the data determines how quickly it can be processed and how the data
is shared within a work-group.

5.2.4 Memory model

Since common memory address space is unavailable on the host and the OpenCL
devices, the OpenCL memory model defines four regions of memory accessible
to work-items when executing a kernel. Figure 5.11 shows the regions of memory
accessible by the host and the compute device. OpenCL generalizes the different
types of memory available on a device into private memory, local memory, global
memory and constant memory, as follows:

1. Private memory: a memory region that is private per work item. For example,
on a GPU device this would be registers within the compute unit.

2. Local memory: a memory region that is shared within a work-group. All work-
items in the same work-group have both read and write access. On a GPU device
this is local memory within the compute unit.

5.2 Programmer’s view

KERNEL

Work-group

Work-item

Work-item

Private

Private

Work-item

Private

Fig. 5.11: The OpenCL memory model.

153

3. Global memory: a memory region in which all work-items and work-groups
have read and write access. It is visible to all work-items and all work-groups.
On a GPU device it is implemented in GDDRS. This region of memory can be

allocated only by the host during runtime.

4. Constant memory: a region of global memory that stays constant throughout
the execution of the kernel. Work-items have only read access to this region. The

host is permitted both read and write access.

When writing kernels in the OpenCL language, we must declare memory with
certain address space qualifiers to indicate whether the data resides in global
(__global), constant (__constant), local (__local), or it will default to private

within a kernel.

2| void VectorAdd(float x*a,

154 5 OpenCL for massively parallel graphic processors

5.3 Programming in OpenCL

5.3.1 A simple example: vector addition

We will start with a simple C program that adds the adjacent elements of two ar-
rays (vectors). with N elements each. The sample C code for vector addition that is
intended to run on a single core CPU is shown in Listing 5.2.

// add the elements of two arrays

float *b,
float *c,
int iNumElements) {

int iGID = O0;
while (iGID < iNumElements) {

c[iGID] = al[iGID] + b[iGID];
iGID += 1;

Listing 5.2: Sequential vector addition

We compute the sum within a while loop. The index iGID ranges from 0 to iNu-
mElements - 1. In each iteration we add elements a[iGID] and b[iGID] and
place the result in the ¢ [1GID].

Now, we will try to implement the same problem using OpenCL and execute it
on a GPU. We will use this simpple problem of adding two vectors because the
emphasis will be on getting familiar with OpenCL and not on solving the problem
itself. We will show how to split the code into two parts: the kernel function and the
host code.

Kernel function

We can accomplish the same addition on a GPU. To execute the vector addition
function on a GPU device, we must write it as a kernel function that is executed
on a GPU device. Each thread on the GPU device will then execute the same kernel
function. The main idea is: replace loop iterations with kernel functions executing at
each point in a problem domain. For example, process vectors with iNumElements
elements with one kernel invocation per element or iNumElements threads (kernel
executions). The OpenCL kernel is a code sequence that will be executed by every
single thread running on a GPU. It is very similar in structure to a C function, but it
has the qualifier __kernel. This qualifier alerts the compiler that a function is to be
compiled to run on an OpenCL device instead the host. The arguments are passed to
a kernel as they are passed to any C function. The arguments in the global memory
are described with __global qualifier and the arguments in the shared memory

5.3 Programming in OpenCL 155

OpenCL: Get global ID

The global ID for a working-item in NDRange is obtained by the get_global_id
function:
size_t get_global_id (uint dimindx)

This function returns the unique global work-item ID value for dimension identified
by its argument dimindx. Valid values of dimindx are O for the first dimension (row),
1 for the second dimension (column) and 2 for the third dimension in NDRange.

are described with __local qualifier. These arguments should be always passed as
pointers.

As each thread executing the kernel function operates on its own data, there
should be a way to identify the thread end link it with particular data. To deter-
mine the thread id we use the get_global_id function, which works for multiple
dimensions.

The kernel function should look similar to the function VectorAdd from List-
ing 5.2. If we assume that each work-item calculates one element of array C, the
kernel function looks like in Listing 5.3.

// OpenCL Kernel Function for element by element
2| // wector addition

__kernel void VectorAdd(

4 __global float* a,
__global float* b,

6 __global float* c,

7 int iNumElements

8) 1

10 //find my global indez and handle the data at this indez
11 int iGID = get_global_id (0);

13 if (iGID < iNumElements) {
14 // add adjacent elements
15 c[iGID] = al[iGID] + b[iGID];

Listing 5.3: Vector Addition - the kernel function

We intend to run this kernel in iNumElements instances so that each work-item
in NDRange will operate on one vector element. The kernel function has four ar-
guments. The first two arguments are the pointers to input arrays in global mem-
ory, a and b, namely. The third parameter is the pointer to the output array c in
global memory. and finally, the fourth argument iNumElements is the number of el-
ements in arrays. Instead of summing in a while loop, each work-item discovers its
global index in NDRange and process only the array elements at this index. For one-
dimensional arrays we use 1-dimensional index space. To discover its global index
in one-dimensional index space, a work-item should call the get_global_id (0)

—_—

156 5 OpenCL for massively parallel graphic processors

function. Prior to run this kernel on a GPU device, we must setup the execution
environment in the host code.

Host code

In developing an OpenCL project, the first step is to code the host application. The
host application runs on a user’s computer (the host) and dispatches kernels to con-
nected devices. The host application can be coded in C or C++. Because OpenCL
supports a wide range of heterogeneous platforms, the programmer must first deter-
mine which OpenCL devices are connected to the the platform. After he discovers
the devices constituting the platform, the programmer choose one or more devices
on which he want to run the kernel function. Only after that can he compile and
execute the kernel function on the selected device. Thus, the kernel functions are
compiled in runtime and the compilation process is initiated from the host code.

Prior to execute a kernel function, the host program for a heterogeneous system
must carry out the following steps:

1. Discover the OpenCL devices that constitute the heterogeneous system. The
OpenCL abstraction of the heterogeneous system is represented with platform
and devices. The platform consists of one or more devices capable of executing
the OpenCL kernels.

2. Probe the characteristics of these devices so that the software (kernel functions)
can adapt to the specific features.

3. Read the program source containing the kernel function(s) and compile the ker-
nel(s) that will run on the selected device(s).

4. Set up memory objects on the selected device(s) that will hold the data for the
computation.

5. Compile and run the kernel(s) on the selected device(s).

6. Collect the final result from device(s).

The host code can be very difficult to understand for the beginner, but we will soon
realize that a large part of the host code is repeated and can be reused in different
applications. Once we understand the host code, we will only devote our attention to
writing kernel functions. The above steps are accomplished through the following
series of calls to OpenCL API within the host code:

Prepare and initialize data on host.
Discover and initialize the devices.
Create a context.

Create a command queue.

Create the program object for a context.
Build the OpenCL program.

Create device buffers.

Write host data to device buffers.
Create and compile the kernel.

Set the kernel arguments.

SV E LD =

5.3 Programming in OpenCL 157

11. Set the execution model and enqueue the kernel for execution.
12. Read the output buffer back to the host.

Every host application requires five data structures: c1_device_id, cl_context,
cl_command_queue, c1_program and c1_kernel. This data structures must be ini-
tialized and filled-in prior to enqueue the kernel function for execution. Listing 5.4
shows the host code. In paragraphs that follows we explain each step within the
host code and briefly describe the OpenCL API function used to accomplish the
step. For more detailed description of API calls you should refer to OpenCL™ 2.2
Specification.

#include <fcntl.h>
#include <stdio.h>
3| #include <stdlib.h>
4| #include <string.h>
6

#include <math.h>

)| #include <unistd.h>
#include <sys/types.h>

8| #include <sys/stat.h>

9| #include <OpenCL/opencl.h>

11l cl_int status;

12 cl_int ciErr;

13l cl_device_id *devices = NULL;

14/ cl_uint numDevices = 0;

15| char buffer [100000];

16 cl_uint buf_uint;

17 cl_ulong buf_ulong;

15| size_t buf_sizet;

9] cl_int iNumElements = 512%512;
20
21l cl_float* srcl;

2| cl_float* srcB;

23| cl_float* srcC;

24| cl_float result;

2| FILEx programHandle; // File that contains kernel functions
27| size_t programSize;
28| char *programBuffer;

29| cl_program cpProgram; // OpenCL program
30| cl_kernel ckKernel; // OpenCL kernel

3

12| size_t szGlobalWorkSize; // global work size
33l size_t szLocalWorkSize; // local work size

35| // Main function
36 // e o K kK K kK K K kK K ok kK K ok kK K ok kK ok kK K ok kK K o ok kK K ok ok K K K Xk ok
77| int main(int argc, char **argv)

38| {

39 // set and log Global and Local work size dimensions

40 szLocalWorkSize = 512;

41 szGlobalWorkSize = iNumElements;

2 // Allocate host arrays

43 srcA = (void *)malloc(sizeof(cl_float) * iNumElements) ;
44 srcB = (void *)malloc(sizeof(cl_float) * iNumElements) ;
45 srcC = (void *)malloc(sizeof(cl_float) * iNumElements) ;
16 // init arrays:

47 for (int i = 0; i<iNumElements; i++) {

48 *((cl_float*)srcA + i) = 1

.03
49 *((cl_float*)srcB + i) = 1.0;

90
91
9
93
9%
95
9
97
98
99

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

117

118

158

5 OpenCL for massively parallel graphic processors

T I
// STEP 1: Discover and initialize the devices

/[AR K KKK KKK KKK KK KKK KKK KK
// Use clGetDeviceIDs () to retrieve the number of

// devices present

status = clGetDeviceIDs (
NULL,
CL_DEVICE_TYPE_ALL,
0,
NULL,
&numDevices) ;

if (status != CL_SUCCESS)

{

printf ("Error: Failed to create a device group!\n");
return EXIT_FAILURE;
}

printf ("The number of devices found = %d \n", numDevices);

// Allocate enough space for each device

devices = (cl_device_id#*) malloc(numDevices*sizeof (cl_device_id));
// Fill in devices with clGetDeviceIDs ()
status = clGetDeviceIDs (

NULL,

CL_DEVICE_TYPE_ALL,
numDevices,

devices,
NULL) ;
if (status != CL_SUCCESS)
{
printf ("Error: Failed to create a device group!\n");
return EXIT_FAILURE;
}

[/ KKK A A A KKK KKK KKK KA KKK KKK KKK KA KA KK KKK KKK KA A A KKK KKK

// STEP 2: Create a contezt
/] K K e kKK K KK KKK KKK KKK K K K K KKK K K K K KKK K K K K KKK K K K KKK K K

cl_context context = NULL;
// Create a contexzt using clCreateContext () and
// associate it with the devices
context = clCreateContext(
NULL,
numDevices,
devices,
NULL,
NULL,
&status) ;
if ('context)
{
printf ("Error: Failed to create a compute context!\n");
return EXIT_FAILURE;
}

VA Y
// STEP 3: Create a command queue
[/ Kk KK KK KKK K K KK KK K KK KK K KK K K K K K K K K K K K KK K K K K K K K K K
cl_command_queue cmdQueue;
// Create a command queue using clCreateCommandQueue (),
// and associate it with the device you want to ezecute
// on
cmdQueue = clCreateCommandQueue (
context,
devices[1], // GPU
CL_QUEUE_PROFILING_ENABLE,
&status) ;

5.3 Programming in OpenCL 159

119 if (!cmdQueue)

120 {

121 printf ("Error: Failed to create a command commands!\n");

122 return EXIT_FAILURE;

123 }

124

125 /] A A A A A KA KA A A KR KA KKK KKK KKK KKK KKK

126 // STEP 4: Create the program object for a context

127 [/ KKK K KKK KK K KKK KKK KK KKK K K K KKK K K K KK KKK K K KK KKK K K KK KK K K

128 // 4 a: Read the OpenCL kernel from the source file and

129 V4 get the size of the kermel source

130 programHandle = fopen("/Users/patriciobulic/FRICL/VectorAdd.cl", "r«
")

131 fseek (programHandle, 0, SEEK_END);

132 programSize = ftell(programHandle);

133 rewind (programHandle) ;
135 printf ("Program size = %lu B \n", programSize);

137 // 4 b: read the kernel source into the buffer programBuffer

138 // add null-termination-required by clCreateProgramWithSource
139 programBuffer = (char*) malloc(programSize + 1);

140

141 programBuffer [programSize]l = ’\0°; // add null-termination

142 fread (programBuffer, sizeof (char), programSize, programHandle);
143 fclose (programHandle) ;

145 // 4 c: Create the program from the source

146 V4

147 cpProgram = clCreateProgramWithSource (

148 context ,

149 1,

150 (const char #**)&programBuffer,
151 &programSize,

152 &ciErr) ;

153 if (!cpProgram)

154 {

155 printf ("Error: Failed to create compute program!\n");
156 return EXIT_FAILURE;

157 }

158 free (programBuffer) ;

160 [/ KKK KKK oK oK K K KK KK KK KK KK KK KO KK KO K KOk K kKR K kK KK
161 // STEP 5: Build the program

162 [/ KA KKK KK KK KK A KKK KKK KK KK KKK KK KKK KKK KK KKK KKK
163 ciErr = clBuildProgram(

164 cpProgram,
165 0,

166 NULL ,

167 NULL,

168 NULL,

169 NULL) ;

170

171 if (ciErr != CL_SUCCESS)

172 {

173 size_t len;
174 char buffer [2048];

176 printf ("Error: Failed to build program executable!\n");
177 clGetProgramBuildInfo (cpProgram,

178 devices [1],

179 CL_PROGRAM_BUILD_LOG,
180 sizeof (buffer),

181 buffer,

182 &len) ;

183 printf ("%s\n", buffer);

184 exit (1) ;

160

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222

223

243
244
245
246
247
248
249
250

251

5 OpenCL for massively parallel graphic processors

}

[/ KKK KK KKK KK KKK KKK KK K K K KKK K K KKK KK K KKK K K K Kk K K
// STEP 6: Create device buffers
//***
cl_mem bufferd; // Input array on the device

cl_mem bufferB; // Input array on the device

cl_mem bufferC; // Output array on the device
//cl_mem noElements;

// Size of data:
size_t datasize = sizeof(cl_float) * iNumElements;

// Use clCreateBuffer () to create a buffer object (d_4)
// that will contain the data from the host array A
bufferA = clCreateBuffer(

context ,

CL_MEM_READ_ONLY ,

datasize,

NULL ,

Zstatus) ;

// Use clCreateBuffer () to create a buffer object (d_B)
// that will contain the data from the host array B
bufferB = clCreateBuffer (

context,

CL_MEM_READ_ONLY,

datasize,

NULL ,

&status) ;

// Use clCreateBuffer () to create a buffer object (d_C)
// with enough space to hold the output data
bufferC = clCreateBuffer (

context ,

CL_MEM_WRITE_ONLY,

datasize,

NULL,

&status) ;

[/ AR K KKK KKK KKK KK KK KKK KKK
// STEP 7: Write host data to device buffers
//***
// Use clEnqueueWriteBuffer () to write input array A to
// the device buffer bufferd
status = clEnqueueWriteBuffer (

cmdQueue ,

bufferA,

CL_FALSE,

0,

datasize,

srchA,

0,

NULL,

NULL) ;

// Use clEnqueueWriteBuffer () to write input array B to

// the device buffer bufferB

status = clEnqueueWriteBuffer (
cmdQueue ,
bufferB,
CL_FALSE,
0,
datasize,
srcB,
0,
NULL,

5.3 Programming in OpenCL 161

NULL) ;
254 /KK K ke ke oK K K e KKK K KK K KKK K KK K KKK K K K K K K K K K KK K K K KKK K K
255 // STEP 8: Create and compile the kernel
256 //***
257 // Create the kernel
258 ckKernel = clCreateKernel(
259 cpProgram,
260 "VectorAdd",
261 &ciErr) ;
262 if (!ckKernel || ciErr != CL_SUCCESS)
263 {
264 printf ("Error: Failed to create compute kernel!\n");
265 exit (1) ;
266 }
267
268 [/ KKK KKK KKK KKK KKK KKK KKK KK KKK KK K KKK KK KKK KK
269 // STEP 9: Set the kernel arguments
270 //***
271 // Set the Argument wvalues
272 ciErr = clSetKernelArg(ckKernel,
273 0,
274 sizeof (cl_mem),
275 (void*)&bufferd);
276 ciErr |= clSetKernelArg(ckKernel,
277 1,
278 sizeof (cl_mem),
279 (void*)&bufferB) ;
280 ciErr |= clSetKernelArg(ckKernel,
281 2,
282 sizeof (cl_mem),
283 (void*)&bufferC) ;
284 ciErr |= clSetKernelArg(ckKernel,
285 3,
286 sizeof (cl_int),
287 (void*)&iNumElements) ;
288
289 //***
290 // Start Core sequence... copy input data to GPU, compute,
291 // copy results back
292
293 [/ KK K e KKK KK KKK K K KK KKK K K KK KKK K K K K KKK K K K K KK K K K KK KK K K
204 // STEP 10: Enqueue the kernel for ezecution
295 //***
296 // Launch kernel
297 ciErr = clEnqueueNDRangeKernel (
298 cmdQueue,
299 ckKernel,
300 il g
301 NULL,
302 &szGlobalWorkSize,
303 &szLocalWorkSize,
304 0,
305 NULL,
306 NULL) ;
307 if (ciErr != CL_SUCCESS)
308 {
309 printf ("Error launchung kernel!\n");
310 ¥
311
312 // Wait for the command commands to get serviced before
313 // reading back results
314 V4
315 clFinish (cmdQueue) ;
316
317 [/ KK K ek KKK K KK KKK K KKK KKK K K KK KKK K K K K KKK K K K K KKK K K KK KK K K
318 // STEP 11: Read the output buffer back to the host

162 5 OpenCL for massively parallel graphic processors

319 [/ R KKK KKK KKK KKK KKK KKK KKK K KKK KK KKK KK R KK KKK K KKK KKK
320 // Synchronous/blocking read of results

321 ciErr = clEnqueueReadBuffer(

cmdQueue ,

bufferC,

3 CL_TRUE,
325 0,

326 datasize,
327 srcC,

328 0,

329 NULL,

330 NULL) ;

332 // Wait for the command commands to get serviced before reading
back results
clFinish(cmdQueue) ;

// check the result

result = 0.0;

for (int i=0; i<iNumElements; i++) {
338 result += srcC[i];

339 3

340 printf ("Result = %f \n", result);

342 // Cleanup
343 free(srch);
344 free(srcB);
345 free(srcC);

347 if (ckKernel) clReleaseKernel (ckKernel);

348 if (cpProgram) clReleaseProgram(cpProgram);

349 if (cmdQueue) clReleaseCommandQueue (cmdQueue) ;
350 if (context) clReleaseContext(context);

352 if (bufferA) clReleaseMemObject (bufferA);
353 if (bufferB) clReleaseMemObject (bufferB);
354 if (bufferC) clReleaseMemObject (bufferC);

356 return O;

Listing 5.4: Host code for vector addition

1. Discover and initialize the devices

Every OpenCL program requires an OpenCL context, including a list of all OpenCL
devices available on the platform. To discover and initialize the devices, we use the
clGetDeviceIDs () function. We must call the c1GetDeviceIDs () function for
two times. In the first call we use c1GetDeviceIDs() to retrieve the number of
the OpenCL devices present on the platform. The code is shown in Listing 5.5. The
number of OpenCL devices is returned in num_Devices. Once we know how many
OpenCL devices are available on the platform we can obtain the list of all devices
available on a platform with the second call of the c1GetDeviceIDs () function.
The sample code for discovering OpenCL devices is shown in Listing 5.6.

1 [/ KKK KK KKK KKK KKK KK KK KKK KKK KK K K K KKK K K Kk K K KK K KOk K K
2 // STEP 1: Discover and initialize the devices

5.3 Programming in OpenCL

OpenCL: Get device ID

To obtain the list of devices available on a platform we use the c1GetDeviceIDs ()
function:

cl_int clGetDeviceIDs (
cl_platform_id platform,
cl_device_type device_type,
cl_uint num_entries,
cl_device_id *devices,
cl_uint *num_devices)

clGetDevicelDs returns CL_SUCCESS if the function is executed successfully. Pa-
rameters are:

e platform: Refers to the platform ID or can be NULL.

e device_type: A bitfield that identifies the type of OpenCL device.
Some of valid values are CL_DEVICE_TYPE_CPU, CL_DEVICE_TYPE_GPU and
CL_DEVICE_TYPE_ALL. For all other values refer to OpenCL 2.2 Specification.

e num_entries: The number of c1_device entries that can be added to devices. If
devices is not NULL, the num_entries must be greater than zero.

e devices: A list of OpenCL devices found. In the case that this is NULL, then
clGetDeviceIDs returns the number of devices in num_devices. Otherwise it
returns a pointer to the list of available OpenCL devices in devices.

e num_devices: The number of OpenCL devices available that match de-
vice_type. If num_devices is NULL, this argument is ignored.

Refer to OpenCL™ 2.2 Specification for more detailed description.

//***

// Use clGetDeviceIDs () to retrieve the number of
// devices present

status = clGetDeviceIDs (
NULL,
CL_DEVICE_TYPE_ALL,
0,
NULL,
&numDevices) ;

if (status != CL_SUCCESS)

{

printf ("Error: Failed to create a device group!\n");
return EXIT_FAILURE;
}

printf ("The number of devices found = %d \n", numDevices);

// Allocate enough space for each device

devices = (cl_device_id*) malloc(numDevices*sizeof (cl_device_id));
// Fill in devices with clGetDeviceIDs ()
status = clGetDeviceIDs (

NULL,

CL_DEVICE_TYPE_ALL,
numDevices,
devices,

NULL) ;

163

164 5 OpenCL for massively parallel graphic processors

OpenCL: Get device info

To get information about an OpenCL device available on a platform we use the c1Get-
DeviceInfo () function:

cl_int clGetDeviceInfo(
cl_device_id device,
cl_device_info param_name,
size_t param_value_size,
void *param_value,
size_t *param_value_size_ret)

clGetDevicelnfo returns CL_SUCCESS if the function is executed successfully. Pa-
rameters are:

e device: Refers to the device returned by c1GetDeviceIDs.

e param_name: An enumeration constant that identifies the device information
being queried. Some of valid values are CL_DEVICE_MAX_COMPUTE_UNITS,
CL_DEVICE_MAX_WORK_GROUP_SIZE, CL_DEVICE_TYPE, etc. For all other values
refer to OpenCL 2.2 Specification.

e param_value_size: Specifies the size in bytes of memory pointed to by
param_value.

e param_value: A pointer to memory location where appropriate values for a given
param_name as specified in the table below will be returned.Specifies the size in
bytes of memory pointed to by param_value.

e param_value_size_ret: Returns the actual size in bytes of data being queried
by param_value. If param_value_size_ret is NULL, it is ignored.

Refer to OpenCL™ 2.2 Specification for more detailed description.

if (status != CL_SUCCESS)

{
printf ("Error: Failed to create a device group!\n");
return EXIT_FAILURE;

Listing 5.5: Discover and initialize devices

the first call is used to discover the number of present devices. This number is re-
turned in the numDevices variable. On an Apple laptop with an Intel GPU there are
two discovered devices:

The number of devices found = 2

Once we know the number of devices, we make enough space in devices buffer
with malloc () and then we make the second call to c1GetDeviceIDs () to obtain
the list of all devices in the devices buffer.

