Internet Protocol (IP)

Part of TCP/IP, used by the Internet

Specifies interface with higher layer, e.g. TCP

Specifies protocol format and mechanisms

IP Services

Primitives

Functions to be performed

Form of primitive implementation dependent, e.g. subroutine call

Send

Request transmission of data unit

Deliver

Notify user of arrival of data unit

Parameters

Used to pass data and control info

Source address

Destination address

Protocol

Recipient, e.g. TCP

Type of Service

Specify treatment of data unit during transmission through networks

Identification of IP packet

Source, destination address and user protocol

Uniquely identifies PDU

Needed for re-assembly and error reporting

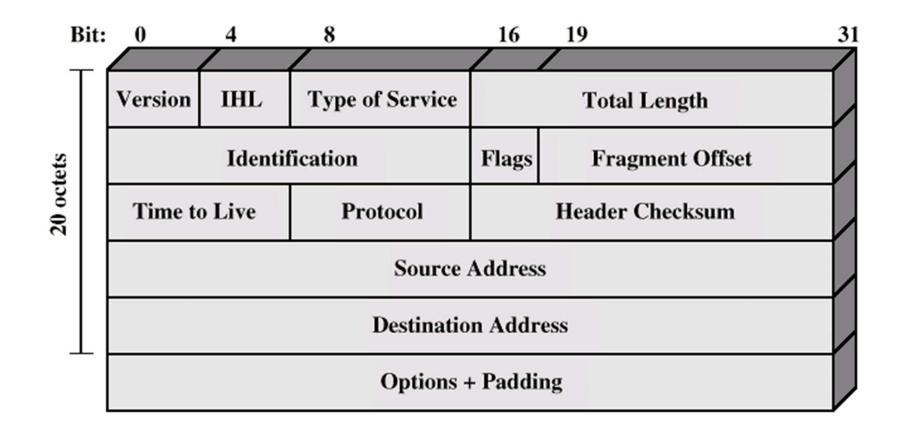
Send only

Don't fragment indicator

Can IP fragment data

If not, may not be possible to deliver

Send only


Time to live

Send only

Data length

Option data

User data

IP packet structure

Header Fields

Version

Currently 4

IP v6 - see later

Internet header length

In 32 bit words

Including options

Type of service

Total length

Of datagram, in octets

Identification

Sequence number

Used with addresses and user protocol to identify datagram uniquely

Flags

More bit

Don't fragment

Fragmentation offset

Time to live

Protocol

Next higher layer to receive data field at destination *Header checksum*

Reverified and recomputed at each router

16 bit ones complement sum of all 16 bit words in header

Set to zero during calculation

Source address

Destination address

Options

Padding

To fill to multiple of 32 bits long

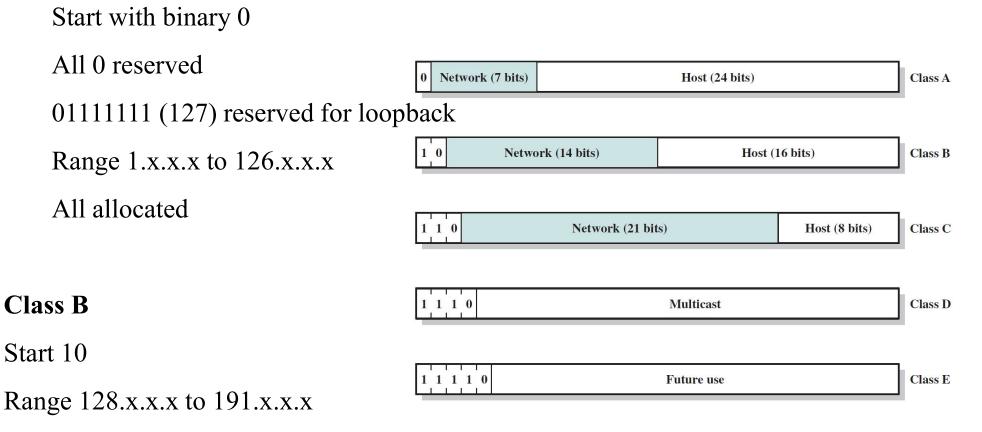
Data Field

Carries user data from next layer up

Integer multiple of 8 bits long (octet)

Max length of datagram (header plus data) 65,535 octets

IP Addresses


32 bit global internet address

Network part and host part

network ID host ID

0 Network (7	0 Network (7 bits)		Host (24 bits)	Class A	
1_0	Network	(14 bits)	Host (16 bits)	Class B
1 1 0		Network (21 bit	21 bits) Host (8 bits)		
1 1 1 0			Multicast		Class D
			Future use		Class E

Class A

Second Octet also included in network address

 $2^{14} = 16,384$ class B addresses

All allocated

Class C

Start 110

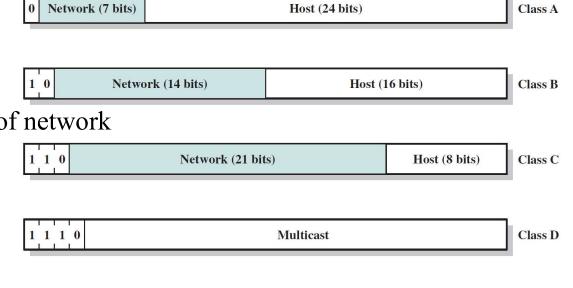
```
Range 192.x.x.x to 223.x.x.x
```

Second and third octet also part of network address

 $2^{21} = 2,097,152$ addresses

Nearly all allocated

Class D


Contain multicast addresses for group users

first decimal field is between 224 and 239

Class E

Rreserved for research and future developments

First decimal field between 240 and 255

Class	1 st Octet Decimal Range	1 st Octet High Order Bits	Network/Host ID (N=Network, H=Host)	Default Subnet Mask	
Α	1 - 126*	0	N.H.H.H	255.0.0.0	/8
В	128 - 191	10	N.N.H.H	255.255.0.0	/16
С	192 - 223	110	N.N.N.H	255.255.255.0	/24
D	224 - 239	1110	Reserved for	or Multicasting	
E	240 - 254	1111	Experimental;	used for researc	ch

Note: Class A addresses 127.0.0.0 to 127.255.255.255 cannot be used and is reserved for loopback and diagnostic functions.

