
Database systems: Volume 1
D. Lewis

CO2209

2016

Undergraduate study in
Computing and related programmes

This is an extract from a subject guide for an undergraduate course offered as part of the
University of London International Programmes in Computing and related programmes. It
contains sample material from Volume 1 of the subject guide, plus the table of contents for
Volume 2. Materials for these programmes are developed by academics at Goldsmiths.

For more information, see: www.londoninternational.ac.uk

CIvan
Evidenţiere

This guide was prepared for the University of London International Programmes by:

D. Lewis, Department of Computing, Goldsmiths, University of London.

This is one of a series of subject guides published by the University. We regret that due to pressure of
work the author is unable to enter into any correspondence relating to, or arising from, the guide. If you
have any comments on this subject guide, favourable or unfavourable, please use the form at the back of
this guide.

University of London International Programmes
Publications Office
32 Russell Square
London WC1B 5DN
United Kingdom

www.londoninternational.ac.uk

Published by: University of London

© University of London 2016

The University of London asserts copyright over all material in this subject guide except where otherwise
indicated. All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing from the publisher. We make every effort to respect copyright. If you think
we have inadvertently used your copyright material, please let us know.

http://www.londoninternational.ac.uk

Contents

i

Contents
Chapter 1: Introduction to the subject guide ...1

Introduction to Volumes 1 and 2 Database systems ...1
1.1 Route map to the guide ..1

1.1.1 Glossary of key terms ... 2
1.2 Introduction to the subject area ... 2
1.3 Syllabus .. 2
1.4 Aims of this course .. 3
1.5 Learning objectives for the course ... 3
1.6 Learning outcomes for students .. 3
1.7 Overview of learning resources ...4

1.7.1 The subject guide ...4
1.7.2 Essential reading ...4
1.7.3 Further reading ...4

1.7.4 Online Library and the VLE ..6
1.7.5 End of chapter Sample examination questions and Sample
answers ..6

1.8 Examination advice ..6
1.9 Overview of the chapter .. 7
1.10 Test your knowledge and understanding .. 7

1.10.1 A reminder of your learning outcomes .. 7
Chapter 2: Databases – basic concepts ...9

2.1 Introduction ..9
2.1.1 Aims of the chapter ...9
2.1.2 Learning outcomes ...9
2.1.3 Essential reading ...9
2.1.4 Further reading ..9

2.2 What is a database? .. 10
2.2.1 File-based systems ... 11
2.2.2 Databases and database management systems13

2.3 The three-level ANSI/SPARC architecture of a database
environment..15
2.4 Schemas and mappings ..17
2.5 The components of a database system ...21

2.5.1 Data ..21
2.5.2 Software ... 22
2.5.3 Hardware ... 23
2.5.4 Users ..24
2.5.5 DBMSs and database languages ..24

2.6 Advantages and disadvantages of database systems26
2.6.1 Advantages..26
2.6.2 Disadvantages ... 27

CO2209 Database systems: Volume 1

ii

2.7 Architectures of database systems ... 27
2.8 Data models ..29
2.9 Overview of the chapter ..30
2.10 Reminder of learning outcomes – concepts ...30
2.11 Reminder of learning outcomes – key terms ...31
2.12 Test your knowledge and understanding ...31

2.12.1 Sample examination questions ...31
Chapter 3: The relational model and relational DBMSs 33

3.1 Introduction .. 33
3.1.1 Aims of the chapter ... 33
3.1.2 Learning outcomes.. 33
3.1.3 Essential reading ... 33
3.1.4 Further reading ..34
3.1.5 References cited ...34

3.2 The relational model: a general introduction .. 34
3.2.1 Relational DBMSs ..36

3.3 Relational data objects – domains and relations 37
3.3.1 Terminology .. 37
3.3.2 Domains ... 37
3.3.3 Relations ... 40

3.4 Data definition in a relational DBMS ... 43
3.4.1 The data dictionary ...45

3.5 Relational operators..46
3.5.1 Relational algebra operators based on set theory47
3.5.2 Relation-specific relational algebra operators 49
3.5.3 Examples .. 55

3.6 Data manipulation and the optimiser ...56
3.7 Relational data integrity ... 57

3.7.1 Candidate keys ...59
3.7.2 Foreign keys ..59
3.7.3 Nulls .. 61
3.7.4 Domains and normal forms .. 61

3.8 Integrity constraint definition and foreign key rules63
3.9 Conclusions ...67
3.10 Overview of the chapter ..67
3.11 Reminder of learning outcomes – concepts ..67
3.12 Reminder of learning outcomes – key terms ..68
3.13 Test your knowledge and understanding ... 69

3.13.1 Sample examination questions .. 69
Chapter 4: SQL ..71

4.1 Introduction ...71
4.1.1 Aims of the chapter ..71
4.1.2 Learning outcomes ..71

Contents

iii

4.1.3 Essential reading ..71
4.1.4 Further reading ...71
4.1.5 References cited ..71

4.2 Introduction to SQL ... 72
4.3 The Data Definition Language (DDL).. 74

4.3.1 Domains ...74
4.3.2 Base relations ...78
4.3.3 Retrieval ...82
4.3.4 Updates ..92

4.4 Integrity constraints ..94
4.5 Views ... 96

4.5.1 Introduction ... 96
4.5.2 Retrieving data using views .. 96
4.5.3 Advantages of using views ..97
4.5.4 Updating data using views .. 99

4.6 Stored procedures ...100
4.7 Conclusion...100
4.8 Overview of the chapter ...101
4.9 Reminder of learning outcomes – concepts ..101
4.10 Reminder of learning outcomes – key terms ..101
4.11 Test your knowledge and understanding ...101

4.11.1 Sample examination questions ... 101
Chapter 5: Designing relational database systems 103

5.1 Introduction .. 103
5.1.1 Aims of the chapter ...103
5.1.2 Learning outcomes ...103
5.1.3 Essential reading ...104
5.1.4 Further reading ..104

5.2 Introduction to relational database systems ..104
5.3 Conceptual modelling – the E/R model ...106

5.3.1 Introduction ... 106
5.3.2 Core concepts ..108
5.3.3 Possible flaws ..116
5.3.4 Conclusion ..119

5.4 Transforming an E/R model into a relational model119
5.4.1 Entities ..120
5.4.2 Relationships ... 121
5.4.3 Type hierarchies .. 122
5.4.4 Limitations ..123
5.4.5 Preparing the E/R model ...123

5.5 Normalisation .. 126
5.5.1 Update anomalies ..127
5.5.2 Functional dependencies ... 129

CO2209 Database systems: Volume 1

iv

5.5.3 Normal forms .. 131
5.5.4 Further normalisation – 4NF and 5NF ..141

5.6 Overview of the chapter .. 145
5.7 Reminder of learning outcomes – concepts.. 146
5.8 Reminder of learning outcomes – key terms ... 146
5.9 Test your knowledge and understanding ..147

5.9.1 Sample examination questions .. 147
Appendix 1: Sample answers/Marking scheme ... 149

Chapter 2: Databases – basic concepts ... 149
Chapter 3: The relational model and relational RDBMSs 150
Chapter 4: SQL ... 151
Chapter 5: Designing relational database systems152

Contents

i

Contents
Chapter 1: Introduction to the subject guide ...1

Introduction to Volume 1 and 2 Database systems ..1
1.1 Route map to the guide ..1

1.1.1 Glossary of key terms .. 2
1.2 Introduction to the subject area ... 2
1.3 Syllabus .. 2
1.4 Aims of this course .. 3
1.5 Learning objectives for the course ... 3
1.6 Learning outcomes for students .. 3
1.7 Overview of learning resources ...4

1.7.1 The subject guide ...4
1.7.2 Essential reading ...4
1.7.3 Further reading ..4
1.7.4 Online Library and the VLE ..6
1.7.5 End of chapter Sample examination questions and
Sample answers ..6

1.8 Examination advice .. 7
1.9 Overview of the chapter .. 7
1.10 Test your knowledge and understanding ..8

1.10.1 A reminder of your learning outcomes ..8
Chapter 2: Data preservation, security and database optimisation9

2.1 Introduction ..9
2.1.1 Aims of the chapter ...9
2.1.2 Learning outcomes ...9
2.1.3 Essential reading ...9
2.1.4 Further reading .. 10

2.2 Databases and the mechanisms for data protection 10
2.3 Data recovery ... 11

2.3.1 Transactions ...12
2.3.2 Database recovery ... 16
2.3.3 Transactions in SQL .. 18
2.3.4 Two-phase commit .. 18

2.4 Concurrency control ... 19
2.4.1 Concurrency problems .. 19
2.4.2 Locking ... 22
2.4.3 Deadlocks .. 23
2.4.4 Serialisability ... 25

2.5 Data security... 27
2.5.1 Granting privileges in SQL ..29

CO2209 Database systems: Volume 2

ii

2.6 Database optimisation .. 33
2.6.1 Indexes ... 33
2.6.2 Denormalisation ... 35

2.7 Overview of the chapter ..36
2.8 Reminder of learning outcomes – concepts ...36
2.9 Reminder of learning outcomes – key terms ... 37
2.10 Test your knowledge and understanding ... 37

2.10.1 Sample examination questions .. 37
Chapter 3: Distributed architectures for database systems39

3.1 Introduction ..39
3.1.1 Aims of the chapter ...39
3.1.2 Learning outcomes..39
3.1.3 Essential reading ...39
3.1.4 Further reading ..39

3.2 Distributed database systems: an introduction39
3.3 Objectives ... 40
3.4 Problems ..44

3.4.1 Query processing .. 44
3.4.2 Catalogue management ...47
3.4.3 Update propagation ...47
3.4.4 Recovery control .. 48
3.4.5 Concurrency control.. 48

3.5 Concluding remarks and new models ..48
3.6 Overview of the chapter ..49
3.7 Reminder of learning outcomes – concepts ..50
3.8 Reminder of learning outcomes – key terms ...50
3.9 Test your knowledge and understanding ...50

3.9.1 Sample examination questions ..50
Chapter 4: Advanced database systems ...51

4.1 Introduction ...51
4.1.1 Aims of the chapter ..51
4.1.2 Learning outcomes ..51
4.1.3 Essential reading ..51
4.1.4 Further reading .. 52

4.2 Introduction to alternative implementations.. 53
4.3 Criticisms of relational database systems .. 53

4.3.1 Generic, homogeneous data structure ... 53
4.3.2 Difficulty with recursive queries ...54
4.3.3 Mismatches between application programs and DBMS.............. 55
4.3.4 SQL does not support… ..56
4.3.5 No ad hoc structures ..56
4.3.6 Problems with scaling .. 57

Contents

iii

4.4 Other models for data handling systems.. 57
4.5 Pre-web paradigms ... 58

4.5.1 Deductive database systems ...58
4.5.2 Object-oriented database systems ...60

4.6 Web-era paradigms .. 61
4.6.1 Key-value databases ..62
4.6.2 Document-oriented databases ..65
4.6.3 Graph databases, the Semantic Web and Linked Data71

4.7 Conclusions ...76
4.8 Overview of the chapter ..76
4.9 Reminder of learning outcomes – concepts ... 77
4.10 Reminder of learning outcomes – key terms ... 77
4.11 Test your knowledge and understanding .. 78

4.11.1 Sample examination questions ...78
Appendix 1: Sample answers/Marking scheme ...79

Chapter 2: Data preservation, security and database optimisation79
Chapter 3: Distributed architectures for database systems 80
Chapter 4: Advanced database systems .. 81

Appendix 2: Data tables ... 83

Notes

CO2209 Database systems: Volume 2

iv

Chapter 1: Introduction to the subject guide

1

Chapter 1: Introduction to the
subject guide

Introduction to Volumes 1 and 2 Database systems
Welcome to this course in Database systems, which is divided into two parts,
Volume 1 and Volume 2. In this Introductory chapter we will look at the overall
structure of the subject guide – in the form of a Route map – and introduce
you to the subject, to the aims and learning outcomes, and to the learning
resources available. We will also offer you some examination advice.

We hope you enjoy this subject and we wish you good luck with your
studies.

1.1 Route map to the guide
Volume 1 of this subject guide deals with the relational model in theory and
practice. There are five chapters in total in Volume 1; one Introductory chapter,
and four main content chapters, which are described below.

Chapter 1, the Introductory chapter, introduces the subject and includes
some general information about reading, learning resources, as well as some
examination advice.

Chapter 2 introduces the basic concepts of database systems. It focuses
on describing the components of a database environment, a prevalent
architecture of a database environment and the concept of data model.

Chapter 3 presents the theory behind relational database systems – the
relational model. It describes the relational data objects (domains and
relations), relational operators (relational algebra), and issues about
relational data integrity (keys). The theoretical description of each of the
components of the relational model is accompanied by a description of
the operational issues – the way relational concepts are implemented in a
database management system (DBMS).

Chapter 4 of this subject guide is dedicated to the introduction of a
relational database language, namely ANSI SQL. The chapter also details
some of the differences between versions of the standard and their various
implementations. This chapter is accompanied by activities and coursework
aimed at developing practical skills in programming in SQL.

Chapter 5 describes the process of database design. It focuses on the
conceptual design phase, by presenting the most popular conceptual model
– the entity-relationship (E/R) model – and on the logical design phase, by
presenting the normal forms associated with the relational model.

At the end of Volume 1, an Appendix contains some sample answers to the
end of chapter Sample examination questions.

Volume 2 of this subject guide considers more advanced topics in database
systems, in terms of both relational database management systems and
alternative models.

An Introductory chapter appears as Chapter 1 in Volume 2.

Chapter 2 is dedicated to the pragmatic considerations around data
preservation, security and database optimisation in a relational DBMS. This
chapter introduces the concepts of a transaction and transaction processing
and then describes the way transaction processing can be employed in

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

2

database recovery and concurrency control. As another facet of data
protection, the issue of security in a database environment is also presented.
Each of these subtopics is supported by examples of ANSI SQL approaches to
them. The second part of this chapter considers the concept of optimisation,
particularly indexing strategies.

Chapter 3 of Volume 2 introduces distributed architecture models for
database systems. It presents the objectives of distributed database systems
development and the problems generated by this architecture.

Chapter 4 is dedicated to newer approaches to database systems
development. The chapter starts with a consideration of some drawbacks of the
relational model, and therefore of the motivations for exploring alternatives.
The focus then shifts to newer approaches to database systems: firstly
considering deductive databases and object oriented (OO) databases; and
then moving on to newer, web-scale approaches, such as NoSQL databases,
and triplestores for semantic web data.

Volume 2 also contains appendices with answers to the end of chapter Sample
examination questions. It also contains an appendix with a dataset.

The easiest way to understand database systems is by practical experiment
on a live system. To help you to get started, we provide a dataset on the VLE
that you can import into the database system of your choice. The appendix
to Volume 2 lists the data so you also have the option of entering it manually.
The structure and data of this dataset is also referred to in examples within this
subject guide, in particular those in Chapter 4 of Volume 1.

1.1.1 Glossary of key terms
These two volumes of the subject guides introduce vocabulary, concepts and
skills that you will need to pass the examination at the end of the course. At
the end of each chapter, a Learning outcomes section lists what you should
be able to do and what key terms you should know as a result of reading the
chapter and engaging with the activities. You should use these lists to check
your understanding of the chapter and during revision.

1.2 Introduction to the subject area
Every information system has a database at its core. That makes an
understanding of database systems an essential skill for a computer
scientist or information technologist. During the past 50 years – since its
inception – the area of database systems has matured into a well-established,
conventional subject. However, new ideas are continuously developed and
new challenges and issues constantly appear. These need to be addressed
from both a theoretical and practical standpoint. This subject can be seen as
consisting of a ‘classic’ and a ‘young’ component. The former is based almost
entirely on the relational model and at the time of writing still represents,
de facto, the standard approach of most industrial applications. The latter
proposes new models and architectures for database systems, and forms a
growing part of internet-based uses.

1.3 Syllabus
Introduction to Database Systems (motivation for database systems, storage
systems, architecture, facilities, applications). Database modelling (basic
concepts, E-R modelling, Schema deviation). The relational model and
algebra, SQL (definitions, manipulations, access centre, embedding). Physical

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

Chapter 1: Introduction to the subject guide

3

design (estimation of workload and access time, logical I/Os, distribution).
Modern database systems (extended relational, object oriented). Advanced
database systems (active, deductive, parallel, distributed, federated). DB
functionality and services (files, structures and access methods, transactions
and concurrency control, reliability, query processing).

1.4 Aims of this course
This course aims to provide you with an understanding of the main issues
related to data storage and manipulation – the object of database systems. In
particular, this course is aimed at the detailed presentation of the theory and
practice of the relational model, on one side, and at the introduction of the
emerging trends in database systems, on the other. You will also gain practical
experience in a database language – ANSI SQL – and in developing relational
database systems, through the activities and coursework assignments that
you will undertake.

1.5 Learning objectives for the course
The learning objectives of this course are to:

 • explain the need for database systems

 • provide a general description of a database environment

 • describe the relational model thoroughly, as the underlying framework of
most industrial database management systems

 • introduce a relational database language: ANSI SQL

 • describe the issues pertaining to database design, focusing on
conceptual design (through E/R modelling) and logical design (through
normalisation)

 • develop practical skills in designing and implementing a relational
database

 • present issues pertaining to security, recovery and concurrency control

 • introduce distributed architectures for database systems

 • describe newer approaches to database systems that differ significantly
from the relational model

 • describe links between database and web technologies.

1.6 Learning outcomes for students
By the end of this course, and having completed the Essential readings and
activities, you should be able to:

 • understand the main issues relating to database systems in general

 • have detailed knowledge about the relational model

 • analyse a specific problem, synthesise the requirements and accordingly
perform a top down design for a corresponding (relational) database

 • have the knowledge and practical skills to implement and maintain a
relational database (in SQL)

 • be aware of alternative models of and approaches to database systems,
particularly web-scale systems, and also including object databases,
deductive and knowledge-based systems, etc.

 • have more in-depth knowledge in one or more of the previously
mentioned trends.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

4

1.7 Overview of learning resources
1.7.1 The subject guide

Each chapter in this guide starts with a list of Essential reading and possibly
some Further reading.

The Essential reading section directs you to the textbook sections (or
journals) that you have to read. For each chapter you are given an alternative
choice between Date and/or Connolly and Begg. If you can, you are advised
to read the recommended readings for both textbooks.

The Further reading section provides pointers towards relevant literature for
the presented topic. This is not compulsory reading. A short descriptive note is
associated with each pointer.

1.7.2 Essential reading
The following two books are recommended to support this course:

Date, C.J. An introduction to database systems. (Pearson/Addison Wesley,
2003) 8th edition (international edition) [ISBN 9780321197849 (pbk)].

and

Connolly, T. and C.E. Begg Database systems: a practical approach to design
implementation and management. (Pearson Education, 2014) 6th
edition, global edition [ISBN 9781292061184 (pbk)].

Both of these texts have been through multiple editions. Newer editions are
preferable, since they will describe more recent developments, but they may
be more expensive to buy. Those listed above are the latest at the time this
subject guide was written. Any edition from 1999 or after will be adequate for
this course – this includes the 7th edition or later of Date and the 2nd edition
or later of Connolly and Begg. Earlier versions than this should be approached
with caution. Since these books do not cover exactly the same topics, you
should use both of them together if possible.

Detailed reading references in this subject guide refer to the editions of the
set textbooks listed above. New editions of one or more of these textbooks
may have been published by the time you study this course. You can use a
more recent edition of any of the books; use the detailed chapter and section
headings and the index to identify relevant readings. Also check the VLE
regularly for updated guidance on readings.

1.7.3 Further reading

Please note that as long as you read the Essential reading you are then free
to read around the subject area in any text, paper or online resource. You
will need to support your learning by reading as widely as possible and by
thinking about how these principles apply in the real world. To help you read
extensively, you have free access to the virtual learning environment (VLE) and
University of London Online Library (see below).