We can get and print information about an OpenCL device with the c1GetDe-
viceInfo() function.

The sample code for printing information about discovered OpenCL devices is
shown in Listing 5.6.

16

18

20

5.3 Programming in OpenCL

165

printf ("=== OpenCL devices: ===\n");
for (int i=0; i<numDevices; i++)
{
printf (" -- The device with the index %d --\n", i);

clGetDeviceInfo (devices[i],
CL_DEVICE_NAME,
sizeof (buffer),
buffer,
NULL) ;
printf (" DEVICE_NAME = %s\n", buffer);
clGetDeviceInfo (devices[i],
CL_DEVICE_VENDOR,
sizeof (buffer),
buffer,
NULL) ;
printf (" DEVICE_VENDOR = %s\n", buffer);
clGetDeviceInfo(devices[i],
CL_DEVICE_MAX_COMPUTE_UNITS,
sizeof (buf_uint),
&buf_uint ,
NULL) ;
printf (" DEVICE_MAX_COMPUTE_UNITS = %u\n",
(unsigned int)buf_uint);
clGetDeviceInfo (devices[i],
CL_DEVICE_MAX_WORK_GROUP_SIZE,
sizeof (buf_sizet),
&buf_sizet,
NULL) ;
printf (" CL_DEVICE_MAX_WORK_GROUP_SIZE = %u\n",
(unsigned int)buf_uint);
clGetDeviceInfo (devices[i],
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
sizeof (buf_uint),
&buf_uint ,
NULL) ;
printf (" CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = %u\n",
(unsigned int)buf_uint);

size_t workitem_size[3];
clGetDeviceInfo (devices[i],
CL_DEVICE_MAX_WORK_ITEM_SIZES,
sizeof (workitem_size),
&workitem_size,
NULL) ;
printf (" CL_DEVICE_MAX_WORK_ITEM_SIZES = %u, %u, %u \n",
(unsigned int)workitem_size[0],
(unsigned int)workitem_size[1],
(unsigned int)workitem_size[2]);

Listing 5.6: Print devices’ information

The following is the output of the code in Listing 5.6 for an Apple laptop with an

Intel GPU:
=== (OpenCL devices found on platform: ===
-- Device 0 —-

DEVICE_NAME = Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
DEVICE_VENDOR = Intel

DEVICE_MAX_COMPUTE_UNITS = 8
CL_DEVICE_MAX_WORK_GROUP_SIZE = 2200
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = 3
CL_DEVICE_MAX_WORK_ITEM_SIZES = 1024, 1, 1

-- Device 1 --

166 5 OpenCL for massively parallel graphic processors

DEVICE_NAME = Iris Pro

DEVICE_VENDOR = Intel
DEVICE_MAX_COMPUTE_UNITS = 40
CL_DEVICE_MAX_WORK_GROUP_SIZE = 1200
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = 3
CL_DEVICE_MAX_WORK_ITEM_SIZES = 512, 512, 512

We can use these information about an OpenCL device later in our host pro-
gram to automatically adapt the kernel to the specific features. In the above example
the device with index 1 is an Intel Iris Pro GPU. It has 40 compute units, each
work-group can have up to 1200 work-items, which can span into 3-dimensional
NDRange and the maximum size in each dimension is 512. We can also see, that
the device with index O is an Intel Core i7 CPU, which can also execute OpenCL
code. It has 8 compute units (four cores, two hardware threads per core).

2. Create a context

Once we have discovered the available OpenCL devices on the platform and have
obtained ad least one device ID, we can create an OpenCL context. The context
is used to group devices and memory objects together and to manage command
queues, program objects and kernel objects. An OpenCL context is created with one
or more devices. Contexts are used by the OpenCL runtime for managing objects
such as command-queues, memory, program and kernel objects and for executing
kernels on one or more devices specified in the context. An OpenCL context is cre-
ated with the c1CreateContext function. Listing 5.7 shows a call to this function.

/ /A A KKK KKK KKK KA KKK KKK KKK KKK KA KK KKK KKK KKK KA KK KKK KKK KK

// STEP 2: Create a contezt
[/ KKK KKK KKK KKK KKK KKK KKK K KKK KK KK KKK R KK KKK K KKK

cl_context context = NULL;
// Create a contexzt using clCreateContezt () and
// assoctate it with the devices

context = clCreateContext (
NULL,
numDevices,
devices,
NULL,
NULL ,
&status) ;
if (!context)
{
printf ("Error: Failed to create a compute context!\n");
return EXIT_FAILURE;
}

Listing 5.7: Create a context

5.3 Programming in OpenCL 167

OpenCL: Create a context

An OpenCL context is created by the c1CreateContext () function:

cl_context clCreateContext(
cl_context_properties *properties,
cl_uint num_devices,
const cl_device_id *devices,
void *pfn_notify (
const char *errinfo,
const void *private_info,
size_t cb,
void *user_data
)’
void *user_data,
cl_int *errcode_ret)

An OpenCL context is created with one or more devices. Contexts are used by the
OpenCL runtime for managing objects such as command-queues, memory, program
and kernel objects and for executing kernels on one or more devices specified in the
context. c1CreateContext returns a valid non-zero context and errcode_ret is set
to CL_SUCCESS if the context is created successfully. Otherwise, it returns NULL
value with the values returned in errcode_ret. Refer to OpenCL™ 2.2 Specification
for more detailed description.

3. Create a command queue

When the context is created, command queues are created that allow commands to
be sent to the OpenCL devices associated to the context. Commands are placed into
the command queue in order the calls are made. The most common use of queues is
to enqueue OpenCL kernel functions for execution on a device. The c1CreateCom-
mandQueue function is used to create a command queue. By enqueuing commands,
we request that the OpenCL device execute the operations in the order. If we have
multiple OpenCL devices, we must create a command queue for each OpenCL de-
vice and submit commands separately to each. Listing 5.8 shows how to create a
command queue for an OpenCL device.

/[KA A KKK KK KKK KKK KA K KKK KKK KK KK KA K KKK KKK K KKK KKK KKK KK

// STEP 3: Create a command queue
[/ KA AR KKK A KA KKK KKK KKK KK KKK KK KK KKK KKK KKK KKK KKK

cl_command_queue cmdQueue;
// Create a command queue using clCreateCommandQueue (),
// and associate it with the device you want to ezecute
// on
cmdQueue = clCreateCommandQueue (
context,
devices [1], // GPU
CL_QUEUE_PROFILING_ENABLE,
&status) ;

168 5 OpenCL for massively parallel graphic processors

OpenCL: Create a command queue

To create a command-queue on a specific device use the c1CreateCommandQueue ()
function:

cl_command_queue clCreateCommandQueue (
cl_context context,
cl_device_id device,
cl_command_queue_properties properties,
cl_int *errcode_ret)

clCreateCommandQueue returns a valid non-zero command-queue and er-—
rcode_ret is set to CL_SUCCESS if the command-queue is created successfully.
Otherwise, it returns NULL value with the values returned in errcode_ret. The third
argument specifies if profiling is enabled (CL_QUEUE_PROFILING_ENABLE) to mea-
sure execution time of commands or disabled (0). Refer to OpenCL™ 2.2 Specifica-
tion for more detailed description.

15| if (!cmdQueue)

16| {

17 printf ("Error: Failed to create a command commands!\n");
18 return EXIT_FAILURE;

9| ¥

Listing 5.8: Create a command queue

4. Create the program object for a context

An OpenCL program consists of a set of kernel functions that are identified as func-
tions declared with the __kernel qualifier in the program source. Kernel functions
are functions that are executed on a particular OpenCL device. OpenCL programs
may also contain auxiliary functions and constant data that can be used by __ker-
nel functions.

OpenCL allows applications to create a program object using the program source
or binary and build appropriate program executables. This allows applications to de-
termine whether they want to use the pre-built offline binary or load and compile the
program source and use the executable compiled/linked online as the program exe-
cutable. This can be very useful as it allows applications to load and build program
executables online on its first instance for appropriate OpenCL devices in the sys-
tem. These executables can now be queried and cached by the application. Future
instances of the application launching will no longer need to compile and build the
program executables. The cached executables can be read and loaded by the appli-
cation, which can help significantly reduce the application initialization time.

To create a program object we use the c1CreateProgramWithSource function.

Listing 5.9 shows how to:

o read the OpenCL kernel from the source file VectorAdd.cl,

5.3 Programming in OpenCL 169

OpenCL: Create a program object

To create a program object on for a context use the c1CreateProgramWithSource ()
function:

cl_program clCreateProgramWithSource (
cl_context context,
cl_uint count,
const char **strings,
const size_t *lengths,
cl_int *errcode_ret)

clCreateProgramWithSource creates a program object for a context, and loads the
source code specified by the text strings in the strings array into the program object.
clCreateCommandQueue returns a valid non-zero program object and errcode_ret
is set to CL_SUCCESS if the program object is created successfully. Otherwise, it
returns NULL value with the values returned in errcode_ret. Refer to OpenCL™
2.2 Specification for more detailed description.

o read the kernel source into the buffer programBuffer, and
e create the program from the source.

1 /[KKK KA KKK KKK KKK KK KKK KKK KK KKK KKK KKK KKK KKK
2 // STEP 4: Create the program object for a context
3 /] KKK KA KKK A KKK KK A KKK A K KA KKK KK

5 // 4 a: Read the OpenCL kernel from the source file and

6 // get the size of the kernel source

7 programHandle = fopen("/Users/patriciobulic/FRICL/VectorAdd.cl", "r«
");

8 fseek (programHandle, 0, SEEK_END) ;

9 programSize = ftell(programHandle);

10 rewind (programHandle) ;

12 printf ("Program size = %d B \n", programSize);

14 // 4 b: read the kernel source into the buffer programBuffer

15 // add null-termination-required by clCreateProgramWithSource
16 programBuffer = (char*) malloc(programSize + 1);

.

18 programBuffer [programSize] = ’\0°’; // add null-termination

19 fread (programBuffer, sizeof (char), programSize, programHandle);
20 fclose(programHandle) ;

2 // 4 c: Create the program from the source

23 /7

24 cpProgram = clCreateProgramWithSource (

25 context ,

26 il 5

2 (const char #*x*)&programBuffer,
28 &programSize,

29 &ciErr) ;

30 if (!cpProgram)

31 {

32 printf ("Error: Failed to create compute program!\n");
33 return EXIT_FAILURE;

10
11

14

170 5 OpenCL for massively parallel graphic processors

OpenCL: Build a program executable

To build (compile and link) a program executable from the program source or binary
use the c1BuildProgram() function:

cl_int clBuildProgram (
cl_program program,
cl_uint num_devices,
const cl_device_id *device_list,
const char *optioms,
void (*pfn_notify) (cl_program, void *user_data),
void *user_data)

clBuildProgram returns CL_SUCCESS if the function is executed successfully. Oth-
erwise, it returns one of errors. Refer to OpenCL™ 2.2 Specification for more detailed
description.

free (programBuffer) ;

Listing 5.9: Create the program object for a context

5. Build the program

Once we have created a program object using the function clCreatePro-
gramWithSource, we must build a program executable from the contents of the
program object. Building the program compiles the source code in the program ob-
ject and links the compiled code into an executable program. The program object
can be built for one or more OpenCL devices using the function c1BuildProgram.
This function builds (compiles and links) a program executable from the program
source or binary.The function c1BuildProgram modifies the program object to in-
clude the executable, the build log and build options. Listing 5.10 shows how to
build the program and read build information for the selected device in the program
object in the case when the build process fails.

[/ R KKK KKK KK KK KKK KK KK KKK KKK KKK KK K KK KK KK K Kk K K KK K KOk K K
// STEP 5: Build the program
//**************************’k************************
ciErr = clBuildProgram(

cpProgram,

0,

NULL,

NULL ,

NULL,

NULL) ;
if (ciErr != CL_SUCCESS)
{

size_t len;

5.3 Programming in OpenCL 171

16 char buffer [2048];

18 printf ("Error: Failed to build program executable!\n");
19 clGetProgramBuildInfo (cpProgram,

20 devices [1],

21 CL_PROGRAM_BUILD_LOG,

sizeof (buffer),

buffer,

24 &len) ;

25 printf ("%s\n", buffer);

26 exit (1) ;

Listing 5.10: Build the program

6. Create device buffers

Memory objects are reserved regions of global device memory that contains our
data. There are two types of memory objects: device buffers and image objects. In
this book we use only device buffers. To create a device buffer we use the c1Cre-
ateBuffer function.

One important thing to remember is that we should never try to de-reference the
device pointer from the host code as the device memory is not directly accessible
from the host, i.e. we cannot use these pointers to buffer objects to read or write
memory from code that executes on the host. We use these pointers to read or write
memory from code that execute on device. Also , we pass these pointers as argu-
ments to kernels, i.e. functions that execute on device. To read or write to device
buffers from the host we must use OpenCL dedicated functions c1EnqueueRead-
Buffer and clEnqueueWriteBuffer. Upon creation, the contents of the device
buffers are undefined. We must explicitly fill the device buffers with our data from
the host application. We will show this in the next subsection.

Listing 5.11 shows how to create three device buffers: bufferA and bufferB
that are read-only and are used to store input vectors; and bufferC that is write-
only and used to store the result of vector addition.

| [/ KKK KA A KKK KKK K KKK KA KA KK KKK KKK KKK KKK KKK KK KKK KKK KK

2 // STEP 6: Create device buffers
3 /[KK K KKK K K K K K KK Ok K

5 cl_mem bufferA; // Input array on the device
6 cl_mem bufferB; // Input array on the device
7 cl_mem bufferC; // Output array on the device
8 //cl_mem moElements;

10 // Size of data:
1 size_t datasize = sizeof (cl_float) * iNumElements;

13 // Use clCreateBuffer () to create a buffer object (d_4)
14 // that will contain the data from the host array 4

15 bufferA = clCreateBuffer (

16 context,

17 CL_MEM_READ_ONLY,

18 datasize,

172

5 OpenCL for massively parallel graphic processors

OpenCL: Create a buffer

To create a device buffer use the c1CreateBuffer function:

cl_mem clCreateBuffer (
cl_context context,
cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *errcode_ret)

This function creates a buffer object within the context context of the size size bytes
using flags f1lags. The pointer to the allocated buffer data host_ptr holds the address
in the device memory. It returns a valid non-zero buffer object and errcode_ret is set
to CL_SUCCESS if the program object is created successfully. Otherwise, it returns
NULL value with the values returned in errcode_ret.

A bit-field f1ags is used to specify allocation and usage information such as the mem-
ory arena that should be used to allocate the buffer object and how it will be used. The
following are some of the possible values for flags:

CL_MEM_READ_WRITE This flag specifies that the memory object will be read
and written by a kernel. This is the default.

CL_MEM_WRITE_ONLY This flags specifies that the memory object will be
written but not read by a kernel. Reading from a buffer object created with
CL_MEM_WRITE_ONLY inside a kernel is undefined.

CL_MEM_READ_ONLY This flag specifies that the memory object is a read-only
memory object when used inside a kernel. Writing to a buffer or image object
created with CL_MEM_READ_ONLY inside a kernel is undefined.

Refer to OpenCL™ 2.2 Specification for more detailed description.

NULL ,
&status) ;

// Use clCreateBuffer () to create a buffer object (d_B)
// that will contain the data from the host array B
bufferB = clCreateBuffer (

context ,

CL_MEM_READ_ONLY,

datasize,

NULL ,

&status) ;

// Use clCreateBuffer () to create a buffer object (d_C)
// with enough space to hold the output data
bufferC = clCreateBuffer (

context ,

CL_MEM_WRITE_ONLY,

datasize,

NULL ,

&status) ;

Listing 5.11: Create device buffers

5.3 Programming in OpenCL 173

OpenCL: Write to a buffer

To enqueue commands to write to a buffer object from host memory use the c1En-
queueWriteBuffer function:

cl_int clEnqueueWriteBuffer (
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_write,
size_t offset,
size_t cb,
const void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

This function enqueues commands into command queue command_queue to write cb
bytes to a device buffer buf fer from host memory pointed by ptr. This function does
not block by default. To know when the command has completed, we can use a block-
ing form of the command by setting the blocking_write parameter to CL_TRUE.
Refer to OpenCL™ 2.2 Specification for more detailed description.

7. Write host data to device buffers

After we have created the device buffers, we can enqueue reads and writes. To write
data from host memory to a device buffer we use the clEnqueueWriteBuffer
function. We use this function to provide data for processing by a kernel executing
on the device. Listing 5.12 shows how to write host data (input vectors srcA and
srcB) to the device buffers bufferA and buffferB. The device buffers will be then
accessed within the kernel.

//***
// STEP 7: Write host data to device buffers
[/ KK KKK KKK KKK KKK KKK K KKK KKK KKK KKK K KKK KKK KKK KKK KKK KK KKK
// Use clEnqueueWriteBuffer () to write input array A to
// the device buffer bufferd
status = clEnqueueWriteBuffer (

cmdQueue ,

bufferA,

CL_FALSE,

0,

datasize,

srchA,

0,

NULL,

NULL) ;

// Use clEnqueueWriteBuffer () to write input array B to
// the device buffer bufferB
status = clEnqueueWriteBuffer (

cmdQueue ,

bufferB,

CL_FALSE,

174 5 OpenCL for massively parallel graphic processors

OpenCL: Create a kernel object

To create a kernel object use the c1CreateKernel function:

cl_kernel clCreateKernel (
cl_program program,
const char *kernel_name,
cl_int *errcode_ret)

This function creates a kernel object from a function kernel_name contained within
a program object program with a successfully built executable. Refer to OpenCL™
2.2 Specification for more detailed description.

0,
datasize,
srcB,

0,

NULL,
NULL) ;

Listing 5.12: Write host data to device buffers

8. Create and compile the kernel

A kernel is a function we declare in an OpenCL program and is executed on
the OpenCL device. We must identify kernels with the __kernel qualifier to let
OpenCL know that the function is a kernel function. The kernel object is created af-
ter the executable has been successfully built in the program object. A kernel object
is a data structure that includes the kernel function and the data on which the kernel
operates. To create a single kernel object we use the c1CreateKernel function.
Before the kernel object is submitted to the command queue for execution, input or
output buffers must be provided for any arguments required by the kernel function.
If the arguments use device buffers, they must be created first and the data must be
explicitly copied into the device buffers. Listing 5.13 shows how to create a kernel
object from the kernel function VectorAdd ().

[/ KKK KA A A KK KK KK KKK KA KA KK KKK KK KK KA KK KK KKK KK KA A KKK KKK
// STEP 8: Create and compile the kernel
/ /) kK K KKK KKK KKK KK K KKK KKK KKK K K KKK KK KK KKK KK KKK KKK

// Create the kernel

ckKernel = clCreateKernel (
cpProgram,
"VectorAdd",
&ciErr) ;

if ('ckKernel || ciErr != CL_SUCCESS)

{

printf ("Error: Failed to create compute kernel!\n");
exit (1) ;

5.3 Programming in OpenCL 175

OpenCL: Set kernel arguments

To set the argument value for a specific argument of a kernel use the c1SetKernelArg
function:

cl_int clSetKernelArg (
cl_kernel kernel,
cl_uint arg_index,
size_t arg_size,
const void *arg_value)

Arguments to the kernel are referred by indices that go from O for the leftmost argument
to n— 1, where n is the total number of arguments declared by a kernel. The argument
index refers to the specific argument position of the kernel definition that must be set.
The last two arguments of c1SetKernelArg specify the size of the argument data and
the pointer to the actual data that should be used as the argument value. If a kernel
function argument is declared to be a pointer of a built-in or user defined type with
the _ global or __constant qualifier, a buffer memory object must be used. Refer to
OpenCL™ 2.2 Specification for more detailed description.

Listing 5.13: Create and compile the kernel

9. Set the kernel arguments

Prior to enqueue the kernel function for execution on device, we must set the kernel
arguments. When the required memory objects have been successfully created, ker-
nel arguments can be set using the c1SetKernelArg function. Listing 5.14 shows
how to set arguments for the kernel function VectorAdd (). In this example, the
input arguments have indices 0, 1, and 3 and the output argument has index 2.

[/ kK KKK KKK KKK KKK KKK K KKK KK KK K K K K K KKK KK KKK KK KK KK

// STEP 9: Set the kernel arguments
//***

1 // Set the Argument values

5 ciErr = clSetKernelArg(ckKernel,
6 0,
sizeof (cl_mem),
8 (void*)&bufferd) ;
9 ciErr |= clSetKernelArg(ckKernel,

10 1,

1 sizeof (cl_mem),

12 (void*)&bufferB) ;
13 ciErr |= clSetKernelArg(ckKernel,

14 2,

sizeof (cl_mem),
16 (voidx*)&bufferC) ;
1 ciErr |= clSetKernelArg(ckKernel,

18 3,

19

176 5 OpenCL for massively parallel graphic processors

sizeof (cl_int),
(void*)&iNumElements) ;

Listing 5.14: Set the kernel arguments

10. Enqueue the kernel for execution

OpenCL always executes kernels in parallel, i.e. instances of the same kernel exe-
cute on different data set. Each kernel execution in OpenCL is called a work-item.
Each work-item is responsible for executing the kernel once and operating on its
assigned portion of the data set. OpenCL exploits parallel computation of the com-
pute devices by having instances of the kernel execute on different portions of the
N-dimensional problem space. In addition, each work-item is executed only with
its assigned data. Thus, it is programmer’s responsibility to tell OpenCL how many
work-items are needed to process all data.

Before the work-items total can be determined, the N-dimension to be used to
represent the data must be determined. For example, a linear array of data would
be a one-dimension problem space, while an image would be a two-dimensional
problem space, and spatial data, such as a 3D object, would be a three-dimensional
problem space.

When the dimension space is determined, the total work-items (also called the
global work size) and group size can be calculated. When the work-items for each
dimension and the group size (local work size) is determined (i.e. NDRange), the
kernel can be sent to the command queue for execution. To execute the kernel func-
tion, we must enqueue the kernel object into a command queue. To enqueue the
kernel to execute on a device, we use the function clEnqueueNDRangeKernel.

Listing 5.15 shows how to enqueue the VectorAdd kernel on a device over 1-
dimensional space. The total number of work-items is szGlobalWorkSize, and
the work-group size is szLlobalWorkSize. In In this example (vector addition),
szGlobalWorkSize is set to be equal to the number of elements in the input vec-
tor(s), while szLocalWorkSize is set to 256. Thus, the kernel VectorAdd will be
executed by szGlobalWorkSize work-items and each SM on a GPU device will
execute 256 work-items.

/[K kK K K K oK K K K K K K K K K K K oK K K K K K K K o K K K K K K K oK K K K K K K K K K Ok K
// Start Core sequence... copy input data to GPU, compute,
// copy results back

/] KKK K ke ke oK K K K e oK K K K ke K K K K K ke K K K K K ke e KK K K K K K K K K K K K K K K
// STEP 10: Enqueue the kernel for ezecution
[/ kA KK KK KKK KK KKK KK K KK KK K KK K K K K K K K KK K KK K K K KK K K K K
// Launch kernel
ciErr = clEnqueueNDRangeKernel (
cmdQueue ,
ckKernel,
1,
NULL ,
&szGlobalWorkSize,
&szLocalWorkSize,

5.3 Programming in OpenCL 177

OpenCL: Enqueue the kernel for execution on a device

To enqueue a command to execute a kernel on a device use the function c1EnqueueN-
DRangeKernel:

cl_int clEnqueueNDRangeKernel (

cl_command_queue command_queue,
cl_kernel kernel,

cl_uint work_dim,

const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

This function enqueues a command into command_queue to execute the kernel ker-
nel on a device over NDRange. The argument work_dim denotes the number of di-
mensions used to specify the global work-items and work-items in the work-group.
The number of global work-items in work_dim dimensions that will execute the ker-
nel function is specified with global_work_size.The size of the work-group that
will execute the kernel is specified with Local_work_size. Refer to OpenCL™ 2.2
Specification for more detailed description.

