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Blvd. Carol I, nr.8, 700505, Iaşi, ROMANIA (RO)
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ABSTRACT

We investigate a language similar to a process algebra for DNA computing introduced by
Cardelli. For such a language we relate two formal semantics. We define a new denotational
semantics by using complete metric spaces, in which various semantic functions are defined as
fixed points of appropriate higher-order mappings. We compare this denotational semantics
with an operational semantics, and establish a formal relationship between them by using
an abstraction operator and a fixed point argument. In this way we prove the correctness of
the denotational semantics with respect to the operational one.
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1 Introduction

We design and relate formally operational and denotational semantic models for a process
algebra language - that we name LDNA - which incorporates some basic concepts of DNA
computing. The language LDNA is based on the combinatorial ”strand algebra” introduced
in section 2 of [7].1 The relevance of LDNA for DNA computing is explained in [7]. We define
an operational semantics O for LDNA based on a DNA reaction relation introduced in [7].
We also define a new denotational semantics D for LDNA. We show that the operational
semantics is equal to the denotational meaning to which an abstraction operator abs is
applied: O = abs ◦D. In this way we establish the correctness of the denotational semantics
with respect to the operational semantics (D makes at least the same distinction between
meanings as O does).

In this paper LDNA is a formal language with typical elements P,Q,R, that we call
components. We describe the syntax of LDNA in BNF as follows:

P ::= 0 | x | g | P ‖ P | P ∗

An inert component is indicated by 0. x is a signal. g is a gate. P1 ‖ P2 is the parallel compo-
sition of P1 and P2. Intuitively, an LDNA component describes a concurrent combination of
several signals and gates that can interact as explained below. The construction P ∗ describes
an unbounded (inexhaustible) population. Intuitively, a population P ∗ is an infinite resource,
storing an infinite number of copies of the component P . The construction for populations
is based on the replication operator from the π calculus [15]. P ∗ and P ‖ P ∗ behave the
same; formally, we express this as follows: P ∗ ≡ P ‖ P ∗, where ≡ (⊆ LDNA × LDNA) is a
congruence relation called mixing (≡ was introduced [7]).

We assume given a countable set X of signals with typical elements x, y. A gate is an
operator from signals to signals ([x1, . . . , xn].[y1, . . . , ym]), able to join the signals x1, . . . , xn

and to fork the signals y1, . . . , ym. We consider that the order of signals is irrelevant, hence
a gate is a pair of multisets.2 In LDNA signals and gates combine in a multiset of elements
(a ’chemical soup’) that proceed concurrently.3

In such a multiset of concurrent LDNA components, when n signals x1, . . . , xn com-
bine in parallel with a gate ([x1, . . . , xn].[y1, . . . , ym]) they can react (or interact). The
signals x1, . . . , xn and the gate are consumed in the interaction. The signals y1, . . . , ym are
released and become available for further interactions. Cell structures cannot grow arbi-
trarily large. It is reasonable to assume that there exists k ∈ N such that for any gate
([x1, . . . , xn].[y1, . . . , ym]) we have n ≤ k, i.e., the number of signals in the input part of the
gate is always lesser than or equal to k. The behavior of such a system is expressed formally
in [7] by a reaction relation −→ (⊆ LDNA ×LDNA) and the following rule:

x1 ‖ · · · ‖ xn ‖ ([x1, . . . , xn].[y1, . . . , ym]) −→ y1 ‖ · · · ‖ ym

1In [7] the language is named P .
2Intuitively, a multiset is a collection where an element may occur more than once, an unordered list; a formal
definition is provided in section 2.

3The concurrent combination of several processes is a multiset because, in general, multiple copies of a process
may be executed in parallel.
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In this rule the multiset [x1, . . . , xn] behaves as a join pattern. Join patterns and join
synchronization were investigated in the context of join calculus [10]. The ability to join
and fork signals and to combine signals and gates into populations are specific of the strand
process algebras given in [7].

Process algebras describe formally the behavior of multiple processes running concur-
rently. In general, a process algebra only provides compositionality at the level of the syntax,
in terms of operators which can combine simple components into more complex ones.

Denotational semantics (initially known as mathematical or Scott-Strachey semantics) is
an approach of formalizing the meanings of programming or specification languages. The
main principle in the denotational approach is the semantic compositionality: the denotation
of a composite construction is defined solely based on the denotation of its syntactic com-
ponents. An elegant theory of domains has been developed, which may use order-theoretic
structures [11] or metric spaces [3, 5].

In this paper we use the metric approach to semantics described in the monograph [5].
The main mathematical tool is Banach’s theorem, which states that contracting functions
defined on complete metric spaces have unique fixed points. We define various semantic op-
erators as fixed points of appropriate higher-order mappings. Also, we use semantic domains
that are complete metric spaces. The semantic domains are defined as solutions of reflexive
domain equations solved by using the method introduced in [3].

We extend the binary reaction relation introduced in [7] to a ternary relation −→⊆
LDNA ×G×LDNA, where (g ∈)G is the set of gates. Each element of −→ is a triple

(P, g, P ′) written as P
g

−→ P ′. We label each reaction with the gate that is involved in the
reaction. If g = ([x1, . . . , xn].[y1, . . . , ym]) then

x1 ‖ · · · ‖ xn ‖ g
g

−→ y1 ‖ · · · ‖ ym

The gates become observable items that capture the information expressed by interactions.
We obtain a labeled reaction relation that we use in the definition of an operational semantics
O : LDNA → P. The semantic universe P is a linear-time domain. The elements of P are
(non-empty and compact) collections of sequences of observables (gates).

The semantic universe of D is a branching time domain PD. An element of PD is a tree-
like structure whose nodes represent nondeterministic choice points. We need a branching
domain to model in a denotational (compositional) manner then synchronization mechanism
on which LDNA is based. The elements of the domain P (that we use as semantic universe
for the operational semantics) are collections of sequences, i.e., linear (or non-branching)
structures. The terminology ’linear time’ versus ’branching time’ is often used in denotational
semantics [4],[5].

We investigate the correctness of the denotational model D. A denotational semantics
is said to be correct with respect to a corresponding operational semantics if whenever the
denotational meanings of two language constructs are equal the operational semantics of
the two language constructs are also equal in any syntactic context. A formal definition is
provided in section 2.4. As it is known, in order to prove the correctness of D it is sufficient
to find an (abstraction) operator abs : PD → P (which, in general, is not injective) such
that O = abs ◦ D, where ◦ is the operator for function composition [5]. We define such
a function abs that takes PD processes, which are tree-like structures, as arguments and
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yields collections of sequences as results. In order to prove that O = abs ◦ D, we introduce
an alternative operational semantics OA : LDNA → P and a (branching time) intermediate
operational semantics: OD : LDNA → PD. In the definitions of OA and OD we use a new
ternary relation =⇒⊆ LDNA × A × LDNA, that we call a transition relation. (α ∈)A is a
strict superset of G(G ⊂ A). An element of =⇒ is a triple (P, α, P ′), written as P

α
=⇒ P ′.

The transition relation =⇒ extends the reaction relation −→ in order to express the
interaction capabilities of LDNA components. In the case of =⇒, a label may be either a
DNA gate (g ∈ G) representing a successful reaction, or an attempt to participate in a DNA
interaction. Such a DNA interaction attempt is a multiset, comprising zero or more signals
and (eventually) a gate, that could participate in a successful DNA reaction.

We prove that O = OA, OA = abs ◦ OD and OD = D. It follows that O = abs ◦ D. We
conclude that the denotational semantics is correct with respect to the operational semantics.

2 Mathematical preliminaries

The notation (x, y, . . . ∈)X introduces the set X with typical elements x, y, . . . ranging over
X . By P(X) we denote the power set of X , i.e. the set of all subsets of X . The notation
Pπ(X) denotes the power set of X that have property π. For example, Pfin(X) is the set of
all finite subsets of X , and Pnfin(X) is the set of all finite and nonempty subsets of X .

2.1 Multisets

A multiset is a generalization of a set. Intuitively, a multiset is a collection in which an
element may occur more than once. We can present a multiset of elements of type X by
using a function from X to N, or a partial function m : X → N+, where N+ = N \ {0},
namely the set of natural numbers without 0. m(x) is called the multiplicity of x (the number
of occurrences of x in m). More about the mathematics of multisets can be found in [1].

Let X be a countable set. We denote by [X ] the set of all finite multisets of elements

of type X , i.e., [X ]
not.
=

⋃

A∈Pfin(X){m | m ∈ (A → N+)}. Since X is countable, Pfin(X) is

also countable. An element m ∈ [X ] is a multiset of elements of type X , namely a function
m : A → N+, where A ∈ Pfin(X) is such that ∀x ∈ A : m(x) > 0. We can define various
operations on multisets m1, m2 ∈ [X ]. Below, dom(·) is the domain of function ’·’.

� Multiset sum: m1 ⊎m2 (⊎ : ([X ]× [X ]) → [X ])

dom (m1 ⊎m2) = dom (m1) ∪ dom(m2)

(m1 ⊎m2)(x) =







m1(x) +m2(x) if x ∈ dom(m1) ∩ dom (m2)
m1(x) if x ∈ dom(m1) \ dom (m2)
m2(x) if x ∈ dom(m2) \ dom (m1)

� Multiset union: m1 ∪m2 (∪ : ([X ]× [X ]) → [X ])

dom (m1 ∪m2) = dom (m1) ∪ dom(m2)
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(m1 ∪m2)(x) =







max{m1(x), m2(x)} if x ∈ dom (m1) ∩ dom (m2)
m1(x) if x ∈ dom (m1) \ dom (m2)
m2(x) if x ∈ dom (m2) \ dom (m1)

� Multiset difference: m1 \m2 (\ : ([X ]× [X ]) → [X ])

dom (m1 \m2) =

( dom(m1) \ dom (m2) ) ∪ {x | x ∈ dom(m1) ∩ dom (m2) , m1(x) > m2(x)}

(m1 \m2)(x) =

{

m1(x) if x ∈ dom (m1) \ dom (m2)
m1(x)−m2(x) if x ∈ dom (m1) ∩ dom (m2) , m1(x) > m2(x)

� Submultiset: m1 ⊆ m2 (⊆: ([X ]× [X ]) → Bool)

m1 ⊆ m2 iff ( dom(m1) ⊆ dom (m2) ) ∧ (∀x ∈ dom (m1) : m1(x) ≤ m2(x)).

� Cardinal number: |m| (∈ N)

|m| =
∑

x∈ dom (m)

m(x)

� Domain restriction: m1 \\m2 ( \\ : [X ]× [X ] → [X ])

dom (m1 \\m2) = dom (m1) \ dom (m2)

(m1 \\m2)(x) = m1(x), ∀x ∈ dom(m1) \ dom (m2)

� Duplicates removal: {|m|} ({| · |} : [X ] → [X ])

dom ({|m|}) = dom (m)

{|m|}(x) = 1, ∀x ∈ dom(m)

We write m1 = m2 to express that the multisets m1 and m2 are equal. m1 = m2 iff
dom (m1) = dom (m2) and ∀x ∈ dom (m1) : m1(x) = m2(x). The notation m1 6= m2 means
that the multisets m1 and m2 are not equal, i.e., ¬(m1 = m2). Also, we write m1 ⊂ m2

whenever m1 ⊆ m2 and m1 6= m2, i.e. m1 is a strict submultiset of m2.
We can also represent a multiset m ∈ [X ] by enumerating its elements between paren-

theses ’[’ and ’]’. Notice that the elements in a multiset are not ordered; intuitively,
a multiset is an unordered list of elements. For example, [] is the empty multiset, i.e.
the function with empty graph. Another example: [x1, x1, x2] = [x1, x2, x1] = [x2, x1, x1]
is the multiset with two occurrences of x1 and one occurrence of x2, i.e. the function
m : {x1, x2} → N+, m(x1) = 2, m(x2) = 1. Intuitively, the cardinality (or size) of a multiset
is the total number of elements that it contains (taking into account the multiplicities). For
example, |[x1, x1, x2]| = 3, and |[]| = 0. Notice that m = [] ⇔ |m| = 0.

The definitions of multiset sum and multiset union should be clear. We consider the
following examples: [x1, x1] ∪ [x1, x2] = [x1, x1, x2], and [x1, x1] ⊎ [x1, x2] = [x1, x1, x1, x2].
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m1 \ m2 is a multiset difference operation. Notice that an element x ∈ dom (m1) ∩
dom (m2) occurs in (m1(x)−m2(x)) times m1 \m2 whenever m1(x) > m2(x). m1 \\m2 is a
more strict operation which simply restricts the domain of m1 \\m2 to dom (m1) \ dom (m2) .
For example, [x1, x1, x2, x2] \ [x1] = [x1, x2, x2], and [x1, x1, x2, x2] \\ [x1] = [x2, x2]. We also
give an example for the duplicates removal operation: {|[x1, x1, x2, x2]|} = [x1, x2].

When (x ∈)X is a countable set we use the following notation convention. We denote
by x typical elements of [X ], i.e., x ∈ [X ] is a multiset of elements of the type X . Also, we
denote by [X ]≤k the set of all all finite multisets over X that have cardinality less than or
equal to k, for any k ∈ N+:

[X ]≤k = {x | x ∈ [X ], |x| ≤ k}

2.2 Metric spaces

The semantic models given in this paper are designed following the mathematical method-
ology of metric semantics [5]. More exactly, we work within the mathematical framework of
1-bounded complete metric spaces. We assume the following notions are known: metric and
ultrametric space, isometry (distance preserving bijection between metric spaces, denoted
by ’∼=’), complete metric space, and compact set. For details, the reader may consult the
monograph [5], for instance.

Example 2.1 Let (a, b ∈)A be a set. We employ the following metric structures, which are
frequently used in semantics.

(a) The discrete metric d : A × A → [0, 1] is defined as d(x, y) = if x=y then 0 else 1.
(A, d) is a complete ultrametric space.

(b) Let (x, y ∈)A∞ = A∗ ∪ Aω, where A∗ (Aω) is the set of all finite (infinite) sequences
over A. A metric over A∞ can be defined by: d(x, y) = 2− sup{n |x[n]=y[n]}, where x[n]
denotes the prefix of x of length n, in case length(x) ≥ n, and x otherwise (by conven-
tion, 2−∞ = 0). d is a Baire-like metric. (A∞, d) is a complete ultrametric space.

We write a sequence in A∞ by listing its elements. For example, a1 . . . an is a finite
sequence of length n, and aω = aaa . . . is an infinite sequence. We use the symbol ’·’ as a
concatenation operator over sequences and also as a prefixing operator. In particular,
if a ∈ A, x ∈ A∞, a · x is the sequence obtained by prefixing a to x. Note that, if
x, y ∈ A∞ then d(a · x, a · y) = 1

2
· d(x, y).

