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Chapter 1

Introduction

1.1 Semantic styles

• Formal mehods used in Software Engineering and Programming Languages design
employ various mathematical structures.

– They are essential in the basic engineering activities (modeling, specification,
design and verification) esspecially when the focus is on quality attributes such
as reliability or performance.

• Semantics is a core concept in Formal Methods.

• Traditionally, the research focus was on the dynamic semantics of languages and
systems.

• Three semantic styles are consecrated:

– Denotational semantics (relying on compositional definitions and a mathematical
theory of domains of meanings, often called denotations)

– Axiomatic semantics (laws or axioms are used to define meanings)

– Operational semantics

• In this curse the method of operational semantics is used to describe the dynamic
semantics of languages and systems.

– In operational semantics the behavior is described by means of transitions be-
tween configurations of systems.

– Proofs are constructed from representations of (program or system) executions,
rather than by reasoning about compositional (denotational) meanings of lan-
guage phrases (as in the denotational approach).

∗ In general, an operational semantics is not a compositional description of a
language or system behavior.

– However, it seems that at present most researchers prefer the method of opera-
tional semantics.

• For the static aspects of the semantics we use the concept of a type system; the
presentation of this concept is based on the monograph [1].
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2 Types and Programing Languages

1.2 Types and programing languages

• According to [1] (B. Pierce, Types and Programming Languages, MIT Press, 2002):

A type system is a tractable syntactic method for proving the absence of cer-
tain program beaviors by classifying phrases according to the kind of values they
compute.

• In the sequel we investigate ”statically typed languages”.

– The static aspects of the semantics rely on compile-time analysis of programs.

• [1] provides a comprehensive introduction to the domain, with numerous examples,
(solved) exercises and case studies. This course is an adaptation of [1, 4].

– The imlementations presented in [1] are written in OCaml (available from
http://www.cis.upenn.edu/~ bcpierce/tapl/)

– [4] is based on [1], but with examples in Scala.

– In this course, some concepts, interpreters and type checkers from [1] will be
explained based on prototype implementations written in Haskell [10, 41].

• We will study formal models for programming languages and type checkers

– Type checking is one of the most successful applications of formal methods in
computer science

∗ Detect errors early

∗ Enforce abstractions

∗ Improve code readability

∗ Guarantee safety

∗ Improve efficiency

1.3 Administrative stuff

• Currently, the slides are used for a Master course comprising 14 lectures (28 hours)
and 14 attached seminars (14 hours).

• Each student has to write an essay or a research paper.

• The final mark is computed based on the following components:

– written examination: 75% (based on [1] and the slides)

– paper: 25%

• The paper could be

– A research work

– An essay or a technical report (5-10 pages) based on individual study and exper-
iments

∗ For experiments it is recommended that students use Scala [8, 42] or Haskell
[10, 41].
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• The bibliography for the paper includes books and articles on the following topics:

– Advanced topics in types and programming languages, e.g., from [1] (parts III-
VI) or [2]

– Dependent types [7]

– Behavioral types, in the sense promoted by project BETTY [43]

∗ Foundations of session types [28, 16, 32, 40, 19, 17, 27]

∗ Experiments or small projects elaborated by using Session Java [29, 30, 15,
31, 46], or related tools [47]

– Stochastic process algebras (and model checking): PRISM [11, 33, 26, 35, 34],
PEPA [5, 44], Bio-PEPA [23, 45], Stochastic Pi [37, 18].

– K framework [38] and runtime verification (RV) [12, 20, 48] (including RV tools
such as: AspectJ, Java MOP, TraceMatches, Ruler-lite, TraceContract, RV-
Match, RV-Predict, RV-Monitor)

• The above references are all available either from the library of the department (room
M04, Baritiu Street, 28) or available from the Internet.

1.4 Acknowledements

We are very gratefull to professor Benjamin Pierce (from University of Pennsylvania, author
of the main references of the course [1, 3]) for the permission to use [1, 3] and to adapt
the slides available from http://www.cis.upenn.edu/~ bcpierce/tapl/index.html. We
are also very gratefull to professor Frank Piessens (from Catholic University of Leuven) for
the permission to use and adapt the slides that he created [4]. Our course notes are an
adaptation of materials from [1, 3, 4] with examples in Haskell.



Chapter 2

Untyped Arithmetic Expressions

We consider the toy language NB of numeric and boolean expressions introduced in section
3 of [1]. Note the use of meta-variables (t) in the definition given below.

Definition 2.1 [Syntax of terms for NB]

t ::= true | false | if t then t else t | 0 | succ t | pred t | iszero t

Remark 2.2 In this language:

• 1 is written as succ 0

• 2 is written as succ ( succ 0), etc.

Notation 2.3 We use the symbol I to display the result of evaluating examples. For
example: if false then 0 else ( succ 0) I succ 0. (If, for brevity, we write ( succ 0) as 1, the
evaluation can be written as follows: if false then 0 else 1 I 1).

2.1 Syntax

• What does the definition (of NB terms) given above mean exactly?

• The BNF notation is considered a shorthand for the following:

Definition 2.4 [Terms, inductively] The set of terms is the smallest set T such that:

1. {true, false, 0} ⊆ T ;

2. if t1 ∈ T then { succ t1, pred t1, iszero t1} ⊆ T ;

3. if t1 ∈ T , t2 ∈ T and t3 ∈ T then if t1 then t2 else t3 ∈ T .

Definition 2.5 [Terms, by inference rules] The set of terms is defined by the following
rules:

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T

4
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• Note:

– Strings versus Abstract Syntax Trees (AST’s) ? Formally, we work with AST’s

– Terminology: axiom, inference rule (or rule schema, because it uses metavari-
ables)

• A more concrete characterization of the syntax of NB is given in the following:

Definition 2.6 [Terms, concretely] Define an infinite sequence of sets, S0, S1, S2, . . ., as
follows:

S0 = ∅

Si+1 = {true, false, 0}

∪{ succ t1, pred t1, iszero t1 | t1 ∈ Si}

∪{ if t1 then t2 else t3 | t1, t2, t3 ∈ Si}

Now let

S =
⋃
i∈N Si.

Proposition 2.7 T = S.

Remark 2.8 In syntactic and semantic specifications we use inference rules of the form:

premise1 · · · premisen
conclusion

Some rules have no premises. An example is rule true ∈ T given in definition 2.5. Such
rules (i.e., rules without premises) are named axioms.

2.2 Induction on terms

• Inductive definitions on terms are pervasive in computer science. Two examples:

– The size of a term:

∗ size(true) = size(false) = size(0) = 1

∗ size( succ t1) = size( pred t1) = size( iszero t1) = 1 + size(t1)

∗ size( if t1 then t2 else t3) = 1 + size(t1) + size(t2) + size(t3)

– The depth of a term:

∗ depth(true) = depth(false) = depth(0) = 1

∗ depth( succ t1) = depth( pred t1) = depth( iszero t1) = 1 + depth(t1)

∗ depth( if t1 then t2 else t3) = 1 +max{depth(t1), depth(t2), depth(t3)}

• The constructive characterization of terms gives us an important tool for proving
things about terms, the principle of induction on terms, or principle of structural
induction.

Theorem 2.9 [Principle of induction on terms] If, for each term s, given P (r) for all
immediate subterms r of s we can show P (s), then P (s) holds for all s.

• Variants include: induction on depth and size.
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2.2.1 Well-founded induction

• Mathematical induction is a convenient tool for recursive functions design (for func-
tions defined on finite structures).

• The most common forms of induction are

– The well-known principle (or axiom) of induction on natural numbers:

∗ Suppose that P is a predicate on the set of natural numbers N. Then, if
P (0) and, for all i ∈ N, P (i) implies P (i+ 1), then P (n) holds for all n ∈ N

– The structural induction principle (which can be proved by using the principle
of induction on natural numbers)

• They can all be treated as instances of a general form of induction, called well-founded
induction.

Definition 2.10 Suppose we have a set (a, b ∈)A with a preorder ≤ (a preorder on a set
A is a binary relation on A which is reflexive and transitive). We write b < a when b ≤ a
and a 6= b; in this case we say that a is strictly greater than b (or, equivalently, b is strictly
lesser than a). We say that ≤ is well-founded if it contains no infinite (strictly) decreasing
chains. For example, the usual order on the set of natural numbers N, with 0 < 1 < 2 < . . .
is well-ordered, but the same order on the set Z of integers, . . . < −2 < −1 < 0 < 1 < 2 . . .,
is not.

Remarks 2.11

• An equivalent definition is that a binary relation ≤ on a set A is well-founded iff every
nonempty subset B of A (∅ 6= B ⊆ A) has a minimal element, where a ∈ B is minimal
if there is no a′ ∈ B with a′ < a.

• A preorder on a set (a, b ∈)A which is also antisymmetric (i.e. a ≤ b and b ≤ a
implies a = b) is called a partial order. A partial order ≤ is called a total order if
it also has the property that, for each a, b ∈ A, eiher a ≤ b or b ≤ a. In general a
well-founded relation need not be a total order !

Axiom 2.12 [Generalized or well-founded induction principle] Let ≤ be a well-founded
binary relation on set (a, b ∈)A and let P be a predicate on A. If P (a) holds whenever we
have P (b) for all b < a, then P (a) is true for all a ∈ A.

Remark 2.13 More familiar forms of induction can be obtained by using the following
well-founded relations:

• b < a if b+ 1 = a, for natural number induction,

• e′ < e if e′ is an immediate sub-expression of e, for structural induction.

2.3 Evaluation relation

• In this course we only use operational semantics.

• In particular, we use the so-called ”small-step structural operational semantics”.
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• Small-Step Structural Operational Semantics can be characterized as follows:

– We define an abstract machine, consisting of:

∗ A set of states

∗ A transition relation that defines how the state changes over time

– In the simple case we are considering now, the state is just the program

∗ Computation is rewriting (”simplification”) of the program

• We leave aside numbers for the moment, and consider a very simple language B of
just boolean expression

• Apart from the syntax of terms, we also introduce a class of ”end-states” or values.

• Values are possible final results of evaluation.

Definition 2.14 [Syntax of terms and values for B]

(a) (Terms) t ::= true | false | if t then t else t

(b) (Values) v ::= true | false

• The semantics is defined based on an evaluation relation on terms →

• The elements of the relation → are pairs of terms

– We write t→ t′ to express that (t, t′) ∈→
– t→ t′ expresses the fact that t evaluates to t′ in one step.

Definition 2.15 [Evaluation relation specification for B]

(E-IfTrue) if true then t2 else t3 → t2

(E-IfFalse) if false then t2 else t3 → t3

(E-If)
t1 → t′1

if t1 then t2 else t3 → if t′1 then t2 else t3

• Some experts prefer to use the term reduction for this relation, instead of evaluation.
By using this terminology:

– we speak of ”reduction steps” instead of ”evaluation steps”

– t→ t′ expresses the fact that t reduces to t′ in one step

• Also, sometimes one uses the following terminology:

– E-IfTrue and E-IfFalse are computation rules

– E-If is a congruence rule

Definition 2.16 The one-step evaluation relation for B → is the smallest binary relation
on terms satisfying the three rules given above (E-IfTrue, E-IfFalse, E-If).1 When the pair
(t, t′) is in the evaluation relation, we say that t→ t′ is derivable.

1For the other languages that we study in this course we will omit this definition. We will always assume
implicitly that we only take the smallest relation that satisfy the rules of the given specification. In fact,
it is comon practice to avoid repeating this definition and to take the inference rules as constituting the
definition of the relation all by themselves.
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• A pair (t, t′) is in the evaluation relation ((t, t′) ∈→ ) iff it is justified by the rules

• This justification can be made explicit as a derivation tree

– The leaves of a derivation tree correspond to the axioms of the specification (the
computation rules E-IfTrue and E-IfFalse, in this case)

– The internal nodes of a derivation tree correspond to the inference rules of the
specification (the congruence rule E-If, in this case)

Exercise 2.17 Study the derivation tree given in [1] at page 36, and build the derivation
tree that proves the following transition:

if t1 then false else true→ if t′1 then false else true

where

t1 = if t2 then true else false

t′1 = if true then true else false

t2 = if false then false else true

• A powerful technique for proving properties of the evaluation relation is:

– Induction on derivations

• Example: prove the determinacy of the evaluation relation

Theorem 2.18 [Determinacy of one-step evaluation]: If t→ t′ and t→ t′′ then t′ = t′′.

Exercise 2.19 The proof of the above theorem (determinacy of one-step evaluation) can
proceed by induction on a derivation of t → t′ (the proof is given in [1] at page 37). Spell
out the principle of induction on derivations ([1], page 38, exercise 3.5.5).

Definition 2.20 A term t is in normal form (sometimes we say ”t is a normal form”) if
no evaluation rule applies to it, i.e., if there is no t′ such that t→ t′ .

Theorem 2.21 Every value is in normal form.

Remarks 2.22 • It is natural to design models where values are treated as final results
of evaluations

– The property stated by the last theorem given above (every value is in normal
form) should be valid in any language.

– For the simple language B the converse property is also true:

∗ All normal forms are values (this follows easily by structural induction)

• However, in general, normal forms need not be values (see the definition of ”stuckness”
given below)

Definition 2.23 The multi-step evaluation relation →∗ is the reflexive, transitive closure
of the one-step evaluation relation → .
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• The following properties can be established for the language B [1]

– normal forms are unique (if t →∗ u and t →∗ u′ , where u and u′ are both
normal forms, then u = u′)

– evaluation always terminates (for every term t there is some normal form t′ such
that t→∗ t′ )

• In the sequel, we consider again the language NB

• We extend the above definitions given for B with rules for numeric expressions

• The syntax of terms in NB was introduced previously, but we repeat it here and we
introduce the classes of values and numeric values

Definition 2.24 [Syntax of terms and values in NB]

(Terms) t ::= true | false | if t then t else t | 0 | succ t | pred t | iszero t

(Values) v ::= true | false | nv

(Numeric values) nv ::= 0 | succ nv

Definition 2.25 [Evaluation relation specification for NB]

(E-IfTrue) if true then t2 else t3 → t2

(E-IfFalse) if false then t2 else t3 → t3

(E-If)
t1 → t′1

if t1 then t2 else t3 → if t′1 then t2 else t3

(E-Succ)
t1 → t′1

succ t1 → succ t′1

(E-PredZero) pred 0→ 0

(E-PredSucc) pred ( succ nv1)→ nv1

(E-Pred)
t1 → t′1

pred t1 → pred t′1

(E-IsZeroZero) iszero 0→ true

(E-IsZeroSucc) iszero ( succ nv1)→ false

(E-IsZero)
t1 → t′1

iszero t1 → iszero t′1

• What properties remain true?

– Values are normal forms? Yes.

– All normal forms are values? No.

∗ ( succ false) is in normal form

∗ ( succ false) is not a value
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• Note the use of numeric values in the rules that specify the evaluation relation.

– Is it possible to use the rule E-PredSucc to reduce the expression pred ( succ false)
to false?

– How do you evaluate the expression pred ( succ ( pred 0))?

• Normal forms that are not values (like ( succ false)) deserve special attention.

Definition 2.26 A closed term is stuck if it is in normal form but not a value.2

• Value terms represent the (normal) end-results of computation

• Stuck terms model run-time errors

– A key goal of type systems will be to remove such run-time errors

2.4 A Haskell Implementation of Arithmetic Expressions

• The Haskell code given below implements the syntax and semantics of the language
NB introduced formally in this chapter 2.

• We implement the class of NB terms by using the following data declaration:

data Term = TmTrue | TmFalse | TmZero

| TmIf Term Term Term | TmSucc Term

| TmPred Term | TmIsZero Term

instance Show Term where

show TmTrue = "true"

show TmFalse = "false"

show TmZero = "0"

show (TmSucc t1) = "(succ " ++ (show t1) ++ ")"

show (TmPred t1) = "(pred " ++ (show t1) ++ ")"

show (TmIsZero t1) = "(iszero " ++ (show t1) ++ ")"

show (TmIf t1 t2 t3) = " if " ++ (show t1) ++ " then " ++

(show t2) ++ " else " ++ (show t3) ++ " "

• Values and numeric values are determined with the aid of the predicates isval and
isnumericval, respectively.

isval :: Term -> Bool

isval TmTrue = True

isval TmFalse = True

isval t = isnumericval t

isnumericval :: Term -> Bool

isnumericval TmZero = True

isnumericval (TmSucc t) = isnumericval t

isnumericval _ = False

2A term is said to be closed if it contains no (free) variables; see also chapter 3.
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• An evaluation relation need not be a function. In general, a term may reduce to zero,
one or more terms. To express this idea, we implement the rules that specify the
evaluation relation by defining a Haskell function eval1 of the type:

eval1 :: Term -> [Term]

• The abstract machine that specifies the semantics of NB is deterministic

– The function eval1 t always produces:

∗ Either a list with exactly one term [t’]

∗ Or an empty list [] when the term t is in normal form

• In the definition of function eval1 we use guards (see [6] page 16) and pattern guards.

– Haskell 2010 changes the syntax for guards by replacing the use of a single
condition with a list of qualifiers

– These qualifiers, which include both conditions and pattern guards of the form
pat <- exp, serve to bind/match patterns against expressions

– You can find more information about patterns guards at [41]

eval1 (TmIf TmTrue t2 t3) = [t2]

eval1 (TmIf TmFalse t2 t3) = [t3]

eval1 (TmIf t1 t2 t3) = [TmIf t1’ t2 t3 | t1’ <- eval1 t1]

eval1 (TmSucc t1) = [TmSucc t1’ | t1’ <- eval1 t1]

eval1 (TmPred TmZero) = [TmZero]

eval1 (TmPred t1)

| TmSucc nv1 <- t1,

isnumericval nv1 = [nv1]

| otherwise = [TmPred t1’ | t1’ <- eval1 t1]

eval1 (TmIsZero TmZero) = [TmTrue]

eval1 (TmIsZero t1)

| TmSucc nv1 <- t1,

isnumericval nv1 = [TmFalse]

| otherwise = [TmIsZero t1’ | t1’ <- eval1 t1]

eval1 _ = []

• The function eval takes a term t and finds its normal form by repeatedly calling
eval1 t, until eval1 returns an empty list

– When eval1 t returns an empty list

∗ Either the term t is a value

∗ Or the term t is stuck

eval :: Term -> Term

eval t =

case eval1 t of

[] -> if isval t then t

else error ("Term "++ (show t) ++ " is stuck")

[t’] -> eval t’

_ -> error "Nondeterministic evaluation (impossible!)"
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• Let

t1 :: Term

t1 = TmSucc (TmPred (TmSucc (TmPred (TmSucc TmZero))))

t2 :: Term

t2 = TmIf (TmIsZero t1) (TmSucc t1) (TmPred t1)

t3 :: Term

t3 = TmIf TmTrue (TmSucc t1) (TmPred t1)

t4 :: Term

t4 = TmIf TmFalse (TmSucc t1) (TmPred t1)

t5 :: Term

t5 = TmSucc (TmPred TmFalse)

• One can perform the following experiments:

Main> eval t1

(succ 0)

Main> eval t2

0

Main> eval t3

(succ (succ 0))

Main> eval t4

0

Main> eval t5

*** Exception: Term (succ (pred false)) is stuck



Chapter 3

The Untyped Lambda-Calculus

• We now switch to a more interesting programming language than the expression lan-
guage we considered so far

• The (untyped) lambda-calculus (λ-calculus) is:

– A Turing-complete language

– And its key abstractions - function definition and application - are closely related
to abstractions found in programming languages

Remarks 3.1

• The lambda-calculus is of foundational importance in Computer Science

– It is mainly used in the semantic investigation of sequential languages

• The untyped lambda-calculus was developed by Alonzo Church in the 1920s and 1930s
[22] (a comprehensive presentation of this calculus is provided in [14])

• In denotational semantics, the mathematical domain D that can express denotations
of untyped lambda-calculus terms can be defined as solution of the following domain
equation1 (first solved in the 1970s by Dana Scott [39]):

D ∼= D→ D

– At present, most researchers seem to prefer operational semantics

– In this course we only use operational semantics

• An important calculus that can be used to express distributed and mobile computation
is the pi-calculus (π-calculus), introduced by Robin Milner [9]

3.1 Basics

• We begin the study of lambda calculus by investigating a very simple language

– We will use the symbol λ for the language of pure untyped lambda-calculus given
in the following definition

1Notice that the solution is obtained up to isomorphism ’∼=’.

13
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– A term in this language can be a variable (x), where x is taken from a countable
set V of variable names, a lambda-abstraction (λx . t), or an application (t t).

Definition 3.2 [Syntax of λ (the pure untyped lambda-calculus)] t ::= x | λx . t | t t

Exercise 3.3 The syntax of λ can be implemented in Haskell as follows:

type X = String

data Term = TmVar X | TmAbs X Term | TmApp Term Term

By using an appropriate design pattern develop an UML class diagram representing the
syntactic constructions of the language λ.

