

Download our solutions now
www.citusdata.com

Deliver Real-Time Big Data to
Your End Users Using PostgreSQL
CitusDB is a hybrid transactional and analytics database
built on the latest version of PostgreSQL which:
 Delivers real-time big data insights to your end users
• Reduces the cost and complexity of your database infrastructure
• Leverages your existing PostgreSQL knowledge and applications
• Provides the Áexibility to use either structured or unstructured data
• Elastically scales as your database grows
• Is always built on the latest version of PostgreSQL

We also offer two free, open source
extensions for PostgreSQL:
 pg_shard allows you to scale
out PostgreSQL across a cluster
of commodity servers to handle
big data operational workloads

• cstore_fdw can help you reduce
PostgreSQL data storage costs signiÀcantly
by applying columnar storage techniques to
compress your database an average of 4-6x

http://www.citusdata.com

Essential PostgreSQL
By Leo Hsu and Regina Obe

 »About PostgreSQL

 »Configuration

 »Data Types

 »Commonly Used Functions

 »Database Objects and more...

A BOUT POSTGRESQL

PostgreSQL is an open-source object-relational database
with many enterprise-level features. It runs on numerous
platforms: Linux, Unix, Windows, and Mac OS X. It is simple
and quick to install, fast, and it sports advanced features
such as: streaming replication, spatial support via PostGIS,
windowing functions, table partitioning, and full-text
search. In addition to its enterprise features, it has the added
benefit of supporting numerous languages for authoring
stored functions. It has an extensible procedural language
architecture to introduce new languages. It also has an
extensible type and index architecture for introducing new
data types, operators, and indexes for these custom types, and
support for querying external data sources such as CSV, web
services, and other PostgreSQL services via its Foreign Data
Wrapper (SQL/MED) support.

Targeted at novices and professionals alike, this Refcard will
help you quickly navigate some of PostgreSQL’s most popular
features as well as its hidden gems. It will cover topics such as
configuration, administration, backup, language support, and
advanced SQL features. There will be a special focus on new
features in PostgreSQL 9.3 and 9.4.

CONFIGUR ATION

PostgreSQL uses three main configuration files to control
overall operations. You can find these files in the initialized
data cluster (the folder specified during the initialization
process using initdb -d).

All these can be edited with a text editor. They can
be edited via PgAmin III if you install the adminpack
extension in master postgres db.
To do so: CREATE EXTENSION ADMINPACK;

HOT
TIP

FILE PURPOSE

postgresql.conf Controls the listening port, IP, and default
query planner settings, memory settings,
path settings, and logging settings. Can be
queried via pg_settings database view.

pg_hba.conf Controls the authentication models used
by PostgreSQL and can be set per user, per
database, per IP range, or a combination of
all.

pg_indent.conf Controls mapping of an OS user to a
PostgreSQL user.

POSTGRESQL.CONF
The following settings are all located in the postgresql.conf
file. Remember that these are default settings; many of these
you can choose to override for each session, for each database,
or for each user/role.

OPTION DESCRIPTION

listen_
addresses

Use ‘*’ to listen on all IPs of the server,
‘localhost’ to listen on just local, or a comma
separated list of IPs to listen on. Requires
service restart if changed and can only be set
globally.

port Defaults to 5432, but can be changed to
allow multiple postgresql daemon clusters/
versions to coexist using same IP but
different ports.

search_path List of default schemas that don’t need
schema qualification. First schema is where
non-schema qualified objects are created.

constraint_
exclusion

Options: on, off, or partial. Partial was
introduced in 8.4 and is the new default.
Allows planner to skip over tables if
constraint ensures query conditions cannot
be satisfied by the table. Mostly used for table
partitioning via table inheritance.

shared_buffers Controls how much memory is allocated to
PostgreSQL and shared across all processes.
Requires service restart and can only be set
globally.

In PostgreSQL 9.4, a new SQL construction ALTER SYSTEM was
introduced that allows you to set these settings at the system
level without editing the postgresql.conf. For many, you still
need to do a service restart and for others at least a:

SELECT pg_reload_conf();

PG_HBA.CONF
PostgreSQL supports many authentication schemes to control
access to the database. The pg_hba.conf file dictates which
schemes are used based on the rules found in this file. You
can mix and match various authentication schemes at the

Real-Time
Big Data Using
PostgreSQL
Deliver real-time insights into your
big data to your end users while
reducing the cost and complexity
of your database infrastructure

www.citusdata.com

071

C
O

N
T

E
N

T
S

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 R
ef

ca
rd

z.
co

m
E

S
S

E
N

T
IA

L
 P

O
S

T
G

R
E

S
Q

L
BROUGHT TO YOU BY:

© DZONE, INC. | DZONE.COM

http://www.citusdata.com

same time. The rules are applied sequentially such that the
first match fitting a connection is the one that is used. This is
important to remember because if you have a more restrictive
rule above a less restrictive, then the more restrictive is the one
that trumps.

The most commonly used authentication schemes are trust
(which allows connections without a password) and md5
(which authenticates with md5 encrypted passwords). Others
include: reject, crypt, password (this is plain text), krb5, ident
(authenticate simply by identity of user in OS), pam, and ldap.

The example pg_hba.conf entries below allow all local
connections to connect to all databases without a password and
all remote connections to authenticate via md5.

