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ISSN 1842 - 1490



FML is the Formal Methods Laboratory from the Institute of Computer Science of the
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ABSTRACT
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1 Introduction

The technique of continuations is a classical tool in denotational semantics. In [27] we intro-
duced a variant of this technique that we named ”continuation semantics for concurrency”
(CSC). In the CSC approach a continuation is an application-specific structure of compu-
tations (partially evaluated denotations) rather than a function to some answer type as in
the classic technique of continuations [26]. The structure of continuations in CSC can be
designed by combining the concept of a stack and the concept of a multiset. Sequential
composition can be modeled by structuring continuations as stacks of computations. Also,
parallel composition can be modeled by structuring continuations as multisets of compu-
tations. In order to model a general combination of sequential and parallel composition
continuations can be structured as trees of computations [27]; such a tree implements the
concept of a cactus stack [7], i.e., a stack with multiple tops that can be active concurrently.
Unlike other models of concurrency [22], [3], [9], in the CSC approach the final yield of the de-
notational mapping is a simple collection of observations and all control and communication
concepts are modeled as operations manipulating continuations.

In this paper we present a method which can be used to reason about the behavior
of concurrent programs in denotational models designed with CSC and metric spaces. The
metric approach to semantics is presented in the monograph [3]. For illustration purposes we
consider a simple asynchronous language, embodying the paradigm of asynchronous commu-
nication introduced in [8]. For the language under consideration we prove some concurrency
laws, such as the associativity and comutativity of parallel composition. The proof method
relies on the identification of behavioral invariants expressed as relations between continua-
tion structures and the use of contraction in complete metric spaces.

To the best of our knowledge there is no published full abstractness result for a de-
notational model of a concurrent language designed with continuations. Also, we do not
know whether a fully abstract domain of CSC exists. In this paper we investigate a weaker
optimality criterion - that we call weak abstractness - which can be estblished for CSC.

In CSC a continuation is a language-specific structure of computations. In general, a
continuation may contain computations that are not denotable by any program statement.
The research reported in this paper focuses on the class of continuations that contain only
denotations of the program statements, which we call the class of denotable continuations.
Evaluation with respect to denotable continuations represents an invariant of the denota-
tional semantics and ensures its consistency just because the initial continuation is empty
and the denotational semantics adds to the continuation only denotations of the language
constructs. Some properties in CSC can only be proved for the class of denotable continua-
tions (this was already investigated in our previous work [12, 11]). In this paper we also use
the concept of a denotable continuation to define an (weak) abstractness criterion that can
be established for CSC.

The weak abstractness criterion we define and establish within the mathematical frame-
work of complete metric spaces. We follow the approach advocated in [3]. The domain for
CSC is defined based on a certain domain equation which can be solved by using the general
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method introduced in [1].

1.0.1 A simple asynchronous formalism

We investigate a simple language L embodying the paradigm of asynchronous communication
introduced in [8]. Instances of this paradigm include concurrent constraint programming [25],
and also in other languages like dataflow, asynchronous CCS and asynchronous CSP. The
importance of asynchronous communication and the relation between synchronous and asyn-
chronous communication is investigated in [15] [21] [31]. A simulation of synchronous inter-
action by means of asynchronous interaction is not always possible. However, asynchronous
communication is easier to implement and it represents the basic interaction mechanism in
many distributed systems, including most Internet and Web applications. The research re-
ported in this paper starts from a denotational semantics designed with metric spaces and
CSC for L.

A denotational semantics designed with metric spaces and CSC for L was first presented
in [27]. There is only one minor difference between the denotational model given in this
paper and the one given in [27]. In order to obtain a weak abstractness result in this paper
we use the notion of a consistent continuation, and we define the behavior such that any L
program blocks immediately if it is evaluated with respect to a nonconsistent continuation.
In the CSC approach the space of computations may be divided conceptually into an active
computation and the rest of computations which are grouped into the continuation. In
the denotational model designed with CSC for L a continuation is a tree of computations.
Intuitively, a continuation is consistent if the active computation is a leaf in the tree of
computations representing the continuation. The consistency condition is simple and it
represents an invariant property that is preserved by the denotational semantics, just because
the initial continuation is consistent and each equation defining the denotational semantics
preserves the consistency condition. No semantic property is affected by this design decision.
Moreover, the proofs are similar for consistent continuations and trivial for nonconsistent
continuations. In addition, the denotational model given in this paper is both correct (the
correctness condition was already demonstrated in [27]) and weakly abstract - a notion that
is introduced in this paper.

1.0.2 Concurrency laws in continuation semantics

In Section 5 we provide some results from [12, 11]. The results are trivial for nonconsistent
continuations. Also, the proofs for consistent continuations are similar to the proofs given
in [12, 11], hence they are ommited here. The results given in Section 5 represent concur-
rency laws that are satisfied by the semantic operators of L, such as the associativity and
commutativity of parallel composition. In general, concurrency laws can only be establised
for the class of denotable continuations. We also investigate the semantic properties in the
metric completion of the class of denotable continuations, which we call the domain of de-
notable continuations. We establish the result that all concurrency laws also hold in the
domain of denotable continuations.
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Continuation-based models rely on manipulations of higher-order functions. It may be
difficult to reason directly in terms of higher-order functions. Therefore L includes a left
merge operator that allows us to establish a finite axiomatization of the parallel composition
(or merge) operator. Any non-recursive asynchronous concurrent program is thus provably
equivalent to a corresponding nondeterministic sequential program. The approach is inspired
by classic process algebra theories [20, 6]; this approach is adapted by us to a continuation-
based framework (see also [12, 11]).

Each semantic property, also called a law here, can be proved by identifying a correspond-
ing invariant of the computation, as a relation between CSC continuation structures. The
identification of semantic properties from the invariants of the computation is common in
classic bisimulation semantics [20]. In [12, 11] we have shown that this idea can be adapted to
a continuation-based denotational framework. The basic idea is that one can use arguments
of the kind ’ε ≤ 1

2
· · ε ⇒ ε = 0’ (which are standard in metric semantics [3]), where ε is the

distance between two behavioraly equivalent continuations, before and after a computation
step, respectively. The effect of each computation step is given by the 1

2
contracting factor.

Therefore ε = 0 and the desired property follows.

1.0.3 Weak abstractness

Due to the interaction between denotations and continuations the full abstractness problem
raised by Robin Milner [16][17] seems to be particularly difficult in continuation semantics.
As far as we know, there is no full abstractness result published for a concurrent language
designed semantically with continuations, although there are several papers that employ the
technique of continuation in the semantic description of concurrent languages [3, 2, 24, 10].

A denotational semantics is said to be fully abstract with respect to a corresponding
operational semantics if it is correct and complete (formal definitions are included in Sec-
tion 2).1 It is easy to show that a denotational model designed with CSC is correct. The
correctness condition for the language L investigated in this paper was demonstrated in [27].
In general, the completeness condition is more difficult to establish. We do not know whether
a fully abstract domain for CSC exists. The completeness condition can be stated as follows.
If the denotations of two statements are different then there exists a syntactic context (a
program expression with ’holes’) in which the operational behavior of the two statements is
also different.

In continuation semantics the completeness condition of full abstractness can be expressed
as follows. If there exists a continuation for which the denotations of two statements are
different then there exist a syntactic context in which the operational behavior of the two
statements is also different (because the denotations of programs are functions that take
continuations as arguments).

In this paper we propose a criterion - that we call weak abstractness - which can be used
to asses the optimality of a denotational model designed with continuations. A denotational
model designed with continuations is weakly abstract if it is correct and weakly complete.

1For the full abstractness problem we adopt the terminology in chapter 17 of [3].
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The correctness condition is inherited from the full abstractness criterion (it is described
formally in Section 2.2). Only the completeness condition is different. In words, the weak
completeness condition can be described as follows. If there exists a denotable continuation
for which the denotations of two statements are different then there exist a syntactic context
in which the operational behavior of the two statements is also different.

The weak abstractness criterion is similar to the full abstractness criterion. It is weaker
only in the sense that the completeness condition has to be verified merely for the class of
denotable continuatuions. We do not know whether a fully abstract domain of CSC exists,
but we show it is possible to identify a domain of denotable continuations (constructed
by metric completion from the class of denotable continuations) which satisfies the desired
completeness condition.

In Section 7 we show that the denotational semantics of L given in this paper is both
correct and weakly abstract with respect to a corresponding operational semantics, hence
the denotational semantics of L is weakly abstract.

1.0.4 Structure of the paper

Section 2 presents some theoretical preliminaries based mainly on the monograph [3]. In
Section 3 we present the syntax of L. In Section 4 we define a denotational semantics
designed with metric spaces and CSC for the asynchronous language L. In Section 5 we
investigate the concurrency laws that are satisfied by our denotational model. The notion of
weak abstractness is introduced in Section 6. In Section 7 we present the weak abstractness
result for L. Section 8 provides some conclusions together with possible directions of future
research.

2 Preliminaries

The notation (x ∈)X introduces the set X with typical element x ranging over X . For any
set X we denote by |X| the cardinal number of X . Let f ∈ X → Y be a function with
domain X and codomain Y . Let S be a subset of X , S ⊆ X . f↾S denotes the function f
restricted to the domain S, i.e. f↾S : S → Y , f↾S(x) = f(x), ∀x ∈ S. If f ∈ X → Y , we
use the notation (f | x 7→ y) to represent the function (f | x 7→ y) : X → Y defined by:

(f | x 7→ y)(x′) =

{

y if x′ = x
f(x′) if x′ 6= x

(f | x1 7→ y1, · · · , xn 7→ yn) is an abbreviation for ((f | x1 7→ y1) · · · | xn 7→ yn). If f : X →X
and f(x) = x we call x a fixed point of f . When this fixed point is unique (see Theorem 2.6)
we write x = fix(f).