• It is customary to use the following syntactic conventions [1]

– Application associates to the left (t u v means (t u) v, not t (u v))

– Bodies of λ-abstractions extend as far to the right as possible (λx . λy . x y means
λx . (λy . x y), not λx . (λy . x) y)

• Scope and free variables

– In the term λx . t, the variable x is bound in t

∗ t is the scope of the binding

– A variable is free if it is not bound by any enclosing abstraction

– A term without free variables is said to be closed

∗ Closed terms are also called combinators. Two examples:

· id = λx . x (identity, the simplest combinator)

· k = λx . λy . x

• Evaluating λ terms always boils down to performing function application:

– An actual parameter (term) is substituted for the formal parameter in the body of
a lambda abstraction, using the following rule called beta-reduction (β-reduction):

(λx . t12) t2 → [x 7→ t2]t12

– The term (λx . t12) t2 is sometimes called a redex (”reducible expression”)

• The substitution operation [x 7→ t2]t12 replaces in t12 all free occurrences of the variable
x with t2 (the substitution operation is introduced formally in Definition 3.20)

Remark 3.4 There are several possible evaluation strategies for λ-calculus

• Full beta-reduction (any redex may be reduced at any time)

• Normal order: leftmost, outermost redex is always reduced first (recall that id = λx . x,
k = λx . λy . x). Example (redexes are underlined at each step):

k (k (λz . k z id) id) id→
(λy . k (λz . k z id) id) id→
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k (λz . k z id) id→

(λy . (λz . k z id)) id→

λz . k z id→

λz . (λy . z) id→

λz . z /→

– We use the notation t /→ to express that the term t cannot be reduced any more
(t is regarded as a normal form)

• Call-by-name is like normal order, but yet more restrictive (than normal order), in
the sense that no reduction is allowed inside abstractions

k (k (λz . k z id) id) id→

(λy . k (λz . k z id) id) id→

k (λz . k z id) id→

(λy . (λz . k z id)) id→

λz . k z id /→

• Call-by-value: only the outermost redexes are reduced, and a redex is reduced only
after its right-hand side has been reduced to a value

k (k (λz . k z id) id) id→

k ((λy . (λz . k z id)) id) id→

k (λz . k z id) id→

(λy . (λz . k z id)) id→

λz . k z id /→

Remark 3.5 We recall that a value is a term that cannot be reduced any further and
represents a useful final result of computation. As it will be seen (Definition 3.15), for the
language λ the only values are lambda-abstractions.

Exercise 3.6 Apply the full beta-reduction strategy to reduce the term k (k (λz . k z id) id) id
to a normal form.

Exercise 3.7 Apply each of the evaluation strategies presented above to reduce the term
id (id (λz . id z)).

• The focus in this course is on type systems

• From a type-theoretic perspective the choice of a particular evaluation strategy is of
secondary importance

• Following [1], in the sequel we use call-by-value
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3.2 Programming in the Lambda-Calculus

• Multiple arguments

– Functions with more than one argument can be simulated using higher order
functions

∗ λ(x, y) . s is simulated by λx . λy . s

∗ f (a, b) is simulated by f a b

– Such expressions are sometimes called curried functions, in honor of the logician
Haskell Curry, best known for his work in combinatory logic [24, 25]

• For example, by using Haskell language notation the curried version of the function

\(x,y) -> (x+y)

is

\x -> \y -> (x+y)

which can also be written as

\x y -> (x+y)

• The (pure untyped) lambda-calculus is simple but expressive

• In this simple formalism it is possible to encode simple and complex data, including
Boolean and numeric values, pairs, lists, trees, etc.

• Church Booleans

tru = λt . λf . t

fls = λt . λf . f

Exercise 3.8 By using the Haskell description of λ terms given in Exercise 3.3 implement
the Church booleans tru and fls as Haskell terms

• The λ term test, test = λl . λm . λn . l m n, is like a conditional expression that can
be used (to test Church Boolean values) as in the following examples:

test tru v w →∗ v
test fls v w →∗ w

• Indeed

tru v w = (λt . λf . t) v w → (λf . v) w → v

fls v w = (λt . λf . f) v w → (λf . f) w → w

• One can also define functions on Booleans

not = λb . b fls tru
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and = λb . λc . b c fls

Exercise 3.9 Compute the logical expression: and (not fls) fls

• Encoding pairs

pair = λf . λs . λb . b f s

fst = λp . p tru

snd = λp . p fls

Exercise 3.10 Using an appropriate reduction strategy verify that fst (pair v w) →∗ v ,
and snd (pair v w)→∗ w .

• Church numerals

c0 = λs . λz . z

c1 = λs . λz . s z

c2 = λs . λz . s (s z)

c3 = λs . λz . s (s (s z))

– Intuitively, if we write sn z for s (”successor”) applied n times to z (”zero”) then
cn is λs . λz . sn z.

• Church numerals can be implemented in Haskell (by using the representation of λ
terms given in exercise 3.3) as follows:

c0 :: Term

c0 = TmAbs "s" (TmAbs "z" (TmVar "z"))

c1 :: Term

c1 = TmAbs "s" (TmAbs "z" (TmApp (TmVar "s") (TmVar "z")))

c2 :: Term

c2 = TmAbs "s" (TmAbs "z"

(TmApp (TmVar "s") (TmApp (TmVar "s") (TmVar "z"))))

...

• Various functions can be defined on Church numerals

– Successor: scc = λn . λs . λz . s (n s z)

– Zero test: iszro = λm .m (λx . fls) tru

– Addition: plus = λm . λn . λs . λz .m s (n s z)

Remark 3.11

• We encounter difficulties if we use a particular evaluation order. Under the call-by-
value evaluation strategy:

scc c1 → c′2 , where c′2 = λs . λz . s ((λs′ . λz′ . s′ z′) s z)
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– Under full beta-reduction, c′2 →∗ c2 (in two steps)

– The call-by-value regime does not allow us to reduce the term c′2 yet (c′2 contains
a redex, but the redex is under a lambda-abstraction)

• Although the language λ (of pure untyped lambda-calculus) is expressive enough for
any programming task, it is convenient to extend the calculus with various features,
including numbers, booleans and data structures

3.3 Recursion

• Some λ terms do not have a normal form (such terms are said to diverge)

• For example, the term omega has no normal form (omega is a divergent combinator)

omega = (λx . x x) (λx . x x)

omega→ omega → omega · · ·

• More surprisingly, although the language λ provides no explicit construction to express
recursion, arbitrary recursive functions can be defined in the lambda calculus!

• Let f : A → A be a function. When x ∈ A is such that f(x) = x, we call x a fixed
point of f . In a framework where fixed points are unique, we can write x = fix(f).2

– Intuitively, we can define a higher-order mapping fix : (A→ A)→ A such that
fix(f) = x, which implies

fix(f) = f(fix(f))

• Haskell [10, 41] is a purely functional programming language, based on an evaluation
strategy known as call-by-need.3

• In Haskell it is very easy to define the fixed point combinator:

fix :: (a -> a) -> a

fix = \f -> f (fix f)

(i.e. fix f = f (fix f))

Remark 3.12 By expanding this definition of the fixed-point combinator we get:

fix f = f (fix f) = f (f (fix f)) = f (f (f (fix f))) = ...

• By using fix, you can define a recursive function such as factorial, as fixed point
of a non-recursive higher-order mapping given by

hofact :: (Int -> Int) -> Int -> Int

hofact = \fct -> \n -> if (n == 0) then 1 else n * fct (n-1)

2For example, according to the well-known Banach fixed point theorem [13], any contracting function
f : M →M defined on a nonempty complete metric space M has a unique fixed point.

3Call-by-need is an optimized version of call-by-name, where if the function argument is evaluated, that
value is stored for subsequent uses, in order to avoid the need for subsequent re-evaluation.
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• or equivalently

hofact fct n = if (n == 0) then 1 else n * fct (n-1)

• We put

factorial :: Int -> Int

factorial = fix hofact

Main> factorial 5

120

• Intuitively, if n>0 and we compute (factorial n) a new copy of (the body of) hofact
is unrolled upon each recursive call, as suggested below:

factorial n = (fix hofact) n

= hofact (fix hofact) n

= if (n==0) then 1 else n * (fix hofact) (n-1)

= if (n==0) then 1 else n * (hofact (fix hofact)) (n-1)

= ...

• Another example:

g :: (Int -> Int) -> Int -> Int

g = \f -> \n -> if (n == 0) then 0 else 2+f(n-1)

double :: Int -> Int

double n = (fix g) n

Main> double 5

10

3.3.1 Example

• In a call-by-value setting the fixed-point combinator4 is more complex:

fix = λf . (λx . f (λy . x x y)) (λx . f (λy . x x y))

• To avoid complicated manipulations of Church numerals, in the example given below
we work in the language λNB. λNB is obtained by extending the language λ with the
basic types of language NB, namely Bool and Nat

• In λNB we can express the function double (implemented above in Haskell) as follows:

g = λf . λn . if ( iszero n) then 0 else succ ( succ (f ( pred n)))

double = fix g

• We want to compute double ( succ 0) = (fix g) ( succ 0)

4There is a simpler call-by-name fixed point combinator Y = λf . (λx . f (x x)) (λx . f (x x)), but Y
diverges in a call-by-value setting.
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• In the calculations given below we combine

– The rules that specify the transition relation for the language NB and

– The call by value beta-reduction rule (E-AppAbs) given in Definition 3.16: 5

(E-AppAbs) (λx . t12) v2 → [x 7→ v2]t12

where v2 is a value, namely an NB value or a lambda-abstraction.

• We can compute as follows:

double ( succ 0)

= (fix g) ( succ 0)

→ (λx . g (λy . x x y)) (λx . g (λy . x x y)) ( succ 0) [= h h ( succ 0)]

→ g dbl ( succ 0)

[where dbl = λy . h h y, h = λx . g (λy . x x y)]

→ (λn . if ( iszero n) then 0 else succ ( succ (dbl ( pred n)))) ( succ 0)

→ if ( iszero ( succ 0)) then 0 else succ ( succ (dbl ( pred ( succ 0)))))

→ if false then 0 else succ ( succ (dbl ( pred ( succ 0)))))

→ succ ( succ (dbl ( pred ( succ 0))))

→ succ ( succ (dbl 0))

→ succ ( succ (h h 0))

[h h→ g (λy . h h y) = g dbl]

→ succ ( succ (g dbl 0))

→ succ ( succ ((λn . if ( iszero n) then 0 else succ ( succ (dbl ( pred n)))) 0))

→ succ ( succ ( if ( iszero 0) then 0 else succ ( succ (dbl ( pred 0)))))

→ succ ( succ ( if true then 0 else succ ( succ (dbl ( pred 0)))))

→ succ ( succ 0)

Remark 3.13 For any argument n

dbl n→ h h n → g dbl n

i.e.

dbl n→∗ g dbl n

This reduction produces a new copy of g at each recursive call step. Also, note that

dbl = λy . h h y = λy . (h h) y

5The substitution operation used in the rule (E-AppAbs) is introduced formally in Definition 3.20.
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and

fix g → h h

Remark 3.14 Although it is possible to ”encode” various programming features in the pure
lambda calculus (e.g., Booleans, numbers, data structures, recursion) in practice it is more
convenient to extend the syntax of the calculus with corresponding constructions.

3.4 Evaluation relation

• In this section we present the formal definition of the operational semantics of λ

• We recall that the only values in λ are lambda-abstractions and the syntax of λ is
given by: t ::= x | λx . t | t t.

Definition 3.15 [Values in λ] v ::= λx . t

Definition 3.16 [Evaluation relation specification for call-by-value pure untyped lambda-
calculus λ]

Computation rule:

(E-AppAbs) (λx . t12) v2 → [x 7→ v2]t12

Congruence rules:

(E-App1)
t1 → t′1

t1 t2 → t′1 t2

(E-App2)
t2 → t′2

v1 t2 → v1 t′2

Remark 3.17 In the call-by-value strategy you evaluate an application (t1 t2) as follows:
reduce t1 to a value (i.e., a lambda abstraction) v1 using rule (E-App1), reduce t2 to a value
v2 using (E-App2), and next use rule (E-App) to evaluate the application (v1 v2).

• Substitution can be expressed by using alpha-conversion. Systematically replacing
some bound variable names in a (lambda calculus) term we obtain another term that,
intuitively, should behave the same. For example, we expect that the terms (λy . y)
and (λx . x) should behave the same, because they denote the same (identity) function.

• Replacing a bound variable name (occurring in a lambda calculus term) with a fresh
name is called alpha-conversion.

• Two terms are said to be alpha-equivalent if one can be obtained from the other by
using alpha-conversion operations.

Convention 3.18 [Alpha-conversion] Alpha-equivalent terms are interchangeable in all con-
texts (i.e., we work with alpha-equivalence classes of terms).

Definition 3.19 [Free variables of a λ term] The set FV (t) of free variables of an λ term
t can be defined inductively:
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FV (x) = {x}

FV (λx . t1) = FV (t1) \ {x}

FV (t1 t2) = FV (t1) ∪ FV (t2)

• In definition 3.20, in the equation for [x 7→ s](λy . t1) it is always possible (using
alpha-conversion) to choose a bound variable name y such that y 6= x and y /∈ FV (s).

Definition 3.20 [Substitution for λ]

[x 7→ s]x = s
[x 7→ s]y = y if y 6= x

[x 7→ s](λy . t1) = λy . ([x 7→ s]t1) if y 6= x, y /∈ FV (s)
[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

.

Examples 3.21

• [x 7→ y](λy . x) and [x 7→ y](λz . x) must yield the same result.

• [x 7→ y](λx . z) and [x 7→ y](λw . z) must yield the same result.

Exercise 3.22 Recal that id = λx . x (id is the identity combinator). What does the term

(λy . y (λx . x)) (λx . x) id

reduce to?



Chapter 4

Nameless Representation of Terms

• Alpha-conversion is convenient for theoretical investigations

• For implementation purposes we need a more concrete representation of lambda-terms

• Nicolas De Bruijn (1972) introduced a concept of nameless term

– Natural numbers are used as pointers to λ binders

– A natural number k represents ”the variable bound by the k-th enclosing λ”

– De Bruijn terms are invariant with respect to alpha-conversion

– Each closed ordinary lambda term has a unique de Bruijn representation

4.1 Contexts

• In this chapter we consider again the (pure untyped) lambda-calculus λ. We recall
the syntax of ordinary lambda-calculus terms

t ::= x | λx . t | t t

where x is a variable name taken from a countable set V, (λx . t) is a lambda-
abstraction and (t t) is an application

• Formally, λ-terms written using De Bruijn indices have the following syntax:1

t ::= k | λ . t | t t

where k ∈ N is a de Bruijn index (represented by a natural number)

• It is convenient to introduce nameless (de Bruijn) terms by means of examples

Examples 4.1

Closed λ-calculus term Nameless (de Bruijn) term

λx . x λ . 0

λx . λy . x λ . λ . 1

λx . λy . x (y x) λ . λ . 1 (0 1)

λx . λy . (x y) y λ . λ . (1 0) 0
1A formal definition of the set of de Bruijn terms as a family of sets {T0, T1, T2, . . .}, where, for any n ∈ N,

the elements of Tn are terms with at most n free variables is given in [1], Definition 6.1.2.

23
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Exercise 4.2 What are the nameless representations of the following combinators (i.e.,
closed terms): c0, c1, c2, . . ., scc, tru, iszro, plus, fix ?

• Lambda terms that contain free variables can be translated to corresponding nameless
terms by using the concept of a naming context

• A naming context Γ is a sequence xn, . . . , x0 of variable names from the set V

• To deal with a term t containing n free variables we need a naming context Γ, such
that length(Γ) ≥ n

Example 4.3 Under Γ = x, y, z, a, b (i.e., x 7→ 4, y 7→ 3, z 7→ 2, a 7→ 1, b 7→ 0) we have

λ calculus term with free variables Nameless term Remark

x (y z) 4 (3 2)

λw . y w λ . 4 0 4 = 3 + 1 (1 λ-binder)

λw . λa . x λ . λ . 6 6 = 4 + 2 (2 λ-binders)

Definition 4.4 Let x0, . . . , xn ∈ V.2 A naming context Γ = xn, xn−1 . . . , x1, x0 is a se-
quence that assigns to each xi the de Bruijn index i. Let Context with typical variable Γ
be the set of all naming contexts. We write dom(Γ) = {xn, . . . , x0} to denote the set of
variables in the sequence Γ.

• A naming context is a finite (possibly empty) sequence or list of variable names, hence
we can put Context = V∗, where V is the given countable set of variable names. We
let Γ,∆ range over the set Context.

– Note that in subsequent chapters contexts will also store type information; the
type information will mainly be used by the type checker

• We also introduce a set V namesContext of variable names contexts, which are just
lists of variable names.

– In this chapter the two sets (V namesContext and Context) are equal.

– However, in subsequent chapters contexts will also store type information and
the two sets will behave differently.

Definition 4.5 We define the set V namesContext of variable names contexts as follows:
(γ ∈)V namesContext = V∗.3

A variable names context γ = xn, xn−1 . . . , x1, x0 is a sequence that assigns to each xi
the de Bruijn index i. We write dom(γ) = {xn, . . . , x0} to denote the set of variable names
in the sequence γ.

• In the sequel we present a Haskell implementation of de Bruijn nameless terms

2Recall that V is a given countable set of variable names.
3This set V namesContext of variable names contexts is not used in [1]. In this chapter

V namesContext = Context. However, in subsequent chapters the elements of the set Context will also
contain type information (not included in V namesContext). We use this set V namesContext to avoid
transmitting type information in the arguments of the auxiliary mappings removenames and restorenames
introduced below. The mappings removenames and restorenames do not need to handle type information.
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• The mathematical definitions of the relevant concepts will be constructed in a series
of exercises

• First we implement the syntax of ordinary lambda terms:

type X = String

data Term = TmVar X | TmAbs X Term | TmApp Term Term

instance Show Term where

show (TmVar x) = x

show (TmAbs x term) = "(\\" ++ x ++ "." ++ (show term) ++ ")"

show (TmApp t1 t2) = "(" ++ (show t1) ++ " " ++ (show t2) ++ ")"

• The type X is the Haskell implementation of the class V of variable names, and the
implementation of terms is obvious

• Also, we implement the syntax of nameless terms as follows:

type K = Int

data T = Tvar K | Tabs X T | Tapp T T

instance Show T where

show (Tvar k) = (show k)

show (Tabs _ t) = "(\\" ++ "." ++ (show t) ++ ")"

show (Tapp t1 t2) = "(" ++ (show t1) ++ " " ++ (show t2) ++ ")"

• The type K implements the class of de Bruijn indices (numeric, nameless variables)

• The implementation of nameless terms is obvious, apart from one detail

– A nameless abstraction λ . t is implemented by a term (Tabs x t) that contains

∗ A nameless term t implementing the body of the abstraction

∗ Following the ML implementation provided in [1], a term (Tabs x t) also
contains a variable name x (of the type X) which is used as explained in
remark 4.7.

• Our next aim is to implement a pair of functions, removenames and restorenames,
that can be used to convert an ordinary lambda term to a nameless term and back.

type Context = [X]

type VnamesContext = [X]

toVnamesCtx :: Context -> VnamesContext

toVnamesCtx = id

index :: (Eq a) => a -> [a] -> Int

index x [] = error "element out of context"

index x (x’:xs) = if (x’ == x) then 0 else 1 + index x xs
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removenames :: Term -> VnamesContext -> T

removenames (TmVar x) xs = Tvar (index x xs)

removenames (TmAbs x t1) xs =

Tabs x (removenames t1 (x:xs))

removenames (TmApp t1 t2) xs =

Tapp (removenames t1 xs) (removenames t2 xs)

• In this chapter, both types Context and VnamesContext are sequences of variable
names.4 The Haskell list provides a convenient mean to implement this concept.

– Obviously, the two types Context and VnamesContext represent the Haskell
implementation of the sets Context and V namesContext, respectively.

• The function toVnamesCtx makes a variable names context from a given context.

– In this chapter toVnamesCtx is just the identity mapping

– In subsequent chapters we will add type information to variable names, and
toVnamesCtx will remove the type information attached to each variable name

Remarks 4.6

– According to the mathematical definition given above (based on [1]), the rightmost
variable in the sequence is given the de Bruijn index 0 (we count binders from
right to left)

– In Haskell it is more convenient to access the elements in a list from left to right
(starting from the head of the list). Also, it is easier to add elements to the left
by using Haskell’s cons operator ’:’.

– Hence, in the Haskell implementation the head of a list is given the de Bruijn
index 0. Also, we count binders from left to right.

– When we consider examples taken from the book [1] we present the elements in
a (list implementing a) context in reversed order.5

∗ Note that the Haskell standard module Prelude.hs contains the library func-
tion reverse which reverses a list.

• removenames t xs takes two arguments, an ordinary lambda term t and a sequence
of variable names xs, and yields the corresponding nameless term of the type T

– We only want to compute (removenames t xs) when the set of free variables in
t is included in the variable names context xs

Remark 4.7 In the second equation of removenames, the variable name x is stored in the
nameless term that is produced. Using this variable name x as a hint [1], the function
restorenames can yield (back) an ordinary lambda term whose bound variable names are
as similar as possible to the bound variable names from the original (ordinary) lambda term.

4In general, some binding (e.g., typing) information can be attached to each variable in a context, as it
will be seen in subsequent chapters.

5In fact, the ML implementation available from https://www.cis.upenn.edu/ bcpierce/tapl/ also uses
this approach, since in ML it is also more convenient to access the elements of a list from left to right.
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• The function restorenames produces an ordinary lambda term from a nameless term
and a naming context, taking into account the hints for the variable names contained
in the nameless term

restorenames :: T -> VnamesContext -> Term

restorenames (Tvar k) xs =

TmVar (xs !! k)

restorenames (Tabs x t1) xs =

let x’ = pickFreshName xs x

in TmAbs x’ (restorenames t1 (x’:xs))

restorenames (Tapp t1 t2) xs =

TmApp (restorenames t1 xs) (restorenames t2 xs)

pickFreshName :: VnamesContext -> X -> X

pickFreshName xs x =

if isBoundName xs x then pickFreshName xs (x ++ "’") else x

isBoundName :: VnamesContext -> X -> Bool

isBoundName [] x = False

isBoundName (x’:xs) x = if (x’==x) then True else isBoundName xs x

• The library function !! (presented in infix form) takes a variable names context xs

and a de Bruijn index k and yields the k-th name in xs.6 It is used in the first
equation of restorenames to restore a variable name corresponding to k from the
given variable names context xs.