#TYPE DATABASE USER CIDR-ADDRESS METHOD

HOST ALL ALL 127.0.0.1/32 TRUST

HOST ALL ALL 0.0.0.0/0 MD5

DATA TYPES

PostgreSQL has numerous built-in types. In addition, you can
define custom types. Furthermore, all tables are considered to
be types in their own right, and can therefore be used within
another table’s column. Below are the common built-in types:

DATE/TIME TYPES
TYPE DESCRIPTION

date The date is a datatype to represent dates
with no time. Default representation is ISO
8601 e.g. ‘YYYY-MM-DD’. Use datestyle
configuration setting to control defaults.

timestamp This includes both date and time and is
timezone-neutral.
Example: ‘2009-07-01 23:00’

timestamp with
time zone

Example: ‘2009-07-01 23:00:00-04’

time Time without date.
Example: ‘23:14:20’

time with time
zone

Example: ‘23:14:20-04’

interval A unit of time used to add and subtract from
a timestamp.
Example: SELECT TIMESTAMP 2009-07-01
23:14:20' + INTERVAL '4 months 2 days
10 hours 9 seconds'

daterange, tsrange,
tstzrange

New in PostgreSQL 9.2; defines a specific
time range. Example is a date > 2012-07-01
and <= 2013-08-31
SELECT '(2012-07-01,
2013-08-31]'::daterange;

Constituents of
datetime, use
date_part function
to extract

Century, day, decade, dow (starts Sunday),
doy, epoch, hour, isodow (day of week starts
on Monday), minute, month, quarter,
week, year.

NUMERIC TYPES
TYPE DESCRIPTION

int, int8 4 byte and 8 byte integers.

serial, serial4,
serial8

Sequential integers; this can be used during
table creation to specify auto-numbered
fields.

numeric(s, p) Decimal numbers; s is scale and p is
precision.

double precision Floating point numbers.

numrange,
int4range

Introduced in 9.2 for defining number
ranges.

An integer >= 1 and < 10.

SELECT ‘[1,10)’::int4range;

percentile_cont,
percentile_disc

Continuous and discrete percentile
aggregate. Can take a numeric value
(between 0 and 1) for percentile rank or can
take an array of numeric values between 0
and 1.

STRING TYPES
TYPE DESCRIPTION

varchar(n) (a.k.a.
character varying)

Max of n characters, no trailing spaces.

char(n) Padded to n characters.

text Unlimited text.

OTHER TYPES
TYPE DESCRIPTION

array Arrays in PostgreSQL are typed and you can create
an array of any type. To define a column as an array
of a specific type, follow with brackets. Example:
varchar(30)[]. You can also autogenerate arrays in
SQL statements with constructs such as:

SELECT ARRAY['john','jane'];
SELECT ARRAY(SELECT emp_name FROM employees);
SELECT array_agg(e.emp_name) FROM employees;

enum Enumerators:
CREATE TYPE cloth_colors AS ENUM
('red','blue','green');

When used in a table, you define the column as the
name of the enum. Sorting is always in the order the
items appear in the enum definition.

boolean True/false.

bytea Byte array used for storing binary objects, such as
files.

lo Large object. Stored in a separate system table with
object ID reference to the large object. Useful for
importing files from file system and storing and
exporting back to file system.

JSON JavaScript Object Notation (JSON) was introduced
in PostgreSQL 9.2 and includes built-in validation.
JSON stored as plain text. No direct index support.
PostgreSQL 9.3 enhanced JSON functionality by
providing more functions and operators that work
with JSON. PostgreSQL 9.4 enhanced further by
providing even more functions and operators.

2 ESSENTIAL POSTGRESQL

© DZONE, INC. | DZONE.COM

TYPE DESCRIPTION

jsonb Binary form of JSON—introduced in PostgreSQL
9.4. Can be indexed using GIN indexes and supports
intersects and containment operators in addition
to all the functions and operators JSON supports.
Performance is much faster than the JSON type. No
duplicate keys per object are allowed; sort of keys per
object are not maintained.

COMMON GLOBAL VARIABLES
TYPE DESCRIPTION

CURRENT_
TIMESTAMP, now()

Returns current date and time with timezone.

CURRENT_DATE Returns current date without the time.

CURRENT_TIME Returns current time without the date.

COM MONLY USED FUNCTIONS

DATE/TIME FUNCTIONS AND OPERATORS
TYPE DESCRIPTION

age(timestamp1,
timestamp2)

Returns an interval spanned
between timestamp1 and
timestamp2.

age(timestamp) Difference from current time.

date_part(text, timestamp),
date_part(text, interval)

date_part('day', timestamp
'2009-07-04 11:05:45') => 4
date_part('hour', interval '560
minutes') => 9

date_trunc(text, timestamp
| timestamptz | date)

date_trunc('hour', '2014-01-15
10:30 PM'::timestamp) => 2014-
01-15 22:00:00

operators +, -, / (for
intervals only)

You can add (or subtract) intervals
to datetimes. You can perform
addition and subtraction between
two datetimes. You can divide
intervals into smaller intervals.

generate_
series(timestamp,
timestamp, [interval]) [8.4]

Generate rows of timestamps.

STRING FUNCTIONS AND OPERATORS
TYPE DESCRIPTION

|| (string || string,
string || number)

String concatenation.

left, right, substring
Returns left x elements, right x elements, or
substring from position x for y number
of elements.

length Number of characters in string.

lpad, rpad
Left and right pad.

lpad('A', 5, 'X') => 'XXXXA'
rpad('A', 5, 'X') => 'AXXXX'

lower, upper, initcap Lower, upper, proper case.

md5 Calculates the MD5 hash.

TYPE DESCRIPTION

quote_ident

Quotes keywords and expressions not
suitable for identity when unquoted.

quote_ident('in') => "in"
quote_ident('big') => big

quote_literal Escapes both single and double quotes.

quote_nullable
Similar to quote_literal but doesn’t
quote NULL.

replace
replace('1234abcv', '1234', 'joe') =>
joeabcv

split_part

Takes a delimited string and returns the nth
item.

split_part('abc|def', '|', 2) =>def

string_agg
SQL aggregate function that aggregates a
set of values into a string.

strpos(text, subtext) Returns numeric position of subtext within text.

trim, btrim, ltrim,
rtrim

Trim spaces in string.

ARRAY FUNCTIONS AND OPERATORS
TYPE DESCRIPTION

||
Array concatenation.

ARRAY[1,2,3] || ARRAY[3,4,5] =>
{1,2,3,3,4,5}

unnest
Converts an array to rows.