The denotational semantics given in this paper is built within the mathematical frame-
work of 1-bounded complete metric spaces.
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Definition 2.1 A metric space is a pair (M, d) with M a non-empty set and d a mapping
d : M ×M → [0, 1] which satisfies

(a) ∀x, y ∈ M [d(x, y) = 0 ⇔ x = y]

(b) ∀x, y ∈ M [d(x, y) = d(y, x)]

(c) ∀x, y, z ∈ M [d(x, y) ≤ d(x, z) + d(z, y)]

d is called a metric or distance. Property (c) is the so-called triangle inequality. We call
(M, d) an ultra-metric space if M is as before and the mapping d satisfies (a),(b) and the
following stronger version of property (c):

(c’) ∀x, y, z ∈ M : d(x, y) ≤ max{d(x, z), d(z, y)}

Definition 2.2 Let (M, d) be a metric space and let (xi)i be a sequence in M .2

(a) (xi)i is a convergent sequence with limit x ∈ M whenever

∀ε > 0∃n ∈ N∀i ≥ n [d(xi, x) ≤ ε]

We say that (xi)i converges to x and we write limi xi = x.

(b) (xi)i is a Cauchy sequence whenever

∀ε > 0∃n ∈ N∀i, j ≥ n [d(xi, xj) ≤ ε]

(b) The metric space (M, d) is called complete whenever each Cauchy sequence converges
to an element of M .

Remarks 2.3 Each convergent sequence is a Cauchy sequence. In a complete metric space
each Cauchy sequence is convergent.

2.0.5 Examples.

The following metrics are frequently used in semantic applications.

1. If (x, y ∈)X is any nonempty set, one can define the discrete metric on X as follows:
d(x, y) = 0 if x = y, and d(x, y) = 1 if x 6= y. (X, d) is a complete ultrametric space.

2. A central idea in metric semantics is to state that two computations have distance 2−n

whenever the first difference in their behaviors appears after n computation steps. Let
(a ∈)A be a nonempty set, and let (x, y ∈)A∞ = A∗ ∪ Aω, where A∗(Aω) is the set
of all finite (infinite) sequences over A. One can define a metric over A∞ as follows:
d(x, y) = 2− sup{n |x(n)=y(n) }, where x(n) denotes the prefix of x of length n, in case
length(x) ≥ n, and x otherwise (by convention, 2−∞ = 0). d is a Baire-like metric.
(A∞, d) is a complete ultrametric space.

2A sequence in M , usually denoted by (xi)i, is a function f : N → M , with xi = f(i).
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Definition 2.4 Let (M1, d1), (M2, d2) be metric spaces.

(a) We say that (M1, d1) and (M2, d2) are isometric if there exists a bijection f : M1 → M2

such that ∀x, y ∈ M1 [d2(f(x), f(y)) = d1(x, y)]. We then write M1
∼= M2.

(b) A function f : M1 → M2 is called continuous whenever, for each convergent sequence
(xi)i with limi xi = x we also have that limi f(xi) = f(x).

(c) A function f :M1 → M2 is a contraction if ∃c ∈ R, 0 ≤ c < 1, ∀x, y ∈ M1

[d2(f(x), f(x))≤c · d1(x, y)]. f is called nonexpansive when c = 1. We denote the set

of all nonexpansive functions from M1 to M2 by M1

1

→M2.

Remark 2.5 Each nonexpansive function is continuous.

The Banach fixed point theorem is at the core of metric semantics.

Theorem 2.6 (Banach) Let (M, d) be a complete metric space. Each contraction
f : M → M has a unique fixed point.

Definition 2.7 Let (M, d), (M ′, d′) be (ultra) metric spaces. On the space (x ∈)M ,
(f∈)M → M ′ (the function space), (x, x′)∈M×M ′ (the Cartesian product), u, v∈ M +M ′

(the disjoint union of M and M ′, which can be defined by: M+M ′ = ({1}×M)∪({2}×M ′)),
and U, V ∈P(M) (the power set of M) one can define the following metrics:

(a) d 1

2
·M : M ×M → [0, 1], d 1

2
·M(x1, x2) =

1
2
· dM(x1, x2)

(b) dM→M ′ : (M → M ′)× (M → M ′) → [0, 1]

dM→M ′(f1, f2) = supx∈M dM ′(f1(x), f2(x))

(c) dM×M ′ : (M ×M ′)× (M ×M ′) → [0, 1]

dM×M ′((x1, x
′
1), (x2, x

′
2)) = max{dM(x1, x2), dM ′(x′

1, x
′
2)}

(d) dM+M ′ : (M +M ′)× (M +M ′) → [0, 1]

dM+M ′(u, v) =







d(u, v) if u, v ∈ {1} ×M
d′(u, v) if u, v ∈ {2} ×M ′

1 otherwise

(e) dH : P(M) ×P(M)→[0, 1]:

dH(U, V ) = max{supu∈U d(u, V ), supv∈V d(v, U)}

where d(u,W )= infw∈W d(u, w) and by convention sup ∅=0, inf ∅=1 (dH is the Haus-
dorff metric).
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We use the abbreviations Pco(·) (Pnco(·)) to denote the power set of compact (non-empty and
compact) subsets of ’·’ (we assume known the notion of a compact set; see, e.g., [3]). Also,
we often suppress the metrics part in domain definitions, and write, e.g., 1

2
· M instead of

(M, d 1

2
·M).

Remark 2.8 Let (M, d), (M ′, d′), d 1

2
·M , dM→M ′, dM×M ′, dM+M ′ and dH be as in Defini-

tion 2.7. In case d, d′ are ultrametrics, then so are d 1

2
·M , dM→M ′, dM×M ′, dM+M ′ and dH .

Moreover, if (M, d), (M ′, d′) are complete then 1
2
· M , M → M ′, M

1

→M ′, M ×M ′, M +M ′,
Pco(M) and Pnco(M) (with the metrics defined above) are also complete metric spaces [3].

We also use the abbreviation Pfin(·) to denote the power sets of finite subsets of ’·’. In
general, the construct Pfin(·) does not give rise to a complete space. In our study, we use
it to create a structure that we endow with the discrete metric. Any set endowed with the
discrete metric is a complete ultrametric space.

2.1 Metric completion

Let (M, d), (M ′, d′) be metric spaces. We use the notation (M, d) ⊳ (M ′, d′), or simply
M ⊳M ′, whenever (M is a subspace of M ′, i.e) M ⊆ M ′ and d′↾M = d (the restriction of d′

to M coincides with d).

Definition 2.9 Let (M, d) be a metric space. A metric completion of (M, d) is complete
metric space (M ′, d′) such that M ⊳ M ′ and for each x ∈ M ′ we have: x = limi xi, with
xi ∈ M, ∀i ∈ N (the limit is taken with respect to d′).

Propozition 2.10 Each metric space has a completion which is unique up to isometry.

Remark 2.11 Let (M, d) be a complete metric space and let X be a subset of M , X ⊆ M .
We use the notation co(X|M) to represent the set

co(X|M)
not.
= {x | x ∈ M,x = limi xi, ∀i ∈ N : xi ∈ X,

(xi)i is a Cauchy sequence inX}

where the limits are taken with respect to d (as (M, d) is complete limi xi ∈ M). If we en-
dow X with dX = d↾X and co(X|M) with dco(X|M) = d↾co(X|M), then (co(X|M), dco(X|M))
is a metric completion of (X, dX).

Proof: It is easy to see that X ⊳ co(X|M) (X ⊆ co(X|M) because ∀x′ ∈ X : x′ =
limi xi, with xi = x′, ∀i ∈ N, hence x′ ∈ co(X|M)) and co(X|M) ⊳ M . We prove that
(co(X|M), dco(X|M)) is a complete metric space. Let (xi)i be a Cauchy sequence in co(X|M)
(xi ∈ co(X|M), ∀i ∈ N). As (M, d) is complete x = limi xi ∈ M . By the definition of
co(X|M), for each i ∈ N : xi = limj xij , where (xij)j is a Cauchy sequence in X (xij ∈ X ,
∀i, j ∈ N).



Abstract Continuation Semantics for Asynchronous Concurrency 9

We show that (xii)i is a Cauchy sequence (in (X, dX)) and limi xii = x. Let ε > 0.
∃n ∈ N∀i, j ≥ n : d(xii, xi) ≤

1
3
, d(xi, xj) ≤

1
3
, d(xj, xjj) ≤

1
3
and d(xi, x) ≤

1
3
. Hence, (xii)i is

a Cauchy inX sequence because dX(xii, xjj) = d(xii, xjj) ≤ d(xii, xi) + d(xi, xj) + d(xj, xjj) ≤
ε. Also, limi xii = x because d(xii, x) ≤ d(xii, xi) + d(xi, x) ≤ ε. Therefore x ∈ co(X|M),
which implies that the space co(X|M) is complete.

By the definition of co(X|M), for each x ∈ co(X|M), x = limi xi, with xi ∈ X, ∀i ∈ N;
the limits can be taken with respect to dco(X|M) = d↾co(X|M). We conclude that
(co(X|M), dco(X|M)) is a metric completion of (X, dX). �

2.2 Full abstractness

The full abstractness problem was raised by Robin Milner [16, 17]. A denotational semantics
D : L → D is said to be fully abstract with respect to a (corresponding) operational semantics
O : L → O if it is correct and complete.3 D is said to be correct with respect to O if the
following condition holds:

∀x1, x2 ∈ L[D(x1) = D(x2) ⇒ ∀S[O(S(x1)) = O(S(x2))]]

where S is a syntactic context for L. Intuitively, a syntactic context is a language construct
with ’holes’. The class of syntactic context for the asynchronous language L is given in
Definition 5.6. When S is a syntactic context for L, we denote by S(x) the result of ’plugging
in’ x for all occurrences of the ’hole’ (·) in S.