Other useful texts for this course include:

Books
Elmasri, R. and S.B. Navathe Fundamentals of database systems. (Pearson,

2016) 7th edition [ISBN 9781292097619 (pbk)].
Ramakrishnan, R. and J. Gehrke Database management systems. (McGraw-

Hill, 2002) 3rd edition [ISBN 9780072465631 (hbk); 9780071231510
(pbk)].

Chapter 1: Introduction to the subject guide

5

Stevens, P. and R. Pooley Using UML: software engineering with
objects and components. (Addison-Wesley, 2006) 2nd edition
[ISBN 9780321269676].

Articles
Chen, P. ‘The entity-relationship model – toward a unified view of data’,

ACM Transactions on Database Systems, 1/1 (1976), pp.9–36.
Zaniolo, C. ‘A New Normal Form for the Design of Relational Database

Schemata’, ACM Transactions on Database Systems, Volume 7(3) 1982,
pp.489–99.

Websites
You should not regard these readings as the only texts you should engage
with – this is a subject that benefits from wide reading. You should try to
consider multiple views on the topics contained here, and to consider them
critically. Try to augment your reading with online resources. Although you
should aim to read academic texts as well, there is much helpful discussion
on the pages of database vendors and developers. Consultants often
publish blogs that can promote interesting debate – for example, Database
Debunkings (www.dbdebunk.com) posts lively and engaging short articles
on current issues in database management and the relational model. Such
resources can prove short-lived, and so we do not list them in this subject
guide, but they are not hard to find.

You should expect to install and experiment with at least one SQL-based
Database Management System during this course, and you should read
documentation and commentary about your choice of system. Which software
you choose is up to you. A comprehensive list of products and their features
may be found on Wikipedia (https://en.wikipedia.org/wiki/Comparison_of_
relational_database_management_systems).

The ones you are most likely to find useful are:

 • PostgreSQL, sometimes shortened to Postgres; this is probably the most
powerful and standards-compliant free and open-source database
available, and has also been extended by many add-ons. Organisations
that use PostgreSQL include Instagram, TripAdvisor, Sony Online,
MusicBrainz, Yahoo! and the International Space Station. Documentation,
downloads and discussion can be found at: www.postgresql.org

 • MySQL is probably the most popular free and open-source database,
partly because it has historically been slightly faster than the competition.
Its support for SQL is less comprehensive than PostgreSQL, and it is less
powerful, but it has a reputation for being easy to run and easy to embed
in a web database environment. Organisations using MySQL include Uber,
GitHub, Pinterest, NASA and Walmart. Documentation, downloads and
discussion can be found at: www.mysql.com/ When MySQL was bought
by Oracle and became only partially open source, an alternative version,
MariaDB, was created by some of its original developers. This is designed to
be very close to MySQL itself. It is available from: https://mariadb.org

 • SQLite is a very lightweight database management system designed to be
embedded in other software rather than being used as a server in the usual
sense. It has a reduced support for the SQL standard. It is embedded in
most web browsers for internal storage, and is part of the Android, iOS and
Windows 10 distributions. Documentation and downloads can be found at:
www.sqlite.org

https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://www.postgresql.org
http://www.mysql.com/
https://mariadb.org
http://www.sqlite.org
CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

6

 • Microsoft SQL Server is a commercial, proprietary database management
system. Microsoft provide tools for ‘upsizing’ from Microsoft Access
databases, although migrating data from Access to other SQL databases
is not too difficult. Some information is available at: www.microsoft.com/
SQLServer. Please note that Microsoft Access is not suitable for this course.

 • Oracle Database is a commercial, proprietary database management
system with a history of strong SQL support and high reliability. Oracle
is the relational database software with the highest market share. More
information is at: www.oracle.com/database

Unless otherwise stated, all websites in this subject guide were accessed in
February 2016. We cannot guarantee, however, that they will stay current and
you may need to perform an internet search to find the relevant pages.

1.7.4 Online Library and the VLE
In addition to the subject guide and the Essential reading, it is crucial that you
take advantage of the study resources that are available online for this course,
including the VLE and the Online Library.

You can access the VLE, the Online Library and your University of London email
account via the Student Portal at: http://my.londoninternational.ac.uk

1.7.5 End of chapter Sample examination questions and
Sample answers

To help you practise for the examination, we have included some end of
chapter Sample examination questions with their scope limited to the content
of that single chapter, but still of approximately the same scale, style and
difficulty as the ones in the examination. Although different questions may
emphasise one topic over another, it is unlikely that any question can be
tackled just by knowing the contents of a single chapter from the subject
guide. In practice, each question in your examination can require knowledge
of the whole syllabus.

You should aim to spend no more than 45 minutes answering each of
these Sample examination question sections. Remember that in the real
examination, you will need time to read five questions, choose which ones to
answer, write your answers and check them all within the allocated time of
three hours.

Once you have attempted these Sample examination sections under timed
conditions, you should check the Appendix at the end of the subject guide for
the Sample answers.

1.8 Examination advice
Important: the information and advice given here are based on the
examination structure used at the time this guide was written. Please
note that subject guides may be used for several years. Because of this we
strongly advise you to always check both the current Regulations for relevant
information about the examination, and the VLE where you should be advised
of any forthcoming changes. You should also carefully check the rubric/
instructions on the paper you actually sit and follow those instructions.

In the examination for this course, you will be required to answer four out of
five questions in the paper within a 3-hour period. Each question is worth
up to 25 marks. In practice, each question in your examination may require
knowledge of the whole syllabus.

Although different questions may emphasise one topic over another, it is
unlikely that any question can be tackled by knowing just one area, and you

http://www.microsoft.com/SQLServer
http://www.microsoft.com/SQLServer
http://www.oracle.com/database
http://my.londoninternational.ac.uk

Chapter 1: Introduction to the subject guide

7

should be expected to be tested on every topic no matter which questions
you choose. Since one question from the examination may be left out, it is
good practice to read each question before you start – if only one has an
element that you doubt you will be able to answer, then skip it.

It is common for at least one question to provide a simple textual description
of a real-world system and ask the candidate to provide a model for it, whether
using a purely relational model (see Chapter 3 of Volume 1 of the subject
guide), or an E/R model or a set of SQL tables (see Chapter 4 of Volume 1 of
the subject guide). These questions present a good opportunity to get marks
quickly, but take care in analysing the description, as it is important to show
that you have understood it.

Be prepared to summarise definitions and key terms quickly and in a few
words – some will certainly be needed. When asked for an explanation or a list
of reasons, note the number of marks allocated to the question. This is likely
to reflect both the amount of time the question is expected to take you and
the number of elements in the answer – if you are asked to provide a list of
advantages of a technology, firstly consider whether each answer is likely to be
worth ½, 1 or 2 marks and then compare that with the marks for that question.
This should tell you the number of elements you are expected to list.

Many aspects of the examination will recur, with changes, in different years.
You can access previous papers and Examiners’ commentaries on the VLE.
Practising with past examination papers is probably the single best way to
prepare in the weeks before the examination. You are strongly advised to
practise them under timed examination conditions.

Remember, it is important to check the VLE for:

 • up-to-date information on examination and assessment arrangements for
this course

 • where available, past examination papers and Examiners’ commentaries for
the course.

1.9 Overview of the chapter
In this chapter, we have introduced the course and this volume of the subject
guide, listing the aims and objectives of the course and outlining some
practical aspects of working through the subject guide, the reading and other
resources, before offering some advice on examination preparation.

1.10 Test your knowledge and understanding
1.10.1 A reminder of your learning outcomes

By the end of this course, and having completed the Essential readings and
activities, you should be able to:

 • understand the main issues relating to database systems in general

 • have detailed knowledge about the relational model

 • analyse a specific problem, synthesise the requirements and accordingly
perform a top down design for a corresponding (relational) database

 • have the knowledge and practical skills to implement and maintain a
relational database (in SQL)

 • be aware of alternative models of and approaches to database systems,
particularly web-scale systems, and also including object databases,
deductive and knowledge-based systems, etc.

 • have more in-depth knowledge in one or more of the previously
mentioned trends.

Notes

CO2209 Database systems: Volume 1

8

Chapter 2: Databases – basic concepts

9

Chapter 2: Databases – basic
concepts

2.1 Introduction
This chapter considers some basic concepts of databases, what they are and
their advantages and/or disadvantages before introducing data modelling
and relational theory.

2.1.1 Aims of the chapter
The aims of this chapter are to give you an overview of databases, explain their
components, introduce the architecture of a database system, consider what
a database management system is, before explaining data modelling theory
and defining its place within the context of database systems.

2.1.2 Learning outcomes
By the end of this chapter, and having completed the Essential readings and
activities, you should be able to:

 • discuss the limitations of the file-based approach

 • describe the way the database approach overcomes the limitations of the
file-based approach

 • define and explain what is meant by a database system and a database
management system (DBMS)

 • describe the three-level ANSI/SPARC architecture of a database system

 • discuss the schemas and mappings corresponding to the three level ANSI/
SPARC architecture

 • discuss the concept of data independence

 • explain the role of each of the components of a database system – data,
hardware, software and users

 • present the most important features of a DBMS

 • discuss the advantages and disadvantages of database systems

 • discuss issues related to distributed database systems

 • explain what a data modelling theory (or data model) is and define its
place within the context of database systems.

2.1.3 Essential reading
• Date, C.J. An introduction to database systems. (Pearson/Addison Wesley,

2003) 8th edition (international edition) [ISBN 9780321197849 (pbk)],
Chapter 1 and Chapter 2.

and/or

• Connolly, T. and C.E. Begg Database systems: a practical approach to design
implementation and management. (Pearson Education, 2014) 6th edition,
global edition [ISBN 9781292061184 (pbk)], Chapter 1 and Chapter 2.

2.1.4 Further reading
• Elmasri, R. and S.B. Navathe Fundamentals of database systems. (Pearson,

2016) 7th edition [ISBN 9781292097619 (pbk)], Chapter 1.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

10

• Ramakrishnan, R. and J. Gehrke Database management systems. (McGraw-
Hill, 2002) 3rd edition [ISBN 9780072465631 (hbk); 9780071231510 (pbk)],
Chapter 1, sections 1.1–1.4.

2.2 What is a database?
The first – and most obvious – question to ask when you take up this subject
is the simplest – ‘What is a database?’ Certainly, you will have dealt with them,
indirectly, almost daily. Whether you are in a shop in person or whether
you are exploring its catalogue on the internet, when you check whether a
product is in stock, it is likely that a database will be used somewhere within
the system. Amazon and Facebook, YouTube and iTunes all use databases to
deliver products and services to their users.

The database and its structure may be quite obvious to the user for a library
catalogue or an online retailer, but it may also be serving a less direct purpose,
allowing the company to keep track of its employees and suppliers, or helping
an advertiser track visitors to web pages across different sites, tailoring their
adverts to match a browser’s activity.

A database system is a system that stores data. To qualify as a database system,
there are some features that it would have to offer:

 • find (retrieve) data

 • add (insert) new data

 • delete unwanted data

 • change (update) data.

This definition will be refined and formalised in the sections to come, but first,
we can illustrate these features with an example.

Consider a shoe shop, specialising in trainers. The shop keeps information
about the products it sells. This information could be organised in the form of
a table, as shown in Figure 2.1 (prices are in U.K. pounds sterling, shown as £),
and could be part of the shop’s database.

Model Brand Size (EU) Location Price Stock level
Air Max 90 Nike 35 K1S4 £40.00 3

Air Max 90 Nike 37 K1S4 £40.00 12

Mesh Kaplan 48 MFash1 £65.00 18

Ferris Vans 41 WPlim2 £10.00 1

… … … … … …

Figure 2.1. A part of a shoe shop’s database of trainers.

The ‘Vans Ferris’ range is about to be discontinued, and the shop will no longer
have them for sale once the pair in stock is sold. At that point, the record for
that shoe – the row in the table – will be deleted.

‘Kaplan Mesh’ shoes have not been selling well, and the large number in stock
is taking up space, so the price will be reduced to £40. The corresponding field
for the price of that product – a cell in this table – will be updated.

Activity

Before you read on, try to list some other examples of databases you have come
across. What do they have in common? Based on your examples, write down
what you think are the most important features of a database.

Chapter 2: Databases – basic concepts

11

A new fashion trainer, the ‘Asics Gel Lyte VI’ has just been released, so a new
record – a new row in the table – must be inserted. In this example, we would
expect several new records – for different sizes of shoe – to be inserted, but we
will only show one, to save space.

Figure 2.2 shows the table after these operations – deletion, updating and
insertion – have been carried out.

Model Brand Size (EU) Location Price Stock level
Air Max 90 Nike 35 K1S4 £40.00 3

Air Max 90 Nike 37 K1S4 £40.00 12

Mesh Kaplan 48 MFash1 £40.00 18

Gel Lyte VI Asics 46 MFash3 £100.00 14

… … … … … …

Figure 2.2. Part of the shoe shop’s database after some changes. Altered fields are underlined.

A database has a structure and content. The structure is represented in this
example by the table headings; the content by the body of the table. The
content changes in time – it is dynamic in nature. The structure can change,
but it is far less changeable than the content. For instance, you could add
a new column to this table – the type of trainer or the activity it might be
associated with – but you would not expect to make such changes that often.
The structure of the database is called its intension and the content is called
its extension (we will return to this in more detail later in this chapter).

Although it may not be obvious from this example, a database is capable of
storing a large amount of data.

So far, a database system is, for us, nothing more than a system that manages
data. But is any system that manages data a database system? Is there
anything that all database systems have in common, that distinguishes
them from other software systems? The answer is obviously yes. In order
to understand the ‘database approach’, we shall first have a brief look at
file-based systems. In appearance (behaviour) they are similar to database
systems, but they are conceptually (qualitatively) different. We shall identify
the drawbacks of the file-based approach to data management and then
introduce the database approach as a solution to most of these drawbacks.

2.2.1 File-based systems
We shall start with a definition of file-based systems.

Definition: A file-based system is a collection of application programs, each
managing its own data.

In a file-based system, permanent data is stored in various files of ad-hoc
structures. Each application program defines and handles its own data files
independently of the others. This approach is called the de-centralised
approach. Each application program works with its data at the physical level,

manipulating records as they are organised in persistent memory. Sharing of
data between applications is likely to be limited.

Activity

Consider the database examples you listed in the previous activity. For each one,
think about it as a table like the ones in Figures 2.1 and 2.2 above. What columns
would the table have? Would all the information fit in a single table, or would
there be several?

CO2209 Database systems: Volume 1

12

The concept of a physical level for data is one to which we will return later.
The structure we describe is not purely physical, but we use the term to
indicate that it is to some extent platform dependent, because access to
files is made through the primitives (built-in functionality) of the operating
system.

Take, for example, an estate agent’s office, for which we shall consider the
Sales and the Contracts department. Each department maintains its own data
in its own data files, as depicted in Figure 2.3.

Sales Department files

Property for rent file

Property ID Street Area City Postcode Type No Of Rooms Rent Owner ID

Owner ID

Owner ID First Name Last Name Address Telephone Number

Renter file

Renter ID First Name Last Name Address Telephone Number Preferred type Maximum Rent

Contracts Department files

Property for rent file

Property ID Street Area City Postcode Rent

Renter file

Renter ID First Name Last Name Address Telephone Number

Owner file

Owner ID First Name Last Name Address Telephone Number

Lease file

Lease ID Property ID Renter ID Owner ID Payment Type Rent Deposit Start Finish

Figure 2.3. A file-based system for an estate agent’s company.

The Sales Department needs:

 • detailed information about the properties for rent, so staff can give good
advice to customers (such as Type and No Of Rooms from the Property for
rent file);

 • detailed information about customers, so that their needs can be
appropriately matched to what is available (such as Preferred Type and
Max Rent in the Renter file);

 • ‘identification’ information – such as name, address and telephone number
– about customers, the properties on offer and their owners.

The Contracts Department needs:

 • detailed information about the renting contracts (in the Lease file);

Chapter 2: Databases – basic concepts

13

 • ‘identification’ information – such as name, address, telephone number –
about customers, the contracted properties and their owners.

Some drawbacks of this solution are obvious. These are the limitations of the
file- based approach in general. The most important are enumerated below.

Duplication. Different applications might have to make use of the same
information. Because each application has its own files, data is duplicated
(e.g. the ‘identification’ information in our example). This aspect has at
least two negative consequences. Firstly, duplication is wasteful.1 Secondly,
data can become inconsistent – it can have different values in different
files (belonging to different applications), even though it is supposed to
give the same piece of information. For example, the address of an owner,
Mr. J. Morris, might be updated in the Owner file belonging to the Sales
Department, while the Contracts Department might still have Mr. Morris’s
old address.

1 Wasting disk space
is unlikely to be a
significant concern
in the example we
have given – storage
is cheap – but in
situations where the
number of applications
and the scale of
duplication is greater,
this can become more
important.

Separation and isolation. Data is scattered among different files, each file
belonging to a certain department. A department has access to its own
files, but no access to the files of the other departments. Files belonging
to different departments cannot be used together in order to create more
complex data or analysis. Often, because they are based on different
infrastructures (platforms, development software, etc.) files belonging to
different departments cannot be transferred (copied) across.

Program-data dependence. Each file belongs to a certain application
program. The (physical) structure of data is defined inside the application
program. This could easily – and usually does – lead to incompatible file
formats between applications, meaning that it becomes impossible to share
data between them. Another aspect is that data definition is embedded in
the application program. That means that if the physical structure of data
is to be changed – for instance, if instead of representing a year with two
digits, it is to be represented with four2 – then the application program
itself must be changed. Not only that, but the methods of access and
manipulation of data are also embedded in the application program (for
instance, in previously-defined queries); to change them, the application
program must be modified.

2 This was a problem
in the late 1990s
with the ‘millennium
bug’. Systems that
represented, for
example, 1998 as
‘98’ were in danger of
getting calculations
wrong, or not
functioning at all, when
called upon to represent
2000. Many businesses
had to pay for the
rewriting of their file-
based systems.

In the file-based approach, the emphasis is placed on functionality – provided
by the application program. Data modelling takes a lower priority. This
approach leads to the drawbacks we have listed. If the approach is inverted
and we consider data as central, then these problems can be removed.
Informally, this represents the database approach.

2.2.2 Databases and database management systems
We shall start with the definition provided by Connolly and Begg:

Database. ‘A database is a (shared) collection of logically-related persistent
data (including its description) as part of the information system of an
organisation.’

Let us now explain this definition. A database is a large repository of data,
in which data is defined once and stored once. Data that was scattered in
different files – with different formats and owners – in the file-based approach,
is now integrated with minimum redundancy (duplication), as a single
resource. Different application programs will share this common resource,
usually concurrently (at the same time).

CO2209 Database systems: Volume 1

14

There are times when redundant data is necessary, some of which will be
explored in this guide. You might choose to store intermediate results that
are called for often (using snapshots) or to ensure the atomicity of a set of
operations (transactions). In these cases, the redundant data is intentionally
included to achieve something extra, and even so requires special treatment.

The diagrams in Figure 2.4 and Figure 2.5 illustrate the differences between
the database approach and the file-based approach.

Group 1 of users

Group 2 of users

Group n of users

Files of Application 1

Files of Application 2

Files of Application n

Application 1

Application 2

Application n

Figure 2.4. The file-based approach.

In the database approach (see Figure 2.5), the raw data is integrated in a
common database for all applications. The data is managed by a database
management system (DBMS), which provides shared access to it, for all the
applications in the system.

Group 1 of users

Group 2 of users

Group n of users

DBMS

Database
raw data

+
data

dictionary

Application 1

Application 2

Application n

Figure 2.5. The database approach.

A database management system is a software system that provides
a set of primitives (built-in functionality) for defining, accessing and
maintaining a database.

A database stores both the raw data and its description. We say that the
information3 stored in a database is self-describing. The description of the raw
data is known as the system dictionary, data dictionary or metadata.