SELECT anum FROM unnest(ARRAY[1,2,3])

array_agg
SQL aggregate function that aggregates a
set of values into an array.

array_upper(anyarray,
dimension)

array_lower(anyarray,
dimension)

Returns upper/lower bound of the
requested array dimension.

SELECT array_upper(ARRAY[ARRAY['a'],
ARRAY['b']], 1);
outputs: 2

array_to_
string(anyarray,
delimiter_text)

Converts an array to a text delimited by the
delimiter.

array_to_string(ARRAY[12,34], '|') =>
'12|34'

RANGE FUNCTIONS AND OPERATORS
TYPE DESCRIPTION

lower(anyrange),
upper(anyrange)

Lower bound and upper bound value of a range:

SELECT lower(a), upper(a)
FROM (SELECT '[1,10]'::int4range AS a) AS
f;
outputs:
lower | upper
------+------
 1 | 11

 @>

Contains range or element.

SELECT a @> 1 AS ce,
 a @> '[2,3]'::int4range AS cr
FROM (SELECT '[1,10]'::int4range AS a) AS
f;

 && Have elements in common.

3 ESSENTIAL POSTGRESQL

© DZONE, INC. | DZONE.COM

TYPE DESCRIPTION

 +

Union of 2 ranges.

SELECT '[2014-7-20,
2014-10-20]'::daterange + '[2014-6-20,
2014-7-22]'::daterange;

Output:

[2014-06-20,2014-10-21)

 *

Intersection.

SELECT '[2014-7-20,
2014-10-20]'::daterange * '[2014-6-20,
2014-7-22]'::daterange;

Output:

[2014-07-20,2014-07-23)

 -

Difference.

SELECT '[2014-7-20,
2014-10-20]'::daterange - '[2014-6-20,
2014-7-22]'::daterange;

Output:

[2014-07-20,2014-10-21)

JSON/JSONB FUNCTIONS AND OPERATORS
TYPE DESCRIPTION

 ->>

Extract an element of JSON/jsonb as text.

SELECT prod->>'price' As price
FROM (
SELECT '{"id": 1, "name": "milk",
 "price": 2.50}'::json as prod) As f;
outputs:2.50

 ->

Extract an element of JSON/jsonb as JSON/
jsonb
(useful for doing more operations on a
complex subelement).

 #>>

Extract a nested element of JSON/jsonb as
text.

SELECT prod#>>'{nutrition,vitamin
d}'::text[] AS vd
FROM (
SELECT '{"id": 1,"name": "milk",
 "price": 2.50, "nutrition": {"vitamin
d": "30%"}}'::json AS prod) AS f;

Outputs: 30%

 #>
Extract a nested element of JSON/jsonb as
JSON/jsonb. Useful for doing more operations
such as working with arrays within json.

WINDOW FUNCTIONS

TYPE DESCRIPTION

row_number
Number of current row from its current
partition.

rank, percent_
rank, dense_
rank

Ranking based on order in current partition
(dense_rank is without gaps; percent_rank is
relative rank).

lead, lag
Nth value relative to current, -nth value
relative to current (n defaults to 1) in current
partition.

first_value, last_
value, nth_value

Absolute first/last/nth value in a partition
based on order regardless of current position.

OTHER FUNCTIONS
TYPE DESCRIPTION

generate_series(int1, int2,
[step])

generate_
series(timestamp1,
timestamp2, [interval])

Returns rows consisting of numbers
from int1 to int2 with [step] as
gaps. Step is optional and defaults
to 1.

min, max, sum, avg, count Common aggregates.

percentile_dist, percentile_
cont [9.4]

Useful for computing medians.

DATA BA SE OB JECTS

Here is a listing of what you will find in a PostgreSQL server or
database. An * means the object lives at the server level, not the
database level.

OBJECT DESCRIPTION

Databases* PostgreSQL supports more than one database per
service/daemon.

Tablespaces* Logical representation of physical locations
where tables are stored. You can store different
tables in different tablespaces, and control data
storage based on database and user/group role.

Languages These are the procedural languages installed in
the database.

Casts PostgreSQL has the unique feature of having an
extensible cast system. It has built-in casts, but
allows you to define your own and override default
casts. Casts allow you to define explicit behavior
when casting from one object to another, and
allow you to define autocast behavior.

Schemas These are logical groupings of objects. One can
think of them as mini-databases within a larger
database. An object always resides in a schema.

Tables, Views Views are virtual tables that encapsulate an
SQL SELECT statement. In PostgreSQL, tables
can inherit from other tables and data can be
altered against views. PostgreSQL 9.1+ introduced
Foreign Tables, which are references to data
from a Foreign source via a foreign data wrapper
(FDW). PostgreSQL 9.3 introduced materialized
views, which are views that contain the cached
data. These need to be refreshed to update the
view cache.

Rules Rules are similar to triggers, except they can only
be written in SQL, and they rewrite a statement
rather than actually updating directly. Views are
actually implemented as SELECT rules (and can
have DO INSTEAD inserts/update rules to make
them updateable).

Functions,
Triggers, and
Aggregates

These can be written in any enabled language
in the database, live in schemas. PostgreSQL
allows you to define your own custom aggregate
functions. Triggers are special classes of
functions that have OLD and NEW variables
available that hold a pointer to the OLD and NEW
data. Triggers are bound to table. New in

4 ESSENTIAL POSTGRESQL

© DZONE, INC. | DZONE.COM

OBJECT DESCRIPTION

Functions,
Triggers, and
Aggregates (cont.)

PostgreSQL 9.3 are event triggers which are
bound to events such as creation of table or
deletion of table.

Operators,
Operator Classes,
Operator Families

Live in schemas. Many are predefined, but more
can be added and allow you to define things such
as +, =, etc. for custom data types.

Sequences Autocreated when defining columns as serial. In
PostgreSQL, sequences are objects in their own
right and can be shared across many tables.