The denotational model is said to be complete if whenever the denotations of two state-
ments are different the difference can also be observed operationally in some syntactic con-
text. Formally, D is complete with respect to O if:

∀x1, x2 ∈ L[D(x1) 6= D(x2) ⇒ ∃S[O(S(x1)) 6= O(S(x2))]]

3 Syntax of L

The syntax of L is given in BNF in Definition 3.1. The basic components are a set (a ∈)Act
of atomic actions and a set (y ∈)Y of recursion variables. There is a special symbol δ ∈ Act,
whose behavior is explained below. ;, + and ‖ are operators for sequential, nondeterministic
and parallel composition, respectively. ‖ is also called a merge operator, and ⌊⌊ is the left
merge operator.

Definition 3.1 (Syntax of L)

(a) (Statements) x(∈ X) ::= a | y | x+ x | x; x | x⌊⌊x | x ‖ x

(b) (Guarded statements) g(∈ G) ::= a | g + g | g; x | g⌊⌊x | g‖g

3In the full abstraction problem we adopt the terminology from chapter 17 of [3].
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(d) (Declarations) (D ∈)Decl = Y →G

(e) (Programs) (ρ ∈)L = Decl ×X

The meaning of atomic actions is defined by an interpretation function I : Act → Σ →
({↑} ∪ Σ), where (σ ∈)Σ is a set of states. If I(a)(σ) =↑ the action a cannot proceed
in state σ; its execution is suspended. When all processes are suspended deadlock occurs.
Notice that I(δ)(σ) =↑, ∀σ ∈ Σ, i.e. the action δ suspends in all states. L incorporates the
mechanism of asynchronous communication studied in [8]. As explained in [8], this form
of asynchronous communication can be encountered in concurrent constraint programming,
and also in other languages like dataflow or asynchronous CSP.

We employ an approach to recursion based on declarations and guarded statements [3]. In
a guarded statement each recursive call is preceded by at least one elementary action, which
guarantees the fact that the semantic operators are contracting functions in the present
metric setting. For the sake of brevity (and without loss of generality) in what follows we
assume a fixed declaration D ∈ Decl, and all considerations in any given argument refer to
this fixed D.

For inductive proofs we introduce a complexity measure that decreases upon recursive
calls. cx is well-defined due to our restriction to guarded recursion.

Definition 3.2 (Complexity measure) The function cx : X →N is given by

cx(a) = 1

cx(y) = 1 + cx(D(y))

cx(x1 op x2) = 1 + cx(x1) op ∈ {; , ⌊⌊}

cx(x1 op x2) = 1+max{cx(x1), cx(x2)} op ∈ {+, ‖}

4 Continuation Semantics for L

In this section we introduce a denotational semantics designed with metric spaces and CSC
for L. It is based on the denotational model given in section 4 of [27]. In order to obtain
the weak abstractness result given in Section 7 of this paper we define a notion of consistent
continuation, and we define the behavior such that any L program blocks immediately if it
is evaluated with respect to a nonconsistent continuation.

The consistency condition is simple and it represents an invariant property that is pre-
served by the denotational semantics. The initial continuation is consistent and each equation
defining the denotational semantics preserves the consistency condition.

4.1 Structure of continuations

In the continuation semantics for concurrency (CSC) approach [27] the structure of contin-
uations represents the main design tool. As explained in [27], in order to model the general
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combination of sequential and parallel composition in L continuations can be structured as
trees of computations with active elements at the leaves. For example, when the denotation
of a program fragment (x1 ‖ x2); x3 is computed, the denotations of x1 and x2 become leaves
in such a tree and the denotation of x3 becomes an inner node. This behavior is inspired
by the concept of a cactus stack [7], a stack with multiple tops that can be active concur-
rently. Following [27],[12],[11] we model the domain of trees of computations with the aid of
a (partially ordered) set of identifiers A. (α ∈)A is the set of all finite, possibly empty (ǫ),
sequences over {1, 2} and α ≤ α′ iff α is a prefix of α′.

Definition 4.1

(a) Let (α ∈)A = {1, 2}∗ be a set of identifiers, equipped with the following partial ordering:
α ≤ α’ iff α′ = α · i1 · · · in for i1, · · · , in ∈ {1, 2}, n ≥ 0.

(b) We define a function max : P(A)→P(A) by:

max(π) = {α | α is a maximal element of (π,≤π)}

π ∈ P(A) and ≤π is the restriction of ≤ to the subset π of A.

The construct (A,≤) can be used to represent tree-like structures. For example, let
π ={α, α · 1, α · 2, α · 1 · 1, α · 1 · 2, α · 2 · 1, α · 2 · 2}. The maximal elements of (π,≤π) are
the leaves of the tree: max(π) = {α · 1 · 1, α · 1 · 2, α · 2 · 1, α · 2 · 2}. In this paper we use the
symbol ’·’ as a concatenation operator over sequences.

Let (x ∈)X be a metric domain, i.e. a complete metric space. Following [12, 11], we also
use the following notation:

{|X|}
not.
= Pfin(A)× (A→X)

Let α ∈ A, π ∈ Pfin(A), (π, ϕ) ∈ {|X|}, and ϕ ∈ A→X. We introduce operators id(·) :
{|X|} → Pfin(A), (·)(·) : ({|X|} × A) → X, (·) \ (·) : ({|X|} × Pfin(A)) → {|X|} and
[· | · 7→ ·] : ({|X|} × A×X) → {|X|}, defined by:

id(π, ϕ) = π
(π, ϕ)(α) = ϕ(α)
(π, ϕ) \ π′ = (π \ π′, ϕ)

[(π, ϕ) | α 7→ x] = (π ∪ {α}, (ϕ | α 7→ x))

Sometimes, we use the notation [(π, ϕ) | α1 7→ x1 | · · · | αn 7→ xn] as an abbreviation for
[· · · [(π, ϕ) | α1 7→ x1] · · · | αn 7→ xn].

We also define ν : (A× {|X|}) → Bool by

ν(α, (π, ϕ)) = (α /∈ π) and (α ∈ (max({α} ∪ π)))

We treat (π, ϕ) as a ’function’ with finite graph {(α, ϕ(α)) | α ∈ π}, thus ignoring the
behaviour of ϕ for any α /∈ π (π is the ’domain’ of (π, ϕ)). We use this mathematical



Abstract Continuation Semantics for Asynchronous Concurrency 12

structure to represent finite partially ordered bags (or multisets)4 of computations. The
set A is used to distinguish between multiple occurrences of a computation in such a bag.
We endow both sets A and Pfin(A) with discrete metrics; every set with a discrete metric is
a complete ultrametric space. By using the composite metrics given in Definition 2.6 {|X|}
becomes also a metric domain.

Remark 4.2 Let X be a metric domain, and let ((α, (π, ϕ)), (α′, (π′, ϕ′)) ∈ {|X|}. If α 6= α′

or π 6= π′ then d((α, (π, ϕ)), (α′, (π′, ϕ′))) = 1.

The operators behave as follows. id(π, ϕ) returns the collection of identifiers for the valid
computations contained in the bag (π, ϕ), (π, ϕ)(α) returns the computation with identifier α,
(π, ϕ) \ π′ removes the computations with identifiers in π′, and [(π, ϕ) | α 7→ x] replaces the
computation with identifier α. The predicate ν(α, (π, ϕ)) is true iff the identifier α is a leaf
of the tree (π′,≤π′), with π′ = {α} ∪ π, and α /∈ π. We use the operator ν to specify an
invariant property for continuations; further explanations are provided after we introduce
the domain of continuations.

By a slight abuse, we use the same notations (including the operators id(·), (·)(·), (·) \
(·), [· | · 7→ ·] and ν(·, ·)) when (x ∈)X is an ordinary set: {|X |} = Pfin(A)× (A→X); in this
case we do not endow {|X |} with a metric.

4.2 Semantic domain

We design a continuation-based denotational semantics for L. As a semantic universe for
the final yield of our denotational model we employ a standard linear-time domain
(p ∈)P = Pnco(Σ

∗ ∪Σ∗ · {δ} ∪Σω). Here Σ∗(Σω) denotes the collection of all finite (infinite)
sequences over Σ. An element of Σ∗ · {δ} is a finite sequence terminated with the symbol δ,
which denotes deadlock. Also, we use the symbol ǫ to represent the empty sequence. We
view (q ∈)Σ∗ ∪Σ∗ · {δ} ∪Σω as a complete ultrametric space by endowing it with the Baire
metric (see section 2). The type of the denotational semantics [[·]] for L is X→D, where:

D ∼= Cont
1

→Σ→P
(γ ∈)Cont = A×Kont
(κ ∈)Kont = {| 1

2
· D|}

Notice that the recursive occurence of D is preceded by ’1
2
· ’ and it is placed in the left-hand

side of a nonexpansive function space. According to [1] the above domain equation has a
solution, which is unique up to isometry. The solution for D is obtained as a complete
ultrametric space.

As in [12, 11], we call an element of Kont a closed continuation and an element of
Cont an open continuation. A continuation is a representation of what remains to be
computed from the program [26]. A closed continuation κ ∈ Kont is a self-contained

4We avoid using the notion of a partially ordered multiset which is a more refined structure – see [5], or chapter
16 of [3].
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structure of computations. An open continuation behaves like an evaluation context [13] for
the denotational mapping [[·]].