The consequence of this approach is program-data independence. This
means that the structure of data may change without affecting the application
programs that use it. This basic definition is going to be refined and better
explained later in this chapter.

This approach – separating the data definition from application programs – is
similar to data abstraction in programming, where the internal definition of
an object is kept separate from its external definition. An outside system can
only see the exterior of the object. As far as the external definition remains
unchanged, any changes in the object’s internal definition do not affect the
outside system.

A database management system automatically performs a lot of the
housekeeping tasks that would otherwise be the responsibility of the

3 For the purposes of
this course, ‘data’ and
‘information’ will be used
synonymously.

Chapter 2: Databases – basic concepts

15

application programmer. As a result, the user – i.e. the person who defines
and uses the database – is presented with a clean and powerful set of tools
for database development and exploitation. A more detailed description of
both database systems and database management systems is provided in the
following sections. At this stage, it is important that you broadly understand
why database systems are needed and what their main benefits are.

This definition, with its distinction between file-based and database
approaches is quite high-level and functional. From the discussion above,
many organisations that use database software would still be defined as
having a file-based system, if different departments use different database
implementations for storing similar data.

2.3 The three-level ANSI/SPARC architecture of a
database environment

Program-data independence is one of the most important advantages
offered by the database approach. This independence can be achieved if the
system is abstracted into two or more levels. A low-level abstraction deals
with how data is organised on the physical support.4 Meanwhile, a high-level
abstraction describes the logical structure of data, irrespective of its physical
representation. This separation allows the separation of the design of a
database from the details of its implementation.

This idea can be further refined.

 • Users and application programs should be freed from considering the
aspects of the system related to the physical representation of data, such
as storage and accessing details. Instead, they should be able to take into
consideration only the logical structure of data. Rather than having to deal
with such aspects in each application program it would be much better if
these problems were to become the responsibility of the system (DBMS)
that manages data.

 • It should be possible to change the physical representation of data without
affecting users, as long as its logical structure is preserved.

 • As we have seen, the database integrates all the information required
within an organisation. Individual users will often only need (or be allowed)
access to certain parts of this ‘pool of information’. Each user, then, needs
to have a customised view of the database and it should be possible to
change that view without affecting other users.

These aims were formalised in the early 1970s and codified and adopted
as a standard in 1975 as the ANSI/SPARC three-level architecture. The
architecture forms a basis for most modern DBMS.

The ANSI/SPARC architecture consists of three levels of abstraction (see Figure
2.6). The external level represents the way data is viewed by individual
users. The conceptual level represents the way the organisational data (i.e.
all data that is relevant for the organisation) is structured. The internal level

Activity

Before you read on, try to think of an organisation you know – perhaps one you’ve
worked for or studied at – that has multiple systems similar to what is described
above. What problems can occur when you have data duplication like this?
Does it matter whether the separate systems store their information in database
software or spreadsheets? Do you think this is a useful definition of database
systems?

4 This is a generalised
term for the permanent
memory or disk storage
of the system.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

16

represents the way data is physically stored, although the very lowest-level
aspects of that are likely to be handled by the operating system itself.

External level

Conceptual level

Internal level

Physical data
organisation

Conceptual schema

Internal schema

View 1 View 2 View 3 View n

Storage

Figure 2.6. The ANSI/SPARC three-level architecture.

The external level. This incorporates each user’s external view of the
database. A user’s view consists only of the data needed by that user. Other
data may exist in the database, but the user does not need to be aware of it.

For instance, suppose that the database of a software company includes
information about its employees. The Personnel Department’s view of the
employees – the data that is relevant to them – might consist of: name,
address, sex, date of birth, qualifications, department for which the employee
works, current salary, job contract details, and details about previous jobs.
The Personnel Department needs to be able to access this data about any
employee in the company.

On the other hand, the Development Department’s view of the employees
might consist of: departmental ID, name, telephone number, timetable, the
projects in which the employee is involved including the employee’s role in
each project, the objectives and their deadlines. Only the data about its own
employees is relevant for the Development Department.

The whole information about the company’s employees is stored in the
database. However, the two departments need access to different projections
of data. The data relevant to each department represents the department’s
external view of the database (Figure 2.7).

External level

Conceptual level

Personnel Department
(name, address, sex,

birth date,
quali�cations,

dept...)

Development Department
(ID, name, telephone,
timetable, position in

project...)

View 1 View 2

Figure 2.7. Two external views of the same database, one accessible to Personnel Department
users, and the other to Development Department users.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

Chapter 2: Databases – basic concepts

17

Different users may want to see the same data in different formats, for
instance, name might be stored in multiple fields (for first and last name), but
will be required as a single name. The external level might also include derived
data – calculations based on stored data – for instance, a user might need an
employee’s age, which could easily be calculated from the date of birth stored
in the database.

The conceptual level. This represents the logical structure of the database
(of all the data required by the organisation). It can be seen as the union
of the whole set of views at the external level. Conversely, any view should
be derivable from the conceptual level. The conceptual level represents
the information stored in the database about the real life system’s entities
(objects) and the relationships between them. The representation of data at
this level is still independent from any physical considerations – it specifies
what is stored, rather than how it is stored.

2.4 Schemas and mappings
Before we look into how the three abstraction levels are defined within a
DBMS, the distinction between the description of the database and the
content of the database must be made clear.

Database schema. The description of the database is called the database
schema or the database intension. This is specified at the creation of the
database. It is not expected to change very often.

Database instance. The raw data that populates a database at a particular
point in time is called a database instance or the extension of the
database.

Consider, for example, a database that maintains information about the
employees of a company. The required information for each employee is:
name, date of birth, address, job and pay scale. Suppose that the database is
organised in the form of a table. Then, the specification of the table’s heading
can be considered as the database schema (or database intension), whereas
the content of the table at a specific moment in time can be considered as the
database instances (or database extension) (see Figure 2.8).

The internal level. This describes the physical representation of data.
The internal level specifies how data is stored. It is at this level where
the physical data structure and file organisation are defined. The internal
level is situated at the interface between the DBMS and the Operating
System (OS). It is quite common that the internal level of the DBMS uses
the file management primitives of the OS. However, there is no clearly
defined boundary between the OS and the internal level. Because of this,
there often exists another level below the internal level, namely the actual
physical support (cylinders, blocks, clusters, etc.) (this extra layer is shown in
Figure 2.6).

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

18

Name Date of birth Address Job Pay scale

String Date String String Integer

Name Date of birth Address Job Pay scale

A. Johnson 02-02-1995 London Programmer 10

S. Lee 09-07-1996 Leeds Analyst 14

J. Singh 05-05-1989 Edinburgh Programmer 12

Figure 2.8. Tables showing a database schema (above) and extension (below) of a database
table.

The database schema consists of three types of schemas, one for each level of
abstraction:

 • External schemas describe the external level. There is one schema for
each view.

 • The conceptual schema (one only) describes the conceptual level. All
the definitions should only take the logical structure of the data into
consideration. Implementation aspects, and user views, should be
disregarded.

 • The internal schema describes the internal level. It defines the physical
records, methods of representation, index implementation, etc.

As a result of this separation of concerns, mappings are needed to allow
navigation between the schemas. Since there are three types of schema, there
are two types of mapping:

 • External/conceptual defines the correspondence between an external
schema and the conceptual schema.

 • Conceptual/internal defines the correspondence between the conceptual
and the internal level.

Figure 2.9 illustrates these ideas with a simple database maintaining
information about a company’s employees. Two external views of the
database are considered in this example; one for the Finance Department and
one for the switchboard. The information needed by the Finance Department
uses the full name, age and salary of each employee and is defined by its
corresponding external schema. Each employee must be uniquely identified.
Since two employees might have the same name, a unique identifier, ID, is
used.

The information needed by the switchboard, defined by the respective
schema, only refers to the name, job and telephone number of each
employee. The switchboard needs employees’ first and last names to
be separate, so they can be sorted easily. For the switchboard, unique
identification of each employee is less critical, and the job title combined with
the employee’s name is used. The assumption that two employees having
the same name will not have the same job title as well is considered safe
enough.

Other external views might exist too, and other data might be stored in the
database but we are dealing with a heavily simplified example for the sake of
clarity.

The conceptual schema, that defines the conceptual level, unites the data
required to support the two views. It specifies the identifier, first and last
name, date of birth, job title, employment date, salary scale and the telephone
number of each employee.

Chapter 2: Databases – basic concepts

19
Figure 2.9. Schemas and mappings for an employee database.

ID Name Age Pay
scale

First
name

Last
name

Job
title Number

External schema 2External schema 1

ID = Id
Name: Fname × Sname → string
Age: BirthDate → Int
Pay scale: Scale → Int

First name = FName
Last name = SName
Job title = JTitle
Number = TelNo

external/conceptual
mapping 1

external/conceptual
mapping 2

Id
Int

SName
String

FName
String

BirthDate
Date

JTitle
String

EmplDate
Date

Scale
Int

TelNo
Text

Conceptual schema

conceptual/internal
mapping

struct STAFF Table_Employees [5000];

struct STAFF {
 int ID;
 char FName[25];
 char SName[25];
 date BirthDate;
 chr JTitle[25];
 date EmplDate;
 int Scale
 char TelNo[15];
}

struct INDEXES {
 int ID;
 int Index;
} Index_Employees[n];

Finance Department Switchboard
Ex

te
rn

al
 l

ev
el

Co
nc

ep
tu

al
 l

ev
el

In
te

rn
al

 l
ev

el

Internal schema

Table_Employees <implemented-as>
ARRAY[n] of struct STAFF

CO2209 Database systems: Volume 1

20

The link between the external schemas and the conceptual schema is made
by the external/conceptual mappings. The mappings corresponding to the
Finance Department’s view is defined as:

Finance Department schema Conceptual schema

ID=Id Id

Name=concatenate(Fname, ‘ ‘, Sname) Fname, Sname

Age=current_year() – yearOf(BirthDate) BirthDate

Pay Scale = Scale Scale

 The other mapping – between the Switchboard’s view and the conceptual
schema – is self-explanatory.

The internal schema consists of the data structures that are used to represent
(implement) the conceptual schema. For the above example, this is struct
STAFF, in a C-like hypothetical language. It also can include other structures
(i.e. not derived from the logical level), used for pragmatic reasons (e.g.
efficiency). In the above example, an index was defined, INDEXES, in order to
make the retrieval operations (from Table_Employees) faster.

The conceptual/internal mapping links the definition of data at the
conceptual level with the way it is actually represented – it links what
data is represented with how it is represented. The table Employees is
implemented as an array of records of type struct STAFF. Note that the index,
Index_Employees, is used purely at the internal level (i.e. it is not mapped
to the conceptual level). This is because the index does not describe the data
as such – it is a way of making access to the data faster or more efficient.

As a final point, the issue of data independence can now be reconsidered. One
of the main advantages provided by the three-level architecture of a database
system is the provision of data independence. There are two types of data
independence:

Physical data independence is the immunity of application programs to
changes at the internal/physical level.

Logical data independence is the immunity of application programs to
changes at the conceptual level.

For instance, in the example above, the Employees table can be
implemented using a linked list. If the conceptual/internal mapping is
modified appropriately, and as long as the conceptual schema stays the same,
the application programs (situated above) remain unaffected.

Logical data independence may be more difficult to achieve since application
programs typically rely heavily on the logical structure of data. However,
suppose another view is needed, for the Personnel department, which requires
information about the address and the family status – such as marital status,
dependants and next of kin – for each employee. The conceptual schema can be
extended as necessary, without affecting the other two views.

Chapter 2: Databases – basic concepts

21

2.5 The components of a database system

Data

Users

Hardware

Software

Figure 2.10. The components of a database system.

At the highest, most general level, a database environment consists of:

 • data, representing the information needed for an organisation;

 • software, serving two purposes:

the management of the stored data, and

further processing of the data to the users’ needs;

 • hardware, supporting both the stored data and the software components;

 • users, broadly divided into two categories:

developers of the database system, and

users of the system.

2.5.1 Data
Data can be classified into two categories, namely:

1. Primary data – the fundamental information necessary to provide the
database service, stored on permanent support, such as hard disks.

2. Derived data – information that can be inferred or calculated from primary
data (and may be recalculated at any time).

Derived data may be the output of the application programs – the result of
processing the primary data – in a form suitable for the users’ needs, but it can
also be the input from users that will then be processed by the application to
be stored as primary data.

The focus of a database system is on primary data. This has to be appropriately
identified, described and implemented. The primary data has three important
characteristics. It is:

 • integrated, rather than existing in separate systems – it has been gathered
together into a single system5

 • shared, with all the applications belonging to the information system
having common access to (at least parts of) it

 • extensive, in that database systems are usually developed for data
intensive applications, where their benefits are more clearly felt.

Stored data, as we have already seen, does not include only the raw data, but
also its description – the metadata, system dictionary or catalogue.

5 This ‘single system’
may still be distributed
across multiple servers,
the implications of
which will be discussed
in Volume 2 of this
subject guide.

CO2209 Database systems: Volume 1

22

2.5.2 Software
The software component can be seen as consisting of three layers (Figure
2.11):

 • the operating system (OS), positioned at the base, provides the necessary
routines for accessing the hardware resources (such as file handling or
memory management routines);

 • the database management system (DBMS), placed above the OS – and
using the routines that the OS makes available – provides all the necessary
primitives for data management, including languages for defining
schemas, manipulating and reading data and so on;

 • application programs, above the DBMS – and using the routines made
available by the DBMS – provide data formats and computations beyond
the capabilities of the DBMS.

Figure 2.11. The layered structure of the software component of a database system. Anything
below the dashed grey line is platform-dependent, and so will not be discussed here in any
detail.

The hardware and the OS are often grouped together and called the platform.
There is considerable variation between platforms, which is one reason
for having the DBMS software handle this variation and present a more
abstracted interface to higher-level components. This provides a platform
independence that shields the application programs from unnecessary
physical details, and means that we need not concern ourselves with details
of hardware or OS for the remainder of these subject guides. Instead, we focus
on the features provided for the application programs by the DBMS.

Applica4 on
Program 1

Applica4 on
Program 2

Applica4 on
Program n

Database
Management

System (DBMS)

UPDATE
DATA

SELECT
DATA

ADD
DATA

WRITE
TO FILE

READ
FROM FILE

Operating
System (OS)

DiskDisk

Chapter 2: Databases – basic concepts

23

The features of the DBMS will be considered in detail over the course of
this chapter. Briefly, the DBMS provides support for schema definition, data
manipulation, data security and data integrity.

The application programs can be of two kinds:

1. user developed;

2. provided together with the DBMS by its developer.

The former class of applications will generally be written in a high-level
programming language, such as C, Java or Python. Support for database
access in such languages is provided by means of a data sub-language,
embedded within the host language. Statements written in the embedded
sub-language are processed and passed on to the DBMS using the
appropriate routines.

Programs provided by the DBMS developer allow the rapid development
of user applications, without the user writing any conventional code.
Programming tools abstract away or remove so much functionality in order
to allow often application-specific software to be constructed quickly; these
are known generically as fourth-generation tools. Home or small business
database systems – such as Microsoft Access or OpenOffice Base – provide
graphical fourth-generation tools for this purpose.

The DBMS can also be referred to as server or backend (server), whereas the
application programs are referred to as clients, or front-ends. Clients use the
services provided by a server for data management. The division between
client and server makes it possible for the server and client to run on different
machines, giving rise to the idea of distributed processing, an issue discussed
in the ‘Database architectures’ section and elsewhere in these subject
guides.

2.5.3 Hardware
As we have seen, the DBMS allows both the developer of a database and
the database users to operate without knowing the details of the hardware
being used. This does not remove from the system administrator the need
to select hardware and operating systems that, firstly, are capable of running
the chosen software; and secondly that can cope with the demands that
will be placed upon it by the database and associated systems. The system
administrator should be satisfied that:

1. There is enough permanent storage space, for instance disk space, to store
the data and any indexes and cached derived data.

2. There is enough temporary storage space, for instance RAM, to hold
intermediate results and computations.

3. There is enough computational power to manipulate the data at the rate
that will be required.

4. There is fast enough communication between components of the system
for moving the data between them. This is only usually an issue for
particularly data-heavy applications or systems with a very large user base.

Although DBMS vendors will provide recommendations for minimal
configurations required for different sizes of application, individual use cases
will have a large impact on the system requirements.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

24

2.5.4 Users
Users, as a component of a database environment, can be classified in four
categories, according to the role they play.6

Data administrator. The data administrator (DA) is a user who properly
understands the data requirements of the organisation and is in charge of
administering the organisation’s data. This user:

• decides which data is relevant and which is not;

• is in charge of applying the organisation’s policy and standards;

• decides on the security policy, and so on.

The DA does not need to be a technical expert or a manager. Rather, the DA
is somewhere in between, liaising with the management on one hand, and
with the technical team, on the other.

Database administrator. The database administrator (DBA) is the technical
user in charge of the database system. More specifically the DBA is
responsible for the database’s design, implementation and maintenance,
and deals with both the correctness of the implementation and the
efficiency of the database system. The DBA must have good technical
knowledge and is in charge of the definition of the DB schemas, integrity
and security rules, access procedures, backup and recovery procedures,
performance of the system, etc.

Application programmer. The application programmer writes programs
that perform more complex processing of data (either computations
or formatting). For this, they use either a third-generation language,
embedded with a database language, or a fourth-generation tool. The
resulting programs are for use by end users.

End user. The end users are the ‘beneficiaries’ of the database system.
They may range from technically naïve to extremely sophisticated. A
technically naïve user, for example a bank employee, may interact with the
system using application programs developed for specific tasks. A naïve
user does not have to be aware of the functionality of the DBMS. All they
need is reliable and easy to use programs that they can use with minimal
fuss. A sophisticated user, on the other hand, will know how to access the
database directly, through the database language supported by the DBMS.
Sometimes a sophisticated user might even develop applications, and so
become an application programmer.

2.5.5 DBMSs and database languages
The database management system is the software through which all access
to the database is made. This is a concise but limited definition. In reality
the DBMS is responsible for much more. Some of its important features are
presented below.

6 The term user is
often used in software
engineering to refer
to one or more people
playing a particular
role in interacting with
software. That means
that a ‘user’ here can
mean several people,
and one person can be
several different ‘users’
in different contexts,
depending on the work
that she or he is doing at
the time.

Activity

At the beginning of this chapter, you were asked to list databases you had encountered
in real life. For each one, consider which group of user takes which of the above roles. Is
the separation always clear?

Chapter 2: Databases – basic concepts

25

Data definition. The DBMS must provide support for defining or modifying
the database schema. Schema definition includes specifying data types,
structures, constraints and security restrictions. This is achieved by means
of a data definition language (DDL). The statements made in DDL for
a specific database system represent the system’s catalogue (or data
dictionary7). In theory, there should be a DDL at each level of abstraction
(i.e. external, conceptual and internal), but in practice there usually exists a
single DDL that allows definitions at any level.

7 Some authors
consider the term data
dictionary to be more
general than system’s
catalogue (Connolly).Data manipulation. The DBMS must provide support for data

manipulation. In particular it has to support:

• retrieval of existing data, contained in the database

• deletion of old data from the database

• insertion of new data

• modification of out-of-date data.

This is achieved by means of a data manipulation language (DML). There can
be a DML at each level of abstraction. At the external and conceptual level, the
DML is concise, comprehensive and easy to use; in other words, the emphasis
is on its expressive power – on these levels, efficiency is a secondary goal.
On the other hand, at the internal level, the emphasis is placed on the DML’s
efficiency. This means that its statements are complex – and probably not that
straightforwardly expressible – but quite efficient.

These languages (DDLs and DMLs) are called data sub-languages
because they do not include constructs for the control of flow – they are
computationally incomplete (meaning they cannot be used as general
purpose programming languages).

Users can use them directly in order to define and access the database.
However, for applications that require more complex data processing (and
formatting) they are usually embedded into a full high-level programming
language.

