DIGITAL CIRCUITS
Parameters of the integrated logic circuits

• Static transfer characteristic
• Noise margins
• Fan-out & fan-in
• Propagation time
• Power Dissipation
Static Transfer Characteristic

- Output voltage variation function of input dc voltage
- Can’t be defined an unique voltage value for logic ‘1’ or ‘0’
- Transfer characteristic isn’t unique
- Characteristic bounded by two limit curves
- To each input or output variable, two voltage intervals (domains) will be associated: allowed, and respectively guaranteed
Static Transfer Characteristic for an Inverter

- Four voltage ranges
- Two for inputs
- Two for outputs
- Defined by eight voltage values
Input/Output voltage values

- $V_{IL\text{min}}$ – minimum voltage level for logic ‘0’ at input
- $V_{IL\text{max}}$ - maximum voltage level for logic ‘0’ at input
- $V_{IH\text{min}}$ - minimum voltage level for logic ‘1’ at input
- $V_{IH\text{max}}$ - maximum voltage level for logic ‘1’ at input
- $V_{OL\text{min}}$ - minimum voltage level for logic ‘0’ at output
- $V_{OL\text{max}}$ - maximum voltage level for logic ‘0’ at output
- $V_{OH\text{min}}$ - minimum voltage level for logic ‘1’ at output
- $V_{OH\text{max}}$ - maximum voltage level for logic ‘1’ at output

Index meaning:
I – input
O – output
L – low logic ‘0’
H - high logic ‘1’
Defining the working regions

- A logic circuit will work properly if the input voltage levels will have admitted values (work in allowed regions)
- Obtained output voltage levels will be into guaranteed regions
- Considering that output voltage will become input voltage for driven circuit(s), have five working regions:
 - Normal working region for logic ‘0’ and logic ‘1’
 - Working region in presence of noise signals for logic ‘0’ and respectively ‘1’
 - Transitory region
Normal working region (no noise signals)

- For low input voltage level (L), between values $V_{IL2} - V_{IL1}$
- For high input voltage level (H) between values $V_{IH2} - V_{IH1}$
Working region when noise signals apply

- For low input voltage level (L), between values $V_{IL_{\text{max}}} - V_{IL_{\text{min}}}$
- For high input voltage level (H) between values $V_{IH_{\text{max}}} - V_{IH_{\text{min}}}$
Transitory region

- For input voltage levels between $V_{IHmin} - V_{ILmax}$
- Those input voltages driving circuit from one stable state to the other
Noise margins

- Noise (immunity) margins: stability at static perturbations
- The noise margin is the peak amount of spurious or "noise" voltage that may be superimposed on a weak gate output voltage signal before the receiving gate might interpret it wrongly
- Guaranteed noise margin for a logic state is given by difference between guaranteed output voltage level of the driving circuit and the worst case for the input voltage level accepted for that state by the driven circuit
Guaranteed noise margins (manufacturer’s specifications)

- For logic ‘0’ state:
 \[M_L = V_{IL\text{max}} - V_{OL\text{max}} \]
- For logic ‘1’ state:
 \[M_H = V_{OH\text{min}} - V_{IH\text{min}} \]
Example for TTL family
Fan-out and Fan-in

• The input of a circuit is a load for its driver circuit.

• For a logic circuit generates guaranteed output voltage levels is a must to be driven at inputs with corresponding current levels.

• For circuit interconnection, important to design the output current of the driving circuit, and to consider the sum of input currents of the driven circuits.
Fan-in factor for logic circuits

- Fan-in (FI) and Fan-out (FO) factors are defined based on some current values, those corresponding to allowed input voltages and respectively to guaranteed output voltages, in the worst case: $I_{ILmax}, I_{IHmin}, I_{OLmax}$ și I_{OHmin}

- For any integrated circuits family, a basic (fundamental) gate is defined, and the fan-in/fan-out values for the rest of circuits are defined as multiples of the values for that basic gate.

