
Blekinge Institute of Technology

Bachelor thesis, computer science
DV1322

Document Oriented NoSQL Databases
A comparison of performance in MongoDB and CouchDB using a Python interface

Author:
Robin Henricsson

Supervisor:
Göran Gustafsson

June 13, 2011

Contents

1 Introduction 6

1.1 Glossary of terms . 6

1.1.1 Data . 6

1.1.2 Information . 6

1.1.3 NULL . 6

1.1.4 Semi-structured data . 6

1.1.5 ACID . 6

1.1.6 URI . 6

1.1.7 Web 2.0 . 7

1.1.8 Plain text file . 7

1.2 Background . 7

1.2.1 Databases today . 7

1.2.2 Tomorrow’s NoSQL databases . 7

1.3 Research question . 8

1.4 Hypothesis . 8

1.5 Question formulations . 8

1.6 Goal and purpose . 8

1.7 Target audience . 8

1.8 Delimitations . 9

1.9 Method . 9

2 Storing data 9

2.1 CSV . 10

2.2 XML . 10

2.3 JSON . 11

3 Databases 12

3.1 Database Management Systems . 12

3.1.1 Relational model . 12

3.1.2 SQL . 12

3.1.3 NoSQL . 12

3.1.3.1 Definition . 12

3.1.3.2 Why NoSQL? . 13

3.1.3.3 Tabular NoSQL databases . 15

3.1.3.4 Graph NoSQL databases . 15

3.1.3.5 Document databases . 15

4 MongoDB 16

4.1 Data model . 16

4.2 Indexing . 17

4.3 Sharding and replication . 17

4.4 Querying . 17

1

4.4.1 JSON-style queries . 17

4.4.2 Map/reduce . 17

4.5 GridFS . 17

4.6 Lack of transactions . 18

4.7 In-place updating . 18

5 CouchDB 18

5.1 Data model . 18

5.2 RESTful API . 19

5.3 Revisions . 19

5.4 Scaling and replication . 19

5.5 Querying . 20

5.6 Attachments . 20

6 Benchmarking 20

6.1 Generating test data . 20

6.1.1 Document outline . 21

6.2 Inserting test data . 21

6.3 Querying data . 22

6.3.1 Querying MongoDB . 22

6.3.2 Querying CouchDB . 22

6.3.3 Query 1 . 22

6.3.4 Query 2 . 22

6.3.5 Query 3 . 22

6.3.6 Query 4 . 22

6.3.7 Query 5 . 22

6.4 Measuring time . 22

7 Benchmarking hardware and software information 23

7.1 Software . 23

7.2 Hardware . 23

8 Benchmarking results 23

8.1 Insert speeds . 23

8.2 Database sizes . 23

8.3 Read speeds . 24

8.3.1 Query 1 . 24

8.3.2 Query 2 . 24

8.3.3 Query 3 . 24

8.3.4 Query 4 . 24

8.3.5 Query 5 . 25

2

9 Conclusions 25
9.1 Benchmarking results . 25
9.2 Problems encountered . 26
9.3 Future work . 26

A Appendices 29
A.1 Source code, randPersons.py . 29
A.2 Source code, mongoInsert.py . 31
A.3 Source code, couchInsert.py . 32
A.4 Source code, mongoBench.py . 33
A.5 Source code, couchBench.py . 34
A.6 Graph, sizes . 36
A.7 Graph, reads . 37
A.8 Graph, query 1 . 38
A.9 Graph, query 2 . 39
A.10 Graph, query 3 . 40
A.11 Graph, query 4 . 41
A.12 Graph, query 5 . 42
A.13 Techniques used for creating thesis . 43

3

Abstract

For quite some time relational databases, such as MySQL, Oracle and Microsoft SQL Server,
have been used to store data for most applications. While they are indeed ACID compliant
(meaning interrupted database transactions won’t result in lost data or similar nasty surprises)
and good at avoiding redundancy, they are difficult to scale horizontally (across multiple
servers) and can be slow for certain tasks. With the Web growing rapidly, spawning enourmous,
user-generated content websites such as Facebook and Twitter, fast databases that can handle
huge amounts of data are a must. For this purpose new databases management systems
collectively called NoSQL are being developed. This thesis explains NoSQL further and
compares the write and retrieval speeds, as well as the space efficiency, of two database
management systems from the document oriented branch of NoSQL called MongoDB and
CouchDB, which both use the JavaScript Object Notation (JSON) to store their data within.

The benchmarkings performed show that MongoDB is quite a lot faster than CouchDB, both
when inserting and querying, when used with their respective Python libraries and dynamic
queries. MongoDB also is more space efficient than CouchDB.

Keywords

MongoDB, CouchDB, Python, pymongo, couchdb-python, NoSQL, Document database, JSON,
DBMS, Database

4

Forewords

I would very much like to thank my supervisor Göran Gustafsson, who was kind enough to take
on the role of supervisor even though he did not give any courses at the university during the
first part of my work on the thesis. His helpful advice has helped me alot during my work.

I would also like to thank Dr Niklas Lavesson for giving me access to the university’s amazing
computer beast and for helping me install everything I needed despite his busy schedule.

Lastly, I want to thank my dear friend Peter Assmus for letting me install Linux on, and use,
his computer when mine did not suffice.

5

1 Introduction

1.1 Glossary of terms

1.1.1 Data

Information and data are two words that are
sometimes used interchangeably to describe
bits of knowledge, or maybe rather the rep-
resentation of that knowledge itself. However,
the two words actually have different mean-
ings.

Raw data is basically numbers (or some
other symbols) that by themselves mean noth-
ing. For example, ”0” might be a piece of data.
Of course the number zero has a certain mean-
ing when in a context — it could be the number
of times an individual has been married or per-
haps the temperature in some unit of measure
— but by itself it is insignificant.

1.1.2 Information

Information is data that has been given a
meaning through some type of connection. It
answers questions like “where?”, “who?” and
“how many?”. For example, the number zero
would be information if it is an answer to a
question such as ”how many times has Sweden
been invaded by France?”. In other words, in-
formation can be said to be data in a context.

Databases store data that the software can
present in a meaningful (not necessarily useful)
way, turning it into information that means
something to us, the wielders of the human
mind.

1.1.3 NULL

NULL is a value that is used in many databases
and programming languages to represent the
lack of a “real” value. It basicaly means “noth-
ing”.

1.1.4 Semi-structured data

Semi-structured data is data that is structured
in some way that lets attributes be optional.
Imagine a simple table, which is strictly struc-
tured data. Each column represents a specific
attribute, and so every row in the table needs
a value for every column (even if the value is
NULL).

Now, imagine something like an XML doc-
ument, which uses starting and ending tags to
separate keys from values. If there is no value
for a certain key, the entire element (starting
tag, value, ending tag) is simply left out of the
document. Structuring data in such a way that
some attributes can truly be optional is making
it semi-structured.

1.1.5 ACID

ACID, which is an abbreviation of Atomicity,
Consistency, Isolation, Durability, is a set of
properties that many relational database man-
agement systems possess. It basically means
that transactions in databases are reliably pro-
cessed. This might as an example mean that
a bank transaction, which includes withdrawal
from one account, insertion into another ac-
count and recording of the transaction itself
into yet another table, is all treated as one
atomic operation that either is fully completed,
or not completed at all. That way, if the power
goes out (or if the transaction fails for some
other reason), no money is lost and no data
corrupt.

1.1.6 URI

URI, Uniform Resource Identifier, is a string
of characters used primarily on the Internet to
address resources. An example of a simple URI
is http://robinhenricsson.se.

6

1.1.7 Web 2.0

The Web 2.0 is a somewhat diffuse term that
describe the new Web that is emerging, where
more and more sites include user-generated
content (Facebook, Twitter, Flickr) and where
different sites and social medias can connect
to eachother (think about it, how many blogs,
newspapers etc. don’t allow Facebook connec-
tivity in one way or another?).

1.1.8 Plain text file

A plain text file, sometimes called flat file, is a
file that contains only a stream of bytes which
can be read without processing. Plain text files
are human-readable, as opposed to binary files.
They can be created and edited using a wide
selection of text editors, such as Notepad for
Windows, emacs or vim for UNIX, etc. Source
code for software is almost always written in
plain text.

1.2 Background

1.2.1 Databases today

There are several different ways to persistently
store data and offer its efficient retrieval at
later times. Probably the most common way
is by using a database management system
(DBMS), of which there are many, all differ-
ing from the others in some way. Some DBMS
are very alike, and diverge only by small fea-
tures, while others use entirely different data
models. For some time, the standard model
has been the relational model (which was pre-
sented in the 1970s by Edgar Codd), using
tables for data storage with keys making ev-
ery row uniquely addressable. These relational
database management systems (RDBMS) typ-
ically use a query language called Structured
Query Language (SQL) to fetch, modify and
sava data.

Attempts at popularizing other kinds of
databases, such as the object oriented
database, which looks to simplify the transi-
tion between the widely used object oriented
programming paradigm and the database
world, have been made over the years, but have
not been very successful at replacing the rela-
tional model. More recently however, with the
rising of Web 2.0, databases need be able to
scale vastly. RDBMS are easily able to do so
vertically, by adding more hardware resources
to the existing server containing the database,
but scaling horizontally over multiple servers
can be quite a challenge. To address this prob-
lem an array of new, non relational DBMS have
been (and are still being) developed, and with
big names like Google, Facebook and Amazon
behind some of them, things are starting to get
interesting.

1.2.2 Tomorrow’s NoSQL databases

The new non relational DBMS that are being
developed are called NoSQL databases. The
name NoSQL implies a lack of SQL, which
can be confusing since there are relational
databases that do not use SQL. Indeed NoSQL
DBMS do not use SQL, but this is just an ef-
fect of abandoning the relational model alto-
gether. In other words, RDBMS that do not
use SQL are not NoSQL. DBMS using models
other than the relational one, and hence not
SQL, are NoSQL. A NoSQL DBMS is simply a
DBMS that does not use the relational model.