• Private IP addresses

Class A: 10.0.0.0 - 10.255.255.255	/8
Class B: 172.16.0.0 - 172.31.255.255	/16
Class C: 192.168.0.0 - 192.168.255.255	/24

	172	25	114	250		AND
IP Address (B class) Network Mask	10101100 11111111	00011001 11111111	01110010 00000000	$11111010\\00000000$		000
	255	255	0	0		010 100
Network Address	10101100	00011001	00000000	00000000	AND	1 1 1
	172	25	0	0		
Broadcast Address	10101100 172	00011001 25	11111111 255	11111111 255		

- Network address: all host bits = 0
- Network broadcast address: all host bits = 1
- Total number of host bits: $2^{16} = 65,536$
- Number of hosts: $2^{16} 2 = 65,536 2 = 65,534$

	Binary Representation	Dotted Decimal
IP address	11000000.11100100.00010001.00111001	192.228.17.57
Subnet mask	11111111.11111111.1111111111100000	255.255.255.224
Bitwise AND of address and mask (resultant network/subnet number)	11000000.11100100.00010001.00100000	192.228.17.32
Subnet number	11000000.11100100.00010001.001	1
Host number	0000000.0000000.0000000.00011001	25

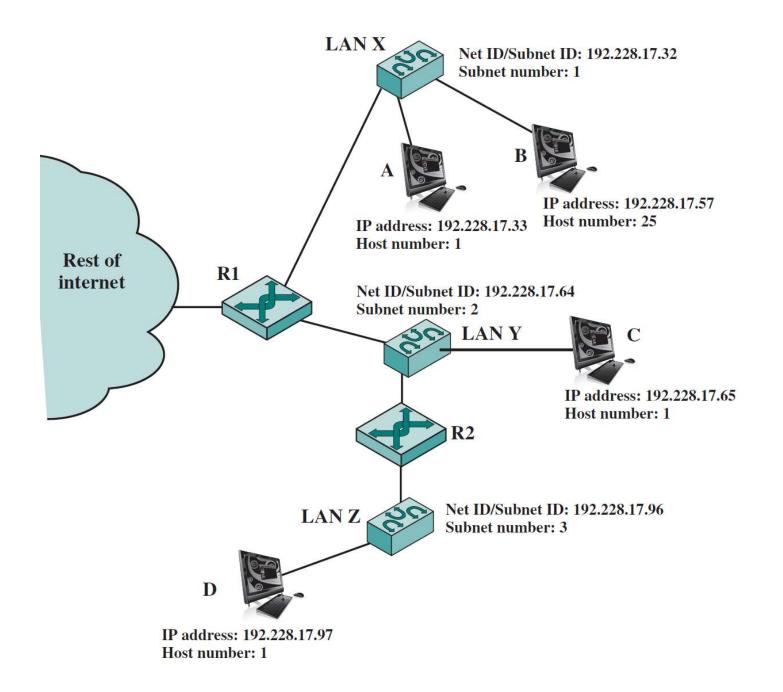
(b) Default subnet masks

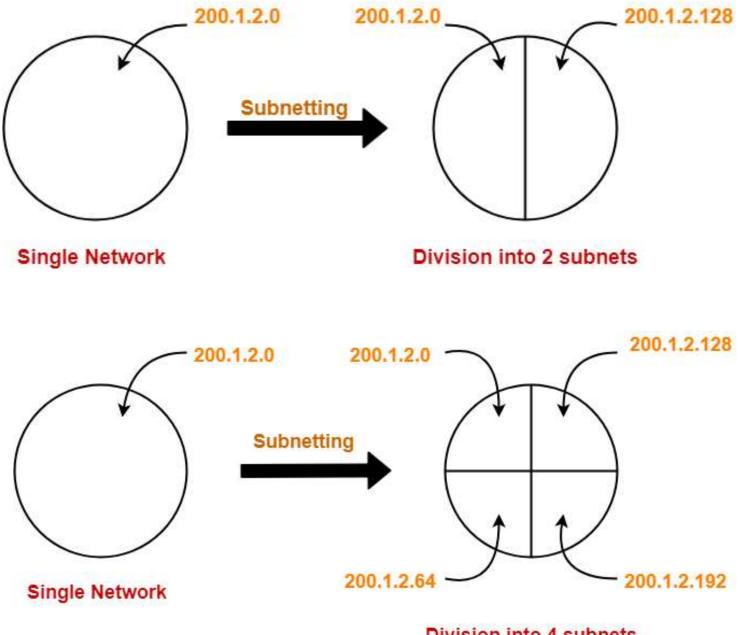
	Binary Representation	Dotted Decimal
Class A default mask	11111111.00000000.0000000.00000000	255.0.0.0
Example Class A mask	11111111.11000000.00000000.00000000	255.192.0.0
Class B default mask	111111111111111100000000.00000000	255.255.0.0
Example Class B mask	11111111.11111111.11111000.00000000	255.255.248.0
Class C default mask	11111111.11111111.1111111.00000000	255. 255. 255.0
Example Class C mask	11111111.11111111.11111111111100	255. 255. 255.252