- For an input, the FI value means the number N ($N>1$) of standard inputs (i.e. of basic gate) equivalent to that input: $FI=N$
Fan-out factor for logic circuits

\[FO_L = \left\lfloor \frac{|I_{OL}|}{|I_{IL}|} \right\rfloor, FO_H = \left\lfloor \frac{|I_{OH}|}{|I_{IH}|} \right\rfloor, FO = \min(FO_L, FO_H) \]

- When interconnecting logic circuits (from a family), the following relations must be satisfied (associate with the worst case):

\[I_{OL} \geq \sum_{n}^{} I_{IL}, \quad I_{OH} \geq \sum_{n}^{} I_{IH} \]
Propagation Time

- Propagation times (delay) \((t_{pHL}, t_{pLH}) \) are defined for halves the input/output signal amplitudes.
- Average propagation time: \(t_{pd} = (t_{pHL} + t_{pLH})/2 \)
- Important parameter for any circuit, giving sign of performance.

- Raising-up and fall-down times \((t_r, t_f) \) are defined using ratios of signal amplitude (0.1 and 0.9)

\[
\begin{align*}
V_{IN} & \quad t_f \quad 50\% \quad t_r \\
V_{OUT} & \quad 10\% \quad 50\% \quad 90\% \quad t_f \\
\end{align*}
\]
Power Dissipation

• Parameter depending on:
 – Power supply voltage (V_{CC});
 – Absorbed currents from V_{CC} when output is logic ‘1’ (I_{CCH}), or ‘0’ logic (I_{CCL});
 – Output current on shortcircuit (I_{OS});
 – Average power consumption (P_m);
Average power dissipation on cc

\[P_{\text{cc}} = \frac{P_H + P_L}{2} = \frac{I_{\text{CCH}} + I_{\text{CCL}}}{2} \cdot V_{\text{cc}} \]
Power dissipation on ac

- Important power component, due to charging/discharging of stray output capacitances C_p
- Power consumption during the switching regime:

\[P_C = f \cdot C_P \cdot V_{CC}^2 \]

f – switching frequency
Total power dissipation

\[P_m = P_{CC} + P_c = \frac{I_{cch} + I_{ccl}}{2} V_{cc} + f C_p V_{cc}^2 \]
TTL Logic Integrated Circuits

• General considerations
• TTL standard series
 – TTL basic (fundamental) gate
 – Circuit description
 – Gate operation
 – Parameters of TTL basic gate
General Considerations

- TTL (Transistor-Transistor-Logic)
- Family with a lot of circuit series, developed based on a trade-off between propagation speed and power dissipation
- Standard, high-speed (H), Low power (L), Schottky (S)
TTL Basic Gate

Input stage
- Multi-emitter transistor T_1
- Clipping diodes D_1, D_2

Driver transistor
- Transistor T_2

Output stage
- Transistors T_4 și T_3
- diode D
Gate operation for one input '0'

- T₁ saturated, voltage from T₁ collector lowers, transistor T₂ off
- Low voltage level from T₂ emitter drives T₃ off
- High potential of T₂ collector opens transistor T₄
- U_{R2} low, $U_{BE(T4)} + U_D \approx 1.5V$, $U_e > 3.4V$ corresponding to logic level "1"
Gate operation when both inputs at logic ‘1’

- T_1 base-emitter junctions reverse biased (reverse active region)
- T_1 base-collector junction and base-emitter junctions of T_2 & T_3 make a chain of open diodes (forward biased by R_1 from power supply), T_2 & T_3 saturated
- T_4 off due to base potential, lower than emitter’s, due to presence of diode D
- $U_e = U_{CES(T3)}$ corresponding to logic "0"
\[U_e = \overline{A \times B} \]

- Transistors T\textsubscript{4} & T\textsubscript{3} switch in counter-time, making R\textsubscript{4} being low (130Ω), building a low output impedance and a small time constant for charge/discharge of output stray capacitances.
Logic Levels

- $V_{IL\text{max}} = 0.8 \, \text{V}$
- $V_{IH\text{min}} = 2 \, \text{V}$
- $V_{OL\text{max}} = 0.4 \, \text{V}$
- $V_{OH\text{min}} = 2.4 \, \text{V}$
- $V_T = 1.3 \, \text{V}$, threshold voltage, same value for input and output voltages
Noise Margins