16 0,

17 NULL ,

18 NULL) ;

19 if (ciErr != CL_SUCCESS)

20 {

21 printf ("Error launchung kernel!\n");

22 ¥

24 // Wait for the command commands to get serviced before
25 // reading back results

26 V4

27 clFinish (cmdQueue) ;

Listing 5.15: Enqueue the kernel for execution

11. Read the output buffer back to the host

After the kernel function has been executed on the device, we shuld read the output
data from the device. To read data from a device buffer to host memory we use the
clEnqueueReadBuffer function. Listing 5.16 shows how to read data from the
device buffer bufferC to host memory srcC.

[/ K KA A A A A KK KKK KKK KA KA KK KKK KKK KKK KA K KKK KKK KKK KKK KKK KK

2 // STEP 11: Read the output buffer back to the host
/KA A A AR KA R KR KKK KK KK KKK KKK

178 5 OpenCL for massively parallel graphic processors

OpenCL: Read from a buffer

To enqueue commands to read from a buffer object to host memory use the c1En-
queueReadBuffer function:

cl_int clEnqueueReadBuffer (
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_read,
size_t offset,
size_t cb,
void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

This function enqueues commands into command queue command_queue to read cb
bytes from a device buffer buf fer to host memory pointed by ptr. This function does
not block by default. To know when the command has completed, we can use a block-
ing form of the command by setting the blocking_write parameter to CL_TRUE.
Refer to OpenCL™ 2.2 Specification for more detailed description.

// Synchronous/blocking read of results
ciErr = clEnqueueReadBuffer (
cmdQueue ,
bufferC,
CL_TRUE,
0,
datasize,
srcC,
0,
NULL ,
NULL) ;

Listing 5.16: Read the output buffer back to the host

5.3.2 Sum of arbitrary long vectors

The OpenCL standard does not specify how the abstract execution model provided
by OpenCL is mapped to the hardware. We can enqueue any number of threads
(work items), and provide a work-group size (number of work_items in a work-
group), with at least the following constraints:

1. work-group size must divide the number of work items,
2. work-group size be at most CL_DEVICE_MAX_WORK_GROUP_SIZE (recall that for
the CPU device used in the previous example this is 1200).

Maximum number of work-groups per compute unit is limited by the hardware
resources. Each compute unit has a limited number of registers and a limited amount

10

14

16

18

2| // wector addition of arbitrary long vectors

5.3 Programming in OpenCL 179

Occupancy

Occupancy is a ratio of active warps per compute unit to the maximum number of
allowed warps. We should always keeping the occupancy high, because this is a way
to hide latency when executing instructions. A compute unit should have a warp ready
to execute in every cycle as this is the only way to keep hardware busy.

of local memory. Usually no more than 16 work-groups can run simultaneously on
a single compute unit with the Kepler microarchitecture and 8 work-groups can run
simultaneously on a single compute unit with the Fermi microarchitecture . Also
there is a limit of the number of active warps on a single compute unit (64 on Kepler,
48 on Fermi). We usually want to keep as many active warps as possible, because
this affects occupancy. Occupancy is a ratio of active warps per compute unit to
the maximum number of allowed warps. Keeping the occupancy high, we can hide
latency when executing instructions. Recall that executing other warps when one
warp is paused is the only way to hide latency and keep hardware busy. Finally, the
hardware also limits the number of work-groups in a single launch (usually this is
65535 in each NDRange dimension).

In our previous example we have vectors with 512 x 512 elements
(iNumElements) and we have launched the same number of work-items
(szGlobalWorkSize). As each work-group contains 512 work-items
(szLocalWorkSize), we have 512 work-groups in a single launch. Is it pos-
sible to add larger vectors and where is the limit? If we tried to add two vectors
with 512 x 512 elements, we would fail to launch a kernel with such a large number
of work-items (work-groups). So how would we use a GPU to add two arbitrary
long vectors? First, we should limit the number of work-items and the number of
work-groups. Secondly, one work-item should perform more than one addition.
Lets first look at the new kernel function in Listing 5.17.

// OpenCL Kermel Function for element by element

__kernel void VectorAddArbitrary(
__global float* a,
__global float* b,
__global float* c,
int iNumElements

) 1

//find my global indez
int iGID = get_global_id (0);

while (iGID < iNumElements) {
// add adjacent elements
c[iGID] = al[iGID] + b[iGIDI;
iGID += get_global_size (0);

Listing 5.17: Sum o arbitrary long vectors - the kernel function

180 5 OpenCL for massively parallel graphic processors

We used a while loop to iterate through the data (this kernel is very similar to the
function from Listing 5.2). Rather than incrementinc iGID by 1, a many core GPU
device could increment iGID by the number of work-items that we are using. We
want each work-item to start on a different data index, so we use the thread global
index:

int iGID = get_global_id(0);

After each thread finishes its work at the current index, we increment iGID by the
total number of work-items in NDRange. This number is obtained from the function
get_global_size(0):

iGID += get_global_size(0);

The only remaining piece is to fix the execution model in the host code. To ensure
that we never launch too many work-groups and work-items, we will fix the number
of work-groups to a small number, but still large enough to have a good occupancy.
We will launch 512 work-groups with 256 work-items per work-group (thus the
total number of work-items will be 131072). The only change in the host code is:

szLocalWorkSize = 256;
szGlobalWorkSize = 512%256;

5.3.3 Dot product in OpenCL

We will now take a look at vector dot products. We will start with the simple version
first to illustrate basic features of memory and work-item management in OpenCL
programs. We will again recap the usage of NDRange and work-item ID. We will
than analyze performance of the simple version and extend the simple version to
version which employs local memory.

The computation of a vector dot product consists of two steps. First, we multi-
ply corresponding elements of the two input vectors. This is very similar to vector
addition but utilizes multiplication instead of addition. In the second step we sum
all the products instead of just storing them to an output vector. Each working-item
multiplies a pair of corresponding vector elements and then moves on to its next
pair. Because the result would be be the sum of all these pairwise products, each
working-item keeps a sum of its products. Just like in the addition example, the
working-items increment their indices by the total number of threads. The kernel
function for the first step is shown in Listing 5.18.

1| // OpenCL Kernel Function for Naive Dot Product

2| __kernel void DotProductNaive (

3 __global float* a,
4 __global float* b,
5 __global float* c,
6 int iNumElements

) £

5.3 Programming in OpenCL 181

//find my global index
int iGID = get_global_id (0);
int index = iGID;

while (iGID < iNumElements) {
// add adjacent elements
c[iGID] = alindex] * b[index];
index += get_global_size (0);

Listing 5.18: Vector Dot Product Kernel - naive implementation

Each element of the array ¢ holds the sum of products obtained form one work-item,
i.e. c[iGID] holds a sum of products obtained by the work-item with the global
index iGID. After all work-item finish their work, we should sum a the elements
form the vector c to produce a single scalar product. But how do we know when have
all work-items finished their work? We need a mechanism to synchronize work-
items. The only way to synchronize all work-items in NDRange is to wait for the
kernel function to finish. After the kernel function finishes, we can read the results
(vector ¢) from a GPU device and sum its elements on host. the host code is very
similar to the host code from Listing 5.4. We have to make two changes:

1. the vector c has a different size than vectors a and b. It has the same number of
elements as the number of all work-items in NDRange (szGlobalWorkSize):

/[KA A A A KK KKK KKK KKK A A K KKK KKK K KKK KKK KKK KKK KKK KKK KKK KK

// STEP 6: Create device buffers
/KA A AR A KK KA KKK KK KKK KKK KKK KK

7 cl_mem bufferC; // Output array on the device

9 // Size of data for bufferC:

10 size_t datasize_c = sizeof(cl_float) * szGlobalWorkSize;
1

12

13

14 // Use clCreateBuffer () to create a buffer object (d_C)
15 // with enough space to hold the output data

16 bufferC = clCreateBuffer (

17 context ,

18 CL_MEM_READ_WRITE,

19 datasize_c,

20 NULL,

21 &status) ;

Listing 5.19: Create a buffer object C for naive implementation of vector dot
product

2. after the kernel executes on a GPU device, we read vector ¢ from device and
serially sum all its elements to produce the final dot product:

182 5 OpenCL for massively parallel graphic processors

OpenCL: Timing the execution

To return profiling information for the command associated with event if profiling is
enabled use the function c1GetEventProfilingInfo.

cl_int clGetEventProfilingInfo (
cl_event event,
cl_profiling_info param_name,
size_t param_value_size,
void *param_value,
size_t *param_value_size_ret)

The function returns profiling information for the command associated with event if
profiling is enabled. The first argument is the event being queried, and the second
argument, param_name is an enumeration value describing the query. Most often used
param_name values are:

CL_PROFILING_COMMAND_START : A 64-bit value that describes the current
device time counter in nanoseconds when the command identified by event starts
execution on the device, and

CL_PROFILING_COMMAND_END : A 64-bit value that describes the current
device time counter in nanoseconds when the command identified by event has
finished execution on the device.

Event objects are used to capture profiling information that measure execution time of
a command. Profiling of OpenCL commands can be enabled using a command-queue
created with CL_QUEUE_PROFILING_ENABLE flag set in properties argument to
clCreateCommandQueue. OpenCL devices are required to correctly track time across
changes in device frequency and power states. Refer to OpenCL™ 2.2 Specification
for more detailed description.

How fast is your OpenCL kernel

Our motivation for writing kernels in OpenCL is to speed up applications. Often we
want to measure the execution time of an kernel. As OpenCL is a performance ori-
ented language, performance analysis is an essential part of OpenCL programming.
The OpenCL runtime provides a built-in mechanism (profiling) for timing the ex-
ecution of kernels. A profiler is a performance analysis tool that gathers data from
the OpenCL run-time using events. This information is used to discover bottlenecks
in the application and find ways to optimize the application’s performance. OpenCL
supports 64-bit timing of commands submitted to command queues and events to
keep track of a command’s status. Events can be used with most commands placed
on the command queue: commands to read, write, map or copy memory objects,
commands to enqueue kernels, etc. Profiling is enabled when a queue is created with
the CL_QUEUE_PROFILING_ENABLE flag is set. The fact is that, when you execute
your kernels on GPU, no CPU clock is spent during the execution. When profiling
is enabled, the function clGetEventProfilingInfo is used to extract the timing
data. We need to follow next steps to measure the execution time of OpenCL kernel

16

5.3 Programming in OpenCL 183

execution time:

1. Create a queue, profiling need to be enabled when the queue is created.

cmdQueue = clCreateCommandQueue (

CL_QUEUE_PROFILING_ENABLE,
&status) ;

2. Link an event when launching a kernel:

cl_event kernelevent;
ciErr = clEnqueueNDRangeKernel(

&kernelevent) ;

3. Wait for the kernel to finish:

ciErr = clWaitForEvents (1, &kernelevent); // Wait for the event

4. Get profiling data using the function c1GetEventProfilingInfo () and calcu-
late the kernel execution time.
5. Release the event using the function c1ReleaseEvent ().

The code snippet form Listing 5.20 shows how to measure kernel execution time
using OpenCL profiling events.

/[KA KA A KKK KKK KKK KK KKK K KKK KKK KKK KKK KK KKK KK KKK KKK KKK KK

// STEP 3: Create a command queue
//***

cl_command_queue cmdQueue;
// Create a command queue using clCreateCommandQueue (),
// and associate it with the device you want to ezecute
// on. Enable profiling.
cmdQueue = clCreateCommandQueue (
context ,
devices [1], // GPU
CL_QUEUE_PROFILING_ENABLE,
&status) ;

/] KKK K ke ke K K K K ke KK K K ke K KK K K ke K K K K K ke K K K K K K K KK K K K K K K K
// Start Core sequence... copy input data to GPU, compute,
// copy results back
cl_event kernelevent;
//***
// STEP 10: Enqueue the kernel for ezecution
[/ K kR K K K KKK KK K K K KK K KK KK O K K
// Launch kernel
ciErr = clEnqueueNDRangeKernel (

cmdQueue ,

ckKernel,

1,

NULL,

184 5 OpenCL for massively parallel graphic processors

&szGlobalWorkSize,
&szLocalWorkSize,
0,

NULL,
&kernelevent) ;

if (ciErr != CL_SUCCESS)
{
printf ("Error launchung kernel!\n");
}
ciErr = clWaitForEvents (1, &kernelevent); // Wait for the ewvent

// Obtain the start- and end time for the event
unsigned long start = 0;
unsigned long end = 0;

// read device time counter in manoseconds when the command
// identified by event starts execution on the device:
clGetEventProfilingInfo (kernelevent,
CL_PROFILING_COMMAND_START,
sizeof (cl_ulong),
&start,
NULL) ;
clGetEventProfilingInfo (kernelevent,
CL_PROFILING_COMMAND_END,
sizeof (cl_ulong),
&end,
NULL) ;

// Compute the duration im mnanoseconds
float duration = (end - start) * 10e-9;

// Don’t forget to release the ewent
clReleaseEvent (kernelevent) ;

printf ("Kernel execution time = %f s \n", duration);

// Wait for the command commands to get serviced before
// reading back results
/7

clFinish (cmdQueue) ;

Listing 5.20: Measuring kernel execution time

This way we can profile operations on both memory objects and kernels. Results for
dot product of two vectors of size 16777216 (512 x 512 x 64) on an Apple laptop
with an Intel GPU are:

Kernel execution time = 0.127389 s
Result = 33554432.000000

5.3.4 Dot product in OpenCL using local memory

Host device data transfer has much lower bandwidth than global memory access. So
we should perform as much computation on a GPU device as possible and read as
small amount of data from a GPU device as possible. In this case the threads should
cooperate to calculate the final sum. Wotk-items can safely cooperate through local
memory by means of synchronization. Local memory can be shared by all work-

5.3 Programming in OpenCL 185

items in a work-group. Local memory on a GPU is implemented on a compute de-
vice. To allocate slocal memory, the __local address space qualifier is used in vari-
able declaration. We will use a buffer in local memory named ProductsWG to store
each work-item’s running sum. This buffer will store szLocalWorkSize products
so each work-item in the work-group will have a place to store its temporary result.
Since the compiler will create a copy of the local variables for each work-group, we
need to allocate only enough memory such that each thread in the work-group has
an entry. It’s relatively simple to declare local memory buffers as we just pass local
arrays as arguments to the kernel:

__kernel void DotProductShared(
__global float* a,
__global float* b,
__global float* c,
__local* ProductsWG,
int iNumElements)

We then set the kernel argument with a value of NULL and a size equal to the size
we want to allocate for the argument (in byte). Therefore it should be:

ciErr |= clSetKernelArg(ckKernel,
3,
sizeof (float) * szLocalWorkSize,
NULL) ;

Now each work-item computes a running sum of the product of corresponding en-
tries in a and b. After reaching the end of the array, each thread stores its temporary
sum into the local memory (buffer ProductsWG):

// work-item global index

int iGID = get_global_id(0);

// work-item local index

int iLID = get_local_id(0);

float temp = 0.0;

while (iGID < iNumElements) {
// multiply adjacent elements
temp += a[iGID] * b[iGID];
iGID += get_global_size(0);

¥

//store the product in local memory

ProductsWG[iLID] = temp;

At this point, we need to sum all the temporary values we have placed in the Prod-
uctsWG. To do this, we will need some of the threads to read the values that have
been stored there. This is a potentially dangerous operation. We should place a syn-
chronization barrier to guarantee that all of these writes to the local buffer Prod-
uctsWG complete before anyone tries to read from this buffer. The OpenCL C lan-
guage provides functions to allow synchronization of work-items. However, as we
mentioned, the synchronization can only occur between work-items in the same
work-group. To achieve that, OpenCL implements a barrier memory fence for syn-
chronization with the barrier () function. The function barrier() creates a
barrier that blocks the current work-item until all other work-items in the same
group has executed the barrier before allowing the work-item to proceed beyond

186 5 OpenCL for massively parallel graphic processors

OpenCL: Barrier

\texttt{barrier(mem_fence_flag)}

All work-items in a work-group executing the kernel on a processor must execute
this function before any are allowed to continue execution beyond the barrier. The
mem_fence_flag can be either CLK_LOCAL_MEM_FENCE (the barrier function will
queue a memory fence to ensure correct ordering of memory operations to local mem-
ory), or CLK_GLOBAL_MEM_FENCE (the barrier function will queue a memory fence
to ensure correct ordering of memory operations to global memory. This can be use-
ful when work-items, for example, write to buffer objects and then want to read the
updated data). Refer to OpenCL™ 2.2 Specification for more detailed description.

the barrier. All work-items in a work-group executing the kernel on a processor
must execute this function before any are allowed to continue execution beyond the
barrier. The following call guarantees that every work-item in the work-group has
completed instructions before the hardware will execute the next instruction on any
work-item within the work-group

barrier (CLK_LOCAL_MEM_FENCE) ;

Now that we have guaranteed that our local memory has been filled, we can sum
the values in it. We call the general process of taking an input array and performing
some computations that produce a smaller array of results a reduction. The naive
way to accomplish this reduction would be having one thread iterate over the shared
memory and calculate a running sum. This will take us time proportional to the
length of the array. However, since we have hundreds of threads available to do
our work, we can do this reduction in parallel and take time that is proportional to
the logarithm of the length of the array. Figure 5.12 shows a summation reduction.
The idea is that each work-item adds two of the values in ProductsWG and store
the result back to ProductsWG. Since each thread combines two entries into one,
we complete the first step with half as many entries as we started with. In the next
step, we do the same thing on the remaining half. We continue until we have the
sum of every entry in the first element of ProductsWG. The code for the summation
reduction is:

// how many work-items are in WG?

int iWGS = get_local_size(0);

// Summation reduction:

int i = iWGS/2;

while(i!=0){
if (iLID < i) {

ProductsWG[iLID] += ProductsWG[iLID+i];

}
barrier (CLK_LOCAL_MEM_FENCE) ;
i=i/2;

¥

5.3 Programming in OpenCL 187

i=8

\

WA\

L o

| | | | | | | |garrie_r(CLK,_Loc&,MEﬁjElcE);_

i=4

» | L LT T T T T T omercuuochs mam rence

i

3

Fig. 5.12: Summation reduction.

After we have completed one step, we have the same restriction we did after com-
puting all the pairwise products. Before we can read the values we just stored in
ProductsWG, we need to ensure that every thread that needs to write to ProductsWG
has already done so. The barrier (CLK_LOCAL_MEM_FENCE) after the assignment
ensures this condition is met. It is important to note that when using barrier, all work-
items in the work-group must execute the barrier function. If the barrier function is
called within a conditional statement, it is important to ensure that all work-items
in the work-group enter the conditional statement to execute the barrier. For exam-
ple, the following code is an illegal use of barrier because the barrier will not be
encountered by all work-items:

if (iLID < i) {
ProductsWG[iLID] += ProductsWG[iLID+i];
barrier (CLK_LOCAL_MEM_FENCE) ;

}

Any work-item with the local index iLID greater than or equal to i will never exe-
cute the barrier (CLK_LOCAL_MEM_FENCE). Because of the guarantee that no in-
struction after a barrier (CLK_LOCAL_MEM_FENCE) can be executed before every
work-item of the work-group has executed it, the hardware simply continues to wait

188 5 OpenCL for massively parallel graphic processors

Reduction

In computer science, the reduction is a special type of operation that is commonly used
in parallel programming to reduce the elements of an array into a single result.

for these work-items. This effectively hangs the processor because it results in the
GPU waiting for something that will never happen. Such a kernel will actually cause
the GPU to stop responding, forcing you to kill your program.

After termination of the summation reduction, each work-group has a single
number remaining. This number is sitting in the first entry of the ProductsWG buffer
and is the sum of every pairwise product the work-items in that work-group com-
puted. We now store this single value to global memory and end our kernel:

if (iLID == 0) {
c[iWGID] = ProductsWG[0];
}

As there is only one element from ProductsWG that is transferred to global memory,
only a single thread needs to perform this operation. Since each work-group writes
exactly one value to the global array c, we can simply index it by WGID, which is
the work-group index.

We are left with an array c, each entry of which contains the sum produced by one
of the parallel work-groups. The last step of the dot product is to sum the entries of
c. Because array c is relatively small, we return control to the host and let the CPU
finish the final step of the addition, summing the array c.

Listing 5.21 shows the entire kernel function for dot product using shared mem-
ory and summation reduction.

//***
2| // OpenCL Kermel Function for dot product

3| // using shared memory snd summation reduction

4| __kernel void DotProductShared(__global float* a,

5 __global float* b,

6 __global float* c,

7 __local* ProductsWG,

8 int iNumElements)

11 // work-item global index

12 int iGID = get_global_id (0);

13 // work-item local tindex

14 int iLID = get_local_id (0);

15 // work-group index

16 int iWGID = get_group_id (0);

17 // how many work-titems are in WG?
18 int iWGS = get_local_size (0);

20 float temp = 0.0;

21 while (iGID < iNumElements) {

2 // multiply adjacent elements
3 temp += al[iGID] * b[iGIDI];

2 iGID += get_global_size (0);

5.3 Programming in OpenCL 189

}
//store the product
ProductsWG[iLID] = temp;

// wait for all threads in WG:
barrier (CLK_LOCAL_MEM_FENCE) ;

// Summation reduction:
int i = iWGS/2;
while (i!=0){
if (iLID < i) {
ProductsWG[iLID] += ProductsWG[iLID+il;
}
barrier (CLK_LOCAL_MEM_FENCE) ;
i=i/2;
}

// store partial dot product into global memory:
if (iLID == 0) {
c[iWGID] = ProductsWGI[0];
}
}

Listing 5.21: Vector Dot Product Kernel - implementation using local memory and
summation reduction

In the host code for this example we should create the buf ferC memory object
that will hold szGlobalWorkSize/szLocalWorkSize partial dot products. List-
ing 5.22 shows how to create bufferC.

size_t datasize_c = sizeof(cl_float) * (szGlobalWorkSize/«
szLocalWorkSize);

// Use clCreateBuffer () to create a buffer object (d_C)
// with enough space to hold the output data
bufferC = clCreateBuffer (

context,

CL_MEM_READ_WRITE,

datasize_c,

NULL,

&status) ;

Listing 5.22: Create bufferC for dot product using local memory

Listing 5.23 shows how to set kernel arguments.

[/ K KA A A KKK KKK K KKK KA K KKK KKK K KKK KA K KKK KKK KKK KKK KKK KK

// STEP 9: Set the kernel arguments
/KA AR AR KK R KA KR KKK KK KK KKK KK KKK

// Set the Argument wvalues
ciErr = clSetKernelArg(ckKernel,
0,
sizeof (cl_mem),
(void*)&bufferd);
ciErr |= clSetKernelArg(ckKernel,
1,

sizeof (cl_mem),

(void*)&bufferB);
ciErr |= clSetKernelArg(ckKernel,

2,

16

18

19

7| ciErr |= clSetKernelArg(ckKernel,

190 5 OpenCL for massively parallel graphic processors

sizeof (cl_mem),
(void*)&bufferC) ;

3,
sizeof (float) * szLocalWorkSize,
NULL) ;

ciErr |= clSetKernelArg(ckKernel,
4,
sizeof (cl_int),
(void*)&iNumElements) ;

Listing 5.23: Set kernel arguments for dot product using shared memory

The argument with index 3 is used to create local memory buffer of size
sizeof (float) * szLocalWorkSize for each work-group. As this argument is
declared in the kernel function with the __local qualifier, the last entry to c1SetK-
ernelArg must be NULL.