We recall that if (X, dX), (Y, dY ) are metric spaces, a function f :X→Y is a contraction
if ∃c ∈ R, 0 ≤ c < 1, ∀x1, x2 ∈ X : dY (f(x1), f(x2))≤ c · dX(x1, x2). In metric semantics, it
is usual to attach a contracting factor c = 1

2
to each computation step. When c = 1 the

function f is called nonexpansive. We denote by X
1

→Y the set of all nonexpansive functions
from X to Y .

Let f : X →X be a function. When x ∈ X is such that f(x) = x, we call x a fixed point
of f . When this fixed point is unique, we write x = fix(f). The following theorem is at the
core of metric semantics.
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Theorem 2.2 (Banach) Let (X, dX) be a complete metric space. Each contraction f :
X→X has a unique fixed point.

Definition 2.3 Let (X, dX), (Y, dY ) be (ultra)metric spaces. We define the following metrics
over X, X →Y (function space), X×Y (Cartesian product), X + Y (disjoint union defined
by X + Y = ({1} ×X) ∪ ({2} × Y )), and P(X) (powerset of X), respectively.

(a) d 1

2
·X : X ×X→[0, 1], d 1

2
·X(x1, x2) =

1
2
· dX(x1, x2)

(b) dX →Y : (X →Y )× (X →Y )→[0, 1], dX →Y (f1, f2) = supx∈X dY (f1(x), f2(x))

(c) dX×Y : (X×Y )×(X×Y )→[0, 1], dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)};

(d) dX+Y : (X + Y )× (X + Y )→[0, 1],

dX+Y (u, v) = if (u, v ∈ X) then dX(u, v) else if (u, v∈Y ) then dY (u, v) else 1

(e) dH : P(X)×P(X)→[0, 1], dH(U, V ) = max{supu∈U d(u, V ), supv∈V d(v, U)}, where
d(u,W )= infw∈W dX(u, w) (by convention sup ∅=0 and inf ∅=1); dH is the Hausdorff
metric.

We use the abbreviations Pco(X) and Pnco(X) to denote the powerset of compact and
non-empty and compact subsets of X , respectively. Also, we often suppress the metrics part
in domain definitions and write, e.g., 1

2
· X instead of (X, d 1

2
·X).

Remark 2.4 Let (X, dX), (Y, dY ), d 1

2
·X , dX →Y , dX×Y , dX+Y and dH be as in Definition 2.3.

If dX , dY are ultrametrics, then so are d 1

2
·X , dX→Y , dX×Y , dX+Y and dH . Moreover, if (X, dX),

(Y, dY ) are complete then 1
2
· X, X→Y , X

1

→Y , X × Y ,X + Y , Pco(X) and Pnco(X) with
their metrics defined above are also complete metric spaces [5].

2.3 Bisimulation semantics

We assume the reader is familiar with the way an operational semantics can be defined based
on a (labelled) transition system, embedded in a deductive system in the style of structured
operational semantics [16]. To reason about the behavior specified by a transition system
we use the notion of a strong bisimulation relation [15].

Definition 2.5 A transition system T is a triple (X,A,→), where (x ∈)X is a set of config-
urations, (α ∈)A is a set of observations, and → is a subset of X×A×X (→⊆ X×A×X).
One usually writes x

α
−→ x′ to express that (x, α, x′) ∈→.

Definition 2.6 Let T = (X,A,→) be a transition system. A strong bisimulation on T is a
relation B ⊆ X × X which satisfies the following property. For each x1, x2 ∈ X, if x1Bx2

then (i) and (ii) hold

(i) If x1
α

−→ x′
1 then there exists x′

2 such that x2
α

−→ x′
2 and x′

1Bx′
2.

(ii) If x2
α

−→ x′
2 then there exists x′

1 such that x1
α

−→ x′
1 and x′

1Bx′
2.

where we write xBx′ to express that (x, x′) ∈ B.
We say that x1 and x2 are strongly bisimilar, written x1 ∼ x2, if there exists a strong

bisimulation B such that x1Bx2.
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2.4 Semantic correctness

A semantics is a function M : L → M, where L is a (formal) language and M is a math-
ematical domain (of meanings). A language is a collection of syntactic forms. We assume
the reader is familiar with the formal description techniques that we employ in this paper,
namely denotational semantics and operational semantics.

Let (P,Q ∈)L be a language, C a typical element of a class of syntactic contexts for L,
D : L → D a denotational (compositional) semantics, and O : L → O an operational
semantics. Intuitively, a syntactic context is a language construct with ’holes’. For a given
context C we denote by C(P ) the result of replacing all occurrences of the ’hole’ symbol (·)
with P in C. The notion of a syntactic context is exemplified in Definition 3.4 for the language
LDNA.

The denotational semantics D is said to be correct with respect to the operational seman-
tics O if whenever the denotations of two language elements are equal then the operational
meanings of the two language elements in any syntactic context are also equal. Formally, D
is correct with respect to O if the following condition holds:

∀P,Q ∈ L [D[[P ]] = D[[Q]] ⇒ ∀C [O[[C(P )]] = O[[C(Q)]] ]]

Remark 2.7 As it is well-known (see chapter 17 in [5]), in order to prove the correctness
of D it is sufficient to find an operator abs : D → O (which, in general, is not injective)
such that: O = abs ◦ D.

If the denotational semantics D is correct and it is also complete with respect to O
then D is said to be fully abstract. In this paper we do not need to define formally the notion
of semantic completeness. The full-abstraction problem was first raised by Robin Milner
[13, 14].

3 Syntax of LDNA

An informal description of LDNA was already presented in Section 1. In this section we give
the formal definition of the syntax of LDNA. We assume given a countable set (x, y ∈)X of
signals. We model a gate as a pair of multisets, written as ([x1, . . . , xn].[y1, . . . , ym]). Cell
structures cannot grow arbitrarily large. It is reasonable to assume that there exists k ∈ N
such that for any gate ([x1, . . . , xn].[y1, . . . , ym]) we have n ≤ k, i.e., the number of signals
in the input part of the gate is always lesser than or equal to k.

Remark 3.1 In the rest of the paper we assume given a positive natural number k ∈ N+

that imposes an upper limit on the size of the input part of any gate. However, note that
the k can be chosen arbitrarily large. k is a parameter of the specification of LDNA. The
same k will be used in all subsequent sections, both in syntactic and in semantic definitions.

We define the set of gates by (g ∈)G = ([X ]≤k \ {[]}) × [X ].4 A gate g(∈ G) is a pair of
multisets of signals (x, y), such that x is not empty (x 6= []) and the cardinality of x is lesser

4The notations [X ] and [X ]≤k were introduced in Section 2.1.
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than or equal to k (0 < |x| ≤ k). In [7] a gate (x, y) is written as x.y. We use a similar (but
slightly different) notation. We write a gate (x, y) in the form (x.y). For easier readability
we will use the same notation for gates both in the syntactic representation and in semantic
computations.

Definition 3.2 The language (P,Q,R ∈)LDNA is defined by:

P ::= 0 | x | g | P ‖ P | P ∗

The syntax of LDNA is given in Definition 3.2. We use the term component to refer to
any (syntactic) element of LDNA. LDNA provides elementary components called signals and
gates, a construction for parallel (concurrent) composition, and a construction that can be
used to express unbounded (inexhaustible) populations of components [7].

We denote typical elements of LDNA by P,Q,R. 0 is the inert component. x ∈ X is
a signal. g ∈ G is a gate of the form ([x1, . . . , xn].[y1, . . . , ym]), with 0 < n ≤ k, 0 ≤ m.5

P1 ‖ P2 is the parallel composition of P1 and P2. P ∗ is an unbounded population. The
construction P ∗ can be used to generate an arbitrary number of concurrent copies of P .

A gate ([x1, . . . , xn].[y1, . . . , ym]) can interact with n concurrent signals x1, . . . , xn as
explained informally in Section 1. The multiset [x1, . . . , xn] behaves as a join pattern [10].
In the subsequent sections we will describe such interactions formally.

By using the operators for parallel composition and populations, signals and gates can
be combined into a multiset (a ’soup’) of concurrent components that can interact. When
a gate The gate joins the signals x1, . . . , xn, forks the signals y1, . . . , ym and is consumed in
the interaction [7].

Remark 3.3 The language LDNA is similar to the process algebra P introduced in Section 2
of [7].6 The two languages provide the same constructions, but the size of (the input part of)
any gate is limited by k in LDNA.

Let g = ([x1, . . . , xn].y) be a gate whose input part is a multiset of size (cardinality) n.
Such a gate can participate in interactions that involve n+ 1 concurrent components: g and
the signals x1, . . . , xn. Hence, in LDNA an interaction involves at most k + 1 concurrent
components: a gate of size at most k and at most k concurrent signals. By choosing k
sufficiently large any interaction that can be modeled in P can also be modeled in LDNA. In
this sense, LDNA is not less expressive than P.

We will present a denotational model for LDNA which is correct with respect to a cor-
responding operational model. The concept of semantic correctness (see Section 2.4) is
defined by using the notion of a syntactic context, which is specific of the language under
investigation.

5The reader may wonder why we use the semantic notion of a multiset in the syntax definition of LDNA. It
would be easy to make a complete separation between syntax and semantics. For example, we could define
the class of gates by g ::= (x+ .x∗), where x+ is a finite and nonempty sequence of signals of length less than
or equal to k, and x∗ is a finite, possibly empty, sequence of signals. Instead, we use multisets because the
order of signals in a gate is irrelevant. In this way we also avoid some obvious conversions between sequences
and multisets.

6P is called combinatorial strand algebra in [7].
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Definition 3.4 The class of syntactic contexts for LDNA is given by: C ::= (·) | 0 | x | g |
C∗ | C ‖ C. We use the notation C(P ) to represent the LDNA component that is obtained
by substituting P for all occurrences of the ’hole’ symbol (·) in the context C. C(P ) can
be defined inductively: (·)(P ) = P, 0(P ) = 0, x(P ) = x, g(P ) = g, C∗(P ) = (C(P ))∗ and
(C1 ‖ C2)(P ) = C1(P ) ‖ C2(P ).

4 Reactions and operational semantics (O)

The operational semantics of the combinatorial strand algebra P presented in section 2 of [7]
is based on two relations, calledmixing and reaction, respectively. In [7] the both relations are
defined as binary relations. In this paper we extend the reaction relation to a ternary relation
−→⊆ LDNA ×G× LDNA. The elements of the set G (of gates) are used as observables in
the definition of the operational semantics. The operational semantics yields (nonempty
and compact) collections of sequences of gates. Intuitively, in this semantic model a gate
g = ([x1, . . . , xn].[y1, . . . , ym]) ∈ G is an observation that describes an interaction between g
and n concurrent signals x1, . . . , xn.

We introduce the mixing relation ≡ for LDNA in Definition 4.1. Mixing is a congruence
relation axiomatizing a well-mixed solution [7, 6]. Next, in Definition 4.2 we introduce the
reaction relation −→ for LDNA. The axioms and rules that describe ≡ and −→ are taken
from [7], and adapted to LDNA. The configurations that we use in the definitions of ≡ and
−→ are LDNA components. Also, −→ is extended to a ternary relation.

Definition 4.1 The relation ≡⊆ LDNA × LDNA, called mixing, is the smallest relation
satisfying the following properties:

(E1) P ≡ P (equivalence)

(E2) P ≡ Q ⇒ Q ≡ P

(E3) P ≡ Q,Q ≡ R ⇒ P ≡ R

(C1) P ≡ Q ⇒ P ‖ R ≡ Q ‖ R (congruence)

(C2) P ≡ Q ⇒ P ∗ ≡ Q∗

(D1) P ‖ 0 ≡ P (diffusion)

(D2) P ‖ Q ≡ Q ‖ P

(D3) P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R

(P1) P ∗ ≡ P ‖ P ∗ (population)

(P2) 0∗ ≡ 0

(P3) (P ‖ Q)∗ ≡ P ∗ ‖ Q∗

(P4) P ∗∗ ≡ P ∗



Correct Metric Semantics for a Biologically-Inspired Formalism 11

Definition 4.2 The relation −→⊆ LDNA×G×LDNA, called reaction, is the smallest relation
satisfying the rules given below. The elements of −→ are triples (P, g, P ′) ∈ LDNA × G ×

LDNA, that we call reactions. We write P
g

−→ P ′ to express that (P, g, P ′) ∈−→.

(R1) x1 ‖ · · · ‖ xn ‖ g
g

−→ y1 ‖ · · · ‖ ym (gate)

where g = ([x1, . . . , xn].[y1, . . . , ym]) ∈ G

(R2)
P

g
−→ P ′

P ‖ Q
g

−→ P ′ ‖ Q
(dilution)

(R3)
P ≡ Q,P ′ ≡ Q′, P

g
−→ P ′

Q
g

−→ Q′
(well mixing)

Rule (R1) was explained informally in Section 1. It describes the interaction between a gate
and a corresponding multiset of signals. If m = 0 in (R1) then y1 ‖ · · · ‖ ym is replaced
with 0 [7]. Notice that, according to properties (D2) and (D3), the parallel composition
operator ‖ is associative and commutative. Hence, in rule (R1) the components can be
written in any order and any order of association can be used. We use a standard notation
and terminology for inference rules. Rule (R1) is an axiom. According to rule (R2), whenever

P
g

−→ P ′ we also have P ‖ Q
g

−→ P ′ ‖ Q. Rule (R3) allows mixing ≡ to be used at any
point in inferring reactions.

In Definition 4.3 we present an operational semantics O for LDNA. The definition of O is
based on observable interactions, each interaction representing a (successful) DNA reaction.

Definition 4.3 (Operational semantics O) We write P −→/ to express that P has no reac-

tions, i.e., there is no g and P ′ such that P
g

−→ P ′. Let (q ∈)G∞ be the complete space of
all finite and infinite sequences over the set G (of gates). We use the symbol ǫ to represent
the empty sequence over G.7 We define O : LDNA → P(G∞) by:

O[[P ]] = {ǫ} if P −→/

O[[P ]] = { g1g2 · · · gn ∈ G∗ | P0 = P, Pi−1
gi

−→ Pi, ∀1 ≤ i ≤ n, Pn −→/ } ∪

{ g1g2 · · · ∈ Gω | P0 = P, Pi−1
gi

−→ Pi, ∀i ≥ 1}

Remark 4.4 For any P ∈ LDNA, O[[P ]] 6= ∅, i.e., O[[P ]] is always non-empty. We will prove
that, actually, O[[P ]] yields a (non-empty and) compact collection of sequences of interactions
(see Remark 7.14).

Examples 4.5

(a) O[[x]] = O[[([x].[])]] = {ǫ}, and O[[x ‖ ([x].[])]] = {([x].[])}, ∀x ∈ X.