• In the second equation of restorenames (the equation for abstraction) the hint x

is used as explained in remark 4.7 (provided the argument of restorenames was
computed using removenames)

– The function pickfreshname is based on an OCaml implementation available
from the web site associated with the book [1]

– pickfreshname takes a variable names context xs and a name hint x

∗ it finds a new name x’ similar to x, such that x’ is not already in xs

• We define some Haskell values of the type Term (ordinary lambda terms)

t1 :: Term

t1 = TmAbs "m" (TmAbs "n" (TmAbs "s" (TmAbs "z"

(TmApp (TmApp (TmVar "m") (TmVar "s"))

(TmApp (TmApp (TmVar "n") (TmVar "s")) (TmVar "z"))))))

6The function !! is a general polymorphic operator (from the standard Haskell library Prelude.hs),
which returns the element of a list located at a specified index, starting from 0. For example:

Main> [1,2,3,4,5] !! 3

4

Main> [1,2,3,4,5] !! 0

1
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t2 :: Term

t2 = TmApp (TmVar "x") (TmApp (TmVar "y") (TmVar "z"))

t3 :: Term

t3 = TmAbs "w" (TmApp (TmVar "y")(TmVar "w"))

t4 :: Term

t4 = TmAbs "w" (TmAbs "a" (TmVar "x"))

• One can perform the following experiments:

Main> t1

(\m.(\n.(\s.(\z.((m s) ((n s) z))))))

Main> t2

(x (y z))

Main> t3

(\w.(y w))

Main> t4

(\w.(\a.x))

• Next, we define some values of the type T (de Bruijn terms), that we obtain by applying
removenames, with respect to given naming contexts. Recall that the Haskell standard
module Prelude.hs contains the library function reverse which reverses a list.

ctx1 :: Context

ctx1 = reverse ["x","y","z","a","b"]

tb1 :: T

tb1 = removenames t1 []

tb2 :: T

tb2 = removenames t2 (toVnamesCtx ctx1)

tb3 :: T

tb3 = removenames t3 (toVnamesCtx ctx1)

tb4 :: T

tb4 = removenames t4 (toVnamesCtx ctx1)

• We get

Main> tb1

(\.(\.(\.(\.((3 1) ((2 0) 1))))))

Main> tb2

(4 (3 2))

Main> tb3

(\.(4 0))

Main> tb4

(\.(\.6))
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• We design some auxiliary functions in order to test the properties of removenames

and restorenames

• These functions should have the following properties

Main> let xs = toVnamesCtx ctx in removenames (restorenames t xs) xs

t

for any nameless term t (provided the naming context ctx is sufficiently large
to handle the de Bruijn indices corresponding to free variables), and

Main> let xs = toVnamesCtx ctx in restorenames (removenames t xs) xs

t’

and t’ is identical with t up to renaming of bound variables (i.e. t and t’ are
alpha-equivalent), for any ordinary term t (provided the set of free variables of
t is included in the set of variables contained in ctx).

• Let

tt :: T -> Context -> T

tt t ctx =

let xs = toVnamesCtx ctx in removenames (restorenames t xs) xs

termterm :: Term -> Context-> Term

termterm t ctx =

let xs = toVnamesCtx ctx in restorenames (removenames t xs) xs

• The following experiments confirm that in our implementation removenames and
restorenames satisfy the above mentioned properties

Main> tt tb1 []

(\.(\.(\.(\.((3 1) ((2 0) 1))))))

Main> tt tb2 ctx1

(4 (3 2))

Main> tt tb3 ctx1

(\.(4 0))

Main> tt tb4 ctx1

(\.(\.6))

Main> termterm t1 []

(\m.(\n.(\s.(\z.((m s) ((n s) z))))))

Main> termterm t2 ctx1

(x (y z))

Main> termterm t3 ctx1

(\w.(y w))

Main> termterm t4 ctx1

(\w.(\a’.x))

Exercise 4.8 (Source [1], Exercise 6.1.5) In this exercise you should work with the follow-
ing definitions. The set of ordinary lambda calculus terms (t ∈)T is given by
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t ::= x | λx . t | t t

where (x ∈)V is a given countable set of variable names. The set of nameless (de Bruijn)
terms (t ∈)TB is given by:7

t ::= k | λ . t | t t

where k ∈ N. Notice that you should not use ’hints’ in the (mathematical) definition of
nameless terms.

Let (Γ ∈)Context be the set of naming contexts, with typical variable Γ ranging over
Context. A naming context is a finite, possibly empty, sequence of variable names, hence
we could put Context = V∗, where V is the given countable set of variable names.

Let (γ ∈)V namesContext = V∗ be the set of variable names contexts, with typical vari-
able γ ranging over V namesContext. A variable names context is a finite, possibly empty,
sequence of variable names. You can proceed under the assumption that the variable names
in a variable names context γ (or a naming context Γ) are pairwise distinct.

1. Define a (mathematical) function removenamesγ(t), based on the above Haskell pro-
totype implementation. The function removenames receives two arguments: γ (a
variable names context) and t (an ordinary lambda term), such that FV (t) ⊆ dom(γ)
(i.e. the set of free variables in t is a subset of dom(γ)); the function removenames
computes the (single) representation of t as a De Bruijn (nameless) term.

2. Define a (mathematical) function restorenamesγ(t), based on the above Haskell pro-
totype implementation. The function restorenames receives as arguments a variable
names context γ and a nameless term t; its yield is an ordinary lambda term. You
should not use ’hints’ in the mathematical definitions! However, you will have to gen-
erate (somehow) variable names corresponding to abstractions occuring in a nameless
term. The solution proposed in [1] is to work under the assumption that the set V (of
variable names) is ordered. Under this assumption, it is accurate to say ”choose the
first variable name in V that is not already in dom(γ)” [1].

The functions removenames and restorenames must behave as follows:

• removenamesγ(restorenamesγ(t)) = t, for any t ∈ TB, and

• restorenamesγ(removenamesγ(t)) = t, up to alpha-conversion (Convention 3.18),
for any t ∈ T

In solving this exercise, we recommend that you use the (mathematical) representation of
contexts introduced in Definition 4.4 and Definition 4.5. Namely, a context should be repre-
sented as sequence of the form xn, xn−1, . . . , x1, x0, in which binders are counted from right
to left (variable xi corresponds to De Bruijn index i)

Exercise 4.9 Let γ = x, y, z, a, b. Compute restorenamesγ(removenamesγ(x (y z))) and
restorenamesγ(removenamesγ(λw . λa . x)).

7A formal definition of TB is given in [1], Definition 6.1.2, page 77, although there the set of nameless
terms is (also) named T .
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4.2 Shifting and Substitution

• Our final aim in this chapter is to define an operational semantics based on an evalu-
ation relation on de Bruijn (nameless) terms

• We need a substitution operation on nameless terms

• In preparation for the presentation of a substitution operation on nameless terms we
introduce a shifting operation

• Substitution is computed by induction on the structure of lambda terms.

• When a lambda-abstraction is encountered, as in [1 7→ t](λ . 2) (i.e. [x 7→ t](λy . x),
assuming that 1 is the index of x in the outer context)

– The de Bruijn indices of the free variables in t must be incremented (so that they
point to the same names in the new context)

• This is an (selective incrementation) operation called ”shifting”. Notice that

– Only the free identifiers should be shifted

– Identifiers that are bound should not be shifted

∗ For example, in t = 2 (λ . 0) (i.e., t = y (λx . x), assuming that 2 is the index
of y in the outer context)

· We must only shift the 2 (0 should not be shifted)

• The Haskell implementation of this shifting operation is very simple.

– The function (tShift d t) increments the de Bruijn indices of the free variables
in a nameless term t with d

tShift :: Int -> T -> T

tShift d t = aux 0 t

where aux :: Int -> T -> T

aux c (Tvar k) = if k>= c then Tvar (k+d) else Tvar k

aux c (Tabs x t1) = Tabs x (aux (c+1) t1)

aux c (Tapp t1 t2) = Tapp (aux c t1) (aux c t2)

• The function tShift takes two arguments: a numeric value d (which, in general, could
be negative; see the definition of the evaluation relation) and a nameless term t

– tShift uses an auxiliary mapping aux

• The right hand side of the first equation that defines the function aux is given by a
conditional statement with two alternatives

– The condition (k>=c) is true exactly when the identifier k is free, and hence, it
is incremented with d (d is the argument of tShift)

– The else branch corresponds to the condition (k<c) which is true exactly when
the identifier k is bound (hence it is not incremented)

• The parameter c (of aux) controls which variables should be shifted, i.e. incremented
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– The parameter c is incremented automatically with 1 when aux is called recur-
sively to perform the shifting in the body of an abstraction

• Let

ctx’ :: Context

ctx’ = reverse ["z"]

t’ :: Term

t’ = TmAbs "x" (TmAbs "y" (TmApp (TmVar "x")

(TmApp (TmVar "y") (TmVar "z"))))

tb’ :: T

tb’ = removenames t’ (toVnamesCtx ctx’)

t’’ :: Term

t’’ = TmAbs "x" (TmApp (TmApp (TmVar "x") (TmVar "z"))

(TmAbs "y" (TmApp (TmApp (TmVar "y") (TmVar "x"))

(TmVar "z"))))

tb’’ :: T

tb’’ = removenames t’’ (toVnamesCtx ctx’)

• One can perform the following experiments

Main> t’

(\x.(\y.(x (y z))))

Main> t’’

(\x.((x z) (\y.((y x) z))))

Main> tb’

(\.(\.(1 (0 2)))

Main> tb’’

(\.((0 1) (\.((0 1) 2))))

Main> tShift 2 tb’

(\.(\.(1 (0 4)))

Main> tShift 2 tb’’

(\.((0 3) (\.((0 1) 4))))

Main> tShift 100 tb’

(\.(\.(1 (0 102)))

Main> tShift 100 tb’’

(\.((0 101) (\.((0 1) 102))))

• We also present some experiments with variables tb1, tb2, tb3 and tb4

– tb1 contains no free variables (the result is not modified by the shifting operation)

Main> tShift 100 tb1

(\.(\.(\.(\.((3 1) ((2 0) 1))))))

Main> tShift 100 tb2

(104 (103 102))
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Main> tShift 100 tb3

(\.(104 0))

Main> tShift 100 tb4

(\.(\.106))

• In the sequel we define the shifting operation formally

– ↑d (t) is the mathematical function that corresponds to tShift d t

– ↑dc (t) is the mathematical function that corresponds to aux c t (in the mathe-
matical definition d is also transmitted as a parameter of ↑dc (t))

Definition 4.10 [Shifting] ↑dc (t) is the d-place shift of a nameless term t above c, given
by:

↑dc (k) =

{
k if k < c
k + d if k ≥ c

↑dc (λ . t1) = λ . ↑dc+1 (t1)

↑dc (t1 t2) = (↑dc (t1)) (↑dc (t2))

We put ↑d (t) =↑d0 (t).

Exercise 4.11 (Source [1], Exercise 6.2.2) Compute: ↑10 (λ . λ . 1 (0 2)), ↑10 (λ . 0 1 (λ . 0 1 2))
and ↑10 (λ . 4 0).

• Next we construct the Haskell prototype function (tSubst j s t) which implements
the substitution operation on nameless terms

tSubst :: K -> T -> T -> T

tSubst j s (Tvar k) = if (k == j) then s else (Tvar k)

tSubst j s (Tabs x t1) = Tabs x (tSubst (j+1) (tShift 1 s) t1)

tSubst j s (Tapp t1 t2) = Tapp (tSubst j s t1) (tSubst j s t2)

• The first argument of tSubst is a variable j (a de Bruijn index), the second and the
third arguments are nameless (de Bruijn) terms

• The substitution operation (tSubst j s t) is designed to replace free occurrences of
j in t by s

• If t is a variable (Tvar k) then

– If k == j then tSubst returns s

– Otherwise tSubst returns (Tvar k)

• If t is an abstraction (Tabs x t1)8 then tSubst is called recursively on t1

– The recursive call of tSubst on t1 takes as parameters

∗ (j+1), because tSubst goes under a lambda abstraction, and

8Recall that in a nameless term (Tabs x 1), x is just a hint, used by restorenames to produce similar
names.
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∗ (tShift 1 s), i.e. the 1-place shift of s

• If t is an application (Tapp t1 t2) then tSubst is called recursively upon the two
substerms t1 and t2

• We present some experiments to show how tSubst works

• We use an auxiliary function, a naming context and some terms

termSubst :: Int -> Term -> Term -> Context -> Term

termSubst j s t ctx =

let xs = (toVnamesCtx ctx)

s’ = removenames s xs

t’ = removenames t xs

in restorenames (tSubst j s’ t’) xs

ctx2 :: Context

ctx2 = reverse ["a","b"]

xs2 :: VnamesContext

xs2 = toVnamesCtx ctx2

t5, t6, t7, t8 :: Term

t5 = TmVar "a"

t6 = TmApp (TmVar "a") (TmAbs "z" (TmVar "a"))

t7 = TmApp (TmVar "b") (TmAbs "x" (TmAbs "y" (TmVar "b")))

t8 = TmApp (TmVar "b") (TmAbs "x" (TmVar "b"))

• One can perform the following experiments

Main> t5

a

Main> t6

(a (\z.a))

Main> t7

(b (\x.(\y.b)))

Main> t8

(b (\x.b))

Main> removenames t5 xs2

1

Main> removenames t6 xs2

(1 (\.2))

Main> removenames t7 xs2

(0 (\.(\.2)))

Main> removenames t8 xs2

(0 (\.1))

Main> tSubst 0 (removenames t5 xs2) (removenames t7 xs2)

(1 (\.(\.3)))

Main> tSubst 0 (removenames t6 xs2) (removenames t8 xs2)

((1 (\.2)) (\.(2 (\.3))))
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Main> termSubst 0 t5 t7 ctx2

(a (\x.(\y.a)))

Main> termSubst 0 t6 t8 ctx2

((a (\z.a)) (\x.(a (\z.a))))

• The formal definition of substitution is given in the following

Definition 4.12 [Substitution]

[j 7→ s]k =

{
s if k = j
k otherwse

[j 7→ s](λ . t1) = λ . [j + 1 7→↑1 (s)]t1

[j 7→ s](t1 t2) = ([j 7→ s]t1) ([j 7→ s]t2)

Exercise 4.13 Solve Exercise 6.2.5 from the book [1]

Exercise 4.14 Solve Exercise 6.2.8 from the book [1]

4.3 Evaluation

• Only abstractions are values in the pure untyped lambda calculus

isval :: T -> Context -> Bool

isval (Tabs _ _) ctx = True

isval _ ctx = False

• We present a Haskell implementation of the call by value evaluation relation for name-
less (de Bruijn) lambda terms

eval1 :: T -> Context -> [T]

eval1 (Tapp t1 t2) ctx

| (Tabs x t12) <- t1,

isval t2 ctx = [ tShift (-1) (tSubst 0 (tShift 1 t2) t12) ]

| isval t1 ctx = [ Tapp t1 t2’ | t2’ <- eval1 t2 ctx ]

| otherwise = [ Tapp t1’ t2 | t1’ <- eval1 t1 ctx ]

eval1 (Tabs _ _) ctx = []

eval1 (Tvar _) ctx = []

• The rules for application are as usual, except for the rule of beta-reduction (the
subcase when t1 is of the form (Tabs x t12), and (isval t2))

– In this subcase the substitution operation for nameless terms must be used

• To explain this rule we consider the following example of beta-reduction

(λx . y x) (λu . u)→ y (λu . u)

– Notice that the variable x dissapears in this reduction!

• Assuming we use a naming context Γ = y, z and a corresponding variable names
context γ = y, z we have
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– removenamesγ(λx . y x) = λ . 2 0

∗ Here y is represented by the index 2, because it occurs under a lambda
abstraction

– removenamesγ(λu . u) = λ . 0

– removenamesγ(y (λu . u)) = 1 (λ . 0)

∗ Here y is represented by the index 1, because upon beta-reduction it was
”released” from a lambda abstraction

• Hence we want to compute as follows

(λ . 2 0) (λ . 0)→ 1 (λ . 0) (not (λ . 2 0) (λ . 0)→ 2 (λ . 0) !)

– This is why in the beta-reduction rule for nameless terms we have to apply
tShift (-1) to the result of substitution

• Also, notice that t12 occurs in a larger context than t2 (in the sense that t12 occurs
under a lambda abstraction)

– Hence, before performing the substitution into t12 (in the implementation of the
beta-reduction rule) we must shift the variables in t2 up by 1

∗ In the Haskell prototype implementation this shifting operation is expressed
by the expression (tShift 1 t2)

· (Note that in the case of beta-reduction t2 is a value)

Remark 4.15 The negative shifting (tShift (-1)) operation (in the beta-reduction rule)
cannot give rise to negative indices. Upon substitution, the only occurence of the index 0 is
replaced by a term that was shifted (up) by 1, namely by the term (tShift 1 t2)

• The function evalT takes as parameter a nameless term t which it reduces to a value

– For this purpose it calls repeatedly eval1

evalT :: T -> Context -> T

evalT t ctx =

case eval1 t ctx of

[] -> t

[t’] -> evalT t’ ctx

_ -> error "Nondeterministic evaluation (impossible!)"

• The function evalTerm can be used to evaluate ordinary lambda-terms

– It takes two arguments: an ordinary lambda term t and a naming context ctx

– It converts t to a nameless term

– It reduces the nameless term to a value by using evalT

– Next it converts the result back to an ordinary lambda term

evalTerm :: Term -> Context -> Term

evalTerm term ctx =

let xs = toVnamesCtx ctx

in restorenames (evalT (removenames term xs) ctx) xs
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• To test this evaluator we define

t10 :: Term

t10 = TmApp (TmAbs "x" (TmApp (TmVar "y") (TmVar "x"))) (TmAbs "u" (TmVar "u"))

ctx3 :: Context

ctx3 = reverse ["y","z"]

• Also, we use

c0 :: Term

c0 = TmAbs "s" (TmAbs "z" (TmVar "z"))

c1 :: Term

c1 = TmAbs "s" (TmAbs "z" (TmApp (TmVar "s") (TmVar "z")))

scc :: Term

scc = TmAbs "n" (TmAbs "s" (TmAbs "z" (TmApp (TmVar "s")

(TmApp (TmApp (TmVar "n")(TmVar "s"))

(TmVar "z")))))

• One can perform the following experiments:

Main> removenames t10 (toVnamesCtx ctx3)

((\.(2 0)) (\.0))

Main> evalT (removenames t10 (toVnamesCtx ctx3)) ctx3

(1 (\.0))

Main> c1

(\s.(\z.(s z)))

Main> c0

(\s.(\z.z))

Main> evalTerm (TmApp scc c0) []

(\s.(\z.(s (((\s’.(\z’.z’)) s) z))))

• Notice that in the last experiment the result is behaviorally equivalent with c1

– (TmApp scc c0) is the implementation of (scc c0)

– By using mathematical notation, the computation performed in the last experi-
ment is: (scc c0)→∗ c1

• Finally, we present the evaluation rules for nameless λ-terms

Definition 4.16 [Evaluation relation specification for call-by-value nameless lambda-terms]

Computation rule:

(E-AppAbs) (λ . t12) v2 → ↑−1 ([0 7→ ↑1 (v2)]t12)

Congruence rules:
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(E-App1)
t1 → t′1

t1 t2 → t′1 t2

(E-App2)
t2 → t′2

v1 t2 → v1 t′2

Remark 4.17 As before, the only values are lambda-abstraction (values are denoted by the
metavariable v in the above definition)

Exercise 4.18 By using the beta-reduction rule given in the above definition prove that

(λ . 1 0 2) (λ . 0)→ 0 (λ . 0) 1



Chapter 5

Typed Arithmetic Expressions

• This chapter

– Presents a very simple type system for the language of arithmetic expressions
NB (previously considered in chapter 2)

– Introduces the basic notions and properties related to type systems

5.1 Syntax of arithmetic expressions

• We recall the syntax of NB terms (with typical variable t), values (with typical
variable v) and numeric values (with typical variable nv):

t ::= true | false | if t then t else t | 0 | succ t | pred t | iszero t

v ::= true | false | nv

nv ::= 0 | succ nv

• Normally, we expect that the evaluation of a term should yield a value. However,
some NB expressions do not have a clear meaning.

– An expression like succ true, deserves to be called a stuck term: its evaluation
cannot produce a value

• By introducing a a type system for NB we can avoid evaluating such stuck terms

– The type system can detect such stuck terms statically (at ”compile time”, i.e.,
without performing evaluations)

• In the sequel we introduce various classes of types with typical elements denoted by
T, S,R, U , etc.

Definition 5.1 [Typing relation for NB] We define the class of NB types with elements
denoted by T,R, S, ... as follows:

T ::= Bool | Nat

39
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We define a (binary) typing relation for NB, whose elements are pairs (t, T ), where t is an
NB term and T is an NB type. We use the notation t : T to express that the term t has
type T (i.e., the pair (t, T ) is an element of the typing relation). The typing relation for
NB is the smallest binary relation satisfying the following set of rules:

(T-Zero) 0 : Nat

(T-True) true : Bool

(T-False) false : Bool

(T-If)
t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T

(T-Succ)
t1 : Nat

succ t1 : Nat

(T-Pred)
t1 : Nat

pred t1 : Nat

(T-IsZero)
t1 : Nat

iszero t1 : Bool

Let t be an NB term. If there is some NB type T such that t : T , we say that t is well-typed.