Types Live in schemas. Don’t forget that you have the
flexibility to create your own custom data types in
PostgreSQL.

Foreign Data
Wrappers,
Servers and User
Mappings

Foreign Data Wrappers are remote data source
drivers that allow you to access data in a
non-PostgreSQL or remote PostgreSQL table.
PostgreSQL 9.1 introduced these. 9.2 improved on
general performance, and 9.3 introduced a new
FDW called postgresfdw for connecting to other
PostgreSQL servers, and also enhanced the API to
support Foreign table updates.

Extensions
[9.1+]

Packaging of functions, tables, and other objects
for easy deployment in a database. These are
installed using CREATE EXTENSION.
CREATE EXTENSION hstore;

TOOLS

PostgreSQL comes bundled with several tools useful for
administration and query writing.

TOOL DESCRIPTION

psql Command-line client packaged with PostgreSQL.
Good for automating SQL jobs, copying data,
outputing simple HTML reports.

createdb,
dropdb

For creating and dropping a database from the
OS shell.

pgAdminIII Popular graphical user interface packaged with
PostgreSQL.

pg_restore Command-line tool for restoring compressed or
.tar backups.

pg_dump Command-line tool for doing backups. Great for
automated backups.

pg_dumpall Command-line tool for dumping all databases
into a single backup.

pgAgent A daemon/service that can be downloaded from
http://www.pgadmin.org/download/pgagent.php.

Used for scheduling SQL jobs and batch shell
jobs. Jobs can be added easily and monitored
using the PgAdmin III job interface.

pg_basebackup Used for doing filesystem hot backup of db
data cluster.

pg_upgrade Used for updating in place from one major
version of PostgreSQL to another.

PSQL COM MON TA SKS

PSQL is a command-line tool that allows you to run ad-hoc
queries, scripts, and other useful database management routines.

PSQL runs in both a non-interactive mode (straight from the OS
shell prompt) and an interactive mode (PSQL terminal prompt).
In both modes, the following arguments apply:

ARGUMENT DESCRIPTION

-d
Database. Defaults to the user (via system
identification if no user is specified).

-h Server host. Defaults to localhost if not specified.

-p Port. Defaults to 5432 if not specified.

-U
Username you are trying to log in with. Defaults to
system user name.

PSQL NON-INTERACTIVE MODE
Getting help

$ psql –help

Execute an SQL script stored in a file

$ psql –h localhost -U postgres –p 5432 –f /path/to/
pgdumpall.sql

Output data in html format

$ psql -h someserver -p 5432 -U postgres -d dzone -H -c
"SELECT * FROM pg_tips" -o tips.html

Execute a single statement against a db

$ psql -U postgres –p 5432 -d dzone -c "CREATE TABLE
test(some_id serial PRIMARY KEY, some_text text);"

Execute an SQL batch script against a database and send output to file

$ psql -h localhost -U someuser -d dzone -f /path/to/
scriptfile.sql -o /path/to/outputfile.txt

PSQL INTERACTIVE MODE
To initiate interactive PSQL, type:

psql –U username –p 5432 –h localhost –d dzone

Once you are in the PSQL terminal there are a myriad of tasks
you can perform. Below are some of the common ones.

COMMAND TASK

\q Quit

:q Cancel out of more screen

\? Help on psql commands

\h some_command Help on SQL commands

\connect postgres Switch database

\l List all databases

\dtv p* List tables and views that start with p.

\du List user/group roles and their group
memberships and server level permissions.

\d sometable List columns, data types, and constraints
for a table.

\i somefile Execute SQL script stored in a file.

\o somefile Output contents to file.

Use up and down
arrows

Retrieve prior commands.

5 ESSENTIAL POSTGRESQL

© DZONE, INC. | DZONE.COM

http://www.pgadmin.org/download/pgagent.php

COMMAND TASK

\timing Toggle query timing on and off; when on,
query output includes timing information.

\copy Copy from client computer to server and
from server to client computer. Example:
The following command string copies data
to local client computer in CSV format with
header.
\copy (SELECT * FROM sometable) TO
'C:/sometable.csv' WITH HEADER CSV
FORCE QUOTE

\copy ... from
program

Allows you to copy output from an external
program such as ls, dir, wget, curl. New in
9.3.

A DM IN TA SKS

BACKUP AND RESTORE
Below are common backup and restore statements.

Create a compressed backup

pg_dump -h someserver -p 5432 -U someuser -F -c -b -v -f
"/somepath/somedb.backup" somedb

Create a compressed backup of select tables

pg_dump -h localhost -p 5432 -U someuser -F -c -b -f
"C:/somedb.backup" -t "someschema.table1" -t "someschema.
table2" -v somedb

Create a compressed backup excluding a particular schema

pg_dump -h localhost -p 5432 -U someuser -F -c -b -f
"C:/somedb.backup" -N someschema -v somedb

Restore a compressed backup

pg_restore –h localhost –d db_to_restore_to –U someuser
/path/to/somedb.backup

Restore select schemas from backup

pg_restore –h localhost –d db_to_restore_to –U someuser
-n someschema1 -n someschema2 /path/to/somedb.backup

Output a table of contents from backup file

pg_restore -l -f "C:/toc.txt" "C:/somedb.backup"

Restore only items in the table of contents

pg_restore -h localhost -d db_to_restore -U someuser -L
"C:/toc.txt" "C:/somedb.backup"

OTHER

Change globally work mem (9.4+)
Requires reload and some require restart.

ALTER SYSTEM SET work_mem TO '20MB';
SELECT pg_reload_conf();

pg_dumpall currently only dumps to plain text sql. pg_dumpall
backups must be restored with psql. For space savings and
flexibility, use pg_dump. With pg_dump compressed and
tar backups, you can selectively restore objects. You cannot
selectively restore with plain text backups.