Results for dot product of two vectors of size 67108864 (512 x 512 x 256) on an
Apple laptop with an Intel GPU are:

Kernel execution time = 0.503470 s
Result = 33554432.000000

5.3.5 Naive matrix multiplication in OpenCL

This section describes a matrix multiplication application using OpenCL for GPUs
in a step-by-step approach. We will start with the most basic version (naive) where
focus will be on the code structure for the host application and the OpenCL GPU
kernels. The naive implementation is rather straightforward, but it gives us a nice
starting point for further optimization. For simplicity of presentation, we will con-
sider only square matrices whose dimensions are integral multiples of 32 on a side.
Matrix multiplication is a key building block for dense linear algebra and the same
pattern of computation is used in many other algorithms. We will start with simple
version first to illustrate basic features of memory and work-item management in
OpenCL programs. After that we will extend to version which employs local mem-
ory.

Before starting, it is helpful to briefly recap how a matrix-matrix multiplication
is computed. The element ¢; ; of C is the dot product of the i-th row of A and the
j-th column of B. The matrix multiplication of two square matrices is illustrated in
Figure 5.13. For example, as illustrated in Figure 5.13, the element cs > is the dot
product of the row 5 of A and the column 2 of B.

To implement matrix multiplication of two square matrices of dimension N X N,
we will launch N x N work-items. Indexing of work-items in NDRange will cor-
respond to 2D indexing of the matrices. Work-item (i, j) will calculate the element
c;,j using row i of A and column j of B. So, each work-item loads one row of matrix
A and one column of matrix B from global memory, do the dot product, and store
the result back to matrix C in the global memory. The matrix A is therefore read N

5.3 Programming in OpenCL

191

N
| |
| |
2 B 7
T
=z
B2
T
1 12
=z
5 52 57
i
N N

N

Fy

Fig. 5.13: Matrix multiplication.

times from global memory and B is read N times from global memory. The simple
version of matrix multiplication can be implemented in the plain C language using
3 nested loops as in Listing 5.24. We assume data to be stored in row-major order

(C-style).

1| void matrixmul (float *matrixA,
float *matrixB,
float *matrixC,
4 int N) {

6 for (int i = 0; i < N; i++) {

7 for (int j = 0; j < Nj; j++) {

8 for (int k = 0; k < N; k++) {

9 matrixC[i*N + j] +=

10 matrixA[i * N + k] * matrixB[k * N + jl;

Listing 5.24: Simple matrix multiplication in C

192 5 OpenCL for massively parallel graphic processors

Let’s now implement the simple matrix multiplication in OpenCL.

The naive multiplication kernel

To implement the above matrix multiplication in OpenCL N x N work-items will be
needed. Let’s have each work-item compute an element of the matrix C. Each work-
item should first discover its ID within 2D NDRange and compute the corresponding
element of C. Listing 5.25 shows the kernel function for naive matrix multiplication.

// OpenCL Kernel Function for mnaive matriz multiplication
__kernel void matrixmulNaive (
__global float* matrixA,

4 __global float* matrixB,
5 __global float* matrixC,
6 int N) {

8 // global thread index

9 int xGID = get_global_id(0); // column in NDRange
10 int yGID = get_global_id(1); // row in NDRange

11
12 float dotprod = 0.0;

14 // each work item calculates one element of the matriz C:

15 for (int i = 0; i < N; i++) {

16 dotprod += matrixA[yGID * N + i] * matrixB[i * N + xGID];
17 }

18 matrixC[yGID * N + xGID] = dotprod;

9| ¥

Listing 5.25: The naive multiplication kernel

Each work item first discovers its global ID in 2D NDRange. The index of
the column xGID is obtained from the first dimension of NDRange using
get_global_id(0). Similarly, the index of the row yGID is obtained from the
second dimension of NDRange using get_global_id(1). After obtaining its glo-
gal ID, each work-item do the dot product between the yGID-th row of A and the
xGID-th column of B. The dot product is stored to the element in the yGID-th row
and the xGID-th column of C.

The host code

As we learned previously, the host code should probe for devices, create context,
create buffers and compile the OpenCL program containing kernels. These steps are
the same as in the vector addition example from Subsection 5.3.1. Assuming you
have already initialized OpenCL, created the context and the qwueue, and created
the appropriate buffers and memory copies. Listing 5.26 shows how to compile the
kernel for naive matrix multiplication.

1 //***
2| // STEP 8: Create and compile the kernel

5.3 Programming in OpenCL 193

3 //******)k**

4| ckKernel = clCreateKernel (

5 cpProgram,

6 "matrixmulNaive",
7 &ciErr) ;

s| if (!ckKernel || ciErr != CL_SUCCESS)

9] {

10 printf("Error: Failed to create compute kernel!\n");
1 exit (1) ;

Listing 5.26: Create and compile the kernel for naive matrix multiplication

Prior to launch the kernel we should set the kernel arguments as in Listing 5.27.

|| /) % K ok ok o o o o o ok ok K K K K K K KK K K K K K K K KK K K KK K K KK KKk K

// STEP 9: Set the kernel arguments
//***

1| ciErr = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&bufferA);
5| ciErr |= clSetKernelArg(ckKernel,

1, sizeof(cl_mem), (voidx)&bufferB);
6| ciErr |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void#*)&bufferC);
7| ciErr |= clSetKernelArg(ckKernel, 3, sizeof(cl_int), (voidx*)&iRows);

Listing 5.27: Set the kernel arguments for naive matrix multiplication

Finally, we are ready to launch the kernel matrixmulNaive. Listing 5.28 shows
how you launch the kernel.

VA
// Start Core sequence... copy input data to GPU, compute,
// copy results back

// set and log Global and Local work size dimensions
6| const cl_int iWI = 16;

7| const size_t szLocalWorkSize[2] = { iWI, iWI };

s| const size_t szGlobalWorkSize[2] = { iRows, iRows };
9l cl_event kernelevent;

11 //***
12| // STEP 10: Enqueue the kernel for ezecution

13|/ 3 3 o o ok ok ok ke o ko K K K KK K K K K K K K K K K KK K K K K K K K o K K K K K K KK K Ok K
14| ciErr = clEnqueueNDRangeKernel (

15 cmdQueue ,

16 ckKernel,

17 2,

18 NULL ,

19 szGlobalWorkSize,

20 szLocalWorkSize,

21 0,

22 NULL,

23 &kernelevent) ;

Listing 5.28: Enqueue the kernel for naive matrix multiplication

As can be seen from the code in Listing 5.28, NDRange is of 2D size (iRows,
iRows). That means that we launch (iRows, iRows) work-items. These work-items
are further grouped into work-groups of dimension (16,16). If for example the size
of matrices (1Rows, iRows) is (4096, 4096), we launch 256 x 256 work-groups. As
the number of work-groups is probably larger than the number of compute-units

194 5 OpenCL for massively parallel graphic processors

present in a GPU, we keep all compute-units busy. Recall that we should always
keep the occupancy high, because this is a way to hide latency when executing
instructions.

Execution time for naive matrix multiplication of two square matrices of size
3584 x 3584 on an Apple laptop with an Intel GPU is:

Kernel execution time = 30.154823 s

5.3.6 Tiled matrix multiplication in OpenCL

Looking at the loop in the kernel code from Listing 5.25, we can notice that each
work-item loads 2 x N elements from global memory - two for each iteration
through the loop, one from the matrix A and one from the matrix B. Since ac-
cesses to global memory are relatively slow, this can slow down the kernel, leaving
the work-items idle for hundreds of clock cycles, for each access. Also we can no-
tice that for each element of C in a row we use the same row of A and that each
work-item in a work-group uses the same columns of B.

But not only are we accessing the GPU’s off-chip memory way too much, we
don’t even care about memory coalescing! Assuming row-major order when storing
matrices in global memory, the elements from the matrix A are accessed with unit
stride, while elements from the matrix B are accessed with stride N.

Recall from Subsection 5.1.4 that, to ensure memory coalescing, we want work-
items from the same warp to access contiguous elements in memory so to minimize
the number of required memory transactions. As work-items of the same warp ac-
cess 32 contiguous floating-point elements from the same row of A, all these ele-
ments fall into the same 128-bytes segment and data is delivered in a single trans-
action. On the other hand, work-items of the same warp access 32 floating-point
elements from B that are 4N bytes apart, so for each element from the matrix B a
new memory transaction is needed. Although the GPU’s caches probably will help
us out a bit, we can get much more performance by manually caching sub-blocks of
the matrices (tiles) in the GPU’s on-chip local memory.

In other words, one way to reduce the number of accesses to global memory is
to have the work-items load portions of matrices A and B into local memory, where
we can access them much more quickly. So we will use local memory to avoid non-
coalesced global memory access. Ideally, we would load both matrices entirely into
local memory, but unfortunately, local memory is a rather limited resource and can-
not hold two large matrices. Recall that older devices have 16kB of local memory
per compute unit, and more recent devices have 48kB of local memory per com-
pute unit. So we will content ourselves with loading portions of A and B into local
memory as needed, and making as much use of them as possible while they are
there.

Assume that we multiply two matrices as shown in Figure 5.14. To calculate the
elements of the square submatrix C (tile C), we should multiply the corresponding

5.3 Programming in OpenCL 195

B
C

Fig. 5.14: Matrix multiplication using tiles.

+

rows and columns of matrices A and B. Also, we can subdivide the matrices A and
B into submatrices (tiles) such as shown in Figure 5.14. Now we can multiply the
corresponding row and the column from the A and B tiles and sum up these partial
products. The process is shown in the lower part of Figure 5.14. We can also observe
that the individual rows and columns in tiles A and B are accessed several times. For
example, in the 3x3 tiles from Figure 5.14, all elements on the same row of the tile
C are computed using the same data of the A tiles and all elements on the same
column of the submatrix C are computed using the same data of the B tile. As the
tiles are in local memory, these accesses are fast.

The idea of using tiles in matrix multiplication is as follows. The number of
work-items that we start is equal to the number of elements in the matrix. Each
work-item will be responsible for computing one element of the product matrix C.

196 5 OpenCL for massively parallel graphic processors

The index of the element in the matrix is equal to the global index of a work-item
in NDrange. At the same time, we create the same number of work-groups as is the
number of tiles. The number of elements in a tile will be equal to the number of
threads in a work-group. This means that the element index within a tile will be the
same as the local index in the group.

For reference, consider the matrix multiplication in Figure 5.15. All matrices are
of size 8 x 8, so we will have 64 work-items in NDrange. We divide matrices A, B
and C in non-overlapping sub-blocks (tiles) of size TW x TW, where TW =4 as in
Figure 5.15. Let’s also suppose that tiles are indexed starting in the upper left corner.
Now, consider the element ¢5 > in the matrix C, in Figure 5.15. The element cs 5 falls
into the tile (0,1). The work-item responsible for computing the element cs 5 has the
global row index 5 and the global column index 2. Also the same work-item has the
local row index 1 and local column index 2. This work-item computes the element
¢s5, in C by multiplying together row 5 in A, and column 2 in B, but it will do it
in pieces using tiles. As we already said, all work-items responsible for computing

o, B 1
row = local row + 0*TW =1,
column = global column =2 0
row = local row + 1*TW =5,
column = global column = 2 1
0 A 1 o, C 1
0 0
5 5 52
1 1
A\
row = global row =5, local row = 1, local column =2
column = local column + 0*TW = 2 global row = 5, global column 2
A\

row = global row = 5,
column = local column + T*TW =6

Fig. 5.15: Matrix multiplication with tiles.

5.3 Programming in OpenCL 197

elements of the same tile in the matrix C should be in the same work-group. Let’s
explain this process for the work-item that computes the element cs55. The work-
item should access the tiles (0,1) and (1,1) from A and tiles (0,0) and (1,1) from
B. The computation is performed in two steps. First, the work-item computes dot
product between the row 1 from the tile (0,1) in A and the column 2 from the tile
(0,0) in B. In the second step, the same work-item computes dot product between
the the row 1 from the tile (1,1) in A and the column 2 from the tile (1,0) in B.
Finally it adds this dot product to the one computed in the first step.

If we want to compute the first dot product as fast as possible, the elements form
the row 1 from the tile (0,1) in A and the elements from the column 2 from the tile
(0,0) in B should be in the local memory. The same is true for all rows in the tile
tile (0,1) in A and all columns in the tile (0,0) in B, because all work-items from the
same work-group will access this elements concurrently. Also, ones the first step is
finished, the same will be true for the second step but this time for the tile (1,1) in A
and the tile (1,0) in B.

So, before every step, all work-items from the same work-group should perform
a collaborative load of tiles A and B into local memory. This is performed in such a
way that the work-item in the i — ¢/ local row and the j —th local column performs
two loads from global memory per tile: the element with local index (i, j) from
the corresponding tile in matrix A and the element with local index (i, j) from the
corresponding tile in matrix B. Figure 5.15 illustrates this process. For example, the
work item that computes the element cs > reads:

1. the elements as > and b > in the first step, and
2. the elements as ¢ and bs > in the second step.

Where is the benefit of using tiles? If we load the left-most (0,1) tile of matrix
A into local memory, and the top-most (0,0) of those tiles of matrix B into local
memory, then we can compute the first 7W x TW products and add them together
just by reading from local memory. But here is the benefit: as long as we have those
tiles in local memory, every work-item from the work-group computing a tile form
C can compute that portion of their sum from the same data in local memory. When
each work item has computed this sum, we can load the next TW x TW tiles from A
and B, and continue adding the term-by-term products to our value in C. And after
all of the tiles have been processed, we will have computed our entries in C.

The tiled multiplication kernel

The kernel code for the tiled matrix multiplication is shown in Listing 5.29.

|| #define TILE_WIDTH 16

3| // OpenCL Kernel Function for tiled matriz multiplication
1| __kernel void matrixmulTiled (

5 __global float* matrixA,

6 __global float* matrixB,

7 __global float* matrixC,

198 5 OpenCL for massively parallel graphic processors

int N) {

// Local memory to fit the tiles
__local float matrixAsub[TILE_WIDTH][TILE_WIDTH];
__local float matrixBsub[TILE_WIDTH][TILE_WIDTHI];

// global thread indezx
int xGID = get_global_id(0); // column in NDRange
int yGID = get_global_id(1); // row in NDRange

// local thread indez
int xLID = get_local_id(0); // column in tile
int yLID = get_local_id(1); // row in tile

float dotprod = 0.0;

for(int tile = 0; tile < N/TILE_WIDTH; tile++){

// Collaborative loading of tiles into shared memory:
// Load a tile of matrizA into local memory
matrixAsub [yLID] [xLID] =

matrixA[yGID * N + (xLID + tile*TILE_WIDTH)];
// Load a tile of matrizB into local memory
matrixBsub [yLID] [xLID] =

matrixB[(yLID + tile*TILE_WIDTH) * N + xGID];

// Synchronise to make sure the tiles are loaded
barrier (CLK_LOCAL_MEM_FENCE) ;

for (int i = 0; i < TILE_WIDTH; i++) {
dotprod +=
matrixAsub[yLID][i] * matrixBsub[i][xLID];
}

// Wait for other work-items to finish
// before loading nexzt tile
barrier (CLK_LOCAL_MEM_FENCE) ;

}

matrixC[yGID * N + xGID] = dotprod;

Listing 5.29: The tiled multiplication kernel

Tiles are stored in matrixAsub and matrixBsub. Each work-item finds its
global index and its local index. The outer loop goes through all the tiles necessary
to calculate the products in C. Each work-item in the work-group in one iteration
of the outer loop first reads its elements from the global memory and writes them
to the tile element with its local index. After loading its elements, each work-item
waits at the barrier until the tiles are loaded. Then, in the innermost loop, each work-
item calculates dot product between a row yLID form the tile matrixAsub and the
column xLID from the tile matrixBsub. After that the work-item waits again at the
barrier for the other work-items to finish their dot products. Then all work-items
load next tiles and repeat the process.

2| // STEP 8: Create and compile the kernel
3 //***

5.4 Exercises 199

The host code

To implement tiling, we’ll leave our host code from the previous naive kernel intact.
The only thing we should change is to create and compile the appropriate kernel
function:

[/ kK KKK KKK KKK KKK KKK K KKK KKK K K KKK KK KK KKK KKK KKK KKK

ckKernel = clCreateKernel (
cpProgram,
"matrixmulTiled",
&ciErr) ;

if ('ckKernel || ciErr != CL_SUCCESS)

{

printf ("Error: Failed to create compute kernel!\n");
exit (1) ;

Listing 5.30: Create and compile the kernel for tiled matrix multiplication

Note that it already uses 2D work-groups of 16 by 16. This means that the tiles are
also 16 by 16.

Execution time for tiled matrix multiplication of two square matrices of size
3584 x 3584 on an Apple laptop with an Intel GPU is:

Kernel execution time = 16.409384 s

5.4 Exercises

1. To verify that you understand how to control the argument definitions for a ker-
nel, modify the kernel in Listing 5.3 so it adds four vectors together. Modify the
host code to define four vectors and associate them with relevant kernel argu-
ments. Read back the final result and verify that it is correct.

2. Use local memory to minimize memory movement costs and optimize perfor-
mance of the matrix multiplication kernel in Listing 5.25. Modify the kernel so
that each work-item copies its own row of A into local memory. Report kernel
execution time.

3. Modify the kernel from the previous exercise so that each work-group collabo-
ratively copies its own column of B into local memory. Report kernel execution
time.

4. Write an OpenCL program that computes the Mandelbrot set. Start with the pro-
gram in Listing 3.21.

5. Write an OpenCL program that computes 7. Start with the program in List-
ing 3.15. Hint: the paralellization is similar to the parallelization of a dot product.

6. Write an OpenCL program that transposes a matrix. Use local memory and col-
laboratively reads to minimize memory movement costs and optimize perfor-
mance of the kernel.

200 5 OpenCL for massively parallel graphic processors

7. Given an input array {ao,da1,,a,—1} in pointer d_a, write an OpenCL program
that stores the reversed array {a,_i,a,-2,,ap} in pointer d_b. Use multiple
blocks. Trya to revert data in local memory. Hint: using work-groups and local
memory revert data in array slices. Than revert slices in global memory.

8. Write an OpenCL program to detect edges on black and with images using the
Sobel filter.

5.5 Bibliographical notes

The primary source of information including all details of OpenCL is available at
Khronos web site [15] where the complete reference guide is available. Another
good online source of OpenCL tutorials and dozen of examples is HandsOnOpenCL
training course [14]. A comprehensive hands-on presentation of OpenCL can be
found in the book OpenCL in Action by Matthew Scarpino [24]. A gentle introduc-
tion to OpenCL by the same author can be found in [23]. The books by Munshi et
al. [17] and Gaster et al. [11] provide a deep dive into OpenCL.

Part I11
Engineering

The aim of Part III is to explain why a parallel program can be more or less effi-
cient. A basic approaches are described for the performance evaluation and analysis
of parallel programs. Instead of analyzing complex applications, we focus on two
simple cases, i.e. a parallel computation of number 7, by using numerical inte-
gration, and a solution of simplified partial differential equation on 1-D domain,
by using explicit solution methodology. Both cases, already mentioned in previ-
ous chapters, even so simple, they already incorporate most of possible pitfalls that
could arise during their parallelization. The first case, computation of pi, requires
just a few communication among parallel tasks, while in the explicit solution of
PDE, each process communicate with its neighbors in every time step.

Besides these two cases, we also evaluate the Seam Carving algorithm in terms
of performance on CPU and a GPU platform. Seam Carving is an image process-
ing algorithm in 2-D domain and as such appropriate for implementation on GPU
platforms. It comprises a few steps of which some cannot be effectively parallelized.

Parallel programs run on adequate platforms, i.e. multi-core computers, intercon-
nected computers or computing clusters, and GPU accelerators. After an implemen-
tation of any parallel program, several questions remain to be answered, e.g.:

How the execution time decreases with larger number of processors?

How many processors are optimal for a specific task?

Will execution time always decrease, if the number of processors is increased?
Which parallelization methodology provides the best results?

and similar.

We will answer the above questions by running the programs with different pa-
rameters, e.g. size of the computation domain and the number of processors. We
will follow also the execution efficiency and limitations that are specific for each of
the three parallel methodologies: OpenMP, MPI, and OpenCL.

An electronic extension of the Engineering part will be permanently available on
a book web, hosted by Springer server. Our aim is that it become a vivid forum of
readers, students, teachers and other developers. We expect your inputs in a form of
your own cases, solutions, comments, and proposals. Soon after the publication of
this book more complex cases will be provided, i.e. a numerical solution of a 2-D
diffusion equation, a simulation of N-body interactions with possible application in
molecular dynamics, and similar.

Each of engineering cases will be introduced with a basic description of the se-
lected problem, sequential algorithm and its solution methodology. Then, for all
considered parallelization approaches: OpenMP, MPI and OpenCL, initial parallel
algorithms will be developed and their expected performance will be estimated. Re-
sults will be compared in terms of programming complexity, execution time, and
scalability. The complete implementations will be provided with an adequate pro-
gram code. Any improvements and feed back from all users are welcome.

Chapter 6

Engineering: Parallel computation of the
number 7

A detailed description of the parallel computation of 7 is available in Chapter 3
Example 3.4 and in Chapter 4 Example 4.4. The solution methodology relies on a
numerical integration of unit circle:

1
717:4/\/1—x2dx
0

that is in a direct relation with the value of 7. The numerical integration is performed
by calculation and summation of all N sub-interval areas. A sequential version of
the algorithm in a pseudo-code, which results in an approximate value of 7, is given
below:

Algorithm 1 SEQUENTIAL ALGORITHM: COMPUTE_7

Input: N - number of sub-intervals on interval [0, 1]

:fori=1...Ndo
xi=(1/N)(i—0.5)

1
2:
3: yi:,/lfxiz
4:
5

Pi=Pi+4(yi/N)
: end for
Output: Pi - an approximation for the number 7

We validate the Algorithm 1 on a single computer in order to prove that its cor-
rect behaviour. It is expected that with an increased number of sub-intervals N, the
approximation of 7 will become better and better, which should be confirmed by
calculated absolute error of approximate 7 value. This is easy, because we know the
7 value with arbitrary accuracy. However, with the increased N the run-time will
also increase. Embedding the existing MPI program from Listing 4.5 in an addi-
tional for loop that increases the number of intervals by a factor of two, followed
by compiling and running the program:

203

204 6 Engineering: Parallel computation of the number 7

>mpiexec -n 1 MSMPIPi
on a HP EliteBook 840 notebook, based on Intel Core 64 bit processor i7-7500U
CPU with 2 physical cores and 4 logical processor, on MS Windows 10 operating
system with Visual Studio 2017 compiler, we get the results shown in Fig. 6.1. Note,
that for all presented MPI experiments in this book, the same notebook was used.
We compile in Release mode with optimization for maximal speed, e.g. /02.