NoSQL databases often have in common the
ability to easily scale horizontally as well as
being non relational and not requiring fixed
schemas. The lack of relations usually means
that JOIN operations, which in SQL are com-
mon, here are superfluous. Other than that,
different NoSQL implementations can look
very different. There are, however, four main
emerging subsets of NoSQL, catagorized by
their different manners of storing data:

7

• Document database

• Graph database

• Key-value database

• Tabular database

This thesis will focus primarily on the doc-
ument database model, investigating, bench-
marking and comparing two different open
source document DBMS; Apache Software
Foundation’s1 CouchDB and 10gen’s2 Mon-
goDB.

1.3 Research question

When using their respective Python drivers,
which DBMS, MongoDB or CouchDB, is the
fastest using ad-hoc queries, and which is more
space efficient than the other?

1.4 Hypothesis

MongoDB is known for being fast, so the tests
will likely show that CouchDB is a bit slower.
What is interesting is how much slower it is.
CouchDB might also be faster at certain tasks.

Since CouchDB uses revision control, its
databases likely occupy more space than Mon-
goDB’s.

1.5 Question formulations

How fast is CouchDB and MongoDB respec-
tively, using a single server setup with their re-
spective Python libraries for executing ad-hoc
queries, when

• inserting

1Apache Software Foundation is a foundation that
legally and financially suppports software projects. It is
perhaps most known for the Apache Web Server. Read
more at http://www.apache.org/foundation/

210gen is an American company that develops, and
offers support and training for, MongoDB. Read more
at http://www.10gen.com/about

– 5,000 documents?

– 50,000 documents?

– 500,000 documents?

• runnings queries against

– 5,000 documents?

– 50,000 documents?

– 500,000 documents?

How much disk space does CouchDB and
MongoDB use respectively on a single server
setup, when they contain

• 5,000 documents?

• 50,000 documents?

• 500,000 documents?

1.6 Goal and purpose

The goal is to present a clear picture of what
NoSQL means, and to produce statistics about
the performance and efficiency of CouchDB
and MongoDB respectively and in comparison
of eachother.

Comparisons of different DBMS have been
made before, but a published comparison of
performance between MongoDB and CouchDB
is nowhere to be found. This is mainly what
will make this thesis unique, and is of inter-
est since MongoDB and CouchDB are direct
competitors and the two major names of the
document oriented model.

1.7 Target audience

The target audience for this thesis is anyone
coming from the SQL world, trying to get a
grasp on the diffuse term NoSQL or, more
specifically, document oriented databases. It
is also for anyone having a hard time deciding
between using CouchDB and MongoDB for a
specific task. Since everything of importance

8

will be discussed and explained in the thesis, it
could likely be read and understood by persons
with no earlier experience in databases as well.

1.8 Delimitations

This thesis will not cover all document oriented
databases. Instead, MongoDB or CouchDB,
two of the largest names of the category, have
been chosen. None of these systems will be re-
viewed ”under the hood”. In other words, the
code behind the systems will not be evaluated
or optimized in any way.

The testing of retrieval speeds for MongoDB
and CouchDB will be performed using a single
server setup, even though both allow for effec-
tive horizontal scaling.

Most information will be collected from Web
resources, since the topic is new enough to not
be the subject of more than a few articles and
books.

1.9 Method

Information will be collected via BTH’s library
(both online, by searching different databases,
and offline by books) and via Web searches.

The benchmarking of CouchDB and Mon-
goDB will be performed using homebrewn ap-
plications written in the programming lan-
guage Python, which has libraries available for
both systems. The data used will be pseudo-
randomly generated strings and numbers, and
the same set of data will be used for both
DBMS.

All software used for running the bench-
marking tests herein is listed below. All soft-
ware has been run under Ubuntu GNU/Linux
11.04, 32bit version.

• Python has been used to create scripts
that generate random documents and
communicate with MongoDB and
CouchDB.

• PyMongo has been used to allow
Python to communicate with MongoDB.
http://api.mongodb.org/python/1.11/

• couchdb-python has been used to allow
Python to communicate with CouchDB.
http://code.google.com/p/

couchdb-python/

2 Storing data

There are many different ways to store data
on secondary storage. The easist way would
be simply dumping all data into a plain text,
or binary, file. Of course, simply storing data
without offering flexible retrieval at later times
is of little to no use. To fetch stored data one
must know how the data is structured, and
then use a readily available algorithm, or write
a new one, designed for that particular way of
storing. One could design own models of stor-
age complete with own algorithms for retrieval,
but doing so consumes time and makes life a
lot harder for anyone else trying to fetch the
stored data.

Thankfully there are several standardized
ways of structuring data for storage and for in-
terchange between information systems. It is
important to note that these are merely mod-
els of structuring data for storage. Formatting
data to fit one of these models and then fetch-
ing it has to be done separately. Many pro-
gramming languages provide function for han-
dling these ways of storage, however.

Plain text files are human-readable and easy
to pass on networks and through firewalls,
since they are plain text without any poten-
tially dangerous executables. The most com-
mon data storage and interchange techniques
using flat files are explained below.

9

2.1 CSV

Comma-Separated Values, or CSV, is a simple
way of storing data in a plain text file. The
data model is very easy to understand, as it is
basically a table where every row is an object
and is made up of columns, which represent
the objects’ attributes. Columns are separated
by commas, just like the name implies. De-
pending on the implementation, however, any
other character (such as the semicolon) could
be used as separator. A simple example of a
short CSV file follows below. Please note that
the first line describing attributes is optional,
but a good idea to include for making the file
readable, and has to be taken into account
when developing an algorithm for writing to,
and reading from, the file. Note that this is
the reason for the lack of commas between
the values of the first line — they are not
supposed to be parsed and are only there to
make the file more readable for humans.

Product no. Color Cost

5347, Blue, 250

5348, Green, 35

5349, Red, 1050

CSV is a simple and in many cases adequate
way of representing data. It is used mainly for
storing small amounts of data, and for trans-
ferring data from one information system to
another. For example, a spreadsheet in an ap-
plication such as Microsoft Excel can be saved
as a CSV file, and then imported into Google
Mail’s contacts.[9] However, since the files are
plain text, any text editor could be used to
create them.

Even though CSV files are quite capable
despite their simplicity, it does have some
crucial restrictions. Let’s use the above CSV
file as an example again. Let’s say we want to
add a field to store the owner of the product.
Doing so is straightforward and not a problem.
However, what if certain products don’t have

an owner? We could use a value like null or
void to mark the lack of a value. It’s not
pretty, but it works. The real problem arises
if we want some products to be able to have
more than one owner. The example below
displays the problem.

Product no. Color Cost Owner 1 Owner2

5347, Blue, 250, Robin, Alex

5348, Green, 35, John, NULL

5349, Red, 1050, NULL, NULL

The file would be even more bloated and ridi-
cilous if one product has a higher number of
owners, like ten, and all other products only
one.

The problem could possibly be solved by
allowing semicolon separated lists as values.
This, however, would not be standard CSV and
would require an unnecessary amount of time
spent on developing algorithms to handle such
files.

2.2 XML

Extensible Markup Language (abbreviated
XML) is another way of creating plain text
files that are machine-readable, while still be-
ing perfectly human-readable. It is based
on the Standard Generalized Markup Lan-
guage (SGML) which is an ISO standard (ISO
8879:1986[8]). Different XML implementations
are used for documents in applications such
as Microsoft Office[10] and OpenOffice.org[16]
but also for SVG images[6] in applications such
as Inkscape.

XML documents consist of elements. An el-
ement is made up of a start tag, some contents
(which may be plain text or other XML el-
ements), and finally a closing tag. A tag is
simply a keyword surrounded by less-than and
greater-than signs. The closing tag of an el-
ement uses the same keyword as the starting
tag, but with a slash between the less-than sign
and keyword.

A minimal XML document might look some-

10

thing like this:

<?xml version="1.0"?>

<color>Blue</color>

The first line describes which version of
XML that is being used. After this follows
a single element which describes something as
being blue. The fundamental building blocks
of XML documents are easily grasped and by
nesting them, complex documents can be cre-
ated. A more realistic example of XML, this
time in the form of a letter, follows:

<?xml version="1.0"?>

<letter language="english">

<recipient>Linus Mostberg</recipient>

<subject>About these pants..</subject>

<message>

Dear mr Mostberg,

These pants are giving me hallucinations.

Could I possibly return them to you?

Thanks.

</message>

</letter>

As the above example clearly shows, XML
is very easy to understand. Due to its struc-
ture it is also easily parsed. Note that start
tags can include attributes with values, such
as language="english" in the letter. Multi-
ple attributes for tags is also allowed. Also note
that the recipient, subject and message ele-
ments are contained inside the letter element;
elements may be nested, allowing for complex
documents.

2.3 JSON

JSON, JavaScript Object Notation, is another
easily understood way of storing and inter-
changing data, and is a lightweight way of do-
ing so. It is based on the JavaScript script-
ing language, which is commonly used on the
client-side for creating dynamic web pages.

The building blocks of JSON documents are
key-value pairs. A key is something unique

for which some information is available, and
its corresponding value stores this information.
For example, for the key color the value could
be blue. A value can be a string, an integer, a
floating point number and even a list of values
or a nested JSON document.

A short JSON document modeling a blue car
with four wheels:

{

"color": "blue",

"wheels": 4

}

As can be seen in the example above, differ-
ent key-value pairs are separated by commas.
Below is another example of a JSON docu-
ment, this time representing a person, show-
casing some of the different data types JSON
has support for.