Subnets and Subnet Masks

Allow arbitrary complexity of internetworked LANs within organization

Insulate overall internet from growth of network numbers and routing complexity

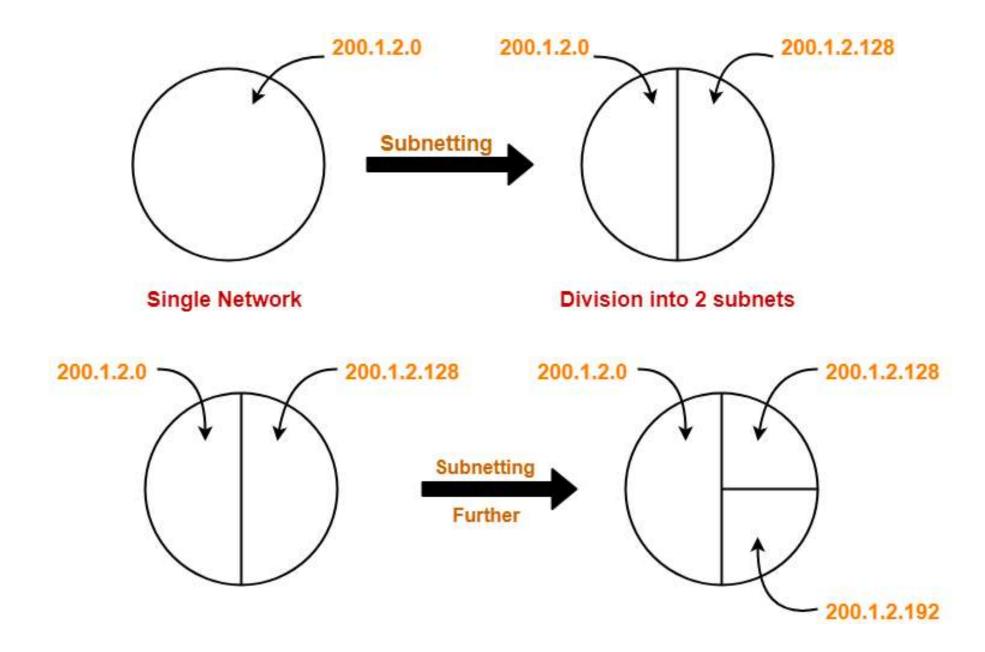

Site looks to rest of internet like single network


Each LAN assigned subnet number

Host portion of address partitioned into subnet number and host number

Local routers route within subnetted network

Subnet mask indicates which bits are subnet number (1s) and which are host number (0s)



Division into 4 subnets

- Creating subnets:
 - borrow bits from the host ID
 - create a new Network Mask to show the new structure of the IPv4

netwo	rk ID	subnetv	vork ID	host	ID	
IP Address (B class)	172 10101100	25 00011001	114 01110010	250 11111010		AND 0 0 0
Network Mask	255	255	0	o	/16	010
Subnet Mask	255	255	255	192	/26	100
	11111111	11111111	11111111	11 000000	AND	1 1 1
Subnet Address	10101100	00011001	01110010	11 000000		
	172	25	114	192		
Subnet Broadcast	10101100 172	00011001 25	01110010 114	11 1111111 255		

Total number of host bits: 26]
Number of hosts: $2^6 - 2 = 64 - 2 = 62$	First host IP on subnet: 172.25.114.193	
Total number of subnet bits: 210	Last host IP on subnet: 172.25.114.254	1.7
Number of subnets: 210 = 1024		17

ICMP

Need for appending to IP (used only for data transfer) of some **control protocols**, e.g. ICMP, ARP, RARP, BOOTP

Internet Control Message Protocol (ICMP) provides error-reporting mechanisms

RFC 792

Transfer of (control) messages from routers and hosts, to other hosts

Feedback about problems

e.g. time to live expired

ICMP packet encapsulated in IP datagram

Not a very reliable protocol, because (see next slide):

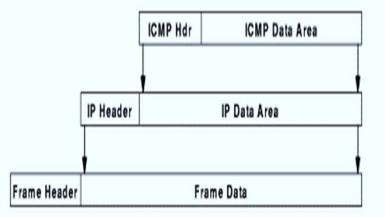
IP provides a *best-effort delivery* (not a secure one) Internet layer can detect a small variety of errors:

•Checksum (header only!)

•TTL expires

•No route to destination network

•Can't deliver to destination host (e.g., no ARP reply)


Internet layer discards datagrams with problems

Some - e.g., checksum error - can't trigger error messages (ICMP message)

Some errors can be reported

Remember:

ICMP encapsulated in IP (see drawing) ICMP messages sent in response to incoming datagrams with problems ICMP message **not** sent for ICMP message

Message type	Description	
Destination unreachable	Packet could not be delivered	
Time exceeded	Time to live field hit 0	
Parameter problem	Invalid header field	
Source quench	Choke packet	
Redirect	Teach a router about geography	
Echo request	Ask a machine if it is alive	
Echo reply	Yes, I am alive	
Timestamp request	Same as Echo request, but with timestamp	
Timestamp reply	Same as Echo reply, but with timestamp	

The principal ICMP message types.