7The construction G∞ = G∗ ∪Gω was introduced in Section 2.2. The empty sequence ǫ is an element of G∗

(ǫ ∈ G∗).
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(b) x ‖ ([x].[y1]) ‖ ([x].[y2])
([x].[y1])

−−−−−→ y1 ‖ ([x].[y2]) and y1 ‖ ([x].[y2]) −→/ . Also,

x ‖ ([x].[y1]) ‖ ([x].[y2])
([x].[y2])

−−−−−→ y2 ‖ ([x].[y1]) and y2 ‖ ([x].[y1]) −→/ . Therefore we
obtain:
O[[x ‖ ([x].[y1]) ‖ ([x].[y2])]] = {([x].[y1]), ([x].[y2])}.

Lemma 4.6 Mixing (≡) is a strong bisimulation with respect to reaction relation (−→).

Proof: It suffices to notice that, assuming P ≡ Q and P
g

−→ P ′, we can take Q′ = P ′

(which implies Q′ ≡ P ′) and, by using rule (R3), we infer Q
g

−→ Q′.

Remark 4.7 For any P ∈ LDNA, the operational semantics O[[P ]] is a collection of se-
quences of gates (DNA reactions) expressing the behavior of component P . It may not be
obvious that O[[P ]] contains sufficient information to express the behavior of P .

We can prove the following property: (*) for any LDNA component P and gate g (ei-

ther there is no P ′ such that P
g

−→ P ′ or) there is a unique component P ′ (up to mix-

ing bisimulation) such that P
g

−→ P ′. Therefore, any sequence of DNA reactions (gates)
g1 . . . gi . . . ∈ O[[P ]] can be used to recover a corresponding sequence of LDNA components
PP1 . . . Pi . . .. The sequence PP1 . . . Pi . . . is uniquely determined up to mixing bisimulation.
More precisely, for a given sequence g1 . . . gi . . . ∈ O[[P ]], if we put P0 = P ′

0 = P , and if

Pi−1
gi

−→ Pi, ∀i ≥ 1, and P ′
i−1

gi
−→ P ′

i , ∀i ≥ 1, then Pi ≡ P ′
i , ∀i ≥ 0.

The property (*) justifies our design decision to use LDNA gates as observable elements
in the definition of the operational semantics O[[·]]. However, the property is not needed in
the proof of the main semantic correctness result given in Section 8. Hence, we postpone its
presentation to Section 9. The property (*) is stated formally in Section 9 as Proposition 9.1.

According to Example 4.5(a), the operational semantics O is not a compositional se-
mantics. In the next section we present a denotational (compositional) semantics D for
LDNA.

5 Denotational semantics (D)

We offer a denotational (compositional) semantics for LDNA. In order to express the multi-
party (join) synchronization mechanism on which LDNA is based in a compositional manner
we employ a branching domain PD. The domain PD is specified as the solution of a domain
equation. The presentation is organized as follows. In Section 5.1 we describe the semantics
of interaction at the level of elementary LDNA components. Next, in Section 5.2 we introduce
the domain PD and we define the semantics of parallel composition. In Section 5.3 we give
the equations that define D in as a compositional mapping.

5.1 Semantics of interaction

In order to achieve a compositional semantics for LDNA we introduce a set I of interaction
attempts.
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Definition 5.1 The set I of interaction attempts is defined by:

I = ([X ]≤k \ {[]}) ∪ {(g, x′) | g ∈ G, g = (x.y), x′ ∈ [X ], x′ ⊂ x}

Let (α ∈)A = G ∪ I. Obviously, G ∩ I = ∅.

In our semantic models a gate g = ([x1, . . . , xn].[y1, . . . , ym]) describes a successful interaction
between g and n concurrent signals x1, . . . , xn. An interaction attempt contains only partial
information related to such an interaction. An interaction attempt could be a nonempty
multiset of signals; recall that at most k signals can participate in an interaction in LDNA

(see Remark 3.1), hence such a multiset representing an interaction attempt has cardinality
lesser than or equal to k. An interaction attempt could also consist of a gate g = (x.y) and
a (possibly empty) multiset x′, such that x′ ⊂ x (x′ is a strict submultiset of x).

Definition 5.2 Let (α ∈)A′ = A ∪ {↑}, with ↑ a distinct element, ↑/∈ A. We define an
interaction function γ : A′ × A′ → A′ as follows:

γ(↑, α) = γ(α, ↑) = γ(↑, ↑) =↑

γ((g1, x
′
1), (g2, x

′
2)) =↑

γ(g, α) = γ(α, g) =↑

γ(x1, x2) =

{

x1 ⊎ x2 if |x1 ⊎ x2| ≤ k
↑ otherwise

γ(x1, (g2, x
′
2)) =







g2 if g2 = (x.y), x1 ⊎ x′
2 = x

(g2, x1 ⊎ x′
2) if g2 = (x.y), x1 ⊎ x′

2 ⊂ x
↑ otherwise

γ((g1, x
′
1), x2) =







g1 if g1 = (x.y), x2 ⊎ x′
1 = x

(g1, x2 ⊎ x′
1) if g1 = (x.y), x2 ⊎ x′

1 ⊂ x
↑ otherwise

for any α ∈ A, g, g1, g2 ∈ G, x1, x2, (g1, x
′
1), (g2, x

′
2) ∈ I.

One can check that the interaction function γ is associative and commutative. The proof of
the following Lemma is (laborious but) straightforward.

Lemma 5.3

(a) γ(α1, α2) ∈ A ⇒ α1 ∈ I, α2 ∈ I.

(b) γ is commutative and associative.
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5.2 Semantic domain and semantic operators

The denotational semantics of LDNA is defined based on the branching domain PD given
in Definition 5.4. PD is specified as the solution of a domain equation. The technique for
solving such domain equations was already introduced in [3].

Definition 5.4 We define (p ∈)PD ss the (unique) metric domain satisfying:

PD
∼= Pco(A×

1

2
· PD)

The set A (introduced in Definition 5.1) is endowed with the discrete metric. The composed
metric spaces are built up using the composite metrics of Definition 2.3.

Definition 5.5 We define p· : [X ] → PD inductively:

p[] = ∅, and

px = {(x \ y, py) | y ⊂ x, x \ y ∈ I}, if x 6= [].8

In particular, p[y] = {([y], ∅)}.

We can now define the semantic operator ‖ for parallel composition on PD processes.

Definition 5.6 Let (φ ∈)Op = PD ×PD
1
→ PD. Let Ω‖,Ω ⌊⌊ ,Ω | : Op → Op be given by:

(a) Ω‖(φ)(∅, p) = Ω‖(φ)(p, ∅) = p

Ω‖(φ)(p1, p2) = Ω ⌊⌊ (φ)(p1, p2) ∪ Ω ⌊⌊ (φ)(p2, p1) ∪ Ω | (φ)(p1, p2), if p1 6= ∅, p2 6= ∅

(b) Ω ⌊⌊ (φ)(p1, p2) = {(α, φ(p′1, p2)) | (α, p
′
1) ∈ p1}

(c) Ω | (φ)(p1, p2) = {(γ(α′
1, α

′
2), φ(p

′
1, p

′
2)) | (α

′
1, p

′
1) ∈ p1, (α

′
2, p

′
2) ∈ p2, γ(α

′
1, α

′
2) ∈ I} ∪

{((x.y), φ(py, φ(p
′
1, p

′
2))) | (α

′
1, p

′
1) ∈ p1, (α

′
2, p

′
2) ∈ p2, (x.y) = γ(α′

1, α
′
2) ∈ G}

We define: ‖= fix(Ω‖), ⌊⌊= Ω ⌊⌊ (‖) and | = Ω | (‖).

‖ is the operator for parallel composition in LDNA, also called merge. | and ⌊⌊ are called
synchronization merge and left merge, respectively. | is a general (multiparty) join syn-
chronization operator, specific of LDNA. The left merge operator is similar to the parallel
composition (or merge) operator, but ⌊⌊ imposes the restriction that the first step must come
from p1.

Remark 5.7

(a) The higher order mapping Ω‖ given in Definition 5.6 is a contraction. Ω‖ is a contrac-
tion, essentially, because all occurrences of the argument φ in the right-hand sides of
the equations are used to yield values that are stored in the space 1

2
· PD.

8Recall that we use the notation y ⊂ x to express that y is a strict submultiset of x.
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(b) It is easy to check that the operators ∪, ‖, ⌊⌊ , | are well-defined and non-expansive in
both their arguments. The reader may consult [5], where many similar operators defined
in this way.

Lemma 5.8 states that the semantic operators ∪, ‖, ⌊⌊ , | satisfy some properties that
can be encountered in various concurrency theories. In particular, ‖ is commutative and
associative. As a consequence, notice that in the definition of | any order of association of
py, p

′
1, p

′
2 can be used.

Lemma 5.8 For any p1, p2, p3 ∈ PD

(a) (p1 ∪ p2)⌊⌊p3 = (p1 ⌊⌊p3) ∪ (p2 ⌊⌊p3)

(b) (p1 ∪ p2) |p3 = (p1 |p3) ∪ (p2 |p3)

(c) p1 |p2 = p2 |p1

(d) p1 ‖ p2 = p2 ‖ p1

(e) p1 ‖ (p2 ‖ p3) = (p1 ‖ p2) ‖ p3

(f) p1 | (p2 |p3) = (p1 |p2) |p3

(g) (p1 ⌊⌊p2)⌊⌊p3 = p1 ⌊⌊ (p2 ‖ p3)

(h) p1 | (p2 ⌊⌊p3) = (p1 |p2)⌊⌊p3

Proof: The properties stated by Lemma 5.8(a)-(d) follow easily by definition.
For the other properties we use an argument of the kind ’ε ≤ 1

2
· ε ⇒ ε = 0’, which is

standard in metric semantics. Let

σ1 = supp1,p2,p3∈PD
d(p1 ‖ (p2 ‖ p3), (p1 ‖ p2) ‖ p3)

σ2= supp1,p2,p3∈PD
d(p1 | (p2 |p3), (p1 |p2) |p3)

σ3= supp1,p2,p3∈PD
d((p1 ⌊⌊p2)⌊⌊p3, p1 ⌊⌊ (p2 ‖ p3)

σ4 = supp1,p2,p3∈PD
d(p1 | (p2 ⌊⌊p3), (p1 |p2)⌊⌊p3)

One can show that σ1 ≤ max{σ2, σ3, σ4}, and σi ≤ 1
2
· σ1, i = 2, 3, 4. Therefore σ1 =

σ2 = σ3 = σ4 = 0. σ1 = 0 implies Lemma 5.8(e): p1 ‖ (p2 ‖ p3) = (p1 ‖ p2) ‖ p3. From
σ2 = σ3 = σ4 = 0 we infer the properties stated by Lemma 5.8(f)-(h).

For σ1 we compute as follows:

d(p1 ‖ (p2 ‖ p3), (p1 ‖ p2) ‖ p3)

= d(p1 ⌊⌊ (p2 ‖ p3) ∪ (p2 ⌊⌊p3 ∪ p3 ⌊⌊p2 ∪ p2 |p3)⌊⌊p1 ∪ p1 | (p2 ⌊⌊p3 ∪ p3 ⌊⌊p2 ∪ p2 |p3),

(p1 ⌊⌊p2 ∪ p2 ⌊⌊p1 ∪ p1 |p2)⌊⌊p3 ∪ p3 ⌊⌊ (p1 ‖ p2) ∪ (p1 ⌊⌊p2 ∪ p2 ⌊⌊p1 ∪ p1 |p2) |p3)
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= d(p1 ⌊⌊ (p2 ‖ p3) ∪ (p2 ⌊⌊p3)⌊⌊p1 ∪ (p3 ⌊⌊p2)⌊⌊p1 ∪ (p2 |p3)⌊⌊p1 ∪

p1 | (p2 ⌊⌊p3) ∪ p1 | (p3 ⌊⌊p2) ∪ p1 | (p2 |p3),

(p1 ⌊⌊p2)⌊⌊p3 ∪ (p2 ⌊⌊p1)⌊⌊p3 ∪ (p1 |p2)⌊⌊p3 ∪ p3 ⌊⌊ (p1 ‖ p2)∪

p3 | (p1 ⌊⌊p2) ∪ p3 | (p2 ⌊⌊p1) ∪ (p1 |p2) |p3)

≤ max{d(p1 ⌊⌊ (p2 ‖ p3), (p1 ⌊⌊p2)⌊⌊p3), d((p2 ⌊⌊p3)⌊⌊p1, (p2 ⌊⌊p1)⌊⌊p3),

d((p3 ⌊⌊p2)⌊⌊p1, p3 ⌊⌊ (p1 ‖ p2)), d((p2 |p3)⌊⌊p1, p3 | (p2 ⌊⌊p1)),

d(p1 | (p2 ⌊⌊p3), (p1 |p2)⌊⌊p3), d(p1 | (p3 ⌊⌊p2), p3 | (p1 ⌊⌊p2)),

d(p1 | (p2 |p3), (p1 |p2) |p3)}

[Triangle inequality, commutativity of ‖ and | ]

≤ max{d(p1 ⌊⌊ (p2 ‖ p3), (p1 ⌊⌊p2)⌊⌊p3), d((p2 ⌊⌊p3)⌊⌊p1, p2 ⌊⌊ (p3 ‖ p1)),

d(p2 ⌊⌊ (p1 ‖ p3), (p2 ⌊⌊p1)⌊⌊p3), d((p3 ⌊⌊p2)⌊⌊p1, p3 ⌊⌊ (p2 ‖ p1)),

d((p3 |p2)⌊⌊p1, p3 | (p2 ⌊⌊p1)), d(p1 | (p2 ⌊⌊p3), (p1 |p2)⌊⌊p3),

d(p1 | (p3 ⌊⌊p2), (p1 |p3)⌊⌊p2), d((p3 |p1)⌊⌊p2, p3 | (p1 ⌊⌊p2)),

d(p1 | (p2 |p3), (p1 |p2) |p3)}

In the sequel it is sufficient to prove that σ2 ≤
1
2
· σ1, σ3 ≤

1
2
· σ1 and σ4 ≤

1
2
· σ1.