4.3 Denotational semantics

The denotational function [[·]] is defined in 4.4 with the aid of a mapping kc, which is called
a scheduler. Since the definition of the denotational mapping [[·]] is very similar to the ones
given in [27][12][11], we adopt a more terse style of presentation. Only the consistency
condition given in Definition 4.3 is specific of the denotational semantics given in this paper.
No semantic property is affected by this design decision. Moreover, the proofs are are trivial
for nonconsistent continuations and similar to the proofs provided in citeCT10,CT13 for
consistent continuations. In addition, the denotational model given in this paper is both
weakly abstract, a notion to be introduced formally in Section 6.

We use the notation σ · p = {σ · q | q ∈ p}, for any σ ∈ Σ and p ∈ P. Also, the
semantics of nondeterministic choice in L is given by the operator + : (P×P) → P. The
definition reflects that p1 + p2 blocks only if both p1 and p2 block (the symbol δ denotes
deadlock). It is easy to check that + is well-defined, nonexpansive, associative, commutative
and idempotent.

p1 + p2 = {q | q ∈ p1 ∪ p2, q 6= δ} ∪ {δ | δ ∈ p1 ∩ p2}

Definition 4.3 Let (α, κ) ∈ Cont be an open continuation. We say (α, κ) is consistent if
ν(α, κ). Also, we say that (α, κ) is inconsistent if ¬ν(α, κ).

In the Definition 4.4 we use the following convention:

Φ(φ)(α, κ)(σ) =c p

is an abbreviation for:

Φ(φ)(α, κ)(σ) =

{

p if ν(α, κ)
{δ} otherwise

for Φ : (X→D)→ (X →D), φ ∈ X→D, (α, κ) ∈ Cont, σ ∈ Σ, p ∈ P.

Definition 4.4 (Denotational semantics for L)

(a) Let kc : Kont → Σ → P be given by:

kc(κ)(σ) = if (id(κ) = ∅) then {ǫ} else +α∈max(id(κ)) κ(α)(α, κ \ {α})(σ)
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(b) We define Φ : (X→D)→ (X→D), for φ ∈ X →D, by:

Φ(φ)(a)(α, κ)(σ) =c if (I(a)(σ) =↑) then {δ}
else I(a)(σ) · kc(κ)(I(a)(σ))

Φ(φ)(y)(α, κ)(σ) =c Φ(φ)(D(y))(α, κ)(σ)
Φ(φ)(x1 + x2)(α, κ)(σ) =c Φ(φ)(x1)(α, κ)(σ) + Φ(φ)(x2)(α, κ)(σ)
Φ(φ)(x1; x2)(α, κ)(σ) =c Φ(φ)(x1)(α · 1, [κ | α 7→ φ(x2)])(σ)
Φ(φ)(x1⌊⌊x2)(α, κ)(σ) =c Φ(φ)(x1)(α · 1, [κ | α · 2 7→ φ(x2)])(σ)
Φ(φ)(x1 ‖ x2)(α, κ)(σ) =c Φ(φ)(x1)(α · 1, [κ | α · 2 7→ φ(x2)])(σ) +

Φ(φ)(x2)(α · 1, [κ | α · 2 7→ φ(x1)])(σ)

(c) We put [[·]] = fix(Φ). Let κ0 = (∅, λα.[[δ]]), and α0 = ǫ. (α0, κ0) ∈ Cont is the
initial open continuation. Notice that kc(κ0)(σ) = {ǫ}, for any σ ∈ Σ. We also define
D[[·]] : X→Σ→P by:

D[[x]] = [[x]](α0, κ0)

An open continuation (α, κ) is consistent iff ν(α, κ). The consistency condition is an
invariant of the denotational semantics. The initial continuation is consistent. Also, each
equation defining the denotational semantics preserves the consistency condition. Notice
that, if (α, κ) is an inconsistent open continuation then [[x]](α, κ)(σ) = {δ}, for any x ∈ X ,
σ ∈ Σ.

Definition 4.4 is justified by Lemmas 4.5 and 4.6, whose proofs are omitted. Similar
Lemmas are given in [27, 28]. See, e.g., the proofs of Lemmas 3.13 and 3.14 in [27].

Lemma 4.5

(a) The mapping kc (given in Definition 4.4) is well-defined.

(b) ∀κ1, κ2 ∈ Kont : d(kc(κ1), kc(κ2)) ≤ 2 · d(κ1, κ2)

Lemma 4.6 For all φ ∈ (X→D), x ∈ X, (α, κ) ∈ Cont, σ ∈ Σ:

(a) Φ(φ)(x)(α, κ)(σ) ∈ P (it is well defined),

(b) Φ(φ)(x) is nonexpansive (in (α, κ)), and

(c) Φ is 1
2
- contractive (in φ).
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5 Concurrency Laws

For the asynchronous language L that we study in this paper, in [12, 11] we showed that the
semantic operators designed with CSC satisfy laws that are usually included in concurrency
theories, such as the associativity and commutativity of parallel composition. Moreover,
we obtained a complete axiomatization of parallel composition inspired by classic process
algebra theories [6]. In this section we repeat the results given in [12][11] adapted to the
denotational semantics introduced in this paper. Actually all properties remain valid and all
proofs are as similar to the ones provided in [12][11] if we restrict to the class of consistent
continuations. Also, the proofs are trivial for nonconsistent continuations. In general, the
semantic properties are only satisfied for the class of denotable continuations, a notion to be
defined formally below. We introduce the auxiliary notion of a resumption and a notion of
isomorphism over resumptions. A continuation may contain arbitrary values of the type D.
We prove the desired properties for continuations that can be obtained as semantified versions
of resumptions, i.e. for for continuations that contain only denotations of statements; such
continuations we call denotable continuations. The evaluation with respect to denotable
continuations represents an invariant property of the denotational semantics, because the
initial continuation is empty and the denotational semantics adds to the continuation only
denotations of statements.

Definition 5.1

(a) We define the set of closed resumptions (k ∈)KRes = {|X |},5 where X is the class of
L statements. We define the set CRes of open resumptions by CRes = A × KRes.
Let (α, k) ∈ CRes be an open resumption. We say that (α, k) is consistent if ν(α, k).
We say that (α, k) is inconsistent if ¬ν(α, k).

(b) We define [[[·]]] : KRes → Kont, [[[k ]]] = (id(k), λα.[[k(α)]]).

Remark 5.2 Let (α, k) ∈ CRes be an open resumption. ν(α, k) ⇔ ν(α, [[[k ]]]), i.e. (α, k) is
consistent iff (α, [[[k ]]]) is consistent.

A continuation that contains only computations denotable by program statements we call
a denotable continuation. The class of closed denotable continuations is (κ ∈)KontD = {[[[k ]]] |
k ∈ KRes}. The class of open denotable continuations is ((α, κ) ∈)ContD = {(α, [[[k ]]]) |
(α, k) ∈ CRes} = A × KontD. Denotable continuations are the semantic counterpart of
resumptions. Obviously, [[[k ]]] ∈ Kont for any k ∈ KRes and (α, [[[k ]]]) ∈ Cont for any
(α, k) ∈ CRes. Not all continuations are denotable, but in general the semantic properties
can only be proved for denotable continuations.

Definition 5.3 We say that two open resumptions (α1, k1), (α2, k2) ∈ CRes are isomorphic,
and write (α1, k1) ∼= (α2, k2), iff either of the following two conditions ((1) or (2)) is satisfied:

5In this case the construct {| · |} is used to define an ordinary set; see the explanation given in the final part
of subsection 4.1.
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(1) ¬ν(α1, k1) and ¬ν(α1, k1) ((α1, k1) and (α1, k1) are both inconsistent)

(2) ν(α1, k1) and ν(α1, k1) ((α1, k1) and (α1, k1) are both consistent) and there exists a
bijection µ : ({α1} ∪ id(k1)) → ({α2} ∪ id(k2)) such that:

(i) µ(α1) = α2

(ii) µ(α′) ≤ µ(α′′) ⇔ α′ ≤ α′′, ∀α′, α′′ ∈ id({α1} ∪ id(k1))

(iii) k2(µ(α
′)) = k1(α

′), ∀α′ ∈ id(k1)

Obviously, an inconsistent resumption cannot be isomorphic with a consistent resumption,
and ∀(α, k) ∈ CRes : (α, k) ∼= (α, k). It is easy to prove the following Lemma.

Lemma 5.4 ∀k ∈ KRes, α ∈ A, x ∈ X: [[[[k | α 7→ x]]]] = [[[[k ]]] | α 7→ [[x]]]

Proposition 5.5 states that any two denotable continuations that correspond to isomor-
phic resumptions behave the same. The proof technique for such properties was introduced
in [12][11]. The basic idea is to identify a computation invariant (as a relation between
continuation structures) that is preserved by each computation step. In the case of Proposi-
tion 5.5 the relevant property that is preserved by the computation steps is the isomorphism
of resumptions that correspond to denotable continuations. Next, the desired property fol-
lows by using an argument ’ε ≤ 1

2
· ε ⇒ ε = 0’. which is standard in metric semantics. The

proof of Proposition 5.5 is similar to the proof of Corollary 5.6 given in [11].

Propozition 5.5 For all x ∈ X, (α1, k1), (α2, k2) (∈ CRes) with (α1, k1) ∼= (α2, k2):
[[x]](α1, [[[k1 ]]]) = [[x]](α2, [[[k2 ]]]).

In [12][11] we showed that continuations can be used to reason in a compositional manner
upon the behavior of concurrent programs, based on a notion of syntactic context for the
class of L statements.