HOT
TIP

Below are common switches used with pg_dump [D], pg_restore
[R], pg_dumpall [A]. These tools are packaged with PostgreSQL
and are in the bin folder. They are also packaged with pgAdmin
III and are in the PgAdmin III/version/ folder.

SWITCH TOOL DESCRIPTION

-b, --blobs D Include large objects in dump.

-d, --dbname=NAME R
Specify name of database to restore
to.

-F, --format=c|t|p|d D R

Specify backup file format (c =
compressed, t = tar, p = plain text,
d = directory). Plain-text backups
must be restored with psql.
Directory new in [9.2].

-c, --clean D R A
Clean (drop) schema prior to create
(for pg_dumpall drop database prior
to create).

-g, --globals-only A
Dump only global objects (roles,
schemas, tablespaces), no
databases.

-j, --jobs=NUM
[8.4],[9.2] D R

Use this multiple parallel jobs to
restore. This is especially useful
for large backups and speeds them
up significantly in many cases.
8.4 introduced parallel restore
(pg_restore). 9.2 introduced (in
pg_dump) parallel backup (needs to
have format directory based).

-l, --list R
Print summarized TOC of the
archive.

-L, --use-
list=filename

R
Use TOC from this file for selcting/
ordering output.

-n, --schema=NAME D R
Dump/restore only select objects in
schema(s).

-N, --exclude-
schema=SCHEMA

D R
Exclude from dump/restore named
schema.

-r, --roles-only A
Dump only roles, no database or
tablespace.

-t, --table=NAME D
Backup only named table(s) along
with associated indexes, constraints,
and rules.

-T, --exclude-
table=NAME

D
Exclude named table(s) from
backup.

-v --verbose D R A Controls verbosity.

--exclude-table-
data=TABLE [9.2]

D
Exclude dumping table data for
specific table.

-s –section=pre-
data|post-
data|data [9.2]

D R

Dump or restore select parts.
Pre-data just backs up or restores
structures; post-data restores
primary keys, foreign keys, and
constraints. Data just restores data.

--if-exists [9.4] D Use IF EXISTS when dropping.

USER RIGHTS MANAGEMENT

These are SQL commands you can use to control rights. They can
be run in the PSQL interactive, loading an SQL file, or via
PgAdmin.

Create a new role with
login rights that can create
objects

CREATE ROLE somerole LOGIN
NOSUPERUSER INHERIT CREATEDB
NOCREATEROLE;

6 ESSENTIAL POSTGRESQL

© DZONE, INC. | DZONE.COM

Create a group role with no
login rights and members
inherit rights of role

CREATE ROLE somerole NOSUPERUSER
INHERIT NOCREATEDB NOCREATEROLE;

Add a role to another role GRANT somerole TO someotherrole;

Give rights to a role Example uses:

GRANT SELECT, UPDATE ON TABLE
sometable TO somerole;
GRANT ALL ON TABLE sometable TO
somerole;
GRANT EXECUTE ON FUNCTION
 somefunction TO somerole;
-- Grant execute to all users
GRANT EXECUTE ON FUNCTION
 somefunction TO public;

Revoke rights REVOKE ALL ON TABLE sometable FROM
somerole;

Give insert/update rights
to select columns

GRANT INSERT, UPDATE (somecolumn)
ON sometable TO somerole;

Grant rights to all future
tables in a schema

ALTER DEFAULT PRIVILEGES IN SCHEMA
someschema
GRANT ALL ON TABLES TO somerole;

Grant rights to all existing
tables in a schema

GRANT ALL ON ALL TABLES IN SCHEMA
someschema TO somerole;

DATA DEFINITION (DDL)

Many of the examples we have below use named schemas. If you
leave out the schema, objects created will be in the first schema
defined in the search_path and dropped by searching the search
path sequentially for the named object.

Create a new
database

CREATE DATABASE postgresql_dzone;

Install extension in
a database

CREATE EXTENSION hstore;

Create a schema CREATE SCHEMA someschema;

Changing database
schema search path

Sets the default schema to someschema.

ALTER DATABASE postgresql_dzone SET
search_path = someschema, public;

Dropping
objects with no
dependencies

A drop without a CASCADE clause will not drop an
object if there are objects that depend on it, such as
views, functions, and tables.

For drop database you should be connected to a
database other than the one you’re dropping.

DROP DATABASE postgresql_dzone;
DROP VIEW someview;
ALTER TABLE sometable DROP COLUMN
somecolumn;
DROP FUNCTION somefunction;

Dropping object and
all dependencies.
(Use with caution.)

DROP SCHEMA someschema CASCADE;

Create a table CREATE TABLE test_scores(student
varchar(100),
 score integer, test_date date DEFAULT
CURRENT_DATE,
 CONSTRAINT pk_test_scores PRIMARY KEY
(student, test_date));

Create a child table CREATE TABLE somechildtable (CONSTRAINT
pk_somepk PRIMARY KEY (id)) INHERITS
(someparenttable);

Create a check
constraint

ALTER TABLE sometable ADD CONSTRAINT
somecheckcontraint CHECK (id > 0);

Create or alter a
view

CREATE OR REPLACE VIEW someview AS SELECT
* FROM sometable;

[Prior to version 8.4, adding new columns to a view
requires dropping and recreating].