For σ2 we prove that d(p1 | (p2 |p3), (p1 |p2) |p3) ≤
1
2
· σ1, for arbitrary p1, p2, p3 ∈ PD,

which implies σ2 ≤
1
2
· σ1. We compute as follows:

d(p1 | (p2 |p3), (p1 |p2) |p3)

= d(p1 | ({(γ(α
′
2, α

′
3), p

′
2 ‖ p′3) | (α

′
2, p

′
2) ∈ p2, (α

′
3, p

′
3) ∈ p3, γ(α

′
2, α

′
3) ∈ I} ∪

{((x.y), py ‖ (p′2 ‖ p′3)) | (α
′
2, p

′
2) ∈ p2, (α

′
3, p

′
3) ∈ p3, (x.y) = γ(α′

2, α
′
3) ∈ G}),

({(γ(α′
1, α

′
2), p

′
1 ‖ p′2) | (α

′
1, p

′
1) ∈ p1, (α

′
2, p

′
2) ∈ p2, γ(α

′
1, α

′
2) ∈ I} ∪

{((x.y), py ‖ (p′1 ‖ p′2)) | (α
′
1, p

′
1) ∈ p1, (α

′
2, p

′
2) ∈ p2, (x.y) = γ(α′

1, α
′
2) ∈ G}) |p3)

[(x.y) ∈ G ⇒ γ((x.y), α) = γ(α, (x.y)) =↑, ∀α ∈ A, Lemma 5.3(a)]

= d({(γ(α′
1, γ(α

′
2, α

′
3)), p

′
1 ‖ (p′2 ‖ p′3)) | (α

′
1, p

′
1) ∈ p1, (α

′
2, p

′
2) ∈ p2, (α

′
3, p

′
3) ∈ p3,

γ(α′
1, γ(α

′
2, α

′
3)) ∈ I} ∪

{((x.y), py ‖ (p′1 ‖ (p′2 ‖ p′3))) | (α
′
1, p

′
1) ∈ p1, (α

′
2, p

′
2) ∈ p2, (α

′
3, p

′
3) ∈ p3,

(x.y) = γ(α′
1, γ(α

′
2, α

′
3)) ∈ G}),

{(γ(γ(α′
1, α

′
2), α

′
3), (p

′
1 ‖ p′2) ‖ p′3) | (α

′
1, p

′
1) ∈ p1, (α

′
2, p

′
2) ∈ p2, (α

′
3, p

′
3) ∈ p3,
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γ(γ(α′
1, α

′
2), α

′
3) ∈ I} ∪

{((x.y), py ‖ ((p′1 ‖ p′2) ‖ p′3)) | (α
′
1, p

′
1) ∈ p1, (α

′
2, p

′
2) ∈ p2, (α

′
3, p

′
3) ∈ p3,

(x.y) = γ(γ(α′
1, α

′
2), α

′
3) ∈ G})

[γ is associative (Lemma 5.3(b)), ∪ and ‖ are nonexpansive]

≤ 1
2
· σ1

‖ is nonexpansive, hence in the last step of the proof one can use the fact that

d(py ‖ ((p′1 ‖ p′2) ‖ p′3), py ‖ (p′1 ‖ (p′2 ‖ p′3))) ≤ d((p′1 ‖ p′2) ‖ p′3, p
′
1 ‖ (p′2 ‖ p′3))

One can also show that σ3 ≤
1
2
· σ1 and σ4 ≤

1
2
· σ1.

5.3 Denotational semantics

The denotational semantics D of LDNA maps LDNA components to PD processes: D :
LDNA → PD.

Definition 5.9 (Denotational semantics D) We define pn ∈ PD inductively: p1 = p, pn+1 =
p ‖ pn, for any p ∈ PD, n ∈ N+. We define D : LDNA → PD by:

D[[0]] = ∅
D[[x]] = {([x], ∅)}
D[[g]] = {((g, []), ∅)}

D[[P ∗]] = fix (λp . (D[[P ]]k ⌊⌊p))
D[[P1 ‖ P2]] = D[[P1]] ‖ D[[P2]]

One can check that d(p⌊⌊p1, p⌊⌊p2) ≤
1
2
· d(p1, p2), for any p, p1, p2 ∈ PD. Hence, λp . (D[[P ]]k ⌊⌊p)

is a contraction and has a unique fixed point.
It may not be clear why in Definition 5.9 in the equation that describes the behavior of P ∗

we use the operator ⌊⌊ rather than ‖.9 Intuitively, in LDNA a population P ∗ can participate
in an interaction step with at most one copy of a gate and at most k copies of a signal (see
Remark 3.1). Hence, in each interaction step it is enough if a population P ∗ generates k
copies of P ; the rest of the population may only be involved in subsequent interaction steps.
Therefore, we use ⌊⌊ instead of ‖. ⌊⌊ imposes the restriction that the first step must be taken
by D[[P ]]k. Moreover, notice that λp . (D[[P ]]k ⌊⌊p) is a contraction. λp . (D[[P ]] ‖ p) is not a
contraction, hence we cannot simply put fix (λp . (D[[P ]] ‖ p)).

Example 5.10 D[[x ‖ ([x].[])]] = {([x], {((([x].[]), []), ∅)}), ((([x].[]), []), {([x], ∅)}), (([x].[]), ∅)};
see also Example 4.5(a).

Remarks 5.11

(a) Let y = [y1, . . . , ym]. One can check (by induction on |y|) that py = p[y1] ‖ · · · ‖ p[ym].
Also, D[[x]] = p[x]. Hence p[y1,...,ym] = D[[y1]] ‖ · · · ‖ D[[ym]].

9Recall that, according to rule (P1), P ∗ ≡ P ‖ P ∗.
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(b) D[[P ∗]] = D[[P ]]k ⌊⌊D[[P ∗]]. Indeed:

D[[P ∗]] = fix(λp . (D[[P ]]k ⌊⌊p))

= (λp . (D[[P ]]k ⌊⌊p))(fix(λp . (D[[P ]]k ⌊⌊p)))

= D[[P ]]k ⌊⌊ (fix(λp . (D[[P ]]k ⌊⌊p)))

= D[[P ]]k ⌊⌊D[[P ∗]]

6 Transitions and alternative operational semantics (OA)

In order to establish the relation between the denotational semantics D defined in Sec-
tion 5 and the operational semantics O presented in Section 4 we introduce an alterna-
tive operational semantics OA for LDNA. We define OA based on a transition relation
=⇒⊆ LDNA×A×LDNA, introduced in Definition 6.1. The label α of a transition P

α
=⇒ P ′

is an element of the set (α ∈)A = G ∪ I introduced in Definition 5.1, but note that only
(histories of) gates are recorded by OA. In section 7 we will show that O and OA behave
the same.

Definition 6.1 (Transition relation) The relation =⇒⊆ LDNA ×A×LDNA is the smallest
relation satisfying the rules given below. The elements of =⇒ are triples (P, α, P ′) that we
call transitions. We write P

α
=⇒ P ′ to express that (P, α, P ′) ∈=⇒. For any P ∈ LDNA,

n ∈ N+, we define P n ∈ LDNA by induction on n: P 1 = P , P n+1 = P ‖ P n.

(T1) x
[x]
=⇒ 0

(T2) g
(g,[])
=⇒ 0

(T3)
P k α

=⇒ P ′

P ∗ α
=⇒ P ′ ‖ P ∗

(T4)
P1

α1=⇒ P ′
1, P2

α2=⇒ P ′
2, α = γ(α1, α2) ∈ I

P1 ‖ P2
α

=⇒ P ′
1 ‖ P ′

2

(T5)
P1

α1=⇒ P ′
1, P2

α2=⇒ P ′
2, g = γ(α1, α2) ∈ G

P1 ‖ P2
g

=⇒ y1 ‖ · · · ‖ ym ‖ P ′
1 ‖ P ′

2

where g = (x.[y1, . . . , ym])

(T6)
P1

α1=⇒ P ′
1

P1 ‖ P2
α1=⇒ P ′

1 ‖ P2

(T7)
P2

α2=⇒ P ′
2

P1 ‖ P2
α2=⇒ P1 ‖ P ′

2
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Rules (T1) and (T2) describe elementary interaction attempts. Rule (T3) states that when-
ever P k can make a transition with label α to some P ′, then P ∗ can make a transition
with label α to P ′ ‖ P ∗. P k is an abbreviation for k parallel copies of P . A transition
represents either a successful interaction or an interaction attempt. According to rules (T4),
(T5), (T6) and (T7) when two components are combined in parallel they can either interact
or proceed independently. Interaction attempts can be combined into more complex ones
by using rule (T4). Rule (T4) is needed when more than two concurrent components in-
teract. Rule (T5) expresses a successful interaction. To illustrate how the rules (T4) and
(T5) can be combined to model DNA interactions we consider an example. Assuming that

Pi

[xi]
=⇒ P ′

i , for i = 1, 2, 3, and P
(g,[])
=⇒ P ′, where g = ([x1, x2, x3].[]), one can infer the

transition (P1 ‖ P2) ‖ (P ‖ P3)
g

=⇒ (P ′
1 ‖ P ′

2) ‖ (P ′ ‖ P ′
3) as follows:

(T5)

(T4)
P1

[x1]
=⇒ P ′

1 P2
[x2]
=⇒ P ′

2

P1 ‖ P2
[x1,x2]
=⇒ P ′

1 ‖ P ′
2

(T4)
P

(g,[])
=⇒ P ′ P3

[x3]
=⇒ P ′

3

P ‖ P3
(g,[x3])
=⇒ P ′ ‖ P ′

3

(P1 ‖ P2) ‖ (P ‖ P3)
g

=⇒ (P ′
1 ‖ P ′

2) ‖ (P ′ ‖ P ′
3)

Remark 6.2 In rule (T5) any order of association, e.g. y1 ‖ (y2 ‖ · · · ‖ (ym ‖ (P ′
1 ‖

P ′
2)) · · · ), can be used, since they all behave the same, according to Definition 4.1 and

Lemma 7.1. According to Lemma 7.1, two LDNA components P and Q such that P ≡ Q
are strongly bisimilar, thus P and Q behave the same. Moreover, in the metric framework
that we employ in this paper, strong bisimilarity coincides with the equality relation; see [12],
or [5], chapter 10. A particular consequence of Lemma 7.1 is that parallel composition is
commutative and associative. In the sequel, we will ignore the order of association when sev-
eral LDNA components are combined in parallel, both in rules that describe reactions (−→)
and in rules that describe transitions (=⇒).

Definition 6.3 (Operational semantics OA) We write P =⇒/ to express that P has no g-

transitions, i.e., there is no g ∈ G and P ′ such that P
g

=⇒ P ′. We define OA : LDNA →
P(G∞) by:

OA[[P ]] = {ǫ} if P =⇒/

OA[[P ]] = { g1g2 · · · gn ∈ G∗ | P0 = P, Pi−1
gi

=⇒ Pi, ∀1 ≤ i ≤ n, Pn =⇒/ } ∪

{ g1g2 · · · ∈ Gω | P0 = P, Pi−1
gi

=⇒ Pi, ∀i ≥ 1}

Notice that in Definition 6.3 we only consider transitions P
g

=⇒ P ′ labelled with gates
g ∈ G.

In some inductive proofs it is convenient to use the syntactic complexity measure intro-
duced in Definition 6.4. c(P ) is clearly well-defined: by structural induction on P one can
check that c(P ) ∈ N, for any P ∈ LDNA.

Definition 6.4 We define c : LDNA → N by:
c(0) = c(x) = c(g) = 1

c(P ∗) = k + c(P )
c(P1 ‖ P2) = 1 +max{c(P1), c(P2)}
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Although P k is not syntactically simpler than P ∗ (when k > 1), we can prove the following:

Lemma 6.5 c(P ∗) > c(P k), for any k ∈ N+, P ∈ LDNA.

Proof: An easy induction on k.

Lemma 6.6 The set Succ(P ) = {(α, P ′) | P
α

=⇒ P ′} is finite, for any P ∈ LDNA.
10

Proof: In this proof we denote by | · | the cardinality (number of elements) of the set ’·’.
This notation should not be confused with the notation for the cardinality of a multiset
introduced in Section 2.1 (in the case of a multiset the cardinality also takes into account
the multiplicity of each element).

We proceed by induction on c(P ). We shall prove that |Succ(P )| ∈ N, for any P ∈ LDNA,
where N is the set of natural numbers. We consider two cases. If P = 0 then c(P ) = 1. 0
has no transitions. Hence |Succ(0)| = |∅| = 0 ∈ N. We also consider the case when P = Q∗,
for some Q ∈ LDNA. By Lemma 6.5, c(P ) = c(Q∗) > c(Qk). By the induction hypothesis we
can assume that |Succ(Qk)| ∈ N. Hence |Succ(Q∗)| = |{(α,R) | Q∗ α

=⇒ R}| = |{(α,Q′ ‖
Q∗) | Qk α

=⇒ Q′}| = |{(α,Q′) | Qk α
=⇒ Q′}| = |Succ(Qk)| ∈ N.

Definition 6.7 Let (S ∈)SemA = LDNA → P, where P = Pnco(G
∞). Let ΨA : SemA →

SemA be given by:

ΨA(S)(P ) = {ǫ} if P =⇒/

ΨA(S)(P ) = ∪{g · S(P ′) | P
g

=⇒ P ′} otherwise

Remark 6.8 According to Lemma 6.6, the transition system induced by the transition re-
lation =⇒ is finitely branching. It is a standard result in metric semantics that a finitely
branching transition system gives rise to a compact operational semantics [5]. ΨA is a con-
traction (hence it has a unique fixed point) in particular as a consequence of the ”g · . . .”-step
in its definition. The following properties can be proved essentially as shown in [5] (see
chapter 2 and Appendix B):

(a) OA[[P ]] ∈ P, ∀P ∈ LDNA (i.e., OA[[P ]] is non-empty and compact for any P ∈ LDNA),
and

(b) OA = fix(ΨA).

7 Equivalence of O and OA

Both O and OA yield collections of sequences of gates, but their definitions are different. In
this section we prove that O and OA behave the same.

Lemma 7.1

10In [5] Succ(P ) is called the succesor set of P .
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(a) Mixing (≡) is a strong bisimulation with respect to transition relation (=⇒).

(b) If P ≡ Q then P ∼ Q.

Proof: Let P ≡ Q. We prove that whenever P
α

=⇒ P ′ there exists Q′ such that
Q

α
=⇒ Q′ and P ′ ≡ Q′. Also, we prove that whenever Q

α
=⇒ Q′ there exists P ′ such

that P
α

=⇒ P ′ and P ′ ≡ Q′. We proceed by induction on depth of inference of P ≡ Q.
We consider several cases for the last step of inference. To emphasize that we proceed by
induction on the depth of inference we represent each rule given in Definition 4.1 in the form
premise1, · · · , premisen ⇒ conclusion by using the notation

premise1, · · · , premisen
conclusion

� Assume that in the last step of inference of P ≡ Q is used rule (E1)

P = P

P ≡ P

In this case P = Q and the result is obvious.

� Assume that in the last step of inference of P ≡ Q is used rule (E2)

Q ≡ P

P ≡ Q

By the induction hypothesis the property holds for Q ≡ P , and the desired result
follows easily.

� Assume that in the last step of inference of P ≡ Q is used rule (E3)

P ≡ R,R ≡ Q

P ≡ Q

Assume that P
α

=⇒ P ′. By the induction hypothesis there exists R′ such that R
α

=⇒
R′ and P ′ ≡ R′. Also, from R

α
=⇒ R′, by the induction hypothesis we infer that there

exists Q′ such that Q
α

=⇒ Q′ and R′ ≡ Q′. By using rule (E3), from P ′ ≡ R′ and
R′ ≡ Q′ we obtain P ′ ≡ Q′, as required. By a similar argument, from Q

α
=⇒ Q′ we

also infer that there exists P ′ such that P
α

=⇒ P ′ and P ′ ≡ Q′.