{

"firstName": "John",

"lastName": "Håkansson",

"age": 20,

"favouriteFoods": [

"Banana",

"Beer",

"Haggis"

],

"height": 1.93,

"phone": [

{

"type": "Home",

"number": "12345"

},

{

"type": "Cellular",

"number": "54321"

}

],

"married": false

}

The name of the person consists of two
strings, the age is an integer, the favourite
foods is a list of strings, the height is a floating
point number, the phone numbers is made up
of two self-contained JSON documents and the

11

marital status is a boolean value. JSON docu-
ments are easy to understand and most major
programming languages have support for it.

3 Databases

A database is, simply put, structured and re-
lated data that can rapidly and easily be re-
trieved even when there is large amounts of it.
A CSV, XML or JSON file (as described in
previous chapter Storing data) can by this def-
inition be considered to be databases in their
own rights. These kind of databases are some-
times called flat file databases. Even a piece
of paper with a drawn table, or a collection
of papers in an archive, is a form of database,
as long as the data written on the papers is
structured in some way.

Today, when speaking of databases, usually
this refers to digital databases, handled by
database management systems (DBMS). This
section covers the definition of DBMS and
some of the data models used by different
DBMS.

3.1 Database Management Systems

3.1.1 Relational model

DBMS utilizing the relational model has for
some time been the most common choice for
storing data.[12, p4] Examples of relational
DBMS (RDBMS) are MySQL, PostgreSQL,
Oracle, Microsoft SQL server and SQLite.

3.1.2 SQL

SQL (Structured Query Language) is a non-
procedural, fourth generation language (as op-
posed to C, Java etc. which are third gen-
eration languages) that has become the stan-
dard language for use in managing data in re-
lational database managament systems. It was
developed in the 1970s by IBM, which is where

Edger Codd was working as a researcher when
he presented the relational model in his paper
A Relational Model of Data for Large Shared
Data Banks (1970).[5, p114]

Although SQL is not a single standard,
but rather a set of standards such as SQL92,
SQL:1999 and SQL:2003, it is the most
widespread language for structuring, alter-
ing, adding and deleting data in relational
databases. All major RDBMS use SQL im-
plementations: MySQL, Microsoft SQL server,
PostgreSQL, Oracle etc. This ensures porta-
bility; data can easily be migrated from one
RDBMS to another, and a programmer with
experience in a particular RDBMS can almost
seamlessly start working with another one.

As previously stated, SQL is a fourth gen-
eration language. This means that program-
mers only need to specify what they want
done, without having to specify the details of
how.[3, pXXIV] It uses natural words such as
SELECT, UPDATE, ALTER and DELETE
which renders it fairly easy to understand. For
example, the statement SELECT name FROM

persons WHERE age > 18; fetches the names
of all persons older than 18 from the table
persons.

3.1.3 NoSQL

3.1.3.1 Definition NoSQL is a rather dif-
fuse term. There is no organisation solely be-
hind the term, there is no official website de-
scribing it and a good, substantial definition
is hard to come by. From the name, one could
possibly elicit the fact that NoSQL is not SQL,
but not much more than this. So what exactly
is NoSQL?

In 1998, a relational database management
system, based on another database system
called RDB, was developed by Italian Carlo
Strozzi and released under the GNU General
Public License. He chose to call his creation
NoSQL, since it intentionally avoided the use

12

of SQL to structure and modify data. Instead,
NoSQL stored data on a file system in the form
of plain text files, where every file was consid-
ered a table, complete with columns and rows.
Regular unix commands could then be used to
modify and structure the files. To read data,
UNIX input and output redirection and pipes
were used on the files.[14]

The subject of NoSQL, when discussed
today, has very little to do with Strozzi’s
RDBMS. The term was introduced again in
2009, when the company Last.fm arranged an
event to discuss distributed, structured stor-
age in the form of new DBMS using other
data models than the traditional, relational
one. They called the event NOSQL (all
capitalized).[7] The term (with the spelling
NoSQL, however) has since been used to bun-
dle databases that use other models than the
relational model, and that hence do not use
SQL. In other words, NoSQL does not describe
what a database management system is, but
rather what it is not.

Apart from not using the relational model,
NoSQL databases are often open source (which
to be fair many RDBMS are, too), schema-
less, avoiding JOIN -like operations thanks to
self-contained data, easily replicated and able
to scale to humongous sizes. They typically
do not guarantee ACID support, which is a
common feature of RDBMS.

The name NoSQL might seem like a strange
choice, partly because there is already a DBMS
out there with the same name, which ironically
is relational, and partly because it does not
express what the term really means. Strazzo
himself has commented on this on his webpage,
stating:

While the former [Strazzo’s DBMS] is
a well-defined software package, is a
relational database to all effects and
just does intentionally not use SQL
as a query language, the newcomer is

mostly a concept (and by no means
a novel one either), which departs
from the relational model altogether
and it should therefore have been
called more appropriately ”NoREL”,
or something to that effect.[14]

3.1.3.2 Why NoSQL? When discussing
if there really is a need for new, non-relational
DBMS, the expression one size doesn’t fit all
comes to mind. Relational databases have
been used for a large array of very different
applications for a long time. Database courses
usually revolve around relational databases
and books covering subjects such as PHP often
include chapters about connecting to MySQL
(or some other RDBMS). The relational model
is often used regardless of the application, pro-
gramming language and nature of the data.

Using RDBMS, and hence tables and rela-
tionships, to store data might not always be
the optimal solution. Data that is not nor-
malized and that does not conform to the re-
lational model may have to be restructured.
Developing code to do this takes time. It
also slows down the code since reformatting
is needed every time data is to be saved to,
or read from, the RDBMS. Information about
real world objects are not stored optimally in
relations.[5, p809]

One kind of data that obviously does not fit
naturally into tables is unstructured data such
as pictures or sound files. This type of data
can often be stored in RDBMS in the form
of BLOBs, or Binary Large Objects. However,
the DBMS knows nothing of the data’s inter-
nal structure since it usually stores a reference
to the file and not the file itself, rendering it
impossible to fetch parts of or modify a file.
An alternative is storing files on a file system
outside of the confinements of the database,
and letting the database contain paths to the
files. This works, but since the security mecha-

13

nisms of DBMS do not apply to the underlying
file system, one has to make sure that is has
the correct permissions set. This is undesir-
able since it means extra work for the database
manager.[5, p811]

The relational model uses a static schema.
This means that homogenous data is required.
If the data to be stored is of no such nature,
relations have to be split into new relations
and JOIN operations have to be used to puz-
zle them together (problems with JOIN oper-
ations are discussed further later on). If the
schema is to be changed, ALTER operations
have to be performed along with changes to
any applications working against the database.
The ALTER statement has to be performed
by a database administrator and is a slow
operation.[5, 813]

Today many popular programming lan-
guages, such as Java, C++ and Python, are at
least partially OO (object oriented). The set of
problems related to mapping objects in an OO
programming language to tables in an RDBMS
is known as object-relational impedance mis-
match. One of the problems relates to the
encapsulation of objects that is recommended
by the object oriented programming philoso-
phy. An object may have private and public
members and the only way to reach the pri-
vate members is by using an interface. For
example, the class Person may have a private
member called name, which from outside of the
class and its subsequent objects can only be ac-
cessed by public function getName(). The re-
lational model does not include the same kind
of private/public access, which results in the
encapsulation of data being lost while in a re-
lational database. A column in the database
called access or something else to that effect
is one possible solution to this, even if the ac-
cess of attributes is not really part of the data
itself, but rather information about the data
(so-called metadata) and might thus be awk-
ward to store this way.

Data types may differ in RDBMS and OO.
Some types are handled differently while oth-
ers exist only in one of the two. For exam-
ple, strings in OO often include whitespaces
as the last character(s) when compared, while
RDBMS do not, instead stripping the trailing
whitespace.

Relational databases also suffer from scal-
ing problems. Scaling a relational database is
commonly a matter of buying more powerful
hardware, upgrading the server the database is
running on. Upgrading “upwards” in this way,
on a single server, is known as vertical scaling.
There comes a point where the biggest and
baddest hardware is in place, but where the
database needs to be able to scale even more.
At this point the database needs to be spread
out across multiple servers. This is called hori-
zontal scaling and is one particular area where
RDBMS are lacking.[12, p7] Oracle has a solu-
tion for this called Real Application Clusters,
but Oracle can be very expensive and is there-
fore not a real alternative for everyone.

The relational model, with its references
to primary keys for records in other tables
and germane JOIN operations, is excellent for
avoiding redundancy, but is also one of the rea-
sons RDBMS do not scale (horizontally) well;
its performance optimizations assume that all
data is in one place[12, p7]. Another inher-
ent problem of JOIN operations is its costly
nature. JOINs are the most time-consuming
operations in SQL.[5, p654]

Many of the problems of RDBMS can be
avoided or overcome, but doing so in a graceful
way is not always possible. NoSQL databases
have been designed to offer scalable alter-
natives. Object oriented databases such as
Db4o3, for example, solve the problems of
object-relational impedance mismatch while
MongoDB solves the scaling problems. There

3DB4o is an object DBMS for use with Java and
.NET. Read more at http://www.db4o.com/

14

are many different NoSQL databases, each spe-
cialized in certain areas. When a particu-
lar problem arises when using an RDBMS, it
might be worth searching for a NoSQL alterna-
tive that aims at solving that particular prob-
lem.

To sum it up, RDBMS is not always the
best choice of database. RDBMS are not di-
rectly compatible with the popular object ori-
ented programming paradigm and are difficult
to scale horizontally. The very common JOIN
operations, which are necessary for the rela-
tional model to link relations together, are
slow. If RDBMS problems are encountered,
there is probably a NoSQL alternative that ex-
cels where the RDBMS lack.