Definition 5.6 (Syntactic contexts for L)

S ::= (·) | a | y | S;S | S + S | S‖S | S⌊⌊S

We denote by S(x) the result of substituting x for all occurrences of (·) in S. Formally, this
substitution can be defined inductively:
(·)(x) = x, a(x) = a, y(x) = y, (S op S ′)(x) = S(x) op S ′(x), where op ∈ {; ,+, ‖, ⌊⌊}.

Theorem 5.7 states the main properties of the semantic operators in the continuation
semantics of L. Some properties hold for all continuations and can be proved by simple
manipulations of the semantic equations. Other properties only hold for denotable continua-
tions and require more complex proofs based on the identification of computation invariants
(as relations between continuation structures) in combination with the ’ε ≤ 1

2
· ε ⇒ ε = 0’

argument. The evaluation with respect to denotable and consistent continuations represents
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an invariant of the denotational semantics. The proof of Theorem 5.7 is ommited because it
is similar to the proof of Theorem 5.12 given in [11].

We write x ≃ x (x, x ∈ X) to express that [[S(x)]](α, [[[k ]]]) = [[S(x)]](α, [[[k ]]]) for all L syn-
tactic contexts S and for all denotable continuations corresponding to isomorphic resump-
tions (α, k) ∼= (α, k) (∈ CRes). As it is well-known, the properties stated by Theorem 5.7
provide a finite axiomatization for the parallel composition operator ‖; see, e.g., [4].

Theorem 5.7 For all x, x1, x2, x3 ∈ X :

(a) x1 + x2 ≃ x2 + x1 (commutativity of +)
(b) (x1 + x2) + x3 ≃ x1 + (x2 + x3) (associativity of +)
(c) x+ x ≃ x (idempotency of +)
(d) (x1 + x2); x3 ≃ x1; x3 + x2; x3 (right distributivity of ; over +)
(e) x1; (x2; x3) ≃ (x1; x2); x3 (associativity of ; )
(f) x+ δ ≃ x
(g) δx ≃ δ
(h) x1 ‖ x2 ≃ x1⌊⌊x2 + x2⌊⌊x1

(i) a⌊⌊x ≃ a; x
(j) (a; x1)⌊⌊x2 ≃ a; (x1 ‖ x2)
(k) (x1 + x2)⌊⌊x3 ≃ x1⌊⌊x3 + x2⌊⌊x3 (right distributivity of ⌊⌊ over +)
(l) x1 ‖ x2 ≃ x2 ‖ x1 (commutativity of ‖)
(m) x1‖(x2 ‖ x3) ≃ (x1‖x2) ‖ x3 (associativity of ‖)

Remarks 5.8

(a) There is no language construct x ∈ X such that φǫ = [[x]], where φǫ = λ(α, κ).λσ . {ǫ}.
Indeed, φǫ ∈ D is nonexpansive in (α, κ), but d([[x]], φǫ) = 1, hence [[x]] 6= φǫ), ∀x ∈ X.
ǫ /∈ [[x]](α, κ)(σ), ∀x ∈ X, (α, κ) ∈ Cont, σ ∈ Σ, as can be verified easily by induction
on cx(x). If ǫ /∈ p then d(p, {ǫ}) = 1, ∀p ∈ P (because if q 6= ǫ then d(q, ǫ) = 1, ∀q ∈ Q).
Therefore, d([[x]], φǫ) = sup(α,κ)∈Cont,σ∈Σ d([[x]](α, κ)(σ), {ǫ}) = 1.

(b) Not all continuations are denotable. Let γǫ = (1, [κ0 | ǫ 7→ φǫ]), γǫ ∈ Cont. The open
continuation γǫ is not denotable because it contains the computation φǫ = λ(α, κ).λσ . {ǫ}
which is not denotable by any language construct. In fact, d(γ, γǫ) = 1

2
, for any

γ ∈ ContD = {(α, [[[k ]]]) | (α, k) ∈ CRes}.

For further explanations and examples of calculations based on the denotational seman-
tics [[·]] the reader may consult [12][11]. When evaluation is restricted to the class of consis-
tent continuations the denotational semantics provided in this paper and the denotational
semantics given in [12][11] behave the same.
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5.1 The domain of denotable continuations

In the sequel we continue our investigation based on the the class of closed denotable con-
tinuations (κ ∈)KontD = {[[[k ]]] | k ∈ KRes} and the class of open denotable continu-
ations ((α, κ) ∈)ContD = {(α, [[[k ]]]) | (α, k) ∈ CRes} (introduced after Definition 5.1) .
We do not know whether KontD and ContD are metric domains, i.e. a complete metric
spaces. However, in the CSC approach computations are nonexpansive continuous func-

tions, D ∼= Cont
1

→Σ → P. As an immediate implication, in CSC computations are also
continuous functions [3]. Based on the continuity of the computations in the sequel we study
semantic properties in a metric completion of the ContD which is a subspace of Cont.

Obviously, (α, [[[k ]]]) ∈ Cont, for any (α, k) ∈ CRes. According to Remark 2.11, we can
construct the metric completion of ContD with respect to Cont. Let ((α, κ) ∈)ContD =
co(ContD|Cont). We explained in (the proof of) Remark 2.11 that ContD ⊳ ContD and
ContD ⊳Cont. We call ContD the domain of (open) denotable continuations.

Definition 5.9 We say that two open denotable continuations (α, κ), (α, κ) ∈ ContD are
isomorphic, and we write (α, κ) ∼= (α, κ), iff there exist sequences (αi, ki)i, (αi, ki)i, (with
(αi, ki), (αi, ki) ∈ CRes, ∀i ∈ N) such that: (α, κ) = limi(αi, [[[ki ]]]), (α, κ) = limi(αi, [[[ki ]]]),
and (αi, ki) ∼= (α, ki), ∀i ∈ N.6

By Remark 4.2, if (α, κ) = limi(αi, [[[ki ]]]) then there exists n ∈ N such that α = αi and
id(κ) = id([[[ki ]]]), for any i ≥ n.

We write x ∼ x (x, x ∈ X) to express that [[S(x)]](α, κ) = [[S(x)]](α, κ) for all L syn-
tactic contexts S and for all isomorphic open denotable continuations (α, κ) ∼= (α, κ), with
(α, κ), (α, κ) ∈ ContD.

Remark 5.10 x ≃ x ⇒ x ∼ x, for all x, x ∈ X.

Proof: Let (α, κ), (α, κ) ∈ ContD be two isomorphic open denotable continuations, (α, κ) ∼=
(α, κ), and let S be an L syntactic context. There exist sequences of open resumptions
(αi, ki)i, (αi, ki)i ((αi, ki), (αi, ki) ∈ CRes, ∀i ∈ N) such that: (α, κ) = limi(αi, [[[ki ]]]), (α, κ) =
limi(αi, [[[ki ]]]) and (αi, ki) ∼= (αi, ki), ∀i ∈ N. As x ≃ x, [[S(x)]](αi, [[[ki ]]]) = [[S(x)]](αi, [[[ki ]]]),
for all i ∈ N. Therefore, ∀ε > 0∃n ∈ N∀i ≥ n:

d([[S(x)]](α, κ), [[S(x)]](α, κ)) [strong triangle inequality applied twice]

≤ max{d([[S(x)]](α, κ), [[S(x)]](αi, [[[ki ]]])),

d([[S(x)]](αi, [[[ki ]]]), [[S(x)]](αi, [[[ki ]]])),

d([[S(x)]](αi, [[[ki ]]]), [[S(x)]](α, κ))}

[[[S(x)]], [[S(x)]] are nonexpansive mappings]

6The isomorphism relation between open resumptions is defined in Definition 5.3.
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≤ max{d((α, κ), (αi, [[[ki ]]])), d((α, κ), (αi, [[[ki ]]]))} ≤ ε

Hence, d([[S(x)]](α, κ), [[S(x)]](α, [[[k ]]])) = 0, i.e. [[S(x)]](α, κ) = [[S(x)]](α, [[[k ]]]). In this proof
the L syntactic context S and the pair of isomorphic denotable continuations (α, κ) ∼= (α, κ)
are arbitrarily selected. Therefore, x ∼ x. �

As a consequence of Remark 5.10, all concurrency laws stated in Theorem 5.7 for the
class of denotable continuations also hold in the whole domain of denotable continuations
ContD.

Remarks 5.11

(a) Let (α, κ), (α, κ) ∈ ContD be open denotable continuations. It is easy to check that I
⇔ II.

I. (α, κ) ∼= (α, κ) ((α, κ) and (α, κ) are isomorphic)

II. Either of the following two conditions ((1) or (2)) is satisfied:

(1) ¬ν(α, κ) and ¬ν(α, κ), or

(2) ν(α, κ) and ν(α, κ) and there exists a bijection µ : ({α} ∪ id(κ)) → ({α} ∪ id(κ))
such that:

(i) µ(α) = α

(ii) µ(α′) ≤ µ(α′′) ⇔ α′ ≤ α′′, ∀α′, α′′ ∈ id({α} ∪ id(κ))

(iii) κ(µ(α′)) = κ(α′), ∀α′ ∈ id(κ)

(c) Let γǫ(∈ Cont), γǫ = (1, [κ0 | ǫ 7→ φǫ]), where φǫ = λ(α, κ).λσ.{ǫ}. According to
Remark 5.8(b), d(γ, γǫ) = 1

2
, for any open denotable continuation γ ∈ ContD. As

the distance between γǫ and any denotable continuation γ ∈ ContD is ≥ 1
2
, we cannot

find a Cauchy sequence (γi)i, with γi ∈ ContD, ∀i ∈ N, such that limi γi = γǫ. The
implication is that γǫ ∈ Cont but γǫ /∈ ContD, which means that (ContD ⊳Cont but)
ContD 6= Cont.
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6 Weak abstractness for CSC

In the CSC approach the correctness of a denotational semantics with respect to a corre-
sponding operational semantics is easy to establish [27] but we do not know whether a fully
abstract domain of CSC exists. In fact, we are not aware of any fully abstract domain
for a concurrent language designed semantically with continuations, although the technique
of continuations is used in various papers that present denotational models for concurrent
languages [3], [2], [24], [10].

