

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#171
M

o
n

g
o

D
B

:
F

le
xi

b
le

 N
o

S
Q

L
 f

o
r

H
u

m
o

n
g

o
u

s
D

a
ta

By Kristina Chodorow

Flexible NoSQL for Humongous Data

ABOUT THIS REFCARD

MongoDB is a document-oriented database that is easy to use from
almost any language. This cheat sheet covers a bunch of handy and easily
forgotten options, commands, and techniques for getting the most out of
MongoDB.

CONFIGURATION OPTIONS

Setting Options
Startup options for MongoDB can be set on the command line or in a
configuration file. The syntax is slightly different between the two. Here are
the three types of options:

Command-Line Config File

--dbpath /path/to/db dbpath=/path/to/db

--auth auth=true

-vvv vvv=true

Run mongod --help for a full list of options, but here are some of the most
useful ones:

Option Description

--config /path/to/config Specifies config file where other options are
set.

--dbpath /path/to/data Path to data directory.

--port 27017 Port for MongoDB to listen on.

--logpath /path/to/file.log Where the log is stored. This is a path to the
exact file, not a directory.

--logappend On restart, appends to (does not truncate) the
existing log file. Always use this when using
the --logpath option.

--fork Forks the mongod as a daemon process.

--auth Enables authentication on a single server.

--keyFile /path/to/key.txt Enables authentication on replica sets and
sharding. Takes a path to a shared secret key

--nohttpinterface Turns off HTTP interface.

--bind_ip address Only allows connections from the specified
network interface.

To start mongod securely, use the nohttpinterface and bind_ip options
and make sure it isn't accessible to the outside world. In particular, make
sure that you do not have the rest option enabled. MongoDB requires the
following network accessibility:

•	 Single	server	-	ability	to	accept	connections	from	clients.		
•	 Replica	set	-	ability	to	accept	connections	from	any	member	of	the	

set,	including	themselves.	Clients	must	be	able	to	connect	to	any	
member	that	can	become	primary.		

•	 Sharding	-	mongos	processes	must	be	able	to	connect	to	config	
servers	and	shards.		Shards	must	be	able	to	connect	to	each	other	
and	config	servers.		Clients	must	be	able	to	connect	to	mongos	
processes.		Config	servers	do	not	need	to	connect	to	anyone,	
including	each	other.

All of the connections are over TCP.

Seeing Options
If you started mongod with a bunch of options six months ago, how can
you see which options you used? The shell has a helper:

> db.serverCmdLineOpts()
{ “argv” : [“./mongod”, “--port”, “30000”], “parsed” : { },
“ok” : 1 }

The parsed field is a list of arguments read from a config file.

USING THE SHELL

Shell Help
There are a number of functions that give you a little help if you forget a
command:

> // basic help
> help
 db.help() help on db methods
 db.mycoll.help() help on collection methods
 sh.help() sharding helpers
 rs.help() replica set helpers
 help admin administrative help
 help connect connecting to a db help
 ...

Note that there are separate help functions for databases, collections,
replica sets, sharding, administration, and more. Although not listed
explicitly, there is also help for cursors:

> // list common cursor functions
> db.foo.find().help()

You can use these functions and helpers as built-in cheat sheets.

Seeing Function Definitions
If you don’t understand what a function is doing, you can run it without the
parentheses in the shell to see its source code:

CONTENTS INCLUDE:

❱ Configuration Options

❱ Using the Shell

❱ Diagnosing What's Happening

❱ Quick Rules

❱ Query Operators

❱ Update Modifiers...and More!

MongoDB

Brought to you by:

MongoDB-as-a-Service

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
mailto:info@cloudbees.com
http://mongolab.com?source=dzone
http://mongolab.com?source=dzone

2 MongoDB

DZone, Inc. | www.dzone.com

> // run the function
> db.serverCmdLineOpts()
{ “argv” : [“./mongod”], “parsed” : { }, “ok” : 1 }
> // see its source
> db.serverCmdLineOpts
function () {
 return this._adminCommand(“getCmdLineOpts”);
}

This can be helpful for seeing what arguments it expects or what errors it
can throw, as well as how to run it from another language.