Some authors prefer to further divide DMLs into two categories; namely,
procedural and non-procedural (declarative). Within a procedural language
one must specify how the result to be obtained is computed; whereas using
a declarative language one only has to specify what result must be obtained
– what it looks like – the system being responsible for its computation. Since
there are neither pure declarative or pure procedural DMLs – they range
between the two – any classifications of this kind are rather ad-hoc in nature.
For example in certain situations SQL can be considered declarative while in
others it can be considered procedural.

An important requirement for DMLs is to allow unplanned or ad-hoc queries;
namely, requests that were not foreseen at the time of design. A problem that
may result from this is how to gain reasonable efficiency for such unpredicted
use.

Other features that the DBMS must provide include:

 • support for data integrity – the system must ensure that there are no
‘contradictions’ between the data values in the database; this is achieved
based on a set of integrity constraints (part of the data dictionary)

 • support for security control – the system must ensure that data is not
accessed by unauthorised users or applications; this is achieved based on a
set of security rules (part of the data dictionary)

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

26

 • recovery services – the ability to restore the database to a previously
correct state in the case of a crash or error

 • concurrency facilities – allowing the database to be accessed by more
than one user at a time

 • support for data communication

 • user-accessible data dictionary.

2.6 Advantages and disadvantages of database
systems

The main advantages and disadvantages associated with the database
approach are not described in detail here. You are advised to keep this issue in
your mind throughout the whole course, and to continuously review it.

2.6.1 Advantages

Reduced redundancy. In a file-based system each application has its
own private files. This often leads to data being duplicated in different
files, wasting storage space. In a database approach, all data is integrated,
reducing or removing unwanted redundancy. There are various reasons
why eliminating redundancy completely is often not possible or desirable
in a DBMS – and we shall return to these in later chapters. However, where
the file-based system forces redundancy in an ad-hoc way, a DBMS should
provide mechanisms for specifying redundant data and for controlling it (to
maintain the consistency of the database).

Avoiding inconsistency. This is largely as a result of the reduced
redundancy. A database is in an inconsistent state if the same item of
information is stored in at least two places in the database, but with
different values. The database approach dramatically reduces that sort
of repetition, making the risk of inconsistent data smaller. Even where
redundant information is stored, the repetition can be made known to
the DBMS, so that the system automatically enforces consistency, so that
whenever some changes are made to one set of data, the same changes are
propagated to the same version that is duplicated elsewhere. The support
provided by most current DBMSs for preventing inconsistencies is limited to
a relatively small number of categories, but the mechanism is present.

Improved data sharing. Since all data is centralised, the restrictions on
which applications and users can see it are ones of security constraints
rather than those of system and network architecture. In contrast to having
a set of separate file-based systems, here all data is integrated, meaning
that more information can be derived from the same amount of data. Both
aspects considerably improve the accessibility of data.

Data independence. As we have seen in earlier sections, a database
approach provides protection for applications from changes in both the
physical and – at least to some extent – the logical structure of the data
(physical and logical data independence).

Some other benefits of the database approach are:

 • the maintenance of the overall information system can be improved due
to data independence

 • integrity can be maintained – any DBMS should allow the specification of
integrity constraints on data

Chapter 2: Databases – basic concepts

27

 • more detailed and coherent security restrictions can be applied – a DBMS
should allow the specification of security rules on data and on users

 • standards can be enforced

 • concurrent access can be more easily achieved

 • better recovery mechanisms can be devised

 • large-scale requirement conflicts for the information system of an
organisation can be balanced and resolved.

2.6.2 Disadvantages

Complexity. In the database approach the information needed by an
organisation is modelled and implemented as a whole. Where the file-based
approach can often be achieved piece by piece as individual departments
develop a need and budget, the process of developing a database system
is by its nature a single, unifying and more complex process, which will
include:

• data acquisition

• data modelling and design

• database implementation

• database maintenance.

The greater complexity of this process may mean that errors in
implementation, design and data acquisition may occur, and be harder, within
the organisation, to get fixed.

Depending on the organisation and its data need, the database approach may
require extra hardware and IT infrastructure, along with new maintenance
contracts. Depending on the system being replaced, this can make a database
approach more expensive, in terms of either initial or ongoing costs. The
DBMS software itself may cost no money, since there are many free and open
source options, but the system built around it will require developer time and
may also incorporate other, paid-for software. In some cases, the integration of
several systems may represent a reduction in costs, as separate contracts and
IT structures are rationalised and unified.

Higher impact of failure. The database system is at the core of the
information system of an organisation. All data is stored centrally, in the
database. As a result, most applications rely on this data. If the DBMS fails,
the whole organisation is paralysed, unlike a decentralised system, where a
failure in one system will only directly affect the department that uses it.

Performance. DBMS software is heavily optimised for its core functionality,
but it is still a generic piece of software. A database application may be
slower for an individual user than a bespoke, perhaps local, file-based
solution.

2.7 Architectures of database systems
We have seen that when the data of an organisation is integrated in a single
database, it can be shared between many applications. Accordingly, a ‘natural’
organisation of a database system is the client-server architecture (Figure
2.12). The DBMS is the server and the application programs are clients. A
server can also be referred to as back-end and a client as front-end.

CO2209 Database systems: Volume 1

28

In the client-server architecture, the DBMS (including the database) runs on
a dedicated machine – the server machine. The server machine is tailored to
support the DBMS, both in terms of storage space and computational power. In
high-demand situations, it has to provide:

 • extensive and fast external (persistent) memory

 • powerful processing capabilities (fast processors), combined with sufficient
internal memory.

The main requirement for the server machine is to provide the resources that
the DBMS needs to respond efficiently to the requests received from the clients
(i.e. to provide what they need at an appropriate speed).

Although we speak of the server as a separate machine, it is becoming
increasingly common for virtual servers to be used by organisations on a
subscription basis. These run on remote servers and may offer advantages,
such as easier upgrades and less in-house maintenance, and disadvantages,
including questions about data security and privacy.

The applications would normally run on different client machines, with each
client machine specified to meet the needs of its application or applications.
For instance, if an application program performs complex graphical processing,
then a more powerful graphical workstation might be required, whereas if
an application only performs simple data entry, then a cheaper, less powerful
machine might be enough. If these needs change, it is only the client machine
that has to be ‘modified’, making thus the client-server architecture quite
flexible.

Application 1 Application 2 Application 4Application 3

Machine 1 Machine 2 Machine 3

Communication
network

Database

DBMS

Server machine

Figure 2.12. The client-server architecture.

The communication between an application and the DBMS is accomplished
through the link between the client machine and the server machine, via a
communication network.

Distributed database systems can be developed using various different
architectures (a chapter in Volume 2 of this subject guide considers them in
more detail). Distributed systems may follow the client-server architecture.
Another possible way of organising this is to have the database itself distributed
on several machines (Figure 2.13).

Chapter 2: Databases – basic concepts

29

 Communication

network

Database
3

Server

Client

Database
2

Server

Client

Database
1

Server

Client

Figure 2.13. A distributed database system architecture.

In this architecture, each machine supports a part of the organisation’s
database and can become a client of the other servers in the network. The
organisation’s database is thus constituted from the union of the individual
databases. For this approach to confer its main advantages, though, the
individual databases should be exploitable independently.

2.8 Data models
Physical data independence is one of the main advantages of database
systems. This is achieved based on the conceptual level. Users work with
data – both defining and manipulating it at the conceptual level, while the
DBMS takes care of the physical details. We have also mentioned that at the
conceptual level, data is described purely in terms of its intrinsic characteristics
– its logical structure.

The definition and manipulation of data happens at the conceptual level by
reference to a modelling theory. The theory we will primarily be referring to in
this course is called relational theory or the relational model. This remains
the most common data modelling theory for database systems, although
there is increasing competition from other models. The relational theory
consists of:

 • concepts, relational data objects by means of which data is modelled

 • operators, which support the manipulation of the objects in the model

 • rules, specifying how the concepts and operators are allowed to be
combined.

Relational theory provides us with the components that we need to model
information and the relationships between parts of the information. It allows
us to define the types of information – such as numbers and text – that will
be stored and to define constraints on it – for instance to indicate that a date
in a particular context must be a past rather than a future date. These are all
concepts that will be considered in more detail in the next chapter.

Once a suitable data model has been defined, it must be implemented before
it can be used. A DBMS that implements relational theory to the extent that
it supports the implementation of models defined using relational theory is
called a relational DBMS. The result of implementing an abstract data model
using a DBMS is a database system (see Figure 2.14). In practice, DBMSs
do not fully implement a formal theory, and a restricted subset only will be
available. This means that some data models need to be adjusted before they
can be implemented as database systems.

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

30

 ‘Real-life’

system

Data modelling theory

Subset implented by
DBMS 1

Abstract data model

Implemented data model
(database system)

DBMS 1

Abstract level
Implementation level

Figure 2.14. Data modelling and data development.

The relational model is by no means the only data modelling theory. Others
that are relevant to DBMS implementation will be considered in Volume 2 of
this subject guide.

2.9 Overview of the chapter
In this chapter, we explained the advantages of a database over less
sophisticated ways of organising data, which we characterised as the file-based
approach. We then defined database systems and database management
systems and described the architecture and components of a standard
database system. The advantages and disadvantages of such a system were
considered in more detail. Finally, we introduced the idea of data modelling.

2.10 Reminder of learning outcomes – concepts
Having completed this chapter, and the Essential readings and activities, you
should be able to:

 • discuss the limitations of the file-based approach

 • describe the way the database approach overcomes the limitations of the
file based approach

 • define and explain what is it meant by a database system and a database
management system (DBMS)

 • describe the three-level ANSI/SPARC architecture of a database system

 • discuss the schemas and mappings corresponding to the three level ANSI/
SPARC architecture

 • discuss the concept of data independence

 • explain the role of each of the components of a database system – data,
hardware, software and users

 • present the most important features of a DBMS

 • discuss the advantages and disadvantages of database systems

 • discuss issues related to distributed database systems

 • explain what a data modelling theory (or data model) is and define its
place within the context of database systems.

Chapter 2: Databases – basic concepts

31

2.11 Reminder of learning outcomes – key terms
Having completed this chapter, and the Essential readings and activities, you
should be able to understand the following terms:

 • Data administrator (DA), Database administrator, Application programmer,
End user

 • Database

 • Data Definition Language (DDL)

 • Data dictionary (system dictionary, metadata)

 • Database instance

 • Database management system (DBMS)

 • Data Manipulation Language (DML)

 • External, conceptual and internal schema

 • Intension (structure) and Extension (content)

 • Logical data independence

 • Physical data independence

 • Program-data independence and program-data dependence

 • Retrieve, Insert, Delete, Update.

2.12 Test your knowledge and understanding
2.12.1 Sample examination questions

a. Regarding the three-level ANSI/SPARC architecture:

i. What is the conceptual level? [2]

ii. What is the external level, and how does it relate to the conceptual
level? [3]

iii. How many mappings are defined between levels? [1]

b. What is the difference between physical and logical data independence?
Which do you think is harder to achieve and why? [5]

c. A friend tells you that her company uses a file-based approach for
organising, storing and sharing their data.

i. What does she mean? [2]

ii. Would you recommend moving to a database system? If so, why? If
not, why not? [5]

iii. How would you explain to her what a database is? [2]

d. ‘Physical data independence is achieved by the creation of data model.’

i. What does this statement mean? Is it true? [4]

ii. What modelling theory would you expect to use to generate a model
for a database system? [1]

Notes

CO2209 Database systems: Volume 1

32

Chapter 3: The relational model and relational DBMSs

33

Chapter 3: The relational model
and relational DBMSs

3.1 Introduction
This chapter describes the relational model in database systems, introducing
basic terminology and concepts, before considering data structures, how they are
defined, and how data is added, manipulated and retrieved. The concept of data
integrity is then considered.

3.1.1 Aims of the chapter
The aims of this chapter are to give you an overview of the relational model
in database systems, discuss relational data objects, relational operators, data
manipulation and the optimiser, before concluding with the integrity constraint
definition and the foreign key rules.

3.1.2 Learning outcomes
By the end of this chapter, and having completed the Essential readings and
activities, you should be able to:

 • describe how a real-life system can be modelled within a data model

 • describe the relational model and the way it is used in a relational DBMS; be
familiar with the terminology of the relational model

 • describe the concept of domains

 • describe the concept of relations and discuss the properties of relations

 • discuss, in general terms, how the relational data objects are operationalised
(used in a relational DBMS)

 • describe each of the operators of relational algebra

 • be able to express natural language statements, representing information to
be inferred from relations, as relational algebra expressions

 • explain the way relational algebra is used in the context of DBMSs (including
the optimiser)

 • present different types of inconsistencies that can exist within a relational
model

 • define and classify integrity constraints

 • define the concepts of candidate, primary, alternate and foreign key

 • discuss the issue of null values

 • describe how the definition of generic integrity constraints is operationalised,
including the foreign key rules.

3.1.3 Essential reading
• Date, C.J. An introduction to database systems. (Pearson/Addison Wesley, 2003)

8th edition (international edition) [ISBN 9780321197849 (pbk)], Chapters 3, 5
and 6 (1999 edition: Chapters 3 and 5).

and/or

• Connolly, T. and C.E. Begg Database systems: a practical approach to design,
implementation and management. (Pearson Education, 2014) 6th edition, global
edition [ISBN 9781292061184 (pbk)], Chapter 4 (1999 edition: Chapter 3).

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

34

3.1.4 Further reading
• Date, Chapter 7 (1999 edition: Chapter 6).
• Elmasri, R. and S.B. Navathe Fundamentals of database systems. (Pearson, 2016)

7th edition [ISBN 9781292097619 (pbk)], Chapter 5.
• Ramakrishnan, R. and J. Gehrke Database management systems. (McGraw-

Hill, 2002) 3rd edition [ISBN 9780072465631 (hbk); 9780071231510 (pbk)],
Chapter 3.

3.1.5 References cited
• Codd, E.F. ‘Relational Completeness of DataBase Sublanguages’, in Data Base

Systems, Courant Computer Science Symposia Series 6 (Englewood Cliffs, NJ:
Prentice Hall, 1972) pp.65–98.

• Codd, E.F. ‘A relational Model of Data for Large Shared Data Banks’,
Communications of the ACM 13 (6) 1970, pp.377–87.

3.2 The relational model: a general introduction
The relational model is a theory in which all data is modelled as relations; there
are no records, no pointers or data structures – only relations. The concept of a
relation is formally introduced later in this chapter. Until then, since tables are well
suited to graphically representing relations, we shall treat ‘relation’ and ‘table’ as
synonyms.

For example, information about departments and employees in an organisation
might be modelled in two relations – Employees and Departments – as illustrated
in Figure 3.1.

Employees

Emp_ID Emp_Name Salary Department

4182 A. Singh 36,003.12 Development

5542 M. Lee 39,818.15 Development

3351 T. Esterhazy 31,919.18 Development

6164 A. Barraclough 38,002.05 Marketing

9095 N. Prabakar 36,003.12 Research

Departments

Department Budget

Development 500,000

Marketing 150,000

Research 100,000

Figure 3.1. Two relations illustrated as tables.

Two conditions are assumed by the relational model that restrict the definition of
a relation:

1. All data values are atomic (scalar). This means that its structure cannot be
broken down into values of a more basic type. Figure 3.2 shows an incorrect
relation and a corrected version. In the incorrect version, the ‘Children’
data value is a set of three values, and so can be further broken down; the
decomposed set is used in the corrected version.

CIvan
Evidenţiere

Chapter 3: The relational model and relational DBMSs

35

Incorrect relation Corrected relation

Parent Children Parent Children

Leda

Helen Leda Helen

Clytemnestra Leda Clytemnestra

Castor Leda Castor

Pollux Leda Pollux

Anakin Skywalker
Luke Skywalker Anakin Skywalker Luke Skywalker

Leia Organa Anakin Skywalker Leia Organa

Shmi Skywalker Anakin Skywalker Shmi Skywalker Anakin Skywalker

Figure 3.2. The table on the left does not represent a legal relation because the data values
for Children each represent a set of data. The table on the right is altered so that all values are
atomic.

2. All information must be represented as explicit data values. More formally,
all base relations1 are defined extensionally.

Suppose, given the Parent-Child relation given in corrected form in Figure
3.2, we wish to define a new base relation called ‘Ancestor’. The Ancestor
relation would link fathers, grandfathers, great-grandfathers and so on to
their children and grandchildren.

Such a relationship is deterministic and easily computed based on the
Parent-Child relation. A non-relational model might allow us to specify a
set of logical rules to define the new base relation, but within the relational
model, the relation must be explicit, as in Figure 3.3.

Ancestor Descendant

Shmi Skywalker Anakin Skywalker

Shmi Skywalker Luke Skywalker

Shmi Skywalker Leia Organa

Anakin Skywalker Luke Skywalker

Anakin Skywalker Leia Organa

Leda Helen

Leda Clytemnestra

Leda Castor

Leda Pollux

Figure 3.3. The ancestor relation must include all information explicitly if it is to be used
as a base relation. Relations like this can easily become very large as the family tree
expands.

Clearly such a restriction could give rise to issues in practice, but there do exist
other mechanisms – such as views – that we shall consider in later chapters
which do make this restriction less problematic.

If relations are tables, then each column draws its data values from a domain.
A relation shown as a table with three columns is defined over a set of three
domains; formally, we would write this as R: D1 × D2 × D3. In general, any
given relation will be defined over a set of n domains as R: D1 × D2 × … × Dn.
There are only two data objects needed by the relational model: relations and
domains. We will return to relational data objects later in this chapter.

1 Base relations will
be defined later in this
chapter in section 3.4.

CO2209 Database systems: Volume 1

36

Data objects are of little use unless you can do things with them. The relational
model provides a set of operators for data manipulation. Two main approaches
exist with respect to relational operators:

 • declarative, represented by relational calculus; and

 • procedural, represented by relational algebra.

In this chapter, we look only at relational algebra operators, since the most used
database language, SQL, implements relational algebra operators.

Relational algebra operators are global (more formally, set at a time). This means
that a single operator is considered to be applied to entire relations at once, with
the results being returned in the form of relations.

One important relational algebra operator is the restrict operator, of which we
will see more later. If we wanted to take the relation containing employees from
Figure 3.1 and show only the higher earners, then we would use the operator as
follows:

RESTRICT Employees SUCH THAT Salary > 37000;2

The result of this expression is, of course, a relation. It is shown in Figure 3.4.

Emp_ID Emp_Name Salary Department

2 M. Lee 39,818.15 Development

4 A. Barraclough 38,002.05 Marketing

Figure 3.4. Relation resulting from a restriction operator.

The information relevant to a real-life system is modelled, within the relational
model, by means of explicitly-defined relations. Since there is no such thing in the
relational model as a pointer, relations that are in some way related to each other
must be linked in some other way. This is achieved using corresponding fields,
implemented using keys.

If you look back at the two relations shown in Figure 3.1, you will see that the
Department column in both tables contains the same data values. In each
relation, the Marketing department, for example, means the same thing. So the
links are implemented purely in terms of data values.

Usually, a field will be constrained by restrictions on the real-world concepts they
model, limiting it to a set of correct or valid values. For example, the Salary
column in the Employee relation would not make sense if it contained a negative
value, nor is Emp_Name likely to be valid with a value of “12”. This means
that when devising a relational model, we do not define only the structure of the
data. Limitations that constrain data to correct values must also be defined.

These defined limitations are called integrity constraints. In this chapter,
we shall introduce two generally applicable integrity constraints: entity and
referential integrity constraints.

Summarising what we have seen so far, the relational model can be defined as a
way of talking about and handling data, under three categories:

 • data representation (relational data objects)

 • data manipulation (relational operators)

 • integrity constraints representation (relational data integrity).

The rest of the chapter will cover these in more detail.

3.2.1 Relational DBMSs
A DBMS that implements relational theory is called, unsurprisingly a Relational
Database Management System, or RDBMS. RDBMSs make up a large
proportion of the DBMSs currently in use.