� Assume that in the last step of inference of P ≡ Q is used rule (C1). In this case
P = P1 ‖ R and Q = Q1 ‖ R, for some P1, Q1, R ∈ LDNA and

P1 ≡ Q1

P1 ‖ R ≡ Q1 ‖ R

In this case P1 ≡ Q1 and there are four subcases, depending on the rule used to infer
P

α
=⇒ P ′ or Q

α
=⇒ Q′: (T4), (T5),(T6) or (T7). We only consider the subcases when

one of the rules (T6),(T7) or (T5) is used.
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– Assume that P
α

=⇒ P ′ is inferred by using rule (T6). In this case there exists P ′
1

such that P1
α

=⇒ P ′
1:

P1
α

=⇒ P ′
1

P1 ‖ R
α

=⇒ P ′
1 ‖ R

and P ′ = P ′
1 ‖ R. By the induction hypothesis there exists Q′

1 such that Q1
α

=⇒
Q′

1 and P ′
1 ≡ Q′

1. By using rule (T6) again:

Q1
α

=⇒ Q′
1

Q1 ‖ R
α

=⇒ Q′
1 ‖ R

If we put Q′ = Q′
1 ‖ R we see that Q

α
=⇒ Q′. Also, as P ′

1 ≡ Q′
1, by using rule

(C1) P ′
1 ‖ R ≡ Q′

1 ‖ R, i.e., P ′ ≡ Q′, as required.

– Assume that Q
α

=⇒ Q′ is inferred by using rule (T6). By a symmetric argument
we can show that there exists P ′ such that P

α
=⇒ P ′ and P ′ ≡ Q′.

– Assume that Q
α

=⇒ Q′ is inferred by using rule (T7), which means that there
exists R′ such that R

α
=⇒ R′ and

R
α

=⇒ R′

Q1 ‖ R
α

=⇒ Q1 ‖ R′

In this case Q′ = Q1 ‖ R′ (and Q
α

=⇒ Q′). By using rule (T7) again we obtain

R
α

=⇒ R′

P1 ‖ R
α

=⇒ P1 ‖ R′

If we put P ′ = P1 ‖ R′ we obtain P
α

=⇒ P ′ and (as P1 ≡ Q1) P ′ = P1 ‖ R′ ≡
Q1 ‖ R′ = Q′, as required.

– Assume that P
α

=⇒ P ′ is inferred by using rule (T7). By a symmetric argument
we can show that there exists Q′ such that Q

α
=⇒ Q′ and P ′ ≡ Q′.

– Assume that P
α

=⇒ P ′ is inferred by using rule (T5). In this case there exists
P ′
1, R

′ such that

P1
α1=⇒ P ′

1, R
α2=⇒ R′, g = γ(α1, α2) ∈ G

P1 ‖ R
g

=⇒ y1 ‖ · · · ‖ ym ‖ P ′
1 ‖ R′

where g = (x.[y1, . . . , ym]). In this case P = P1 ‖ R and P ′ = y1 ‖ · · · ‖ ym ‖ P ′
1 ‖

R′. As P1 ≡ Q1 and P1
α1=⇒ P ′

1, by the induction hypothesis, there exists Q′
1 such

that Q1
α1=⇒ Q′

1, and P ′
1 ≡ Q′

1. We can apply rule (T5) again and we obtain:

Q1
α1=⇒ Q′

1, R
α2=⇒ R′, g = γ(α1, α2) ∈ G

Q1 ‖ R
g

=⇒ y1 ‖ · · · ‖ ym ‖ Q′
1 ‖ R′

with g = (x.[y1, . . . , ym]). Let Q
′ = y1 ‖ · · · ‖ ym ‖ Q′

1 ‖ R′. As P ′
1 ≡ Q′

1, we infer

that (Q
g

=⇒ Q′ and) P ′ ≡ Q′, as required.
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– Assume that Q
g

=⇒ Q′ is inferred by using rule (T5). By a symmetric argument

we can show that there exists P ′ such that P
g

=⇒ P ′ and P ′ ≡ Q′.

� Assume that in the last step of inference of P ≡ Q is used rule (D2). In this case
P = R1 ‖ R2, Q = R2 ‖ R1, for some R1, R2 ∈ LDNA. We assume that P

α
=⇒ P ′.

P
α

=⇒ P ′ can be inferred by using either of the rules (T4), (T5), (T6) or (T7). We
only consider the case when P

α
=⇒ P ′ is inferred by using rule (T4). In this subcase

there exist R′
1, R

′
2 ∈ LDNA, α1, α2 ∈ I (see Lemma 5.3(a)) such that R1

α1=⇒ R′
1,

R2
α2=⇒ R′

2 and α = γ(α1, α2) ∈ I. P
α

=⇒ P ′ is inferred by using rule (T4) as follows:

R1
α1=⇒ R′

1, R2
α2=⇒ R′

2, α = γ(α1, α2) ∈ I

R1 ‖ R2
α

=⇒ R′
1 ‖ R′

2

In this subcase P ′ = R′
1 ‖ R′

2. By using rule (T4) again, taking into account that γ is
commutative (Lemma 5.3(b)), we also have:

R2
α2=⇒ R′

2, R1
α1=⇒ R′

1, α = γ(α2, α1) = γ(α1, α2) ∈ I

R2 ‖ R1
α

=⇒ R′
2 ‖ R′

1

Let Q′ = R′
2 ‖ R′

1. Then we have Q
α

=⇒ Q′, and P ′ = R′
1 ‖ R′

2 ≡ R′
2 ‖ R′

1 = Q′, as
required.

The proof that Q
α

=⇒ Q′ implies that there exists P ′ such that P
α

=⇒ P ′ and P ′ ≡ Q′

is symmetric.

� Assume that in the last step of inference of P ≡ Q is used rule (P1). In this case
P = R∗ and Q = R ‖ R∗, for some R ∈ LDNA. First we consider the case when we
know that P

α
=⇒ P ′. P

α
=⇒ P ′ can only be inferred by using rule (T3) as follows.

There exists R′ ∈ LDNA such that

Rk α
=⇒ R′

R∗ α
=⇒ R′ ‖ R∗

Hence (P = R∗ and) P ′ = R′ ‖ R∗. By using rules (T7) and (T3) we also obtain:

Rk α
=⇒ R′

R∗ α
=⇒ R′ ‖ R∗

R ‖ R∗ α
=⇒ R ‖ (R′ ‖ R∗)

Let Q′ = R ‖ (R′ ‖ R∗). Hence Q
α

=⇒ Q′, and P ′ = R′ ‖ R∗ ≡ R ‖ (R′ ‖ R∗) = Q′, as
required.

Next, assume that Q
α

=⇒ Q′, i.e., R ‖ R∗ α
=⇒ Q′ (Q = R ‖ R∗). By Lemma 7.4(a),

there exists R′ ∈ LDNA such that Rk+1 α
=⇒ R′ and Q′ ≡ R′ ‖ R∗. By Lemma 7.4(e),

there exists R′′ ∈ LDNA such that Rk α
=⇒ R′′ and R′ ≡ R′′ ‖ R. Hence, by using (T3)

Rk α
=⇒ R′′

R∗ α
=⇒ R′′ ‖ R∗

Let P ′ = R′′ ‖ R∗ (and recall that P = R∗). We obtained P
α

=⇒ P ′, and P ′ = R′′ ‖ R∗ ≡
(R′′ ‖ R) ‖ R∗ = R′ ‖ R∗ = Q′, as required.
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� Assume that in the last step of inference of P ≡ Q is used rule (P3). In this case
P = (P1 ‖ P2)

∗ and Q = P ∗
1 ‖ P ∗

2 , for some P1, P2 ∈ LDNA. In this case the desired
property follows by using Lemma 7.5 and Lemma 7.6. We only handle the case when
we know that P

α
=⇒ P ′ (i.e., when (P1 ‖ P2)

∗ α
=⇒ P ′, for some P ′) and we show that

there exists Q′ such that Q
α

=⇒ Q′ (i.e., P ∗
1 ‖ P ∗

2
α

=⇒ Q′) and P ′ ≡ Q′. The transition
P

α
=⇒ P ′ can only be inferred by using (T3) as follows. For some R ∈ LDNA we have:

(T3)
(P1 ‖ P2)

k α
=⇒ R

(P1 ‖ P2)∗
α

=⇒ R ‖ (P1 ‖ P2)∗

and in this case P ′ = R ‖ (P1 ‖ P2)
∗. By Lemma 7.5(b), as (P1 ‖ P2)

k α
=⇒ R, there

exists R′ such that P k
1 ‖ P k

2
α

=⇒ R′ and R′ ≡ R. By Lemma 7.6(a), there exists Q′

such that P ∗
1 ‖ P ∗

2
α

=⇒ Q′ and Q′ ≡ R′ ‖ P ∗
1 ‖ P ∗

2 . Hence, P
′ = R ‖ (P1 ‖ P2)

∗ ≡ R′ ‖
(P1 ‖ P2)

∗ ≡ R′ ‖ P ∗
1 ‖ P ∗

2 = Q′, as required.

� Assume that in the last step of inference of P ≡ Q is used rule (P4). In this case
P = R∗∗, Q = R∗, P = R∗∗ ≡ R∗ = Q.

First, we prove that whenever Q
α

=⇒ Q′ (i.e., whenever R∗ α
=⇒ Q′) there exists P ′

such that P
α

=⇒ P ′ and P ′ ≡ Q′. R∗ α
=⇒ Q′ implies that there exists R′ such that

Q′ = R′ ‖ R∗ and:

Rk α
=⇒ R′

R∗ α
=⇒ R′ ‖ R∗

By using rules (T3) and (T6) we obtain:

Rk α
=⇒ R′

R∗ α
=⇒ R′ ‖ R∗

(R∗)k
α

=⇒ (R′ ‖ R∗) ‖ (R∗)k−1

R∗∗ α
=⇒ ((R′ ‖ R∗) ‖ (R∗)k−1) ‖ R∗∗

Hence P
α

=⇒ P ′, where P ′ = ((R′ ‖ R∗) ‖ (R∗)k−1) ‖ R∗∗ ≡ R′ ‖ (R∗)k ‖ R∗∗ ≡ R′ ‖
R∗ = Q′. We see that whenever Q

α
=⇒ Q′, there exists P ′ such that P

α
=⇒ P ′, and

P ′ ≡ Q′, as required.

Next, we prove that, whenever P
α

=⇒ P ′ there exists Q′ such that Q
α

=⇒ Q′ and
P ′ ≡ Q′. We have to prove that if R∗∗ α

=⇒ P ′ then there exists Q′ such that R∗ α
=⇒ Q′

and P ′ ≡ Q′. The transition R∗∗ α
=⇒ P ′ can only be inferred by an instance of rule

(T3). More precisely, there exists P ′′ ∈ LDNA such that

(R∗)k
α

=⇒ P ′′

R∗∗ α
=⇒ P ′′ ‖ R∗∗

Let P ′ = P ′′ ‖ R∗∗. By Lemma 7.7, there exists R0 ∈ LDNA such that P ′′ ≡ R0 ‖ R∗

and Rk α
=⇒ R0. Hence, by using rule (T3) again we obtain:

Rk α
=⇒ R0

R∗ α
=⇒ R0 ‖ R∗



Correct Metric Semantics for a Biologically-Inspired Formalism 25

Let Q′ = R0 ‖ R∗. Notice that P ′ = P ′′ ‖ R∗∗ ≡ R0 ‖ R∗ ‖ R∗∗ ≡ R0 ‖ R∗ = Q′.
From P = R∗∗ ≡ R∗ = Q and P

α
=⇒ P ′ we inferred that there exists Q′ such that

Q
α

=⇒ Q′ and P ′ ≡ Q′, as desired.

Definition 7.2 We define card : A → N+ by: card(x) = |x|, card(g, x′) = 1 + |x| and
card(x.y) = 1 + |x|.

Remark 7.3 Let α1, α2 ∈ A.

(a) If γ(α1, α2) ∈ A then card(γ(α1, α2)) = card(α1) + card(α2).

(b) card(α) ≤ k + 1, for any α ∈ A.

(c) If card(α) = k + 1 then α ∈ G.

Part (a) follows immediately by the definition of γ. For parts (b) and (c) see Remark 3.1
and Remark 3.3.

Lemma 7.4

(a) If P ‖ P ∗ α
=⇒ Q then there exists R ∈ LDNA such that P k+1 α

=⇒ R and Q ≡ R ‖ P ∗.11

(b) For any 1 ≤ r ≤ k, ∀P ∈ LDNA, α ∈ A, if P r+1 α
=⇒ R and card(α) ≤ r then there

exists R′ ∈ LDNA such that P r α
=⇒ R′ and R ≡ R′ ‖ P .

(c) If P
[x]
=⇒ R1, P

(g,[])
=⇒ R2, for some g ∈ G, and α = γ([x], (g, [])), then there exists

R′ ∈ LDNA such that P
α

=⇒ R′ and

– if γ([x], (g, [])) ∈ I then R1 ‖ R2 ≡ R′ ‖ P ,

– if γ([x], (g, [])) = (x.[y1, . . . , ym]) ∈ G then y1 ‖ · · · ‖ ym ‖ R1 ‖ R2 ≡ R′ ‖ P .

(d) For any 1 ≤ r ≤ k, if P r+1 α
=⇒ R, α = g ∈ G, or α = (g, x′) ∈ I (for some

g = (x.y) ∈ G, x′ ∈ [X ], x′ ⊂ x) and card(α) ≤ r + 1, then there exists R′ ∈ LDNA

such that P r α
=⇒ R′ and R ≡ R′ ‖ P .

(e) If P k+1 α
=⇒ R then there exists R′ ∈ LDNA such that P k α

=⇒ R′, and R ≡ R′ ‖ P .

Proof: First, recall that k is the maximum size of the input part of any gate in LDNA;
see Remark 3.1. Lemma 7.4(a) follows by considering the four possible ways in which P ‖
P ∗ α

=⇒ Q (by using the rule (T6), (T7), (T4) or (T5)). The proof of Lemma 7.4(b)
can proceed by induction on r. The proof of Lemma 7.4(c) can proceed by induction on
c(P ) (see Definition 6.4). The proof of Lemma 7.4(d) can proceed by induction on r. When
card(α) ≤ k, Lemma 7.4(e) is an easy consequence of Lemma 7.4(b). When card(α) = k+1,
Lemma 7.4(e) follows by using Lemma 7.4(d) and Remark 7.3(c). Note that, according to
Remark 7.3(b), card(α) ≤ k + 1, for any α ∈ A.