10%F 710°
— .
abs-error {102
10°
o 10-4
o g
v 10° 7
E 10 5
5 1108 ©
» -+ 10-10
10
4 10—12
10 L L L L 10714
10° 10? 10* 108 108 10%°

N -number of sub-intervals

Fig. 6.1: Run-time and absolute error on a single MPI process in computation of 7©
as a function of number of sub-intervals N.

To see the full response, the results are shown in logarithmic scale on both axes.
The run-time mostly increases as expected, except with a few smallest values of
sub-intervals, where the impact of MPI program set-up time, cache memory or in-
teractions with operating system could be present. In the same way, the approxima-
tion error becomes smaller and smaller, until the largest number of intervals, where
a small jump is presents, possibly because of a limited precision of the floating point
arithmetic.

The next step is to find out the most efficient way to parallelize the problem, i.e. to
engage a greater number of cooperating processors in order to speed-up the program
execution. Even that the sequential Algorithm 1 is very simple it implies most of
the problems that arise also in more complex examples. First, the program needs
to distribute tasks among cooperating processors in a balanced way. A relatively
small portion of data should be communicated to cooperating processes, because
the processes will generate their local data by a common equation for a unit circle.
All processes have to implement their local computation of partial sums, and finally,
the partial results should be assembled, usually by a global communication, in a host
process to be available for users.

Regarding sequential Algorithm 1 algorithm, we see that the calculation of each
sub-interval area is independent, consequently, the algorithm has a potential to be

6.1 OpenMP 205

parallelized. In order to make the calculation parallel, we will use domain decom-
position approach and master-slave implementation. Because all values of y; can
be calculated locally and because the domain decomposition is known explicitly,
there is no need for a massive data transfer between the master process and slave
processes. The master process will just broadcast the number of intervals. Then the
local integration will run in parallel on all processes. Finally, the master process re-
duce the partial sums into the final value of 7. The parallelized algorithm is shown
below:

Algorithm 2 PARALLEL ALGORITHM: COMPUTE_7

Input: N - number of sub-intervals on interval [0, 1]

: Get myID and the number of cooperating processes p
: Master broadcast N to all processes
: Compute a shorter for loop:
:for j=1...N/pdo
xj=(1/N)(j—-0.5)
yji=4/1 —x%
Pj="Pj+4(y;/N)
end for
: Master reduce partial sums P; to the final result Pi
Output: Pi - approximate value of 7

R R R

We have learned from this simple example that, beside the calculation, there are
other tasks to be done (i) domain decomposition (ii) their distribution and (iii) as-
sembling of the final result, which are inherently sequential, and therefore limit the
final speed-up. We further see that all processes are not identical. Some of the pro-
cesses are slaves because they just calculate their portion of data. The master pro-
cess has to distribute number of intervals and to gather and sum-up the local results.
Parallel implementation approaches on different computing platforms differs signif-
icantly, therefore their results are presented in the following sections, separately for
OpenMP, MPI, and OpenCL.

6.1 OpenMP

Computing 7 on a multicore processor has been covered in Chapter 3.

The numerical integration of a unit square (the part of it that lies in the 1st quad-
rant) has been explained in Example 3.4 where the program for computing 7 is
shown Listing 3.15. To analyze the performance of the program it has been run on
a quadcore processor with hyperthreading (Intel Core i7 6700HQ). For 10° subin-
tervals of the interval [0, 1] (when the error is approximately 10~%), the results are
shown in Figure 6.2: the bars show the measured wall clock time and the dashed

206 6 Engineering: Parallel computation of the number 7

T T T T T T T T T T T T T T T T
K wall clock time =3 |
7.00 _‘l_ ideal speedup - - -
1
1
6.00 [7
\
5.00 | |\ .
” \
2 4.00 ' 4
3
8]
3.00 [\ 4
2.00 [~ 7
| H ﬂ— ‘ —ﬂ _ﬂ H H H H H H H—
0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of threads

Fig. 6.2: Computing 7 using the numerical integration of the unit circle using 10°
intervals on a quadcore processor with hyperthreading.

curve illustrates the expected wall clock time in case of the ideal speedup in regard
to the number of threads used.

The wall clock time decreases when the number of threads increases, but only up
to the number of logical cores the processor can provide. Once the number of threads
exceeds the number of logical cores, the program (its OpenMP runtime component,
to be precise) places multiple threads on the same core and no reduction of wall
clock time can be gained.

In fact, one must observe that up to the number of logical cores, almost ideal
speedup is achieved. This is not to be expected very often. In this case, however,
it is a consequence of the fact the the entire computation is almost perfectly paral-
lelizable, with the exception of the final reduction. But if 10° intervals are divided
among 8 threads, the time of the reduction becomes insignificant if compared to the
computation of the local sums.

As shown in Example 3.5, 7 can also be computed by random shooting into the
square [0, 1] x [0, 1] and count the number of shots that hit inside the unit square. The
program for computing 7 using this method is shown in Listing 3.18. As with the
numberical integration, the program has been tested on a quadcore processor with
hyperthreading (Intel Core i7 6700HQ). For 10 shots, the measured wall clock
time is shown in Figure 6.3. Again, the dashed line illustrates the expected wall
clock time in case of the ideal speedup in regard to the number of threads used.

As can be seen in Figure 6.3, (almost) ideal speedup is achieved only for up
to 4 threads, i.e., for one thread per physical, not logical core. That implies that
instructions and memory accesses of threads placed on the same physical core result

6.1 OpenMP 207

3.00 T T T T T T T T T T T T T T T T
! wall clock time =3
‘| ideal speedup - - -
250 F) J
1
‘I
2.00 b
%) \‘
© \
c \ -
S 150 [.
b \
1.00 [I .
° H\H‘ﬂ H H H H H H H H H—
0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of threads

Fig. 6.3: Computing 7 using random shooting into the square [0, 1] x [0, 1] using 103
shots.

in too many conflicts to sustain the speedup and trully benefit from multithreading.
This can happen and it is a lesson not to be forgotten.

Even though the wall clock time is what it matters in the end, the CPU time
has been measured as well. In Figure 6.4 the total amount of CPU time needed
for computing 7 using both methods explained in Chapter 3, namely numerical
integration and random shooting, is shown.

7.30 T T T T T T T T T T T T T T T 1T

T
= ime =2
705 cpu time i cpu time
700 L 4.00
8 715]
E 2 350
g 7.10 ?,
@ 7.05 @
7.00 - 3.00 H
6.95
6.90 ﬂ 250 . mmfl
1 4 56 7 8 91011121314 1516 1723 456 7 8 910111213141516
number of threads number of threads

Fig. 6.4: The total CPU time needed to compute 7 using numerical integration (left)
and random shooting (right).

208 6 Engineering: Parallel computation of the number 7

Although the wall clock time shown in Figures 6.2 in 6.3 decreases with the
number of threads the total amount of CPU time increases. These can be expected,
since more threads requires more administrative tasks from the OpenMP runtime.

6.2 MPI

An MPI C code for the parallel computation of 7 value, together with some expla-
nation and comments, are provided in Chapter 4 Listing 4.5. We would like to test
the behaviour of run-time as a function of the number of MPI processes p. On the
test notebook computer, two cores are present. Taking into account that four logi-
cal processors are available, we could expect some speed-up of the execution with
up-to four MPI processes. With more than four processes, the run-time could start
increasing, because of an MPI overhead. We will test our program with up-to eight
processes. Starting a same program on different number of processes can be accom-
plished by consecutive mpiexec commands with appropriate value of parameter -n
or by a simple bash file that prepares the execution parameters, which are passed to
the mainprogram through its argc and argv arguments.

The behaviour of approximation error should be the same as in the case of a sin-
gle process. In the computation of 7, the following number of sub-intervals have
been used N = [5€9,5e8,5¢7,5¢6]. Note, that such big numbers of sub-intervals
were used because we want to have a computationally complex task, even that the
computation of sub-interval areas is quite simple. Usually, in realistic tasks, there
is much more computation by itself and tasks become complex automatically. Two
smaller values of N have been used to test the impact of the ratio calculation/com-
munication complexity on the program execution. The obtained results for parallel
run-times (RT) in seconds and speed-ups (SU), in computation of 7, on a notebook
computer are shown in Fig. 6.5.

We have first checked that the error in parallel approximation of 7 is the same as
in the case of a single process. The run-time behaves as expected, with the maximum
speed-up of 2.6 with four processes and large N. With two processes the speed-up
is almost 2, because the physical cores have been allocated. Up to four processes,
the speed-up increases but not ideal, because logical processors can not provide the
same performance as the physical cores because of hyper-threading technology. The
program is actually executed on a shared memory computer with potentially negli-
gible communication delays. However, if N is decreased, e.g. to 5e6 or more, the
speed-up is becoming smaller because more processes introduce a larger execution
overhead that diminish the speed-up.

Let us finally check the behaviour of the parallel MPI program on a computing
cluster. It is built of 36 computing nodes connected in a 6 x 6 mesh, each with six
Gigabit ports to a large Gigabit switch. Computing nodes are built as a dual 64 bit
CPU Intel Xeon 5520, each of CPUs with four physical cores (two treads/core) and
6 GB of local memory. The computing cluster runs under server version of Ubuntu

6.2 MPI 209

—O0— RT-5e9 [s] —®— SU-5e9
35| —0—RT-5e8 [s] —#— SU-5e8
—0O— RT-5¢7 [s] —®— SU-5e7 | 3.5
—<+— RT-5e6 [s] —¢— SU-5e6

25

run-time [s]
N
speed-up

=
4

[N

0.5

1 2 3 4 5 6 7 8
p - number of MPI processes

Fig. 6.5: Parallel run-time (RT) and speed-up (SU) in computation of 7 on a note-
book computer for p = [1,...,8] MPI processes and N = [5e9,5e8,5e7,5e6] sub-
intervals.

16.04.3 LTS with GCC Version 7.3 compiler. Only 8 out of 36 interconnected cluster
computers (CPUs) have been devoted for our tests, resulting in 32 physical cores.
All programs are compiled for maximum speed. Note, that the same computing
cluster has been used in all presented MPI tests of this book. The hostfile is:

k1:4 k2:4 k3:4 k4:4 k5:4 k6:4 k7:4 k8:4

where k1. . .k8 are names of 8 cluster computing nodes.

Because, in the 7 test case program, there is no significant communication load,
and because two treads/core are available, we expect practically ideal speed-up up
to 64 MPI processes. Then, if more processes are generated, the speed-up is not so
predictable. We will try to explain the results after performing all experiments.

The program is compiled with:

>mpicc.mpich -03 MPI_1DHeat.c -o MPI_1DHeat

Parallel program performances are tested on Mpich MPI with various options for
mpiexec.mpich. First we runnp = 1...128 experiments, for 1 to 128 MPI pro-
cesses, without default parameters:

>mpirun.mpich --hostfile myhosts.mpich.txt -np $np ./MPIPi $N

Parameters N and np are provided from bash file as N = [5¢9,5e8,5e7,5¢e6] and
np = [1,...,8]. The number of MPI processes, i.e. 128, was determined from the
command line when running the bash file:

>./run.sh 128 > data.txt

where data.txt is an output file for results. The obtained results for parallel run-
times, in seconds, with default parameters of mpiexec (RT-D) and corresponding

210 6 Engineering: Parallel computation of the number 7

speed-ups (SU-D), are shown in Fig. 6.6. For better visibility only two pair of graphs
are shown, for largest and smallest V.

—O— RT-D-5€9 [s]
—<—RT-D-5¢€6 [s]
10 [T —e—suD5e9 |30

' —<—SU-D-5¢6

run-time [s]
speed-up

AR 4 s 0
0 20 40 60 80 100 120 140
p - number of MPI processes

Fig. 6.6: Parallel run-time (RT-D) and speed-up (SU-D) in computations of 7 on a
cluster of 8 interconnected computers with total 32 cores and p = [1,...,128] MPI
processes with default parameters of mpiexec.mpich.

Lets look first the speed-up for N = [5e9 intervals. We see that the speed-up in-
creases up to 64 processes where reaches its maximal value 32. For more processes,
it drops and vandersd around 17. The situation is similar with thousand times smaller
number of intervals N = [5e9, however, the maximal speed-up is only 5 and for more
than 64 processes there is no speed-up. We expected this, because calculation load
decreases with smaller number of sub-intervals and the impact of communication
and operating system overheads prevail.

We further see that the speed-up scales but not ideal. 64 MPI processes are needed
to execute the program 32 times faster as a single computer. The reason could be
in the allocation of processes along the physical and logical cores. Therefore we
repeat experiments with mpiexec parameter -bind-to core:1, which forces to
run just a single process on each core and possible prevents operating system to
move processes around cores. The obtained results for parallel run-times in seconds
(RT-B) with processes bound to cores and corresponding speed-ups (SU-B), are
shown in Fig. 6.7. The remaining execution parameters are the same as in previous
experiment.

The bind parameter improves the execution performance with N = 5e9 intervals
in the sense that the speed-up of 32 is achieved already with 32 processes, which is
ideal. But then the speed-up falls abruptly by a factor of 2, possibly because of the
fact, that with more than 32 MPI processes, some processing cores must manage
two processes, which slows down the whole program execution.

6.3 OpenCL 211

—O—RT-B-5e9 [s]
—<+—RT-B-5€6 [s]
—e—SU-B-5¢9
—<—SU-B-5¢6

10 130

25

20

run-time [s]
o
speed-up

15

10

0 20 40 60 80 100 120 140
p - number of MPI processes

Fig. 6.7: Parallel run-time (RT-B) and speed-up (SU-B) in computations of 7 on a
cluster of 8 interconnected computers for p = [1,...,128] MPI processes, bound to
cores.

We further see that with more than 64 processes speed-ups fall significantly in
all tests, which is possible a consequence of inability to use the advantage of hyper-
threading. With larger number of processes, larger than the number of cores, on
several cores run more than two processes, which slows down the whole program
by a factor of 2. Consequently, the slope of speed-up scaling, with more than 32
processes, is also reduced by 2. With this slope, the speed-up reaches the second
peak by 64 processes. Then the speed-up falls again to an approximate value of 22.

The speed-up with N = 5e9 intervals remains similar as in previous experiment
because of low computation load. It is a matter of even more detailed analysis, why
the speed-up behaves quite unstable for some cases. The reasons could be in cache
memory faults, MPI overheads, collective communication delays, interaction with
operating system, etc.

6.3 OpenCL

If we look at Algorithm 1, we can see that it is very similar to dot product calculation
covered in Section refsub:dotlocalm. We use the same principle: we will use a buffer
in local memory named LocalPiValues to store each work-item’s running sum of
the pi value. This buffer will store szLocalWorkSize 7« values so each work-item
in the work-group will have a place to store its temporary result. Then we use the
principle of reduction to sum up all 7 values in the work-group. We now store the
final value of each work-group to an array in global memory. Because this array is

212 6 Engineering: Parallel computation of the number 7

relatively small, we return control to the host and let the CPU finish the final step of
the addition. Listing 6.1 shows the kernel code for computing 7.

_kernel void CalculatePiShared(
__global float* c,
ulong iNumIntervals)

__local float LocalPiValues[256]; // work-group size = 256

7 // work-item global index

8 int iGID = get_global_id (0);

9 // work-item local indezx

10 int iLID = get_local_id (0);

11 // work-group index

12 int iWGID = get_group_id (0);

13 // how many work-items are in WG?
14 int iWGS = get_local_size (0);

16 float x = 0.0;
17 float y = 0.0;
18 float pi = 0.

19
20 while (iGID < iNumIntervals) A{

21 x = (float) (1.0f/(float) iNumIntervals)*((float)iGID-0.5f);

2 y = (float)sqrt(1.0f - x*x);

23 pi += 4.0f * (float)(y/(float)iNumIntervals);
24 iGID += get_global_size (0);

25 ¥

2%

27 //store the product

28 LocalPiValues [iLID] = pi;

29 // wait for all threads in WG:
30 barrier (CLK_LOCAL_MEM_FENCE) ;

32 // Summation reduction:

33 int i = iWGS/2;

34 while (i!=0){

35 if (iLID < i) {

36 LocalPiValues [iLID] += LocalPiValues [iLID+il;
37 }

38 barrier (CLK_LOCAL_MEM_FENCE) ;

39 i=i/2;

40 }

42 // store partial dot product into global memory:
43 if (iLID == 0) {

14 c[iWGID] = LocalPiValues [0];

45 X

Listing 6.1: The compute 7 kernel.

To analyze the performance of the OpenCL program for computin 7, the sequential
version has been run on a quadcore processor Intel Core i7 6700HQ running at 2,2
GHz, while the parallel version has been run on an Intel Iris Pro 5200 GPU running
at 1,1 GHz. This is a small GPU integrated on the same chip as the CPU and has
only 40 processing elements. The results are presented in Table 6.1. We run the
kernel in NDrange of size:

szLocalWorkSize = 256; // # of work-items in work-group
szGlobalWorkSize = 256*128; // total # of work-work-items

6.3 OpenCL 213

Table 6.1: Experimental results for OpenCL 7 computation

| No.ofintervals | CPUtime[s] | GPUtime[s] | Speedup |

10° 0.01 0.0013 7.69
33 x 10° 0.31 0.035 8.86
10° 9.83 1.07 9.18

As can be seen from the measured execution times, noticeable acceleration is
achieved, although we do not achieve the ideal speedup. The main reason for that
lies in reduction summation that cannot be fully parallelized. The second reason is
the use of complex arithmetic operations (square root). The execution units usually
do not have their own unit for such a complex operation, but several execution units
share one special-function unit that performs complex operations such as square
root, sine, etc.

Chapter 7

Engineering: Parallel solution of 1-D heat
equation

Partial differential equations (PDE) are a useful tool for the description of natural
phenomena like heat transfer, fluid flow, mechanical stresses, etc. The phenomena
are described with spatial and time derivatives. For example, a temperature evolution
in a thin isolated bar of length L, with no heat sources, can be described by a PDE

of the form:
AT(x,t) °T(x,1)

a T or
where T (x,t) is an unknown temperature at position x in time #, and c is a thermal
diffusivity constant with typical values for metals being about 10~ m?/s. The PDE
says that the first derivative of temperature T by ¢ is equal to the second derivative
of T by x. To fully determine the solution of the above PDE, initial temperature of
the bar, a constant 7 in our simplified case:

T(x, 0) = To.

Finally, fixed temperatures, independent of time, at both ends of the bar are imposed
as: T(0) =Tg and T(L) = Tx.

In the case of strong solution methodology, the problem domain is discretized in
space and the derivatives are approximated by, e.g. finite differences. This results in
a system matrix A, three-diagonal in the case of 1-D domain or five-diagonal in 2-D
case. To save memory, and because the matrix structure is known, the vectors with
old and new temperatures are needed only. The evolution in time can be obtained by
an explicit iterative calculation, e.g. Euler method, based on the extrapolation of the
current solution and its derivatives into the next time-step, respecting the boundary
conditions. A developing solution in time can be obtained by a simple matrix-vector
multiplication. If only a stationary solution is desired, then the time derivatives of
the solution become zero, and the solution can be obtained in a single step, through
a solution of the resulting liner system, Au = b, where A is a system matrix, u is
a vector of unknown solution values in discretization nodes and b is a vector of
boundary conditions.

215

216 7 Engineering: Parallel solution of 1-D heat equation

We will simplify the problem by analyzing 1-D domain only. Note that an exten-
sion in 2-D domain, i.e. a plate, is quite straight forward, and can be left for a mini
project. For our simplified case, an isolated thin long bar, an exact analytic solution
exists. Temperature is spanning in a linear way between the both fixed temperatures
at boundaries. However, in real cases, with realistic domain geometry and complex
boundary conditions, the analytic solution may not exist. Therefore, an approximate
numerical solution is the only option. To find the numerical solution, the domain
has to be discretized in space with j = 1...N points. To simplify the problem the
discretization points are equidistant, so x;;1 — x; = Ax is a constant. Discretized
temperatures T;(¢) for j =2...(N — 1) solution values in inner points and Ty = Ty,
and Ty = Ty are boundary points with fixed boundary conditions.

Finally, we also have to discretize time in equal time-steps ;1 —t; = At. Using
finite-difference approximations for time and spatial derivatives:

OT (xjst) _ Tiltir)) =Tj(t) PT(x1) _ Ty (6) = 2T5(t) + Ty (1)

ot At dx? (Ax)? ’

for a replacement of derivatives in our continuous PDE, which provides one linear
equation for each point x;. Using explicit Euler method for time integration, we
obtain, after some rearrangement of factors, a simple algorithm for calculation of
new temperatures 7 (¢;41) from old temperatures:

cAt

a2 (Tj-1(11) = 2T5(t:) + Tjsa (1)) -

In each discretization point, a new temperature 7;(f;+1) is obtained by summing the
old temperature with a product of a constant factor and linear combination of tem-
peratures in three neighboring points. After we determine the initial temperatures of
inner points and fix the temperatures in boundary points, we can start marching in
time to obtain updated values of the bar temperature.

Note, that in the explicit Euler method, thermal conductivity c, spatial discteriza-
tion Ax and time-step Ar must be in an appropriate relation that fulfil CFL stability
condition, which is for our case: cAtr/(Ax)?> < 0.5. The CFL condition could be
informally explained with a fact that a numerical method has to step in time slower
than the simulated physical phenomenon. In our case, the impact of a change in dis-
cretization point temperature is at most in neighboring discretization points. Hence,
with smaller Ax (denser discretization points), shorter time-steps are required in
order to correctly capture the simulated diffusion of temperature.

When we have to stop the iteration? Either after a fixed number of time-steps ¢,
or when the solution achieves a specified accuracy, or if the maximum difference be-
tween previous and current temperatures falls below a specified value. A sequential
algorithm for an explicit finite differences solution of our PDE is provided below:

Ti(tiv1) = Tj(t;) +

7 Engineering: Parallel solution of 1-D heat equation 217

Algorithm 3 SEQUENTIAL ALGORITHM: 1-D_HEAT_EQUATION

Input: err - desired accuracy;
N - number of discretization points
Tp - initial temperature
T;. and Tk - boundary temperatures

1: Discretize domain
2: Set initial solution vectors T; and T
3: while Stopping criteria NOT fulfilled do

4: for j=2...(N—1)do

5: Calculate new temperature 7j(f;4.1)
6 end for

7: end while

Output: T - Approximate temperature solution in discretization points.

We start again with the validation of our program, on a notebook with a single
MPI process and with the code from Listing 7.2. The test parameters were set as
follows: p=1, N =30, nt = [1,...,1000], c = 9e — 3, Ty = 20, T;, = 25, Tg = 18,
time = 60, L = 1. Because the exact solution is known, i.e. a line between T, Ty,
the maximal absolute error of the numerical solution was calculated to validate the
solution behaviour. If the model and numerical method are correct, the error should
converge to zero.

The resulting temperatures evolution in time, on the simulated bar, are shown in
Fig. 7.1.

25
[——T (%, nt=[1...1000])]
24 N
23 b
22 N
=

21 b
19F \ N

.
0 5 10 15 20 25 30
A X

Fig. 7.1: Temperature evolution in space and time as solved by heat equation.

The set of curves in Fig. 7.1 confirms that the numerical method produces in
initial time-steps a solution near to initial temperature. Then the simulated temper-

218 7 Engineering: Parallel solution of 1-D heat equation

atures changes as expected. While the number of time-steps nt increases, the tem-
peratures advance towards the correct result, which we know that is a straight line
between left and right boundary temperatures, i.e. in our case, between 25° and 18°.