3.1.3.3 Tabular NoSQL databases
Tabular databases, just like the relational
model, use tables to store data. One notable
tabular database is Google’s BigTable, which
is used by a long list of Google products.
BigTable uses a sorted, multidimensonal map
and is made for scaling up to petabyte (one
petabyte is 1015 bytes) sizes. Even though
it uses tables, BigTable is not a relational
database.[4]

Since BigTable is proprietary software not
released outside of Google, open source tabu-
lar DBMS inspired by BigTable have been de-
veloped. Two such examples are HBase4 and
Hypertable5.

3.1.3.4 Graph NoSQL databases In a
graph database management system, entire
databases are viewed as more or less complex
graphs where every node, and every edge be-
tween them, may have attributes. The edges

4HBase is maintained by the Apache Soft-
ware Foundation. Its official website is
http://hbase.apache.org/

5Hypertable is another tabular DBMS modeled af-
ter Google’s Bigtable. Its website can be found at
http://www.hypertable.org/about.html

(or relationships) may be of different types,
such as knows, has, loves etc.

Figure 1: A simple example of a social network stored

using the graph model

These types of databases are well suited for
huge social networks (think Facebook) due to
their scalability and ability to store informa-
tion about relations between nodes.

A noteworthy graph DBMS is neo4j6, which
is written in Java, weighs under 500kB and
can, according to its developers, handle com-
plex graphs of billions of nodes and relation-
ships on a single server setup.[15]

3.1.3.5 Document databases
Document-oriented databases use docu-
ments to store data. The word document in
this context rather confusingly does not mean
what one might think. A document database
gives the impression of a database that stores
something like Microsoft Word documents.
However, this is not the case. According to
Oxford Dictionaries online, a document is “a
piece of written, printed, or electronic matter
that provides information or evidence or that
serves as an official record.”[11] This is very

6neo4j is an open source NoSQL object DBMS de-
veloped by Swedish company Neo Technology. Read
more at http://neo4j.org/

15

much in accordance to what a document in a
document database is. How these documents
are structured depends on the implementation,
but common choices are XML, JSON and
YAML. What these three have in common is
their semi-structured nature — the documents
do not have to conform to any static schemas
or tables. Instead, they use tags and other
methods that allow related documents to
contain different keys and values.

In some document DBMS, references like the
ones thoroughly used in SQL databases are
possible to use. Documents are, however, most
often self-containing and lack reference to other
documents. This results in redundancy, since
data might repeat itself in multiple documents,
but also means no costly JOIN operations have
to take place.

The main advantage of document databases
is their simplicity; pretty much anyone could
probably understand a simple document.
Since they contain semi-structured data, the
databases are also a breeze for developers, who
can easily use lists and associative arrays in
their programming language of choice to insert
data into the database with no need for further
formatting.

Two of the more popular document database
management systems are MongoDB and
CouchDB, which will both be presented and
benchmarked later.

4 MongoDB

MongoDB is a document-oriented NoSQL
DBMS written in C++ and developed by
10gen. The word mongo in its name comes
from the word humongous[1], hinting at its
vastly scalable potential. It focuses on ease
of use, performance and high scalability. Mon-
goDB is available in 32-bit and 64-bit versions
for Windows and Unix-like environments.

MongoDB’s default way of managing

databases is the interactive JavaScript shell
that it provides out of the box. In addition,
there exist bindings for many programming
languages. Since many programming lan-
guages have data types that are built up of
key-value pairs — some even support JSON
directly — using these languages is excellent
for creating documents for entering into
MongoDB.

Some attributes of MongoDB are described
in the ensuing subchapters.

4.1 Data model

MongoDB uses a binary form of JSON called
Binary JSON, or BSON, to store data. BSON
is designed to be easily and efficiently tra-
versed and parsed. When users enter data
into MongoDB they use regular JSON, which
is then converted into the BSON format.
When data is retrieved, it is again converted
into regular JSON. In other words, the user
never has to see any BSON; it is strictly
used for internal purposes. The specification
for BSON can be found at its official site,
http://bsonspec.org. Although documents
are stored as BSON, MongoDB documents will
be referred to as JSON documents for the rest
of this thesis.

A JSON document is zero or more key-value
pairs, and a MongoDB document is simply a
JSON document. Since MongoDB uses JSON,
it is schemaless which means that there is no
grouping of documents that share exactly the
same keys, like in the relational model where
the relation roughly fills this purpose. Instead,
similar documents that contain data about the
same thing, but with different key-value pairs,
are bundled together in what is called collec-
tions. A database, in its turn, can be seen as
a collection of collections.

16

Figure 2: MongoDB’s data model showing database, col-

lections and documents

4.2 Indexing

MongoDB supports indexing on any attribute
of a document, similar to how RDBMS offer
indexing on any column. Indexes are imple-
mented as B-Trees and can in many cases, as-
suming the right indexes are created, drasti-
cally increase the performance of queries.[12,
p41]

Indexes in MongoDB are created from its
JavaScript shell using the ensureIndex()

function. It is possible to create indexes on
simple keys, embedded keys and even entire
embedded documents.

4.3 Sharding and replication

MongoDB has inherent support for replica-
tion, which means that a database is cloned
and synchronized on two or more computers.
Replicating is good for increasing redundancy,
and for increasing raw performance.[12, p242]
The simplest form of replication is Single Mas-
ter/Single Slave replication, which as the name
implies uses one master server, and one slave.
However, it also has support for multiple mas-
ters, multiple slaves, master/master replica-
tion etc.

While replication lets data be synchronized
between servers, sharding is a way of using a
cluster of servers as one big database, with

the data spread across the machines. A sin-
gle server setup of MongoDB (or pretty much
any other DBMS, really) is capable, but only
to a certain degree. For example, the website
Flickr, which lets users upload photos, have
about ten billion photos.[12, p278] Storing that
much data on one server is unwise, inefficient
and likely very difficult to achieve.

4.4 Querying

4.4.1 JSON-style queries

MongoDB provides ad-hoc queries in a
similar fashion to what most RDBMS of-
fer with the help of SQL. Instead of using
SQL, MongoDB accepts JSON documents
that state what is to be searched for. For
example, in a collection called persons,
using the JavaScript shell and entering
db.persons.find({"name":"Robin"}) would
return all documents containing the key names

with the corresponding value Robin. There are
a number of special operators that can be used
in the documents to perform comparisons,
find ranges of values and so on. For exam-
ple, db.persons.find({"age":{$gt:25}})
returns all persons that are over 25 years old.

4.4.2 Map/reduce

MongoDB additionally has support for
Map/Reduce querying. Since this will not
be used with MongoDB in this thesis, it will
not be further explained. It is, however, the
primary way of querying in CouchDB, and will
hence be explained in section 5, CouchDB.

4.5 GridFS

GridFS is a specification for storing files in
MongoDB. It consists of two collections, files,
which stores the files’ metadata, and chunks,
which stores the actual files, by default split
into 256Kb chunks.[12, p86] Since the files are

17

stored in chunks, and not as references like
BLOBs in RDBMS, it is possible to retrieve
parts of files without the need of first loading
the file in its entirety.

4.6 Lack of transactions

While major RDBMS support atomic trans-
actions to ensure data consistency and stor-
age, MongoDB does not. This functionality
has been left out in favor of speed and scala-
bility. However, with the help of replication,
it is possible to make the master server wait
for the replica server to confirm a successful
transaction with a form of receipt. Using two
servers, this can serve as a kind of replacement
for traditional transaction management.

4.7 In-place updating

Many DBMS use Multiversion Concurrency
Controller (MVCC) which means that infor-
mation is shown in different version for dif-
ferent users. Every user gets a “snapshot” of
the current state of the database to work with.
Changes made to the data will not be seen by
other users until the transaction is fullfilled.

MongoDB does not use MVCC; it instead
updates all information in-place, relinquishing
the need for keeping track of different versions
which increases performance. It also allows for
lazy writes, meaning that MongoDB writes to
disk only when it has to. Since primary mem-
ory is many times faster than secondary mem-
ory, MongoDB groups changes together and
writes them to disk together. If more than one
change affect the same value, the changes are
treated as one and therefor only one update
has to be made to the value on disk.[12, p14]

5 CouchDB

CouchDB is another document-oriented
NoSQL DBMS, developed and maintained by

the Apache Software Foundation and written
in the functional programming language
Erlang. The name CouchDB is derived from
its developers’ idea of it being easy to use;
when a CouchDB server is started, the phrase
“It’s time to relax” is printed on the console.

What makes CouchDB special is to a large
degree its RESTful API, which lets any envi-
ronment that allows HTTP requests to access
data from the database. It also uses a different
kind of system for querying data than tradi-
tional DBMS, as will be discussed further on.

The default way of managing databases in
CouchDB is through its Web based interface
called Futon (a futon is a kind of couch, which
matches the name of the DBMS itself). Fu-
ton is (by default) accessed through the URL
http://localhost:5984/ utils.

5.1 Data model

Just like MongoDB, CouchDB stores JSON
documents in a binary format. The file ex-
tension of its database files is .couch.

CouchDB stores documents directly inside of
its databases. There are no collections like the
ones found in MongoDB.

Figure 3: CouchDB’s data model showing database and

documents

Each document has a unique ID which can
be assigned manually when inserting docu-
ments, or automatically by CouchDB. There
is no maximimum number of key-value pairs
for documents and there is no miximum size;

18

the default max size is 4GB, but this can be
changed by editing CouchDB’s configuration
file.