• By using the above set of rules, for any well-typed term t one can build a derivation
tree to infer the type of t

Exercise 5.2 Let t ∈ NB, t = if iszero ( succ 0) then succ 0 else pred 0. Study the typing
derivation tree given in [1] at page 94, and build the derivation tree that proves t : Nat.

Exercise 5.3 (Uniqueness of types for NB; see [1], Theorem 8.2.4) Let t be an NB term.
By structural induction on t, prove the following:

• If t : T and t : T ′ (where T, T ′ are NB types) then T = T ′

• The derivation tree (inference tree) proving that t : T is also unique

(In this proof you may (find convenient to) use the ”inversion lemma” given in [1], at page
94; see also Remark 5.10)

Remark 5.4 Uniqueness of types is easily established for NB but it may fail for other type
systems (see the chapter on subtyping, presented in [1], part III)

5.2 Haskell implementation of the typing relation

• We implement the syntax of NB as in chapter 3.

data Term = TmTrue | TmFalse | TmZero | TmIf Term Term Term

| TmSucc Term | TmPred Term | TmIsZero Term

• Also, we implement the class of types for NB by using the following data declaration.
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data Ty = TyBool | TyNat

instance Show Ty where

show TyBool = "bool"

show TyNat = "nat"

• In NB each well-typed term has a single type (Exercise 5.3). We implement the
typing relation for NB as a function typeof.

typeof :: Term -> Ty

typeof TmTrue = TyBool

typeof TmFalse = TyBool

typeof TmZero = TyNat

typeof (TmIf t1 t2 t3) = case (typeof t1, typeof t2 == typeof t3) of

(TyBool,True) -> typeof t2

_ -> error "TmIf: type error"

typeof (TmSucc t1) = case (typeof t1) of

TyNat -> TyNat

_ -> error "TmSucc: type error"

typeof (TmPred t1) = case (typeof t1) of

TyNat -> TyNat

_ -> error "TmPred: type error"

typeof (TmIsZero t1) = case (typeof t1) of

TyNat -> TyBool

_ -> error "TmIsZero: type error"

• We use a variable t of the type TmTerm.

t :: Term

t = TmIf (TmIsZero (TmSucc TmZero)) (TmSucc TmZero) (TmPred TmZero)

• One can perform the following experiment:

Main> typeof t

nat

5.3 Basic properties of type systems: safety = progress +
preservation

• Computations with well-typed terms should be safe:

Safety = Progress + Preservation.

• These properties are introduced and established below in the context of NB, for which
we can prove the following theorems:

Theorem 5.5 [Progress] In the language NB, if t : T (i.e., if t is a well-typed NB term
that has type T ) then either t is a value, or else there is some t′ with t→ t′ .

Theorem 5.6 [Preservation] In the language NB, if t : T and t→ t′ then t′ : T .
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Remark 5.7 Safety (= progress + preservation)1 is an exigency imposed upon all type
systems studied in [1] (for further explanations see [1], Section 8.3).

Exercise 5.8 The proofs of the above theorems are provided in [1], at pages 96 and 97,
respectively. Follow carefully the steps of the proofs.

• Prove the canonical forms Lemma 5.9 (given in [1], Lemma 8.3.1); you may need the
inversion lemma (given in [1], page 94; see also Remark 5.10 given below).

• Prove the progress Theorem 5.5 (using Lemma 5.9) and the preservation Theorem 5.6
(in the both cases you can proceed by induction on a derivation of t : T )

Lemma 5.9 [Canonical forms] If v : Bool then either v = true or v = false. If v : Nat then
v is a numeric term nv (recall that nv ::= 0 | succ nv).

Remark 5.10 A so-called ”inversion lemma” is presented in [1], at page 94. The inversion
lemma provides a collection of simple facts (that you may need in various proofs, including
the proof of Lemma 5.9). For example, the inversion lemma states the following property:
if succ t1 : R then R = Nat and t1 : Nat.

Indeed, the rule (T-Succ)

t1 : Nat

succ t1 : Nat

states that if t1 has type Nat then succ t1 also has type Nat. However, notice that this is
the single rule that allows you to infer the type of succ t1. Hence, it also implies that if
succ t1 : R (i.e., if succ t1 is well typed and has type R), then R = Nat and t1 : Nat (i.e.,
t1 also has type Nat).

The following properties are also easily established: if true : R then R = Bool, if false : R
then R = Bool, and if ( if t1 then t2 else t3) : R then t1 : Bool, t2 : R and t3 : R.

1Soundness is another name used for safety.



Chapter 6

Simply Typed Lambda Calculus

• We investigate the well-known simply typed lambda calculus [21, 24].

• First, we present the syntax of the calculus, the typing relation and its properties.

– The type safety property now requires a ”substitution lemma” [1]

• The rules that specify the evaluation relation for this calculus are based on the rules
given in the previous chapters.

6.1 Syntax and the typing relation

• For ease of presentation, function types are defined over the base type Bool

– The language can be extended with other base types, such as Nat or Float,
without difficulty.

• In this chapter we use the symbol λ→B as the name of this language (of simply typed
lambda calculus over the base type Bool).

Definition 6.1 Using BNF, we introduce the class Θ→B of λ→B simple types (over Bool) by:

T ::= Bool | T → T

We let T, S, U range over Θ→B .

Let T1, T2 and T3 be λ→B types. Let t1, t2 and t3 be λ→B terms (the syntax of λ→B terms
is introduced in Definition 6.4). The conventions given below are customary in the context
of language λ→B :

• We specify function types using the constructor →, which associates to the right:

T1 → T2 → T3 parses as T1 → (T2 → T3)

• On the other hand, the association of the application operation is to the left (a con-
vention already stated in chapter 3):

t1 t2 t3 should be parsed as (t1 t2) t3

43



44 Types and Programing Languages

Exercise 6.2 Explain the meaning of the type expression (Bool→ Bool)→ (Bool→ Bool).
Is there any difference between (Bool→ Bool)→ (Bool→ Bool) and
(Bool→ Bool)→ Bool→ Bool?

• λ→B is introduced as an explicitly typed language

• A lambda abstraction is now a construction of the form λx : T . t, which expresses the
fact that the type of the variable x is constrained to be T ;

– the type of the term t in a lambda abstraction λx : T . t can be inferred by the
type checker under the assumption that the type of the variable x is T .

• The type checker must use a so-called typing context (or typing environment), which
is essentially a function (with finite graph) from variables to types.

• Typing contexts are used to assign types to (free) variables in λ→B terms.

– Note that a typing context need only assign values to a finite number of variables,
hence, a context describes a finite mapping.

– We use symbols such as Γ or ∆ to denote typing contexts. Let (Γ,∆ ∈)Context
be the set of typing contexts for λ→B .

• Semantically, a typing context Γ ∈ Context is a finite function which maps variables
to types.

– We write dom(Γ) for the domain of Γ (a context Γ ∈ Context is a function)

• It is customary to write a typing context Γ as a list Γ = x1 : T1, . . . , xn : Tn of pairs
of variables and types, such that the variables x1, . . . , xn are distinct [1].

– Intuitively, Γ assigns type Ti to variable xi, i = 1, . . . , n

• The empty typing context is (either omitted or) denoted by the symbol ∅

• Let Γ ∈ Context, Γ = x1 : T1, . . . , xn : Tn, be a context. We note the following:

– The domain of Γ is dom(Γ) = {x1, . . . , xn}
– The order of the pairs xi : Ti in such a typing context is not important (see also

permutation lemma, mentioned in exercise 6.17)

• The typing relation becomes a set of triples (Γ, t, T ), written as Γ ` t : T (rather than
a set of pairs t : T , as it was in chapter 5).

– The empty context is often omitted: we just write ` t : T instead of ∅ ` t : T .

Remark 6.3 We write Γ ` t : T to express that the type of term t is T , assuming that the
types of free variables in t are bound by Γ (i.e., FV (t) ⊆ dom(Γ), where the notation FV (t)
is presented in Definition 6.4).

• Recall that, in the lambda calculus we can always rename a bound variable by using
a fresh new name.

– This general convention is sometimes called alpha-conversion (convention 3.18).
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• In particular, alpha-conversion may be needed in rule (T-Abs) of the type checker for
λ→B (see Definition 6.7) to ensure that the variables of a typing context are (indeed)
pairwise distinct.

– The problem occurs when we want to infer the type of a lambda-abstraction
λx : T . t (in which the variable x is bound) with regard to a typing context Γ
which already contains the variable x in its domain, i.e., when x ∈ dom(Γ).

– In this case, the bound variable name x in the term λx : T . t is renamed (by
means of alpha-conversion) to a new fresh name x′ /∈ dom(Γ) before using rule
(T-Abs).

Definition 6.4 [Syntax of λ→B (simply typed lambda-calculus over Bool)] We recall the def-
inition of the class (Θ→B ) of simple types of λ→B given by: T ::= Bool | T → T . Using a
countable set (x ∈)V of variable names, we define the class (t ∈)T →B of λ→B terms as follows:

t ::= true | false | if t then t else t | x | λx : T . t | t t

The set of free variables FV (t) of a λ→B term t can be defined by structural induction on
t as follows: FV (true) = FV (false) = ∅, FV (x) = {x}, FV (λx : T . t1) = FV (t1) \ {x},
FV (t1 t2) = FV (t1) ∪ FV (t2) and FV ( if t1 then t2 else t3) = FV (t1) ∪ FV (t2) ∪ FV (t3).

• In Haskell we implement the syntax of λ→B as follows:

– The set (x ∈)V of variable names is implemented by the type X in Haskell

– The set (t ∈)T →B of terms (Definition 6.4) is implemented by the type Term

– The set (T ∈)Θ→B of simple types (Definition 6.1) is implemented by the type Ty

type X = String

data Ty = TyBool | TyFun Ty Ty deriving Eq

data Term = TmTrue | TmFalse | TmIf Term Term Term

| TmVar X | TmAbs (X,Ty) Term | TmApp Term Term

• We also provide Show instances for Ty and Term.

instance Show Ty where

show TyBool = "bool"

show (TyFun ty1 ty2) =

"(" ++ (show ty1) ++ "->" ++ (show ty2) ++ ")"

instance Show Term where

show TmTrue = "true"

show TmFalse = "false"

show (TmIf t1 t2 t3) =

"(if " ++ (show t1) ++ " then " ++ (show t2) ++

" else " ++ (show t3) ++ ")"

show (TmVar x) = x

show (TmAbs (x,ty) term) =

"(\\" ++ "(" ++ x ++ ":" ++ (show ty) ++ ")" ++ "."

++ (show term) ++ ")"

show (TmApp t1 t2) =

"(" ++ (show t1) ++ " " ++ (show t2) ++ ")"
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• As explained in chapter 4, for implementation purposes it is more convenient to work
with the nameless representation of λ→B terms

• The class of contexts is used both to handle the nameless form of terms, and to
associate simple types with (free) variables

Definition 6.5 The class (Γ,∆ ∈)Context of typing contexts for λ→B is given by:1

Γ ::= ∅ | Γ, x : T

• We also use the set (γ ∈)V namesContext = V∗ of variable names contexts with
typical variable γ. We denote the empty sequence (over V) by ∅ ∈ V namesContext.

• We define a function toV namesCtx : Context→ V namesContext by

toV namesCtx(∅) = ∅
toV namesCtx(Γ, x : T ) = toV namesCtx(Γ), x

• The function toV namesCtx takes as argument a typing context Γ and yields a corre-
sponding variable names context obtained by removing the type information.

• The nameless representation of λ→B terms is a mere extension of the representation
given in chapter 4

– In the sequel we only provide the Haskell implementation of λ→B nameless terms,
leaving the interested reader (the easy task) to infer the formal (mathematical)
definitions, based on the explanations provided in chapter 4

– In the implementation given below the type K implements the class of de Bruijn
indices (numeric, nameless variables)

– The type T (for which we also provide a Show instance) implements the class of
λ→B nameless terms

type K = Int

data T = Ttrue | Tfalse | Tif T T T

| Tvar K | Tabs (X,Ty) T | Tapp T T

instance Show T where

show Ttrue = "true"

show Tfalse = "false"

show (Tif t1 t2 t3) =

"(if " ++ (show t1) ++ " then " ++ (show t2) ++

" else " ++ (show t3) ++ ")"

show (Tvar k) = (show k)

1Following [1], in the formal (mathematical) model, typing contexts are represented as sequences and
the elements of a typing context are accessed from right to left (the same convention was used also in the
mathematical model given in chapter 4). On the other hand, it is natural to use Haskell lists to implement
the concept of a typing context. In the Haskell notation, lists are accessed from left to right (this strategy
was also used in the Haskell implementation given in chapter 4). However, recall that a typing context Γ
is essentially a function from variables to types; see also permutation Lemma, mentioned in exercise 6.17.
Hence the order of elements in a list representing a typing context is not important.
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show (Tabs (x,tx) t) =

"(\\" ++ "(" ++ x ++ ":" ++ (show tx) ++ ")" ++ "."

++ (show t) ++ ")"

show (Tapp t1 t2) = "(" ++ (show t1) ++ " " ++ (show t2) ++ ")"

• We implement the classes of typing contexts Context and variable names contexts
VnamesContext as follows:

type Context = [(X,Ty)]

type VnamesContext = [X]

toVnamesCtx :: Context -> VnamesContext

toVnamesCtx ctx = [ x | (x,_) <- ctx ]

• The definitions of functions removenames and restorenames (with the auxiliary map-
pings index, pickFreshName and isBoundName) are obtained starting from corre-
sponding definitions presented in chapter 4.

removenames :: Term -> VnamesContext -> T

removenames TmTrue xs = Ttrue

removenames TmFalse xs = Tfalse

removenames (TmIf t1 t2 t3) xs =

Tif (removenames t1 xs) (removenames t2 xs) (removenames t3 xs)

removenames (TmVar x) xs = Tvar (index x xs)

removenames (TmAbs (x,ty1) t2) xs =

Tabs (x,ty1) (removenames t2 (x:xs))

removenames (TmApp t1 t2) xs =

Tapp (removenames t1 xs) (removenames t2 xs)

restorenames :: T -> VnamesContext -> Term

restorenames (Ttrue) xs = TmTrue

restorenames (Tfalse) xs = TmFalse

restorenames (Tif t1 t2 t3) xs =

TmIf (restorenames t1 xs) (restorenames t2 xs) (restorenames t3 xs)

restorenames (Tvar k) xs = TmVar (xs !! k)

restorenames (Tabs (x,ty) t1) xs =

let x’ = pickFreshName xs x

in TmAbs (x’,ty) (restorenames t1 (x’:xs))

restorenames (Tapp t1 t2) xs =

TmApp (restorenames t1 xs) (restorenames t2 xs)

index :: (Eq a) => a -> [a] -> Int

index x [] = error "element out of context"

index x (x’:xs) =

if (x’ == x) then 0 else 1 + index x xs
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pickFreshName :: VnamesContext -> X -> X

pickFreshName xs x =

if isBoundName xs x

then pickFreshName xs (x ++ "’") else x

isBoundName :: VnamesContext -> X -> Bool

isBoundName [] x = False

isBoundName (x’:xs) x =

if (x’==x) then True else isBoundName xs x

• We define a Haskell value t1 of the type Term and a value ctx1 of the type Context,
based also on two values of the type Ty. Also, we define a value tb1 of the type T (a
de Bruijn term).

t1 :: Term

t1 = TmAbs ("m",ty2) (TmAbs ("n",ty2) (TmAbs ("s",TyBool)

(TmAbs ("z",TyBool) (TmApp (TmApp (TmVar "m") (TmVar "s"))

(TmApp (TmApp (TmVar "n") (TmVar "s")) (TmVar "z"))))))

t4 :: Term

t4 = TmAbs ("w",TyBool) (TmAbs ("a",TyBool) (TmVar "x"))

ctx1 :: Context

ctx1 = reverse [("x",ty1),("y",ty1),("z",TyBool),("a",TyBool),("b",TyBool)]

ty1,ty2 :: Ty

ty1 = TyFun TyBool TyBool

ty2 = TyFun TyBool (TyFun TyBool TyBool)

tb1 :: T

tb1 = removenames t1 []

tb4 :: T

tb4 = removenames t4 (toVnamesCtx ctx1)

• One can perform the following experiments:

Main> t1

(\(m:(bool->(bool->bool))).(\(n:(bool->(bool->bool))).(\(s:bool).

(\(z:bool).((m s) ((n s) z))))))

Main> tb1

(\(m:(bool->(bool->bool))).(\(n:(bool->(bool->bool))).(\(s:bool).

(\(z:bool).((3 1) ((2 0) 1))))))

Main> t4

(\(w:bool).(\(a:bool).x))

Main> tb4

(\(w:bool).(\(a:bool).6))
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• Also, let

tt :: T -> Context -> T

tt t ctx =

let xs = toVnamesCtx ctx

in removenames (restorenames t xs) xs

termterm :: Term -> Context-> Term

termterm t ctx =

let xs = toVnamesCtx ctx

in restorenames (removenames t xs) xs

• The following experiments confirm that the above implementation of removenames

and restorenames satisfy the properies stated in chapter 4:

Main> termterm t1 []

(\(m:(bool->(bool->bool))).(\(n:(bool->(bool->bool))).(\(s:bool).

(\(z:bool).((m s) ((n s) z))))))

Main> termterm t4 ctx1

(\(w:bool).(\(a’:bool).x))

Main> tt tb1 []

(\(m:(bool->(bool->bool))).(\(n:(bool->(bool->bool))).(\(s:bool).

(\(z:bool).((3 1) ((2 0) 1))))))

Main> tt tb4 ctx1

(\(w:bool).(\(a’:bool).6))

• Next, we give the formal definition of the typing relation for λ→B (Definition 6.7)

• The elements of the typing relation are triples (Γ, t, T ), written as Γ ` t : T

– We write Γ ` t : T to express that the type of the term t is T , assuming that the
types of (free) variables in t are bound by Γ (Remark 6.3)

• Rules (T-True) and (T-False) are obvious. For rule (T-If) see exercise 6.8

• Rules (T-Var), (T-Abs) and (T-App) are specific to the simply typed lambda calculus

– In rule (T-Abs), the context Γ, x : T1 (of the premise) extends the typing context
Γ (of the conclusion) with the assumption x : T1 (the type of x is T1)

∗ It is important to note that, by using alpha-conversion (convention 3.18) in
rule (T-Abs) we can always choose x such that x /∈ dom(Γ).

· Therefore, we can assume that the variable names in the domain of a
typing context are always pairwise distinct

Remark 6.6 Let Γ ∈ Context, Γ = x1 : T1, . . . , xn : Tn, be a typing context with domain
dom(Γ) = {x1, . . . , xn}. Essentially, Γ is a used to represent a function (with finite graph)
from variable names to types. This means that the variable names x1, . . . , xn (occurring
in the list Γ = x1 : T1, . . . , xn : Tn) are assumed to be pairwise distinct. In the following,
whenever a pair x : T is appended to a context Γ, by default it is considered that x /∈ dom(Γ).
Intuitively, a pair x : T occurring in a context is a binding (x : T associates type T to
variable name x).
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Definition 6.7 [Typing relation for λ→B ] The typing relation for λ→B is the smallest subset
of (Context×T →B ×Θ→B ) satisfying the axioms and rules given below. The elements (Γ, t, T )
of the typing relation for λ→B are written as Γ ` t : T .

(T-True) Γ ` true : Bool

(T-False) Γ ` false : Bool

(T-If)
Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

(T-Var)
x : T ∈ Γ

Γ ` x : T

(T-Abs)
Γ, x : T1 ` t2 : T2

Γ ` λx : T1 . t2 : T1 → T2

(T-App)
Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

Exercise 6.8 Explain the difference between rule (T-If) given in definition 6.7, and rule
(T-If) given in definition 5.1 from chapter 5. Let t ∈ T →B , t = if t1 then t2 else t3 (for some
t1, t2, t3 ∈ T →B ), where the class T →B is given in definition 6.4. Give an example of a triple
(Γ ` t : T ) that can occur as the conclusion of rule (T-If) given in definition 6.7, using a
type T which cannot be used in rule (T-If) given in definition 5.1 from chapter 5.

Exercise 6.9 Let t = ((λx : Bool . x) ( if false then false else true)), t ∈ T →B . Intuitively,
the type of term t is Bool. By using the rules given in definition 6.7, build the derivation
tree which proves that ` t : Bool (i.e., ∅ ` t : Bool).

Exercise 6.10 Solve exercise 9.2.2 from the book [1].