We have learned, that in the described solution methodology, the calculation of a
temperature 7; in a discretization point depends only on temperatures in two neigh-
bouring points, consequently, the algorithm has a potential to be parallelized. We
will again use domain decomposition, however, the communication between pro-
cesses will be needed in each time-step, because the left and right discretization
point of a sub-domain are not immediately available for neighboring processes. A
point-to point communication is needed to exchange boundaries of sub-domains. In
1-D case, the discretized bar is decomposed in a number of sub-domains, which is
equal to the number of processes. All sub-domains should manage a similar number
of points, because an even load balance is desired. Some special treatment is needed
in calculation near domain boundaries.

Regarding the communication load, some collective communication is needed at
the beginning and end of the calculation. Additionally, a point-to-point communica-
tion is needed in each time-step to exchange the temperature of sub-domain border
points. In our simplified case, the calculation will stop after a predefined number of
time-steps, hence, no communication is needed for this purpose. The parallelized
algorithm is shown below:

Algorithm 4 PARALLEL ALGORITHM: 1-D_HEAT_EQUATION

Input: err - desired accuracy;
N - number of discretization points
Tp - initial temperature
T;, and Tk - boundary temperatures

: Get myID and the number of cooperating processes p
: Master broadcast Input parameters to all processes
: Set local solution vectors T;, and T;p, ¢
Compute a shorter for loop:
: while Stopping criteria NOT fulfilled do
for j=1...N/pdo
Exchange T;(t;) of sub-domain border points
Calculate new temperature 7j(f;p41)
end for
10: Master gather sub-domain temperatures as a final result T
11: end while

Output: T - Approximate temperature solution in discretization points.

A

o

We see that in the parellelized program several tasks has to be implemented, i.e.
user interface for input/output data, decomposition of domain, allocation of memory
for solution variables, some global communication, calculation and local commu-
nication in each time-step, and assembling of the final result. Some of the tasks
are inherently sequential and will therefore limit the speed-up, which will be more
pronounced in smaller systems.

7.1 OpenMP 219

The processes are not identical. We will again use a master process and several
slave processes, two of them responsible for domain boundary. The master process
will manage input/output interface, broadcast of solution parameters and gathering
of final results. The analysis of parallel program performances for OpenMP, MPI,
are described in the following sections.

7.1 OpenMP

Computing 1-D heat transfer using a multicore processor is simple if Algorithm 3
is taken as the starting point for parallelization. As already explained above, itera-
tions of the inner loop are independent (while the iterations of the outer loop must
be executed one after another). The segment of the OpenMP program implement-
ing Algorithm 3 is shown in Listing 7.1: Told and Tnew are two arrays where the
temperatures computed in the previous and in the current outer loop iteration are
computed; C contains the constant cAt/(Ax)?.

#pragma omp parallel firstprivate (k)

double *To = Told;
double *Tn = Tnew;
while (k--) {
#pragma omp for
for (int i = 1; i <= n; i++) {
Tn[i] = Tol[i]
+ C * (Toli - 1] - 2.0 * To[il + Toli + 11);
}
double *T = To; To = Tn; Tn = T;
}
}

Listing 7.1: Computing heat transfer in one dimension.

It is woth examining the wall clock time of this algorithm first. Figure 7.2 sum-
marizes the wall clock time needed for 10° iterations in 10 points using a quad-
core processor with multithreading. With more than 4 threads nothing is gained in
terms of a wall clock time. As this is floating point intensive application run on a
processor with one floating point unit per physical core, this can be expected: two
threads running running on two logical cores of the same pysical core must share
the same floating point unit. This leads to more synchronizing among threads and
consequently to the increase of the total CPU time as shown in Figure 7.3.

The interested reader might investigate how the wall clock time and the speedup
change if the ratio between the number of points along the bar and the number
of iterations in time change. Namely, decreasing the number of points along the bar
makes the synchronization at the barrier at the end of the parallel for loop relatively
more expensive.

220 7 Engineering: Parallel solution of 1-D heat equation

120.00 T T T T T T T T
) wall clock time =3
ideal speedup - = -

100.00 | \ 1

80.00 \ 1

seconds

60.00 [. 1

40.00 [s T

20.00 [- - L _

0.00
1 2 3 4 5 6 7 8

number of threads

Fig. 7.2: The wall clock time needed to compute 10° iterations of 1-D heat transfer
along a bar in 10° points.

300 T T T
cpu time 3

250 |- 7

200 7

seconds

150 |- 7

100 === [/ |_|
1 2 3 4 5 6 7 8
number of threads

Fig. 7.3: The total CPU time needed to compute 10° iterations of 1-D heat transfer
along a bar in 10° points.

7.2 MPI

In the solution of heat equation, the problem domain is discretized first. In our sim-
plified case, a temperature diffusion in a thin bar is computed, which is modelled
by 1-D domain. For efficient use of parallel computers the problem domain must
be partitioned (decomposed) in possibly equal sub-domains. The number of sub-

7.2 MPI 221

domains should be equal to the number of MPI processes p. We prescribe a certain
number of discretization points per process Np, which automatically guarantees a
balanced computational load. Note, that the total number of discretization points N
scales with the number of processes. In all active processes, an appropriate amount
of memory is allocated for current and new solution vectors and initialized with
initial and boundary values. Then, the CFL stability condition is verified.

In each time-step, every process that computes its sub-domain, exchanges sub-
domain border temperatures with processes that compute its left end right sub-
domains. In our implementation, blocking communication is used that can ade-
quately maintain short messages. Then, new temperatures are calculated for all dis-
cretization points in each sub-domain, by methodology explained in the beginning
of this chapter. We determine a fixed number of time-steps, therefore a special stop-
ping criteria is not needed.

An exemplar MPI program implementation of a solution of 1-D heat equation for
our simplified case is given in Listing 7.2.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "mpi.h"

void solve(int my_id, int num_p);

int main(int argc, char x*argv[])
{

int my_id, num_p;

double start, end;

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &my_id);
MPI_Comm_size (MPI_COMM_WORLD, &num_p);
if (my_id == 0)
start = MPI_Wtime ();
solve(my_id, num_p);
if (my_id ==
printf ("Elapsed seconds = %f\n", MPI_Wtime() - start);
MPI_Finalize () ;
return O;
}
void solve(int my_id, int num_p) //compute time step T
{
double cfl, *T, *T_new;
int i, j, tag, j_min = 0;
int j_max = 10000; //number of time-steps
int N = 5000; //number of points per process
double ¢ = le-11; //diffusivity
double T_O0 = 20.0, T_L = 25.0, T_R = 18.0; //temperatures
double time, time_new, delta_time, time_min = 0.0, time_max = 60.0;
double *X, delta_X, X_min = 0.0, Length = 0.1;

MPI_Status status;

if (my_id == 0)

{
printf (" dT/dt = ¢ * d"2T/dx"2 for %f < x < %f\n",X_min,Length);
printf (" and %f < t <= %f.\n", time_min, time_max);
printf (" space discretized by %d equidistant points \n",num_p*N);
printf (" each processor works on %d points!!\n", N);
printf (" time discretizted with %d equal time-steps.\n", j_max);

printf (" number of cooperating processes is %d\n", num_p);

63

66

69

9

91
92
93
94
95

96

98

99
100
101
102
103
104
105
106
107
108

222

}

//allocate local buffers and calculate new temperatures

X

for (i = 0; i <= N + 1; i++) //ghost points are in X[0] and X[N+1]

}

T = (double #*)malloc((N + 2) * sizeof (double)); //allocate
T_new = (double *)malloc((N + 2) * sizeof (double));

for (i = 1; i <= N; i++)

T[0] = 0.0; T[N + 1] = 0.0;
delta_time = (time_max - time_min) / (double) (j_max - j_min);
delta_X = (Length - X_min) / (double) (num_p* N - 1);

cfl = ¢ * delta_time / pow(delta_X,2); //check CFL

if (my_id == 0)
printf (" CFL stability condition value = %f\n", cfl);
if (cfl >= 0.5)
{
if (my_id == 0)
printf (" Computation cancelled: CFL condition failed.\n");
return;
}
for (j = 1; j <= j_max; j++) //compute T_new
{
time_new = ((double)(j - j_min) * time_max
+ (double) (j_max - j) * time_min)
/ (double) (j_max - j_min);
if (0 < my_id) //send T[1] to my_id-1 //replace with SendRecv?
{
tag = 1;
MPI_Send (&T[1], 1, MPI_DOUBLE, my_id-1, tag, MPI_COMM_WORLD);
}
if (my_id < num_p - 1) //receive T[N+1] from my_id+1.
{
tag = 1;
MPI_Recv (&T[N+1] ,1,MPI_DOUBLE ,my_id+1,tag,MPI_COMM_WORLD ,&status) <«
}
if (my_id < num_p - 1) //send T[N] to my_id+1
{
tag = 2;
MPI_Send (&T[N], 1, MPI_DOUBLE, my_id+1, tag, MPI_COMM_WORLD);
}
if (0 < my_id) //receive T[0] from my_id-1
{
tag = 2;
MPI_Recv (&T[0],1,MPI_DOUBLE ,my_id-1,tag,MPI_COMM_WORLD ,&status);
}
for (i = 1; i <= N; i++) //update temperatures
{
T_new[i] = T[i] + (delta_time * c/pow(delta_X,2)) *
(T[i-1] - 2.0 * T[i] + T[i+1]);
}
if (my_id == 0) T_new[1] = T_L; //update boundaries T with BC
if (my_id == num_p- 1) T_new[N] = T_R;
for (i = 1; i <= N; i++) T[i] = T_newlil; //update inner T
}
free(T);
free(T_new);
free(X);
return;

7 Engineering: Parallel solution of 1-D heat equation

= (double #*)malloc ((N+2)*sizeof (double)); //N+2 point coordinates

X[i] = ((double)(my_id * N + i - 1) * Length
+ (double) (num_p* N - my_id * N - i) * X_min)
/ (double) (num_p* N - 1);

T[i] = T_0;

7.2 MPI 223

Listing 7.2: Implementation of a solution of 1-D heat equation.

After the successful validation, already presented, the analysis of run-time be-
haviour, again on a two-core notebook computer and on eight cluster comput-
ers, has been performed. To fulfil the CFL condition, variables: ¢, nt, Np and ¢
has to be appropriately selected. We set the number of all discretization points to
N = [5e5,5e4,5e3], therefore the number of points per process Np is obtained
by scaling with the number of processes p. For example if N = 5e4 and p = 4,
Np = 1.25e5, etc. For accurate timings and balanced communication and compu-
tation load nt was set to 1e4. To be sure about CFL condition, constant c is set to
le —11. Other parameters remain the same as in the PDE validation test. The parallel
program run-time (RT) in seconds and speed-up (SU), as a function of the number
of processes p = [1,...,8] and discretization points, on a notebook computer, are
shown in Fig. 7.4.

301 4
—O—RT-5e5 [s] —®— SU-5e5
—O— RT-5e4 [s] —4— SU-5e4
—O0—RT-5e3 [s] —®— SU-5e3

251

N
o
T

25

run-time [s]
&
~
speed-up

[N
o
T

0 7 - 0
1 2 3 4 5 6 7 8
p - number of MPI processes

Fig. 7.4: Parallel run-time (RT) and speed-up (SU) of heat equation solution for
N = [5e5,5e4,5¢e3] and 1 to 8 MPI processes on a notebook computer.

The obtained results bring two important messages. First, the maximum speed-up
is only about two, which is smaller than in the case of & calculation. The explana-
tion for this could be in a smaller computation/communication time ratio. It seems
that the program spent on communication almost the same time as on the calcula-
tion. Second, the speed-up drops significantly on more than 4 MPI processes, below
one, which is even more pronounced with smaller number of discretization points.
The explanation of such a behaviour is in the amount of communication, which is
performed after each time-step.

Next experiments were performed on eight computing cluster nodes with the
same approach as in Chapter 6 and with the same parameters as in the notebook

224 7 Engineering: Parallel solution of 1-D heat equation

test. In this case we use mpiexec parameter ~bind-to core:1, which appears to
be more promising in previous tests. We can expect a high impact of communication
load. Even that the messages are short, with just a few doubles, the delay is signif-
icant mainly because of the communication start-up time. The run-time (RT-B) in
seconds and corresponding speed-up (SU-B), as a function of the number of MPI
processes p = [1,...,128] and the number of discretization points N = [5e5,5e3] is
shown in Fig. 7.5.

800 118
—O— RT-B-5e5 [s]
—O—RT-B-5e3[s]| { 15
—@— SU-B-5e5

700

114

112

run-time [s]
speed-up

12

@ » 0
0 20 40 60 80 100 120 140
p - number of MPI processes

Fig. 7.5: Parallel run-time (RT-B) and speed-up (SU-B) of heat equation solution for
N = [5e5,5e3] and 1 to 128 MPI processes bound to cores.

The results are a surprise! The speed-up is very unstable and approaches to max-
imum value 14 with about 30 processes. Then it jumps to 6 and remain stable until
64 processes with another jump to almost 0, with more than 64 processes. We guess
that the problem is in communication.

First step occurs when the number of MPI processes increases from 36 to 37. This
step happens because one communication channel gets additional burden. When the
number of processes is 36 or lower, only a single pair of processes per neighbouring
node is communicating among themselves. When process number 37 is created, it
is assigned to cluster node 2 and requires communication with the process number
36 on node 1. This communication between nodes 1 and 2 is in addition to the
communication required by processes number 4 and 5, which are also assigned to
nodes 1 and 2, which could explain that the communication between nodes 1 and
2 take twice longer than before. Such a behaviour slow-down the whole program
becose the remaining processes are waiting.

Then processes from number 38 to 64 are only adding to communication burden
of other neighboring nodes, which happens in parallel and therefore does not addi-
tionally degrade the performance. Since the communication overhead at this number

7.2 MPI 225

of MPI processes easily overwhelms calculation, the speedup seems constant from
there on.

Second step happens, when number of processes passes 64. Process 65 is again
assigned to node 1. This makes it the ninth MPI process allocated on this node,
which only supports 8 threads. 9-th and 1-st process on node 1 therefore have to
share to the same core, which seems to be the recipe for abysmal performance. The
speed-up drop is so overwhelming at this point because MPI uses busy waiting as a
part of its synchronous send and receive operations. Busy waiting means that pro-
cesses are not immediately switched when waiting for MPI communication, since
the operating systems does not see them as idle but rather as busy. Therefore the
waiting times on MPI communication dramatically increase and with them the exe-
cution times.

Therefore we repeat the experiment again. Now the processors are connected in a
true physical ring topology with two communication ports per processor. Addition-
ally, we replace the MPI_Send and MPI_Recv pairs by MPI_Sendrecv function. We
reduce the number of processes in this experiment to 64, because larger numbers
have been proved as useless. The run-time (RT-R) in seconds and corresponding
speed-up (SU-R), as a function of the number of MPI processes p = [1,...,65] and
the number of discretization points N = [5e5,5e3] is shown in Fig. 7.6.

14

—O—RT-R-5€5 3]

12r

0r

©
T

run-time [s]
speed-up

p - number of MPI processes

Fig. 7.6: Parallel run-time (RT-R) and speed-up (SU-R) of heat equation solution for
N = [5e5,5e3] and 1 to 65 MPI processes on a ring interconnection topology and
implemented by MPI_Sendrecv.

We can notice several improvements now. With larger number of discretization
points, the speed-up is quite stable but the maximum is not higher than in previous
experiment from Fig. 7.5. With smaller number of discretization point a speed-up
is detected only in up to four processes, because a local memory communication is
used, which confirms that the communication load is prevailing in this case. Further

226 7 Engineering: Parallel solution of 1-D heat equation

investigation needs a lot of exciting engineering work, however, it is beyond the
scope of this book and is left to enthusiastic readers.

Chapter 8
Engineering: Parallel implementation of Seam
Carving

Seam-carving is a content-aware image resizing technique where the image is re-
duced in size by one pixel of width (or height) at a time. Seam carving attempts
to reduce the size of a picture while preserving the most interesting content of the
image. Seam Carving was originally published in a 2007 paper by Shai Avidan and
Ariel Shamir. Ideally, one would remove the "lowest energy’ pixels (where energy
means the amount of important information contained in a pixel) from the image to
preserve the most important features. However, that would create artefacts and not
preserve the rectangular shape of the image. To balance removing low energy pixels
while minimizing artefacts, we remove exactly one pixel in each row (or column)
where every pixel in the row must touch the pixel in the next row either via an edge
or corner. Such a connected path of pixels is called seam. If we are going to resize
the image horizontally, we need to remove one pixel from each row of the image.
Our goal is to find a path of connected pixels from the bottom of the image to the
top. By ’connected’, we mean that we will never jump more than one pixel left or
right as we move up the image from row to row. A vertical seam in an image is a
path of pixels connected from the top to the bottom with one pixel in each row. Each
row has exactly only one pixel which is the part of the vertical seam. By removing
the vertical seams iteratively, we can compress the image in the horizontal direc-
tion. The seam carving method produces a resized image by searching for the seam
which has the lowest user-specified "image energy’. To shrink the image, the lowest
energy seam is removed and the process is repeated until the desired dimensions are
reached. Seam Carving is a three-step process:

1. Assign an energy value to every pixel. This will define the important parts of the
image that we want to preserve.

2. Find an 8-connected path of the pixels with the least energy. We use dynamic
programming to calculate the costs of every potential path through the image.

3. Follow the cheapest path to remove one pixel from each row or column to resize
the image.

Following these steps will shrink the image by one pixel. We can repeat the process
as many times as we want to resize the image as much as necessary. What we need

227

228 8 Engineering: Parallel implementation of Seam Carving

to is to implement a function which takes an image as an input and produce a resized
image in one dimension or two dimensions as an output which is expected by the
users.

Why is seam carving interesting for us? Effective parallelization of seam carving
is a challenging problem due to its complex computation model. There are two main
reasons why effective parallelization is prevented: (1) Computation dependence: dy-
namic programming is a key step to compute an optimal seam during image resizing
and takes a large fraction of the program execution time. It is very hard to parallelize
the dynamic programming on GPU devices due to the computation dependency. (2)
Intensive and irregular memory access: in order to compute various intermediate
results a large number of irregular memory access patterns is required. This wors-
ens the program performance significantly. In this chapter, we are not going to find
or present a better algorithm for seam carving that can be parallelized. We are just
going to show, which part of the original seam carving algorithm can be acceler-
ated on GPU and which parts cannot and how this affects the overall performance.
For illustration purposes, we will use the cyclist image from Figure 8.1 as an input
image, which is to be made narrower with seam carving.

Fig. 8.1: Original cyclist image to be made narrower with seam carving.

8.1 Energy calculation

What are the most important parts of an image? Which parts of a given image should
we eliminate first when resizing and which should we hold onto the longest? The
answer to these questions lies in the energy value of each pixel. The energy value
of a pixel is the amount of important information contained in that pixel. So, the

8.1 Energy calculation 229

first step is to compute the energy value for every pixel, which is a measure of its
importance - the higher the energy, the less likely that the pixel will be included as
part of a seam and eventually removed.

The simplest and frequently most-effective measure of energy is the gradient of
the image. An image gradient highlights the parts of the original image that are
changing the most. It is calculated by looking at how similar each pixel is to its
neighbours. Large uniform areas of the image will have a low gradient (i.e. energy)
value and the more interesting areas (edges of objects or places with a lot of detail)
will have a high energy value. There exist a variety of energy measures (e.g. Sobel
operator). In this book, which is not primarily devoted to image processing, we will
use a very simple energy function, although a number of other energy functions
exist and may work better. Let each pixel (i, j) in the image has its color denoted as
I(i, j). The energy of the pixel (i, j) is given by the following equation:

E(i,j) = (i, J) =16, j+ DI+ J) =16+ L)+ 1) =1+ 1, j+1)] 8.1

A sequential algorithm for pixel energy calculation is given in Algorithm 5.

Algorithm 5 SEAM CARVING: ENERGY CALCULATION

Input: 1 - RxC image
I: fori=1...Rdo

2: forj=1...Cdo

3 E(i,j) =100,)~ 1, j+ D+ (0,) — 16+ 1,)|+ 110,) — 1 +1,j+1)]
4: end for

5: end for

Output: E - RxC energy map

We will illustrate this step on a simple example. Let’s suppose a black and white
image as in Figure 8.2a and let’s suppose that the color of black pixels is coded
with the value 1, and the color of white pixels is coded with 0. Figure 8.2b shows
energy map for the image from Figure 8.2a. Energies of the pixels in the last column
and the last row are computed with assumption that the image is zero-padded. For
example, the energy of the first pixel in the fourth row (black pixel) is according to
Equation 8.1:

E3,0)=|1-1|+|1-0/+|1-1|=1,

and the energy of the last pixel in the fifth row is:
E(4,5)=|1-0|+|1-0|+|1-0]=3.

The resulting cyclist image of this step is shown in Figure 8.3. We can see that
large uniform areas of the image have a low gradient value (black) and the more
interesting edges of objects have a high gradient value (white).

230 8 Engineering: Parallel implementation of Seam Carving

ORIGINAL IMAGE STEP 1

010]0 1 2 1

1 1 0 0 2 2

3 1 2 0 2 2

(a) (b)

Fig. 8.2: (a) Original black and white image. (b) Energies of the pixels in the image.

Fig. 8.3: The calculated energy function of the cyclist image.

8.2 Seam identification

Now that we have calculated the value of each pixel, our next objective is to find a
path from the bottom of the image to the top of the image with the least energy. The
line must be 8-connected: this means that every pixel in the row must be touched by
the pixel in the next row either via an edge or corner. That would be a vertical seam
of minimum total energy. One way to do this would be to simply calculate the costs
of each possible path through the image one-by-one. Start with a single pixel in the
bottom row, navigate every path from there to the top of the image, keep track of
the cost of each path as you go. But we will end up with thousands or millions of
possible paths. To overcome this, we can apply the dynamic programming method as
described in the paper by Avidan and Shamir. Dynamic programming lets us touch
each pixel in the image only once, aggregating the total cost as we go, in order to

8.2 Seam identification 231

calculate the final cost of an individual path. Once we have found the energy of every
pixel, we start at the bottom of the image and go up row by row, setting each element
in the row to the energy of the corresponding pixel plus the minimum energy of the
3 possibly path pixels *below’ (the pixel directly below and the lower left and right
diagonal). Thus, we have to traverse the image from the bottom row to the first row
and compute the cumulative minimum energy M for all possible connected seams
for each pixel (i, j):

M(i, j) = E(i, j) +min(M(i+1,j—1),M(@i+1,/),M(i+1,j+1)) 8.2)

In the bottom most row cumulative energy is equal to pixel energy, i.e. M(i, j) =
E(i,j). A sequential algorithm for cumulative energy calculation is given in Algo-
rithm 6.