5.2 RESTful API

One of the, if not the, most prominent features
of MongoDB is its RESTful API. REST (Rep-
resentational State Transfer) is an architecture
which describes how services can be provided
for machine-to-machine communications. It
urges developers to use HTTP methods to per-
form CRUD (Create, Read, Update, Delete)
operations. HTTP methods are mapped to
CRUD in the following way:

• POST - Create a resource

• GET - Read a resource

• POST - Update a resource

• DELETE - Delete a resource[13]

In a RESTful architecture, resources
(databases, documents, attachments etc.)
get unique identifiers in the form of URIs.
Imagine you want to create a database called
cars on a local CouchDB setup. Using
CouchDB’s standard port (5984) and the
command-line utility curl (which is an ap-
plication that lets users perform raw HTTP
requests), doing so would look like this:

curl -X PUT http://localhost:5984/cars

REST also urges developers to send informa-
tion in XML or JSON, which fits CouchDB
like a glove. The above request would be
answered by CouchDB with a simple JSON
document, to inform the user of success:

{"ok"}:true

Similar requests using curl can be made to
perform all of the CRUD operations. Since
CouchDB comes with a graphical Web inter-
face, and since there are libraries available

for many programming languages, the user
seldom needs to make raw HTTP requests
himself.

Because Web browsers use HTTP, they can
also be used to read JSON documents from
CouchDB.

5.3 Revisions

CouchDB supports strong versioning. In this
case, it means that when a value in a document
is to be updated, the data is not updated in-
place on the underlying storage. Instead, the
document in its current state is copied from
the database, and the modified document is
saved as a new revision. This revisioning sys-
tem works very much like versioning systems
such as Apache Subversion7 or CVS.8 Just like
these systems, CouchDB does not allow an out-
dated document to be inserted as a new revi-
sion. Data always has to be up to date, and
then possibly modified, before being inserted
as a new revision.[2, p39]

5.4 Scaling and replication

Replicating databases in CouchDB is easy.
All it takes to trigger replication is one
simple HTTP request that specifies the source
database and the target database:[2, p149]

POST / replicate HTTP/1.1 {"source":"database",
"target":"http://somewhere.com/db"}

It is also possible to replicate from a remote
server to the local server by switching the
values of the source and target keys. This
can be used to enable a form of two-way
replication; simply trigger two replications
sequentially, and switch the parameters.

7More info about Subversion can be found at its of-
ficial website, http://subversion.apache.org/

8Concurrent Versions System. Read more at
http://www.nongnu.org/cvs/.

19

To make replication even easier, it can be
performed from the graphical Web interface
Futon.

Scaling out databases by splitting them into
an array of servers in a cluster is not as much
of a trivial matter as replication. While Mon-
goDB has inherent support for scaling hori-
zontally, CouchDB does not. It can, how-
ever, be done with the help of an application
called CouchDB Lounge9, which is a partition-
ing and clustering framework for CouchDB.[2,
p165] Another alternative for scaling CouchDB
is BigCouch10.

5.5 Querying

Relational database managament systems typ-
ically use static data and dynamic queries;
schemas are fixed, and SQL queries are dy-
namic. CouchDB, however, has turned this
upside down. Since it uses JSON documents,
the data is dynamic.

Querying data in CouchDB is done through
views. There are two kinds of views: per-
manent views, which are static, and tempo-
rary views, which can be provided ad-hoc.
Views show the results of Map/Reduce func-
tions. Map functions are written by the user,
and iterate over all documents in the database
to check if the documents match the criteria
specified in the function by the user. If every-
thing matches, and a result is hence found, the
document (or selected parts of it) are emitted
using the emit() function. A simple example
follows:

function(doc) {

if(doc.age && doc.age > 15 && doc.name)

emit(doc.name,doc.age);

}

9Read more about Lounge at http://tilgovi.

github.com/couchdb-lounge/
10More information about BigCouch can be found at

http://github.com/cloudant/bigcouch.

In the above example, all documents that
have the key age, with a corresponding value
that is over 15, are emitted. Since CouchDB
does not use static schemas, it is important to
always check if a certain key-value pair exists
before trying to use it.

After a list of emitted documents has been
generated by the map function, a reduce func-
tion may be used to further operate on the
data.

In the benchmarking later on in this the-
sis, temporary views using only map functions
are used. When static views are used, map
and reduce functions are stored inside some-
thing called design documents, which is a spe-
cial kind of document that contains executable
code.

5.6 Indexing

When a data set is queried for the first times,
the above explained map functions are run on
all documents. CouchDB uses the view results
from the map functions to build a B-tree, which
is a data structure that offers logarithmic in-
sertion, deletion and access.

Whenever a document is modified into a new
revision, or deleted, CouchDB automatically
updates the index B-tree.

5.7 Attachments

CouchDB supports binary attachments to
documents, very much like how e-mails sup-
port attachments. Any kind of file can be
attached to a document. Every attachments
gets its own URI, which is the URI to the
underlying document, followed by a slash and
the name of the attached file (for example
http://localhost:5984/persons/6e1295ed6c2949
5e54cc05947f18c8af/image.jpg).

20

6 Benchmarking

6.1 Generating test data

To test the performance of document retrieval
in MongoDB and CouchDB respectively, a
set of data to store in the databases first
needs to be created. For this purpose the
Python module randPersons has been devel-
oped. The module include functions that gen-
erates a given number of documents with dif-
ferent key-value pairs.

Python has a data type known as dictionary,
which is analogous to what is in other program-
ming languages called associative arrays (as in
PHP) or maps (as in Java, C++). A dictio-
nary is a list of key-value pairs and is hence an
easy and effective way of creating JSON style
documents, which is how both MongoDB and
CouchDB store their data. Even the syntax
of JSON documents closely resemble that of
Python dictionaries.

The pseudo-randomly generated data rep-
resents persons and their different attributes.
The pseudo-randomness decides not only the
values of keys, but also which key-value pairs
every person possesses. To ensure that the
same set of data is generated every time the
code is run, a constant seed with the value of
1337 is used.

Note that no manual indexing on the data
has been performed. This is because the
benchmarks are supposed to test CouchDB
and MongoDB under a primitive state, with-
out any manual optimization techniques be-
ing used. Both DBMS have their own ways
of speeding operations up (such as manual in-
dexing in MongoDB), but these are outside the
scope for this thesis and have hence not been
tested.

6.1.1 Document outline

All persons share the following keys:

Key Value Range of values
Name Arbitrary string 5-15 characters (a-z)
Income Integer 9000-40000
Age Integer 18-90
Telephone Arbitrary string 10 characters (0-9)

Some persons also have pets:

Key Value Range of values
Pet Pre-defined string Albatross, horse, pi-

ranha, slow lori, panda,
penguin

Other people still use fax machines to send
documents:

Key Value Range of values
Fax Arbitrary string 10 characters (0-9)

Last, but certainly not least, some people are
blessed with the gift of Jedi powers:

Key Value Range of values
Jedi Power Pre-defined string Force lighting, Jedi

mind trick, force
choke, force throw,
force insanity

When a person is generated, the first shared
attributes are created. One, and only one,
of the optional attributes might then (based
on pseudo-randomness) be appended to the
dictionary of that particular person. There
are, however, basic persons that have neither
a pet, nor a fax or Jedi power. This flexibility
is possible thanks to the schemaless nature of
JSON documents.

The resulting documents are somewhat
strange; who would store this kind of informa-
tion about persons, for what purpose, and who
actually has Jedi powers? Keep in mind that
these documents are for benchmarking pur-
poses only, so they don’t need to make sense.

6.2 Inserting test data

Since the same data is needed in both Mon-
goDB and CouchDB, the script has to continu-

21

ally insert document by document until the de-
sired number of documents has been reached.
Two Python scripts, one for MongoDB called
mongoInsert, and one for CouchDB called
couchInsert, have been developed. Both scripts
utilize the previously described module rand-
Persons, which generates random persons.

Both mongoInsert and couchInsert are
command-line Python scripts that let the user
provide the number of documents to be in-
serted and whether composite values are to be
generated for the optional keys jedi power, pet
and fax. The scripts use a Python for loop,
and call the randomPerson() function from
the randPersons module once every iteration.

Note that the scripts in their current form
only work for a certain number of documents,
since the for loop is only able to iterate a cer-
tain number of times. For the numbers used
in this experiment the script works fine, but
when inserting documents in the range of mil-
lions or billions, the loops need to be replaced
by while loops. The reason for maintaining the
for loops, despite their lackluster scalability, is
that they are seemingly a bit faster than the
while loops.

Connecting to MongoDB from Python is
done with the help of the library pymongo11.
The corresponding library for CouchDB is
called couchdb-python12.

6.3 Querying data

After data has been inserted and insertion
times have been measured, two scripts called
mongoBench and couchBench have been used
to benchmark MongoDB and CouchDB respec-
tively. Both scripts let the user choose which
of five pre-defined queries that are to be run.

11http://api.mongodb.org/python/current/
12http://code.google.com/p/couchdb-python/

6.3.1 Querying MongoDB

mongoBench utilizes MongoDB’s ad-hoc,
document-based queries using pymongo’s
find() function. The function returns a
pointer to a result set on which the number of
documents is counted and printed. A for-each
loop is then used to iterate over all elements
of the result set.

6.3.2 Querying CouchDB

couchBench utilizes CouchDB’s temporary
views. Map functions are stored as JavaScript
functions in regular Python strings, and
then used as parameters in couchdb-python’s
query() function, which returns a view result.
The amount of documents in the view result
is counted and printed, and the view result is
then iterated over.

No reduce functions are used, since the
queries are of a rather simple nature.

6.3.3 Query 1

The first query retrieves all persons with a
salary of between 18500 and 35000.

6.3.4 Query 2

The second query retrieves all persons with a
salary of between 18500 and 35000, and with
an age of over 25.

6.3.5 Query 3

The third query retrieves all persons with a
salary of between 18500 and 35000, with an
age of over 25 and who have a fax number.