Using edit
The shell has limited multi-line support, so it can be difficult to program
in. The shell helper edit makes this easier, opening up a text editor and
allowing you to edit variables from there. For example:

> x = function() { /* some function we’re going to fill in */ }
> edit x
<opens emacs with the contents of x>

Modify the variable in your editor, then save and exit. The variable will be set
in the shell.

Either the EDITOR environment variable or a MongoDB shell variable
EDITOR must be set to use edit. You can set it in the MongoDB shell as
follows:

> EDITOR=”/usr/bin/emacs”

Edit is not available from JavaScript scripts, only in the interactive shell.

.mongorc.js
If a .mongorc.js file exists in your home directory, it will automatically be run
on shell startup. Use it to initialize any helper functions you use regularly
and remove functions you don’t want to accidentally use.

For example, if you would prefer to not have dropDatabase() available by
default, you could add the following lines to your .mongorc.js file:

DB.prototype.dropDatabase = function() {
 print(“No dropping DBs!”);
}
db.dropDatabase = DB.prototype.dropDatabase;

The example above will change the dropDatabase() helper to only print a
message, and not to drop databases.

Note that this technique should not be used for security because a
determined user can still drop a database without the helper. However,
removing dangerous admin commands can help prevent fat-fingering.

A couple of suggestions for helpers you may want to remove from
.mongorc.js are:

•	 DB.prototype.shutdownServer
•	 DBCollection.prototype.drop
•	 DBCollection.prototype.ensureIndex
•	 DBCollection.prototype.reIndex
•	 DBCollection.prototype.dropIndexes

Changing the Prompt
The shell prompt can be customized by setting the prompt variable to a
function that returns a string:

prompt = function() {
 try {
 db.getLastError();
 }
 catch (e) {
 print(e);
 }
 return (new Date())+”$ “;
}

If you set prompt, it will be executed each time the prompt is drawn (thus,
the example above would give you the time the last operation completed).

Try to include the db.getLastError() function call in your prompt. This is
included in the default prompt and takes care of server reconnection and
returning errors from writes.

Also, always put any code that could throw an exception in a try/catch
block. It’s annoying to have your prompt turn into an exception!

DIAGNOSING WHAT'S HAPPENING

Viewing and Killing Operations
You can see current operations with the currentOp function:

> db.currentOp()
{
 “inprog” : [
 {
 “opid” : 123,
 “active” : false,
 “locktype” : “write”,
 “waitingForLock” : false,
 “secs_running” : 200,
 “op” : “query”,
 “ns” : “foo.bar”,
 “query” : {
 }
 ...
 },
 ...
]
}

Using the opid field from above, you can kill operations:

> db.killOp(123)

Not all operations can be killed or will be killed immediately. In general,
operations that are waiting for a lock cannot be killed until they acquire the
lock.

The active field indicates whether this operation is currently running. If
an operation is not running, it generally has either not started yet and is
waiting for a lock or has yielded to other operations. You can see a count
of the number of times an operation has yielded in the numYields field.

Index Usage
Use explain() to see which index MongoDB is using for a query.

> db.foo.find(criteria).explain()
{
 “cursor” : “BasicCursor”,
 “isMultiKey” : false,
 “n” : 2,
 “nscannedObjects” : 2,
 “nscanned” : 2,
 “nscannedObjectsAllPlans” : 2,
 “nscannedAllPlans” : 2,
 “scanAndOrder” : false,
 “indexOnly” : false,
 “nYields” : 0,
 “nChunkSkips” : 0,
 “millis” : 0,
 “indexBounds” : {

 },
 “server” : “ubuntu:27017”
}

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 MongoDB

DZone, Inc. | www.dzone.com

There are several important fields in the output of explain():

•	 n:	the	number	of	results	returned.
•	 nscanned:	the	number	of	index	entries	read.
•	 nscannedObjects:	the	number	of	docs	referred	by	the	index.
•	 indexOnly:	if	the	query	never	had	to	touch	the	collection	itself.
•	 nYields:	the	number	of	times	this	query	has	released	the	read	lock	

and	waited	for	other	operations	to	go.
•	 indexBounds:	when	an	index	is	used,	this	shows	the	index	scan	

ranges.