2 The notation used here
is chosen to illustrate
the operations clearly.
It is based on relational
algebra, but is not a
standard notation.
Formal relational
algebra will be
introduced later.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

Chapter 3: The relational model and relational DBMSs

37

As we have seen in Chapter 2 of this subject guide, an RDBMS uses the relational
model to allow operations to be carried out at the conceptual level, on relations.
This abstraction protects the user from having to engage with the internal level
and the specifics of a platform, while at the same time making migration to a
new platform – and even between different DBMS implementations – easier. For
a reminder about these concepts, look at Figures 2.6 and 2.9 of Chapter 2 of the
subject guide.

In general, RDBMSs are so much the dominant approach that most writers simply
use the term DBMS and assume that it is relational. If a different model is used
it will usually be specified explicitly. From here onwards, this subject guide will
follow that practice.

Despite the prevalence of relational DBMSs, it is rarely the case that any system
implements the full relational theory. This must be considered when modelling
and implementing databases for a specific DBMS.

3.3 Relational data objects – domains and relations
3.3.1 Terminology

 • Until its formal definition, a relation is understood as a table.

 • Each attribute of a relation is represented as a column in its corresponding
table. Field is another common word for attribute.

 • Each tuple of the relation is represented as a row in the table. In the context of
relational databases, tuples are often called records.

 • The number of attributes (i.e. columns) represents the degree of the relation.

 • The number of tuples (i.e. rows) represents the cardinality of the relation.

These are core formal terms for the topic and we recommend that you familiarise
yourself with them. They are illustrated below in Figure 3.5.

Figure 3.5. Core terminology applied to the Students relation. The whole table represents a
relation, with rows as tuples and columns as attributes.

3.3.2 Domains
Date defines a domain informally as a ‘pool of values’ from which a given attribute
draws its actual values. Every attribute of a specific relation must be defined on
exactly one domain – it must draw its values from one pool, and only one pool. A
domain is a set of values of the same type.

For example, the Students relation shown in Figure 3.5 has four attributes, each
defined on a different domain. Values for the age attribute will be drawn from the
positive integers {…17, 18, 19, 20, 21, … 30, 31, …40…}. Although the upper and
lower limits for this domain could be debated, certainly they can be defined and
there are clearly values that would not be correct.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

38

The attribute Name will also be defined over a domain; in this case, textual
strings with some criteria for legal characters and length.

One big advantage offered by domains is that they prevent certain
meaningless operations from being performed.

Activity

Suppose a relation that comprises information about some rectangular products,
has the following attributes: Name, Weight, Length, Width.

Consider the following questions. Which would make sense in this context and
which are meaningless?

Which of these products is more than a metre long?

Which of these products are square (as long as they are wide)?

Which of these products has an area greater than 1 square metre?

Which of these products weighs more than its length?

Which products are heavier than the average product weight?

Which product is wider than it is long?

Which product has a longer name than weight?

Domains represent a means to distinguish between reasonable and
meaningless queries. This can be achieved within the relational model by
restricting the applicability of both scalar and relational operators. We call
such restricted activities domain-constrained operations. A scalar operator
(such as +) may only be applied to values of the domain it is defined on.
Loosely speaking, a relational operator can be applied to two relations only
if the attribute operations involved are not applied to attributes defined on
different domains (these operations include scalar operators).

As an example, consider the JOIN operator, which we shall meet in more detail
in a later section. This operator allows us to combine two relations based
on the attributes of their respective tuples. The scalar operator associated
with JOIN – and on which it relies – is equality. Suppose we wish to join
two relations, R1 and R2. If R1 has an attribute A1 with the same name and
defined on the same domain as an attribute in R2, A1 is said to be a common
attribute and the tables can be joined. If R1 and R2 have no common
attributes – even if some attributes have the same name, but are defined over
different domains – they cannot be joined. The domains here constrain the
applicability of the JOIN operator.

If the DBMS supports domains, then the system will prevent the user from
making mistakes such as meaningless comparisons. For the example from
earlier, consider the existence of two domains, Dimensions and Weight. By
defining the attributes Length and Weight on the domain Dimensions and
the attribute Weight on the domain Weight, we inform the system about the
meaning of these attributes, and so the system should be able to enforce
domain-constrained operations.

The meaningless questions in the activity above make no sense because they
mix domains in an undefined way: ‘Which of these products weighs more
than its length?’ and ‘Which product has a longer name than weight?’ If we
use domains, we should expect that questions like these will be rejected
automatically.

Before we provide a more formal definition for domains, we must first
introduce the concept of atomic or scalar values.

Chapter 3: The relational model and relational DBMSs

39

Atomic/scalar data item. An atomic or scalar data item is the smallest
semantic unit of data – it is a data item with no internal structure as far as
the model or the DBMS is concerned.

The data values in the Students relation in Figure 3.5 are all scalar, although
that only means that there is no internal structure as far as the model or
DBMS is concerned. For example, in other contexts, the name ‘J. Bello’ might
be broken up into surname and initial, while many programming languages
would regard it as an ordered collection of eight separate characters: <J><.><
><e><l><l><o>. For our purposes, however, since our model never
decomposes the name, and the DBMS can represent it as an atomic structure,
the fact that it could be broken down is of no concern to us.

As far as the theoretical model is concerned, data of any complexity, if
viewed with no internal structure, can be considered as atomic. It is our
understanding, view or assumption for a particular application that defines
whether a data item is atomic. If a data type T was considered to be scalar,
then that means that there is no way of accessing the constituents of data
values of type T – no operator should provide access to them. For instance, if
a name of a person is considered scalar, James T. Kirk, then there is no way of
accessing its constituents (e.g. surname, Kirk and first names, James T.).

Domain. A domain is a named set of scalar values of the same type.

Domains are similar to data types in typed-programming languages. In a
DBMS, domains are not explicitly stored within the system – they are specified
as part of the database definition, in the system catalogue. Built-in, or
system-defined data types – such as integer, real and string – are available
in all relational DBMSs, while some provide full or partial support for user-
defined data types, or domains.

The ability to specify new domains makes a DBMS more amenable to a wider
variety of applications. A domain is not just a named set of values, but it also
comprises a set of operators that are applicable to these values. For instance,
integer values can be added or subtracted, while strings can be joined
together or shortened.

If a domain is absent from a DBMS, then data values of that kind cannot be
manipulated by the system. For example, if the system has no built-in spatial
domain, and there is no way provided for defining on, then queries such as ‘find
shops within 4 kilometres from this point’ cannot easily be carried out without
first exporting all the data from the relational system and inspecting it with
other software. Such a query requires the ability to store the location of points
on a map and paths between them, a ≤ operator that can compare a path and
a distance. A spatial database of this type would also benefit from the ability to
index the points and paths in a way that ensures that retrieval is fast.

We can see that domains offer a great deal of representational power by
directly increasing the modelling capabilities of the database. Even where user-
defined types are available, having a rich set of built-in scalar types is helpful.
We shall see that some of the perceived drawbacks of the relational model are
based on the poor implementation of mechanisms such as these.

To summarise, before we move on to relations, the primary benefits of
domains are:

 • domain-constrained operations

 • increased modelling power.

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

40

3.3.3 Relations
The relation is the only data structure used for modelling data in the relational
model. So far, we have treated a relation as being equivalent to a table. A more
formal definition is now necessary.

Relation. A relation, R, on a set of domains D1, … , Dn consists of two parts,
a heading and a body.

1. Heading

a. The heading consists of a fixed, unordered set of attributes.

b. Each attribute is described by <attribute-name : domain-name>
pairs, {<A1 : D1>, <A2 : D2>, … , <An : Dn>}.

c. Each attribute Ai corresponds to exactly one of the underlying
domains Di.

d. Attribute names are distinct – they may not be repeated.

e. The domains D1, … , Dn need not be distinct – they may be
reused.

2. Body

a. The body consists of a set of (unordered) tuples.

b. Each tuple is a unique set of <attribute-name : attribute-value>
pairs.

c. In each tuple i, there is exactly one <Aj : Vij> pair for each attribute Aj
in the heading, so that the ith tuple of a relation with attributes A1…
An can be represented as {<A1 : vi1>, <A2 : vi2>, … , <An : vin>}.

d. For any given <Aj : vij> pair, vij is a value from the domain Dj that is
associated with the attribute Aj.

This definition can seem complicated, but much of that comes from its
precision rather than the ideas being hard to understand. Two examples
should help to make this clear; firstly, a correct example of a relation. Consider
the table Students in Figure 3.6.

ID Name Age Degree

AS191 A. Turing 21 CS

BC24Z A. Lovelace 28 CS

AX007 F. Allen 22 CIS

NN02M M. Ibuka 21 IT

Figure 3.6. The Students table.

The relation this table illustrates can also be represented as in Figure 3.7. The
attributes of the relation are ID, Name, Age and Degree. ID, an identifier
that is unique for each student, is necessary to ensure that the tuples are
distinct, even if two students share the same name, age and degree. The
heading of the relation is represented here as a set of pairs <name: type>.
We shall meet the types used in the next chapter, but for now, it is enough to
note that CHAR and VAR-CHAR are string types and INT is an integer.

Chapter 3: The relational model and relational DBMSs

41

Students relation

Heading

{<ld: CHAR(5)>, <Name: VAR-CHAR>, <Age: INT>, <Degree: CHAR(3)>}
Body

{

 {<ld: “AS191”>, <Name: “A. Turing”>, <Age: 21>, <Degree: “CS”>},

 {<ld: “BC24Z”>, <Name: “A. Lovelace”>, <Age: 28>, <Degree: “CS”>},

 {<ld: “AX007”>, <Name: “F. Allen”>, <Age: 22>, <Degree: “CIS”>},

 {<ld: “NN02M”>, <Name: “M. Ibuka”>, <Age: 21>, <Degree: “IT”>}

}

Figure 3.7. The Students relation – a different, but still correct, representation.

Neither the order of the pairs in each set nor the order of the tuples in the
body matters, so the representation of Students in Figure 3.8 is also correct.

Students relation

Heading

{<ld: CHAR(5)>, <Name: VAR-CHAR>, <Degree: CHAR(3)>, <Age: INT>}
Body

{

 {<ld: “AS191”>, <Name: “A. Turing”>, <Age: 21>, <Degree: “CS”>},

 {<Degree: “CS”>, <ld: “BC24Z”>, <Name: “A. Lovelace”>, <Age: 28>},

 {<Age: 22>, <ld: “AX007”>, <Name: “F. Allen”>, <Degree: “CIS”>},

 {<Name: “M. Ibuka”>, <ld: “NN02M”>, <Age: 21>, <Degree: “IT”>}

}

Figure 3.8. The Students relation – different ordering, but still the same, correct,
representation.

Relations have some important properties arising from the definition:

 • A relation cannot contain duplicate tuples. Each tuple is unique within a
given relation. This also means that each tuple is uniquely identifiable. The
smallest set of attributes that can be used to uniquely identify all the tuples
in a relation is called a candidate key.

 • Tuples are unordered. Statements like ‘the fifth tuple’ make no sense (this
is also a reason why the uniqueness criterion is vital).

 • Attributes are unordered.

 • All attribute values are atomic. This property dictates the first normal
form. We shall meet the normal forms again later in the next chapter, but
by definition, all relations are in the first normal form.

From the first three of these, we can see the difference between tables and
relations and why taking them as equivalent was an approximation. The table
in Figure 3.9 lists these differences.

Table Relation

Rows are ordered Tuples are unordered

Columns are ordered Attributes are unordered

Duplicate rows are permitted Duplicate tuples are not permitted

Duplicate column names are permitted Duplicate attribute names are not permitted

Figure 3.9. Differences between tables and relations.

CO2209 Database systems: Volume 1

42

The requirement for attribute values to be atomic can be explained with an
example. Consider two ways of representing tutors and their tutees. Figures 3.10
and 3.11 show an unnormalised and a normalised representation (only the latter
is a relation).

Tutor Tutees

M. Taylor Name Age

P. James 22

S. Saldin 21

J. Bentham 22

A. Rai Name Age

P. Philips 19

K. Khan 22

S. Pereira 24

Figure 3.10. A table (but not a relation) showing tutors and their tutees.

Tutor Tutee Name Tutee Age

M. Taylor P. James 22

M. Taylor S. Saldin 21

M. Taylor J. Bentham 22

A. Rai P. Philips 19

A. Rai K. Khan 22

A. Rai S. Pereira 24

Figure 3.11. A table showing a normalised (first normal form) relation of tutors and tutees.

Now, suppose that two tasks were to be performed on the data:

 • Add that a new tutor, P. Rosin, was assigned a tutee, P. Black, aged 26.

 • Add that M. Taylor has been assigned a new tutee, H. Higgins, aged 23.

Each task can be solved in the normalised version in Figure 3.11 by adding a new
tuple, so the two tasks are logically similar in this representation. For the table in
Figure 3.10, though, the two tasks are quite different. The first only involves the
insertion of a new row (or, by extension, a tuple), but the second requires the
retrieval of the row for M. Taylor, and the insertion of the row {<Name : H.
Higgins>,<age : 23>} into the current value for Tutees.

So, if the relation is not normalised, it is difficult to guarantee that operations will be
simple, and they can require multiple, nested procedures to be carried out. In the
relational model, a relation is constrained to be atomic, so that any more complex
structures must be made explicit through the use of multiple relations.

At this point, it is important to be clear about the distinction between a relation
value and a relation variable. This is similar to the distinction between a value
and a variable in a programming language. In the example of Figure 3.12,
example_var is declared as a variable of type integer, which means that it
can hold any value as long as it is an integer (and as long as it is between the
maximum and minimum values allowed by the language).

/* this is a fragment of a C program

illustrating values and variables */

int example_var;

example_var = 10; /* example_var is assigned the integer value 10 */

example_var = example_var * 2; /* value of example_var is doubled */

Figure 3.12. Values and variables in a programming language.

Chapter 3: The relational model and relational DBMSs

43

When we talk about the attributes of a relation, we can see a similar process.
A relation is defined on creation, and then its heading, declaring the relation’s
set of attributes and their domains, is somewhat like the variable declaration.
A particular state of that relation, with a set of tuples, is a value assigned to
that variable, just as 10 is the first value assigned to the variable example_
var in Figure 3.12. Figures 3.6–8 show a relational variable – Students
– and its first assigned relational value – the contents of the relation. Any
insertion, deletion or alteration to the data in Students will change the
relational value, but the definition of the variable itself stays the same, just as
example_var is still example_var, and still declared as an integer, even
when its value changes.

It might appear that the relations in a relational database are independent,
in that there is no way to relate one to another – they can only contain
explicit data values rather than language constructs like pointers or variables.
That appearance is deceptive – relations in a database can be logically
connected through matching attributes, called keys. If several relations are
to be linked by an attribute or a set of attributes that are common to all the
relations, in one of the relations the key is called the candidate key and in
the other relations that link to it, the key is called the foreign key. In Figure
3.1, the relation Employees is linked to the relation Departments via
the common attribute, Department. If one wants to find out the details of
the department in which a specific employee works then one will identify
the Department of that person from Employees and then look it up in
the relation Departments. For instance, T. Esterhazy works in the
department identified by Development (from the Employees relation). The
department identified by Development has a budget of £500,000 (from
the Departments relation). Department in Employees is a foreign key
whereas in Departments, it is a candidate key.

3.4 Data definition in a relational DBMS
In his 1970 article that laid out the basic concepts of relational theory, Codd
defined a relational database as ‘a database that is perceived by the user
as a collection of normalised relations of assorted degrees.’3 Such a
relational database must provide a Data Definition Language, or DDL, that
supports the definition of domains and relations (that is, relation variables)
as a minimum requirement. One such language is SQL, the subject of the next
chapter. SQL is a relational database language that provides a DDL, a small
subset of which is illustrated below.

In defining the syntax of the language, we shall use the following notation
conventions:

 • everything that is not within < and > signs (which will always be either
numerals, symbols or capital letters) is a terminal or a keyword symbol,
which means it has to be unchanged

 • symbols between < and > are non-terminals and have to be replaced with
a corresponding value (for instance, <domain name> should be replaced
with a user-defined name for a domain).

A simplified version of the syntax for SQL’s data definition language is:

CREATE DOMAIN <domain name> AS <definition>;

CREATE TABLE <table name> {

 <attribute name> <domain name>,

 <attribute name> <domain name>

};

3 Codd, E.F. ‘A relational
Model of Data for Large
Shared Data Banks’,
Communications of
the ACM 13(6) 1970,
pp.377–87.

CO2209 Database systems: Volume 1

44

Activity

Note how SQL implements relations as tables. What effect might this have on the
implementation? What differences would you expect to see?

Using this syntax, the relation Students (see Figures 3.6–8) could be defined
as follows:

CREATE DOMAIN IdDomain AS CHAR(5);

CREATE DOMAIN NamesDomain AS VARCHAR;

CREATE DOMAIN AgeDomain AS INT;

CREATE DOMAIN DegreesDomain AS CHAR(3);

CREATE TABLE Students {

ID IdDomain,

Name NamesDomain,

Age AgeDomain,

Degree DegreesDomain

};

A relation, once defined, would have to be populated with data, so the DBMS
must provide at least two further statements – this time as part of the Data
Manipulation Language, the DML. These statements are for adding and
deleting tuples.

A simplified version of the syntax for SQL’s INSERT and DELETE statements is:

INSERT INTO <table> VALUES <row>;

DELETE FROM <relation> WHERE <condition for identifying
tuples>;

And some examples of their use in the Students relation:

INSERT INTO Students

VALUES (“AS191”, “A. Turing”, 21, “CIS”);

INSERT INTO Students

VALUES (“BC24Z”. “A. Lovelace”, 28, “CIS”);

DELETE FROM Students

WHERE ID = “AS191”;

Note that SQL’s table implementation means that attribute values can be
specified in order.

It is possible that certain relations or domains might not be needed any longer
in the database, and so there needs to be a mechanism for removing them. In
SQL, the (simplified) syntax is as follows:

DROP DOMAIN <domain name>;

DROP TABLE <relation name>;

An important characteristic of a relational DBMS is that both the external
and the conceptual levels are based on the same data model; that is, data is
perceived at both levels as relations.

Relations can be classified by the source of their values, whether or not they
can be identified by name, and whether they necessarily persist in memory.
Relations that must exist in a relational system are:

 • Named relations: relations that have been defined and named within a
database system.

 • Base relations: named relations defined purely in terms of their extension
– that is, for which all data values are explicitly provided.

Chapter 3: The relational model and relational DBMSs

45

 • Derived relations: relations defined in terms of other relations – whether
base or derived themselves – by using a relational expression.

 • Views: named, derived relations whose extension (values) are not stored in
the system. A view can be considered a virtual relation.

 • Snapshot: named, derived relation, but whose extension is stored in the
system after it is computed.

 • Query result: unnamed, derived relation with no persistent existence
within the system.

3.4.1 The data dictionary
As described in the previous chapter, the database includes the description
of its raw data in what is called the data dictionary or catalogue (sometimes
using the US spelling, ‘catalog’).

The data dictionary contains all kinds of information describing the database:
schemas, mappings, integrity rules, security rules, etc. The data dictionary
is itself a part of the database, and so it is also represented by means of
relations (usually tables). They are called system relations or tables, in order to
differentiate them from user defined relations or tables. The information stored
in the data dictionary is useful to some of the modules of a relational DBMS,
but can be used in the same way as any other part of the database.

Relations

Relation name Degree Cardinality …

Students 4 1587 …

… … … …

Relations 7 39 …

Attributes 7 243 …

Attributes

Relation name Attribute name …

Students ID …

Students Name …

Students Age …

Students Degree …

… … …

Relations Relation name …

Relations Degree …

Relations Cardinality …

Attributes Relation name …

… … …

Figure 3.13. The Relations and Attributes relations of a data dictionary, showing how they
describe not only the user-defined tables, but themselves also.