ICMP and reachability

An internet host, *A*, is *reachable* from another host *B*, if datagrams can be delivered from *A* to *B* TCP/IP *ping* program tests reachability - sends datagram from *B* to *A*, that *A echoes* back to B Uses ICMP *echo request* and *echo reply* messages, e.g. Internet layer includes code to

reply to incoming ICMP echo request messages

ICMP and internet routes

List of all routers on path from A to B is called the *route* from A to B

TCP/IP *traceroute* program uses UDP to non-existent port and TTL field to find route via *expanding ring* search

traceroute must accommodate varying network delays & dynamically changing routes Sends ICMP echo messages with increasing TTL

•Router that decrements TTL to 0, sends ICMP *time exceeded* message, with router's address as source address

•First, with TTL 1, gets to first router, which discards and sends time exceeded message

•Next, with TTL 1, gets through first router to second router

•Continue until message from destination received

ICMP and path MTU (smallest accepted probe) discovery

Fragmentation should be avoided How can source configure outgoing datagrams to avoid fragmentation? Source determines *path MTU* - smallest network MTU (Minimum Transmission Unit) on path from source to destination Source *probes* path using IP datagrams with *don't fragment* flag Router responds with ICMP *fragmentation required* message Source sends smaller probes until destination reached

ICMP and router discovery

Router can fail, causing "black-hole" or isolating host from internet

•ICMP router discovery used to find new route

•Host can broadcast request for router announcements to auto-configure default route

•Host can broadcast request if router fails

•Router can broadcast advertisement of existence when first connected

ICMP redirect

Default route may cause *extra hop*

•Router that forwards datagram on same interface sends ICMP *redirect*

•Host installs new route with correct router as next hop

ICMP packet format

True Code Checkerum True Code	<u> </u>
Type Code Checksum Type Code	Checksum
Unused Identifier Se	Sequence number
IP Header + 64 bits of original datagram Originate times	estamp
(a) Destination unreachable; time exceeded; source quench (e) Timestam	
0 8 16 31 0 8 16 Type Code Checksum Type Code	31 Checksum
	Sequence number
IP Header + 64 bits of original datagram Originate times	1
(b) Parameter problem Receive timesta	stamp
Transmit times	estamp

(f) Timestamp reply

0	8	16	31				
Ту	pe	Code	Checksum				
	Gateway Internet address						
IP Header + 64 bits of original datagram							

(c) Redirect

0	8	16	31			
Тур	e (Code	Checksum			
	Identifie	r	Sequence number			
Optional data						

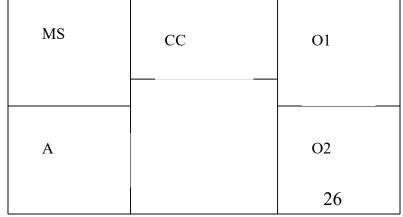
(d) Echo, echo reply

0		8	16 31	
	Туре	Code	Checksum	
	Identifier		Sequence number	

(g) Address mask request

0	8 1	6 31			
Туре	Code	Checksum			
Ide	entifier	Sequence number			
Address mask					

(h) Address mask reply


Proposed Problem

A company owns a building with one floor, having the following structure: **CC**-Communication Center, **O1**, **O2**-offices,

MS-management, A- administration (see drawing). In room MS there are 2 computers, in room A are 5 computers, and the rooms O1, O2 have 10 computers each.

The company gets for use the addresses 198.188.77.64 with the netmask 255.255.255.224.

Establish the address configuration of each subnetwork and computer located at this floor, knowing that in the both rooms **O** will be **one** subnetwork, the rooms **MS** and **A** belong to **one** other subnetwork , and **another** subnet will be setup for future applications in **CC**.

A *class C network* will be implemented. Total number of *required subnetworks* will be *3*.

Bitwise AND of address and mask values (giving the resultant network/ subnet number) will be: 198.188.77.64

So the first subnet will have address: 198.188.77.64 and may serve rooms O1 and O2, with 20 stations together, filling address scheme from 198.188.77.65 to 198.188.77.84

The second subnet will have address: 198.188.77.128 and may serve rooms A+MS, with 7 computers, with addresses from 198.188.77.129 to 198.188.77.135

The third subnet with address 198.188.77.192 may serve the rest of the rooms.

Introduction to IPv6

- IP v 1-3: defined and replaced
- IP v4 current version; 20+ years old
- IP v5 streams protocol
- IP v6 replacement for IP v4

During developments it was called IPng - Next Generation **Why Change IP?**

32 bit Address space exhaustion

32 bit address space = millions of networks (could be enough?), BUT:

Two level addressing (network and host) wastes space: one network address used, even if not all possible associated hosts connected to Internet, or network connected to Internet

Growth of networks and the Internet (LANs, wireless LANs ...)

2¹⁴ Class B network addresses already almost exhausted; class C networks too low size for most companies

Extended use of TCP/IP (new applications => requests for new IP addresses)

Requirements for new types of services

Different applications have different requirements for delivery, reliability and speed

Current IP has type of service that's not often implemented

Multicast transmissions

IPv6 RFCs

- 1752 Recommendations for the IP Next Generation Protocol
- 2460 Overall specification
- 4291 addressing structure

..... Others

\leftarrow 40 octets \longrightarrow \leftarrow		0 or more			
	IPv6 header	Extension header	•••	Extension header	Transport-level PDU

Enhancements over IPv4

Expanded address space: 128 bit

Improved option mechanism

Separate optional headers between IPv6 header and Transport layer header

Most are not examined by intermediate routers

Improved speed and simplified router processing of IPv6 datagrams

Easier to extend options

Address auto-configuration

Dynamic assignment of addresses

Increased address flexibility & scalability

Anycast address : packet delivered to a set of hosts

Support for resource allocation

Allow packet labeling (those belonging to a traffic flow)

