DIGITAL DEVICES

Schmitt Trigger Circuits
Schmitt triggers (pulse generators)

Used for adapting the logical levels and for generating steep (firm) pulse edges

Use: if at the inputs of some gates are applied signals with slow variation, together with disturbing (false) pulses: when connecting, in a numerical system the electromechanical parts (relays) with the logical ones, made of TTL or CMOS gates (see right example of distortion)

Fundamental layout of a Schmitt trigger consists of a comparator with a positive reaction loop, made of two resistances
Instead of the comparator there can be other active elements

The transfer characteristic: it presents two states, being a hysteresis characteristic

Two positive consequences:
- the transition between the two states is fast, even if the input signal has a slow variation
- as long as the noise signal amplitude, which affects the input is smaller than the hysteresis, there will be only one transition for the rising front of the input and only one transition for the falling front of the input signal
Schmitt Triggers realized with TTL gates

Schmitt trigger made of AND gate

Schmitt trigger made of NAND gates
Consider negligible values of the input and output currents of used TTL gates, in comparison with the current that passes through the R1 and R2 resistances, Voltage in point P, denoted by U_p

$$U_p = U_i - \frac{R_1}{R_1 + R_2}(U_i - U_e)$$

For input voltage U_i of 0V, the output voltage is null as well
If U_i grows, U_p grows too, and there will be U_p equal to threshold voltage of TTL gate U_T
Consider $U_p=U_T$, $U_i=U_1$ and $U_e=U_{OL}:$

$$U_T = U_1 - \frac{R_1}{R_1 + R_2}(U_1 - U_{OL})$$

Corresponding input voltage, when U_p equals threshold level:

$$U_1 = U_T \frac{(R_1 + R_2)}{R_2} - U_{OL} \frac{R_1}{R_2}$$

When the input voltage exceeds the level U_1, at which $U_p=U_T$, the switching of the gate takes place. The output voltage grows producing a positive reaction through the resistance R_2 and passing rapidly on high logical level, U_e taking the value U_{OH} regardless of the continuous increase of the input voltage
When decreasing the input voltage, phenomenon is similar: when reaching at point P the threshold voltage of the TTL gate, output voltage begins dropping due to the positive reaction through the R_2 resistance, going to low logical level, U_{OL}. The input voltage that determines the switching is calculated similarly:

$$U_2 = U_T \left(\frac{R_1 + R_2}{R_2} - U_{OH} \frac{R_1}{R_2} \right)$$

It results the hysteresis voltage:

$$U_{HIS} = U_1 - U_2 = \frac{R_1}{R_2} (U_{OH} - U_{OL})$$

Modifying the ratio between R_1 and R_2 the hysteresis cycle can be modified, noting that R_1 has the upper boundary at the value of 390 ohms.
Integrated TTL Schmitt Triggers

The TTL integrated circuit with Schmitt trigger function is the circuit CDB413, whose fundamental diagram is shown behind; besides the role of generating pulses, fulfills the NAND logical function (4 inputs)
The circuit layout shows identical input/output circuits as for every TTL gate; the trigger itself is made of T_2 and T_3 transistors. The electronic layout of the integrated Schmitt trigger contains compensation circuits for avoiding temperature influence, the threshold voltages being set in the prescribed temperature and supply voltage range.

The switching thresholds for a supply voltage $V_{CC}=5V$ are: $U_1=1,7V$ and $U_2=0,9V$, determining a hysteresis voltage of 0,8V.

Other typical values for the circuit: $I_{IL}=-1,6mA$, $I_{IH}=40\mu A$, $V_{ILmax}=0,7V$ and $V_{IHmin}=2V$.

The maximum propagation delays for the integrated circuit CDB413 are:

$t_{pHL} = 30ns$ and $t_{pLH} = 35$ ns.
Schmitt triggers made of CMOS gates

Schmitt trigger can be obtained either with non-inverter CMOS circuits (a) or with inverter circuits (b)

The functioning of the trigger with CMOS gates is identical with the one with TTL gates; calculus formulae of the threshold voltages are directly obtained:

\[
U_1 = U_T \cdot \frac{R_1 + R_2}{R_2} - U_L \cdot \frac{R_1}{R_2}
\]

\[
U_2 = U_T \cdot \frac{R_1 + R_2}{R_2} - U_H \cdot \frac{R_1}{R_2}
\]
If we consider $U_L = 0V$, $U_H = V_{DD}$ and $U_T = V_{DD}/2$, we obtain:

$$U_1 = \frac{R_1 + R_2}{2R_2} \cdot V_{DD}$$

$$U_2 = \frac{R_2 - R_1}{2 R_2} \cdot V_{DD}$$

Results a hysteresis voltage:

$$U_{H-IS} = U_1 - U_2 = \frac{R_1}{R_2} \cdot V_{DD}$$
Integrated CMOS Schmitt trigger circuits