For example, every DBMS data dictionary usually contains two relations
describing all the named relations in the database – Relations (or Tables) and
Attributes (or Columns). This is illustrated in Figure 3.13, which also shows
how they are self-describing – they contain information about themselves and
each other.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

46

3.5 Relational operators
We have seen so far how the structure of data can be defined. Now, we
present relational operators, which allow data to be manipulated. There are
two main approaches to relational operators:

 • Procedural operators, using these we can prescribe how a result is going
to be obtained

 • Declarative operators, using which we can prescribe what result is to be
obtained.

In the procedural approach, we have to state which operations are to be
performed on data, and the order in which they are to be performed – we
describe how the result is to be computed.

In the declarative approach, we do not specify explicitly how the result should
be computed. Instead, we describe what the result looks like. We do this by
stating the conditions that the result should satisfy.

So, in a procedural system, we tell the system what to do and in a declarative
system, we tell it what result we want. In the latter case, it is for the system to
work out what operations must be performed to compute the result.

The relational model includes these approaches as relational algebra,
corresponding to the procedural approach, and relational calculus, which
uses the declarative approach. The two approaches are equivalent to one
another, in that any expression in the relational algebra has an equivalent in
relational calculus, and vice versa. The two formalisms are different only in
style of expression and philosophy of approach.

Since SQL is based on relational algebra, the rest of this section will be
dedicated to this, and so to procedural operators.4

Relational algebra, as described by Codd (1972),5 consists of eight basic
operators.

 • Four based on set theory: union, intersection, difference and the
cartesian product.

 • Four relation-specific operators: restrict, project, join and divide.

We will return to each of these operators in more detail soon, but first, two
important properties of relational algebra must be considered.

 • Set at a time operators: this property refers to the fact that relational
algebra operators act globally on relations – relations as a whole
constitute their operands and not individual tuples. This is related to our
definition earlier of all the data in a relation as a single relational value.

 • Relational closure: refers to the fact that the result of the application
of any relational operator is a relation, too. This means that relational
operators can be used in devising complex expressions, since the result of
the application of one operator can become the input for another operator.

A comparable situation arises in real number algebra. Consider three
arithmetic operators: +, - and *. They are applied to real numbers and result in
real numbers. This means, for example, that given real-number variables x, y,
z, u and v, we can first construct complex expressions such as:

x*(2*x + 2*y) + z

and

2*u*v – (u+v).

4 Date devotes a chapter
to relational calculus,
should you wish to
learn more (Chapter 7;
or Chapter 6 in the 1999
edition).

5 Codd, E.F. ‘Relational
Completeness of Data
Base Sublanguages’,
in Data Base Systems,
Courant Computer
Science Symposia Series
6 (Englewood Cliffs, NJ:
Prentice Hall, 1972),
pp.65–98.

Chapter 3: The relational model and relational DBMSs

47

Because of the closure property, these two expressions can be used in other
expressions – they can become the input of other operators. Similarly, the first
expression can be used as the input u in the second expression, giving:

2*(x*(2*x + 2*y) + z)*v – ((x*(2*x + 2*y) + z) + v).

These equations are meaningless out of context, but the power that real
number algebra gains from the closure property is something that you will
have experience with from mathematics. Relational algebra expressions
are constructed in a similar way. A relational algebra expression denotes a
relation, and so it can constitute, as a whole, the operand of any relational
algebra operator.

These two properties of relational algebra provide the theory with a very
powerful formalism.

3.5.1 Relational algebra operators based on set theory
The set specific relational operators are almost identical to the set operators
from Set theory. Relations are a special kind of set, though, and the operators
have to be restricted a little to suit them, and particularly to ensure relational
closure.

 • Except for the Cartesian product, they assume type compatibility.

 • They are accompanied by a mechanism for inheriting attribute names.

 • They are accompanied by a mechanism for inheriting candidate keys.

In simple terms, type compatible relations are ones that are directly
comparable. More formally:

Type compatibility. Two (or more) relations are type compatible if their
headings are functionally identical, having:

1. The same set of attribute names.

2. The same domains applying to attributes with the same name.

An example of two type compatible relations is given in Figure 3.14. This
example will be used to illustrate the set-specific operators as we introduce
them.

Relation1

ID Name Age City

S1 A. Braun 22 London

S2 T. Elliot 21 London

S3 Y. Dhillon 22 Singapore

Relation2

ID Name Age City

S1 A. Braun 22 London

S4 F. Williams 19 Port of Spain

Figure 3.14. Two relations which are type compatible.

CO2209 Database systems: Volume 1

48

UNION

Relation1 ∪ Relation2

ID Name Age City

S1 A. Braun 22 London

S2 T. Elliot 21 London

S3 Y. Dhillon 22 Singapore

S4 F. Williams 19 Port of Spain

Figure 3.15. Applying UNION to the relations returns all the tuples present in either
Relation1 or Relation2 or both.

The union, intersection and difference operators can only be applied to type-
compatible relations, and the result of applying them is a relation that is also
type compatible with the operands. Figures 3.15, 3.16 and 3.17 illustrate the
application of union, intersection and difference respectively on the relations
in Figure 3.14.

INTERSECTION

Relation1 ∩ Relation2

ID Name Age City

S1 A. Braun 22 London

Figure 3.16. Applying INTERSECTION to the relations returns all the tuples present in
both Relation1 and Relation2.

DIFFERENCE

Relation1 – Relation2

ID Name Age City

S2 T. Elliot 21 London

S3 Y. Dhillon 22 Singapore

Figure 3.17. The Difference of Relation1 and Relation2 is a relation that
contains only tuples of Relation1 that are absent from Relation2. Note that the
operator is not symmetrical, and Relation2 – Relation1 will yield a different
result.

For the Cartesian product, the type compatibility restriction is not necessary.
The Cartesian product may be applied to any two relations. An example of the
Cartesian product operator is provided in Figure 3.18, using a new relation
and Relation2 from above. Since the Cartesian product has a cardinality
(number of tuples) that is the product of the cardinality of the two operands
and a degree (number of attributes) that is the sum of the degrees of the
operands, this can produce large relations very quickly.

Relation3

Letter ID Letter description

L1 Registration

L2 Reward

Chapter 3: The relational model and relational DBMSs

49

CARTESIAN PRODUCT

Relation2 × Relation3

ID Name Age City Letter ID Letter description

S1 A. Braun 22 London L1 Registration

S1 A. Braun 22 London L2 Reward

S4 F. Williams 19 Port of Spain L1 Registration

S4 F. Williams 19 Port of Spain L2 Reward

Figure 3.18. The Cartesian product of Relation2 and Relation3.

Although type compatibility does not apply for the Cartesian product,
attribute name inheritance does, and can be seen in the example above
– the resulting relation inherits the names of all the attributes from both
Relation2 and Relation3.

3.5.2 Relation-specific relational algebra operators
The other four basic relational algebra operators are: restriction, projection,
join and division. These operators will be illustrated using the Product-Details
relation shown in Figure 3.19.

Product-Details

ProductID ProductType Cost InStock Supplier

PID23 Washing machine 289 2 E-A inc.

XX24A Dishwasher 399 0 H200

00012 Power extension cord 14.99 15 E-A inc.

MM25y Television 395 0 S-TV

MM45x Television 555 0 S-TV

Figure 3.19. The Product-Details relation.

Restriction

Restriction. A restriction operator6 is applied to a single relation R – it
is a unary operator – and produces another relation R’ according to a
condition C, so that:

1. R’ is type compatible with R.

2. All the tuples of R’ are from R.

3. All the tuples of R’ satisfy C.

4. There are no tuples in R that satisfy C and are not in R’.

6 You may see this
operator called the
selection operator;
however, restriction
is Codd’s original
term, and SQL uses
SELECT to mean
something quite
different.

The condition C is expressed on one or more of the attributes of R by means
of some scalar comparison operators. For instance, the relation Product-
Details can be restricted to only those products that are currently available,
as indicated by an inStock value greater than zero. The result is the relation
shown in Figure 3.20.

ProductID ProductType Cost InStock Supplier

PID23 Washing machine 289 2 E-A inc.

00012 Power extension cord 14.99 15 E-A inc.

Figure 3.20. The relation resulting from a restriction of Product-Details to available
products.

CO2209 Database systems: Volume 1

50

The syntax for the restriction operator is:

<relation name> WHERE <condition>

where <condition> is a conditional expression – one which returns a truth
value – on the attributes of the relation <relation name>. For instance,
the ‘currently available’ restriction described above for Product-Details
can be defined as:

Product-Details WHERE InStock > 0

The condition may be of any complexity. A slightly more complicated example
might be to restrict the results to items where the value of the items in stock is
above 500. This would be expressed as:

Product-Details WHERE Cost*InStock > 500

The conditional expression in this case involves a multiplication between a
currency-type value and an integer value (the result being of currency type)
and then a comparison with a currency-type value.

As you may have realised, the conditional expressions you can use are
determined by the attribute domains which, in turn, determine the available
scalar operators. For instance, the integer type includes the following
operators: +, -, *, / (integer division), and comparison operators such as >, <
and =. The string type can provide operators such as: concatenation (of two
strings), division (of one string into two substrings) and comparison operators
such as inclusion (of a string in another) and equality (of two substrings).

A scalar operator can only be applied to values corresponding to the domain it is
defined on, so, for instance, the multiplication operator can be applied to values
of type integer or real, but cannot be applied to string values or dates.

According to the definition above, the restriction operator can only use one
conditional expression, which we have defined as using one single scalar
comparison operator. If we wanted to combine several of these ‘atomic’
conditions, you might expect to have to write:

(Relation WHERE Condition1) WHERE Condition2

This would take advantage of the relational closure property of the
operators to allow them to be used as operands for each other. This is a
little ugly, though, and could quickly get quite long-winded. Worse, it is not
very expressive. Instead, the syntax of relational algebra allows non-atomic
conditions to be used in conjunction with the restriction operator. These
non-atomic conditions combine conditional expressions by using logical
operators (AND, OR, NOT). So, for instance, the above nested expression can
be expressed as:

Relation WHERE Condition1 AND Condition2

To return to the Product-Details example, the following expression
restricts the relation to those products that have the string “MM” in their ID or
are supplied by S-TV, and whose current stock is greater in value than 500.

Product-Details WHERE (“MM” SUBSTRING_OF ProductID

OR Supplier = “S-TV”)

AND Cost*InStock > 500

The use of brackets in the expression above is vital for getting the subclauses to
be evaluated in the correct order. Bracketed expressions are always evaluated
first. Without brackets to show the order, AND expressions are evaluated before
OR expressions, which would give the wrong answer in this case.

Chapter 3: The relational model and relational DBMSs

51

Projection

Projection. Given a relation R having attributes {A, B, …, L, M, …,
X, Y, Z}, a projection of R on A, B, …, L is a relation R’ having attributes {A,
B, …, L} and the tuple {A:ai, B:bi, …, L:li} for each tuple in R.

Usually, but not always:

5. R and R’ have the same cardinality.

6. The degree of R’ is smaller than the degree of R.

In visual terms, treating a relation as a table, where a restriction is a horizontal
sub-relation, returning a relation with fewer rows than its operand, projection
is a vertical one, returning a relation with a reduced number of columns. The
benefit here is to leave aside the attributes of a relation that are not relevant
for the current purpose. For instance, if you wanted to select only product
types, stock levels and suppliers, you could project the Product-Details
relation onto the ProductType, InStock and Supplier attributes, yielding the
relation in Figure 3.21.

ProductType InStock Supplier

Washing machine 2 E-A inc.

Dishwasher 0 H200

Power extension cord 15 E-A inc.

Television 0 S-TV

Figure 3.21. A relation resulting from a projection of Product-Details.

The syntax for the projection operator is:

<relation name> [<attr name 1>, <attr name 2>, ..., <attr name n>]

where <attr name 1> (and so on) should all be attributes of the relation
denoted by <relation name>. For instance, the projection above is
described by the following expression:

Product-Details [ProductType, InStock, Supplier]

It is important to note that, since the result of a projection is a relation, every
tuple must be unique. Formal relational algebra requires that any duplicates
are omitted, as is the case in Figure 3.21 where the two tuples describing
television sets are no longer unique and only one is presented. This means
that cardinality is not always preserved.

Projections may use all the attributes of the operand, in which case the
relation is duplicated (and so the degree of R’ is not smaller than the degree of
R). A projection on no attributes produces an empty, or null relation.

Join
The join operator, as its name suggests joins two relations together. It is similar
to the Cartesian product, but permits constraints that may limit the order and
cardinality of the resulting relation.

There are two types of join operators:

 • The Natural-join operation combines relations based on common
attributes, including only tuples where the values of those attributes are
the same in the two tables. Figure 3.22 shows a Suppliers relation for the
items in Product-Details. Figure 3.23 shows the natural join of the two
relations. Note that the degree of the result is the sum of the degrees
of the joined tables minus the number of common attributes, while the
cardinality remains the same as it is in Product-Details.

CO2209 Database systems: Volume 1

52

Supplier City Email

E-A inc. Pittsburgh orders@e-a-inc.com

E&E GMBH. München kontakt@e-und-e.de

H200 London p.parker@h200.co.uk

S-TV Tokyo s-tv@stv.co.jp

Figure 3.22. The Suppliers relation.

ProductID ProductType Cost InStock Supplier City Email

PID23 Washing machine 289 2 E-A inc. Pittsburgh orders@e-a-inc.com

XX24A Dishwasher 399 0 H200 London p.parker@h200.co.uk

00012 Power extension cord 14.99 15 E-A inc. Pittsburgh orders@e-a-inc.com

MM25y Television 395 0 S-TV Tokyo s-tv@stv.co.jp

MM45x Television 555 0 S-TV Tokyo s-tv@stv.co.jp

Figure 3.23. The natural join of Product-Details and Suppliers.

 • The Θ-join (theta-join) operation7 is a Cartesian product with a
condition that restricts the resulting relation.

The natural join is the simpler and more common operator, when you see
reference to ‘join’ without a qualifier to indicate whether it is a natural or
theta join, it is likely that a natural join is meant. A more formal definition is
as follows:

Natural join. Let relations R1 and R2 have the headings {X1, X2, X3,
…, Xm, Y1, Y2, Y3, …, Yn} and {Y1, Y2, Y3, …, Yn, Z1,
Z2, Z3, …, Zp} respectively (i.e. they have some attributes – Y1, Y2,
etc. – in common, and some different). The natural join

R1 JOIN R2

is a relation having the heading {X1, X2, X3, …, Xm, Y1, Y2,
Y3, …, Yn, Z1, Z2, Z3, …, Zp} and body consisting of the set of
all tuples {X1:x1, X2:x2, X3:x3, …, Xm:xm, Y1:y1, Y2:y2,
Y3:y3, …, Yn:yn, Z1:z1, Z2:z2, Z3:z3, …, Zp:zp} where
the tuple {X1:x1, X2:x2, X3:x3, …, Xm:xm, Y1:y1, Y2:y2,
Y3:y3, …, Yn:yn} is present in R1 and {Y1:y1, Y2:y2, Y3:y3,
…, Yn:yn, Z1:z1, Z2:z2, Z3:z3, …, Zp:zp} is present in
R2.

Two properties of the join operator that can be derived from this definition
are:

 • R1 JOIN R2 = R2 JOIN R1 (i.e. JOIN is commutative).

 • (R1 JOIN R2) JOIN R3 = R1 JOIN (R2 JOIN R3) (i.e. JOIN is associative).

Θ-join. Let R1 and R2 be relations such that attribute X belongs to R1 and
Y to R2. If Θ is an operator such that x Θ y is a conditional expression for all
values of X and Y, then the Θ-join of R1 and R2 is defined as:

(R1 TIMES R2) WHERE X Θ V

For example, Figure 3.24 shows two relations, Deliveries and Vehicles.
If we wish to see all the vehicles capable of carrying each delivery, we need
to check the size of the delivery and the capacity of the vehicle. This can be
achieved with a Θ-join operator expressed as follows:

7 Θ is a capital letter
from the Greek
alphabet, called theta.
The easiest way to write
it is to draw an O and
put a small horizontal
line inside.

Chapter 3: The relational model and relational DBMSs

53

(Deliveries TIMES Vehicles) WHERE Volume < Capacity

The results of this operation are shown in Figure 3.25.

DeliveryID Volume Destination VehicleID Type Capacity

D1 200 London V1 Motorbike 50

D2 5130 Glasgow V2 Car 1100

D3 1050 Cowes V3 Van 20000

Figure 3.24. Deliveries (left) and Vehicles (right) relations.

DeliveryID Volume Destination VehicleID Type Capacity

D1 200 London V2 Car 1100

D1 200 London V3 Van 20000

D2 5130 Glasgow V3 Van 20000

D3 1050 Cowes V2 Car 1100

D3 1050 Cowes V3 Van 20000

Figure 3.25. The relation resulting from a Θ-join on Volume < Capacity.

Note that a Θ-join can become a natural join if Θ is the = operator and a
projection is applied to remove duplicate attributes.

Division
The division operator is a little harder to describe than the others that we
have met so far, and is best illustrated with an example. Consider the students
whom we met first in Figure 3.6. Figure 3.26 shows three relations: Passed-
Courses, which records courses that students have completed successfully;
Degree-Requirements, which lists the passes required for a Bachelor’s
degree; and Honours-Requirements, listing the courses that should be
passed for a student to qualify for a degree with honours.

Passed-Courses Degree-
Requirements

Honours-
Requirements

Student Course Course Course

AS191 Databases2 Programming1 Programming1

AS191 Programming1 Databases2 Databases2

AS191 Music3 Robotics3 Robotics3

BC24Z Programming1 Programming3

BC24Z Databases2

BC24Z Robotics3

AX007 Programming1

AX007 Robotics3

AX007 Databases2

AX007 Programming3

NN02M Programming1

Figure 3.26. Three relations about music and computing courses (see courses).

The division operator takes two relations and returns a relation with only the
attributes of the first relation that are not in the second. The body of the result
contains only entries that have tuples in the first operand that match all the
tuples in the second operand.

CO2209 Database systems: Volume 1

54

Using the division operator, we can see which students have passed all the
courses required for a Bachelor’s or Honours degree, since the operator
will return only student IDs for students for whom tuples exist in Passed-
Courses for every course listed in the requirements tables. Figure 3.27 shows
the result of the two division operations, Passed-Courses ÷ Degree-
Requirements and Passed-Courses ÷ Honours-Requirements.

Passed-Courses ÷
Degree-Requirements

Passed-Courses ÷
Honours-Requirements

Student Student

BC24Z AX007

AX007

Figure 3.27. The division operation returns only entries from Passed-Courses having
all the entries of the requirements table in their tuples. So the results are a list of students
meeting the relevant degree criteria, having passed all the necessary courses.

More formally, we can define division as follows:

Division. Let relations R1 and R2 have the headings {X1, …, Xm, Y1,
…, Yn} and {Y1, …, Yn} respectively, so that Y1…Yn are common
attributes of R1 and R2 – they have the same name and domains in both.
R2 necessarily has no attribute that is not in R1. Let k be the cardinality of
R2. The result of the division of R1 by R2, written as:

R1 DIVBY R2

or

R1 ÷ R2

is a relation R3, having the heading {X1, …, Xm} and the tuples {X1:x1,
…, Xn:xm} such that the tuples {X1:x1, .., Xn:xm, Y1:y11, ...,
Yn:Yn1}, {X1:x1, .., Xn:xm, Y1:y12, ..., Yn:Yn2}, …,
{X1:x1, .., Xn:xm, Y1:y1k, ..., Yn:Ynk} appear in R1 for all
tuples {Y1:y11, ..., Yn:Yn1}, {Y1:y12, ..., Yn2}, …, {Y1:y1k,
..., Ynk} or R2.