Types of Cursors
A BasicCursor means that no index was used. A BtreeCursor means
a normal index was used. Parallel cursors are used by sharding and
geospatial indexes use their own special cursors.

Once an array has been indexed, that index has a special “multikey” flag set,
which is what the isMultiKey field in the explain above indicates. This flag
remains set for the lifetime of the index, even if it is no longer indexing any
arrays.

If an index is used for a query, the explain will contain index bounds fields,
which describe the portions of the index looked at. For example, if you
know that your documents have an age field that’s evenly distributed
between 0 and 120 and the index bounds go from 3-5, you know that your
index only needs to hit a few percent of the index entries to satisfy that
query.

Hinting
Use hint() to force a particular index to be used for a query:

> db.foo.find().hint({x:1})

The hint must exactly match the key of the index you want to use. You can
see the available indexes for a collections by running:

> db.foo.getIndexes()

As a rule of thumb, you can create an index from the fields in your query. If
you have a query and a sort, the best index depends a bit on the query. If
the query is for a single value (e.g., {x: y}), the index should be {queryField: 1,
sortField: 1}. If the query is a range or set, it may be more efficient to index
{sortField: 1, queryField: 1}. If you use this index, MongoDB must scan the
whole index to find all results, but it can return them in order without any
in-memory sorting.

System Profiling
You can turn on system profiling to see operations currently happening
on a database. There is a performance penalty to profiling, but it can help
isolate slow queries.

> db.setProfilingLevel(2) // profile all operations
> db.setProfilingLevel(1) // profile operations that take longer
than 100ms
> db.setProfilingLevel(1, 500) // profile operations that take
longer than 500ms
> db.setProfilingLevel(0) // turn off profiling
> db.getProfilingLevel(1) // see current profiling setting

Profile entries are stored in a capped collection called system.profile in the
database in which profiling was enabled. Profiling can be turned on and off
for each database.

Replica Sets
To find replication lag, connect to a secondary and run this function:

> db.printReplicationStatus()
configured oplog size: 2000MB
log length start to end: 23091secs (6.4hrs)
oplog first event time: Fri Aug 10 2012 04:33:03 GMT+0200 (CEST)
oplog last event time: Mon Aug 20 2012 10:56:51 GMT+0200 (CEST)
now: Mon Aug 20 2012 10:56:51 GMT+0200 (CEST)

To see a member’s view of the entire set, connect to it and run:

> rs.status()

This command will show you what it thinks the state and status of the
other members are.

Running rs.status() on a secondary will show you who the secondary is
syncing from in the (poorly named) syncingTo field.

Sharding
To see your cluster’s metadata (shards, databases, chunks, etc.), run the
following function:

> db.printShardingStatus()
> db.printShardingStatus(true) // show all chunks

You can also connect to the mongos and see data about your shards,
databases, collections, or chunks by using “use config” and then querying
the relevant collections.

> use config
switched to db config
> show collections
chunks
databases
lockpings
locks
mongos
settings
shards
system.indexes
version

Always connect to a mongos to get sharding information. Never connect
directly to a config server. Never directly write to a config server. Always use
sharding commands and helpers.

After maintenance, sometimes mongos processes that were not actually
performing the maintenance will not have an updated version of the config.
Either bouncing these servers or running the flushRouterConfig command
is generally a quick fix to this issue.