Lemma 7.5 For any n ∈ N+

11We recall that P 1 = P , Pn+1 = P ‖ Pn, for any n > 0.
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(a) (P ‖ Q)n ≡ P n ‖ Qn

(b) If (P ‖ Q)n
α

=⇒ R then there exists R′ such that P n ‖ Qn α
=⇒ R′ and R ≡ R′.

(c) If P n ‖ Qn α
=⇒ R′ then there exists R such that (P ‖ Q)n

α
=⇒ R and R ≡ R′.

Proof: In each case the proof can proceed by induction on n. The case when n = 1 is
obvious. For n > 1 one must consider the various ways in which the transitions involved are
inferred. We only consider one sub-case for Lemma 7.5(b). Assume that (P ‖ Q)n

α
=⇒ R is

derived by using (T4) and (T6) as follows:

(T6)

(T4)
P

α1=⇒ P1 Q
α2=⇒ Q2 γ(α1, α2) ∈ I

P ‖ Q
γ(α1,α2)
=⇒ P1 ‖ Q2

(P ‖ Q)n
γ(α1,α2)
=⇒ P1 ‖ Q2 ‖ (P ‖ Q)n−1

This transition is matched by (recall that P n = P ‖ P n−1, when n > 1)

(T4)

(T6)
P

α1=⇒ P1

P n α1=⇒ P1 ‖ P n−1
(T6)

Q
α2=⇒ Q2

Qn α2=⇒ Q2 ‖ Qn−1
γ(α1, α2) ∈ I

P n ‖ Qn
γ(α1,α2)
=⇒ P1 ‖ P n−1 ‖ Q2 ‖ Qn−1

By using Lemma 7.6(a), we see that R = P1 ‖ Q2 ‖ (P ‖ Q)n−1 ≡ P1 ‖ P n−1 ‖ Q2 ‖ Qn−1 =
R′, as required.

Lemma 7.6 For any P,Q ∈ LDNA

(a) If P k ‖ Qk α
=⇒ R then there exists R′ such that P ∗ ‖ Q∗ α

=⇒ R′ and R′ ≡ R ‖ P ∗ ‖
Q∗.

(b) If P ∗ ‖ Q∗ α
=⇒ R′ then there exists R such that R′ ≡ R ‖ P ∗ ‖ Q∗ and P k ‖ Qk α

=⇒
R′.

where k is the maximum size of the input part of any gate in LDNA; see Remark 3.1.

Proof: One must consider the possible ways in which the transition in the assumption is
derived. We only consider one sub-case for Lemma 7.6(b). Assume that P ∗ ‖ Q∗ α

=⇒ R′ is
derived as follows:

(T6)

(T3)
P k α

=⇒ P ′

P ∗ α
=⇒ P ′ ‖ P ∗

P ∗ ‖ Q∗ α
=⇒ P ′ ‖ P ∗ ‖ Q∗

We also have:

(T6)
P k α

=⇒ P ′

P k ‖ Qk α
=⇒ P ′ ‖ Qk

and we see that R′ = P ′ ‖ P ∗ ‖ Q∗ ≡ P ′ ‖ Qk ‖ P ∗ ‖ Q∗ = R ‖ P ∗ ‖ Q∗, as required.
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Lemma 7.7 For any 1 ≤ r ≤ k, if (R∗)r
α

=⇒ P ′′ then there exists R0 such that P ′′ ≡ R0 ‖
R∗ and Rk α

=⇒ R0.

Proof: By induction on r.

Notation 7.8 Let P, P ′, P ′′ ∈ LDNA, g ∈ G. We write P
g

=⇒≡ P ′ to express that, for some
P ′′, P

g
=⇒ P ′′ and P ′′ ≡ P ′. P

g
=⇒≡ P ′ is an instance of relational composition.

In Lemma 7.11 we prove that −→ and =⇒ coincide, up to mixing ≡. Lemma 7.9 and
Lemma 7.10 are needed in the proof of Lemma 7.11. We omit the proofs of Lemma 7.9 and

Lemma 7.10, which can be approached by induction on depth of inference of P
x

=⇒ P ′ and

P
(g,x′)
=⇒ P ′, respectively.

Lemma 7.9 Let x = [x1, . . . , xn] ∈ I (0 < n ≤ k). If P
x

=⇒ P ′ then P ≡ x1 ‖ · · · ‖ xn ‖ P ′.

Lemma 7.10 Let (g, x′) ∈ I, x′ = [x1, . . . , xn]. If P
(g,x′)
=⇒ P ′ then P ≡ x1 ‖ · · · ‖ xn ‖ g ‖

P ′. If n = 0 then x1 ‖ · · · ‖ xn is replaced with 0.

Lemma 7.11 (Reaction agrees with g-transition) P
g

−→ P ′ if and only if P
g

=⇒≡ P ′.

Proof: (⇒) By induction on depth of inference of P
g

−→ P ′. We consider the possible cases
for the last step of inference.

� If in the last step of inference is used rule (R1) then P = x1 ‖ · · · ‖ xn ‖ g and

P
g

−→ y1 ‖ · · · ‖ ym

where g = ([x1, . . . , xn].[y1, . . . , ym]). We have to prove that P
g

=⇒≡ y1 ‖ · · · ‖ ym, i.e.,

we have to show that there exists P ′′ such that P
g

=⇒ P ′′ and P ′′ ≡ y1 ‖ · · · ‖ ym.

Rule (R1) is actually ambiguous, because the order of association is not specified for
the term P ≡ x1 ‖ · · · ‖ xn ‖ g. In fact, the order of association is not important,
because rule (R1) can be combined with rule (R3) which allows mixing ≡ to be used
at any point in inferring reactions. In particular, this implies that the operator for
parallel composition ‖ is associative and commutative.

Anyway, there are two possibilities:

– either P = (x1 ‖ · · · ‖ xn) ‖ g, for some order of association of x1 ‖ · · · ‖ xn,

– or P = x1 ‖ (x2 ‖ · · · ‖ xn ‖ g), for some order of association of x2 ‖ · · · ‖ xn ‖ g.

It is easy to prove the following facts:

(1) x1 ‖ · · · ‖ xn
x

=⇒ R, for some R ∈ LDNA, satisfying R ≡ 0, where x =
[x1, . . . , xn], 0 < n ≤ k,
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(2) x1 ‖ · · · ‖ xp ‖ g
(g,x′)
=⇒ R, for some R ∈ LDNA, satisfying R ≡ 0, where x′ =

[x1, . . . , xp], g = ([x1, . . . , xn].[y1, . . . , ym]), 0 ≤ p < n.

For any order of association, (1) can be proved by induction on n, and (2) can be
proved by induction on p.12

If P = (x1 ‖ · · · ‖ xn) ‖ g, for some order of association of x1 ‖ · · · ‖ xn, and

g = ([x1, . . . , xn].[y1, . . . , ym]), then, according to (1), x1 ‖ · · · ‖ xn
x

=⇒ R, for some
R, with R ≡ 0, where x = [x1, . . . , xn], . Hence

(T5)
x1 ‖ · · · ‖ xn

x
=⇒ R g

(g,[])
=⇒ 0

(x1 ‖ · · · ‖ xn) ‖ g
g

=⇒ y1 ‖ · · · ‖ ym ‖ R ‖ 0

and y1 ‖ · · · ‖ ym ‖ R ‖ 0 ≡ y1 ‖ · · · ‖ ym, as required.

If P = x1 ‖ (x2 ‖ · · · ‖ xn ‖ g), for some order of association of x2 ‖ · · · ‖ xn ‖ g, and

g = ([x1, . . . , xn].[y1, . . . , ym]), then, according to (2), x2 ‖ · · · ‖ xn ‖ g
(g,x′)
=⇒ R, for

some R, with R ≡ 0, where x′ = [x2, . . . , xn]. Hence

(T5)
x1

[x1]
=⇒ 0 x2 ‖ · · · ‖ xn ‖ g

(g,x′)
=⇒ R

x1 ‖ (x2 ‖ · · · ‖ xn ‖ g)
g

=⇒ y1 ‖ · · · ‖ ym ‖ 0 ‖ R

and y1 ‖ · · · ‖ ym ‖ 0 ‖ R ≡ y1 ‖ · · · ‖ ym, as required.

� If in the last step of inference of P
g

−→ P ′ is used rule (R2) then P = Q ‖ R, for some
Q,R ∈ LDNA, and we have

Q
g

−→ Q′

Q ‖ R
g

−→ Q′ ‖ R

Let P ′ = Q′ ‖ R. As Q
g

−→ Q′ is obtained by a shorter inference, by the induction

hypothesis we have Q
g

=⇒≡ Q′, i.e., there exists Q′′ such that Q
g

=⇒ Q′′ and Q′′ ≡ Q′.
By using rule (T6)

Q
g

=⇒ Q′′

Q ‖ R
g

−→ Q′′ ‖ R

Let P ′′ = Q′′ ‖ R. Hence, P
g

=⇒ P ′′, P ′′ = Q′′ ‖ R ≡ Q′ ‖ R = P ′, i.e. P
g

=⇒≡ P ′, as
required.

12If x1 ‖ · · · ‖ xp ‖ g has the form (x1 ‖ · · · ‖ xp) ‖ g then in the proof of (2) one also uses (1).
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� If in the last step of inference of P
g

−→ P ′ is used rule (R3) then there exist Q,Q′ ∈
LDNA such that:

Q ≡ P,Q
g

−→ Q′, Q′ ≡ P ′

P
g

−→ P ′

where Q
g

−→ Q′ is inferred by a shorter inference. Hence by the induction hypothesis
we have Q

g
=⇒≡ Q′, i.e., there exists Q′′ ∈ LDNA such that Q

g
=⇒ Q′′ and Q′′ ≡

Q′. By Lemma 7.1 mixing is a strong bisimulation with respect to transition relation
(=⇒). Hence, as P ≡ Q, there exists P ′′ such that P

g
=⇒ P ′′ and P ′′ ≡ Q′′. As

P ′′ ≡ Q′′ ≡ Q′ ≡ P ′, it follows that P
g

=⇒≡ P ′, as required.

For (⇐) it is enough to prove that P
g

=⇒ P ′ implies P
g

−→≡ P ′. We use the notation

P
g

−→≡ P ′ to express that, for some P ′′, P
g

−→ P ′′ and P ′′ ≡ P ′. We proceed by induction
on the depth of inference of P

g
=⇒ P ′. We consider the possible cases for the last step of

inference.

� Notice that P
g

=⇒ P ′ cannot be inferred by using rule (T1), which states that x
[x]
=⇒ 0,

because [x] /∈ G. Similarly, P
g

=⇒ P cannot be inferred by using (T2).

� We handle the case when P
g

=⇒ P ′ is inferred by using rule (T5). In this case
P = P1 ‖ P2 and

P1
α1=⇒ P ′

1, P2
α2=⇒ P ′

2, g = γ(α1, α2) ∈ G

P1 ‖ P2
g

=⇒ y1 ‖ · · · ‖ ym ‖ P ′
1 ‖ P ′

2

with g = (x.[y1, . . . , ym]). Let P
′ = y1 ‖ · · · ‖ ym ‖ P ′

1 ‖ P ′
2. Without loss of generality,

we consider that α1 = x1 ∈ I, α2 = ((x.y), x′
2) ∈ I, x = x1 ⊎ x′

2 and y = [y1, . . . , ym].
Let x1 = [x11, . . . , x1p], and x′

2 = [x21, . . . , x2r], x = [x11, . . . , x1p, x21, . . . , x2r].

By Lemma 7.9 P1 ≡ x11 ‖ · · · ‖ x1p ‖ P ′
1. By Lemma 7.10 P2 ≡ x21 ‖ · · · ‖ x2r ‖ (x.y) ‖

P ′
2. Let Q = x11 ‖ · · · ‖ x1p ‖ x21 ‖ · · · ‖ x2r ‖ (x.y) ‖ P ′

1 ‖ P ′
2. As P = P1 ‖ P2, P ≡ Q.

By using rules (R1) and (R2), Q
g

−→ P ′, where g = (x.y), P ′ = y1 ‖ · · · ym ‖ P ′
1 ‖ P ′

2.

As P ≡ Q, by using rule (R3) (called ”well mixing” in [7]), we infer P
g

−→ P ′, hence,

as P ′ ≡ P ′, we obtain P
g

−→≡ P ′.

� We also consider the case when P
g

=⇒ P ′ is inferred by using rule (T3), i.e. P = Q∗,
for some Q ∈ LDNA. In this case we have:

Qk g
=⇒ Q′

Q∗ g
=⇒ Q′ ‖ Q∗

and P ′ = Q′ ‖ Q∗. Qk g
=⇒ Q′ is inferred by a shorter inference, therefore, by induction

hypothesis, Qk g
−→≡ Q′; this means that there exists Q′′ such that Qk g

−→ Q′′ and
Q′ ≡ Q′′. By rule (R2)

Qk g
−→ Q′′

Qk ‖ Q∗ g
−→ Q′′ ‖ Q∗
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We have: P = Q∗ ≡ Qk ‖ Q∗, Qk ‖ Q∗ g
−→ Q′′ ‖ Q∗, and Q′′ ‖ Q∗ ≡ Q′ ‖ Q∗ = P ′.

Hence, by using rules (R3) (called ”well mixing” in [7]) we obtain the desired result

P
g

−→≡ P ′.

Lemma 7.12

(a) If P
g

−→ P ′ and Q ≡ P , then there exists Q′ such that Q
g

=⇒ Q′ and Q′ ≡ P ′.

(b) P −→/ ⇔ P =⇒/ .

(c) If P −→/ and Q ≡ P then Q =⇒/ .

Proof: We only prove Lemma 7.12(a). By Lemma 7.11 P
g

=⇒≡ P ′, i.e., for some P ′′,

P
g

=⇒ P ′′ and P ′′ ≡ P ′. By Lemma 7.1, there exists Q′ such that Q
g

=⇒ Q′, Q′ ≡ P ′′. By
rule (E3) Q′ ≡ P ′.

Lemma 7.13 O[[P ]] = OA[[P ]], ∀P ∈ LDNA.

Proof: Let P ∈ LDNA, q ∈ G∞. We prove that q ∈ O[[P ]] implies q ∈ OA[[P ]], for any
q ∈ O[[P ]]. Also, we prove that q ∈ OA[[P ]] implies q ∈ O[[P ]], for any q ∈ OA[[P ]]. We
conclude that O[[P ]] = OA[[P ]], ∀P ∈ LDNA. By Lemma 7.12(b), P has no reactions iff P has
no g-transitions. Hence, O[[P ]] = {ǫ} ⇔ OA[[P ]] = {ǫ}.