In continuation semantics the completeness condition of full abstractness can be expressed
as follows: if there exists a continuation for which the denotations of two statements are dif-
ferent then there exists a syntactic context in which the operational behaviors of the two
statements are also different. Let D : L → D be a denotational semantics for a language
(x ∈)L, where D = Cont → F is a domain of denotations given as functions from a domain
(γ ∈)Cont of continuations to a domain F of final program answers. The syntactic con-
texts of L are ranged over by the variable symbol S. The completeness condition of full
abstractness can be expressed formally by using the notation employed in subsection 2.2 as
follows:

∀x1, x2 ∈ L[ (∃γ ∈ Cont[D(x1)γ 6= D(x2)γ]) ⇒ (∃S[O(S(x1)) 6= O(S(x2))]) ]

We cannot prove this general completeness condition for CSC. But there is a weaker condition
- that we call weak completeness - which can be established for CSC. This condition is similar
to the completeness condition of full abstractness, but it is weaker in the sense that it has
to be established mereley for the class of denotable continuations.

In Definition 6.1 we introduce a class of complete metric spaces which is large enough to
express arbitrary continuation domains for CSC. Based on this class of metric domains, in
Definition 6.2 we generalize the notion of a denotable continuation. The weak abstractness
condition is introduced as a general criterion in the context of CSC in Definition 6.3.

Definition 6.1 In the CSC approach a metric domain of denotations is defined as the so-

lution (which must be unique, up to isometry) of an equation D ∼= Γ
1

→F, where:

• Γ is a (typical) element of the class CONT of domains for CSC, given by:

Γ ::= 1
2
· D | M → Γ | M× Γ | M+ Γ | Γ× Γ | Γ + Γ

M is an arbitrary set (m ∈)M endowed with the discrete metric. The constructions
1
2
· (·),

1

→,→,× and + are given in Definition 2.7 (M is endowed with the discrete
metric, hence any function in M → Γ is nonexpansive). Notice that 1

2
· D occurs at

least once in any Γ ∈ CONT .

• F is a metric domain designed such that the equation D ∼= Γ
1

→F has a unique solution
(up to isometry) according to the general theory presented in [1]. If the domain F
does not depend on D the existence and the uniqueness of the solution of the equation

D ∼= Γ
1

→F is guaranteed [1].
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In CSC continuations are multisets of computations (intuitively, computations are processes
that can be executed in parallel) rather than plain sets of computations. Multisets can be
represented as functions of the type M → Γ, where M is used as an index domain, whose
elements are needed to distinguish between multiple occurences of computations. Hence,
powerdomain constructions (e.g. the compact powerdomain construction Pco(Γ)) are lacking
from the list of constructions for continuations given in Definition 6.1.

We define a general notion of denotable continuation in the context of the class of metric
domains for CSC introduced in Definition 6.1.

Definition 6.2 (Denotable continuations)

(a) Let (x ∈)X be a fixed set. We define a class RES(X) of sets of resumptions for X,
with typical element R, as follows:

R ::= X | M → R | M ×R | M +R | R× R | R +R

(m ∈)M is an arbitrary set. M → R is the set of functions from M to R. M × R
and M + R are the cartesian product and disjoint union of M and C, respectively.
Similarly, R1 × R2 is the cartesian product of R1 and R2, and R1 + R2 is the disjoint
union of R1 and R2.

7

(b) For any language (x ∈)L and CSC domain Γ we can construct a corresponding set
of resumptions. The correspondence we give by a homomorphism resL(·) : CONT →
RES(L) defined inductively on the structure of Γ.

resL(
1

2
· D) = L

resL(M → Γ) = M → resL(Γ)

resL(M× Γ) = M × resL(Γ)

resL(M+ Γ) = M + resL(Γ)

resL(Γ1 × Γ2) = resL(Γ1)× resL(Γ2)

resL(Γ1 + Γ2) = resL(Γ1) + resL(Γ2)

resL(·) maps a complete metric space to a plain set. M is a metric space, given by an
arbitrary set (m ∈)M endowed with the discrete metric.

(c) Let (x ∈)L be a language and let D : L → D be a denotational semantics of L designed

with CSC, where D ∼= Γ
1

→F is as in Definition 6.1. (γ ∈)ΓD = {[[[c]]]L
Γ
| c ∈ resL(Γ)}

7R1 +R2 = ({1}×R1)∪ ({2}×R2), as in Definition 2.7 (and similarly for M +R), although here R1, R2 and
R1 +R2 (M +R) are plain sets, rather than metric spaces.
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is the class of denotable continuations for D, where for any Γ ∈ CONT , [[[·]]]L
Γ

:
resL(Γ) → Γ is given by

[[[x]]]L1
2
·D

= D(x)

[[[λm . c]]]L
M→Γ

= λm . [[[c]]]L
Γ

[[[(m, c)]]]L
M×Γ

= (m, [[[c]]]L
Γ
)

[[[(i, c)]]]L
M+Γ2

=

{

(1, m) if i = 1
(2, [[[c]]]L

Γ2
) if i = 2

[[[(c1, c2)]]]
L
Γ1×Γ2

= ([[[c1 ]]]
L
Γ1
, [[[c2 ]]]

L
Γ2
)

[[[(i, c)]]]L
Γ1+Γ2

=

{

(1, [[[c]]]L
Γ1
) if i = 1

(2, [[[c]]]L
Γ2
) if i = 2

Clearly, any element of ΓD is also an element of Γ. We have ΓD ⊳ Γ.

(d) Let (γ ∈)ΓD = co(ΓD|Γ) be the metric completion of ΓD with respect to Γ constructed
as in Remark 2.11. We call ΓD the (metric) domain of denotable continuations for D.

In Definition 6.3 we introduce the weak abstractness criterion in the context of CSC.
Lemma 6.4 states that the weak completeness property (introduced in Definition 6.3(b))
holds for all denotable continuations in ΓD whenever it holds for all denotable continuations
in ΓD. But in general (and also in the particular case of the asynchronous language L that
we study in this paper), we do not know whether the space ΓD is complete or not (where it
is, ΓD = ΓD). Recall that ΓD ⊳ΓD and ΓD ⊳Γ (see Remark 2.11). Also, in general, ΓD 6= Γ
(see Remark 5.11(b)).

Definition 6.3 (Weak abstractness for CSC) Let (x ∈)L be a language and let D : L → D be

a denotational semantics of L designed with CSC, where D ∼= Γ
1

→F is as in Definition 6.1.
Let also O : L → O be an operational semantics of L and S a typical element of the class of
syntactic contexts for L.

(a) D is correct with respect to O iff

∀x1, x2 ∈ L[D(x1) = D(x2) ⇒ ∀S[O(S(x1)) = O(S(x2))]]

(b) Let (γ ∈)ΓD be the domain of denotable continuations for D, as defined in 6.2(d). We
say that D is weakly complete with respect to O iff

∀x1, x2 ∈ L[(∃γ ∈ ΓD[D(x1)γ 6= D(x2)γ]) ⇒ (∃S[O(S(x1)) 6= O(S(x2))])]

(c) We say that D is weakly abstract with respect to O iff D is correct and weakly complete
with respect to O.
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In words, the weak completeness condition for CSC can be expressed as follows. If there
exists a denotable continuation for which the denotations of two statements are different
then there exists a syntactic context in which the operational behavior of the two statements
is also different. Denotable continuations are the denotational counterpart of the syntactic
contexts.

Lemma 6.4 Let (x ∈)L be a language and let D : L → D be a denotational semantics of L

designed with CSC, where D ∼= Γ
1

→F is as in Definition 6.1. Let also O : L → O be an
operational semantics of L and S a typical element of the class of syntactic contexts for L.
The denotational model D is weakly complete with respect to O iff

∀x1, x2 ∈ L[(∃γ ∈ ΓD[D(x1)γ 6= D(x2)γ]) ⇒ (∃S[O(S(x1)) 6= O(S(x2))])]

where ΓD is the class of denotable continuations for D, as defined in 6.2(c).

Proof: Let (γ ∈)ΓD be the domain of denotable continuations for D (defined in 6.2(d)).
And assume D(x1)γ 6= D(x2)γ, where γ ∈ ΓD, i.e. γ = limi γi, with γi ∈ ΓD, ∀i ∈ N. The
proof given below works for arbitrary metric domains, not just for ultrametric spaces (we
use the triangle inequality, rather than the strong tringle inequality). For any i ∈ N:

d(D(x1)γ,D(x2)γ) [triangle inequality applied twice]

≤ d(D(x1)γ,D(x1)γi) + d(D(x1)γi,D(x2)γi) + d(D(x2)γi,D(x2)γ)

[D(x1),D(x2) ∈ Γ
1

→F]

≤ 2 · d(γ, γi) + d(D(x1)γi,D(x2)γi)

As γ = limi γi, ∀ε > 0∃n ∈ N∀i > n : d(γ, γi) ≤ ε. Let ε = 1
4
· d(D(x1)γ,D(x2)γ).

d(D(x1)γ,D(x2)γ) > 0 (and thus ε > 0) because D(x1)γ 6= D(x2)γ. Hence

0 < 1
2
· d(D(x1)γ,D(x2)γ) = d(D(x1)γ,D(x2)γ)− 2 · ε

≤ d(D(x1)γ,D(x2)γ)− 2 · d(γ, γi) ≤ d(D(x1)γi,D(x2)γi)

Therefore, ∃i ∈ N : D(x1)γi 6= D(x2)γi. As γi ∈ ΓD, ∀i ∈ N, we conclude that
∃S[O(S(x1)) 6= O(S(x2))]. �

7 Weak abstractness for the asynchronous language L

In subsection 7.1 we present an operational semantics O[[·]] for L and we prove that the
denotational model [[·]] is correct with respect to O[[·]]. The correctness proof is essentially
taken from [27]. The distinction between the denotational semantics of L given in [27] and
the denotational semantics [[·]] given in this paper is given only by their behavior for the
class of nonconsistent continuations. Notice that the operational semantics is only defined
for consistent resumptions. In this paper we show that [[·]] is also weakly complete and thus
weakly abstract in the sense defined in section 6.
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7.1 Operational semantics. Correctness of denotational seman-
tics.