• Guaranteed values
 \[M_L = V_{IL_{\text{max}}} - V_{OL_{\text{max}}} = 0.8V - 0.4V = 0.4V \]
 \[M_H = V_{OH_{\text{min}}} - V_{IH_{\text{min}}} = 2.4V - 2V = 0.4V \]

• Real values
 \[M_L = V_T - V_{OL} = 1.3V - 0.2V = 1.1V \]
 \[M_H = V_{OH} - V_T = 3.5V - 1.3V = 2.2V \]

• It implies that preferred output idle state being '1' logic, and switching command being 'zero active', i.e. a signal going from high to low
Input & output currents

• By convention: positive value if gate sinks current and negative value if gate generates currents

• $I_{IH} = 40 \, \mu A$
• $I_{IL} = -1.6 \, mA$
• $I_{OH} = -800 \, \mu A$
• $I_{OL} = 16 \, mA$
Fan-in/ fan-out

\[FI_L = 1, I_{IL} = -1,6 mA \]
\[FI_H = 1, I_{IH} = 40 \mu A \]

\[FO_L = \left| \frac{I_{OL}}{I_{IL}} \right| = \left| \frac{16 mA}{1.6 mA} \right| = 10, \]
\[FO_H = \left| \frac{800 \mu A}{40 \mu A} \right| = 20, \]
\[FO = \min(FO_L, FO_H) = 10 \]
Static transfer characteristic

0V < \(U_i\) < 0.65V, \(T_1\) on, \(T_2\) off, \(U_e = V_{CC} - R_2 \cdot I_{R2} - U_{BE(T4)} - V_D\), \(U_{BE(T4)} = V_D = 0.75V\), \(I_{R2} \approx I_{B(T4)} = I_{OH}/(\beta_N + 1)\), \(U_e = 3.4V\), on AB segment.

0.65V < \(U_i\) < 1.3V, \(T_2\) starts conducting, going into forward active region. Current gain for transistor \(T_2\) over segment BC is:
\[
\alpha \approx -\frac{R_2}{R_3}.
\]

1.3V < \(U_i\) < 1.5V, \(T_3\) starts conducting, \(U_e\) lowers quickly (segment CD). \(T_2, T_4\) and \(T_3\) conducting into forward active region. Current sink from the power supply increases.

1.5V < \(U_i\) < 2.25V, \(T_4\) off, \(T_3\) saturated, \(U_e = U_{CEs(T3)} \approx 0.2V\), region DE.
Input Characteristics

- $V_i < 0.8V$

\[I_i = \frac{V_{CC} - V_{BE(T1)} - V_i}{R_1} \]

- V_i grows over $0.8V$, I_i lowers in absolute value
- $V_i > 1.3V$, I_i tends abruptly toward 0
- $V_i = 1.7V$, $I_i = 0$
- $V_i > 2 \div 2.25V$, $I_i \approx 28\mu A$
Output Characteristics

- $V_{OL} = f(I_{OL})$
- I_{OL} depends on T_3 base current, which depends on T_2 emitter current, as:

\[
I_{C(T2)} = \frac{V_{CC} - V_{BE(T3)} - V_{CEs(T2)}}{R_2}
\]

\[
I_{B(T2)} = \frac{V_{CC} - V_{BC(T1)} - V_{BE(T2)} - V_{BE(T3)}}{R_1}
\]

\[
I_{E(T2)} = I_{B(T2)} + I_{C(T2)} = 3.2mA
\]

\[
I_{B(T3)} = I_{E(T2)} - I_3 = I_{E(T2)} - \frac{V_{BE(T3)}}{R_3}
\]

T_3 saturated, $\beta_N = 20$, output current:

\[
I_{OL} = \beta_N \cdot I_{B(T3)} = 49mA
\]
Output Characteristics

- \(V_{OH} = f(I_{OH}) \)
- Figure below presents in positive domain \(V_{OH}=f(I_S) \) characteristics, where load current \(I_S \) is considered \(I_S = -I_{OH} \)
- \(T_4 \) on, tending toward saturation
- \(T_4 \) when in forward active region, segment 1, \(V_{OH} \) and \(I_S \) are in relation:

\[
V_O = V_{CC} - R_2 \frac{I_S}{\beta_N + 1} V_{BE(T4)} - V_D
\]