6.3.6 Query 4

The fourth query retrieves all persons with a
salary of between 18500 and 35000, with an age
of over 25 and who own an animal which is a
penguin.

22

6.3.7 Query 5

The fifth query retrieves all persons with a
salary of between 18500 and 35000, with an age
of over 25 and who have a jedi power, which is
either force choke or force insanity.

6.4 Measuring time

For the purpose of timing the insertion and
retrieval Python scripts, no code inside the
files have been used. Instead, the scripts
have been run in a Linux command-line
environment through the utility time, which
is described in its manpage as being able
to “run programs and summarize system
resource usage”. An example of the out-
put of running a simple Python script, which
prints 0-9 on the console, through time follows:

robinproNook: $ time ./time.py

0 1 2 3 4 5 6 7 8 9

real 0m0.034s

user 0m0.028s

sys 0m0.004s

• real shows the actual “wall clock” time.

• user shows the CPU time spent in user-
mode.

• sys shows the CPU time spent in the ker-
nel.

Adding user time and sys time results in the
total CPU time the process has used.

The inserts have been measured directly.
Every query, however, has been run three
times. The spent time has been added and
divided by three, thus generating the average
time the queries used.

7 Benchmarking hardware
and software information

For the sake of enabling duplication of the
benchmarking, lists of software versions and
hardware used is found below.

7.1 Software

• Ubuntu GNU/Linux 11.04, kernel 2.6.38-
7-generic

• Python 2.7.1+ (for Python 3+, the print
operations in all scripts need to be
changed to functions)

• Apache CouchDB v1.01.1

• 10gen MongoDB v1.6.3

• pymongo v1.10.1

• couchdb-python v0.8.

7.2 Hardware

• HP ProBook (laptop)

• Intel Celeron P4500, dual core (1.86Ghz
total), i386

• 2GB RAM

8 Benchmarking results

The ensuing subchapters present the results
of the benchmarkings, and answer the ques-
tions formulated in the chapter question for-
mulations.

Note that all graphs are available in large
versions in the appendix section.

23

8.1 Insert speeds

This chart answers the question formulated in
the introduction of this document — how fast
is MongoDB and CouchDB respectively when
inserting 5,000 documents, 50,000 documents
and 500,000 documents?

As the graph clearly shows, MongoDB is
a whole lot faster than CouchDB at insert-
ing documents. The increase in time for both
DBMS seem to be linear.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

In
se

rt
 t

im
e
 (

se
co

n
d

s)

Number of documents

Insert times of documents in MongoDB and CouchDB

MongoDB
CouchDB

Figure 4: Graph visualizing insert speeds of MongoDB

and CouchDB

8.2 Database sizes

This chart answers the question of how much
space MongoDB and CouchDB use respec-
tively for the same data set, when contain-
ing 5,000 documents, 50,000 documents and
500,000 documents.

Note that CouchDB contains only one revi-
sion for every document. The higher sizes for
CouchDB thus is not because of multiple revi-
sions of files.

The increase in time grows in a linear fashion
as the size increases.

8.3 Read speeds

The following subesections showcase the re-
sults of the read speed benchmarks performed.
They answer the questions of which DBMS,

1Mb16Mb25Mb

325Mb

3793Mb

5k 50K 500K

S
iz

e

Number of documents

Size of documents in MongoDB and CouchDB

MongoDB
CouchDB

Figure 5: Graph visualizing sizes of MongoDB and

CouchDB

CouchDB or MongoDB, is the fastest using
their respective Python libraries at three dif-
ferent sizes — 5,000 documents, 50,000 docu-
ments and 500,000 documents.

8.3.1 Query 1

MongoDB is faster than CouchDB at process-
ing the first query. Linear increase in time.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
e
a
d

 t
im

e
 (

se
co

n
d

s)

Number of documents

Read, query 1

MongoDB
CouchDB

Figure 6: Graph visualizing the average results of read

speeds for query 1 in MongoDB and CouchDB

8.3.2 Query 2

MongoDB is faster than CouchDB at process-
ing the second query. Linear increase in time.

24

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
e
a
d

 t
im

e
 (

se
co

n
d

s)

Number of documents

Read, query 2

MongoDB
CouchDB

Figure 7: Graph visualizing the average results of read

speeds for query 2 in MongoDB and CouchDB

8.3.3 Query 3

MongoDB is faster than CouchDB at process-
ing the third query. Linear increase in time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
e
a
d

 t
im

e
 (

se
co

n
d

s)

Number of documents

Read, query 3

MongoDB
CouchDB

Figure 8: Graph visualizing the average results of read

speeds for query 3 in MongoDB and CouchDB

8.3.4 Query 4

MongoDB is faster than CouchDB at process-
ing the fourth query. Linear increase in time.

8.3.5 Query 5

MongoDB is faster than CouchDB at process-
ing the fifth query. Linear increase in time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
e
a
d

 t
im

e
 (

se
co

n
d

s)

Number of documents

Read, query 4

MongoDB
CouchDB

Figure 9: Graph visualizing the average results of read

speeds for query 4 in MongoDB and CouchDB

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
e
a
d

 t
im

e
 (

se
co

n
d

s)

Number of documents

Read, query 5

MongoDB
CouchDB

Figure 10: Graph visualizing the average results of read

speeds for query 5 in MongoDB and CouchDB

9 Conclusions

9.1 Benchmarking results

MongoDB is undoubtedly a lot faster than
CouchDB under the circumstances they were
tested in for this thesis. Both DBMS show lin-
ear increase in time for inserts and reads, and
linear increase in size. However, it is important
to note that MongoDB and CouchDB are like
apples and oranges — they’re both fruits (or
document databases, in our case), but they’re
still very different. MongoDB is built with effi-
ciency in mind, while CouchDB focuses on pro-
viding ACID-like properties, a RESTful API
and strong versioning; the RDBMS excel in
different areas. If a lightning fast DBMS is
needed, MongoDB is a good choice, at least if

25

the data stored therein is not of extremely vital
importance, such as bank balances and trans-
actions. If a robust and fault-tolerant DBMS is
needed, CouchDB might be the better choice.
Both DBMS are able to gracefully scale up
to enourmous sizes, and back down again if
needed. However, as proven by the disk usage
test, CouchDB uses quite a bit more secondary
memory than MongoDB.

One probable reason for CouchDB appar-
ently being much slower than MongoDB in
writing documents is that CouchDB writes ev-
ery single document to disk, one by one, to
ensure that data is consistent. MongoDB, on
the other hand, groups documents together in
primary memore and writes them to disk in
batches.

An issue worth mentioning is the temporary
views used by CouchDB in the benchmark-
ing experiments. Temporary views are sup-
posedly slower than permanent views. Tem-
porary views were still used because ad-hoc
queries from Python scripts is what was to be
tested. Permanent views would probably have
increased CouchDB’s performance, but likely
not to the degree of outmatching the perfor-
mance of MongoDB.

Another issue that has not been taken into
account is the efficeny of the Python libraries
used themselves. It is possible that couchdb-
python is not as optimized as pymongo. How-
ever, it could just as likely be the other way
around. No matter the case, this has not likely
affected the results much. For the disk usage
comparison this naturally has not been an is-
sue at all.

9.2 Problems encountered

The experiments have not been carried out
without problems arising. The main problems
encountered will be described in this section.

The read benchmarking scripts written in
Python at first showed incorrect results, which

unfortunately was not acknowledged until rel-
atively close to the deadline. Both CouchDB
and MongoDB have functions for performing
queries — find() in MongoDB and query() in
CouchDB. Both functions return a pointer to a
result set, where individual records can be ad-
dressed and fetched. At first, the benchmark-
ing scripts were returned such a pointer, and
that was the end of the script. The assumption
here was that the databases had processed the
query and generated the entire result, but in re-
ality it seems that the databases keep working
in the background, even after the pointers are
returned. 120ms retrieval speeds for five billion
documents (which was tested just for fun) in
MongoDB really sounded, and indeed was, too
good to be true. The problem was solved by
iterating over the resultset and doing nothing
(which in Python is done using the keyword
pass) on every element. This produced more
accurate and fair results.

The problem mentioned above was encoun-
tered at first when experimenting on a rather
weak laptop, using a 32-bit CPU. Since the
maximum size of a database in the 32-bit ver-
sion of MongoDB is 2GB, which in this case
meant about 6 million documents, this lead to
the conclusion that a computer using a 64-bit
CPU was necessary because of the need for
more documents in order to actually get any
substantial time to measure. The university at
first could not provide one; noone seemed to
have one to lend for the experiments. After
many hard tries, supervisor Göran Gustafsson
took contact with Niklas Lavesson PhD, who
set up an account on one of the university’s re-
ally quite powerful computers using dual Xeon
CPUs and 64GB RAM and with a 64-bit ver-
sion of Ubuntu GNU/Linux installed. Since no
administrative permissions were granted, Dr
Lavesson, who at the time had a busy sched-
ule, was the one to install all necessary com-
ponents for the tests. Nothing seemed to work
like it should have: different versions of the

26

Python libraries than had been programmed
for were installed, and changes to configura-
tion files in CouchDB, trying to change on
what partition database files were saved, did
not take effect. At this time a friend, Pe-
ter Assmus, lent his workstation with a 64-
bit AMD CPU within. Unfortunately, that
computer kept disconnecting the CouchDB in-
sertion script, which was disastrous since all
data needed to be inserted in one continual
loop to ensure that the same data was used
in both DBMS. At this point, the result set
pointer background problem mentioned earlier
became clear, and the realization that the lap-
top, which had been used at the very begin-
ning, was actually adequate came. A lot of
time was spent on trying to find a computer,
when the first one used was the best fit for the
experiments after all.