Relational operators: conclusions
These eight operations are a set of operators that are useful and make
relational theory powerful in practice. They are not a minimal set of primitives
– some of these operators can be defined in terms of the others. Where
they are not primitive, they have usually been included to simplify common
expressions. For example, both the theta- and the natural-join operators can
be expressed in terms of the Cartesian product, restriction and projection,
but joins are so common and important, that expressions would become
over-complicated quickly without them. In fact, the minimal set of operations
contains only five operators – restriction, projection, Cartesian product,
union and difference.

The power of relational algebra comes from its ability to manipulate relations
as a whole. The relational closure property allows for an unlimited set
of statements to be expressed by combining the eight basic operators. A
grammar for relational algebra expressions can be found in Date, Chapter
‘Relational Algebra’, section ‘Syntax’.

To illustrate the power of this formalism, we shall consider some further
examples.

Chapter 3: The relational model and relational DBMSs

55

3.5.3 Examples

Figure 3.28. The set of relations for the examples in this section.

For these examples, we return to the Students relation and add some further
relations (see Figure 3.28). In the expressions that follow, the meaning of the
results should be clear and so no values are provided, only attributes. If you
have difficulty following any of these examples, try making up some sample
values and working them through, as an exercise.

Most of these attributes should be self-explanatory. The Type attribute of
Modules takes the value of either compulsory or optional.

Here are some example tasks using these relations.

1. Get the name of the tutors who teach at least one module.

Teaching[TName]

2. Get the name of tutors who do not teach any module.

Tutors[TName] – Teaching[TName]

3. Get the name, position and salary of the tutors who do not teach any
module.

(Tutors[TName] – Teaching[TName]) JOIN Tutors

4. Get all the modules that are taught by Professors or give 1 course credit.
((Tutors WHERE Position=”Professor”) JOIN Teaching)[Course]

∪ (Courses WHERE Credits=1)[Course]

5. Get the name and the age of all students who take level 1 courses.

((Courses WHERE Level=1)

JOIN Registration JOIN Students)[SName, Age]

6. The same result could also be obtained using the following:
((Courses WHERE Level=1)[Course] JOIN Registration)[SName]

JOIN Students[SName, Address]

7. Get the name of all students who take all the optional courses.
(Registration ÷ ((Courses WHERE Type=”Optional”)[Course]))[SName]

8. Get the names and the syllabuses for all the courses taken by the student
“A. Lovelace” together with the name and position of the tutor who teaches
each course.

((Registrations WHERE SName=”A. Lovelace”)

JOIN Courses)[Course, Syllabus]

JOIN

(Tutors[TName, Position] JOIN Teaching)

Another possible solution is as follows:

((Registrations WHERE SName=”A. Lovelace”)

CO2209 Database systems: Volume 1

56

JOIN Courses JOIN Teaching JOIN Tutors)

[Course, Syllabus, TName, Position]

Activity

Use the examples above to help formulate your own practise queries. First write
a statement in natural language clearly stating what information you want to
retrieve and then see how many ways you can satisfy that query in relational
algebra. The more complicated the query, the more chance there is that there will
be more than one way of solving it.

3.6 Data manipulation and the optimiser
We have seen that each relational DBMS should provide a language by means
of which to define the domains and relations of a relational model (DDL). In
order to retrieve and update data, a Data Manipulation Language (DML) should
also be provided. Very often, both commercial (industrial) DBMSs and their
open-source alternatives provide a DML which implements relational algebra
– the DML allows the statement of relational algebra expressions as a means of
retrieving and updating data. The standard relational DB language is SQL. SQL
implements a subset of relational algebra, and is the subject of Chapter 4 of the
subject guide.

Relational algebra is used as a measure of the expressive power of a relational
language. A database language is said to be relationally complete if it is at
least as powerful as relational algebra,8 that is, if any expression from relational
algebra can be implemented in the language. Since there are elements of
most database languages that cannot be expressed by Codd’s relational
algebra, it is important not to mistake relational completeness with expressive
completeness, nor to regard it as either a minimum or maximum requirement
for a satisfactory DBMS.

As we have seen in the examples above, it may be possible to express a single
query in several different ways in relational algebra. From the point of view of
a theoretical model such as relational theory, these statements are equivalent,
since they will always give the same results from the same input. The situation
is different for a database language – such as SQL – that implements relational
algebra. The data manipulation statements of such a language must be
evaluated by the DBMS, and although the end-result should be the same for
different, relationally equivalent expressions, they may take different amounts
of time to process. Some queries will be faster or more efficient than others,
depending on the way they are specified and how the DBMS interprets them
and optimises its processing of them.

Relational algebra has two characteristics that are relevant in this context:

 • relational algebra expressions specify the operations, but not the order in
which they are to be performed (although there are precedence rules, such
as the use of brackets)

 • relational algebra operators are set-at-a-time – the way they are performed
on individual tuples is not specified.

The order in which operations are performed when evaluating an expression and
the mechanism for executing operators on individual tuples are implementation
issues. They are taken care of by a module of the DBMS called the optimiser. The
optimiser selects the best evaluation strategy for a given expression.

A consequence of the existence of the optimiser is that users do not have to
worry about how to best state the queries, as long as the expressions they
devise are correct.

8 For more about this
definition, see Codd
(1972), which is listed
in the ‘References cited’
section at the head of
Chapter 3 of the subject
guide.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

Chapter 3: The relational model and relational DBMSs

57

Consider the following example. From the relations used in our examples
above, suppose that the university using these relations has 3,000 students in
the Students relation, while each student takes around four courses, so the
Registrations relation contains around 12,000 tuples.

Now suppose the course called AI has around 100 students, and that the
lecturer needs to know which degree programmes they are all on. The natural
language query for that would be “Get the degree programme of all students
who take the AI course”, which can be expressed in relational algebra as:

((Students JOIN Registrations) WHERE Course=”AI”)[SName]

Several evaluation strategies can be taken here, of which two are:

 • Perform the join (12,000 tuples to be joined to 3,000, resulting in a new
relation with 12,000 tuples and four attributes), then the restriction
(searching through 12,000 tuples to find 100 student records) and then the
projection.

 • Perform the restriction first on Registration (find the 100 student
records in 12,000 tuples), then the join (100 tuples to be joined to 3,000
resulting in 100 records) and then the projection.

It should be clear that the second of these is far superior. The restriction
operation is approximately the same in each case, but the join is about a
hundred times smaller and also returns a smaller relation. We shall return to
optimisation strategies in Volume 2 of this subject guide, but more discussion
is also given in the ‘Optimization’ Chapter in Date.

3.7 Relational data integrity
Databases are systems that implement data models of real-life systems.9 If data
were to be modelled only by specifying the structure of such a system and the
operations that can be performed upon it, then an important aspect would be
lost. In real-life systems, all kinds of constraints can exist between data values.
The data incorporated within a database has to comply with these constraints
to be correct; namely, be an accurate representation of reality.

For example, the two relations illustrated in Figure 3.29, Persons and
Departments, illustrate some of the possible inaccuracies in data
representation. The ID attribute, of the Persons relation was intended to be
a unique identifier for a person but, because this constraint (the uniqueness
property) was not expressed in any way, it was possible to have a duplicated
value in table rows 2 and 3. An invalid name and an invalid date of birth were
given in row 2, while row 3 contains an invalid (negative) value for income.

According to Persons, there are two people working in the MMO1 department,
but according to Departments, there are three, and while HR has no people
associated with it, a non-existent department – HP – has 1. All these examples
illustrate the fact that certain configurations of data cannot be valid models
of reality and such situations must be somehow described and subsequently
avoided.

Persons

ID Name DoB Income Department

1 M. Jackson 29/8/1958 34,000 MM01

3
Robert’)
DROP TABLE
Persons;10

01/04/2105 29,000 MM01

3 F. Mercury 05/09/1946 -45,000 HP

9 It is convenient to talk
about them in terms of
real-life systems, but of
course a database can
just as easily represent
information from
fictional sources – such
as novels or films – or
model speculative or
theoretical realities.
Even in such cases, we
would expect to be
modelling something
external to the
database, and that such
a thing, whether real or
imaginary, would obey
some sort of internal
logic.

10 This name is a
reference to this
cautionary webcomic:
http://xkcd.com/327/

http://xkcd.com/327/

CO2209 Database systems: Volume 1

58

Departments

Department Name No_of_employees

MM01
Manufacturing
Management

3

HR Human Resources 1

Figure 3.29. Persons and Departments relations, containing nonsensical and
incorrect values.

An informal description of some of the integrity constraints for the situation
described above could be:

1. No two tuples in Persons can have the same value for the ID attribute.

2. Any date of birth (DoB) in Persons has to be a valid date, be in the past,
and date from between 16 and 80 years prior to the date of entry.

3. The values for Income should be positive and contain no more than two
decimal places (there is also likely to be an upper limit).

4. For each tuple in Persons, there must exist exactly one tuple in
Departments with the same value for the Department attribute.

5. The number of people in Persons with a given value for Department
must be the same as the corresponding value of the No_of_employees
attribute in Departments.

Data integrity denotes the accuracy or correctness of data. In order to devise a
correct model of a real-life system, the set of constraints existing between the
data values must be identified and specified.

In the context of the relational model, two types of integrity constraints can be
identified, namely:

 • application or database specific, in that they are applicable only to the
application at hand; and

 • generic or general, being relevant to the integrity of any model.

The requirement of a positive value for Income, the acceptable value range
for dates and the correspondence between no_of_employees and the
Persons relation are all database-specific integrity constraints. The relational
model does not specifically cater for them, although some can be expressed
and enforced using domains. Most database languages do provide some
degree of support for expressing these constraints, often using relational
algebra expressions. The next chapter will show how this is achieved in
SQL.

The fact that the attribute chosen for tuple identification has to be unique
(constraint 1 above) and the ‘corresponding values’ constraint, used for linking
relations (constraint 4, above) are aspects of two integrity constraints, relevant
to any relational model.

The two general integrity constraints stem from the following rationales.

 • An addressing mechanism must exist that provides the unique
identification of each tuple within a relation.

 • No tuple in a relation that is required to make a reference to another tuple
(either in the same or in another relation) should refer to one that does not
exist.

They are modelled with two concepts from the relational model, candidate
key and foreign key.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

Chapter 3: The relational model and relational DBMSs

59

3.7.1 Candidate keys

Candidate key. Given a relation R, a subset CK of the attributes of R
represents a candidate key for R if, for any extension, it has:

1. The uniqueness property – no distinct tuples have the same value for
PK; and

2. The irreducibility property – no proper subset of PK has the
uniqueness property.

One of the generic integrity constraints can now be defined:

Entity integrity. The entity integrity constraint specifies that each relation
must have at least one candidate key.

This constraint is always satisfied within the relational model. Every relation
has at least one candidate key – since a relation cannot contain duplicate
tuples, the complete set of attributes of a relation is always a possible
candidate key. If it has the irreducibility property, then it is the (only) candidate
key for the relation. If it is reducible, then it must have a proper subset that is
irreducible which, in turn, will be a candidate key.

Consider the relation StorageBoxes shown in Figure 3.30. Each model of
box has a unique Model-No, so this is a candidate key. It is also the case that
each model has a distinct size, so the subset {Height, Width, Depth} is
also a candidate key for StorageBoxes.

StorageBoxes

Model-No Height Width Depth Price

Figure 3.30. The StorageBoxes relation has two candidate keys: Model-No and
{Height, Width, Depth}.

If a candidate key consists of only one attribute, it is said to be simple. If it
contains more than one, it is called composite.

Since a given relation can have more than one candidate key, there is a choice
of which should be used for tuple addressing. The chosen key is called the
primary key of the relation, with the others called alternate keys.

For a database system, specifying candidate keys allows the uniqueness
property of the corresponding attributes to be enforced – the system ensures
that no operation that could result in a candidate key having duplicate values
is permitted.

3.7.2 Foreign keys

Foreign key. Given two relations, R1 and R2, a subset of the attributes of
R2, FK is a foreign key of R2, referencing R1, if:

1. R1 has a candidate key, CK, defined on the same domains as FK; and

2. Each value in FK is equal to the value of CK in some tuple in R1 at all
times.

Note that the reverse of the second requirement above is not necessary –
there may well exist values for the candidate key that are not matched by any
value of foreign key.

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

60

Students Registrations

Name Age Degree ID ID Course

A. Turing 21 CS AS191 AS191 Prog1

A. Lovelace 28 CS BC24Z AS191 CS

F. Allen 22 CIS AX007 AS191 AI

M. Ibuka 21 IT NN02M BC24Z MusTech

BC24Z AI

AX007 Prog1

AX007 CS

AX007 DB

AX007 AI

Figure 3.31. An example of foreign and candidate keys. Here, ID is a candidate key in
Students and a foreign key in Registrations. The only candidate key in
Registrations is {ID, Course} – all the attributes of the relation.

In the example in Figure 3.31, each tuple in Registrations has a
corresponding tuple – having the same ID – in Students. For instance:

 • {AS191, CS} corresponds to {A. Turing, 21, CS, AS191}

 • {AS191, AI} also corresponds to {A. Turing, 21, CS, AS191}

 • {AX007, DB} corresponds to {F. Allen, 22, CIS, AX007}

There is no tuple in Registrations that corresponds to {M. Ibuka, 21, IT,
NN02M}, presumably because that student is yet to register for a course. There
is no requirement in the definition of foreign keys that would make this a
problem.

The Students relation has ID as its primary key, while {ID, Course} is
the primary key of Registrations. ID is a foreign key in Registrations,
referencing Students – Students is the target, or the referenced
relation, whereas Registrations is the referencing relation. {AS191,
CS} is a referencing tuple in Registrations, its target, {A. Turing, 21,
CS, AS191} is a referenced tuple in Students.

The fact that a relation R2 has a foreign key that references a relation R1 can
be represented diagrammatically in the form of a referential diagram, as in
Figure 3.32.

Figure 3.32. A simple referential diagram. R2 references R1.

A referential diagram is actually constructed either for the whole database (the
whole set of relations modelling a real-life system) or for a substantial part of
it; for instance, for the relations in the figure, we can construct the diagram
shown in Figure 3.33.

Figure 3.33. A more complex referential diagram.

The other generic integrity constraint, referential integrity, can also now be
defined.

Chapter 3: The relational model and relational DBMSs

61

Referential integrity. The referential integrity constraint specifies that the
database – the whole set of relations – must not contain any unmatched
foreign key values.

In other words, there always must exist a target tuple for any existing
referencing tuple. For a database system, the specification of the foreign keys
enforces the referential integrity constraint. That is, the system ensures that
the result of any update operation cannot result in unmatched foreign keys.

3.7.3 Nulls
When a relational model is built, it is usually assumed that all the analysed
information is available. However, there are situations when some information
is unavailable or missing. For instance:

 • The address of the customers of a certain chain of shops is confidential;
therefore, there may be situations when this information is not provided.

 • New students have registered with the university but have not yet decided
which modules to take, so this information is not yet available.

 • Some antique coins have been found on an architectural site, but the year
is unknown.

These instances of missing or unavailable information are handles using
nulls.

Null. A null is a way of indicating missing information.

Note that a null is not a value; do not confuse it with zero or blank. A null is a
marker and means unknown value. A simple example is shown below.

ID Name Age Degree

IZ00B M. Methuselah NULL CIS

Some definitions previously given must be revisited in the light of the
existence of nulls.

Entity integrity. The entity integrity constraint specifies that each relation
must have at least one candidate key. A candidate key may not accept
NULL values.

Foreign key. Given two relations, R1 and R2, a subset of the attributes of
R2, FK is a foreign key of R2, referencing R1, if:

1. R1 has a candidate key, CK, defined on the same domains as FK; and

2. Each value in FK is either null or is equal to the value of CK in some
tuple in R1 at all times.

Referential integrity. The referential integrity constraint specifies that
the database – the whole set of relations – must not contain unmatched,
non-null foreign keys.

3.7.4 Domains and normal forms
There are two other mechanisms within the relational model that can be used
for the expression of certain kind of constraints.

The first mechanism is through domains. Domains can be used to impose
limitations on the admissible values of a certain attribute and also on the

CIvan
Evidenţiere

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

62

admissible operations that can be performed upon it. For instance, in order to
express a date constraint for a date of birth, so that DoB has to be of the form dd/
mm/yyyy and should be between 01/01/1960 and 01/01/2001, we can define a
domain, say DatesOfBirth, and then define the attribute DoB of this type.

As a language for illustration we shall use the simplified SQL language we have
used before. For illustration purposes we allow for an interval of integer values
and for a record to be specified by:

INTERVAL OF INTEGER [<min> .. <max>]

and

RECORD (<type>/<type>/<type>)

respectively, even though these data types are not supported by SQL.
CREATE DOMAIN Days AS INTEGER [1 .. 31]

CREATE DOMAIN Months AS INTERVAL OF INTEGER [1 .. 12]

CREATE DOMAIN Years AS INTERVAL OF INTEGER [1960 .. 2001]

CREATE DOMAIN DatesOfBirth AS RECORD (Days/Months/Years)

CREATE BASE RELATION Persons (

ID INTEGER,

Name VARCHAR,

DoB DatesOfBirth,

--etc.

)

Of course, this definition is not very sophisticated, for example, permitting
impossible dates such as 31/2/1960, but the definition could be extended;
many DBMSs will have built-in date domains making this easier.

The second mechanism uses the normal forms. Three particular kinds
of constraint – functional dependencies, multiple dependencies and join
dependencies – are expressed by means of normal forms. They will be
introduced only briefly here – they are treated in detail in Chapter 5 of the
subject guide.

Normalising a relation generally involves decomposing it into a set of
relations of smaller degree, in order to eliminate avoidable and undesirable
dependencies between its attributes. Such dependencies create redundant
data in the original relation, which, in turn, may lead to problems when
updating it. Removing the dependencies reduces the risk of those problems.

Consider, for example, a relation Employees (Figure 3.35), which contains
information about workers and their salaries.

Employees

ID Name YearsInService Role Salary

D13 W. Ganim 2 Programmer 25,000

D14 A. Fry 3 Programmer 27,000

D25 O. Lai 3 Programmer 27,000

D23 V. Kotlář 5 Programmer 34,000

D04 A. Randall 5 Programmer 34,000

D03 R. Fry 5 Programmer 34,000

D02 M. Singh 8 Programmer 41,000

D01 M. Singh 8 Analyst 43,000

Figure 3.35. The relation Employees, showing experience, role and salary.

CIvan
Evidenţiere

CIvan
Evidenţiere

Chapter 3: The relational model and relational DBMSs

63

The attribute ID is the unique candidate key (and the primary key). If, in this
organisation, the salary of an employee depends entirely on their role and
number of years in service, we should be able to predict it from them. Even if
we do not have the formula used for that calculation, if more than one staff
member has the same role and experience level, there will be repetition of
information in the table. For instance, in the table above, three staff members
have five years of service and are programmers, and so have the same salary
level. This repeated information is called redundant data.

In order to express the dependency between YearsInService, Role and
Salary, we decompose Employees into two relations – Employees and
Salaries – that, combined, are equivalent to the old relation.

Employees

ID Name YearsInService Role

D13 W. Ganim 2 Programmer

D14 A. Fry 3 Programmer

D25 O. Lai 3 Programmer

D23 V. Kotlář 5 Programmer

D04 A. Randall 5 Programmer

D03 R. Fry 5 Programmer

D02 M. Singh 8 Programmer

D01 M. Singh 8 Analyst

Salaries

YearsInService Role Salary

2 Programmer 25,000

3 Programmer 27,000

5 Programmer 34,000

8 Programmer 41,000

8 Analyst 43,000

Figure 3.36. A normalisation of the Employees relation from Figure 3.35. The candidate
key for Employees is unchanged, while the candidate key for the Salaries relation is
{YearsInService, Role}.

3.8 Integrity constraint definition and foreign key
rules

It is not sufficient for a data definition language (DDL) to support only the
definition of the structure of data. It also has to support the definition of
integrity constraints on data. Since the two generic integrity constraints are
represented by means of keys, the DDL has to support their definition.