Layout integrated circuit MMC 4093
Figure behind presents the electrical diagram of an integrated Schmitt trigger with CMOS transistors. The input circuit is made of six transistors, three with inductive channel p and three with inductive channel n. The two CMOS inverters obtained through the pairs T_{P4}, T_{N4}, respectively T_{P5}, T_{N5} form a RS type circuit (latch) for stabilization and detainment of the voltage in point A. The output circuit is obtained from the CMOS inverter with the transistors T_{P6} and T_{N6}.

The transfer characteristics of a TS integrated CMOS depends on the voltage supplies. For $V_{DD}=5V$, the integrated circuit presents a typical hysteresis voltage $U_{HIS}=0,9V$, and for a supply of $V_{DD}=10V$, it presents $U_{HIS}=2,3V$.
Applications of the Schmitt trigger

Delay Circuit

Delay circuit obtained with a TS and a low-pass RC circuit

For joining circuits, necessary respecting the condition: \((R_1 + R_2) > 10 \cdot R\).

This way the time constant of the integrating circuit stays \(\tau = RC\), and the hysteresis voltage of the TS will not be influenced by the R resistance.
By applying at the input an impulse signal, at the output the signal will be delayed, with δt_1 for the forefront and respectively δt_2 for the back front.

The voltages U_1 and U_2 being the threshold voltages of the TS, the relations for the two delays are:

$$\delta t_1 = RC \cdot \ln \frac{V_{DD}}{V_{DD} - U_1}$$

$$\delta t_2 = RC \cdot \ln \frac{V_{DD}}{U_2}$$

For $V_T = V_{DD}/2$:

$$\delta t_1 = \delta t_2 = RC \cdot \ln \frac{2 \cdot R_2}{R_2 - R_1}$$
Layout behind represents a front detector circuit, obtained with TS circuit and RC low-pass circuit. If at the output of the circuit from the figure we put a NAND gate, the circuit will do the detection of the positive fronts, if we put a NOR gate, the detection of the negative fronts will be realized, and the XOR gate will allow the detection of both fronts.
Proposed Problems

- Design a delay circuit with a TS circuit using CMOS gates, to provide a delay for the input signal of 0.1 ms. CMOS gates use a power supply source of 5V.

Assuming:
\(R = 1 \text{K}\Omega, \quad R_1 = 5.1 \text{K}\Omega, \quad R_2 = 24 \text{K}\Omega \)

\[U_1 = \frac{R_1 + R_2}{2R_2} V_{DD} = 3V \]

\[U_2 = \frac{R_2 - R_1}{2R_2} V_{DD} = 2V \]

\[U_e(t) = U_e(\infty) + \left[U_e(0) - U_e(\infty) \right] e^{-\frac{t}{RC}} \]

\[C = \frac{t}{R \ln \frac{U_e(\infty) - U_e(0)}{U_e(\infty) - U_e(t)}} \]

\[C = \frac{t}{R \ln \frac{V_{DD}}{V_{DD} - U_1}} = \frac{t}{R \ln \frac{V_{DD}}{U_2}} = 110 \text{nF} \]
Calculate the needed noise margins for a standard TTL gate driving a trigger Schmitt circuit built on TTL technology, with \(R_1 = 220\Omega \) and \(R_2 = 2.2k\Omega \).

\[
U_1 = U_T \frac{(R_1 + R_2)}{R_2} \cdot U_{OL} \frac{R_1}{R_2} = 1.4V \quad U_2 = U_T \frac{R_1 + R_2}{R_2} \cdot U_{OH} \frac{R_1}{R_2} = 0.7V
\]

\[
M_H = V_{OH \ min} - U_2 = 2.4V - 0.7V = 1.7V
\]

\[
M_L = U_1 - V_{OL \ max} = 1.4V - 0.4V = 1V
\]
• Design a delay circuit using TS circuit with TTL gates, implementing a delay of the positive edge with 0.1 ms. What’s the delay for the negative edge?

• Design an oscillator with a TS circuit using CMOS gates. Oscillator is driven by a zero-active signal; oscillation period is of 2ms. CMOS gates are supplied with a power supply source of 5V.