• The Haskell implementation of the typing relation for λ→B is straightforward (according
to exercise 6.13, the typing relation for λ→B can be implemented as a function):

– The function typeof computes the type of a (nameless) term with respect to a
given typing context

– For handling variables and abstractions we use two auxiliary mappings addbinding
and getTypeFromContext2

typeOf :: T -> Context -> Ty

typeOf Ttrue ctx = TyBool

typeOf Tfalse ctx = TyBool

typeOf (Tif t1 t2 t3) ctx =

case (typeOf t1 ctx) of

TyBool -> let ty2 = typeOf t2 ctx

ty3 = typeOf t3 ctx

2In the mathematical notation (based on [1]) typing contexts are accessed from right to left (in particular,
see definition 6.5, and rule (T-Abs) from definition 6.7). On the other hand, it is natural to use Haskell lists
to implement the concept of a typing context. In the Haskell notation, lists are accessed from left to right;
see also the Haskell implementation given in chapter 4.
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in if (ty2 == ty3) then ty2

else error "typeOf -> Tif: arms of conditional

have different types"

_ -> error "typeOf -> Tif: non-boolean condition"

typeOf (Tvar k) ctx = getTypeFromContext k ctx

typeOf (Tabs (x,tyT1) t2) ctx =

let ctx’ = addbinding ctx x tyT1

tyT2 = typeOf t2 ctx’

in TyFun tyT1 tyT2

typeOf (Tapp t1 t2) ctx =

let { tyT1 = typeOf t1 ctx; tyT2 = typeOf t2 ctx }

in case tyT1 of

(TyFun tyT11 tyT12) ->

if (tyT2 == tyT11) then tyT12

else error "typeOf -> Tapp: parameter type mismatch"

_ -> error "typeOf -> Tapp:arrow type expected"

addbinding :: Context -> X -> Ty -> Context

addbinding ctx x ty = (x,ty):ctx

getTypeFromContext :: K -> Context -> Ty

getTypeFromContext k ctx = snd (ctx !! k)

• In the mathematical model, when a pair x : T is appended to a context Γ, by default
it is considered that x /∈ dom(Γ); see remark 6.6. Therefore, the reader may wonder
why we do not choose a new variable name in the Haskell equation that implements
the rule for abstraction (T-Abs)

– Note that typeOf takes as argument a nameless term, hence it works with de
Bruijn indexes (rather than variable names)

• Also, recall that in the nameless term (Tabs (x,tyT1) t2) the variable name x is
only used as a hint by function restorenames (as explained in remark 4.7)

• The mapping (getTypeFromContext k ctx) takes as arguments a de Bruijn index k

(rather than a variable name) and a context ctx. It uses the mapping !! defined in
the standard Haskell library Prelude.hs.3

– It returns the type corresponding to k from ctx

• The mapping addbinding is used to extend the context upon entry in a nested ab-
straction

3The function !! is a polymorphic operator (defined in Prelude.hs), which returns the element of a list
located at a specified index (starting from 0). It behaves as illustrated in the following examples:

Main> [1,2,3,4,5] !! 3

4

Main> [1,2,3,4,5] !! 0

1
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• For testing purposes we also define the following functions

testTerm :: Term -> Context -> Ty

testTerm term ctx = typeOf (removenames term (toVnamesCtx ctx)) ctx

testT :: T -> Context -> Ty

testT t ctx = typeOf t ctx

• Let

t’ :: Term

t’ = TmAbs ("x",ty1) (TmAbs ("y",ty1)

(TmApp (TmVar "x") (TmApp (TmVar "y") (TmVar "z"))))

ctx’ :: Context

ctx’ = reverse [("z",TyBool)]

tb’ :: T

tb’ = removenames t’ (toVnamesCtx ctx’)

• One can perform the following experiments:

Main> testTerm t’ ctx’

((bool->bool) -> ((bool->bool) -> bool))

Main> testT tb’ ctx’

((bool->bool) -> ((bool->bool) -> bool))

6.2 Properties of typing

• Recall that (type) safety = progress + preservation (see section 5.3)

• Some preparative results are needed before we establish type safety for λ→B [1]

– The preservation theorem requires a ”substitution lemma” (lemma 6.19)

• The ”uniqueness of types” property considered in exercise 6.13 can also be established
for language λ→B

Remark 6.11 Lemma 9.3.1 given in [1] (page 104) for language λ→B is hereafter called the
”inversion lemma” for λ→B (as in [1]). It is a collection of 6 simple facts, which follow
easily from the 6 rules that define the typing relation for λ→B (definition 6.7). For example,
consider rule (T-Var) given in definition 6.7:

(T-Var)
x : T ∈ Γ

Γ ` x : T

In this case the ”inversion lemma” states the following fact:

• If Γ ` x : T then x : T ∈ Γ

This is an obvious consequence of the fact that (T-Var) is the single rule which can be used
to infer that Γ ` x : T .
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The clauses of the ”inversion lemma” that are implied by rules (T-Abs) and (TApp) are
also easily established. By extending each pair t : T to a corresponding triple Γ ` t : T ,
the last three properties stated in the final part of Remark 5.10 (for language NB) can be
adapted to the language λ→B (introduced in Definition 6.4). For example, in the case of λ→B
we have: if Γ ` true : T then T = Bool. The reader can easily adapt the other two properties
given in the final part of Remark 5.10. The ”inversion lemma” may be useful in various
contexts, in particular it can be used in exercise 6.13.

Exercise 6.12 Enunciate and explain the clauses of the ”inversion lemma” 9.3.1 (given
in [1]), that are implied by rules (T-Abs), (T-App) and (T-Iff) given in definition 6.7.

In general, several types may be attributed to the same term (e.g., in the presence of
subtyping; see [1], part III). However, for the languages NB and λ→B one can establish
the properties (regarding the uniqueness of types) given in exercise 5.3 and exercise 6.13.
According to exercise 6.13, the typing relation for λ→B is a function (the type inferred for
any λ→B term t is unique).

Exercise 6.13 [Uniqueness of types for λ→B ] Let t be an λ→B term. Let Γ ∈ Context,Γ =
x1 : T1, . . . , xn : Tn be a typing context such that FV (t) ⊆ dom(Γ), where dom(Γ) =
{x1, . . . , xn} and FV (t) is the set of free variables occurring in term t (see definition 6.4).4

Proceeding by induction on the depth of a derivation of Γ ` t : T , prove the following:

(a) If Γ ` t : T and Γ ` t : T ′ (where T, T ′ ∈ Θ→B , i.e., T and T ′ are λ→B types) then
T ′ = T

(b) The derivation tree (inference tree) proving that Γ ` t : T (by using the rules given in
definition 6.7) is also unique.

As explained in Remark 6.6, you can assume that the variable names x1, . . . , xn occurring
in the list representing the context Γ (Γ = x1 : T1, . . . , xn : Tn) are pairwise distinct.

• A λ→B term t is well-typed w.r.t. some typing context Γ iff there exists a type T and
an inference tree (derivation tree) proving that Γ ` t : T . Consider these two classes:
inference (derivation) trees and well typed terms.

– According to exercise 6.13, in the context of λ→B the relation (correspondence)
between these two classes is of type one-to-one.

• We recall that lambda abstractions are the only values in the pure lambda calculus.
In addition, the class of values of λ→B includes the values true and false.

Definition 6.14 [Values in λ→B ] v ::= true | false | λx : T . t

• A progress theorem can be stated for λ→B . It is similar to theorem 5.5, given in chapter
5 for language B. However, notice that in the context of λ→B this property (theorem
6.15) can only be established for closed terms.5

4All free variables of t are in the domain of Γ.
5We recall that the notion of a closed term is used to denote any lambda term containing no free variables.

Variable fun occurring in term (fun (λx . x)) is free. Hence (fun (λx . x)) is an open term (it is not closed).
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– There are open terms, like (fun (λx . x)), which cannot be reduced any longer
(i.e., are normal forms),6 but are not values ((fun (λx . x)) is not a value).

• Let t be a λ→B term (t ∈ T →B ). Let T be a λ→B type (T ∈ Θ→B ). We recall that ` t : T
is an abbreviation for ∅ ` t : T , where ∅ is the empty context. The notation ` t : T
expresses that term t has type T w.r.t. the empty context, i.e., t is a closed and well
typed λ→B term.

Theorem 6.15 [Progress] If t is a closed and well-typed λ→B term (i.e., there exists some
type T such that ` t : T ) then either t is a value or else there is some t′ such that t→ t′ .

Study Assignment 6.16 The proof of theorem 6.15 (progress theorem for λ→B ) can proceed
by induction on typing derivations (the proof is provided in [1], page 105).7. Follow carefully
the steps of the proof.

Exercise 6.17 Proceeding by induction on typing derivations

(a) Prove lemma 9.3.6 given in [1] (permutation lemma)

(b) Prove lemma 9.3.7 given in [1] (weakening lemma)

These properties (lemmas) may also be used in the proof of ”substitution lemma” 6.19 [1].
For the purpose of this exercise, we recall that all bindings in a typing context must have
distinct variable names, i.e., any typing context Γ is a list Γ = x1 : T1, . . . , xn : Tn such that
the variable names x1, . . . , xn are pairwise distinct.

• Before we present the ”substitution lemma” 6.19 we must adapt the definition of
substitution for λ→B (starting from definition 3.20).

Definition 6.18 Substitution over (alpha-equivalence classes) of λ→B terms is given by:

[x 7→ s]true = true
[x 7→ s]false = false

[x 7→ s] if t1 then t2 then t3 = if [x 7→ s]t1 then [x 7→ s]t2 else [x 7→ s]t3
[x 7→ s]x = s
[x 7→ s]y = y if y 6= x

[x 7→ s](λy : T . t1) = λy : T . ([x 7→ s]t1) if y 6= x, y /∈ FV (s)
[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

The mapping FV (t) is given in definition 6.4.

• ”Substitution lemma” 6.19 (see [1], lemma 9.3.8) essentially states that the substitu-
tion operation (given above, in definition 6.18) maintains types. The type preservation
property for λ→B (theorem 6.21) can be established by using lemma 6.19.

Lemma 6.19 If Γ, x : S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T .

Study Assignment 6.20 A detailed proof of lemma 6.19 is provided in [1] (proof of lemma
9.3.8., pages 106—107). Follow carefully the steps of the proof.

6We recall that a term t is a normal form if ¬(∃t′ : t→ t′), i.e., no reduction step is possible for t.
7The proof uses the ”canonical forms” lemma 9.3.4 given in [1], which states that any value v having

type Bool is either v = true or v = false, and any value of a type T1 → T2 is a lambda abstraction λx : T1 . t.
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Theorem 6.21 [Preservation] If Γ ` t : T and t→ t′ , then Γ ` t′ : T .

Exercise 6.22 The proof of preservation theorem 6.21 is provided in [1] (see the proof of
theorem 9.3.9, given in appendix A, pages 506–507). The proof uses ”substitution lemma”
6.19, and proceeds by induction on the depth of a derivation (inference tree) for Γ ` t : T ,
and by case analysis on the final rule used in the type inference tree. Follow carefully the
steps of the proof, and complete the proof for the cases that are not handled in [1], namely
cases (T-App) with subcase (E-App2), (T-True), (T-False) and (T-If).

6.3 Evaluation

• The language λ→B (simply typed lambda calculus over Bool) is given in definition 6.4.

Definition 6.23 [Evaluation relation specification for λ→B (call-by-value)]

(E-IfTrue) if true then t2 else t3 → t2

(E-IfFalse) if false then t2 else t3 → t3

(E-If)
t1 → t′1

if t1 then t2 else t3 → if t′1 then t2 else t3

(E-App1)
t1 → t′1

t1 t2 → t′1 t2

(E-App2)
t2 → t′2

v1 t2 → v1 t′2

(E-AppAbs) (λx : T11 . t12) v2 → [x 7→ v2]t12

Exercise 6.24 The erasure function (erase) presented in [2], definition 9.5.1, maps pure
simply typed lambda terms (given by the syntax: t ::= x | λx : T . t | t t; see [2], figure
9-1) to pure untyped lambda terms (given by the syntax: t ::= x | λx . t | t t; see [2],
figure 5-3, and definition 3.2 of the document, where this language is named λ).

In this exercise you will define a function eraseB, which extends the erasure operation
given in [1] (definition 9.5.1) to handle both lambda terms and values of the basic type
Bool. For this purpose we consider the language λB given in BNF by the following syntax:
t ::= true | false | if t then t else t | x | λx . t | t t. λB extends the the language of pure
untyped lambda terms (i.e., language λ given in definition 3.2, and [2], figure 5-3) with
values of the basic type Bool, as used in the language B given in definition 2.14.

(a) Define an evaluation relation (→) for λB. For this purpose you should combine the
rules given in definitions 2.15 and 3.16, which specify the evaluation relations for B
and λ, respectively.

(b) Let λ→B be the simply typed lambda calculus over Bool, given in definition 6.4.8 Define
a function eraseB, mapping λ→B (simply typed) terms to corresponding λB (untyped)
terms. For example, eraseB((λx : Bool . x) true) = (λx . x) true.

8The evaluation relation for λ→
B is given in definition 6.23.
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(c) Intuitively, evaluation should not be influencd by such an erasure operation, because
type information is not used during evaluation. This intuition is expressed as follows
in [1]: ”evaluation commutes with erasure”. Read theorem 9.5.2 given in [1], which
formalizes this intuition for the erasure mapping (erase) given in [1], definition 9.5.1.
Next, formulate and prove a similar theorem for the mapping eraseB.

6.3.1 A Haskell implementation of the evaluation relation

• The rules given in definiton 6.23 are well suited for theoretical purposes

• We design a Haskell implementation of λ→B

– Following the approach presented in chapter 4, the implementation works with
nameless terms

– We only provide the Haskell implementation of the relevant concepts

∗ The interested reader can easily recover the mathematical definitions

• We adopt a more terse style of the presentation

– The Haskell functions given below are an easy adaptation of corresponding func-
tions presented in chapter 4

• The functions tSubst and tShift implement the substitution and shifting operations,
respectively, for λ→B (simply typed lambda calculus with base type Bool)

– The corresponding definitions for the untyped calculus λ are given in section 4.2

tSubst :: K -> T -> T -> T

tSubst j s Ttrue = Ttrue

tSubst j s Tfalse = Tfalse

tSubst j s (Tif t1 t2 t3) =

Tif (tSubst j s t1) (tSubst j s t2) (tSubst j s t3)

tSubst j s (Tvar k) =

if (k == j) then s else (Tvar k)

tSubst j s (Tabs (x,ty) t1) =

Tabs (x,ty) (tSubst (j+1) (tShift 1 s) t1)

tSubst j s (Tapp t1 t2) =

Tapp (tSubst j s t1) (tSubst j s t2)

tShift :: Int -> T -> T

tShift d t = aux 0 t

where aux :: Int -> T -> T

aux c Ttrue = Ttrue

aux c Tfalse = Tfalse

aux c (Tif t1 t2 t3) = Tif (aux c t1) (aux c t2) (aux c t3)

aux c (Tvar k) = if k>= c then Tvar (k+d) else Tvar k

aux c (Tabs (x,ty) t1) = Tabs (x,ty) (aux (c+1) t1)

aux c (Tapp t1 t2) = Tapp (aux c t1) (aux c t2)

• For example, the value tb’::T was introduced previously in section 6.1. One can
perform the following experiments:
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Main> tb’

(\(x:(bool->bool)).(\(y:(bool->bool)).(1 (0 2))))

Main> tShift 100 tb’

(\(x:(bool->bool)).(\(y:(bool->bool)).(1 (0 102))))

• Let also

t100, t101 :: Term

t100 = TmVar "a"

t101 =

TmApp (TmVar "b")

(TmApp (TmAbs ("x",TyBool)

(TmApp (TmVar "b") (TmVar "x")))

(TmVar "y"))

tb100 = removenames t100 (toVnamesCtx ctx100)

tb101 = removenames t101 (ToVnamesCtx ctx100)

ctx100 :: Context

ctx100 = reverse [("a",ty1),("b",ty1),("y",TyBool)]

termSubst :: Int -> Term -> Term -> Context -> Term

termSubst j s t ctx =

let xs = toVnamesCtx ctx

s’ = removenames s xs

t’ = removenames t xs

in restorenames (tSubst j s’ t’) xs

• You can test these functions as follows:

Main> tb100

2

Main> tb101

(1 ((\(x:bool).(2 0)) 0))

Main> tShift 100 tb101

(101 ((\(x:bool).(102 0)) 100))

Main> tSubst 1 tb101 tb100

2

Main> tSubst 1 tb100 tb101

(2 ((\(x:bool).(3 0)) 0))

Main> termSubst 1 t101 t100 ctx100

a

Main> termSubst 1 t100 t101 ctx100

(a ((\(x:bool).(a x)) y))

• Finally, we can implement the evaluation function eval1.

– Contexts are not needed here (are maintained for compatibility with models
presented in [1], where various extensions are investigated)
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– In λ→B , only booleans and abstractions are values.

• Functions eval1 and evalT are designed starting from corresponding functions pre-
sented in chapter 4.

isval :: T -> Context -> Bool

isval Ttrue ctx = True

isval Tfalse ctx = True

isval (Tabs _ _) ctx = True

isval _ ctx = False

eval1 :: T -> Context -> [T]

eval1 (Tif Ttrue t2 t3) ctx = [t2]

eval1 (Tif Tfalse t2 t3) ctx = [t3]

eval1 (Tif t1 t2 t3) ctx =

[ Tif t1’ t2 t3 | t1’ <- eval1 t1 ctx ]

eval1 (Tapp t1 t2) ctx

| (Tabs (x,_) t12) <- t1, isval t2 ctx =

[ tShift (-1) (tSubst 0 (tShift 1 t2) t12) ]

| isval t1 ctx =

[ Tapp t1 t2’ | t2’ <- eval1 t2 ctx ]

| otherwise =

[ Tapp t1’ t2 | t1’ <- eval1 t1 ctx ]

eval1 (Tabs _ _) ctx = []

eval1 (Ttrue) ctx = []

eval1 (Tfalse) ctx = []

eval1 (Tvar _) ctx = []

evalT :: T -> Context -> T

evalT t ctx =

case eval1 t ctx of

[] -> t

[t’] -> evalT t’ ctx

_ -> error "Nondeterministic evaluation (impossible!)"

evalTerm :: Term -> Context -> Term

evalTerm term ctx =

let xs = toVnamesCtx ctx

in restorenames (evalT (removenames term xs) ctx) xs

• Let

xapply, xnot :: Term

xapply = TmAbs ("f",TyFun TyBool TyBool)

(TmAbs ("x",TyBool)

(TmApp (TmVar "f") (TmVar "x")))

xnot = TmAbs ("b",TyBool) (TmIf (TmVar "b") TmFalse TmTrue)
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• xapply and xnot implement the λ→B terms λf : Bool → Bool . (λx : Bool . (f x)),
and λb : Bool . ( if b then false else true), respectively. You can perform the following
experiments:

Main> evalTerm (TmApp xnot TmTrue) []

false

Main> evalTerm (TmApp xnot TmFalse) []

true

Main> evalTerm (TmApp (TmApp xapply xnot) TmTrue) []

false

Main> evalTerm (TmApp (TmApp xapply xnot) TmFalse) []

true

• Let also

tyT4 :: Ty

tyT4 = TyFun (TyFun TyBool TyBool) TyBool

ctx1000 :: Context

ctx1000 = reverse [("y",tyT4),("z",TyBool)]

t1000 :: Term

t1000 = TmApp (TmAbs ("x",TyFun TyBool TyBool)

(TmApp (TmVar "y") (TmVar "x")))

(TmAbs ("u",TyBool) (TmVar "u"))

• One can perform the following experiments

Main> t1000

((\(x:(bool->bool)).(y x)) (\(u:bool).u))

Main> removenames t1000 (toVnamesCtx ctx1000)

((\(x:(bool->bool)).(2 0)) (\(u:bool).0))

Main> typeOf (removenames t1000 (toVnamesCtx ctx1000)) ctx1000

bool

Main> evalT (removenames t1000 (toVnamesCtx ctx1000)) ctx1000

(1 (\(u:bool).0)

Main> evalTerm t1000 ctx1000

(y (\(u:bool).u))



Appendix A

A Haskell Implementation of
Simply Typed Lambda-calculus
Extended with Simple Features
and References

type X = String

type K = Int

type VnamesContext = [X]

type Context = [(X,Ty)]

type Label = String

type Location = Int

type Store = [T]

type StoreTyping = [Ty]

data L a = L Label a deriving Eq

data Ty = TyUnit | TyNat | TyBool | TyFun Ty Ty

| TyTuple [Ty]

| TyRecord [L Ty]

| TyVariant [L Ty]

| TyList Ty

| TyRef Ty

deriving Eq

instance Show Ty where

show TyBool = "bool"

show TyNat = "nat"

show TyUnit = "unit"

show (TyFun ty1 ty2) = "(" ++ (show ty1) ++ " -> " ++ (show ty2) ++ ")"

show (TyTuple tys) = "{" ++ (showlist tys) ++ "}"

show (TyRecord ltys) = "{" ++ (showlist ltys) ++ "}"

show (TyVariant ltys) = "<" ++ (showlist ltys) ++ ">"

60
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show (TyList ty) = "(" ++ "List " ++ (show ty) ++ ")"

show (TyRef ty) = "(" ++ "Ref " ++ (show ty) ++ ")"

data Term = TmUnit | TmTrue | TmFalse

| TmZero | TmSucc Term | TmPred Term

| TmIsZero Term

| TmNot Term | TmAnd Term Term | TmIf Term Term Term

| TmVar X | TmAbs (X,Ty) Term | TmApp Term Term

| TmSeq Term Term | TmLet X Term Term

| TmFix Term | TmLetrec (X,Ty) Term Term

| TmTuple [Term] | TmTupleProj Term Int

| TmRecord [L Term] | TmRecordProj Term Label

| TmVariantTag (L Term) Ty

| TmVariantCase Term [L (VariantCase Term)]

| TmNil Ty | TmCons Ty Term Term | TmIsNil Ty Term

| TmHead Ty Term | TmTail Ty Term

| TmRef Term | TmDeref Term | TmAssign Term Term

| TmLoc Location

| TmToUnit Term

data VariantCase a = VariantCase X a

instance (Show a) => Show (VariantCase a) where

show (VariantCase x t) = (show x) ++ ">" ++ "=>" ++ (show t)

instance (Show a) => Show (L a) where

show (L l a) = l ++ "=" ++ (show a)

instance Show Term where

show TmUnit = "unit"

show TmTrue = "true"

show TmFalse = "false"

show TmZero = "0"

show (TmSucc t) = "(succ " ++ (show t) ++ ")"

show (TmPred t) = "(pred " ++ (show t) ++ ")"

show (TmIsZero t) = "(iszero " ++ (show t) ++ ")"

show (TmNot t) = "(not " ++ (show t) ++ ")"

show (TmAnd t1 t2) = "(" ++ (show t1) ++ " and " ++ (show t2) ++ ")"

show (TmIf t1 t2 t3) = "(if " ++ (show t1) ++ " then " ++ (show t2) ++

" else " ++ (show t3) ++ ")"

show (TmVar x) = x

show (TmAbs (x,ty) t) = "(\\" ++ "(" ++ x ++ ":" ++ (show ty) ++ ")" ++

"." ++ (show t) ++ ")"

show (TmApp t1 t2) = "(" ++ (show t1) ++ " " ++ (show t2) ++ ")"

show (TmSeq t1 t2) = "(" ++ (show t1) ++ ";" ++ (show t2) ++ ")"

show (TmLet x t1 t2) = "(let " ++ x ++ "=" ++ (show t1) ++

" in " ++ (show t2) ++ ")"

show (TmFix t) = "(fix " ++ (show t) ++ ")"
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show (TmLetrec (x,ty) t1 t2) = "(letrec " ++ x ++ ":" ++ (show ty) ++