\(V_{OH} = 3.7 - 32 \cdot I_S \)
- \(T_4 \) saturated, curve 2, relation becomes:

\[
I_S = I_{E(T4)} = I_{B(T4)} + I_{C(T4)} = \frac{V_{CC} - V_O - V_D - V_{BE(T4)}}{R_2} + \frac{V_{CC} - V_O - V_D - V_{CE(T4)}}{R_4}
\]

\(V_O \approx 4.5 - I_S \cdot R_4 \)
- Curves 1 and 2 cross eachother at \(I_S \approx 5mA \)
Power dissipation

\[P_{CC} = \frac{I_{CCH} + I_{CCL}}{2} V_{CC} \]

\[I_{CCH} = I_{R1} = \frac{(V_{CC} - V_{B(T1)})}{R_1} \approx 1 \text{mA} \]

\[I_{CCL} = I_{E(T2)} = I_{C(T2)} + I_{B(T2)} = \frac{(V_{CC} - V_{C(T2)})}{R_2} + \frac{(V_{CC} - V_{B(T1)})}{R_1} \approx 3.3 \text{mA} \]

\[P_{CC} \approx 10 \text{mW} \]

\[P_C = C_p V_{CC}^2 f \]

\[C_p = 15 \text{pF}; \ f = 1 \text{MHz}, \ P_C \approx 0.4 \text{mW}; \ f = 20 \text{MHz}, \ P_C \approx 7.5 \text{mW} \]

- Besides the two components \(P_{CC} \) and \(P_C \), there is another, due to simultaneous conduction of transistors \(T_3 \) and \(T_4 \). This extra power consumption \(P_{DS} \) has the formula:

\[P_{DS} = V_{CC} (\frac{I_{CC_{\text{max}}}}{2.2} \frac{t_c}{T} + \frac{I_{CC_{\text{max}}}}{2} \frac{t_r}{T}) \]
Propagation Delay

- Given by charging/discharging times of stray capacitance from gate’s output and by switching times of transistors
 - \(t_{pHL} = t_{c1} + t_{des} \)
 - \(t_{pLH} = t_{c2} + t_{inc} \)
 - \(t_{pd} = \frac{(t_{pHL} + t_{pLH})}{2} \)
- Switching times: \(t_{c1} = 5\text{ns} \) and \(t_{c2} = 8\text{ns} \)
- Charging/discharging times of stray capacitances:
 \[
 t_{des} = C_p \frac{V_{OH} - V_{OL}}{I_{OL}} \quad t_{inc} = C_p \frac{V_{OH} - V_{OL}}{I_{OH}}
 \]
- Formula for \(t_{inc} \), short-circuit current value is considered \(I_{OS} \)
- For \(I_{OS} = 18\text{mA} \) results \(t_{inc} = 2.5\text{ns} \)
- Calculated values: \(t_{pHL} = 8\text{ns} \) and \(t_{pLH} = 10.5\text{ns} \)
- Data book values: \(t_{pHL} = 8\text{ns} \) and \(t_{pLH} = 12\text{ns} \), resulting \(t_{pd} = 10\text{ns} \)
Proposed Problems

- Find out the maximum value of a resistor may be connected between two standard TTL gates, without modifying the circuit behavior. How this resistor is affecting the noise margins?
- Design a circuit based on a NAND TTL standard gate, able to drive a LED. For the LED, following values are considered: \(V_{\text{LED}} = 1.6\text{V} \) and \(I_{\text{LED}} = 10\text{mA} \).
- Design a circuit based on a NOR TTL standard gate, able to drive a LED. For the LED, following values are considered: \(V_{\text{LED}} = 0.65\text{V} \) and \(I_{\text{LED}} = 20\text{mA} \).
- Design a positive edge detector circuit, using NAND gates.
- If a pulse train signal is propagating through a NAND gate, how this influences the filling factor of one pulse? But if propagating through two NAND gates? Input signal has a 20MHz frequency and a filling factor of \(\frac{1}{2} \).