General considerations

Not generally compatible with IPv4

But compatible with higher-level protocols

Longer addresses: expanded address space, 128 bit

Address auto-configuration; dynamic assignment of addresses

Traffic Priorities: 0 - 7 for variable flow rate, 8 - 15 for real time traffic

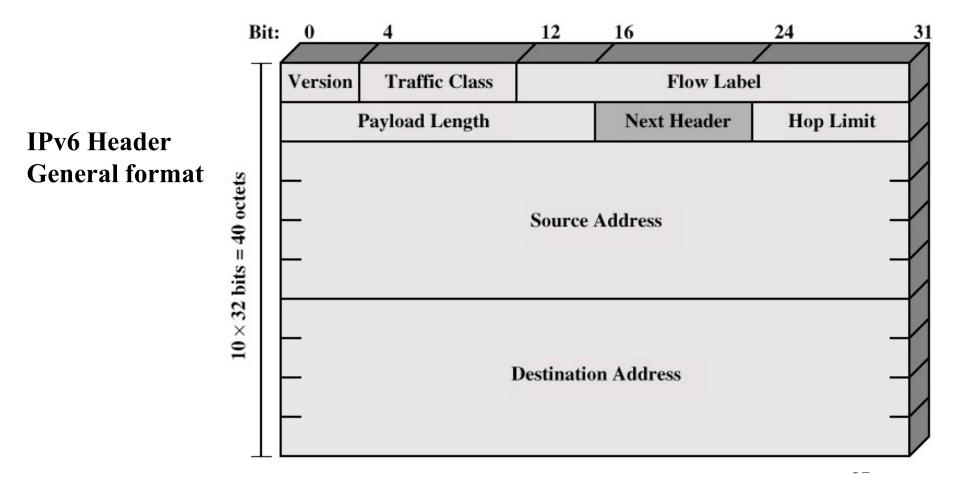
Improved option mechanism

Separate optional headers between IPv6 header and transport layer header

Most are not examined by intermediate routers

Improved speed and simplified router processing

Easier to extend options


Increased addressing flexibility

Anycast - delivered to one of a set of nodes Improved scalability of multicast addresses Support for resource allocation

Replaces *type of service* IPv4 field (most unused)

Labeling of packets to particular traffic flow

Allows special handling, e.g. real time video

IPv6 base header format

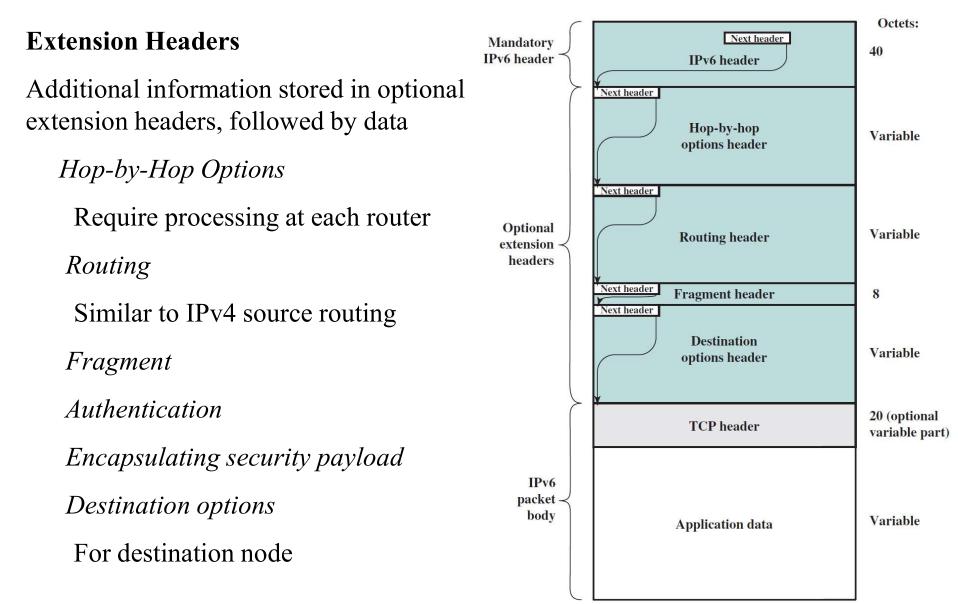
Contains less information than IPv4 header; header format - entirely different

Next Header field points to first extension header

Flow Label field used to associate datagrams belonging to a *flow* or communication between two applications (support for audio-video connections, with appropriate QoS)

Traffic class

Classes or priorities of current packet


Still under development, see RFC 2460

Advantages of the header structure

Efficiency - header only as large as necessary

Flexibility & extension - can add new headers for new features

Incremental development - can add processing for new features to testbed; other routers will skip those headers

IPv6 Packet with Extension Headers

IP v6 Header Fields (Basic Header)

Version: 6

Traffic Class (DS/ECN)

Classes or priorities of packets

Used by originating nodes and/or forwarding routers for differentiated services and congestion functions

Flow Label

Used by routers to label packets requesting special handling within the network *Payload length*

Includes all extension headers plus user (application) data

Next Header

Identifies type of header immediate following

May have another extension header or next layer up protocol header Source Address & Destination address (128 bits)

IPv6 Addresses

128 bits long

Assigned to node's interface, not to node

One single interface may have multiple unique unicast addresses

Three types of address:

Unicast

Single interface; packet delivered there

Anycast

Set of interfaces (typically belong to different nodes)

Delivered to any one interface, usual

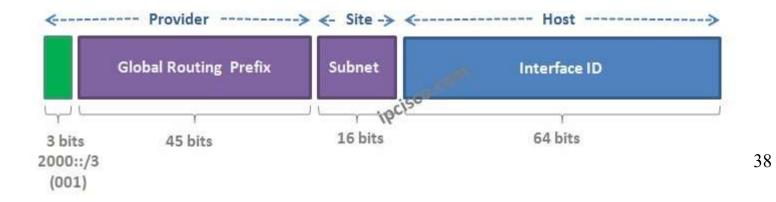
the "nearest"