The writing of this thesis has proven to be
quite time-consuming, as well. A good deal of
time that could have been spent on actual writ-
ing was instead spent on trying to get LATEX
to behave in desirable manners. In the end
it was worth it however, since a lot of things,
such as cross-referencing, bibliography and ta-
ble of contents are managed pretty much by
themselves when using LATEX.

9.3 Future work

The experiments presented in this thesis have
touched upon only a fraction of what CouchDB
and MongoDB are capable of. The maximum
document size used has been 500,000 docu-
ments, when the databases could very well han-
dle billions of documents. Most likely the in-
sertion and read speeds would still be increas-
ing linearly if tried on a single server setup,
but with data sharded across a cluster, things
might look different. This would make for an
interesting expermiment.

Another interesting topic to investigate is
how well, and how rapidly, CouchDB and Mon-

goDB handle replication when used on the
same two servers on a network.

Since all the tests performed have been in
MongoDB’s favor, CouchDB has been shed in
a rather negative light, which is unfair. While
MongoDB is indeed faster, CouchDB is more
robust and handles failures more gracefully.
The benchmarks performed in this thesis fo-
cused only on speed and size, but what would
the results be if an experiment that focused
more on CouchDB’s strengths was to be per-
formed? It would be interesting to see what
would happen if one were to “pull the plug”
on a server performing a transaction, both on
a single server and on a network.

Something that has not been mentioned un-
til now is the fact that MongoDB has instal-
lable RESTful API extensions available. When
one is installed, how well does it work com-
pared to CouchDB’s inherent RESTful nature?

MongoDB uses lazy writes and handles much
data in primary memory before saving it to sec-
ondary storage. CouchDB saves to disk every-
time something is added, modified or deleted.
It would be interesting to mount a RAM disk
drive and perform the benchmarks there, to see
if the secondary storage (a hard drive, in this
case) is truly the bottleneck of CouchDB.

27

References

[1] 10gen Inc. Agile and Scalable. http://www.mongodb.org/, 2011. Visited 22th May, 2011.

[2] J.K. Anderson and N. Slater. CouchDB: The Definitive Guide. O’Reilly, 2010.

[3] K. Bhamidipati. SQL Programmer’s Reference, 1998.

[4] F et al. Chang. Bigtable: A Distributed Storage System for Structured Data, November
2006.

[5] T. Conolly and C. Begg. Database Systems: A Practical Approach to Design, Implemen-
tation and Management, 2005.

[6] O. Andersson et al. Scalable Vector Grap hics (SVG) Full 1.2 Specification. http://www.
w3.org/Graphics/SVG/, April 2005. Visited 22 May, 2011.

[7] E. Evans. NOSQL 2009. http://blog.sym-link.com/2009/05/12/nosql_2009.html,
May 2009. 22 May, 2011.

[8] International Organization for Standardization. ISO 8879:1986. http://www.iso.org/

iso/catalogue_detail.htm?csnumber=16387, March 2011.

[9] Google Inc. Creating or Editing CSV files. http://mail.google.com/support/bin/

answer.py?answer=12119, March 2011. Visited 22 May, 2011.

[10] Microsoft. . https://www.microsoft.com/presspass/features/2005/nov05/

11-21Ecma.mspx, November 2005. Visited 22 May, 2011.

[11] Oxford Dictionaries Online. document. http://oxforddictionaries.com/view/entry/

m_en_gb0235770#m_en_gb0235770, 2011. Visited 22 May, 2011.

[12] Membrey P. Plugge E. and Hawkins T. The Definitive Guide to MongoDB. Apress, 2010.

[13] A. Rodriguez. RESTful Web Services: The basics. https://www.ibm.com/

developerworks/webservices/library/ws-restful/, November 2008. Visited 22th
may, 2001.

[14] C. Strozzi. NoSQL, A Relational Database Managament System. http://www.strozzi.

it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page. Visited 22 May, 2011.

[15] Neo Technology. Why Neo. http://neotechnology.com/why-neo. Visited 22 May, 2011.

[16] R. Weir and M. Brauer. OASIS Open Document Format for Office Applications (Open-
Document) TC. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

office, January 2011. Visited 22 May, 2011.

28

A Appendices

A.1 Source code, randPersons.py

The code has been run under Ubuntu GNU/Linux using kernel release 2.6.38-7-generic, using
Python version Python 2.7.1+.

#!/usr/bin/python

import random;

from collections import defaultdict;

#"Constants" are put here for ease of modification

SEED = 1337;

ALPHA = ’abcdefghijklmnopqrstuvwxyz’;

DIGITS = ’0123456789’;

ANIMALS = ["Albatross","Horse","Piranha","Slow loris","Panda","Penguin"];

JEDI_POWERS = [’Force Lightning’, ’Jedi Mind Trick’,’Force Choke’, ’Force Throw’, ’Force Insanity’];

MIN_NAME_LENGTH = 5;

MAX_NAME_LENGTH = 15;

MINIMUM_SALARY = 9000;

MAXIMUM_SALARY = 40000;

MINIMUM_AGE = 18;

MAXIMUM_AGE = 90;

PHONE_LENGTH = 9;

MIN_NESTED_ELEMS = 1;

MAX_NESTED_ELEMS = 5;

#Data set versions

DEFAULT = 0;

WITH_PET = 1;

WITH_FAX = 2;

JEDI = 3;

random.seed(SEED);

def randomName():

nameArray = random.sample(ALPHA,random.randint(MIN_NAME_LENGTH,MAX_NAME_LENGTH));

nameString = ’’;

for char in nameArray:

nameString += char;

return nameString;

def randomPet():

return ANIMALS[random.randint(0,len(ANIMALS)-1)];

def randomJediPower():

return JEDI_POWERS[random.randint(0,len(JEDI_POWERS)-1)];

def randomIncome():

return random.randint(MINIMUM_SALARY,MAXIMUM_SALARY);

def randomAge():

return random.randint(MINIMUM_AGE,MAXIMUM_AGE);

#This function is also used for generating fax numbers

def randomPhone():

phoneArray = random.sample(DIGITS,10);

phoneString = ’’;

for digit in phoneArray:

phoneString += digit;

29

return phoneString;

#This function generates documents.

#Depending on what value the version parameter has, new key-value pairs

#are appended to the default document.

def randomDoc(version, nested):

person = {

"name":randomName(),

"salary":randomIncome(),

"age":randomAge(),

"telephone":randomPhone()

};

if version == WITH_PET:

if nested:

nrOfPets = random.randint(MIN_NESTED_ELEMS,MAX_NESTED_ELEMS);

pets = [];

for i in range(nrOfPets):

pets.append(randomPet());

person[’pet’] = pets;

else:

person[’pet’] = randomPet();

elif version == WITH_FAX:

if nested:

nrOfFaxNrs = random.randint(MIN_NESTED_ELEMS,MAX_NESTED_ELEMS);

faxNrs = [];

for i in range(nrOfFaxNrs):

faxNrs.append(randomPhone());

person[’fax’] = faxNrs;

else:

person[’fax’] = randomPhone();

elif version == JEDI:

#Remember, a Jedi’s strength flows from the Force.

#But beware. Anger, fear, aggression. The dark side are they.

if nested:

nrOfPowers = random.randint(MIN_NESTED_ELEMS, MAX_NESTED_ELEMS);

powers = [];

for i in range(nrOfPowers):

powers.append(randomJediPower());

person[’jedi power’] = powers;

else:

person[’jedi power’] = randomJediPower();

return person;

def flatPerson():

return randomDoc(random.randint(0,3), False);

def nestedPerson():

return randomDoc(random.randint(0,3), True);

30

A.2 Source code, mongoInsert.py

The code has been run under Ubuntu GNU/Linux using kernel release 2.6.38-7-generic, using
Python version Python 2.7.1+.

#!/usr/bin/python

#This script generates a number of persons according to the randPerson module.

#How many persons are generated is determined by a command line argument.

#If the parameter "drop" is provided, the collection is dropped.

import sys;

from pymongo import Connection;

from randPersons import flatPerson;

from randPersons import nestedPerson;

if len(sys.argv) == 2 or len(sys.argv) == 3:

connection = Connection(); #host address and port can optionally be provided here

db = connection.benchmarking; #benchmarking is the name of the database

collection = db.persons; #persons is the name of the collection

if sys.argv[1] == ’drop’:

print "Dropping collection.";

db.drop_collection(collection);

else:

if len(sys.argv) == 3 and sys.argv[2] == ’nested’:

nested = True;

else:

nested = False;

nrOfPersons = sys.argv[1];

print "Inserting", nrOfPersons, "documents. Please wait...";

if nested:

counter = 1;

for i in range(int(nrOfPersons)):

collection.insert(nestedPerson());

print (float(counter)/float(nrOfPersons))*100,"\b%\r",;

counter = counter + 1;

else:

counter = 1;

for i in range(int(nrOfPersons)):

collection.insert(flatPerson());

print (float(counter)/float(nrOfPersons))*100,"\b%\r",;

counter = counter + 1;

else:

print "Please provide the number of persons to insert using format", sys.argv[0], "[NR OF PERSONS] [MODE]";

print "You may also drop the ’person’ collection by using", sys.argv[0], "drop";

31

A.3 Source code, couchInsert.py

The code has been run under Ubuntu GNU/Linux using kernel release 2.6.38-7-generic, using
Python version Python 2.7.1+.

#!/usr/bin/python

#This script generates a number of persons according to the randPerson module.

#How many persons are generated is determined by a command line argument.