" = " ++ (show t1)

++ " in " ++ (show t2) ++ ")"

show (TmTuple ts) = "{" ++ (showlist ts) ++ "}"

show (TmTupleProj t i) = "(" ++ (show t) ++ "." ++ (show i) ++ ")"

show (TmRecord lts) = "{" ++ (showlist lts) ++ "}"

show (TmRecordProj t l) = "(" ++ (show t) ++ "." ++ l ++ ")"

show (TmVariantTag (L l t) ty) = "<" ++ l ++ "=" ++ (show t) ++ ">" ++

" as " ++ (show ty)

show (TmVariantCase t lxts) = "case " ++ "(" ++ (show t) ++ ")" ++

" of " ++ "<" ++ (showlist lxts) ++ ">"

show (TmNil ty) = "(nil" ++ "[" ++ (show ty) ++ "])"

show (TmCons ty t1 t2) =

"(cons" ++ "[" ++ (show ty) ++ "]" ++ " " ++ (show t1) ++

" " ++ (show t2) ++ ")"

show (TmIsNil ty t) =

"(isnil" ++ "[" ++ (show ty) ++ "]" ++ " " ++ (show t) ++ ")"

show (TmHead ty t) =

"(head" ++ "[" ++ (show ty) ++ "]" ++ " " ++ (show t) ++ ")"

show (TmTail ty t) =

"(tail" ++ "[" ++ (show ty) ++ "]" ++ " " ++ (show t) ++ ")"

show (TmRef t) =

"(ref" ++ " " ++ (show t) ++ ")"

show (TmDeref t) =

"(!" ++ " " ++ (show t) ++ ")"

show (TmAssign t1 t2) =

"(" ++ (show t1) ++ " := " ++ (show t2) ++ ")"

show (TmLoc l) =

"(location" ++ " " ++ (show l) ++ ")"

show (TmToUnit t) =

"(tounit" ++ " " ++ (show t) ++ ")"

{- Nameless terms -}

data T = Tunit | Ttrue | Tfalse | Tzero | Tsucc T | Tpred T | Tiszero T

| Tnot T | Tand T T | Tif T T T

| Tvar K | Tabs (X,Ty) T | Tapp T T | Tseq T T | Tlet X T T

| Tfix T

| Ttuple [T] | Ttupleproj T Int

| Trecord [L T] | Trecordproj T Label

| Tvarianttag (L T) Ty | Tvariantcase T [L (VariantCase T)]

| Tnil Ty | Tcons Ty T T

| Tisnil Ty T | Thead Ty T | Ttail Ty T

| Tref T | Tderef T | Tassign T T | Tloc Location

| Ttounit T

instance Show T where

show Tunit = "unit"

show Ttrue = "true"
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show Tfalse = "false"

show Tzero = "0"

show (Tsucc t) = "(succ " ++ (show t) ++ ")"

show (Tpred t) = "(pred " ++ (show t) ++ ")"

show (Tiszero t) = "(iszero " ++ (show t) ++ ")"

show (Tnot t) = "(not " ++ (show t) ++ ")"

show (Tand t1 t2) = "(" ++ (show t1) ++ " and " ++ (show t2) ++ ")"

show (Tif t1 t2 t3) = "(if " ++ (show t1) ++ " then " ++ (show t2) ++

" else " ++ (show t3) ++ ")"

show (Tvar k) = (show k)

show (Tabs (x,ty) t) = "(\\" ++ "(" ++ x ++ ":" ++ (show ty) ++ ")" ++

"." ++ (show t) ++ ")"

show (Tapp t1 t2) = "(" ++ (show t1) ++ " " ++ (show t2) ++ ")"

show (Tseq t1 t2) = "(" ++ (show t1) ++ ";" ++ (show t2) ++ ")"

show (Tlet x t1 t2) = "(let " ++ x ++ "=" ++ (show t1) ++

" in " ++ (show t2) ++ ")"

show (Tfix t) = "(fix " ++ (show t) ++ ")"

show (Ttuple ts) = "{" ++ (showlist ts) ++ "}"

show (Ttupleproj t i) = "(" ++ (show t) ++ "." ++ (show i) ++ ")"

show (Trecord lts) = "{" ++ (showlist lts) ++ "}"

show (Trecordproj t l) = "(" ++ (show t) ++ "." ++ l ++ ")"

show (Tvarianttag (L l t) ty) = "<" ++ l ++ "=" ++ (show t) ++ ">" ++

" as " ++ (show ty)

show (Tvariantcase t lxts) = "case " ++ "(" ++ (show t) ++ ")" ++

" of " ++ "<" ++ (showlist lxts) ++ ">"

show (Tnil ty) = "(nil" ++ "[" ++ (show ty) ++ "])"

show (Tcons ty t1 t2) =

"(cons" ++ "[" ++ (show ty) ++ "]" ++ " " ++

(show t1) ++ " " ++ (show t2) ++ ")"

show (Tisnil ty t) =

"(isnil" ++ "[" ++ (show ty) ++ "]" ++ " " ++ (show t) ++ ")"

show (Thead ty t) =

"(head" ++ "[" ++ (show ty) ++ "]" ++ " " ++ (show t) ++ ")"

show (Ttail ty t) =

"(tail" ++ "[" ++ (show ty) ++ "]" ++ " " ++ (show t) ++ ")"

show (Tref t) =

"(ref" ++ " " ++ (show t) ++ ")"

show (Tderef t) =

"(!" ++ " " ++ (show t) ++ ")"

show (Tassign t1 t2) =

"(" ++ (show t1) ++ " := " ++ (show t2) ++ ")"

show (Tloc l) =

"(location" ++ " " ++ (show l) ++ ")"

show (Ttounit t) =

"(tounit" ++ " " ++ (show t) ++ ")"

showlist :: (Show a) => [a] -> String

showlist [] = ""
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showlist [x] = show x

showlist (x:xs) = (show x) ++ "," ++ (showlist xs)

index :: (Eq a) => a -> [a] -> Int

index x [] = error "element out of context"

index x (x’:xs) = if (x’ == x) then 0 else 1 + index x xs

removenames :: Term -> VnamesContext -> T

removenames TmUnit xs = Tunit

removenames TmTrue xs = Ttrue

removenames TmFalse xs = Tfalse

removenames TmZero xs = Tzero

removenames (TmSucc t) xs = Tsucc (removenames t xs)

removenames (TmPred t) xs = Tpred (removenames t xs)

removenames (TmIsZero t) xs = Tiszero (removenames t xs)

removenames (TmNot t) xs = Tnot (removenames t xs)

removenames (TmAnd t1 t2) xs = Tand (removenames t1 xs) (removenames t2 xs)

removenames (TmIf t1 t2 t3) xs =

Tif (removenames t1 xs) (removenames t2 xs) (removenames t3 xs)

removenames (TmVar x) xs = Tvar (index x xs)

removenames (TmAbs (x,ty1) t2) xs =

Tabs (x,ty1) (removenames t2 (x:xs))

removenames (TmApp t1 t2) xs =

Tapp (removenames t1 xs) (removenames t2 xs)

removenames (TmSeq t1 t2) xs =

Tseq (removenames t1 xs) (removenames t2 xs)

removenames (TmLet x t1 t2) xs =

let t1’ = removenames t1 xs

in Tlet x t1’ (removenames t2 (x:xs))

removenames (TmFix t) xs = Tfix (removenames t xs)

removenames (TmLetrec (x,ty) t1 t2) xs =

removenames (TmLet x (TmFix (TmAbs (x,ty) t1)) t2) xs

removenames (TmTuple ts) xs =

Ttuple [ removenames t xs | t <- ts ]

removenames (TmTupleProj t i) xs =

Ttupleproj (removenames t xs) i

removenames (TmRecord lts) xs =

Trecord [ L l (removenames t xs) | L l t <- lts ]

removenames (TmRecordProj t i) xs =

Trecordproj (removenames t xs) i

removenames (TmVariantTag (L l t) ty) xs =

Tvarianttag (L l (removenames t xs)) ty

removenames (TmVariantCase t0 lxts) xs =

Tvariantcase (removenames t0 xs)

[ L l (VariantCase x (removenames t (x:xs)))

| L l (VariantCase x t) <- lxts ]

removenames (TmNil ty) xs = Tnil ty

removenames (TmCons ty t1 t2) xs =
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Tcons ty (removenames t1 xs) (removenames t2 xs)

removenames (TmIsNil ty t) xs =

Tisnil ty (removenames t xs)

removenames (TmHead ty t) xs =

Thead ty (removenames t xs)

removenames (TmTail ty t) xs =

Ttail ty (removenames t xs)

removenames (TmRef t) xs =

Tref (removenames t xs)

removenames (TmDeref t) xs =

Tderef (removenames t xs)

removenames (TmAssign t1 t2) xs =

Tassign (removenames t1 xs) (removenames t2 xs)

removenames (TmLoc l) xs = Tloc l

removenames (TmToUnit t) xs =

Ttounit (removenames t xs)

pickFreshName :: VnamesContext -> X -> X

pickFreshName xs x =

if isBoundName xs x then pickFreshName xs (x ++ "’")

else x

isBoundName :: VnamesContext -> X -> Bool

isBoundName [] x = False

isBoundName (x’:xs) x = if (x’==x) then True else isBoundName xs x

restorenames :: T -> VnamesContext -> Term

restorenames (Tunit) xs = TmUnit

restorenames (Ttrue) xs = TmTrue

restorenames (Tfalse) xs = TmFalse

restorenames (Tzero) xs = TmZero

restorenames (Tsucc t) xs = TmSucc (restorenames t xs)

restorenames (Tpred t) xs = TmPred (restorenames t xs)

restorenames (Tiszero t) xs = TmIsZero (restorenames t xs)

restorenames (Tnot t) xs = TmNot (restorenames t xs)

restorenames (Tand t1 t2) xs =

TmAnd (restorenames t1 xs) (restorenames t2 xs)

restorenames (Tif t1 t2 t3) xs =

TmIf (restorenames t1 xs) (restorenames t2 xs) (restorenames t3 xs)

restorenames (Tvar k) xs = TmVar (xs !! k)

restorenames (Tabs (x,ty) t1) xs =

let x’ = pickFreshName xs x

in TmAbs (x’,ty) (restorenames t1 (x’:xs))

restorenames (Tapp t1 t2) xs =

TmApp (restorenames t1 xs) (restorenames t2 xs)

restorenames (Tseq t1 t2) xs =

TmSeq (restorenames t1 xs) (restorenames t2 xs)

restorenames (Tlet x t1 t2) xs =
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let x’ = pickFreshName xs x

in TmLet x’ (restorenames t1 xs) (restorenames t2 (x’:xs))

restorenames (Tfix t) xs = TmFix (restorenames t xs)

restorenames (Ttuple ts) xs = TmTuple [ restorenames t xs | t <- ts ]

restorenames (Ttupleproj t i) xs = TmTupleProj (restorenames t xs) i

restorenames (Trecord lts) xs =

TmRecord [ L l (restorenames t xs) | L l t <- lts ]

restorenames (Trecordproj t l) xs =

TmRecordProj (restorenames t xs) l

restorenames (Tvarianttag (L l t) ty) xs =

TmVariantTag (L l (restorenames t xs)) ty

restorenames (Tvariantcase t0 lxts) xs =

TmVariantCase (restorenames t0 xs)

[ let x’ = pickFreshName xs x

in L l (VariantCase x’ (restorenames t (x’:xs)))

| L l (VariantCase x t) <- lxts ]

restorenames (Tnil ty) xs = TmNil ty

restorenames (Tcons ty t1 t2) xs =

TmCons ty (restorenames t1 xs) (restorenames t2 xs)

restorenames (Tisnil ty t) xs =

TmIsNil ty (restorenames t xs)

restorenames (Thead ty t) xs =

TmHead ty (restorenames t xs)

restorenames (Ttail ty t) xs =

TmTail ty (restorenames t xs)

restorenames (Tref t) xs =

TmRef (restorenames t xs)

restorenames (Tderef t) xs =

TmDeref (restorenames t xs)

restorenames (Tassign t1 t2) xs =

TmAssign (restorenames t1 xs) (restorenames t2 xs)

restorenames (Tloc l) xs = TmLoc l

restorenames (Ttounit t) xs =

TmToUnit (restorenames t xs)

toVnamesCtx :: Context -> VnamesContext

toVnamesCtx ctx = [ x | (x,_) <- ctx ]

tt :: T -> Context -> T

tt t ctx =

let xs = toVnamesCtx ctx

in removenames (restorenames t xs) xs

termterm :: Term -> Context-> Term

termterm t ctx =

let xs = toVnamesCtx ctx

in restorenames (removenames t xs) xs
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-- Increments the de Bruijn indices of the free variables in a term

tShift :: Int -> T -> T

tShift d t = aux 0 t

where aux :: Int -> T -> T

aux c Tunit = Tunit

aux c Ttrue = Ttrue

aux c Tfalse = Tfalse

aux c Tzero = Tzero

aux c (Tsucc t) = Tsucc (aux c t)

aux c (Tpred t) = Tpred (aux c t)

aux c (Tiszero t) = Tiszero (aux c t)

aux c (Tnot t1) = Tnot (aux c t1)

aux c (Tand t1 t2) = Tand (aux c t1) (aux c t2)

aux c (Tif t1 t2 t3) = Tif (aux c t1) (aux c t2) (aux c t3)

aux c (Tvar k) = if k>= c then Tvar (k+d) else Tvar k

aux c (Tabs (x,ty1) t2) = Tabs (x,ty1) (aux (c+1) t2)

aux c (Tapp t1 t2) = Tapp (aux c t1) (aux c t2)

aux c (Tseq t1 t2) = Tseq (aux c t1) (aux c t2)

aux c (Tlet x t1 t2) = Tlet x (aux c t1) (aux (c+1) t2)

aux c (Tfix t) = Tfix (aux c t)

aux c (Ttuple ts) = Ttuple [ aux c t | t <- ts ]

aux c (Ttupleproj t i) = Ttupleproj (aux c t) i

aux c (Trecord lts) = Trecord [ L l (aux c t) | L l t <- lts ]

aux c (Trecordproj t i) = Trecordproj (aux c t) i

aux c (Tvarianttag (L l t) ty) = Tvarianttag (L l (aux c t)) ty

aux c (Tvariantcase t0 lxts) =

Tvariantcase (aux c t0) [ L l (VariantCase x (aux (c+1) t))

| L l (VariantCase x t) <- lxts ]

aux c (Tnil ty) = Tnil ty

aux c (Tcons ty t1 t2) = Tcons ty (aux c t1) (aux c t2)

aux c (Tisnil ty t) = Tisnil ty (aux c t)

aux c (Thead ty t) = Thead ty (aux c t)

aux c (Ttail ty t) = Ttail ty (aux c t)

aux c (Tref t) = Tref (aux c t)

aux c (Tderef t) = Tderef (aux c t)

aux c (Tassign t1 t2) = Tassign (aux c t1) (aux c t2)

aux c (Tloc l) = Tloc l

aux c (Ttounit t) = Ttounit (aux c t)

-- Implements the substitution of a term s

-- for variable number j in a term t (written [j -> s]t)

tSubst :: K -> T -> T -> T

tSubst j s Tunit = Tunit

tSubst j s Ttrue = Ttrue

tSubst j s Tfalse = Tfalse

tSubst j s Tzero = Tzero

tSubst j s (Tsucc t1) = Tsucc (tSubst j s t1)

tSubst j s (Tpred t1) = Tpred (tSubst j s t1)
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tSubst j s (Tiszero t1) = Tiszero (tSubst j s t1)

tSubst j s (Tnot t1) = Tnot (tSubst j s t1)

tSubst j s (Tand t1 t2) = Tand (tSubst j s t1) (tSubst j s t2)

tSubst j s (Tif t1 t2 t3) =

Tif (tSubst j s t1) (tSubst j s t2) (tSubst j s t3)

tSubst j s (Tvar k) = if (k == j) then s else (Tvar k)

tSubst j s (Tabs (x,ty) t1) = Tabs (x,ty) (tSubst (j+1) (tShift 1 s) t1)

tSubst j s (Tapp t1 t2) = Tapp (tSubst j s t1) (tSubst j s t2)

tSubst j s (Tseq t1 t2) = Tseq (tSubst j s t1) (tSubst j s t2)

tSubst j s (Tlet x t1 t2) =

Tlet x (tSubst j s t1) (tSubst (j+1) (tShift 1 s) t2)

tSubst j s (Tfix t) = Tfix (tSubst j s t)

tSubst j s (Ttuple ts) = Ttuple [ tSubst j s t | t <- ts ]

tSubst j s (Ttupleproj t i) = Ttupleproj (tSubst j s t) i

tSubst j s (Trecord lts) = Trecord [ L l (tSubst j s t) | L l t <- lts ]

tSubst j s (Trecordproj t i) = Trecordproj (tSubst j s t) i

tSubst j s (Tvarianttag (L l t) ty) = Tvarianttag (L l (tSubst j s t)) ty

tSubst j s (Tvariantcase t0 lxts) =

Tvariantcase (tSubst j s t0)

[ L l (VariantCase x (tSubst (j+1) (tShift 1 s) t))

| L l (VariantCase x t) <- lxts ]

tSubst j s (Tnil ty) = Tnil ty

tSubst j s (Tcons ty t1 t2) =

Tcons ty (tSubst j s t1) (tSubst j s t2)

tSubst j s (Tisnil ty t) = Tisnil ty (tSubst j s t)

tSubst j s (Thead ty t) = Thead ty (tSubst j s t)

tSubst j s (Ttail ty t) = Ttail ty (tSubst j s t)

tSubst j s (Tref t) = Tref (tSubst j s t)

tSubst j s (Tderef t) = Tderef (tSubst j s t)

tSubst j s (Tassign t1 t2) =

Tassign (tSubst j s t1) (tSubst j s t2)

tSubst j s (Tloc l) = Tloc l

tSubst j s (Ttounit t) = Ttounit (tSubst j s t)

t100, t101 :: Term

t100 = TmVar "a"

t101 = TmApp (TmVar "b")

(TmApp (TmAbs ("x",TyBool)

(TmApp (TmVar "b") (TmVar "x")))

(TmVar "y"))

tb100 = removenames t100 (toVnamesCtx ctx100)

tb101 = removenames t101 (toVnamesCtx ctx100)

ctx100 :: Context

ctx100 = reverse [("a",ty1),("b",ty1),("y",TyBool)]

ty1 = TyFun TyBool TyBool

ty2 = TyFun TyBool (TyFun TyBool TyBool)
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ty3 = TyFun (TyFun TyBool TyBool) (TyFun TyBool TyBool)

tyT4 :: Ty

tyT4 = TyFun (TyFun TyBool TyBool) TyBool

ty5 = TyFun (TyFun TyBool TyBool) (TyFun TyBool TyBool)

ty7 = TyFun (TyFun (TyFun TyBool TyBool) TyBool) (TyFun TyBool TyBool)

{-

Main> testTerm t1 ctx1 st0

((bool->(bool->bool))->((bool->(bool->bool))->(bool->(bool->bool))))

Main> testTerm t2 ctx1 st0

bool

Main> testTerm t3 ctx1 st0

(bool->bool)

Main> testTerm t4 ctx1 st0

(bool->(bool->(bool->bool)))

-}

t1 :: Term

t1 = TmAbs ("m",ty2) (TmAbs ("n",ty2) (TmAbs ("s",TyBool) (TmAbs ("z",TyBool)

(TmApp (TmApp (TmVar "m") (TmVar "s"))

(TmApp (TmApp (TmVar "n") (TmVar "s")) (TmVar "z"))))))

ctx1 :: Context

ctx1 = reverse [("x",ty1),("y",ty1),("z",TyBool),("a",TyBool),("b",TyBool)]

t2 :: Term

t2 = TmApp (TmVar "x") (TmApp (TmVar "y") (TmVar "z"))

t3 :: Term

t3 = TmAbs ("w",TyBool) (TmApp (TmVar "y")(TmVar "w"))

t4 :: Term

t4 = TmAbs ("w",TyBool) (TmAbs ("a",TyBool) (TmVar "x"))

tb1 :: T

tb1 = removenames t1 []

tb2 :: T

tb2 = removenames t2 (toVnamesCtx ctx1)

{- t2 = Tapp (Tvar 4) (Tapp (Tvar 3) (Tvar 2)) -}

tb3 :: T

tb3 = removenames t3 (toVnamesCtx ctx1)

{- t3 = Tabs (Tapp (Tvar 4) (Tvar 0)) -}

tb4 :: T

tb4 = removenames t4 (toVnamesCtx ctx1)



70 Types and Programing Languages

{- t4 = Tabs (Tabs (Tvar 6)) -}

{- Experiments from the book

Main> termterm t1 ctx1

(\(m:(bool -> (bool -> bool))).(\(n:(bool -> (bool -> bool))).