Multicast

Packets delivered to all interfaces identified

	Prefix (binary)	Usage	Fraction
	0000 0000	Reserved (including IPv4)	1/256
	0000 0001	Unassigned	1/256
	0000 001	OSI NSAP addresses	1/128
	0000 010	Novell NetWare IPX addresse	s 1/128
	0000 011	Unassigned	1/128
	0000 1	Unassigned	1/32
•	0001	Unassigned	1/16
1	001	Unassigned	1/8
	010	Provider-based addresses	1/8
	011	Unassigned	1/8
	100	Geographic-based addresses	1/8
	101	Unassigned	1/8
	110	Unassigned	1/8
	1110	Unassigned	1/16
	11110	Unassigned	1/32
	1111 10	Unassigned	1/64
	1111 110	Unassigned	1/128
	1111 1110 0	Unassigned	1/512
	1111 1110 10	Link local use addresses	1/1024
	1111 1110 11	Site local use addresses	1/1024
	1111 1111	Multicast	1/256

IPv6 addresses


Address Type	Description
Unicast	One to One (Global, Link local, Site local) + An address destined for a single interface.
Multicast	One to Many + An address for a set of interfaces + Delivered to a group of interfaces identified by that address. + Replaces IPv4 "broadcast"
Anycast	One to Nearest (Allocated from Unicast) + Delivered to the closest interface as determined by the IGP

PREFIX	Interface ID
PREFIX	Interface ID

IPv6 Address Space Usage

Address Type	Binary Prefix	IPv6 Notation	Fraction of Address Space
Embedded IPv4 address	001111 1111 1111 1111	::FFFF/96	2 ⁻⁹⁶
	(96 bits)		
Loopback	001	::1/128	2 ⁻¹²⁸
	(128 bits)		
Link-local unicast	1111 1110 10	FE80::/10	1/1024
Multicast	1111 1111	FF00::/8	2/256
Global unicast	Everything else		

Global Unicast IPv6 Address

IPv6 addresses format:

•128-bit addresses, may use dotted decimal representation; requires 16 numbers

105.220.136.100.255.255.255.255.0.0.18.128.140.10.255.255

•Groups of 16-bit numbers in hex, separated by colons - *colon hexadecimal* (or *colon hex*) representation (not case sensitive)

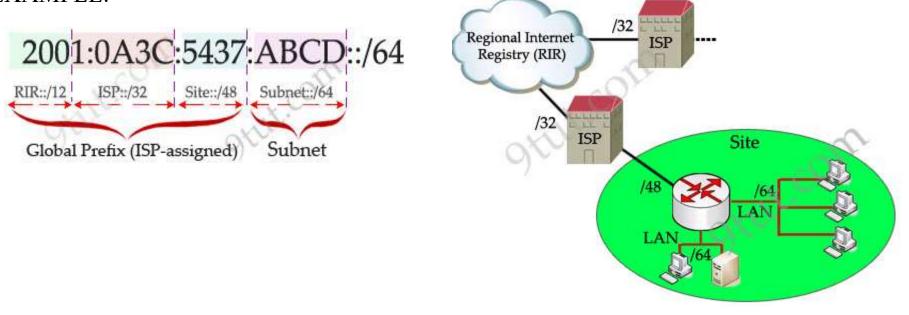
69DC:8864:FFFF:FFFF:0:1280:8C0A:FFFF

•Zero-compression - series of zeroes indicated by two colons

FF0C:0:0:0:0:0:0B1 is equivalent with: FF0C::B1

But once in an address

•IPv6 address with 96 leading zeros is interpreted to hold an IPv4 address


•Use of " / " notation to denote number of bits in address represent the subnet (prefix); rest of them represent interface ID);

• /64 is common prefix length

ICANN assigns a range of IP addresses to Regional Internet Registry (RIR) organizations. The size of address range assigned to the RIR may vary but with a minimum prefix of /12 and belong to the following range: 2000::/12 to 200F:FFFF:FFFF:FFFF::/64.

Each ISP receives a /32 and provides a /48 for each site-> every ISP can provide $2^{(48-32)} = 65,536$ site addresses (note: each network organized by a single entity is often called a site). Each site provides /64 for each LAN -> each site can provide $2^{(64-48)}$ = 65,536 LAN addresses for use in their private networks. So each LAN can provide 2^{64} interface addresses for hosts.

EXAMPLE:

/64

Interface ID

/48

LAN Prei

1/23

ISP Prefix

2001

Registry

132

Site Prefix

IPv6 Address Scopes	Description		
Link-local address	 + only used for communications within the local subnetwork (automatic address configuration, neighbor discovery, router discovery, and by many routing protocols). Only valid on the current subnet. + routers do not forward packets with link-local addresses. + are allocated with the FE80::/64 prefix -> can be easily recognized by the prefix FE80. + is usually created dynamically using a link-local prefix of FE80::/10 and a 64-bit interface identifier (based on 48-bit MAC address). 		
Global unicast address	 + unicast packets sent through the public Internet + globally unique throughout the Internet + starts with a 2000::/3 prefix (this means any address beginning with 2 or 3). But in the future global unicast address might not have this limitation 		
Site-local address	+ allows devices in the same organization, or site, to exchange data. + starts with the prefix FEC0::/10. They are analogous to IPv4's private address classes.		
PREI	FIX Interface ID		

Options Headers

Carry optional information, not necessary examined by all routers or hosts

Hop-by-Hop Options Header

Consists of the following:

Next header

Header extension length

Options

One or more option definitions

Options definition contains the following sub-fields:

Option Type – identifies option
Length – length in octets of the option's data field
Option Data – option specification

Examples for such options:

Jumbo payload option

Over $2^{16} = 65,535$ octets in an IPv6 packet

Router alert option

Tells the router that the contents of this packet is of interest to the router (to handle data accordingly)

Provides support for RSVP (Reservation Protocol), used in multimedia transmissions, for flow control

Fragmentation Header

Fragmentation only allowed at source node, no fragmentation at intermediate routers

Node must perform path discovery operation, to find the smallest MTU (Maximum Transmission Unit) of intermediate networks

Source fragments IPv6 packets to match MTU

Otherwise limits to 1280 octets, that must be supported by any network

Fragmentation Header Fields:

Next Header – type of following header

Reserved

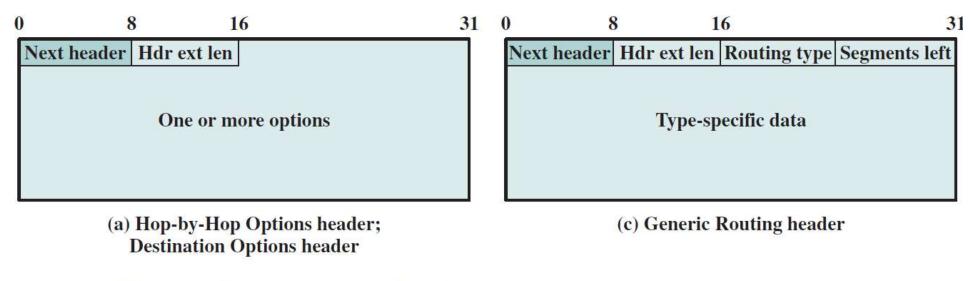
Fragmentation offset – any fragment data is multiple of 64bits; this field indicates where in the original packet this fragment's payload belongs

Reserved

More flag – more fragments or last fragment

Identification – identify the original packet (now fragmented)

Routing Header

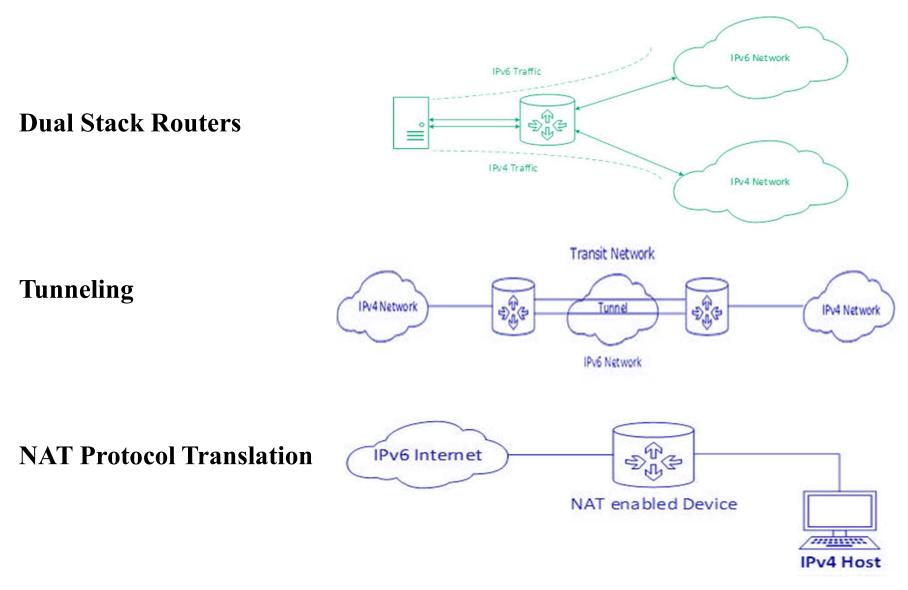

List of one or more intermediate nodes to be visited

Structure (see next):

Next Header

Header extension length – length of this header
Routing type – identifies a routing protocol header variant
Segments left - number of nodes still to be visited

Destination Options Header Information examined by the destination node Same format as Hop-by-Hop options header



0	8	1	6	29 3	1
Next h	neader	Reserved	Fragment Offset	Res	M
		Ident	ification		

(b) Fragment header

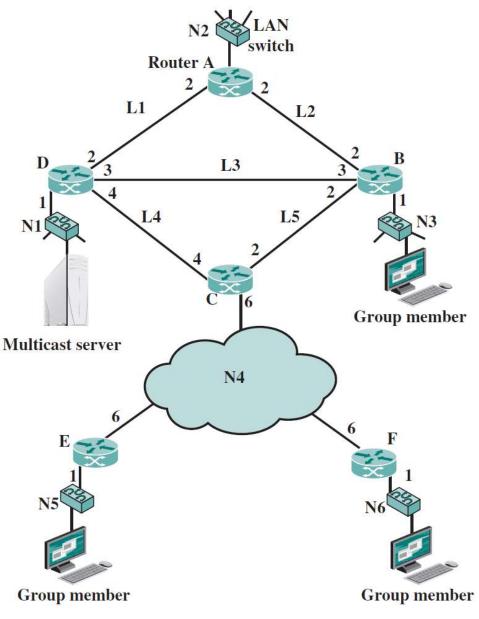
IPv6 Extension Headers

Technologies can be used in transition from IPv4 to IPv6

Multicasting

Addresses that refer to group of hosts on one or more networks

Used in:


Multimedia stream "broadcasts"