Create a
materialized view

CREATE MATERIALIZED VIEW someview AS
SELECT * FROM sometable;

Refresh
materialized view

REFRESH MATERIALIZED VIEW someview;

Refresh
materialized view
without read
blocking [9.4]

REFRESH MATERIALIZED VIEW CONCURRENTLY
someview;

Create a view
(doesn’t allow
insert if data would
not be visible in
view) [9.4]

CREATE OR REPLACE VIEW someview AS
SELECT * FROM sometable
WHERE active = true WITH CHECK OPTION;

Add a column to a
table

ALTER TABLE sometable ADD COLUMN
somecolumn timestamp NOT NULL DEFAULT
CURRENT_TIMESTAMP;

Add a functional
index to a table

CREATE INDEX idx_someindex ON sometable
USING btree (upper(somecolumn));

Create a new type CREATE TYPE sometype AS (somecolumn
integer, someothercolumn integer[]);

Create a trigger CREATE OR REPLACE FUNCTION sometrigger()
RETURNS trigger AS
$$
BEGIN
IF OLD.somecolumn <> NEW.somecolumn OR
 (OLD.somecolumn IS NULL AND
 NEW.somecolumn IS NOT NULL) THEN
 NEW.sometimestamp := CURRENT_
TIMESTAMP;
END IF;
RETURN NEW;
END;
$$
LANGUAGE 'plpgsql' VOLATILE;

Add trigger to table CREATE TRIGGER sometrigger BEFORE UPDATE
ON sometable FOR EACH ROW

EXECUTE PROCEDURE sometriggerupdate();

Suppress redundant
updates

A built-in trigger that prevents updates that would
not change any data.

CREATE TRIGGER trig_01_suppress_redundant
BEFORE UPDATE ON sometable FOR EACH ROW

EXECUTE PROCEDURE suppress_redundant_
updates_trigger();

A table can have multiple triggers, and each trigger for a
particular event on a table is run in alphabetical order of the
named trigger. So if order is important, name your triggers such
that they are sorted in the order you need them to run.

HOT
TIP

 QUERY A ND UPDATE (DM L)

These are examples that show case some of PostgreSQL popular
or unique query features.

ADDING AND UPDATING DATA
Insert statement with
multirows

INSERT INTO test_
scores(student,score,test_date)
VALUES ('robe', 95, '2014-01-15'),
 ('lhsu', 99, '2014-01-15'),
 ('robe', 98, '2014-07-15'),
 ('lhsu', 92, '2014-07-15'),
 ('lhsu', 97,'2014-08-15');

7 ESSENTIAL POSTGRESQL

© DZONE, INC. | DZONE.COM

Insert statement
from SELECT, only
load items not
already in table

INSERT INTO tableA(id,price)
SELECT invnew.id,invnew.price
FROM tableB AS invnew LEFT JOIN tableA
AS invold ON (invnew.id = invold.id)
WHERE invold.price IS NULL;

Cross update, only
update items for
a particular store
where price has
changed

UPDATE tableA
 SET price = invnew.price
FROM tableB AS invnew
WHERE invnew.id = tableA.id
AND NOT (invnew.price = tableA.price);

Insert from a tab-
delimited file no
header

COPY products FROM "/tmp/productslist.
txt" WITH DELIMITER '\t' NULL AS 'NULL';

Insert from a
comma-delimited
file with header
row

 --these copy from the server’s file system
COPY products FROM "/tmp/productslist.
csv" WITH CSV HEADER NULL AS 'NULL';

Copy data to
comma-delimited
file and include
header

--this outputs to the server’s file system

COPY (SELECT * FROM products WHERE
product_rating = 'A') TO '/tmp/
productsalist.csv' WITH CSV HEADER NULL
AS 'NULL';

RETRIEVING DATA
View running
queries

SELECT * FROM pg_stat_activity;

Select the first
record of each
distinct set of data

--this example selects the store and product
--where the given store has the lowest price
--for the product. This uses PostgreSQL
--DISTINCT ON and an order by to resort
--results by product_name.

SELECT r.product_id, r.product_name,
r.product_price
FROM (SELECT DISTINCT ON(p.product_id)
p.product_id, p.product_name, s.store_
name, i.product_price
FROM products AS p INNER JOIN inventory
AS i
 ON p.product_id = i.product_id
 INNER JOIN store AS s ON i.store_id
= s.store_id
ORDER BY p.product_id, i.product_price)
AS r;

Get last date’s
score for each
student. Returns
only one record
per student

SELECT DISTINCT ON(student) student,
score, test_date
FROM test_scores
ORDER BY student, test_date DESC;

Use window
function to
number records
and get running
average

SELECT row_number() OVER(wt) AS rn,
student, test_date,
 (AVG(score) OVER(wt))::numeric(8,2) AS
avg_run
FROM test_scores
WINDOW wt AS (PARTITION BY student
ORDER BY test_date);
rn | student | test_date | avg_run
----+---------+------------+---------
 1 | lhsu | 2014-01-15 | 99.00
 2 | lhsu | 2014-07-15 | 95.50
 3 | lhsu | 2014-08-15 | 96.00
 1 | robe | 2014-01-15 | 95.00
 2 | robe | 2014-07-15 | 96.50

Get median values
[9.4]

SELECT student, percentile_cont(0.5)
WITHIN GROUP (ORDER BY score) AS m_
continuous,
 percentile_disc(0.5)
WITHIN GROUP (ORDER BY score) AS m_
discrete
FROM test_scores GROUP BY student;
student | m_continuous | m_discrete
--------+--------------+------------
 lhsu | 97 | 97
 robe | 96.5 | 95

Filtered
aggregates [9.4]
use instead of
CASE WHEN
(or subselect)
(especially useful
for aggregates like
array_agg which
may return nulls
with CASE WHEN)

SELECT date_trunc('quarter',test_
date)::date AS qtr_start,
 array_agg(score) FILTER (WHERE student
= 'lhsu') AS lhsu,
 array_agg(score) FILTER (WHERE student
= 'robe') AS robe
FROM test_scores
GROUP BY date_trunc('quarter',test_date);
qtr_start | lhsu | robe
------------+---------+------
 2014-01-01 | {99} | {95}
 2014-07-01 | {92,97} | {98}

Ordered
aggregates, list
scores in order of
test date, one row
for each student.
Cast to make a
string.