In Definition 7.2 we present the transition system for L (defined in the style of structured
operational semantics [23]) on which it is based the operational semantics given in Defini-
tion 7.4. The configurations of the transition system are introduced in Definition 7.1.

Definition 7.1

(a) We define the class ((α, k) ∈)CRes′ of consistent open resumptions: CRes′ = {(α, k) |
α ∈ A, k ∈ KRes, ν(α, k)}. Obviously, CRes′ ⊆ CRes (see subsection 4.1 and Defini-
tion 5.1).

(b) We also define the class (t ∈)Conf of configurations of the transition relation for L:
Conf = (X × CRes′ × Σ) ∪ (KRes× Σ).

In Definition 7.2 we use the following convention:

t1 ր t2 is an abreviation for
t2 → t′

t1 → t′

Definition 7.2 (Transition system for L) The transition relation for L is the smallest subset
of Conf × (KRes× Σ) satisfying the axioms and rules below:

(A1) (a, (α, k), σ) → (k, σ′) if I(a)(σ) = σ′

(R2) (y, (α, k), σ) ր (D(y), (α, k), σ)

(R3) (x1 + x2, (α, k), σ) ր (x1, (α, k), σ)

(R4) (x1 + x2, (α, k), σ) ր (x2, (α, k), σ)

(R5) (x1; x2, (α, k), σ) ր (x1, (α · 1, [k | α 7→ x2]), σ)

(R6) (x1 ‖ x2, (α, k), σ) ր (x1, (α · 1, [k | α · 2 7→ x2]), σ)

(R7) (x1 ‖ x2, (α, k), σ) ր (x2, (α · 1, [k | α · 2 7→ x1]), σ)

(R8) (k, σ) ր (k(α), (α, k \ {α}), σ) ∀α ∈ max(id(k))

The above transition system was introduced in section 4 of [27] (although in [27] the notation
is slightly different). According to axiom (A1) an elementary action a can only be executed
in a state σ where I(a)(σ) 6=↑. Following the CSC approach, resumptions are trees of
statements with active elements at the leaves (the maximal elements with respect to the
partial order ≤ defined on A).
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Definition 7.3

(a) Let t ∈ Conf . We use the notation t−→/ to express the fact that t has no transitions,
i.e. there is no t′ such that t → t′.

(b) If t = (k, σ) ∈ KRes× Σ and id(k) = ∅ we say that t terminates.

(c) If t−→/ and t does not terminate we say that t blocks.

Let t ∈ Conf . It is always decidable whether t−→/ . Also, if t ր t′ then t′ ∈ Conf
and if t → t′ then t′ ∈ KRes× Σ. We ommit the proofs of these simple properties because
similar properties are established in [27].

Definition 7.4 (Operational semantics O[[·]])

(a) Let (S ∈)SemO = Conf → P. We define Ψ : (Conf → P) → (Conf → P)

Ψ(S)(t) =







{ǫ} if t terminates
{δ} if t blocks
⋃

{σ · S(k, σ) | t → (k, σ)} otherwise

(b) Let α0 = ǫ and k0 = (∅, λα . δ)(∈ KRes). Obviously, (α0, k0) ∈ CRes′ and
(x, (α0, k0), σ) ∈ Conf . We put O = fix(Ψ). We define O[[·]] : X → Σ → P

O[[x]](σ) = O(x, (α0, k0), σ)

The transition system given in Definition 7.2 is finitely branching8 and thus the operational
semantics is compact.

We show that D[[x]] = O[[x]], for any x ∈ X . For this purpose we introduce an auxiliary
mapping R : Conf → P, and we make fruitfull use of Banach’s fixed point Theorem 2.6.

Definition 7.5 Let R : Conf → P be given as follows. R(k, σ) = kc[[[k ]]](σ), for any
(k, σ) ∈ KRes× Σ. Also, R(x, (α, k), σ) = [[x]](α, [[[k ]]])(σ), for any
(x, (α, k), σ) ∈ X × CRes′ × Σ.

Lemma 7.6 Let t ∈ Conf .

(a) If t terminates then R(t) = {ǫ}.

(b) If t blocks then R(t) = {δ}.

(c) If t does not block then δ /∈ R(t).

8For any t ∈ Conf the set {(k, σ) | t → (k, σ)} is finite. One can check this in two steps. First, by induction
on cx(x), for any t = (x, (α, k), σ) ∈ X ×CRes′ ×Σ. Next, for any t = (k, σ) ∈ KRes×Σ, by using the fact
that max(id(k)) is a finite set.
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Lemma 7.7 R = fix(Ψ).

Proof: We prove that R(t) = Ψ(R)(t), ∀t ∈ Conf . If t terminates or t blocks then the
result follows by Definition 7.4 and Lemma 7.6. If t has indeed transitions, by Lemma 7.6(c)
δ /∈ R(t). We treat the case t = (x, (α, k), σ) ∈ X ×CRes′ ×Σ and we proceed by induction
on cx(x). We only consider one subcase x = x1 ‖ x2.

Let t = (x1 ‖ x2, (α, k), σ), t1 = (x1, (α · 1, [k | α · 2 7→ x2]), σ), t2 = (x2, (α · 1, [k | α · 2 7→
x1]), σ). It is easy to check that R(t) = R(t1) +R(t2). t does not block if at least one of t1
and t2 does not block. We only consider the case when both t1 and t2 have transitions, hence
t → (k, σ) ⇔ (t1 → (k, σ) ∨ t2 → (k, σ)). By Lemma 7.6(c) δ /∈ R(t1) and δ /∈ R(t2). We
have:

Ψ(R)(t) [Def. Ψ]

=
⋃

{σ · R(k, σ) | t1 → (k, σ)} ∪
⋃

{σ · R(k, σ) | t2 → (k, σ)}

= Ψ(R)(t1) ∪Ψ(R)(t2) [Induction hypothesis]

= R(t1) ∪R(t2) [Def. ’+’, δ /∈ R(t1), δ /∈ R(t2)]

= R(t1) +R(t2)

= R(t)

�

Theorem 7.8 D[[x]] = O[[x]], for any x ∈ X.

Proof: Let x ∈ X, σ ∈ Σ. It is enough to show that D[[x]](σ) = O[[x]](σ).

D[[x]](σ) = [[x]](α0, κ0)(σ)

= [[x]](α0, [[[k0 ]]])(σ)

= R(x, (α0, k0), σ) [Definition 7.4, Lemma 7.7, Theorem 2.6]

= O(x, (α0, k0), σ)

= O[[x]](σ)

�

The function [[·]] is defined according to the compositional principle which is character-
istic of denotational semantics, but the auxiliary function D[[x]] = [[x]](α0, κ0) introduced
in Definition 4.4(c) is not a compositional mapping (D[[·]] is not a denotational semantics).
The relation D[[·]] = O[[·]] established in Theorem 7.8 is not a full abstractness result. How-
ever, we can establish the correctness of [[·]] with respect to O[[·]]. If [[x1 ]] = [[x2 ]] then,
by the compositionality of [[·]], [[S(x1)]] = [[S(x2)]], for any L syntactic context S. Hence,
O[[S(x1)]] = D[[S(x1)]] = D[[S(x2)]] = O[[S(x2)]] for any L syntactic context S. We conclude
that [[·]] is correct with respect to O[[·]].
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7.2 Weak abstractness

If we expand the notation {| · |} in the definition of the domain of continuations (introduced
at the begining of subsection 4.2) for L we get:

((α, κ) ∈)Cont = A× (Pfin(A)× (A →
1

2
· D))

The sets A and Pfin(A) are endowed with discrete metrics. The definition is an instance of
the general CSC framework presented in Section 6.

The corresponding set of open resumptions is:

((α, k) ∈)CRes = A× (Pfin(A)× (A → X))

Cont is an element of the class CONT . CRes = resX(Cont) is an element of the class
RES(X). It is easy to check that

[[[(α, k)]]]X
Cont

= (α, [[[k ]]])

where the mapping [[[·]]]X
Cont

is given in Definition 6.2 and the mapping [[[·]]] is given in
Definition 5.1. The class of open denotable continuations for [[·]] is given by ContD =
{[[[(α, k)]]]X

Cont
| (α, k) ∈ resX(Cont)} = {(α, [[[k ]]]) | (α, k) ∈ CRes}. Also, the domain of

denotable continuations is ContD = co(ContD|Cont); see Remark 2.11. The denotational
semantics [[·]] of L defined in Section 4 is an instance of the general CSC framework presented
in Section 6, hence Lemma 6.4 does hold for [[·]].

The weak abstractness proof for [[·]] concludes with Corollary 7.11. We use Lemma 7.9
to establish the completeness condition for [[·]] .

Lemma 7.9 For any x ∈ X, (α, k) ∈ CRes there exists an L syntactic context S such that:
[[x]](α, [[[k ]]]) = D[[S(x)]] (= [[S(x)]](α0, κ0), see Definition 4.4).