(\(s:bool).(\(z’:bool).((m s)((n s) z’))))))

Main> termterm t2 ctx1

(x (y z))

Main> termterm t3 ctx1

(\(w:bool).(y w))

Main> termterm t4 ctx1

(\(w:bool).(\(a’:bool).x))

Main> tt tb1 ctx1

(\(m:(bool -> (bool -> bool))).(\(n:(bool -> (bool -> bool))).

(\(s:bool).(\(z’:bool).((3 1)((2 0) 1))))))

Main> tt tb2 ctx1

(4 (3 2))

Main> tt tb3 ctx1

(\(w:bool).(4 0))

Main> tt tb4 ctx1

(\(w:bool).(\(a’:bool).6))

Main> tShift 100 tb1

(\(m:(bool -> (bool -> bool))).(\(n:(bool -> (bool -> bool))).

(\(s:bool).(\(z:bool).((3 1)((2 0) 1))))))

Main> tShift 100 tb2

(104 (103 102))

Main> tShift 100 tb3

(\(w:bool).(104 0))

Main> tShift 100 tb4

(\(w:bool).(\(a:bool).106))

-}

{- Experiments with typeOf

Main> testTerm t’ ctx’ st0

((bool->bool) -> ((bool->bool) -> bool))

Main> testT tb’ ctx’st0

((bool->bool) -> ((bool->bool) -> bool))

-}

ctx’ :: Context

ctx’ = reverse [("z",TyBool)]

t’ :: Term

t’ = TmAbs ("x",ty1) (TmAbs ("y",ty1)

(TmApp (TmVar "x") (TmApp (TmVar "y") (TmVar "z"))))

tb’ :: T

tb’ = removenames t’ (toVnamesCtx ctx’)
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-- t’’ is NOT well typed

t’’ :: Term

t’’ = TmAbs ("x",ty1) (TmApp (TmApp (TmVar "x") (TmVar "z"))

(TmAbs ("y",ty3)

(TmApp (TmApp (TmVar "y") (TmVar "x")) (TmVar "z"))))

tb’’ :: T

tb’’ = removenames t’’ (toVnamesCtx ctx’)

{- Experiments from the book

Main> t’

(\(x:(bool->bool)).(\(y:(bool->bool)).(x (y z))))

Main> t’’

(\(x:(bool->bool)).((x z) (\(y:((bool->bool)->(bool->bool))).((y x) z))))

Main> tb’

(\(x:(bool->bool)).(\(y:(bool->bool)).(1 (0 2))))

Main> tb’’

(\(x:(bool->bool)).((0 1) (\(y:((bool->bool)->(bool->bool))).((0 1) 2))))

Main> tShift 2 tb’

(\(x:(bool->bool)).(\(y:(bool->bool)).(1 (0 4))))

Main> tShift 2 tb’’

(\(x:(bool->bool)).((0 3) (\(y:((bool->bool)->(bool->bool))).((0 1) 4))))

Main> tShift 100 tb’

(\(x:(bool->bool)).(\(y:(bool->bool)).(1 (0 102))))

Main> tShift 100 tb’’

(\(x:(bool->bool)).((0 101) (\(y:((bool->bool)->(bool->bool))).((0 1) 102))))

-}

{-

Main> testTerm t5 ctx2 st0

bool

-}

t5, t6, t7, t8 :: Term

t5 = TmVar "a"

{- t6,t7 and t8 are not well-typed -}

t6 = TmApp (TmVar "a") (TmAbs ("z",ty1) (TmVar "a"))

t7 = TmApp (TmVar "b") (TmAbs ("x",ty1) (TmAbs ("y",ty1) (TmVar "b")))

t8 = TmApp (TmVar "b") (TmAbs ("x",ty1) (TmVar "b"))

ctx2 :: Context

ctx2 = reverse [("a",TyBool),("b",TyBool)]

xs2 :: VnamesContext

xs2 = toVnamesCtx ctx2

termSubst :: Int -> Term -> Term -> Context -> Term
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termSubst j s t ctx =

let xs = toVnamesCtx ctx

s’ = removenames s xs

t’ = removenames t xs

in restorenames (tSubst j s’ t’) xs

{- Experiments from the book

Main> termSubst 0 t5 t7 ctx2

(a (\(x:(bool->bool)).(\(y:(bool->bool)).a)))

Main> termSubst 0 t6 t8 ctx2

((a (\(z:(bool->bool)).a)) (\(x:(bool->bool)).(a (\(z:(bool->bool)).a))))

Main> tSubst 0 (removenames t5 xs2) (removenames t7 xs2)

(1 (\(x:(bool->bool)).(\(y:(bool->bool)).3)))

Main> tSubst 0 (removenames t6 xs2) (removenames t8 xs2)

((1 (\(z:(bool->bool)).2)) (\(x:(bool->bool)).(2 (\(z:(bool->bool)).3))))

Main> tb100

2

Main> tb101

(1 ((\(x:bool).(2 0)) 0))

Main> tShift 100 tb101

(101 ((\(x:bool).(102 0)) 100))

Main> tSubst 1 tb101 tb100

2

Main> tSubst 1 tb100 tb101

(2 ((\(x:bool).(3 0)) 0))

Main> termSubst 1 t101 t100 ctx100

a

Main> termSubst 1 t100 t101 ctx100

(a ((\(x:bool).(a x)) y))

-}

-- Context not needed here, but needed later

isval :: T -> Context -> Bool

isval Tunit ctx = True

isval Ttrue ctx = True

isval Tfalse ctx = True

isval Tzero ctx = True

isval (Tsucc nv) ctx = isnumericval nv ctx

isval (Tabs _ _) ctx = True

isval (Ttuple vs) ctx = and [ isval v ctx | v <- vs ]

isval (Trecord lvs) ctx = and [ isval v ctx | L _ v <- lvs ]

isval (Tvarianttag (L l v) ty) ctx = isval v ctx

isval (Tnil ty) ctx = True

isval (Tcons ty v1 v2) ctx = and [isval v1 ctx,isval v2 ctx]

isval (Tloc l) ctx = True

isval (Ttounit v) ctx = isval v ctx

isval _ ctx = False
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isnumericval :: T -> Context -> Bool

isnumericval Tzero ctx = True

isnumericval (Tsucc nv) ctx = isnumericval nv ctx

isnumericval _ ctx = False

-- Context not needed here, but needed later

eval1 :: (T,Store) -> Context -> [(T,Store)]

eval1 (Tif Ttrue t2 t3,s) ctx = [(t2,s)]

eval1 (Tif Tfalse t2 t3,s) ctx = [(t3,s)]

eval1 (Tif t1 t2 t3,s) ctx =

[ (Tif t1’ t2 t3,s’) | (t1’,s’) <- eval1 (t1,s) ctx ]

eval1 (Tapp t1 t2,s) ctx

| (Tabs (x,_) t12) <- t1, isval t2 ctx =

[ (tShift (-1) (tSubst 0 (tShift 1 t2) t12),s) ]

| isval t1 ctx =

[ (Tapp t1 t2’,s’) | (t2’,s’) <- eval1 (t2,s) ctx ]

| otherwise =

[ (Tapp t1’ t2,s’) | (t1’,s’) <- eval1 (t1,s) ctx ]

eval1 (Tseq Tunit t2,s) ctx =

[ (t2,s) ]

eval1 (Tseq t1 t2,s) ctx =

[ (Tseq t1’ t2,s’) | (t1’,s’) <- eval1 (t1,s) ctx ]

eval1 (Tlet x t1 t2,s) ctx

| isval t1 ctx =

[ (tShift (-1) (tSubst 0 (tShift 1 t1) t2),s) ]

| otherwise =

[ (Tlet x t1’ t2,s’) | (t1’,s’) <- eval1 (t1,s) ctx ]

eval1 (Tfix t,s) ctx

| (Tabs (x,ty1) t2) <- t =

[ (tShift (-1) (tSubst 0 (tShift 1 (Tfix (Tabs (x,ty1) t2))) t2),s) ]

| otherwise =

[ (Tfix t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tabs _ _,s) ctx = []

eval1 (Tunit,s) ctx = []

eval1 (Ttrue,s) ctx = []

eval1 (Tfalse,s) ctx = []

eval1 (Tzero,s) ctx = []

eval1 (Tnot Ttrue,s) ctx = [ (Tfalse,s) ]

eval1 (Tnot Tfalse,s) ctx = [ (Ttrue,s) ]

eval1 (Tnot t,s) ctx =

[ (Tnot t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tand Tfalse t2,s) ctx = [ (Tfalse,s) ]

eval1 (Tand Ttrue Ttrue,s) ctx = [ (Ttrue,s) ]

eval1 (Tand Ttrue Tfalse,s) ctx = [ (Tfalse,s) ]

eval1 (Tand Ttrue t2,s) ctx =

[ (Tand Ttrue t2’,s’) | (t2’,s’) <- eval1 (t2,s) ctx ]

eval1 (Tand t1 t2,s) ctx =

[ (Tand t1’ t2,s’) | (t1’,s’) <- eval1 (t1,s) ctx ]



74 Types and Programing Languages

eval1 (Tsucc t,s) ctx

| isnumericval t ctx = []

| otherwise =

[ (Tsucc t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tpred Tzero,s) ctx = [ (Tzero,s) ]

eval1 (Tpred t,s) ctx

| (Tsucc nv) <- t,

isnumericval nv ctx = [ (nv,s) ]

| otherwise =

[ (Tpred t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tiszero Tzero,s) ctx = [ (Ttrue,s) ]

eval1 (Tiszero t,s) ctx

| (Tsucc nv) <- t = [ (Tfalse,s) ]

| otherwise =

[ (Tiszero t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tvar _,s) ctx = []

eval1 (Ttupleproj t i,s) ctx

| (Ttuple ts) <- t,

(and [ isval t ctx | t <- ts ]) = [ (ts !! (i-1),s) ]

| otherwise =

[ (Ttupleproj t’ i,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Ttuple ts,s) ctx =

case vsprefix ts (\t -> isval t ctx) of

(vs,[]) -> []

(vs,t:ts’) ->

[ (Ttuple (vs ++ (t’:ts’)),s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Trecordproj t l,s) ctx

| (Trecord lts) <- t,

(and [ isval t ctx | L _ t <- lts ]) = [ (selectl lts l,s) ]

| otherwise =

[ (Trecordproj t’ l,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Trecord lts,s) ctx =

case vsprefix lts (\(L l t) -> isval t ctx) of

(lvs,[]) -> []

(lvs,L l t:lts’) ->

[ (Trecord (lvs ++ (L l t’:lts’)),s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tvarianttag (L l t) ty,s) ctx

| isval t ctx = []

| otherwise =

[ (Tvarianttag (L l t’) ty,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tvariantcase t0 lxts,s) ctx

| (Tvarianttag (L lj vj) ty) <- t0,

isval vj ctx =

let VariantCase xj tj = selectl lxts lj

in [ (tShift (-1) (tSubst 0 (tShift 1 vj) tj),s) ]

| otherwise =

[ (Tvariantcase t0’ lxts,s’) | (t0’,s’) <- eval1 (t0,s) ctx ]

eval1 (Tnil ty,s) ctx = []
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eval1 (Tcons ty t1 t2,s) ctx

| isval t1 ctx, isval t2 ctx = []

| isval t1 ctx =

[ (Tcons ty t1 t2’,s’) | (t2’,s’) <- eval1 (t2,s) ctx ]

| otherwise =

[ (Tcons ty t1’ t2,s’) | (t1’,s’) <- eval1 (t1,s) ctx ]

eval1 (Tisnil ty t,s) ctx

| (Tnil _) <- t = [ (Ttrue,s) ]

| (Tcons _ v1 v2) <- t,

isval v1 ctx, isval v2 ctx = [ (Tfalse,s) ]

| otherwise =

[ (Tisnil ty t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Thead ty t,s) ctx

| (Tcons _ v1 v2) <- t,

isval v1 ctx, isval v2 ctx = [ (v1,s) ]

| otherwise =

[ (Thead ty t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Ttail ty t,s) ctx

| (Tcons _ v1 v2) <- t,

isval v1 ctx, isval v2 ctx = [ (v2,s) ]

| otherwise =

[ (Ttail ty t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tref t,s) ctx

| isval t ctx = let newlocation = length s

in [(Tloc newlocation,s++[t])]

| otherwise =

[ (Tref t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tderef t,s) ctx

| (Tloc l) <- t = [(getvalfromstore s l,s)]

| isval t ctx = error "eval1: no rules apply"

| otherwise =

[ (Tderef t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

eval1 (Tassign t1 t2,s) ctx

| (Tloc l) <- t1, isval t2 ctx = [(Tunit,updatestore s l t2)]

| isval t1 ctx, isval t2 ctx = error "eval1: no rules apply"

| isval t1 ctx =

[ (Tassign t1 t2’,s’) | (t2’,s’) <- eval1 (t2,s) ctx ]

| otherwise =

[ (Tassign t1’ t2,s’) | (t1’,s’) <- eval1 (t1,s) ctx ]

eval1 (Ttounit t,s) ctx

| isval t ctx = [ (Tunit,s) ]

| otherwise =

[ (Ttounit t’,s’) | (t’,s’) <- eval1 (t,s) ctx ]

updatestore :: Store -> Location -> T -> Store

updatestore [] l v = error "updatestore: bad location"

updatestore (v0:s) l v =

if (l<0) then error "updatestore: bad location"
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else if (l==0) then v:s else v0:updatestore s (l-1) v

getvalfromstore :: Store -> Location -> T

getvalfromstore s l = s !! l

--------------

selectl :: [L a] -> Label -> a

selectl [] l =

error ("selectl -> no record field labeled with " ++ l)

selectl (L l’ x:ls) l =

if (l’ == l) then x else selectl ls l

vsprefix :: [a] -> (a -> Bool) -> ([a],[a])

vsprefix [] f = ([],[])

vsprefix (x:xs) f =

if (f x) then (let (xs1,xs2) = vsprefix xs f in (x:xs1,xs2))

else ([],x:xs)

-- Context not needed here, but needed later

evalT :: (T,Store) -> Context -> (T,Store)

evalT (t,s) ctx =

case eval1 (t,s) ctx of

[] -> (t,s)

[(t’,s’)] -> evalT (t’,s’) ctx

_ -> error "Nondeterministic evaluation (impossible!)"

evalTerm :: (Term,Store) -> Context -> (Term,Store)

evalTerm (term,s) ctx =

let xs = toVnamesCtx ctx

(t’,s’) = evalT (removenames term xs,s) ctx

in (restorenames t’ xs,s’)

ctx0 :: Context

ctx0 = []

s0 :: Store

s0 = []

st0 :: StoreTyping

st0 = []

{- Experiments with typeOf

Main> testT tb5 ctx5 st0

bool

-}

tb5 :: T

tb5 = Tapp (Tabs ("x",ty1) (Tapp (Tapp (Tvar 1)(Tvar 0)) (Tvar 2)))
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(Tabs ("y",TyBool) (Tvar 0))

ctx5 :: Context

ctx5 = [("w",ty3),("u",TyBool)]

{- Experiments with typeOf

Main> testTerm tstscc0 [] st0

((bool->bool)->(bool->bool))

Main> testTerm tstscc1 [] st0

((bool->bool)->(bool->bool))

Main> testTerm tstscc2 [] st0

((bool->bool)->(bool->bool))

Main> testTerm tstscc3 [] st0

((bool->bool)->(bool->bool))

Main> testTerm tstscc4 [] st0

((bool->bool)->(bool->bool))

Main> testTerm tstscc5 [] st0

((bool->bool)->(bool->bool))

-}

c0 :: Term

c0 = TmAbs ("s",ty1) (TmAbs ("z",TyBool) (TmVar "z"))

c1 :: Term

c1 = TmAbs ("s",ty1) (TmAbs ("z",TyBool) (TmApp (TmVar "s") (TmVar "z")))

c2 :: Term

c2 = TmAbs ("s",ty1) (TmAbs ("z",TyBool)

(TmApp (TmVar "s") (TmApp (TmVar "s") (TmVar "z"))))

c3 :: Term

c3 = TmAbs ("s",ty1)

(TmAbs ("z",TyBool)

(TmApp (TmVar "s") (TmApp (TmVar "s")

(TmApp (TmVar "s") (TmVar "z")))))

c4 :: Term

c4 = TmAbs ("s",ty1) (TmAbs ("z",TyBool)

(TmApp (TmVar "s") (TmApp (TmVar "s")

(TmApp (TmVar "s") (TmApp (TmVar "s") (TmVar "z"))))))

c5 :: Term

c5 = TmAbs ("s",ty1) (TmAbs ("z",TyBool)

(TmApp (TmVar "s") (TmApp (TmVar "s")

(TmApp (TmVar "s") (TmApp (TmVar "s")

(TmApp (TmVar "s") (TmVar "z")))))))

scc :: Term
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scc = TmAbs ("n",ty5) (TmAbs ("s",ty1)

(TmAbs ("z",TyBool)

(TmApp (TmVar "s")

(TmApp (TmApp (TmVar "n")(TmVar "s")) (TmVar "z")))))

tstscc0 :: Term

tstscc0 = TmApp scc c0

tstscc1 :: Term

tstscc1 = TmApp scc c1

tstscc2 :: Term

tstscc2 = TmApp scc c2

tstscc3 :: Term

tstscc3 = TmApp scc c3

tstscc4 :: Term

tstscc4 = TmApp scc c4

tstscc5 :: Term

tstscc5 = TmApp scc c5

t10 :: Term

t10 = TmApp (TmAbs ("x",TyFun TyBool TyBool)

(TmApp (TmVar "y") (TmVar "x")))

(TmAbs ("u",TyBool) (TmVar "u"))

ctx4 :: Context

ctx4 = [("u",TyBool)]

{- Experiments with typeOf

Main> testTerm t10 ctx3 st0

bool

Main> testTerm t11 ctx4 st0

bool

Main> testTerm t12 ctx3 st0

(bool -> bool)

Main> testTerm t13 ctx3 st0

((bool -> bool) -> bool)

-}

t11 :: Term

t11 = TmApp (TmAbs ("x",TyBool) (TmVar "x")) (TmVar "u")

t12 :: Term

t12 = TmAbs ("x",TyBool) (TmVar "x")
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t13 :: Term

t13 = TmAbs ("x",TyFun TyBool TyBool) (TmApp (TmVar "y") (TmVar "x"))

ctx3 :: Context

ctx3 = reverse [("y",tyT4),("z",TyBool)]

{- Experiments from the book

Main> removenames t10 (toVnamesCtx ctx3)

((\(x:(bool->bool)).(2 0)) (\(u:bool).0))

Main> evalT (removenames t10 (toVnamesCtx ctx3),s0) ctx3

((1 (\(u:bool).0)),[])

Main> c3

(\(s:(bool->bool)).(\(z:bool).(s (s (s z)))))

Main> c2

(\(s:(bool->bool)).(\(z:bool).(s (s z))))

Main> c1

(\(s:(bool->bool)).(\(z:bool).(s z)))

Main> c0

(\(s:(bool->bool)).(\(z:bool).z))

Main> evalTerm (TmApp scc c0,s0) []

((\(s:(bool->bool)).(\(z:bool).