SELECT student,
 string_agg(score::text, ',' ORDER BY
test_date DESC) AS scores
FROM test_scores
GROUP BY student;
student | scores
---------+----------
 lhsu | 97,92,99
 robe | 98,95

Non-Recursive
CTE with 2 CTE
expressions. Note
a CTE expression
has only one
WITH, each
subexpression is
separated by a ,
and the final query
follows.
Example returns the
lowest priced car
in each fuel_grade,
limiting to just
Japan, USA, German

 WITH c AS
(SELECT country_code, conv_us
FROM country
WHERE country IN('Japan', 'USA','Germany')
),
prices AS
(SELECT p.car, p.fuel_grade, price*c.
conv_us AS us_price
FROM cars AS p
 INNER JOIN c
 ON p.country_code = c.country_
code
WHERE p.category = 'Cars'
)
SELECT DISTINCT ON(fuel_grade)
 prices.car, us_price
FROM prices
ORDER BY fuel_grade, us_price;

Recursive CTE *
inventory, gives
full name which
includes parent
tree name e.g.
Paper->Color-
>Red->20 lbs

WITH RECURSIVE tree AS
(SELECT id, item, parentid,
 CAST(item AS text) AS fullname
FROM products
WHERE parentid IS NULL
UNION ALL
SELECT p.id,p.item, p.parentid,
 CAST(t.fullname || '->'
 || p.item AS text) AS fullname
FROM products AS p
 INNER JOIN tree AS t
 ON (p.parentid = t.id)
)
SELECT id, fullname
FROM tree
ORDER BY fullname;

PROCEDUR A L L A NGUAGES

PostgreSQL stands out from other databases with its extensive
and extendable support for different languages to write
database-stored functions. It allows you to call out to libraries
native to that language. We will list the key language as well as
some esoteric ones. The languages with an * are preinstalled
with PostgreSQL and can be enabled. Some require further
installs in addition to the language handler.

You can create set returning functions, simple scalar functions,
triggers, and aggregate functions with most of these languages.
This allows for languages that are highly optimized for a
particular task to work directly with data without having to
always copy it out to process as you normally would need with a
simple database storage device. Language handlers can be of two
flavors: trusted and untrusted. An untrusted language can access
the filesystem directly.

8 ESSENTIAL POSTGRESQL

© DZONE, INC. | DZONE.COM

From PostgreSQL 9.1+, languages not enabled by default in
database or not built-in are installed using :

CREATE EXTENSION …;
CREATE EXTENSION 'plpythonu';
CREATE OR REPLACE somename(arg1 arg1type)
 RETURNS result_argtype AS
$$
 body goes here
$$
LANGUAGE 'somelang';

LANGUAGE DESCRIPTION REQ

sql*

(trusted)

Enabled in all databases. Allows you to
write simple functions and set returning
functions in just SQL. The function
internals are visible to the planner, so in
many cases it performs better than other
functions since the planner can strategize
how to navigate based on the bigger
query. It is simple and fast, but limited in
functionality.

CREATE OR REPLACE FUNCTION prod_
state(prev numeric, e1 numeric, e2
numeric).
 RETURNS numeric AS
$$
 SELECT COALESCE($1,0) +
COALESCE($2*$3,0);
$$
LANGUAGE 'sql' IMMUTABLE;

none

c*

Built in and always enabled. Often used to
extend PostgreSQL (e.g. postgis, pgsphere,
tablefunc) or, for example, to introduce
new windowing functions (introduced in
PostgreSQL 8.4). Functions are referenced
from a .so or .dll file.

CREATE OR REPLACE FUNCTION
st_summary(geometry)
 RETURNS text AS
'$libdir/postgis-2.1', 'LWGEOM_summary'
 LANGUAGE 'c' IMMUTABLE STRICT;

none

plpgsql*
(trusted)

Not always enabled, but packaged so it can
be installed.

CREATE FUNCTION cp_upd(p_key integer,
p_value varchar)
RETURNS void AS
$$
BEGIN
IF EXISTS(SELECT test_id FROM
testtable WHERE test_id = p_key) THEN
 UPDATE testtable
 SET test_stuff = p_value
 WHERE test_id = p_key;
ELSE
 INSERT INTO testtable (test_id,
 test_stuff)
 VALUES(p_key, p_value);
END IF;
 RETURN;
END;
$$
LANGUAGE 'plpgsql' VOLATILE;

none

plv8 (trusted)

Good for manipulating JSON objects,
reusing existing Javascript libraries,
numeric processing. Comes packaged
with 3 language bindings: Plv8 (aka PL/
Javascript), plls (LiveScript), plcoffee
(CoffeeScript).

To install:

CREATE EXTENSION plv8;
CREATE EXTENSION plls;
CREATE EXTENSION plcoffee;

Google
v8

engine

EXAMPLE FUNCTIONS

This next table demonstrates some examples of writing
functions in various languages. For all functions you write, you
can use the CREATE or REPLACE FUNCTION construction to overwrite
existing functions that take same arguments. We use CREATE
FUNCTION here.

LANGUAGE EX AMPLE

plperl (trusted),
plperlu (untrusted)

CREATE FUNCTION use_quote(TEXT)
RETURNS text AS $$
 my $text_to_quote = shift;
 my $qfunc = $_SHARED{myquote};
 return &$qfunc($text_to_quote);
$$ LANGUAGE plperl;

plpythonu,
plpython2u,
plpython3u (untrusted)

CREATE FUNCTION fnfileexists(IN fname
text) RETURNS boolean AS
$$
 import os
 return os.path.exists(fname)
$$
LANGUAGE 'plpythonu' STRICT;

plr

Good for doing advanced stats and plotting
using the R statistical language.

CREATE FUNCTION r_quantile(float8[])
RETURNS float8[] AS
$$
quantile(arg1, probs = seq(0, 1, 0.25),
names = FALSE)
$$ LANGUAGE 'plr' IMMUTABLE STRICT;

plv8

Allows you to write functions in JavaScript.