> use admin
> db.runCommand({flushRouterConfig:1})

Often this problem will manifest as setShardVersion failed errors.

Don’t worry about setShardVersion errors in the logs, but they should not
trickle up to your application (you shouldn’t get the errors from a driver
unless the mongos it’s connecting to cannot reach any config servers).

To add a new shard, run:

> db.addShard(“rsName/seed1,seed2,seed3”)

To enable sharing on a database, run:

> db.adminCommand({enableSharding: true})

To enable sharding on a collection, run:

> db.adminCommand({shardCollection: “dbName.collName”,
unique: true, key: {fieldName: 1}})

dbName.collName should either not exist yet or already have an index on
fieldName (the shard key). If you are using a unique shard key, it must be a
unique index.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 MongoDB

DZone, Inc. | www.dzone.com

If you are not sharding on _id, _ids are not required to be unique across the
cluster. However, they are on individual shards (that is, you could have a
doc with _id:123 on shard1 and a doc with _id:123 on shard2, but you could
not have two docs with _id:123 on shard1). As documents tend to move
from shard to shard, you should make sure that your _ids are unique if
you're generating your own. If you're using ObjectIds, you'll be fine.

To turn off the balancer, update the config.settings collection through the
mongos:

> sh.setBalancerState(false)

To turn it back on, run the same command passing in true.

Mongo Monitoring Service (MMS)
MMS is a free, easily-setup way to monitor MongoDB.

To use it, create an account at http://mms.10gen.com.

See http://mms.10gen.com/help for more documentation.

QUICK RULES

Databases
Database names cannot contain “.”, “$”, or “\0” (the null character). Names
can only contain characters that can be used on your filesystem as
filenames. Admin, config, and local are reserved database names (you can
store your own data in them, but you should never drop them).

Another powerful option is Post-commit hooks for running builds. A build
gets triggered on a commit into the repository. This is more efficient than
periodic builds or the poll SCM option.

Collections
Collection names cannot contain “$” or “\0”. Names prefixed with “system.”
are reserved by MongoDB and cannot be dropped (even if you created the
collection). Dots are often used for organization in collection names, but
they have no semantic importance. A collection named “che.se” has no
more relation to a collection named “che” than one named “cheese” does.

Field Names
Field names cannot contain “.” nor “\0”. Fields should only contain “$”
when they are database references.

Index Options
background Builds indexes in the background, while other

connections can read and write.

unique Every value for this key must be distinct.

sparse Non-existent values are not indexed. Very handy for
indexing unique fields that some documents might
not have.

expireAfterSeconds Takes a number of seconds and makes this a "time
to live" collection.

dropDups When creating unique indexes, drops duplicate
values instead of erroring out. Note that this will
delete documents with duplicate values!

Query Format
Queries are generally of the form:

{key : {$op : value}}

For example:

{age : {$gte : 18}}

There are three exceptions to this rule: $and, $or, and $nor, which are all
top-level:

{$or : [{age: {$gte : 18}}, {age : {$lt : 18},
parentalConsent:true}}]}

Update Format
Updates are always of the form:

{key : {$mod : value}}

For example:

{age : {$inc : 1}}

QUERY OPERATORS

√: Matches
x: Does not match

Operator Example Query Example Docs

$gt, $gte, $lt, $lte, $ne {numSold : {$lt:3}} √	{numSold: 1}
x	{numSold: "hello"}
x	{x : 1}

$in, $nin {age : {$in : [10, 14,
21]}}

√	{age: 21}
√	{age: [9, 10, 11]}
x	{age: 9}

$all {hand : {$all :
["10","J","Q","K","A"]}}

√	{hand: ["7", "8", "9",
"10", "J", "Q", "K", "A"]}
x	{hand:["J","Q","K"]}

$not {name : {$not : /jon/i}} √	{name: "Jon"}
x	{name: "John"}

$mod {age : {$mod : [10, 0]}} √	{age: 50}
x	{age: 42}

$exists {phone: {$exists: true}} √	{phone: "555-555-
5555"}
x	{phones: ["555-555-
5555", "1-800-555-
5555"]}