Algorithm 6 SEAM CARVING: CUMULATIVE ENERGY CALCULATION

Input: E - RxC energy map

I: for j=1...Cdo
3: end for
4: fori=R—1...1do

5: forj=1...Cdo

6: M@,))=E(,j)+min(M@i+1,j—1),M@i+1,/),M>i+1,j+1))
7. end for

8: end for

Output: M - RxC cumulative energy map

We will illustrate this step with Figure 8.4. We start with the last (bottom-most)
row. Cumulative energies in that row are the same as pixel energies. Then we move
up to the fifth row. Cumulative energy of the fifth pixel in the fifth row is the sum of

STEP 1 STEP 2

R P P 1 2 3

01010 1 2 1 01010 1 2 1
R P P R_ B

1 1 0|0 2 2 1 1 0o fo0 2 2
b 1 R_o_ R 5

3 1 210 2 2 3 1 210 2 2
2 _P_P_ Pp_. B

1 2 0o |0 2 2 1 2 0o foO0 2 2
1 B_. P 1 2 3

1 3 0 1 2 3 1 3 0 1 2 3
o o P 1 2_ o

01010 1 2 0 0[O0]O 1 2 0

() (b)

Fig. 8.4: (a) Energies of the pixels. (b) Cumulative energies.

232 8 Engineering: Parallel implementation of Seam Carving
its energy and the minimal energy of three pixels below it:

M(4,4) =2+min(1,2,0) = 2.
On the other hand, cumulative energy of the last pixel in the fifth row is:

M(4,5) =3+ min(2,0,00) = 3.

As the element (4,6) does not exist, we assume it has the maximal energy. In other
words, we ignore it. Once we have computed all the values M, we simply find the
lowest value of M in the top row and return the corresponding path as our minimum
energy vertical seam.

This effect of this step is easy to see in Figure 8.5. Notice how the spots where the

Fig. 8.5: The calculated cumulative energy function of the cyclist image. Please
note that due to summation, almost all pixel values are greater than 255 and are
represented only with least significant eight bits in the image.

gradient image was brightest are now the roots of inverted triangles of brightness as
the cost of those pixels propagate into all of the pixels within the range of the widest
possible paths upwards. For example, the brightest inverted triangle at the center
of the image (in from of the cyclist) is created because the white edge at horizon
propagates upwards. When we arrive at the top row, the lowest-valued pixel will
necessarily be the root of the cheapest path through the image. Now we are ready to
start removing seams.

8.3 Seam labeling and removal 233

8.3 Seam labeling and removal

The final step is to remove all of the pixels along the vertical seam. Due to the power
of dynamic programming, the process of actually removing seams is quite easy. All
we have to do to calculate the cheapest seam is to start with the lowest value M in
the top row and work our way up from there, selecting the cheapest of the three
adjacent pixels in the row below. Dynamic programming guarantees that the pixel
with the lowest value M will be the root of the cheapest connected path from there.
Once we have selected which pixels we want to remove, all that we have to do is
go through and copy the remaining pixels on the right side of the seam from right
to left and the image will be one pixel narrower. A sequential algorithm for seam
removal is given in Algorithm 7.

Algorithm 7 SEAM CARVING: SEAM REMOVAL

Input: M - RxC cumulative energy map
Input: 1 - RxC original image

1: min=M(1,1)

2: col =1

3: for j=2...Cdo

4 if M(1, j) < min then
5: min=M(1,j)

6: col=j

7 end if

8: end for

9: fori=1...Rdo
10: for j=col...Cdo

11: I1(i,j)=1(i,j+1)

12: end for

13: ifM(i+1,col —1) < M(i+ 1,col) then
14: col =col —1

15: end if

16: ifM(i+1,col +1) <M(i+ 1,col —1) then
17: col =col+1

18: end if

19: end for

Output: 1 - RxC resized image

We will illustrate this step with Figure 8.6. We start with the top most row and
find the pixel with the smallest value M. In our case this is the third pixel in the first
row with M(0,2) = 0. Then we select the pixel below that one with the minimal M.
In our case this is the third pixel in the second row with M(1,2) = 0. We continue
downwards and select the pixel bellow the current with the minimal cumulative
energy. This is the fourth pixel in the third row with M(2,3) = 0. We continue this
process until the last row. The seam with minimal energy is depicted in grey in
Figure 8.6b.

Figure 8.7 shows the labeled (with white pixels) seams in the cyclist image. The

234 8 Engineering: Parallel implementation of Seam Carving

STEP 2 STEP 3

2 9 0 1 2 3B 2 9 0 1 2 3

0 0 0 1 2 1 0 0 0 1 2 1
2 2 0 10 2 4 2 2 0 0 2 4

1 1 0 0 2 2 1 1 0 0 2 2
15 1 2 10 2 I5 5 i 2 1] 2 15

3 1 2 0 2 2 3 1 2 0 2 2
2 2 10 10 B I 2 2 10 0 B 4

1 2 0 0 2 2 1 2 0 0 2 2
1 3 0 1 2 3 1 3 0 1 2 3

1 3 0 1 2 3 1 3 0 1 2 3
1] 0 0 1 2 0 0 0 0 1 2 10

0 0 0 1 2 0 0 0 0 1 2 0

(a) (b)

(b)

Fig. 8.7: (a) The first seam in the cyclist image. (b) The first 50 seams in the cyclist
image.

8.4 Seam carving on GPU 235

very first vertical seam found in the cyclist image is depicted in Figure 8.7a. It goes
through the darkest parts of the energy map form Figure 8.3 and thus through the
pixels with minimal amount of information. Figure 8.7b depicts the first 50 seams
found in the cyclist image. It can be observed how seams are "avoiding’ the regions
with the highest pixel energy and thus the highest amount of information.

Once we have labeled a vertical seam we go through the image and move the pix-
els that are located at the right of the vertical seam from right to left. The new image
would be one pixel narrower than the original. We repeat the whole process for as
many seams as we like to remove. Figure 8.8 shows two cyclist images reduced in
size by (a) 100 pixels and (b) 350 pixels.

(b)

Fig. 8.8: (a) The image resized by removing 100 seams. (b) The image resized by
removing 350 seams.

8.4 Seam carving on GPU

In this section we present and compare the implementations of seam carving on
CPU and GPU.

8.4.1 Seam carving on CPU

We will first present the CPU code for seam carving. Emphasis will be only on the
functions that implement the main operations of the seam carving algorithm. Other
helper functions and code are available on the book’s companion site.

void simpleEnergyCPU(PGMData *input, PGMData *output, int new_width)
2| £
int i, j;
int diffx, diffy, diffxy;
int tempPixel;
for(i=0; i<(input->height); i++)
for(j=0; j<new_width; j++)
{
diffx = abs(getPixelCPU(input, i, j) -
getPixelCPU (input, i, j+1));
diffy = abs(getPixelCPU(input, i, j) -
getPixelCPU (input, i+1, j));
diffxy = abs(getPixelCPU(input, i, j) -
getPixelCPU (input, i+1, j+1));
tempPixel = diffx + diffy + diffxy;
if (tempPixel >255)
output ->image [i*output->width+j] = 255;
else
output ->image [i*(output->width)+j] = tempPixel;
}
}

236 8 Engineering: Parallel implementation of Seam Carving
Energy calculation on CPU

Listing 8.1 shows how to calculate pixel energy following Algorithm 5. The function
simpleEnergyCPU reads input PGM image input, calculates the energy for every
pixel and writes the energy to the corresponding pixel in PGM image output.

Listing 8.1: Compute pixel energy.

The function Listing 8.1 implements image gradient, which highlights the parts of
the original image that are changing the most. The image gradient is calculated using
Equation 8.1, which looks at how similar each pixel is to its neighbors. The third
argument new_width keeps track of the current image width.

Cumulative energies on CPU

Now that we have calculated the energy value of each pixel, our goal is to find a path
of connected pixels from the bottom of the image to the top. As we previously said,
we are looking for a very specific path: the one who’s pixels have the lowest total
value. In other words, we want to find the path of connected pixels from the bottom
to the top of the image that touches the darkest pixels in our gradient image. List-
ing 8.2 shows how to calculate cumulative pixel energy following Algorithm 6. The
function cumulativeEnergiesCPU reads input PGM image input, which con-
tains the energy of pixels, and writes the cumulative energy to the corresponding
pixel in PGM image output.

void cumulativeEnergiesCPU(PGMData *input, PGMData *output, int ¢«
new_width) {
//Start from the bottom-most row:
for(int i = input->height-2; i >= 0; i--){

8.4 Seam carving on GPU 237

4 for(int j = 0; j < new_width; j++){

5 output ->image [i*(input->width) + j] =

6 input ->image [i*(input->width) + jl +

7 getPreviousMin (output, i, j, new_width);

Listing 8.2: Compute cumulative energies.

Using dynamic programming approach, we start at the bottom and work our way
up, adding the cost of the cheapest below neighbor to each pixel. This way, we
accumulate cost as we go - setting the value of each pixel not just to its own cost, but
to the full cost of the cheapest path from there to the bottom of the image. The helper
function getPreviousMin() returns the minimal energy value from the previous
row. It contains a few compare statments to find the minimal value. As we can
see, each iteration in the outermost loop depends on the results from the previous
iterations, so it cannot be parallelized only the iterations in the innermost loop are
mutually independent and can be run concurrently. Also, to find the minimal value
from the previous row, we should use conditional statements in the helper function
getPreviousMin (). We already know that these statements will prevent the work-
items to follow the same execution path and thus it will prevent effective execution
of warps.

Seam labeling and removal on CPU

The process of labeling and removing a seam with minimal energy is quite easy. All
we have to do to is to start with the darkest pixel with minimal cumulative energy in
the top row and work our way down from there, selecting the cheapest of the three
adjacent pixels in the row below and changing the color of the corresponding pixel
in the original image to white. Listing 8.3 shows how to color the seam with minimal
energy and Listing 8.4 shows how to remove the seam with minimal energy.

void seamIdentificationCPU(PGMData *input, PGMData *output, int ¢«
new_width) {

2 int column = O;

int minvalue = input->image [0];

4 //find the minimum in the topmost row (0) and return column index:

5 for(int j = 1; j < new_width; j++){

6 if (input->image[j] < minvalue) {

7 column = j;

8 minvalue = input->imagel[j];

10 }

12 //Start from the top-most row :

13 for(int i = 0; i < input->height; i++){

14 output ->image [(i) *(input->width) + column] = 255;

15 column = getNextMinColumn (input, i, column, new_width);

16 ¥

Listing 8.3: Labeling the seam with the minimal energy.

238 8 Engineering: Parallel implementation of Seam Carving

I| void seamRemoveCPU(PGMData *input, PGMData *output, int new_width){

2 int column = 0;

int minvalue = input->image[0];

| //find the minimum %in the topmost row (0) and return column index:
5 for(int j = 1; j < new_width; j++){

6 if (input->image[j] < minvalue) {

7 column = j;

8 minvalue = input->imagelj];

10 ¥

12 //Start from the top-most row:

13 for(int i = 0; i < input->height; i++){

14 // make this row narrower:

15 for(int k = column; k < new_width; k++){

16 output ->image [i*(input->width) + k] =

17 output ->image [i*(input->width) + k+1];
18 ¥

19 column = getNextMinColumn (input, i, column, new_width);

Listing 8.4: Seam removal.

We can see in Listing 8.4 that seam removal starts with the loop in which we locate
the pixel with minimal cumulative energy, i.e. the first pixel in the vertical seam with
the minimal energy. Then we proceed to the loop nest. The outermost loop indexes
rows in the image. In each row we remove the seam pixel - we move the pixels that
are located at the right of the vertical seam from right to left. After that, we have
to find the column index of the seam pixel in the next row. We do this using the
helper function getNextMinColumn (). As in the previous step, we use conditional
statements in the helper function getPreviousMin (), which will prevent the work-
items to follow the same execution path.

8.4.2 Seam carving in OpenCL

In this subsection we will discuss the possible implementation of seam carving on
GPU. The host code would be responsible for the following steps:

1. Load image from file into a buffer. For example, we can use greyscale PGM
images, which are easy to handle.

2. Transfer the image in buffer to the device.

3. Execute four kernels: the energy calculation kernel, the cumulative energy kernel,
the seam labeling kernel and the seam removal kernel.

4. Read the resized image from GPU.

As discussed before, seam carving consists of three steps. We will implement each
step as one ore more kernel functions. The complete OpenCL code for seam carving
can be found on the book’s companion site.

8.4 Seam carving on GPU 239

OpenCL kernel function: Energy calculation

The first step of seam carving is embarrassingly (or perfectly) parallel because the
calculation of the energy of individual pixels is completely independent of the en-
ergy of adjacent pixels. Each work-item will calculate the energy of the pixel whose
index is the same as its global index. Energy is calculated from the values of adjacent
pixels. Depending on the energy function used, we may need three, eight or even 24
adjacent pixels. Here we will use our simple energy function from Equation 8.1.
The parallel algorithm for the energy calculation is given in Algorithm 8.

Algorithm 8 SEAM CARVING: PARALLEL ENERGY CALCULATION

Input: 1 - RxC image
1: for all work-item(i,j) in 2-dim NDRange do
20 E(i,J) = 10,) = 1(rowGID, j+ 1) [+ [I(i, j) = 1(i+ 1,)|+ [1(i,) = 1(i+1,j+1)]
3: end for

Output: E - RxC energy map

Listing 8.5 shows the code for the energy calculation kernel.

I| __kernel void simpleEnergyGPU(

__global int* imageln,
__global int* imageOut,
4 int width,

5 int height,

6 int new_width) {

8 // global thread index
9 int columnGID = get_global_id (0); // column in NDRange
10 int rowGID = get_global_id(1); // rTow in NDRange

11 int tempPixel;
12 int diffx, diffy, diffxy;

14 diffx = abs_diff (imageIn[rowGID * width + columnGID],

15 imageIn[rowGID * width + columnGID + 1]);

16 diffy = abs_diff (imageIn[rowGID * width + columnGID],

17 imageIn[(rowGID+1) * width + columnGID]);

18 diffxy = abs_diff (imageIn[rowGID * width + columnGID],

19 imageIn[(rowGID+1) * width + columnGID + 1]);
20 tempPixel = diffx + diffy + diffxy;

2 if (tempPixel >255)

3 imageOut [rowGID*width+columnGID] = 255;

24 else

5 imageOut [rowGID*width+columnGID] = tempPixel;

Listing 8.5: The energy calculation kernel

Each pixel will also affect the energy of other adjacent pixels, so its will also be
read by other work-items from the global memory. That means that the same word
from the global memory will be accessed multiple times. Therefore, it makes sense
to first load a block of pixels and their neighbours into the local memory and only

240 8 Engineering: Parallel implementation of Seam Carving

then start the calculation of energy. The reader should add the code for collaborative
loading of the pixel block into local memory. Do not forget to wait for other work-
items at the barrier before start to calculate the pixel energy.

OpenCL kernel function: Seam identification

Prior to calculating the cumulative energy of the pixels in one row, we should have
already calculated the cumulative energy of all the pixels in the previous row. Be-
cause of this data dependency we can only run as many work-items at a time as
the number of pixels in one row. When all work-items finish the calculation of the
cumulative energy in one row, they move on to the next row. One work-item will
calculate the cumulative energy of all pixels in the same column, but it will move to
the next row (pixel above) only when all other work-items have finished the com-
putation in the current row. Therefore, we need a way to synchronize work-items
that calculate cumulative energies. We can synchronize work-items in two different
ways:

1. We can run all work-items in the same (only one) work-group. The advantage of
this method is that we can synchronize all work-items using barriers. The disad-
vantage of this approach lies in the fact that only one block of work-items can
be run, so only one compute unit on GPU will be active during this step. In this
approach, we will enqueue one kernel. The parallel algorithm for the cumulative
energy calculation is given in Algorithm 9.

Algorithm 9 SEAM CARVING: PARALLEL CUMULATIVE ENERGY CALCULATION
IN ONE WORK-GROUP
Input: E - RxC energy map

1: for all work-item(j) in 1-dim NDRange do
2 M(R.j)=E(R.))

3 fori=R—1...1do

4 M@, j)=E@i,j)+min(M(i+1,j—1),M@i+1,/),MGi+1,j+1))
5: barrier()

6 end for

7: end for

Output: M - RxC cumulative energy map

2. We can organize work-items in more than one work-group. The disadvantage of
this approach is that work-groups cannot be synchronized with each other using
barriers. But we can synchronize blocks by running one kernel at a time. One
kernel, consisting of several work-groups will compute cumulative energies in
just one row. When finished, we will have to rerun the same kernel, but with
different arguments (i.e., the address of the new row). Thus we will enqueue the
same kernel in a loop from the host code.

16

18
19

8.4 Seam carving on GPU 241

Which of two presented approaches is more appropriate depends on the size of the
problem. For smaller images, the first approach may be more appropriate, while the
second approach is more appropriate for images with very long rows since we can
employ more compute units.

Listing 8.6 shows the code for the cumulative energy calculation kernel, which
will be used for testing purposes in this book. The kernel does not use local mem-
ory and does not implement collaborative loading. The reader should implement
this functionality and compare both kernels in terms of execution times. The reader
should also implement the kernel for the second approach and measure the execu-
tion time.

__kernel void cumulativeEnergiesGPU(
__global int* imageln,
__global int* imageOut,
int width,
int height,
int new_width) {

// global thread index
int columnGID = get_global_id (0); // column in NDRange

//Start from the bottom-most row:
for(int i = height-2; i >= 0; i--){

imageOut [i*width+columnGID] = imageIn[i*width+columnGID] +

getPreviousMinGPU (imageQOut, i, «
columnGID,
width, height, <«

new_width) ;

// Synchronise to make sure the tiles are loaded

barrier (CLK_LOCAL_MEM_FENCE) ;

}

Listing 8.6: Cumulative energy calculation kernel - one work-group approach

OpenCL kernel function: Seam labeling and removal

The last step is to label and remove the seam with the minimal energy. Unfortu-
nately, this step is inherently sequential because each pixel position in the seam
strongly depends on the position of the previous pixel in the seam. So we cannot la-
bel all pixel in the seam in parallel. How can we implement this sequential function
as a kernel on a massively parallel computer such as GPU? One possible solution
would be that only one work-item labels and removes the whole seam. So the func-
tion for the GPU kernel would be almost the same as the function in Listing 8.3.
The NDrange would have the dimension (1,1), i.e. we run only one work-item in
the NDrange.

The better solution would be to divide this step into to operations: seam labeling
and seam removal. The first step (seam labeling) should return column indices of
every pixel in the seam. The kernel for this step will run in NDrange of dimension
(1,1), i.e. only one work-item labels the whole seam. While the first step is inherently

242 8 Engineering: Parallel implementation of Seam Carving

sequential, the second could be parallelized as follows. We run as many work-items
as number of rows in the input image. Each work item removes the seam pixel in its
row and copies the remaining pixels on its right one position to the left. The second
step uses the array of column indices from the first step to locate its seam pixel. A
parallel algorithm for seam removal is given in Algorithm 10.

Algorithm 10 SEAM CARVING: SEAM REMOVAL

Input: 1 - RxC original image
Input: C - 1xR vector of column indices
1: for all work-item(i) in 1-dim NDrange do

2: column = C(i)
3: for j=col...Cdo

4: 1(i,j) =1(i,j+1)
5: end for
6: end for

Output: 1 - RxC resized image

Listing 8.7 shows the code for the seam labeling kernel and Listing 8.8 shows
the code for the seam removal kernel.

__kernel void getSeamGPU(
__global int* imageln,
__global int* seamColumns,
4 int width,
5 int height,
6 int new_width) {

8 int column = 0;

9 int minvalue imageIn [0];

) //find the minimum in the topmost row (0) and

12 // return column index:

13 for(int j = 1; j < new_width; j++){
14 if (imageIn[j] < minvalue) {

15 column = j;

16 minvalue = imageIn[j];

1 }

18 ¥

20 //Start from the top-most row:
21 for(int i = 0; i < height; i++){

2 column = getNextMinColumnGPU(imageIn, i,
2 column, width,

24 height, new_width);

25 seamColumns [i] = column;

Listing 8.7: Seam labeling kernel.

1| __kernel void seamRemoveGPU (
__global int* imageln,
__global int* imageOut,

8.4 Seam carving on GPU 243

4 __global int* seamColumns,
5 int width,

6 int height,

7 int new_width) {

9 int iGID = get_global_id (0); // row in NDRange
10

11 // get the column index of the seam pizel in my Tow:
12 int column = seamColumns[iGID];

13

14 // make my Tow mnarrower:

15 for(int k = column; k < new_width; k++){

16 imageOut [iGID*width + k] =
17 }
130 ¥

imageOut [iGID*width + k+1];

Listing 8.8: Seam removal kernel.

To analyze the performance of the seam carving program, the sequential version
has been run on a quadcore processor Intel Core i7 6700HQ running at 2,2 GHz,
while the parallel version has been run on an Intel Iris Pro 5200 GPU running at 1,1
GHz. This is a small GPU integrated on the same chip as the CPU and has only 40
processing elements. The results of seam carving for an image of size 512x320 are
presented in Table 8.1.

Table 8.1: Experimental results

[Step | CPUtime[s] | GPUtime[s] | Speedup |
Energy calculation 0.010098 0.000698 14.46
Cumulative energy 0.004696 0.003276 1.43
Seam removal 0.000601 0.005690 0.11
Total 0.014314 0.009664 1.48

As can be seen from the measured execution times, noticeable acceleration is
achieved only for the first step. Although this step is embarrassingly parallel, we
do not achieve the ideal speedup. The reason is that when calculating the energies
of individual pixels, the work-items irregularly access the global memory and there
is no memory coalescing. The execution times could be reduced if the work-items
used local memory, as we did in matrix multiplication.

At the second step, the speedup is barely noticeable. The first reason for this
is the data dependency between the individual rows. The other reason is, as be-
fore, irregular access to global memory. And the third factor that prevents effective
parallelization is the usage of conditional statements when searching for minimal
elements in previous rows. Here too, the times would be improved by using local
memory.

At the third step, we do not even get speed up, but almost a 10X slowdown! The
reason for such a slowdown lies in the fact that only one thread can be used to mark
the seam.

And last but not least, the processing elements on the GPU runs at a 2X lower
frequency than the CPU.

Chapter 9
Final remarks and perspectives

Now that we have come to the end of the book the reader should be well aware
and informed that parallelism is ubiquitous in computing; it is present in hardware
devices; in computational problems; algorithms; and in software on all levels.

Consequently, many opportunities for improving the efficiency of parallel pro-
grams are ever present. For example, theoreticians and scientists can search for and
design new, improved parallel algorithms; programmers can develop better tools for
compiling and debugging parallel programs; and cooperation with engineers can
lead to faster and more efficient parallel programs and hardware devices.

Being so, it is our hope that our book will serve as the first step of a reader who
wishes to join this ever evolving journey. We will delighted if the book will also
encourage the reader to delve further in the study and practice of parallel computing.

As the reader now knows, the book provides many basic insights into parallel
computing. It focuses on three main parallel platforms, the multi-core computers,
the distributed computers, and the massively parallel processors. In addition, it ex-
plicates and demonstrates the use of the three main corresponding software libraries
and tools, the OpenMP, the MPI, and the OpenCL library. Furthermore, the book
offers hands-on practice and miniprojects so that the reader can gain experience.

After reading the book the reader may have become aware of the following three
general facts about the libraries and their use on parallel computers:

e OpenMP is relatively easy to use yet limited with the number of cooperating
computers.

e MPI is harder to program and debug but—due to the excellent support and long
tradition—manageable and not limited with number of cooperating computers.

e Accelerators, programmed with OpenCL are even more complex and usually tai-
lored to specific problems. Nevertheless, users may benefit from excellent speed-
ups of naturally parallel applications, and from low power consumption which
results from massive parallelization with moderate system frequency.