CREATE FUNCTION
 fib(n int) RETURNS int AS $$
 function fib(n) {
 return n<2 ? n : fib(n-1) +
fib(n-2)
 }
 return fib(n)
$$ LANGUAGE plv8 IMMUTABLE STRICT;

COMMON PROCEDURAL TASKS

Create a table trigger and use in table

CREATE OR REPLACE FUNCTION mytable_ft_trigger()
 RETURNS trigger AS $$
BEGIN
 NEW.tsv :=
 setweight(to_tsvector('pg_catalog.english',
 coalesce(new.field1,'')), 'A') ||
 setweight(to_tsvector('pg_catalog.english',
 coalesce(NEW.field2,'')), 'B');
 return NEW;
END
$$ LANGUAGE plpgsql;
CREATE TRIGGER mytable_trigiu
 BEFORE INSERT OR UPDATE OF field1,field2
ON mytable
 FOR EACH ROW EXECUTE PROCEDURE mytable_ft_trigger()

Return sets and use out of params

CREATE OR REPLACE FUNCTION
 fn_sqltestmulti(param_subject varchar,
 OUT test_id integer,
 OUT test_stuff text)
 RETURNS SETOF record
 AS
$$
 SELECT test_id, test_stuff
 FROM testtable
 WHERE test_stuff LIKE $1;
$$
 LANGUAGE 'sql' STABLE;
--example
SELECT * FROM fn_sqltestmulti('%stuff%');

9 ESSENTIAL POSTGRESQL

© DZONE, INC. | DZONE.COM

The wife and husband team of Leo Hsu and Regina Obe founded
Paragon Corporation in 1997, which specializes in database
technology and works with numerous organizations to design,
develop, and maintain database and web applications. They have
become active participants in the on-going development of PostGIS,
a spatial extension of PostgreSQL. Regina is a member of the PostGIS
core development team and Project Steering Committee. They
maintain two sites: http://www.postgresonline.com -- provides tips

and tricks for using PostgreSQL and http://www.bostongis.com - provides tips and
tricks for using PostGIS and other open source and open GIS tools.

© DZONE, INC. | DZONE.COM

Return sets and use of table construct

CREATE OR REPLACE FUNCTION
 fn_sqltestmulti(param_subject varchar)
 RETURNS TABLE(test_id integer, test_stuff text)
 AS
$$
 SELECT test_id, test_stuff
 FROM testtable
 WHERE test_stuff LIKE $1;
$$
 LANGUAGE 'sql' STABLE;

EXTENSIONS

Extensions extend the capabilities of PostgreSQL by providing
additional data types, functions, index types, and more. After
installing an extension, you need to run the following command
to enable it:

CREATE EXTENSION extension_name;

NOTABLE EXTENSIONS
EXTENSION DESCRIPTION LINK

PostGIS
Adds support for geographic
objects allowing location
queries to be run using SQL.

http://postgis.net/

pg_shard
Shards and replicates tables
for horizontal scaling and
high availability.

https://github.com/
citusdata/pg_shard

EXTENSION DESCRIPTION LINK

pg_stat_
statements

Tracks execution statistics
of all SQL statements.

http://www.
postgresql.org/
docs/current/static/
pgstatstatements.
html

cstore_fdw
Columnar store for
PostgreSQL.

https://github.com/
citusdata/cstore_fdw

postgresql-
hll

Distinct value counting with
tunable precision.

https://github.com/
aggregateknowledge/
postgresql-hll

pgcrypto Cryptographic functions.

http://www.
postgresql.org/
docs/current/static/
pgcrypto.html

dblink
Connections to other
PostgreSQL databases from
a database session.

http://www.
postgresql.org/
docs/current/static/
dblink.html

For a full list of extensions shipped with PostgreSQL
see: http://www.postgresql.org/docs/current/static/
contrib.html
To search for third party extensions see: http://pgxn.org/

HOT
TIP

© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM

ABOUT THE AUTHORS RECOMMENDED BOOK
“Thinking of migrating to PostgreSQL? This clear, fast-paced
introduction helps you understand and use this open source
database system. Not only will you learn about the enterprise
class features in versions 9.2, 9.3, and 9.4, you’ll also discover
that PostgeSQL is more than a database system—it’s also an
impressive application platform.”

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

CREDITS:
Editor: G. Ryan Spain | Designer: Yassee Mohebbi | Production: Chris Smith | Sponsor Relations: Brandon Rosser | Marketing: Chelsea Bosworth

10 ESSENTIAL POSTGRESQL

BUY NOW

http://www.postgresonline.com
http://www.bostongis.com
http://www.dzone.com?refcardz
http://postgis.net/
https://github.com/citusdata/pg_shard
https://github.com/citusdata/pg_shard
http://www.postgresql.org/docs/current/static/pgstatstatements.html
http://www.postgresql.org/docs/current/static/pgstatstatements.html
http://www.postgresql.org/docs/current/static/pgstatstatements.html
http://www.postgresql.org/docs/current/static/pgstatstatements.html
http://www.postgresql.org/docs/current/static/pgstatstatements.html
https://github.com/citusdata/cstore_fdw
https://github.com/citusdata/cstore_fdw
https://github.com/aggregateknowledge/postgresql-hll
https://github.com/aggregateknowledge/postgresql-hll
https://github.com/aggregateknowledge/postgresql-hll
http://www.postgresql.org/docs/current/static/pgcrypto.html
http://www.postgresql.org/docs/current/static/pgcrypto.html
http://www.postgresql.org/docs/current/static/pgcrypto.html
http://www.postgresql.org/docs/current/static/pgcrypto.html
http://www.postgresql.org/docs/current/static/dblink.html
http://www.postgresql.org/docs/current/static/dblink.html
http://www.postgresql.org/docs/current/static/dblink.html
http://www.postgresql.org/docs/current/static/dblink.html
http://www.postgresql.org/docs/current/static/contrib.html
http://www.postgresql.org/docs/current/static/contrib.html
http://pgxn.org/
http://www.dzone.com?refcardz
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.dzone.com/links/index.html
http://shop.oreilly.com/product/0636920032144.do