(s (((\(s’:(bool->bool)).(\(z’:bool).z’)) s) z)))),[])

-- Notice that the resulted term is behaviorally equivalent to

-- (\s.(\z.(s z))) = c1

-- and obviously, (TmApp scc c0) is the implementation of (scc c0),

-- i.e. scc c0 ->* c1

-}

xapply, xnot :: Term

xapply = TmAbs ("f",TyFun TyBool TyBool)

(TmAbs ("x",TyBool) (TmApp (TmVar "f") (TmVar "x")))

xnot = TmAbs ("b",TyBool) (TmIf (TmVar "b") TmFalse TmTrue)

testt, testf :: Term

testt = TmApp (TmApp xapply xnot) TmTrue

testf = TmApp (TmApp xapply xnot) TmFalse

testnott, testnotf :: Term

testnott = TmApp xnot TmTrue

testnotf = TmApp xnot TmFalse

exet, exef :: (Term,Store)

exet = evalTerm (testt,s0) []

exef = evalTerm (testf,s0) []

exent, exenf :: (Term,Store)

exent = evalTerm (testnott,s0) []
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exenf = evalTerm (testnott,s0) []

-- Type checking

typeOf :: T -> Context -> StoreTyping -> Ty

typeOf Ttrue ctx st = TyBool

typeOf Tfalse ctx st = TyBool

typeOf Tzero ctx st = TyNat

typeOf (Tsucc t1) ctx st =

case typeOf t1 ctx st of

TyNat -> TyNat

_ -> error "typeOf -> Tsucc: non-nat argument"

typeOf (Tpred t1) ctx st =

case typeOf t1 ctx st of

TyNat -> TyNat

_ -> error "typeOf -> Tpred: non-nat argument"

typeOf (Tiszero t1) ctx st =

case typeOf t1 ctx st of

TyNat -> TyBool

_ -> error "typeOf -> Tiszero: non-nat argument"

typeOf (Tnot t1) ctx st =

case typeOf t1 ctx st of

TyBool -> TyBool

_ -> error "typeOf -> Tnot: non-boolean argument"

typeOf (Tand t1 t2) ctx st =

case (typeOf t1 ctx st,typeOf t2 ctx st) of

(TyBool,TyBool) -> TyBool

_ -> error "typeOf -> Tand: non-boolean argument(s)"

typeOf (Tif t1 t2 t3) ctx st =

case (typeOf t1 ctx st) of

TyBool -> let { ty2 = typeOf t2 ctx st; ty3 = typeOf t3 ctx st }

in if (ty2 == ty3) then ty2

else error ("typeOf -> Tif: arms of conditional have

different types" ++

" \n type of then branch = " ++ (show ty2) ++

" \n type of else branch = " ++ (show ty3))

_ -> error "typeOf -> Tif: non-boolean condition"

typeOf (Tvar k) ctx st = getTypeFromContext k ctx

typeOf (Tabs (x,tyT1) t2) ctx st =

let ctx’ = addbinding ctx x tyT1

tyT2 = typeOf t2 ctx’ st

in TyFun tyT1 tyT2

typeOf (Tapp t1 t2) ctx st =

let tyT1 = typeOf t1 ctx st

tyT2 = typeOf t2 ctx st

in case tyT1 of

(TyFun tyT11 tyT12) ->

if (tyT2 == tyT11) then tyT12
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else error "typeOf -> Tapp: parameter type mismatch"

_ -> error "typeOf -> Tapp:arrow type expected"

typeOf (Tunit) ctx st = TyUnit

typeOf (Tseq t1 t2) ctx st =

case (typeOf t1 ctx st) of

TyUnit -> typeOf t2 ctx st

_ -> error "typeOf -> Tseq: Unit expected as type of first arg"

typeOf (Tlet x t1 t2) ctx st =

let tyT1 = typeOf t1 ctx st

ctx’ = addbinding ctx x tyT1

in typeOf t2 ctx’ st

typeOf (Tfix t) ctx st =

case typeOf t ctx st of

(TyFun ty1 ty2) -> if (ty1 == ty2) then ty1 else error "typeOf -> Tfix"

_ -> error "typeOf -> Tfix"

typeOf (Ttuple ts) ctx st = TyTuple [ typeOf t ctx st | t <- ts ]

typeOf (Ttupleproj t i) ctx st =

case (typeOf t ctx st) of

(TyTuple lts) -> if (i > length lts)

then error "typeOf -> Trecordproj: index too large"

else lts !! (i-1)

_ -> error "typeOf -> Trecordproj: Trecord expected

as type of first arg"

typeOf (Trecord lts) ctx st =

TyRecord [ L l (typeOf t ctx st) | L l t <- lts ]

typeOf (Trecordproj t l) ctx st =

case (typeOf t ctx st) of

(TyRecord lts) -> selectl lts l

_ -> error "typeOf -> Trecordproj: TyRecord expected

as type of first arg"

typeOf (Tvarianttag (L lj tj) tyT) ctx st =

case tyT of

(TyVariant ltys) -> if (typeOf tj ctx st == selectl ltys lj) then tyT

else error "typeOf -> Tvarianttag: type misfit"

_ -> error "typeOf -> Tvarianttag: TyVariant type

expected as second arg"

typeOf (Tvariantcase t0 lxts) ctx st =

case (typeOf t0 ctx st) of

(TyVariant ltys) ->

let (tyT:ltys’) = [ typeOf ti (addbinding ctx xi (selectl ltys li)) st

| L li (VariantCase xi ti) <- lxts ]

in if (and [ tyT’ == tyT| tyT’ <- ltys’ ]) then tyT

else error "typeOf -> Tvariantcase: type misfit"

_ -> error "typeOf -> Tvariantcase: TyVariant type

expected as type of first arg"

typeOf (Tnil ty) ctx st = TyList ty

typeOf (Tcons ty1 t1 t2) ctx st =

if (typeOf t1 ctx st == ty1 && typeOf t2 ctx st == TyList ty1)
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then TyList ty1

else error "typeOf -> Tcons: type misfit"

typeOf (Tisnil ty t) ctx st =

if (typeOf t ctx st == TyList ty) then TyBool

else error "typeOf -> Tisnil: type misfit"

typeOf (Thead ty t) ctx st =

if (typeOf t ctx st == TyList ty) then ty

else error "typeOf -> Thead: type misfit"

typeOf (Ttail ty t) ctx st =

if (typeOf t ctx st == TyList ty) then TyList ty

else error "typeOf -> Thead: type misfit"

typeOf (Tloc l) ctx st =

TyRef (getTypeFromStoreTyping l st)

typeOf (Tref t) ctx st =

TyRef (typeOf t ctx st)

typeOf (Tderef t) ctx st =

case typeOf t ctx st of

(TyRef ty) -> ty

_ -> error "typeOf -> Tderef: reference expected "

typeOf (Tassign t1 t2) ctx st =

case (typeOf t1 ctx st,typeOf t2 ctx st) of

(TyRef ty1,ty2) -> if (ty1==ty2) then TyUnit

else error "typeOf -> tassign: type misfit"

_ -> error "typeOf -> tassign: type misfit"

typeOf (Ttounit t) ctx st =

let ty = typeOf t ctx in TyUnit

addbinding :: Context -> X -> Ty -> Context

addbinding ctx x ty = (x,ty):ctx

getTypeFromContext :: K -> Context -> Ty

getTypeFromContext k ctx = snd (ctx !! k)

getTypeFromStoreTyping :: Location -> StoreTyping -> Ty

getTypeFromStoreTyping l st = st !! l

testTerm :: Term -> Context -> StoreTyping -> Ty

testTerm term ctx st =

typeOf (removenames term (toVnamesCtx ctx)) ctx st

testT :: T -> Context -> StoreTyping -> Ty

testT t ctx st = typeOf t ctx st

ctx1000 :: Context

ctx1000 = reverse [("y",tyT4),("z",TyBool)]

t1000 :: Term

t1000 = TmApp (TmAbs ("x",TyFun TyBool TyBool)
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(TmApp (TmVar "y") (TmVar "x")))

(TmAbs ("u",TyBool) (TmVar "u"))

{-

Main> evalTerm (t1000,s0) ctx1000

((y (\(u:bool).u)),[])

-}

tmnr :: Int -> Term

tmnr 0 = TmZero

tmnr n = TmSucc (tmnr (n-1))

tmladd :: Term

tmladd = TmAbs ("m",TyNat)

(TmAbs ("n",TyNat)

(TmIf (TmIsZero (TmVar "m"))

(TmVar "n")

(TmSucc

(TmApp (TmApp (TmVar "add") (TmPred (TmVar "m")))

(TmVar "n")))))

tmlmul :: Term

tmlmul = TmAbs ("m",TyNat)

(TmAbs ("n",TyNat)

(TmIf

(TmApp (TmApp (TmVar "eqnat") (TmVar "m")) (tmnr 1))

(TmVar "n")

(TmApp (TmApp (TmVar "add") (TmVar "n"))

(TmApp (TmApp (TmVar "mul") (TmPred (TmVar "m")))

(TmVar "n")))))

tmleqnat :: Term

tmleqnat = TmAbs ("m",TyNat)

(TmAbs ("n",TyNat)

(TmIf (TmAnd (TmIsZero (TmVar "m")) (TmIsZero (TmVar "n")))

TmTrue

(TmIf (TmIsZero (TmVar "m")) TmFalse

(TmIf (TmIsZero (TmVar "n")) TmFalse

(TmApp

(TmApp (TmVar "eqnat") (TmPred (TmVar "m")))

(TmPred (TmVar "n")))

)

)))

tmadd :: Term

tmadd =

TmLetrec ("add",TyFun TyNat (TyFun TyNat TyNat)) tmladd

(TmApp (TmApp (TmVar "add") (tmnr 5)) (tmnr 5))
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tmmul :: Term

tmmul =

TmLetrec ("add",TyFun TyNat (TyFun TyNat TyNat)) tmladd

(TmLetrec ("eqnat",TyFun TyNat (TyFun TyNat TyBool)) tmleqnat

(TmLetrec ("mul",TyFun TyNat (TyFun TyNat TyNat)) tmlmul

(TmApp (TmApp (TmVar "mul") (tmnr 5)) (tmnr 5))))

{-

Main> test tmadd

type = nat

value = (...,[])

[value = (10 = 5+5,[])]

Main> test tmmul

type = nat

value = (...,[])

[value = (25 = 5*5,[])]

Main> test tmfact

type = nat

value = (...,[])

[value = (120 = 5!,[])]

Main> test tmfib

type = nat

value = (...,[])

[value = (21 = fib 8,[])]

Main> test tmrecord

type = {1=nat,2=nat,3=nat,4=nat}

value = (...,[])

[value = ({1=1,2=2,3=6,4=24},[])]

Main> test tmcase1

type = nat

value = ((succ 0),[])

Main> test tmcase2

type = nat

value = (0,[])

Main> test tmcase3

type = nat

value = (...,[])

[value = (10,[])]

Main> test tmtag

type = <N=nat,B=bool>

value = (<B=false> as <N=nat,B=bool>,[])

Main> test tmlist

type = (List nat)

[value = ((cons[nat] 1 (cons[nat] 5 (cons[nat] 3 (nil[nat])))),[])]

Main> test tmappend

type = (List nat)

[value = ((cons[nat] 1 (cons[nat] 2 (cons[nat] 3
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(cons[nat] 4 (cons[nat] 5 (cons[nat] 6 (cons[nat] 7 (nil[nat])))))))),[])]

-}

tmlfact :: Term

tmlfact =

TmAbs ("n",TyNat)

(TmIf (TmIsZero (TmVar "n")) (tmnr 1)

(TmApp (TmApp (TmVar "mul") (TmVar "n"))

(TmApp (TmVar "fact") (TmPred (TmVar "n")))))

tmfact :: Term

tmfact =

TmLetrec ("add",TyFun TyNat (TyFun TyNat TyNat)) tmladd

(TmLetrec ("eqnat",TyFun TyNat (TyFun TyNat TyBool)) tmleqnat

(TmLetrec ("mul",TyFun TyNat (TyFun TyNat TyNat)) tmlmul

(TmLetrec ("fact",TyFun TyNat TyNat) tmlfact

(TmApp (TmVar "fact") (tmnr 5)))))

tmlfib :: Term

tmlfib =

TmAbs ("n",TyNat)

(TmIf (TmIsZero (TmVar "n")) TmZero

(TmIf (TmApp

(TmApp (TmVar "eqnat") (TmVar "n")) (tmnr 1)) (tmnr 1)

(TmApp (TmApp (TmVar "add")

(TmApp (TmVar "fib") (TmPred (TmVar "n"))))

(TmApp (TmVar "fib")

(TmPred (TmPred (TmVar "n")))))))

tmfib :: Term

tmfib =

TmLetrec ("add",TyFun TyNat (TyFun TyNat TyNat)) tmladd

(TmLetrec ("eqnat",TyFun TyNat (TyFun TyNat TyBool)) tmleqnat

(TmLetrec ("fib",TyFun TyNat TyNat) tmlfib

(TmApp (TmVar "fib") (tmnr 8))))

tmfactn :: Int -> Term

tmfactn n = TmLetrec ("fact",TyFun TyNat TyNat) tmlfact

(TmApp (TmVar "fact") (tmnr n))

tmrecord :: Term

tmrecord =

TmLetrec ("add",TyFun TyNat (TyFun TyNat TyNat)) tmladd

(TmLetrec ("eqnat",TyFun TyNat (TyFun TyNat TyBool)) tmleqnat

(TmLetrec ("mul",TyFun TyNat (TyFun TyNat TyNat)) tmlmul

(TmRecord [L "1" (tmfactn 1), L "2" (tmfactn 2),

L "3" (tmfactn 3), L "4" (tmfactn 4)])))
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tmcase1 :: Term

tmcase1 = TmVariantCase

(TmVariantTag (L "N" TmZero)

(TyVariant [L "N" TyNat,L "B" TyBool]))

[L "N" (VariantCase "x1" (TmSucc (TmVar "x1"))),

L "B" (VariantCase "x2" TmZero)]

tmcase2 :: Term

tmcase2 = TmVariantCase

(TmVariantTag (L "B" TmTrue)

(TyVariant [L "N" TyNat,L "B" TyBool]))

[L "N" (VariantCase "x1" (TmSucc (TmVar "x1"))),

L "B" (VariantCase "x2" TmZero)]

tmcase3 :: Term

tmcase3 = TmVariantCase

(TmVariantTag (L "N2" (TmTuple [tmnr 5,tmnr 10]))

(TyVariant [L "B" TyBool,L "N2" (TyTuple [TyNat,TyNat])]))

[L "N2" (VariantCase "x1" (TmTupleProj (TmVar "x1") 2)),

L "B" (VariantCase "x2" TmZero)]

tmtag :: Term

tmtag = TmVariantTag (L "B" TmFalse) (TyVariant [L "N" TyNat,L "B" TyBool])

tmlist :: Term

tmlist =

TmCons TyNat (tmnr 1)

(TmCons TyNat (tmnr 5)

(TmCons TyNat (tmnr 3) (TmNil TyNat)))

tmxs, tmys :: Term

tmys =

TmCons TyNat (tmnr 5)

(TmCons TyNat (tmnr 6)

(TmCons TyNat (tmnr 7) (TmNil TyNat)))

tmxs =

TmCons TyNat (tmnr 1)

(TmCons TyNat (tmnr 2)

(TmCons TyNat (tmnr 3)

(TmCons TyNat (tmnr 4) (TmNil TyNat))))

tmlappend :: Term

tmlappend =

TmAbs ("xs",TyList TyNat)

(TmAbs ("ys",TyList TyNat)

(TmIf (TmIsNil TyNat (TmVar "xs")) (TmVar "ys")

(TmCons TyNat (TmHead TyNat (TmVar "xs"))

(TmApp (TmApp (TmVar "append") (TmTail TyNat (TmVar "xs")))
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(TmVar "ys"))

)))

tmappend :: Term

tmappend =

TmLetrec ("append",TyFun (TyList TyNat) (TyFun (TyList TyNat) (TyList TyNat)))

tmlappend

(TmApp (TmApp (TmVar "append") tmxs) tmys)

tmrefbasics0 :: Term

tmrefbasics0 =

TmLet "r" (TmRef (tmnr 5)) (TmDeref (TmVar "r"))

{-

Main> test tmrefbasics0

type = nat

value = (5,[5])

-}

tmrefbasics1 :: Term

tmrefbasics1 =

TmLet "r" (TmRef (tmnr 5))

(TmSeq (TmAssign (TmVar "r") (tmnr 7)) (TmDeref (TmVar "r")))

{-

Main> test tmrefbasics1

type = nat

value = (7,[7])

-}

tmrefbasics2 :: Term

tmrefbasics2 =

TmLet "r" (TmRef (tmnr 5))

(TmSeq (TmAssign (TmVar "r") (tmnr 7))

(TmSucc (TmSucc (TmSucc (TmDeref (TmVar "r"))))))

{-

Main> test tmrefbasics2

type = nat

value = (10,[7])

-}

tmrefbasics3 :: Term

tmrefbasics3 =

TmLet "r" (TmRef (tmnr 5))

(TmSeq (TmAssign (TmVar "r") (TmSucc (TmDeref (TmVar "r"))))

(TmSeq (TmAssign (TmVar "r") (TmSucc (TmDeref (TmVar "r"))))

(TmSeq (TmAssign (TmVar "r") (TmSucc (TmDeref (TmVar "r"))))
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(TmSeq (TmAssign (TmVar "r") (TmSucc (TmDeref (TmVar "r"))))

(TmSeq (TmAssign (TmVar "r") (TmSucc (TmDeref (TmVar "r"))))

(TmDeref (TmVar "r")))))))

{-

Main> test tmrefbasics3

type = nat

value = (10,[10])

-}

tmrefbasics4 :: Term

tmrefbasics4 =

TmLet "r" (TmRef (tmnr 100))

(TmLet "s" (TmVar "r")

(TmSeq (TmAssign (TmVar "s") (tmnr 5)) (TmDeref (TmVar "r"))))

{-

Main> test tmrefbasics4

type = nat

value = (5,[5])

-}

tmrefbasics5 :: Term

tmrefbasics5 =

TmLet "r" (TmRef (tmnr 10))

(TmLet "s" (TmVar "r")

(TmSeq (TmAssign (TmVar "s") (tmnr 5))

(TmPred (TmPred (TmDeref (TmVar "r"))))))

{-

Main> test tmrefbasics5

type = nat

value = (3,[5])

-}

tmrefshared1 :: Term

tmrefshared1 =

TmLet "c" (TmRef (tmnr 0))

(TmLet "incc" (TmAbs ("x",TyUnit)

(TmSeq

(TmAssign (TmVar "c") (TmSucc (TmDeref (TmVar "c"))))

(TmDeref (TmVar "c"))))

(TmLet "decc" (TmAbs ("x",TyUnit)

(TmSeq

(TmAssign (TmVar "c") (TmPred (TmDeref (TmVar "c"))))

(TmDeref (TmVar "c"))))

(TmApp (TmVar "incc") TmUnit)))
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{-

Main> test tmrefshared1

type = nat

value = (1,[1])

-}

tmrefshared2 :: Term

tmrefshared2 =

TmLet "c" (TmRef (tmnr 0))

(TmLet "incc"

(TmAbs ("x",TyUnit)

(TmSeq (TmAssign (TmVar "c") (TmSucc (TmDeref (TmVar "c"))))

(TmDeref (TmVar "c"))))

(TmLet "decc"

(TmAbs ("x",TyUnit)

(TmSeq (TmAssign (TmVar "c") (TmPred (TmDeref (TmVar "c"))))

(TmDeref (TmVar "c"))))

(TmSeq (TmToUnit (TmApp (TmVar "incc") TmUnit))

(TmApp (TmVar "decc") TmUnit))))

{-

Main> test tmrefshared2

type = nat

value = (0,[0])

-}

tmrefshared3 :: Term

tmrefshared3 =

TmLet "c" (TmRef (tmnr 0))

(TmLet "incc"

(TmAbs ("x",TyUnit)

(TmSeq (TmAssign (TmVar "c") (TmSucc (TmDeref (TmVar "c"))))

(TmDeref (TmVar "c"))))

(TmLet "decc"

(TmAbs ("x",TyUnit)

(TmSeq (TmAssign (TmVar "c") (TmPred (TmDeref (TmVar "c"))))

(TmDeref (TmVar "c"))))

(TmSeq (TmToUnit (TmApp (TmVar "incc") TmUnit))

(TmSeq (TmToUnit (TmApp (TmVar "incc") TmUnit))

(TmSeq (TmToUnit (TmApp (TmVar "incc") TmUnit))

(TmApp (TmVar "decc") TmUnit))))))

{-

Main> test tmrefshared3

type = nat

value = (2,[2])

-}
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tmrefshared4 :: Term

tmrefshared4 =

TmLet "c" (TmRef (tmnr 0))

(TmLet "incc"

(TmAbs ("x",TyUnit)

(TmSeq (TmAssign (TmVar "c") (TmSucc (TmDeref (TmVar "c"))))

(TmDeref (TmVar "c"))))

(TmLet "decc"

(TmAbs ("x",TyUnit)

(TmSeq (TmAssign (TmVar "c") (TmPred (TmDeref (TmVar "c"))))

(TmDeref (TmVar "c"))))

(TmLet "o" (TmRecord [L "i" (TmVar "incc"),L "d" (TmVar "decc")])

(TmSeq (TmToUnit (TmApp (TmRecordProj (TmVar "o") "i") TmUnit))

(TmSeq (TmToUnit (TmApp (TmRecordProj (TmVar "o") "i") TmUnit))

(TmSeq (TmToUnit (TmApp (TmRecordProj (TmVar "o") "i") TmUnit))

(TmSeq (TmToUnit (TmApp (TmRecordProj (TmVar "o") "i") TmUnit))

(TmApp (TmRecordProj (TmVar "o") "d") TmUnit))))))))

{-

Main> test tmrefshared4

type = nat

value = (3,[3])

-}

tmrefarray :: Term

tmrefarray =

TmLetrec ("add",TyFun TyNat (TyFun TyNat TyNat)) tmladd

(TmLetrec ("eqnat",TyFun TyNat (TyFun TyNat TyBool)) tmleqnat

(TmLet "newarray"

(TmAbs ("",TyUnit) (TmRef (TmAbs ("n",TyNat) TmZero)))

(TmLet "lookup"

(TmAbs ("a",TyRef (TyFun TyNat TyNat))

(TmAbs ("n",TyNat)

(TmApp (TmDeref (TmVar "a")) (TmVar "n"))))

(TmLet "update"

(TmAbs ("a",TyRef (TyFun TyNat TyNat))

(TmAbs ("m",TyNat)

(TmAbs ("v",TyNat)

(TmLet "oldf" (TmDeref (TmVar "a"))

(TmAssign (TmVar "a")

(TmAbs ("n",TyNat)

(TmIf (TmApp

(TmApp (TmVar "eqnat") (TmVar "m"))

(TmVar "n"))

(TmVar "v")

(TmApp (TmVar "oldf") (TmVar "n"))))

)))))

(TmLet "array" (TmApp (TmVar "newarray") TmUnit)
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(TmSeq

(TmApp (TmApp (TmApp (TmVar "update")

(TmVar "array")) (tmnr 1)) (tmnr 3))

(TmSeq (TmApp (TmApp (TmApp (TmVar "update")

(TmVar "array")) (tmnr 2)) (tmnr 4))

(TmApp (TmApp (TmVar "add")

(TmApp (TmApp (TmVar "lookup") (TmVar "array"))

(tmnr 1)))

(TmApp (TmApp (TmVar "lookup") (TmVar "array"))

(tmnr 2))

))))))))

{-

Main> test tmrefarray

type = nat

value = (7=3+4=array(1)+array(2),[...])

-}

test :: Term -> IO ()

test t = do putStrLn ("type = " ++ (show (typeOf (removenames t []) ctx0 st0)));

putStrLn ("value = " ++ (show (evalTerm (t,s0) ctx0)));
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