SQL supports the definition of keys, so we shall continue to use it for
illustrations. Three more notational conventions are needed:

 • @ in front of a construct means a list of those elements, separated by
commas.

 • ::= means ‘is by definition’.

 • | (vertical bar) signifies exclusive selection (a choice of either…or)

CO2209 Database systems: Volume 1

64

The syntax for data definition in (simplified) SQL, allowing the definition of
keys is:
CREATE TABLE <relation name> (

@<attribute definition>,

<primary key definition>,

@<candidate key definition>,

@<foreign key definition>

);

<primary key definition> ::= PRIMARY KEY (<set of attributes>)

<candidate key definition> ::= CANDIDATE KEY (<set of attributes>)

<foreign key definition> ::= FOREIGN KEY (<set of attributes>)

REFERENCES <relation name>

For instance, the normalised relations of Figure 3.36 can be defined as
follows:

CREATE TABLE Employees (

ID CHAR(3),

Name VARCHAR,

YearsInService INTEGER,

Role VARCHAR,

PRIMARY KEY (ID),

FOREIGN KEY (YearsInService, Role)

)

CREATE TABLE Salaries (

YearsInService INTEGER,

Role VARCHAR,

Salary INTEGER,

PRIMARY KEY (YearsInService, Role)

)

Since relations are linked to one another through keys – in other words,
through the values of some of their attributes – a question arises of what to do
when one of the linked values changes. How should the link be maintained?
More precisely, what happens when the value of the primary key attribute of
a target tuple changes – what should happen to the referencing tuples? To
answer this, we require foreign key rules.

There are two situations to consider:

 • the target tuple is going to be deleted; and

 • a value in the primary key attribute of the target tuple is going to be
modified.

If no other action is taken, then, in both cases, the referencing tuples will be
left referring to a tuple that does not exist anymore. Such a situation is not
acceptable, and so some extra operations must be performed by the DBMS in
order to maintain the consistency of the database.

SQL provides two types of actions that a DBMS can perform automatically
in case a target tuple is modified, to restrict or to cascade. To illustrate the
required behaviour of the DBMS, we shall consider four examples.

Consider two relations describing models of a company’s products and the
components they require.

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

CIvan
Evidenţiere

Chapter 3: The relational model and relational DBMSs

65

CREATE TABLE Models (

ModelID CHAR(8),

Name VARCHAR,

-- other attributes…

PRIMARY KEY ModelID

);

CREATE TABLE Components(

ModelID CHAR(8),

ComponentID CHAR(8),

-- other attributes…

PRIMARY KEY (ModelID, ComponentID),

FOREIGN KEY (ID) REFERENCES Employees

);

If a model ceases to be produced, the respective tuple from Models is
deleted. Assuming that this model has components, what should be done
with their records? Since the model no longer exists, the component entries
are now meaningless and should be deleted from the database. The delete
operation on the model has to be cascaded onto the referencing tuples.

A slightly different situation might occur for a university that holds
information on students in one relation, and on the books currently borrowed
from the library in another.

CREATE TABLE Students (

StudentID CHAR(6),

Name VARCHAR,

-- other attributes

PRIMARY KEY (StudentID)

);

CREATE TABLE Borrowings (

BookID CHAR(10),

StudentID CHAR(6),

-- other attributes

PRIMARY KEY (BookID, StudentID),

FOREIGN KEY (StudentID) REFERENCES Students

);

When students finish their degree – either by graduating or dropping out –
the corresponding tuples must be deleted from Students. If records remain
in Borrowings, it means that the student still has books from the library. If
all the records are deleted when the student leaves, then there will be no way
of knowing what books are owed.

On the other hand, if the student’s record is deleted, then the tuples in
Borrowings will have a StudentID that does not correspond to any
tuple in Students. Instead, it is better if deleting the student’s record is not
allowed until all corresponding entries in Borrowings have been removed
(because the student has returned those books). In this case, we say that
deletion of the Students tuple has to be restricted by the referencing
tuples in Borrowings.

The third example considers updating information and uses the same
Students and Borrowings relations. Suppose that it is decided to
change all StudentIDs, perhaps to harmonise with another database.

CO2209 Database systems: Volume 1

66

If a StudentID is changed in Students, the corresponding entry in
Borrowings could be left with an invalid value for its foreign key. Clearly, the
referencing tuple in Borrowings must be updated with the same value. In
this case, we say that the update is cascaded.

Finally, consider the Courses and Registrations relations we have
met several times before, with Courses listing university courses and
Registrations recording the students who are currently enrolled on
them.

CREATE TABLE Courses (

Course CHAR(8),

Credits INTEGER,

-- other attributes

PRIMARY KEY Course

);

CREATE TABLE Registrations(

StudentID CHAR(6),

Course CHAR(8),

PRIMARY KEY (StudentID, Course),

FOREIGN KEY (Course) REFERENCES Courses,

FOREIGN KEY (StudentID) REFERENCES Students

);

Suppose that a course is being revised, with the name and credits being
changed, but other fields remain the same. It would be very unusual to
change course specifications when there were still students studying on a
course, so we should only allow such a change when there are no students
currently registered for the course. So, the update in Courses must be
restricted if there exist any referencing tuples in Registrations.

It should be clear from these examples that there are two actions possible
when an updating operation – deletion or modification – affects the primary
key of a relation that is referred to by another relation:

 • for the update of the target tuple to be cascaded to the referencing tuples;
or

 • for the update of the target tuple to be restricted if referencing tuples
exist.

SQL allows the specification of foreign key rules as follows:

CREATE TABLE <relation name> (

<attribute definition>,

<primary and candidate keys definition>,

@<foreign key and foreign rules definition>

);

<foreign key and foreign key rules definition> ::=

FOREIGN KEY (<set of attributes>) REFERENCES <relation name>

ON DELETE <option>

ON UPDATE <option>

<option> ::= CASCADE | RESTRICT

CIvan
Evidenţiere

Chapter 3: The relational model and relational DBMSs

67

For instance, for the first example, the definition of Components becomes:

CREATE TABLE Components(

ModelID CHAR(8),

ComponentID CHAR(8),

-- other attributes…

PRIMARY KEY (ModelID, ComponentID),

FOREIGN KEY (ID) REFERENCES Employees

ON DELETE CASCADE

ON UPDATE CASCADE

);

The syntax of DDLs in real implementations is usually extended to provide
support for the expression of other kinds of integrity constraints. For instance,
SQL supports the definition of constraints between attributes of different
relations by means of boolean (truth-valued) expressions. Such mechanisms
are presented in Chapter 4 of the subject guide.

To return to the concept that started this discussion of database integrity, we
can say that a database is considered correct if it satisfies the logical and all of
the integrity rules.

3.9 Conclusions
This chapter presented the main aspects of the relational model and how
they are operationalised in a relational DBMS. The relational model is a theory
by means of which the information related to a real life application can be
modelled. The main advantage of the relational model consists in the synergy
between its simplicity and its power of expression. As a result, the relational
model was almost universally adopted as the theoretical basis for database
systems; although challenges from other models are growing, powered by
web technologies and scales, for now, it remains the de facto standard data
model.

The next chapter presents the most popular language that implements the
relational model, SQL. In the main you will learn how to create, query and
maintain a database. The last chapter of Volume 1 of the subject guide and the
first chapter of Volume 2 will then present and answer the question: how can a
successful (that is, fit for purpose) database be developed?

3.10 Overview of the chapter
In this chapter, we described the relational model in detail, starting with basic
terminology and concepts, and then looking at how data structures are defined
and how data is added, manipulated and retrieved in the model. Finally, we
introduced the idea of the integrity of data in a relational system.

3.11 Reminder of learning outcomes – concepts
Having completed this chapter, and the Essential readings and activities, you
should be able to:

 • describe how a real-life system can be modelled within a data model

 • describe the relational model and the way it is used in a relational DBMS;
be familiar with the terminology of the relational model

 • describe the concept of domains

 • describe the concept of relations and discuss the properties of relations

 • discuss, in general terms, how the relational data objects are
operationalised (used in a relational DBMS)

CIvan
Evidenţiere

CO2209 Database systems: Volume 1

68

 • describe each of the operators of relational algebra

 • be able to express natural language statements, representing information
to be inferred from relations, as relational algebra expressions

 • explain the way relational algebra is used in the context of DBMSs
(including the optimiser)

 • present different types of inconsistencies that can exist within a relational
model

 • define and classify integrity constraints

 • define the concepts of candidate, primary, alternate and foreign key

 • discuss the issue of null values

 • describe how the definition of generic integrity constraints is
operationalised, including the foreign key rules.

3.12 Reminder of learning outcomes – key terms
Having completed this chapter, and the Essential readings and activities, you
should understand the following terms:

 • Atomic or scalar value

 • Attribute/field and tuple/record

 • Base relation

 • Built-in (system-defined) types and user-defined types

 • Candidate key

 • Cardinality and degree

 • Common attribute

 • Data Definition Language (DDL)

 • Data dictionary

 • Data Manipulation Language (DML)

 • Data representation

 • Degree

 • Derived relation

 • Domain

 • Domain-constrained operations

 • Entity integrity

 • Foreign key

 • Foreign key rules, restrict, cascade

 • Integrity constraints

 • Key

 • Named relation

 • Primary and alternate keys

 • Query result

 • Redundant data

 • Referencing/Referenced relation, referencing/referenced tuple

 • Referential diagram

 • Referential integrity

 • Relation (having heading and body)

Chapter 3: The relational model and relational DBMSs

69

 • Relational Database Management System (RDBMS)

 • Relational variable

 • Simple and composite candidate key

 • Snapshot

 • View.

3.13 Test your knowledge and understanding
3.13.1 Sample examination questions

a. Consider the following table.

Head of state Spouse

Benjamin Henry Sheares, President of Singapore Yeo She Geok Sheares

Margaret of Austria, Governor of the Habsburg
Netherlands

Prince John

Philbert II

Henry VIII, King of England

Catherine of Aragon

Anne Boleyn

…

i. Rewrite the table as a relation. [2] [Shortening names to save time is
acceptable.]

ii. What is the cardinality of the relation? [1]

iii. What is a candidate key? What are the candidate keys for this relation?
For each, say if it is simple or composite. [4]

iv. Comment on whether the Head of state attribute in the relation is truly
scalar [2]

v. Which, if any of the following statements are True. [2]

1. Reversing the tuples in the relation makes it invalid.

2. Reversing the tuples in the relation makes a new relation.

3. Adding a tuple that is identical to one already there makes a new
relation.

4. Adding a tuple that is identical to one already there makes the
relation invalid.

vi. This constraint has been added to the relation. Explain what it does. [7]

FOREIGN KEY (Spouse) REFERENCES People

ON DELETE RESTRICT

ON UPDATE CASCADE

b. ‘NULL is relational theory’s equivalent of FALSE.’

i. Is the above statement correct? [1]

ii. If it is correct, explain why NULL is used instead of FALSE. If it is
incorrect, give a better definition. [2]

iii. Give an example of a tuple that uses NULL correctly. [2]

iv. Which, if any, of the following may accept a NULL value:

1. A candidate key.

2. A foreign key. [2]

Notes

CO2209 Database systems: Volume 1

70

	Chapter 1: Introduction to the subject guide
	Introduction to Volumes 1 and 2 Database systems
	1.1 Route map to the guide
	1.1.1 Glossary of key terms

	1.2 Introduction to the subject area
	1.3 Syllabus
	1.4 Aims of this course
	1.5 Learning objectives for the course
	1.6 Learning outcomes for students
	1.7 Overview of learning resources
	1.7.1 The subject guide
	1.7.2 Essential reading
	1.7.3 Further reading
	1.7.4 Online Library and the VLE
	1.7.5 End of chapter Sample examination questions and Sample answers

	1.8 Examination advice
	1.9 Overview of the chapter
	1.10 Test your knowledge and understanding
	1.10.1 A reminder of your learning outcomes

	Chapter 2: Databases – basic concepts
	2.1 Introduction
	2.1.1 Aims of the chapter
	2.1.2 Learning outcomes
	2.1.3 Essential reading
	2.1.4 Further reading

	2.2 What is a database?
	2.2.1 File-based systems
	2.2.2 Databases and database management systems

	2.3 The three-level ANSI/SPARC architecture of a database environment
	2.4 Schemas and mappings
	2.5 The components of a database system
	2.5.1 Data
	2.5.2 Software
	2.5.3 Hardware
	2.5.4 Users
	2.5.5 DBMSs and database languages

	2.6 Advantages and disadvantages of database systems
	2.6.1 Advantages
	2.6.2 Disadvantages

	2.7 Architectures of database systems
	2.8 Data models
	2.9 Overview of the chapter
	2.10 Reminder of learning outcomes – concepts
	2.11 Reminder of learning outcomes – key terms
	2.12 Test your knowledge and understanding
	2.12.1 Sample examination questions

	Chapter 3: The relational model and relational DBMSs
	3.1 Introduction
	3.1.1 Aims of the chapter
	3.1.2 Learning outcomes
	3.1.3 Essential reading
	3.1.4 Further reading
	3.1.5 References cited

	3.2 The relational model: a general introduction
	3.2.1 Relational DBMSs

	3.3 Relational data objects – domains and relations
	3.3.1 Terminology
	3.3.2 Domains
	3.3.3 Relations

	3.4 Data definition in a relational DBMS
	3.4.1 The data dictionary

	3.5 Relational operators
	3.5.1 Relational algebra operators based on set theory
	3.5.2 Relation-specific relational algebra operators
	3.5.3 Examples

	3.6 Data manipulation and the optimiser
	3.7 Relational data integrity
	3.7.1 Candidate keys
	3.7.2 Foreign keys
	3.7.3 Nulls
	3.7.4 Domains and normal forms

	3.8 Integrity constraint definition and foreign key rules
	3.9 Conclusions
	3.10 Overview of the chapter
	3.11 Reminder of learning outcomes – concepts
	3.12 Reminder of learning outcomes – key terms
	3.13 Test your knowledge and understanding
	3.13.1 Sample examination questions

	Chapter 4: SQL
	4.1 Introduction
	4.1.1 Aims of the chapter
	4.1.2 Learning outcomes
	4.1.3 Essential reading
	4.1.4 Further reading
	4.1.5 References cited

	4.2 Introduction to SQL
	4.3 The Data Definition Language (DDL)
	4.3.1 Domains
	4.3.2 Base relations
	4.3.3 Retrieval
	4.3.4 Updates

	4.4 Integrity constraints
	4.5 Views
	4.5.1 Introduction
	4.5.2 Retrieving data using views
	4.5.3 Advantages of using views
	4.5.4 Updating data using views

	4.6 Stored procedures
	4.7 Conclusion
	4.8 Overview of the chapter
	4.9 Reminder of learning outcomes – concepts

	4.10 Reminder of learning outcomes – key terms
	4.11 Test your knowledge and understanding
	4.11.1 Sample examination questions

	Chapter 5: Designing relational database systems
	5.1 Introduction
	5.1.1 Aims of the chapter
	5.1.2 Learning outcomes
	5.1.3 Essential reading
	5.1.4 Further reading

	5.2 Introduction to relational database systems
	5.3 Conceptual modelling – the E/R model
	5.3.1 Introduction
	5.3.2 Core concepts
	5.3.3 Possible flaws
	5.3.4 Conclusion

	5.4 Transforming an E/R model into a relational 		model
	5.4.1 Entities
	5.4.2 Relationships
	5.4.3 Type hierarchies
	5.4.4 Limitations
	5.4.5 Preparing the E/R model

	5.5 Normalisation
	5.5.1 Update anomalies
	5.5.2 Functional dependencies
	5.5.3 Normal forms
	5.5.4 Further normalisation – 4NF and 5NF

	5.6 Overview of the chapter
	5.7 Reminder of learning outcomes – concepts
	5.8 Reminder of learning outcomes – key terms

	5.9 Test your knowledge and understanding
	5.9.1 Sample examination questions

	Appendix 1: Sample answers/Marking scheme
	Chapter 2: Databases – basic concepts
	Chapter 3: The relational model and relational RDBMSs
	Chapter 4: SQL
	Chapter 5: Designing relational database systems

	_Ref285024578
	_GoBack
	CO2209-vol2-contents.pdf
	Chapter 1: Introduction to the subject guide
	Introduction to Volume 1 and 2 Database systems
	1.1 Route map to the guide
	1.1.1 Glossary of key terms

	1.2 Introduction to the subject area
	1.3 Syllabus
	1.4 Aims of this course
	1.5 Learning objectives for the course
	1.6 Learning outcomes for students
	1.7 Overview of learning resources
	1.7.1 The subject guide
	1.7.2 Essential reading
	1.7.3 Further reading
	1.7.4 Online Library and the VLE
	1.7.5 End of chapter Sample examination questions and Sample answers

	1.8 Examination advice
	1.9 Overview of the chapter
	1.10 Test your knowledge and understanding
	1.10.1 A reminder of your learning outcomes

	Chapter 2: Data preservation, security and database optimisation
	2.1 Introduction
	2.1.1 Aims of the chapter
	2.1.2 Learning outcomes
	2.1.3 Essential reading
	2.1.4 Further reading

	2.2 Databases and the mechanisms for data protection
	2.3 Data recovery
	2.3.1 Transactions
	2.3.2 Database recovery
	2.3.3 Transactions in SQL
	2.3.4 Two-phase commit

	2.4 Concurrency control
	2.4.1 Concurrency problems
	2.4.2 Locking
	2.4.3 Deadlocks
	2.4.4 Serialisability

	2.5 Data security
	2.5.1 Granting privileges in SQL

	2.6 Database optimisation
	2.6.1 Indexes
	2.6.2 Denormalisation

	2.7 Overview of the chapter
	2.8 Reminder of learning outcomes – concepts
	2.9 Reminder of learning outcomes – key terms
	2.10 Test your knowledge and understanding
	2.10.1 Sample examination questions

	Chapter 3: Distributed architectures for database systems
	3.1 Introduction
	3.1.1 Aims of the chapter
	3.1.2 Learning outcomes
	3.1.3 Essential reading
	3.1.4 Further reading

	3.2 Distributed database systems: an introduction
	3.3 Objectives
	3.4 Problems
	3.4.1 Query processing
	3.4.2 Catalogue management
	3.4.3 Update propagation
	3.4.4 Recovery control
	3.4.5 Concurrency control

	3.5 Concluding remarks and new models
	3.6 Overview of the chapter
	3.7 Reminder of learning outcomes – concepts
	3.8 Reminder of learning outcomes – key terms
	3.9 Test your knowledge and understanding
	3.9.1 Sample examination questions

	Chapter 4: Advanced database systems
	4.1 Introduction
	4.1.1 Aims of the chapter
	4.1.2 Learning outcomes
	4.1.3 Essential reading
	4.1.4 Further reading

	4.2 Introduction to alternative implementations
	4.3 Criticisms of relational database systems
	4.3.1 Generic, homogeneous data structure
	4.3.2 Difficulty with recursive queries
	4.3.3 Mismatches between application programs and DBMS
	4.3.4 SQL does not support…
	4.3.5 No ad hoc structures
	4.3.6 Problems with scaling

	4.4 Other models for data handling systems
	4.5 Pre-web paradigms
	4.5.1 Deductive database systems
	4.5.2 Object-oriented database systems

	4.6 Web-era paradigms
	4.6.1 Key-value databases
	4.6.2 Document-oriented databases
	4.6.3 Graph databases, the Semantic Web and Linked Data

	4.7 Conclusions
	4.8 Overview of the chapter
	4.9 Reminder of learning outcomes – concepts
	4.10 Reminder of learning outcomes – key terms
	4.11 Test your knowledge and understanding
	4.11.1 Sample examination questions

	Appendix 1: Sample answers/Marking scheme
	Chapter 2: Data preservation, security and database optimisation
	Chapter 3: Distributed architectures for database systems
	Chapter 4: Advanced database systems

	Appendix 2: Data tables