Teleconferencing – a transmission from a station sent to all members

Database updating – for all copies of replicated files or databases

Distributed computing – resource sharing

Real time workgroups – real time exchange of information

Multicast Configuration

Multicast over a single Ethernet LAN segment is straightforward; provision for MAC multicast addresses, due to the broadcast nature of LAN

For Internet environment, more approaches:

Broadcast and Multiple Unicast

Broadcast a copy of packet to each network, even if does not contain group members

For figure behind, multicast server sends a packet to group hosts from networks N3, N5, N6: requires 13 copies of the packet

Multiple Unicast

Send packet only to networks that have hosts in group

Source knows location for each group member

11 packets

True Multicast

Use of following algorithm:

Determine least cost path to each network that has host in group

Gives spanning tree configuration containing networks with group members

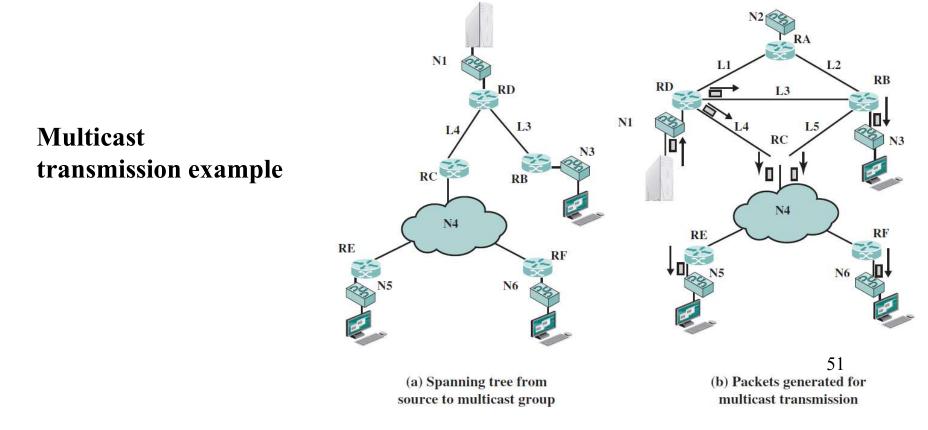
Transmit single packet along spanning tree

Routers replicate packets at branch points of the spanning tree

		Broadcast			Multiple Unicast			Multicast		
	$S \rightarrow N2$	$S \rightarrow N3$	$S \rightarrow N5$	$S \rightarrow N6$	Total	$S \rightarrow N3$	$S \rightarrow N5$	$S \rightarrow N6$	Total	
N1	1	1	1	1	4	1	1	1	3	1
N2										
N3	1	1	1					1	1	
N4			1	1	2		1	1	2	2
N5			1		1		1		1	1
N6			1	1			1	1	1	
L1	1			1						
L2										
L3		1			1	1			1	1
L4			1	1	2		1	1	2	1
L5										
Total	2	3	4	4	13	3	4	4	11	8

8 packets required for above example

50


Multicast problems:

Router may have to forward more than one copy of packet (multiple output branches) Convention needed to identify multicast addresses

IPv4 - Class D – starts with 1110 ...

IPv6 - 8 bit prefix, all 1s, 4 bit flags field, 4 bit scope field, 112 bit group ID

Nodes (routers & source) must translate between IP multicast addresses and a list of networks containing group members; allows tree development

Router must translate between IP multicast address and a network LAN multicast address (at the MAC level) in order to deliver packet to that LAN

Mechanism required for hosts to dynamically join and leave multicast groups

Routers must exchange info

Which networks include members of given group

Sufficient info to work out shortest path to each network (spanning tree)

Routing algorithm to work out shortest path

Routers must determine routing paths based on source and destination addresses, for avoiding packet duplication

IGMP (Internet Group Management Protocol)

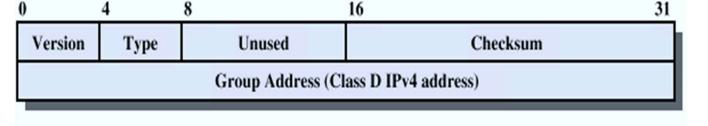
RFC 1112, initial developed for IPv4, but incorporated also in ICMPv6

Host and router exchange of **multicast group information**

Use broadcast LAN to transfer information among multiple hosts and routers

IGMP Fields

Version - 1


Туре

- 1 query sent by a multicast router
- 0 report sent by a host

Checksum – 16 bit ones complement addition of all the 16-bit words in the message

Group address

- Zero value in a request message
- Valid group address in a report message

IGMP Operation

To join a group, hosts sends report message

Group address of group to join

Sent in a IP datagram with the same multicast destination address

All hosts in group receive message and learn new member

Routers listen to all multicast addresses to hear all reports

Routers periodically issue request messages (queries)

Sent to *all-hosts* multicast address

Host that want to stay in groups must read *all-hosts* messages and respond with report for each group it is in

Group Membership with IPv6

Function of IGMP included in ICMP v6; ICMPv6 contains a new type of message: group membership **termination** message, to allow host to leave the group

IGMP v3

RFC 3376

0	4	8 1	16
Тур	e = 17	Max resp code	Checksum
	G	roup address (clas	ss D IPv4 address)
Resv	S QRV	QQIC	Number of sources (N)
		Source ad	dress [1]
		Source ad	dress [2]
		•	
		•	
		Source add	dress [N]

(a) Membership query message

		(
Type = 34	Reserved	Checksum
Rese	rved	Number of group records (M)
	Group	record [1]
	Group	record [2]
		•
		•
		•
	Group 1	record [M]

(b) Membership report message

Record type	Aux data len	Number of sources (N)
	Multicast	address
	Source add	lress [1]
	Source add	lress [2]
	•	
	Source add	lress [N]
	Auxiliary	

(c) Group record