$type* {age : {$type : 2}} √	{age : "42"}
x	{age : 42}

$size {"top-three":{$size:3}} √	{"top-three":["gold","s
ilver","bronze"]}
x	{"top-three":["blue
ribbon"]}

*See http://www.mongodb.org/display/DOCS/Advanced+Queries for a full
list of types.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
https://mms.10gen.com/user/login
https://mms.10gen.com/user/login
http://docs.mongodb.org/manual/reference/operators/

5 MongoDB

DZone, Inc. | www.dzone.com

UPDATE MODIFIERS

Modifier Start Doc Example Mod End Doc

$set {x:"foo"} {$set:{x:[1,2,3]}} {x:[1,2,3]}

$unset {x:"foo"} {$unset:{x:true}} {}

$inc {countdown:5} {$inc:{countdown:
-1}}

{countdown:4}

$push, $pushAll {votes:[-1,-1,1]} {$push:{votes:-1
}}

{votes:[-1,-1,1,
-1}}

$pull, $pullAll {blacklist:["ip1",
"ip2","ip3"]}

{$pull:{blacklist:
"ip2"}}

{blacklist:"ip1",
"ip3"} {blacklist:
"ip1","ip3"}

$pop {queue:["1pm",
"3pm","8pm"]}

{$pop:{queue:- ‐1}} {queue:["3pm",
"8pm"]}

$addToSet,
$each

{ints:[0,1,3,4
]}

{$addToSet:{ints:{
$each:[1,2,3]}}}

{ints:[0,1,2,3,4]}

$rename {nmae:"sam"} {$rename:{nmae:
"name"}}

{name:"sam"}

$bit {permission:6} {$bit:{permissions
:{or:1}}}

{permission:7}

AGGREGATION PIPELINE OPERATORS

The aggregation framework can be used to perform everything from simple
queries to complex aggregations.

To use the aggregation framework, pass the aggregate() function a pipeline
of aggregation operations:

> db.collection.aggregate({$match:{x:1}},
... {$limit:10},
... {$group:{_id : “$age”}})

A list of available operators:

Operator Description

{$project : projection} Includes, exclude,s renames, and munges
fields.

{$match : match} Queries, takes an argument identical to that
passed to find().

{$limit : num} Limits results to num.

{$skip : skip} Skips num results.

{$sort : sort} Sorts results by the given fields.

{$group : group} Groups results using the expressions given
(see table below).

{$unwind : field} Explodes an embedded array into its own top-
level documents.

To refer to a field, use the syntax $fieldName. For example, this projection
would return the existing "time" field with a new name, "time since epoch":

{$project: {“time since epoch”: “$time”}}

$project and $group can both take expressions, which can use this
$fieldName syntax as shown below:

Expression Op Example Description

$add : ["$age", 1] Adds 1 to the age field.

$divide : ["$sum", "$count"] Divides the sum field by count.

$mod : ["$sum", "$count"] The remainder of dividing sum by count.

$multiply : ["$mph", 24, 365] Multiplies mph by 24*365.

$subtract : ["$price",
"$discount"]

Subtracts discount from price.

$strcasecmp : ["ZZ", "$name"] 1 if name is less than ZZ, 0 if name is ZZ,
-1 if name is greater than ZZ.

$substr : ["$phone", 0, 3] Gets the area code (first three characters)
of phone.

$toLower : "$str" Converts str to all lowercase.

$toUpper : "$str" Converts str to all uppercase.

$ifNull : ["$mightExist",
 $add : ["$doesExist", 1]]

If mightExist is not null, returns mightExist.
Otherwise returns the result of the second
expression.

$cond : [exp1, exp2, exp3] If exp1 evalutes to true, return exp2,
otherwise return expr3.