#If the parameter "drop" is provided, the collection is dropped.

import sys;

import couchdb;

from randPersons import flatPerson;

from randPersons import nestedPerson;

if len(sys.argv) == 2 or len(sys.argv) == 3:

connection = couchdb.Server(); #Server and port can optionally be specified here

db = connection[’benchmarking’]; #Make sure there is a database named ’benchmarking’ before running this script!

if sys.argv[1] == "drop":

print "Dropping database.";

connection.delete(’benchmarking’);

print "Recreating database.";

connection.create(’benchmarking’);

else:

if len(sys.argv) == 3 and sys.argv[2] == ’nested’:

nested = True;

else:

nested = False;

nrOfPersons = sys.argv[1];

print "Inserting", nrOfPersons, "documents. Please wait...";

if nested:

counter = 1;

for i in range(int(nrOfPersons)):

db.create(nestedPerson());

print "\t\r",; #Clear line

print (float(counter)/float(nrOfPersons))*100,"\b\r%",;

counter = counter + 1;

else:

counter = 1;

for i in range(int(nrOfPersons)):

db.create(flatPerson());

print "\t\r",; #Clear line

print (float(counter)/float(nrOfPersons))*100,"\b%\r",;

counter = counter + 1;

else:

print "Please provide the number of persons to insert using format", sys.argv[0], "[NR OF PERSONS]";

print "You may also drop the ’person’ collection by using", sys.argv[0], "drop";

32

A.4 Source code, mongoBench.py

The code has been run under Ubuntu GNU/Linux using kernel release 2.6.38-7-generic, using
Python version Python 2.7.1+.

#!/usr/bin/python

#This script is used to benchmark a MongoDB database.

#It retrieves valued inserted by the module randPersons.py

import sys;

from pymongo import Connection;

connection = Connection();

db = connection.benchmarking;

collection = db.persons;

if len(sys.argv) != 2:

print "Please choose a test number (0-5).";

elif len(sys.argv) == 2:

option = sys.argv[1];

if option == ’1’:

cursor = collection.find({"salary":{"$gt":18500, "$lt":35000}});

elif option == ’2’:

cursor = collection.find({"salary":{"$gt":18500, "$lt":35000},

"age":{"$gt":25}})

elif option == ’3’:

cursor = collection.find({"salary":{"$gt":18500, "$lt":35000},

"age":{"$gt":25},

"fax":{"$exists":True}});

elif option == ’4’:

cursor = collection.find({"salary":{"$gt":18500, "$lt":35000},

"age":{"$gt":25},

"pet":{"$exists":True},

"pet":"Penguin"});

elif option == ’5’:

cursor = collection.find({"salary":{"$gt":18500, "$lt":35000},

"age":{"$gt":25},

"jedi_power":{"$exists":True},

"$or":[{"jedi_power":"Force Choke"},

{"jedi_power":"Force Insanity"}]});

#Print the number of matching documents

print cursor.count();

#Iterate through all results

for person in cursor:

pass;

33

A.5 Source code, couchBench.py

The code has been run under Ubuntu GNU/Linux using kernel release 2.6.38-7-generic, using
Python version Python 2.7.1+.

#!/usr/bin/python

import sys;

import couchdb;

connection = couchdb.Server(); #Server and port can optionally be specified

db = connection[’benchmarking’]; #Make sure there is a database named ’benchmarking’

#Map function definitions

#This is pretty ugly - javascript functions

#stored as Python strings. It is possible to

#use native Python functions as map functions,

#but doing so requires additional tweaking.

mapOne = ’’’function(doc) {

if(doc.salary > 18500 && doc.salary < 35000)

emit(doc._id,doc);

}’’’

mapTwo = ’’’function(doc) {

if(doc.salary > 18500 && doc.salary < 35000

&& doc.age > 25)

emit(doc._id,doc);

}’’’

mapThree = ’’’function(doc) {

if(doc.salary > 18500 && doc.salary < 35000

&& doc.age > 25

&& doc.fax)

emit(doc._id,doc);

}’’’

mapFour = ’’’function(doc) {

if(doc.salary > 18500 && doc.salary < 35000

&& doc.age > 25

&& doc.pet)

{

var found = false;

for(var i = 0; i < doc.pet.length; i++)

{

if(doc.pet[i] == ’Penguin’)

found = true;

}

if(found)

emit(doc._id,doc);

}

}’’’

mapFive = ’’’function(doc) {

if(doc.salary > 18500

&& doc.salary < 35000

&& doc.age > 25

&& doc.jedi_power)

{

34

var found = false;

for(var i = 0; i < doc.jedi_power.length; i++)

{

if(doc.jedi_power[i] == ’Force Choke’

|| doc.jedi_power[i] == ’Force Insanity’)

found = true;

}

if(found)

emit(doc._id,doc)};

}’’’

rows = 0

if len(sys.argv) != 2:

print "Please choose a test number (0-5).";

elif len(sys.argv) == 2:

option = sys.argv[1];

if option == ’1’:

rows = db.query(mapOne);

if option == ’2’:

rows = db.query(mapTwo);

if option == ’3’:

rows = db.query(mapThree);

if option == ’4’:

rows = db.query(mapFour);

if option == ’5’:

rows = db.query(mapFive);

#Print number of documents

print len(rows)

#Iterate over all results in the View Result

for row in rows:

pass;

35

A.6 Graph, sizes

1
M

b
1

6
M

b
2

5
M

b

3
2

5
M

b

3
7

9
3

M
b

5
k

5
0

K
5

0
0

K

Size

N
u
m

b
e
r

o
f

d
o
cu

m
e
n
ts

S
iz

e
 o

f
d

o
cu

m
e
n
ts

 i
n
 M

o
n
g

o
D

B
 a

n
d

 C
o
u
ch

D
B

M
o
n
g

o
D

B
C

o
u
ch

D
B

36

A.7 Graph, reads

 0

 2
0

0

 4
0

0

 6
0

0

 8
0

0

 1
0

0
0

 1
2

0
0

 1
4

0
0

 0
 5

0
0

0
0

 1
0

0
0

0
0

 1
5

0
0

0
0

 2
0

0
0

0
0

 2
5

0
0

0
0

 3
0

0
0

0
0

 3
5

0
0

0
0

 4
0

0
0

0
0

 4
5

0
0

0
0

 5
0

0
0

0
0

Insert time (seconds)

N
u
m

b
e
r

o
f

d
o
cu

m
e
n
ts

In
se

rt
 t

im
e
s

o
f

d
o
cu

m
e
n
ts

 i
n
 M

o
n
g

o
D

B
 a

n
d

 C
o
u
ch

D
B

M
o
n
g

o
D

B
C

o
u
ch

D
B

37

A.8 Graph, query 1

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

 0
 5

0
0

0
0

 1
0

0
0

0
0

 1
5

0
0

0
0

 2
0

0
0

0
0

 2
5

0
0

0
0

 3
0

0
0

0
0

 3
5

0
0

0
0

 4
0

0
0

0
0

 4
5

0
0

0
0

 5
0

0
0

0
0

Read time (seconds)

N
u
m

b
e
r

o
f

d
o
cu

m
e
n
ts

R
e
a
d

,
q

u
e
ry

 1

M
o
n
g

o
D

B
C

o
u
ch

D
B

38

A.9 Graph, query 2

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

 1
8

 0
 5

0
0

0
0

 1
0

0
0

0
0

 1
5

0
0

0
0

 2
0

0
0

0
0

 2
5

0
0

0
0

 3
0

0
0

0
0

 3
5

0
0

0
0

 4
0

0
0

0
0

 4
5

0
0

0
0

 5
0

0
0

0
0

Read time (seconds)

N
u
m

b
e
r

o
f

d
o
cu

m
e
n
ts

R
e
a
d

,
q

u
e
ry

 2

M
o
n
g

o
D

B
C

o
u
ch

D
B

39

A.10 Graph, query 3

 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5 4

 0
 5

0
0

0
0

 1
0

0
0

0
0

 1
5

0
0

0
0

 2
0

0
0

0
0

 2
5

0
0

0
0

 3
0

0
0

0
0

 3
5

0
0

0
0

 4
0

0
0

0
0

 4
5

0
0

0
0

 5
0

0
0

0
0

Read time (seconds)

N
u
m

b
e
r

o
f

d
o
cu

m
e
n
ts

R
e
a
d

,
q

u
e
ry

 3

M
o
n
g

o
D

B
C

o
u
ch

D
B

40

A.11 Graph, query 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 1
.6

 1
.8

 0
 5

0
0

0
0

 1
0

0
0

0
0

 1
5

0
0

0
0

 2
0

0
0

0
0

 2
5

0
0

0
0

 3
0

0
0

0
0

 3
5

0
0

0
0

 4
0

0
0

0
0

 4
5

0
0

0
0

 5
0

0
0

0
0

Read time (seconds)

N
u
m

b
e
r

o
f

d
o
cu

m
e
n
ts

R
e
a
d

,
q

u
e
ry

 4

M
o
n
g

o
D

B
C

o
u
ch

D
B

41

A.12 Graph, query 5

 0

 0
.5 1

 1
.5 2

 2
.5 3

 0
 5

0
0

0
0

 1
0

0
0

0
0

 1
5

0
0

0
0

 2
0

0
0

0
0

 2
5

0
0

0
0

 3
0

0
0

0
0

 3
5

0
0

0
0

 4
0

0
0

0
0

 4
5

0
0

0
0

 5
0

0
0

0
0

Read time (seconds)

N
u
m

b
e
r

o
f

d
o
cu

m
e
n
ts

R
e
a
d

,
q

u
e
ry

 5

M
o
n
g

o
D

B
C

o
u
ch

D
B

42

A.13 Techniques used for creating thesis

• LATEX has been used for compiling the thesis from plain text files.
http://www.tug.org/texlive/

• Pygments has been used to create syntax highlighted code in LATEXformat for the thesis.
http://pygments.org/

• Dia has been used to create diagrams and drawings present in the thesis.
http://live.gnome.org/Dia

• gnuplot has been used to create the graphs that visualize the benchmarking of MongoDB
and CouchDB.
http://www.gnuplot.info

43