If P has reactions and transitions we proceed as follows. First, let q = g1g2 · · · ∈ O[[P ]].
We want to show that q ∈ OA[[P ]]. As q ∈ O[[P ]], there exists a (finite or infinite) sequence

of reactions P = P0
g1
−→ P1, P1

g2
−→ P2 · · · (in case the sequence is finite then Pn −→/ , for

some n ∈ N).
If we put P ′

0 = P0 = P (which implies P ′
0 ≡ P0), by using Lemma 7.12(a), we obtain

a corresponding (finite or infinite) sequence of transitions P = P ′
0

g1
=⇒ P ′

1, P
′
1

g2
=⇒ P ′

2 · · ·
(with P ′

i ≡ Pi), which yields the same sequence of observables (gates) in OA[[P ]]. By Lemma
7.12(c), if Pn −→/ , for some n ∈ N, then we also have P ′

n =⇒/ (the sequence of reactions
is finite iff the sequence of transitions is finite and they have the same length). Whence,
q ∈ OA[[P ]], as required.

Next, let q = g1g2 · · · ∈ OA[[P ]]. We want to show that q ∈ O[[P ]]. P
g

=⇒ P ′ implies

P
g

=⇒≡ P ′, which implies P
g

−→ P ′, by Lemma 7.11. Therefore, whenever we have
a sequence of transitions P = P0

g1
=⇒ P1, P1

g2
=⇒ P2 · · · with q = g1g2 · · · ∈ OA[[P ]], we

can construct a corresponding sequence of reactions P = P0
g1
−→ P1, P1

g2
−→ P2 · · · , hence

q ∈ O[[P ]].

Remark 7.14 According to Remark 6.8(a) and Lemma 7.13, O[[P ]] is non-empty and com-
pact, for any P ∈ LDNA.

8 Semantic correctness

For any P ∈ LDNA, D[[P ]] yields an element of PD, which is a tree-like structure. D[[P ]]
contains more information than the linear outcome of O[[P ]], which is an element of P.
Hence we cannot expect that D[[P ]] = O[[P ]] on LDNA.
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Our aim in this section is to establish the formal relation between D and O. We introduce
yet another intermediate operational semantics OD, which delivers PD processes as a result,
i.e., elements with a branching structure. Next, we introduce an abstraction operator abs :
PD → P. We will prove that O = abs ◦D. We conclude that D is correct with respect to O.

Definition 8.1 Let (S ∈)SemD = LDNA → PD. Let ΨD : SemD → SemD be given by:

ΨD(S)(P ) = {(α, S(P ′)) | P
α

=⇒ P ′}

We put OD = fix(ΨD).

Well-definedness of ΨD and OD rely on the property that the transition system induced by
=⇒ is finitely branching (by Lemma 6.6). As usual, ΨD is contracting, essentially, because
S(P ′) is stored in the space 1

2
· PD.

Definition 8.2 (Abstraction operator) Let (φ ∈)Op = PD
1
→ P. We define Ωabs : Op → Op

by:

Ωabs(φ)(p) = {ǫ} if p ⊆ I × 1
2
· PD

Ωabs(φ)(p) = {g · φ(p′) | (g, p′) ∈ p} otherwise

We put abs = fix(Ωabs).

Lemma 8.3 OA = abs ◦ OD, on LDNA.

We omit the proof of this Lemma. A very similar Lemma is proved in [5], chapter 11.

Lemma 8.4 D[[P ]] = OD[[P ]], ∀P ∈ LDNA.

Proof: According to Theorem 2.2 (Banach) it is enough to prove that D = fix(ΨD). We
show that ΨD(D)(P ) = D[[P ]], for any P ∈ LDNA. We proceed by induction on c(P ). We
handle two cases.

� Case P = 0. In this case c(P ) = c(0) = 1. ΨD(D)(0) = ∅ = D[[0]].

� Case P = x. In this case c(P ) = c(x) = 1. x has just one transition (x
[x]
=⇒ 0), and

D(0) = ∅.

ΨD(D)(x) = {([x], ∅)} = D(x)

� Case P = g. In this case c(P ) = c(g) = 1. g has just one transition (g
(g,[])
=⇒ 0), and

D(0) = ∅.

ΨD(D)(g) = {((g, []), ∅)} = D(x)

� Case P = P1 ‖ P2. In this case c(P1 ‖ P2) = 1+max{c(P1), c(P2)}, hence, c(P1) < c(P ),
c(P2) < c(P ). We compute as follows:
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Ψ(D)(P1 ‖ P2) =

{(α1,D[[P ′
1 ‖ P2]]) | P1

α1=⇒ P ′
1}∪

{(α2,D[[P1 ‖ P ′
2]]) | P2

α2=⇒ P ′
2}∪

{(γ(α1, α2),D[[P ′
1 ‖ P ′

2]]) | P1
α1=⇒ P ′

1, P2
α2=⇒ P ′

2, γ(α1, α2) ∈ I}∪

{(g,D[[y1 ‖ · · · ‖ ym ‖ P ′
1 ‖ P ′

2]]) |

P1
α1=⇒ P ′

1, P2
α2=⇒ P ′

2, γ(α1, α2) = g = (x.[y1, . . . , ym]) ∈ G}

[ ‖ is commutative and associative, Remark 5.11(a)]

= {(α1,D[[P ′
1]] ‖ D[[P2]]) | P1

α1=⇒ P ′
1}∪

{(α2,D[[P ′
2]] ‖ D[[P1]]) | P2

α2=⇒ P ′
2}∪

{(γ(α1, α2),D[[P ′
1]] ‖ D[[P ′

2]]) | P1
α1=⇒ P ′

1, P2
α2=⇒ P ′

2, γ(α1, α2) ∈ I}∪

{(g, p[y1,...,ym] ‖ D[[P ′
1]] ‖ D[[P ′

2]]) |

P1
α1=⇒ P ′

1, P2
α2=⇒ P ′

2, γ(α1, α2) = g = (x.[y1, . . . , ym]) ∈ G}

= (ΨD(D)(P1)⌊⌊D[[P2]])∪

(ΨD(D)(P2)⌊⌊D[[P1]])∪

(ΨD(D)(P1) |ΨD(D)(P2))

[Induction hypothesis]

= (D[[P1]]⌊⌊D[[P2]]) ∪ (D[[P2]]⌊⌊D[[P1]]) ∪ (D[[P1]] |D[[P2]])

= D[[P1]] ‖ D[[P2]]

= D[[P1 ‖ P2]]

� Case P = Q∗. By Lemma 6.5 we know that c(Qk) < c(Q∗).

ΨD(D)(Q∗) = {(α,D[[R]]) | Q∗ α
=⇒ R}

= {(α,D[[Q′ ‖ Q∗]]) | Qk α
=⇒ Q′}

= {(α,D[[Q′]] ‖ D[[Q∗]]) | Qk α
=⇒ Q′}

= {(α,D[[Q′]]) | Qk α
=⇒ Q′}⌊⌊D[[Q∗]]

= (ΨD(D)(Qk))⌊⌊D[[Q∗]] [induction hypothesis (c(Qk) < c(Q∗))]

= D[[Qk]]⌊⌊D[[Q∗]]

= D[[Q]]k ⌊⌊D[[Q∗]] [Remark 5.11(b)]
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= D[[Q∗]]

Theorem 8.5 O = abs ◦ D, on LDNA.

Proof: For any P ∈ LDNA we have:

O[[P ]] [Lemma 7.13]

= OA[[P ]] [Lemma 8.3]

= abs(OD[[P ]]) [Lemma 8.4]

= abs(D[[P ]])

As an immediate consequence of Theorem 8.5 and Remark 2.7 we obtain the following

Corollary 8.6 D is correct for LDNA with respect to O.

9 Reactions and observables

In this section (in Proposition 9.1) we show that if P is an LDNA component and g is a G gate
then (either P has no reactions or) there is a unique component P ′ (up to mixing bisimulation

≡) such that P
g

−→ P ′. The property is not needed in the proof of the correctness result
presented in Section 8 (which is the main result of the paper). However, as explained in
Remark 4.7, the property justifies our decision to use G gates as observable elements in the
design of the operational semantics O[[·]]. We recall that O[[·]] was defined in Section 4 based
on the reaction relation −→⊆ LDNA ×G × LDNA. Also, we recall that the mixing relation
≡ is a strong bisimulation with respect to reaction relation −→ (Lemma 4.6). In the proof
of Proposition 9.1 we use Lemma 9.3. In the proof of Lemma 9.3(b) we employ a concept
of standard form, introduced in Definition 9.2. The proof of Lemma 9.3 also relies on some
auxiliary results presented separately in Section 9.1 and Section 9.2.

Propozition 9.1 If P
g

−→ P ′ and P
g

−→ P ′′ then P ′ ≡ P ′′.

Proof: We assume that P
g

−→ P ′ and P
g

−→ P ′′, with g = ([x1, . . . , xn].[y1, . . . , ym]), g ∈ G.
By Lemma 9.3(a) there existQ′, Q′′ such that P ≡ x1 ‖ · · · ‖ xn ‖ g ‖ Q′, P ′ ≡ y1 ‖ · · · ‖ ym ‖ Q′,
P ≡ x1 ‖ · · · ‖ xn ‖ g ‖ Q′′, and P ′′ ≡ y1 ‖ · · · ‖ ym ‖ Q′′. By Lemma 9.3(b), Q′ ≡ Q′′. Hence
(by using rule (C1) in Definition 4.1) we obtain P ′ ≡ P ′′.

Definition 9.2

(a) Let (a, b ∈)ADNA be the set of elementary LDNA components: a ::= x | g. Let
(M ∈)LM , M ::= 0 | a ‖ M . We write a nonempty structure a1 ‖ (· · · ‖ (an ‖ 0) · · · )
as a list a1 ‖ · · · ‖ an (the order of association can be ignored).13 Let (S ∈)LS, be the
set of LM lists without duplicates. S ∈ LS if S = 0 or S = a1 ‖ · · · ‖ an ∈ LM , and
ai 6= aj , ∀1 ≤ i 6= j ≤ n. Obviously, LS ⊆ LM ⊆ LDNA.

13We could also put M ::= 0 | N , N ::= a | N ‖ N , but in this case some details of the proof are more
complicated.
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(b) We say that a component M ‖ S∗, with M ∈ LM , S ∈ LS, is in standard form if M and
S are disjoint, i.e., either M = 0, or S = 0, or M = a1 ‖ · · · ‖ an, S = a′1 ‖ · · · ‖ a′m
and ai 6= a′j, ∀1 ≤ i ≤ n, 1 ≤ j ≤ m.

The proof of Lemma 9.3(b) is based on the following main ideas. Every LDNA component
P is equivalent to a standard form M ‖ S∗: P ≡ M ‖ S∗. Let a ∈ ADNA,M1,M2 ∈ LM ,
and S1, S2 ∈ LS.If M1 ‖ S∗

1 and M2 ‖ S∗
2 are in standard form then (M1 ‖ S∗

1 ≡ M2 ‖ S∗
2)

⇔ (M1 ≡ M2 and S1 ≡ S2). Also, a ‖ M1 ≡ a ‖ M2 ⇔ M1 ≡ M2. By using these properties
and some further technical lemmas, we prove that a ‖ P ≡ a ‖ Q ⇔ P ≡ Q, for any a ∈
ADNA, P, Q ∈ LDNA.

Lemma 9.3

(a) Let g = ([x1, . . . , xn].[y1, . . . , ym]) ∈ G. If P
g

−→ P ′ then there exists a component
Q ∈ LDNA such that P ≡ x1 ‖ · · · ‖ xn ‖ g ‖ Q and P ′ ≡ y1 ‖ · · · ‖ ym ‖ Q.

(b) Let (a ∈)ADNA be the set of elementary LDNA components introduced in Definition
9.2(a). For any a ∈ ADNA, and P,Q ∈ LDNA: a ‖ P ≡ a ‖ Q ⇔ P ≡ Q. More gener-
ally, for any a1, . . . , an ∈ ADNA, and P,Q ∈ LDNA: a1 ‖ · · · ‖ an ‖ P ≡ a1 ‖ · · · ‖ an ‖
Q ⇔ P ≡ Q.

Proof: Lemma 9.3(a) follows by an easy induction on the depth of the inference of P
g

−→ P ′.
For Lemma 9.3(b) it is enough to prove that: a ‖ P ≡ a ‖ Q ⇔ P ≡ Q, for any a ∈ ADNA,

and P,Q ∈ LDNA. Next, the more general property a1 ‖ · · · ‖ an ‖ P ≡ a1 ‖ · · · ‖ an ‖ Q
⇔ P ≡ Q, for any a1, . . . , an ∈ ADNA, and P,Q ∈ LDNA, follows immediately.

The implication P ≡ Q ⇒ a ‖ P ≡ a ‖ Q follows easily by using property (C1) (Definition
4.1). In the sequel we prove that: a ‖ P ≡ a ‖ Q ⇒ P ≡ Q, for any P,Q ∈ LDNA, a ∈ ADNA.

Let (MP , SP ) ∈ SF (P ), (MQ, SQ) ∈ SF (Q). By Lemma 9.26, MP ‖ S∗
P and MQ ‖ S∗

Q

are in standard form and P ≡ MP ‖ S∗
P , Q ≡ MQ ‖ S∗

Q. By Lemma 9.8, if a ∈ SP then
SP ≡ a ‖ (SP \ a). Hence, by Lemma 9.13(c), if a ∈ SP then a ‖ S∗

P ≡ S∗
P . Hence:

a ‖ P ≡ a ‖ (MP ‖ S∗
P ) ≡

{

MP ‖ S∗
P if a ∈ SP

(a ‖ MP ) ‖ S∗
P if a /∈ SP

a ‖ Q ≡ a ‖ (MQ ‖ S∗
Q) ≡

{

MQ ‖ S∗
Q if a ∈ SQ

(a ‖ MQ) ‖ S∗
Q if a /∈ SQ

By Remark 9.7, a ∈ SP ⇔ a ∈ ms(SP ) and a ∈ SQ ⇔ a ∈ ms(SQ). By using Lemma 9.28,
from a ‖ P ≡ a ‖ Q we infer that SP ≡ SQ. By Lemma 9.10, ms(SP ) = ms(SQ). By using
Remark 9.7: a ∈ SP ⇔ a ∈ ms(SP ) ⇔ a ∈ ms(SQ) ⇔ a ∈ SQ. Therefore we have two
subcases.

� If a ∈ SP (⇔ a ∈ SQ) then P ≡ MP ‖ S∗
P ≡ MQ ‖ S∗

Q ≡ Q,

� If a /∈ SP (⇔ a /∈ SQ) then

– a ‖ P ≡ (a ‖ MP ) ‖ S∗
P , and (a ‖ MP ) ‖ S∗

P is in standard form, and

– a ‖ Q ≡ (a ‖ MQ) ‖ S∗
Q, and (a ‖ MQ) ‖ S∗

Q is in standard form,
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In this case (a ‖ MP ) ‖ S∗
P ≡ (a ‖ MQ) ‖ S∗

Q. By Lemma 9.28, SP ≡ SQ and
a ‖ MP ≡ a ‖ MQ. By Lemma 9.12, MP ≡ MQ. Hence again, P ≡ MP ‖ S∗

P ≡ MP ‖
S∗
P ≡ Q. ✷

In subsections 9.1 and 9.2 we present some auxiliary properties required in the proof of
Lemma 9.3(b).