245

246 9 Final remarks and perspectives

What about near future? How will develop high performance computers and the
corresponding programming tools in the near future? Currently, the only possibility
to increase computing power is to increase parallelism in algorithms and programs,
and to increase the number of cooperating processors, which are often supported by
massively parallel accelerators. Why is that so? The reason is that state-of-the-art
production technology is already faced with physical limits dictated by space (e.g.,
dimension of transistors) and time (e.g., system frequency) [8].

Current high performance computers, containing millions of cores, can execute
more than 10'7 floating point operations per second (100 petaFLOPS). According
to the Moore’s law, the next challenge is to reach the exascale barrier in the next
decade. However, due to above mentioned physical and technological limitations the
validity of Moore’s law is questionable. So it seems that the most effective approach
to future parallel computing is an interplay of controlflow and dataflow paradigms,
that is, in the heterogeneous computing. But programming of heterogeneous com-
puters is still a challenging interdisciplinary task.

In this book, we did not describe programming of such extremely high perfor-
mance computers; rather, we described and trained the reader for programming of
parallel computers at hand, e.g., our personal computers, computers in cloud, or
in computing clusters. Fortunately, the approaches and methodology of parallel
programming is fairly independent of the complexity of computers.

In summary, it looks like that we cannot expect any significant shift in computing
performance until a new production technology for computing devices is invented.
Untill then the maximal exploitation of parallelism will be our delightful challenge.

Appendix A

Hints for making your computer a parallel
machine

Practical advises for the installation of required supporting software for parallel
program execution on different operating systems are given. Note, that this guide
and internet links can change in the future, therefore always look for the up-to-date
solution proposed by software tools providers.

A.1 Linux

OpenMP

OpenMP 4.5 has been a part of GNU GCC C/C++, the standard C/C++ compiler on
Linux, by default since GCC’s version 6 and thus it comes preinstalled on virtually
any recent mainstream Linux distribution. You can check the version of your GCC
C/C++ compiler by running command

$ gcc --version
The first line, e.g., something like
gcc (Ubuntu 6.3.0-12ubuntu2) 6.3.0 20170406

contains the information about the version of GCC C/C++ compiler (6.3.0 in this
example).

Utility time can be used to measure the execution time of a given program.
Furthermore, Gnome’s System Monitor or the command-line utilities top (with
separate-cpu-states displayed — press 1 once top starts) and htop can be used
to monitor the load on individual logical cores.

247

248 A Hints for making your computer a parallel machine

MPI

The Message-Passing Interface (MPI) standard implementation can be already pro-
vided as a part of the operating system, most often as MPICH [1] or Open MPI
[2, 10]. If it is not, it can usually be installed through the provided package manage-
ment systems, for example, the apt in Ubuntu:

sudo apt install libmpich-dev

The MPICH is an open high-performance and widely portable implementation
of the MPI, which is well maintained and supports the latest standards of the MPIL.
MPICH runs on parallel systems of all sizes, from multicore nodes to computer
clusters in large supercomputers. Alternative open source implementations exists,
e.g. Open MPI, with similar performances and user interface. Other implementa-
tions are dedicated to a specific hardware, some of them are commercial, however,
the beauty of the MPI remains, your program will possibly executes with all of the
MPI implementations, eventually after some initial difficulties. In the following, we
will mostly use the acronym MPI, regardless of the actual implementation of the
standard, except in cases if such a distinguishing is necessary.

Invoke the MPI execution manager: >mpiexec to check for the installed imple-
mentation of the MPI library on your computer. Either a note that the program is
currently not installed or a help text will be printed. Let us assume that an Open
MPI library is installed on your computer. The command: >mpiexec -h shows all
the available options. Just a few of them will suffice for testing your programs.

We start working with typing a first program. Make your local directory, e.g. with
OpenMPI:

>mkdir OMPI

retype the "Hello World” program from Section 4.3 in your editor and save your
code in file OMPIHello. c. Compile and link the program with a set-up for maximal
speed:

>mpicc -03 -o 0OMPIHello OMPIHello.c

which, beside compiling, also links appropriate MPI libraries with your program.
Note, that on some system an additional option —1m could be needed for correct
inclusion of all required files and libraries.

The compiled executable can be run by:

>mpiexec -n 3 OMPIHello

The output of the program should be in three lines, each line with a notice from
a separate process:

A.2 macOS 249

Hello world from process O of 3
Hello world from process 1 of 3
Hello world from process 2 of 3

as the program has run on three processes, because the option -n 3 was used. Note,
that the line order is arbitrary, because there is no rule about the MPI process exe-
cution order. This issue is addressed in more details in Chapter 4.

OpenCL

First of all you need to download the newest drivers to your graphics card. This
is important because OpenCL will not work if you don’t have drivers that support
OpenCL. To install OpenCL you need to download an implementation of OpenCL.
The major graphic vendors NVIDIA, AMD and Intel have both released implemen-
tations of OpenCL for their GPUs. Besides the drivers, you should get the OpenCL
headers and libraries included in the OpenCL SDK from your favourite vendor. The
installation steps differ for each SDK and the OS you are running. Follow the in-
stallation manual of the SDK carefully. For OpenCL headers and libraries the main
options you can choose from are: NVIDIA CUDA Toolkit, AMD APP SDK or Intel
SDK for OpenCL. After the installation of drivers and SDK, you should the OpenCL
headers:

#include<CL/cl.h>

If the OpenCL header and library files are located in their proper folders, the fol-
lowing command will compile an OpenCL program:

gcc prog.c -o prog -1 OpenCL

A.2 macOS

OpenMP

Unfortunately the LLVM C/C++ compiler on macOS comes without OpenMP sup-
port (and the command gcc is simply a link to the LLVM compiler). To check your
C/C++ compiler, run

$ gcc --version
If the output contains the line
Apple LLVM version 9.1.0 (clang-902.0.39.1)

where some numbers might change from one version to another, the compiler most
likely do not support OpenMP. To use OpenMP, you have to install the original GNU

250 A Hints for making your computer a parallel machine

GCC C/C++ compiler (use MacPorts or Homebrew, for instance) which prints out
something like

gcc-mp-7 (MacPorts gcc7 7.3.0_0) 7.3.0

informing that this is indeed the GNU GCC C/C++ compiler (version 7.3.0 in this
example).

The running time can be measured in the same way as on Linux (see above).
Monitoring the load on individual cores can be performed using macOS’s Activity
Monitor (open its CPU Usage window) or htop (but not with macOS’s top).

MPI

In order to use MPI on macOS systems, XDeveloper and GNU compiler must be in-
stalled. Download XCode from the Mac App Store and install it by double-clicking
the downloaded .dmg file. Use the command: >mpiexec to check for installed im-
plementation of the MPI library on your computer. Either a note that the program is
currently not installed or a help text will be printed.

If the latest stable release of Open MPI is not present, download it, for ex-
ample, from the Open Source High Performance Computing website: https:
//www.open-mpi.org/. To install Open MPI on your computer, first extract the
downloaded archive by typing the following command in your terminal (assuming
that the latest stable release in 3.0.1):

>tar -zxvf openmpi-3.0.1.tar.gz

Then, prepare the config.log file needed for the installation. The config.log
file collects information about your system:

>cd openmpi-3.0.1
>./configure --prefix=/usr/local

Finally, make the executables for installation and finalize the installation:

>make all
>sudo make install

After successful installation of Open MPI, we start working by typing our first
program. Make your local directory, e.g. with: >mkdir OMPI.

Copy or retype the "Hello World” program from Section 4.3 in your editor and
save your code in file OMPIHello. c.

Compile and link the program with:

>mpicc -03 -o OMPIHello OMPIHello.c
Execute your program “Hello World” with:

>mpiexec -n 3 0MPIHello.

A.3 MS Windows 251

The output of the program should be similar to the output of the "Hello World”
MPI program from Appendix A.1.

OpenCL

If you are using Apple Mac OS X, the Apple’s OpenCL implementation should al-
ready be installed on your system. MAC OS X 10.6 and later ships with a native
implementation of OpenCL. The implementation consists of the OpenCL applica-
tion programming interface, the OpenCL runtime engine and the OpenCL compiler.

OpenCL is fully supported by Xcode. If you use Xcode, all you need to do is to
include the OpenCL header file:

#include <OpenCL/opencl.h>

A.3 MS Windows

OpenMP

There are several options for using OpenMP on Microsoft Windows. To follow the
examples in the book as closely as possible, it is best to use Linux Subsystem for
Windows 10. If a Linux distribution brings recent enough version of GNU GCC
C/C++ compiler, e.g., Debian, one can compile OpenMP programs with it. Fur-
thermore, one can use commands time, top and htop to measure and monitor
programs.

Another option is of course using Microsoft Visual C++ compiler. OpenMP has
been supported by it since 2005. Apart from using it form within Microsoft Vi-
sual Studio, one can start x64 Native Tools Command Prompt for VS 2017
where programs can be compiled and run as follows:

> cl /openmp /02 hello-world.c
> set OMP_NUM_THREADS=8
> hello-world.exe

With PowerShell run in x64 Native Tools Command Prompt for VS 2017,
programs can be compiled and run as

> powershell

> cl /openmp /02 fibonacci.c
> $env:0MP_NUM_THREADS=8

> ./fibonacci.exe

Within PowerShell, the running time of a program can be measured using the
command Measure-Command as follows:

252 A Hints for making your computer a parallel machine

> Measure-Command {./hello-world.exe}

Regardless of the compiler used, the execution of the programs can be monitored
using Task Manager (open the CPU tab within the Resource Monitor).

MPI

More detailed instructions for installation of necessary software for com-
piling and running the Microsoft MPI can be found, for example, on:
https://blogs.technet.microsoft.com/windowshpc/2015/02/02/how-
to-compile-and-run-a-simple-ms-mpi-program/. A short summary is
listed below:

e Download stand-alone redistributables for Microsoft SDK msmpisdk.msi and
Microsoft MPI MSMpiSetup.exe installers from: https://www.microsoft.
com/en-us/download/confirmation.aspx?id=55991, which will provide
execute utility for MPI programs mpiexec.exe and MPI service 4AS process
manager smpd . exe.

o Set the MS-MPI environment variables in a terminal window by:
C:\Windows\System32>set MSMPI, which should print the following lines, if
the installation of SDK and MSMPI has been correctly completed:

MSMPI_BIN=C:\Program Files\Microsoft MPI\Bin\
MSMPI_INC=C:\Program Files (x86)\Microsoft SDKs\MPI\Include\

MSMPI_LIB32=C:\Program Files (x86)\Microsoft SDKs\MPI\Lib\x86\
MSMPI_LIB64=C:\Program Files (x86)\Microsoft SDKs\MPI\Lib\x64\

The command: >mpiexec should respond with basic library options.

e Download Visual Studio Community C++ 2017 from: https://www.
visualstudio.com/vs/visual-studio-express/ and install the compiler
on your computer, e.g. by selecting a simple desktop development installation.

e You will be forced to restart your computer. After a restarting, start Visual Studio
and create File/New/Project/Windows Console Application,namede.g.
MSMPIHello, with default settings except:

1. To include the proper header files, open Project Property pages and in-
sert in C/C++/General under Additional Include Directories:
$ (MSMPI_INC) ; $ (MSMPI_INC) \x64
if 64 bit solution will be build. Use . . \x86 for 32 bits.
2. To setup the linker library in Project Property pages insert in Linker/Gen-
eral under Additional Library Directories:
$ (MSMPI_LIB64)
if 64 bit platform will be used. Use $ (MSMPI_LIB32) for 32 bits.
3. In Linker/Input under Additional Dependencies add:
msmpi.lib;

A.3 MS Windows 253

4. Close the Project Property window and check in the main Visual Studio win-
dow that Release solution configuration is selected and select also a solution
platform of your computer, e.g. x64.

e Copy or retype "Hello World” program from Section 4.3 and build the project.

e Open a Command prompt window, change directory to the folder where the
project was built, e.g. . . \source\repos\MSMPIHello\x64\Debug and run the
program from the command window with execute utility:

mpiexec -n 3 MSMPIHello

that should result in the same output as in Appendix A.1, with three lines, each
with a notice from a separate process.

OpenCL

First of all you need to download the newest drivers to your graphics card. This
is important because OpenCL will not work if you don’t have drivers that support
OpenCL. To install OpenCL you need to download an implementation of OpenCL.
The major graphic vendors NVIDIA, AMD and Intel have both released implemen-
tations of OpenCL for their GPUs. Besides the drivers, you should get the OpenCL
headers and libraries included in the OpenCL SDK from your favourite vendor. The
installation steps differ for each SDK and the OS you are running. Follow the in-
stallation manual of the SDK carefully. For OpenCL headers and libraries the main
options you can choose from are: NVIDIA CUDA Toolkit, AMD APP SDK or Intel
SDK for OpenCL. After the installation of drivers and SDK, you should the OpenCL
headers:

#include<CL/cl.h>

Suppose you are using Visual Studio 2013, you need to tell the compiler where the
OpenCL headers are located and tell the linker where to find the OpenCL .1ib files.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. MPICH: High-Performance Portable MPI. https://www.mpich.org/. Accessed 28 Dec 2017
. Open MPI: A High Performance Message Passing Library. https://www.open-mpi.org/. Ac-

cessed 28 Dec 2017

. Atallah, M., Blanton, M. (eds.): Algorithms and Theory of Computation Handbook, chap. 25.

Chapman and Hall (2010)

. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel Program-

ming in OpenMP. Morgan Kaufmann (2000)

. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.

The MIT Press (2009)

. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Networks. Morgan Kauf-

mann (2004)

. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks. Morgan Kaufmann (2002)
. Flynn, M.J., Mencer, O., Milutinovic, V., Rakocevic, G., Stenstrom, P., Trobec, R., Valero,

M.: Moving from petaflops to petadata. Commun. ACM 56(5), 39-42 (2013). DOI 10.1145/
2447976.2447989. URL http://doi.acm.org/10.1145/2447976.2447989

. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software

Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1995)
Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V.,
Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall,
T.S.: Open MPI: Goals, concept, and design of a next generation MPI implementation. In: Pro-
ceedings, 11th European PVM/MPI Users’ Group Meeting, pp. 97-104. Budapest, Hungary
(2004)

Gaster, B., Howes, L., Kaeli, D.R., Mistry, P.,, Schaa, D.: Heterogeneous Computing with
OpenCL, Ist edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2011)
Grama, A., Gupta, A., Karypis, V., Kumar, V.: Introduction to Paralle] Computing, 2nd edn.
Pearson (2003)

Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA, USA (1979)

Jason Long: Hands On OpenCL: An open source two-day lecture course for teaching and
learning OpenCL. https://handsonopencl.github.io/ (2018). Accessed 25 Jun 2018

Khronos Group: OpenCL: The open standard for parallel programming of heterogeneous sys-
tems. https://www.khronos.org/opencl/f (2000-2018). Accessed 25 Jun 2018

MPI Forum: MPI: A message-passing interface standard (Version 3.1). Tech. rep., Knoxville,
TN, USA (2015)

Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Programming Guide,
Ist edn. Addison-Wesley Professional (2011)

OpenMP Architecture Review Board: OpenMP Application Programming Interface, Version
4.5, November 2015. http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf (1997—
2015). Accessed 18 Dec 2017

255

256 References

19. OpenMP Architecture Review Board: OpenMP Application Programming Interface Exam-
ples, Version 4.5.0, November 2016. http://www.openmp.org/wp-content/uploads/openmp-
4.5.pdf (1997-2016). Accessed 18 Dec 2017

20. OpenMP Architecture Review Board: OpenMP. http://www.openmp.org (2012). Accessed 18
Dec 2017

21. van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP — The Next Step: Affinity, Acceler-
ators, Tasking, and SIMD (Scientific and Engineering Computation). The MIT Press (2017)

22. Robic, B.: The Foundations of Computability Theory. Springer (2015)

23. Scarpino, M.: A Gentle Introduction to OpenCL. http://www.drdobbs.com/parallel/a-gentle-
introduction-to-opencl/231002854. Accessed 10 Apr 2018

24. Scarpino, M.: OpenCL in Action: How to Accelerate Graphics and Computations. Manning
Publications (2011). URL http://amazon.com/o/ASIN/1617290173/

25. Trobec, R.: Two-dimensional regular d-meshes. Parallel Comput. 26(13-14), 1945-1953
(2002)

26. Trobec, R., Vasiljevi¢, R., Tomasevi¢, M., Milutinovié, V., Beivide, R., Valero, M.: Intercon-
nection networks in petascale computer systems: A survey. ACM Comput. Surv. 49(3), 44:1-
44:24 (2016)

Index

Amdahl’s Law, 38

API (application programming interface), 52
application programming interface, 52
atomic, OpenMP directive, 68

atomic access, 51, 66, 68

bandwidth
bisection, 22
channel, 21
cut, 21
barrier, 53
blocking communication, 119
Brent’s Theorem, 37

canonical form (of a loop), 57
collapse (OpenMP clause), 57
communication and computation overlap, 118
communication modes, 119
core, 50
logical, 50
critical, OpenMP directive, 67
critical section, 65, 67

data sharing, 58

efficiency, 10
Engineering
heat equation, 215
MPI, 220
OpenMP, 219

features of message-passing, 126
features of MPI communication - MPI
example, 127
final (OpenMP clause), 82
final remarks, 245
perspectives, 246

firstprivate (OpenMP clause), 58
flow control, 19

Flynn’s taxonomy, 49

for, OpenMP directive, 57

GPU, 137
compute unit, 141
constant memory, 148
global memory, 148
local memory, 147
memory coalescing, 148
memory hierarchy, 146
occupancy, 179
processing element, 141
registers, 147
seam carving, 235
texture memory, 148
warp, 144, 145
work-group, 143, 144
work-item, 143, 144

hiding latency - MPI example, 124
Hints - parallel machine
Linux
MPI, 248
OpenCL, 249
OpenMP, 247
macOS
MPI, 250
OpenCL, 251
OpenMP, 249
MS Windows
MPI, 252
OpenCL, 253
OpenMP, 251

if (OpenMP clause), 82

257

258

interconnection network, 20
bisection bandwidth, BBW, 21
channel, 20
channel bandwidth, 21
communication link, 20
communication node, 20
diameter, 20
direct, 23

fully connected, 23
expansion scalability, 20
FLIT, 21
hop count, 20
indirect, 23

blocking, 23

blocking rearrangeable, 23

fat tree, 31

fully connected crossbar, 23

multistage, 24, 30

non-blocking, 23

switch, 23
latency, 21
node degree, 20
packet, 21
path diversity, 20
PHIT, 21
regularity, 20
symmetry, 20
topology

bus, 25

hypercube, 29

k-ary d-cube, 29

mesh, 27, 28

ring, 26

torus, 27, 28

lastprivate (OpenMP clause), 58

load balancing, 44, 52
locking, 51, 67
logical core, 50
loop
canonical form, 57
parallel, 55

manycore, 50

master thread, 56

master thread, 53

MIMD, 49

model of communication
communication time, 21
data transfer time, 21
start-up time, 21
transfer time per word, 21

model of parallel computation, 11
LMM, 17

MMM, 18

PRAM, 13
CRCW, 15
CRCW-ARBITRARY, 15
CRCW-CONSISTENT, 15
CRCW-FUSION, 15
CRCW-PRIORITY, 15
CREW, 15
EREW, 15

MPI

collective communication, 111

configuring processes, 99

data types, 97

distributed memory computers, 91

error handling, 99

installation, 99

interconnected computers, 101
message passing interface, 93
operation syntax, 96

Index

process-to-process communication, 103

running processes, 99

single computer, 100
MPI communicators, 128
MPI example

communication bandwidth, 108

Hello World, 94

parallel computation of &, 115

ping-pong message transfer, 105
MPI_ALLREDUCE, 115
MPI_BARRIER, 111
MPI_BCAST, 112
MPI_COMM_DUP, 130
MPI_COMM_RANK, 102
MPI_COMM_SIZE, 102
MPI_COMM_SPLIT, 130
MPI_FINALIZE, 102
MPI_GATHER, 113
MPI_INIT, 102
MPI_RECV, 105
MPI_REDUCE, 114
MPI_SCATTER, 113
MPI_SEND, 104
MPI_SENDRECV, 107
MPI_WTIME, 108
multi-core, 50
multiprocessor model, 13
multithreading, 50

NC, Nick’s class, 34

nested parallelism, 61

network topology, 19
non-blocking communication, 121
nowait (OpenMP clause), 57, 83

num_threads (OpenMP clause), 53

Index

omp_get_max_threads, 54
omp_get_nested, 61
omp_get_num_threads, 54
omp_get_num_thread, 54
OMP_NUM_THREADS, 54
omp_set_nested, 61
omp_set_num_threads, 54
OMP_THREAD_LIMIT, 54, 61
OpenCL, 149
address space qualifier, 153
barrier, 185
clBuildProgram, 170
clCreateBuffer, 171
clCreateCommandQueue, 167
clCreateContext, 166
clCreateKernel, 174
clCreateProgramWithSource, 168
clEnqueueNDRangeKernel, 176
clEnqueueReadBuffer, 177
clEnqueueWriteBuffer, 173
clGetDevicelDs, 163
clGetDevicelnfo, 164
clGetEventProfilingInfo, 182
clSetKernelArg, 175
constant memory, 153
device, 150
dot product, 180

dot product using local memory, 184

execution model, 150
get_global_id, 155

global memory, 153
global work size, 151
heterogeneous system, 150
host, 150

host code, 156

kernel, 149

kernel function, 149

local memory, 152

local work size, 151
matrix multiplication, 190
memory coalescing, 148
memory model, 152
NDRange, 150
occupancy, 179

private memory, 152
reduction, 186

seam carving, 238
synchronization, 185

tile, 194

tiled matrix multiplication, 194
timing the execution, 182
vector addition, 154
warp, 145

work-group, 143, 144

work-item, 143, 144

OpenMP, 53, 54, 57, 58, 61, 67-69, 75

OpenMP clause, 82

259

OpenMP directive, 53, 57, 67, 68, 82, 83, 86

OpenMP clause, 53, 57, 58, 83
OpenMP function, 54, 61
OpenMP clause, 57, 58, 69, 83
OpenMP directive, 52
OpenMP function, 52
OpenMP shell variable, 54, 61
OpenMP shell variable, 52

parallel, OpenMP directive, 53
parallel loop, 55

parallel algorithm, 9

parallel computational complexity, 32
parallel computer, 9

parallel execution time, 10

parallel loop, 57, 75

parallel region, 53

parallel runtime, 10

parallelism in program, 9

partial differential equation - PDE, 215

PCAM parallelization, 133
performance of a parallel program, 9
potential prallelism, 9

private (OpenMP clause), 58, 83
processing unit, 9

race condition, 50

RAM, 11

read, atomic access, 68
reduction, 68, 69

reduction (OpenMP clause), 69
reentrant, 71

routing, 19

seam carving, 227

CPU implementation, 235

GPU, 235

OpenCL implementation, 238
shared (OpenMP clause), 58
shared memory multiprocessor, 49
single, OpenMP directive, 81
singlesingle, OpenMP directive, 83
slave thread, 56
sources of deadlocks, 122
speedup, 10

splitting MPI communicators - MPI example,

131

task, OpenMP directive, 81, 82
taskwait, OpenMP directive, 86
team of threads, 53, 56

260

team of threads, 53
thread, 50

master, 53, 56

slave, 56

team of, 56
thread-safe, 71

update, atomic access, 68

warp, 145
work (of a program), 37, 44
write, atomic access, 68

Index