MAKING BACKUPS

The best way to make a backup is to make a copy of the database files
while they are in a consistent state (i.e., not in the middle of being read
from/to).

1. Use the fsync+lock command. This flushes all in-flight writes to
 disk and prevents new ones.

 > db.fsyncLock()
2. Copy data files to a new location.
3. Use the unlock command to unlock the database.

 > db.fsyncUnlock()

To restore from this backup, copy the files to the correct server’s dbpath
and start the mongod.

If you have a filesystem that does filesystem snapshots and your journal is
on the same volume and you haven’t done anything stripy with RAID, you
can take a snapshot without locking. In this case, when you restore, the
journal will replay operations to make the data files consistent.

Mongodump is only for backup in special cases. If you decide to use it
anyway, don’t fsync+lock first.

REPLICA SET MAINTENANCE

Keeping Members from Being Elected
To permanently stop a member from being elected, change its priority to 0:

> var config = rs.config()
> config.members[2].priority = 0
> rs.reconfig(config)

To prevent a secondary from being elected temporarily, connect to it and
issue the freeze command:

> rs.freeze(10*60) // # of seconds to not become primary

This can be handy if you don’t want to change priorities permanently but
need to do maintenance on the primary.

Demoting a Member
If a member is currently primary and you don’t want it to be, use stepDown:

> rs.stepDown(10*60) // # of seconds to not try to become primary
again

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 MongoDB

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",‐ says PC Magazine.

Starting a Member as a Stand-Alone Server
For maintenance, often it is desirable to start up a secondary and be able to
do writes on it (e.g., for building indexes). To accomplish this, you can start
up a secondary as a stand-alone mongod temporarily.

If the secondary was originally started with the following arguments:

$ mongod --dbpath /data/db --replSet setName --port 30000

Shut it down cleanly and restart it with:

$ mongod --dbpath /data/db --port 30001

Note that the dbpath does not change, but the port does and the replSet
option is removed (all other options can remain the same). This mongod
will come up as a stand-alone server. The rest of the replica set will be
looking for a member on port 30000, not 30001, so it will just appear to be
“down” to the rest of the set.

When you are finished with maintenance, restart the server with the original
arguments.

MORE RESOURCES

•	 Download	MongoDB	at	http://www.mongodb.org/downloads
•	 Documentation	is	available	at	http://docs.mongodb.org
•	 See	the	roadmap	and	file	bugs	and	request	features	at	http://jira.

mongodb.org
•	 Ask	questions	on	the	mailing	list:	http://groups.google.com/group/

mongodb-user
•	 Or,	for	a	faster	response	with	more	variable	quality,	try	the	IRC	chat:	

irc.freenode.net/#mongodb

Kristina Chodorow works on MongoDB, with a focus
on replication internals. She has written several books
on MongoDB and given talks at conferences around
the world. She lives in New York City and enjoys
programming, writing, and cartooning. She blogs at
http://www.kchodorow.com.

How does MongoDB help you manage a huMONGOus
amount of data collected through your web
application? With this authoritative introduction,
you’ll learn the many advantages of using document-
oriented databases, and discover why MongoDB is
a reliable, high-performance system that allows for
almost infinite horizontal scalability.

Buy	Here.

A B O U T T H E A U T H O R S R E C O M M E N D E D B O O K

HTTP
Clean Code
Cypher
JSON

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/
https://jira.mongodb.org/secure/Dashboard.jspa
https://jira.mongodb.org/secure/Dashboard.jspa
https://groups.google.com/forum/?fromgroups#!forum/mongodb-user
https://groups.google.com/forum/?fromgroups#!forum/mongodb-user
http://www.amazon.com/dp/1449381561?tag=snaiinaturt-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=1449381561&adid=1DVM4H6E887JXDVDN3WB&
http://www.amazon.com/dp/1449381561?tag=snaiinaturt-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=1449381561&adid=1DVM4H6E887JXDVDN3WB&