9.1 Properties related to LM components

In this subsection we study the properties of LM components. The sets ADNA, LM and LS

are introduced in Definition 9.2.

Definition 9.4 Let [ADNA] be the set of all finite multisets of elementary LDNA components.
Let ∞ be a distinct element, ∞ /∈ [ADNA]. Formally, ∞ is just a symbol. Intuitively, we use
∞ to denote any infinite multiset. We define a mapping ms : LDNA → ([ADNA] ∪ {∞}) by:

ms(0) = [], ms(a) = [a]

ms(P ∗) =

{

[] if ms(P ) = []
∞ otherwise

ms(P1 ‖ P2) = ms(P1) ⊎ms(P1)

where, when a, a1, a2 ∈ [ADNA], a1 ⊎ a2 is the standard multiset sum (introduced in Section
2.1) and with ∞ we compute as follows: ∞⊎ a = a ⊎∞ = ∞⊎∞ = ∞.

Remarks 9.5

(a) ms(P ) is clearly well defined, by structural on P ∈ LDNA.

(b) On LM , ms behaves as follows:

ms(0) = []

ms(a ‖ M) = [a] ⊎ms(M)

ms(M) ∈ [ADNA] (i.e., ms(M) 6= ∞), for any M ∈ LM . Also, |ms(M)| ∈ N, for any
M ∈ LM .

Definition 9.6 We define a ∈ M (∈: ADNA × LM → Bool) by:

a ∈ 0 = false

a ∈ (a′ ‖ M ′) = (a = a′) ∨ (a ∈ M ′)

We also define M \ a ( \ : LM ×ADNA → LM) by:

0 \ a = 0

(a′ ‖ M ′) \ a =

{

M ′ if a′ = a
a′ ‖ (M ′ \ a) if a′ 6= a
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a ∈ M and M \ a are mappings defined by structural induction on M . We write a /∈ M to
express that ¬(a ∈ M). By a slight abuse for the function names we use symbols that are
traditionally used to represent (multi)set membership and (multi)set difference. However, it
will always be clear from the context which is the type of ∈ and \.

Remark 9.7 a ∈ M ⇔ a ∈ ms(M), ∀M ∈ LM .

Proof: Easy structural induction on M .

Lemma 9.8 For any a ∈ ADNA,M ∈ LM :

(a) a ∈ M ⇔ a ∈ ms(M).

(b) If a ∈ M then a ‖ (M \ a) ≡ M

Proof: For Lemma 9.8(a), the proof of the implication (⇒) is an easy structural induction
on M , and the proof of the implication (⇐) can proceed by induction on |ms(M)|.

The proof of Lemma 9.8(b) can proceed by structural induction on M .

� Case M = 0. In this case the property holds trivially, because a /∈ M (the assumption
of the Lemma fails in this case).

� Case M = a′ ‖ M ′. Two sub-cases:

– If a′ = a then M \ a = M ′, hence a ‖ (M \ a) = a′ ‖ M ′ = M ≡ M .

– If a′ 6= a then M \ a = (a′ ‖ M ′) \ a = a′ ‖ (M ′ \ a). By the induction hypothesis
a ‖ (M ′ \ a) ≡ M ′. Therefore, M = a′ ‖ M ′ ≡ a′ ‖ (a ‖ (M ′ \ a)) ≡ a ‖ (a′ ‖
(M ′ \ a)) ≡ a ‖ (M \ a).

Lemma 9.9 For any a ∈ ADNA,M ∈ LM : ms(M) \ [a] = ms(M \ a).

Proof: By structural induction on M .

Lemma 9.10

(a) For any P ∈ LDNA: ms(P ) = [] implies P ≡ 0.

(b) For any P ∈ LDNA: ms(P ) = [a] implies P ≡ a.

(c) For any P1, P2 ∈ LDNA: P1 ≡ P2 implies ms(P1) = ms(P2).

Proof: The proofs of Lemma 9.10(a) and Lemma 9.10(b) can proceed by structural induction
on P . The proof of Lemma 9.10(c) can proceed by induction on the depth of inference of
P1 ≡ P2, considering the various cases for the last step of inference of P1 ≡ P2.

Lemma 9.11 For any M1,M2 ∈ LM : M1 ≡ M2 ⇔ ms(M1) = ms(M2).

Proof: The proof of (⇐) can proceed by induction on |ms(M1)| = |ms(M2)|. By Remark
9.5, ms(M) ∈ [ADNA], and |ms(M)| ∈ N, for any M ∈ LM .

(⇒) is an immediate consequence of Lemma 9.10(b).
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Lemma 9.12 For any M1,M2 ∈ LM , a ∈ ADNA: a ‖ M1 ≡ a ‖ M2 ⇔ M1 ≡ M2.

Proof: (⇐) is obvious.
For (⇒) we notice that a ‖ M1 ≡ a ‖ M2 implies ms(a ‖ M1) = ms(a ‖ M2), by Lemma

9.11. Therefore, [a] ⊎ ms(M1) = [a] ⊎ ms(M2), which implies ms(M1) = ms(M2), hence
M1 ≡ M2, by Lemma 9.11.

9.2 Properties related to standard forms

We recall that the notion of a standard form was introduced in Definition 9.2. In this
subsection we present a recursive algorithm for computing standard forms. It is easy to
establish the following Lemma.

Lemma 9.13 For any P,Q ∈ LDNA:

(a) (P ∗ ‖ Q)∗ ≡ (P ‖ Q)∗,

(b) (P n ‖ Q)∗ ≡ (P ‖ Q)∗, where (as in Definition 6.1), for any P ∈ LDNA, n ∈ N+ we
define P n by induction on n: P 1 = P, P n+1 = P ‖ P n,

(c) P ‖ (P ‖ Q)∗ ≡ (P ‖ Q)∗, and

(d) (P n)∗ ≡ P ∗, for any n ∈ N+.

We also recall that (a, b ∈)ADNA is the set of elementary LDNA components: a ::= x | g.
According to our convention presented in Section 2.1, a, b ∈ [ADNA] denote multisets of
elementary components.

Definition 9.14 We define a mapping sf : LDNA → ([ADNA]× [ADNA]) by:

sf(0) = ([], [])

sf(a) = ([a], [])

sf(P1 ‖ P2) = let (a1, b1) = sf(P1), (a2, b2) = sf(P2)

in ((a1 ⊎ a2) \\ (b1 ∪ b2), b1 ∪ b2)

sf(P ∗) = let (a, b) = sf(P ) in ([], {|a|} ∪ b)

Remark 9.15 If P ∈ LDNA and (a, b) = sf(P ) then a \\ b = a, and {|b|} = b.

Proof: By structural induction on P .

Lemma 9.16 For any M ∈ LM : sf(M) = (ms(M), []).

Proof: By structural induction on M .

Lemma 9.17
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(a) For any S ∈ LS: {|ms(S)|} = ms(S).

(b) a ‖ S ∈ LS implies S ∈ LS.

(c) For any S ∈ LS: sf(S
∗) = ([], ms(S)).

Proof: Parts (a) and (b) follow by the definition of LS. The proof of part (c) can proceed
by structural induction on S.

Lemma 9.18 If M ∈ LM , S ∈ LS are such that: ms(M) \\ms(S) = ms(M) then sf(M ‖
S∗) = (ms(M), ms(S)).

Proof: By Lemma 9.16 and Lemma 9.17, sf(M) = (ms(M), []), and sf(S) = ([], ms(S)).
By the definition of sf , sf(P1 ‖ P2) = ((ms(M) ⊎ []) \\ms(S), ms(S)) = (ms(M), ms(S))

Lemma 9.19 For any P1, P2 ∈ LDNA: P1 ≡ P2 implies sf(P1) = sf(P2).

Proof: By induction on the depth of inference of P1 ≡ P2, considering the various cases for
the last step of inference. We consider two cases.

� Assume that rule (D2) is used in the last step, i.e., for some P,Q ∈ LDNA: P1 = P ‖ Q ≡ Q ‖ P = P2.
In this case

sf(P1) = sf(P ‖ Q)

= let (aP , bP ) = sf(P ), (aQ, bQ) = sf(Q) in ((aP ⊎ aQ) \\ (bP ∪ bQ), bP ∪ bQ)

[⊎ and ∪ are commutative]

= let (aQ, bQ) = sf(Q), (aP , bP ) = sf(P ) in ((aQ ⊎ aP ) \\ (bQ ∪ bP ), bQ ∪ bP )

= sf(Q ‖ P ) = sf(P2)

� Assume that rule (P1) is used in the last step, i.e., for some P ∈ LDNA: P1 = P ∗ ≡
P ‖ P ∗ = P2. In this case

sf(P1) = sf(P ∗) = let (a, b) = sf(P ) in ([], {|a|} ∪ b)

and

sf(P2) = sf(P ‖ P ∗)

= let (a, b) = sf(P ), ([], {|a|} ∪ b) = sf(P ∗) in ((a ⊎ []) \\ (b ∪ ({|a|} ∪ b)), b ∪
({|a|} ∪ b))

[a \\ {|a|} = []]

= ([], {|a|} ∪ b) = sf(P ∗) = sf(P1)

Lemma 9.20 If S, S1, S2 ∈ LS are such that ms(S) = ms(S1) ∪ ms(S2) then S∗ ≡ (S1 ‖
S2)

∗.

Proof: By structural induction on S.
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Lemma 9.21 If M,M ′ ∈ LM , S ∈ LS are such that ms(M) = ms(M ′) \\ms(S) then
M ′ ‖ S∗ ≡ M ‖ S∗.

Proof: By structural induction on M ′.

Lemma 9.22 If M ∈ LM , S, S ′ ∈ LS are such that ms(S) = {|ms(M)|} ∪ ms(S ′) then
S∗ ≡ M∗ ‖ S ′∗. obs.2.9

Proof: By structural induction on M .

Definition 9.23 We define a mapping SF : LDNA → Pnfin(LM × LS) by:
14

SF (P ) = {(M,S) | (a, b) = sf(P ), ms(M) = a,ms(S) = b}

Lemma 9.24 For any a ∈ [ADNA] there exists M ∈ LM such that a = ms(M).

Proof: By induction on |a|.

Remarks 9.25 For any P ∈ LDNA

(b) The set SF (P ) is finite and nonempty (according to Lemma 9.24), for any P ∈ LDNA,
hence SF is well defined.

(c) Let (M,S) ∈ SF (P ). According to Remark 9.11, ms(M) \\ms(S) = ms(M).

(d) If (M,S) ∈ SF (P ) then M ‖ S∗ is in standard form.

Lemma 9.26 For any P ∈ LDNA and for any (M,S) ∈ SF (P ): P ≡ M ‖ S∗, and M ‖ S∗

is in standard form.

Proof: Let (a, b) = sf(P ). Let (M,S) ∈ SF (P ). By Definition 9.23, ms(M) = a, ms(S) =
b. We must prove that P ≡ M ‖ S∗ and M ‖ S∗ is in standard form. We proceed by
structural induction on P . We consider two subcases.

� Case P = a. In this case sf(P ) = sf(a) = ([a], []), and ms(M) = [a] ms(S) = []. By
Lemma 9.10(a) and Lemma 9.10(b), M = a, S = 0. Hence P = a ≡ a ‖ 0∗ = M ‖ S∗.
Obviously, a ‖ 0∗ is in standard form.

� Case P = Q∗. Let sf(Q) = (a, b). By the induction hypothesis, for any (MQ, SQ) ∈
SF (Q) (i.e., for any MQ ∈ LM , SQ ∈ LS, such that ms(MQ) = a, ms(SQ) = b) we
know that Q ≡ MQ ‖ S∗

Q, and MQ ‖ S∗
Q is in standard form.

sf(P ) = sf(Q∗) = ([], {|a|} ∪ b). We must prove that if M ∈ LM , S ∈ LS are such that
ms(M) = [] and ms(S) = {|a|} ∪ b = {|ms(MQ)|} ∪ms(SQ) then P ≡ M ‖ S∗. This
follows by using Lemma 9.22:

P = Q∗ ≡ (MQ ‖ S∗
Q)

∗ [Lemma 9.13(a)]

14We recall that Pnfin(·) is the set of all nonempty and finite subsets of ’·’; see Section 2.
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≡ M∗
Q ‖ S∗

Q [Lemma 9.22]

≡ S∗ [ms(M) = [], hence, by Lemma 9.10(a), M ≡ 0]

≡ M ‖ S∗

Obviously, ms(M) \\ms(S) = [] \\ms(S) = [] = ms(M), hence M ‖ S∗ is in standard
form.

Lemma 9.27 For any P,Q ∈ LDNA if sf(P ) = sf(Q) then P ≡ Q.

Proof: sf(P ) = sf(Q) implies SF (P ) = SF (Q). Let (M,S) ∈ SF (P ) = SF (Q). By
Lemma 9.26, P ≡ M ‖ S∗ ≡ Q.

Lemma 9.28 If M1,M2 ∈ LM , S1, S2 ∈ LS are such that ms(M1) \\ms(S1) = ms(M1),
and
ms(M2) \\ms(S2) = ms(M2) then M1 ‖ S∗

1 ≡ M2 ‖ S∗
2 ⇔ M1 ≡ M2, S1 ≡ S2.

Proof: (⇐) is obvious.
For (⇒) we compute as follows:

(ms(M1), ms(S1)) [Lemma 9.18]

= sf(M1 ‖ S∗
1) [Lemma 9.19]

= sf(M2 ‖ S∗
2) [Lemma 9.18]

= (ms(M2), ms(S2))

By Lemma 9.11, M1 ≡ M2, S1 ≡ S2.

10 Concluding remarks

By using metric semantics, we related formally different semantic models for a language based
on the combinatorial strand algebra introduced in [7]. The formalism consists of a process
algebra language which incorporates some basic concepts of DNA computing: signals, gates,
join synchronization [10] and unbound populations. We presented a denotational semantics
and we proved the correctness of the denotational semantics with respect to an operational
semantics introduced in [7]. To the best of our knowledge this is the first work (apart from our
conference paper [9]) providing a study of comparative semantics for a concurrent language
inspired by DNA computing. In [8] and [17] we use metric spaces in designing denotational
models for parallel rewriting of multisets and join synchronization, respectively. However,
the semantic models presented in [8] and [17] are designed with continuations and are not
close to the DNA strand algebra investigated in this paper.

We intend to continue the research concerning the behavior of DNA systems by using
methods in the tradition of programming languages semantics. Our next aim is to design a
fully abstract denotational model for the formalism that we investigated in this paper.
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