Proof: By Definition 4.4, D[[S(x)]] = [[S(x)]](α0, κ0) = [[S(x)]](α0, [[[k0 ]]]), where κ0 =
(∅, λα . [[δ]]) ∈ Kont, k0 = (∅, λα . δ) ∈ KRes. If ¬ν(α, [[[k ]]]) we can take S(·) = δ(·),
and the result is immediate, because D[[δ(x)]](σ) = D[[δ]](σ) = {δ}. If ν(α, [[[k ]]]) the proof of
Lemma 7.9 can proceed by induction on |id(k)|. In case |id(k)| = 0 we have (α, k) ∼= (α0, k0).
Therefore, by Corollary 5.5, [[x]](α, [[[k ]]]) = [[x]](α0, [[[k0 ]]]) = D[[x]] = D[[S(x)]], with S = (·).

In case |id(k)| > 0, by Lemma .4(a) ∃α′, α′′ ∈ {α}∪id(k) such that either seq(α′, α′′, {α}∪
id(k)) or par(α′, α′′, {α}∪id(k)) (see Definition .3 given in the appendix). 9 We only consider
the case when par(α′, α′′, {α}∪id(k)). By Lemma .4(c) there are three subcases. We treat the
subcase when α′ 6= α, α′′ 6= α and (α, k) ∼= (α, [k \ {α′, α′′} | α′ · 1 7→ k(α′) | α′ · 2 7→ k(α′′)]).
In this subcase α, α′ and α′′ are incomparable (because α′ 6= α, α′′ 6= α, α′ 6= α′′ and
α, α′, α′′ ∈ max({α} ∪ id(k))).

9There are open resumptions (α, k) for which we can have both seq(α′, α′′, {α}∪ id(k)) and par(α′, α′′, {α}∪
id(k)). For such resumptions there may be several different L syntactic contexts S1, S2, · · · satisfying
[[x]](α, [[[k]]]) = D[[Si(x)]] = D[[Sj(x)]] (when Si 6= Sj). The syntactic differences between Si and Sj corre-
spond to applications of concurrency laws such as the associativity of parallel composition.
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[[x]](α, [[[k ]]]) [Corollary 5.5]

= [[x]](α, [[[[k \ {α′, α′′} | α′ · 1 7→ k(α′) | α′ · 2 7→ k(α′′)]]]]) [Lemma 5.4]

= [[x]](α, [[[[k \ {α′, α′′}]]] | α′ · 1 7→ [[k(α′)]] | α′ · 2 7→ [[k(α′′)]]])

[Lemma .2 ν(α′, k \ {α′, α′′}), ¬(α ≥ α′), ¬(α′ ≥ α)]

= [[x]](α, [[[[k \ {α′, α′′}]]] | α′ 7→ [[k(α′) ‖ k(α′′)]]]) [Lemma 5.4]

= [[x]](α, [[[[k \ {α′, α′′} | α′ 7→ (k(α′) ‖ k(α′′))]]]])

As |id(k)| > |id([k \ {α′, α′′} | α′ 7→ (k(α′) ‖ k(α′′))])|, by the induction hypothesis there
exists an L syntactic context S such that:

[[x]](α, [[[[k \ {α′, α′′} | α′ 7→ (k(α′) ‖ k(α′′))]]]])

= [[S(x)]](α0, [[[k0 ]]]) = D[[S(x)]]

�

Remarks 7.10 Considering the way we constructed the L syntactic context S in the proof
of Lemma 7.9 we notice the following.

(a) S contains exactly one occurrence of the (’hole’) symbol (·).

(b) The construction of the syntactic context S does not depend on x(∈ X); it only depends
on the resumption (α, k)(∈ CRes). Hence, the proof of Lemma 7.9 shows that, for any
x, x′ ∈ X, x 6= x′, and for any resumption (α, k) we can always construct an L syntactic
context S such that we have both [[x]](α, [[[k ]]]) = D[[S(x)]] and [[x′ ]](α, [[[k ]]]) = D[[S(x′)]]
(the same S in the both equations).

Corollary 7.11 The denotational semantics [[·]] of L is weakly abstract with respect to the
operational semantics O[[·]].

Proof: In subsection 7.1 we showed that [[·]] is correct with respect to O[[·]]. It remains to
prove that [[·]] is also weakly complete with respect to O[[·]]. By Lemma 6.4, it suffices to
show that

∀x1, x2 ∈ X [(∃(α, κ) ∈ ContD[[[x1 ]](α, κ) 6= [[x2 ]](α, κ)]) ⇒

(∃S[O[[S(x1)]] 6= O[[S(x2)]]])]

where ContD = {(α, [[[k ]]]) | (α, k) ∈ CRes} is the class of denotable continuations for [[·]].
Suppose x1, x2 ∈ X , (α, k) ∈ CRes are such that [[x1 ]](α, [[[k ]]]) 6= [[x2 ]](α, [[[k ]]]). By Lemma 7.9
and Remark 7.10(b) there exists an L syntactic context S such thatD[[S(x1)]] = [[x1 ]](α, [[[k ]]]) 6=
[[x2 ]](α, [[[k ]]]) = D[[S(x2)]]. From [27] we know thatD[[x]] = O[[x]], ∀x ∈ X . Hence, O[[S(x1)]] =
D[[S(x1)]] 6= D[[S(x2)]] = O[[S(x2)]], i.e. there exists an L syntactic context S such that
O[[S(x1)]] 6= O[[S(x2)]]. The conclusion is that [[·]] is (weakly complete and thus) weakly
abstract with respect to O[[·]]. �
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8 Concluding remarks and future research

We investigate semantic properties in denotational models designed with metric spaces and
continuation semantics for concurrency (CSC) [27]. For illustration purposes we considered a
simple concurrent language embodying the paradigm of asynchronous communication intro-
duced in [8]. For the language under consideration we established various semantic properties
in a class of denotable continuations and a corresponding domain of denotable continuations
(obtained by metric completion from the class of denotable continuations).

We introduced an abstraction criterion - that we call weak abstractness - which relaxes
the completion condition of the classic full abstractness criterion introduced by Robin Milner
[16] [17]. We proved that the denotational model presented in this paper is weakly abstract
with respect to a corresponding operational model (initially introduced in [27]). The weak
abstractness condition was established for CSC. We do not know whether a fully abstract
domain of CSC exists. The full abstracness problem seems to be particularly difficult in
continuation semantics. We are not aware of any full abstractness result for a denotational
model designed with continuations for concurrent languages, although various papers employ
continuations in the denotational description of concurrent languages [3], [2], [24], [10].

We aim to obtain similar weak abstractness results for other concurrent languages de-
signed semantically with CSC, including the Basic Andorra Model [30], and and CSP-like
synchronous communication on multiple channels [28] in the style introduced in the Join
calculus [14]. It may also be useful to investigate similar (weak) abstractness criteria for
other domains of continuations, especially where full abstractness results are difficult (or
impossible) to achieve.
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Some technical Lemmas

The proofs of Lemmas .1 and .2 are left to the reader. They can be approached by the
identification of appropriate invariant properties in combination with uses of the ’ε ≤ 1

2
· ε ⇒

ε = 0’ argument.

Lemma .1 For all x0, x1, x2 ∈ X, σ ∈ Σ, α0, α ∈ Id, k ∈ KRes such that (α0, k) ∈
CRes, ν(α0, k), α /∈ id(k), α · 1 /∈ id(k) and (¬(α0 ≤ α · 1)) we have:

[[x0 ]](α0, [[[[k ]]] | α 7→ [[x1; x2 ]]])(σ) =

[[x0 ]](α0, [[[[k ]]] | α · 1 7→ [[x1 ]] | α 7→ [[x2 ]]])(σ)

Lemma .2 For all x0, x1, x2 ∈ X, σ ∈ Σ, α0, α ∈ Id, k ∈ KRes such that (α0, k), (α, k) ∈
CRes, ν(α0, k), ν(α, k), (α0 6= α),¬(α0 ≤ α) and ¬(α ≤ α0) we have:

[[x0 ]](α0, [[[[k ]]] | α 7→ [[x1 ‖ x2 ]]])(σ) =

[[x0 ]](α0, [[[[k ]]] | α · 1 7→ [[x1 ]] | α · 2 7→ [[x2 ]]])(σ)

In Definition .3 we introduce two predicates seq and par that express conditions for
sequential and parallel computations, respectively. Some properties of continuations and
resumptions expressed based on these predicates are stated in Lemma .4, whose proof is left
to the reader.

Definition .3 We define seq, par : (A× A× Pfin(A)) → Bool as follows

• seq(α′, α′′, π) = (α′, α′′ ∈ π) and (α′ < α′′) and

(∀α ∈ π : ((α′ < α) ⇒ (α′′ ≤ α)))

• par(α′, α′′, π) = (α′, α′′ ∈ max(π)) and (α′ 6= α′′) and

(∀α ∈ π : ((glb(α′, α′′) < α) ⇒

((¬(α < α′) and (¬(α < α′′))))))

Here glb(α′, α′′) is the greatest lower bound of α′, α′′ with respect to the partial order ≤ defined
on A (see Definition 4.1); also, we use the notation α′ < α′′ to express that α′ ≤ α′′ and
α 6= α′′.

Lemma .4

(a) If π ∈ Pfin(A), |π| > 1, then ∃α′, α′′ ∈ π such that: seq(α′, α′′, π) or par(α′, α′′, π).

(b) If (α, k) ∈ CRes, ν(α, k), |id(k)| ≥ 1 and seq(α′, α′′, α ∪ id(k)) then:

(i) either α′′ = α and (α, k) ∼= (α′ · 1, k)



Abstract Continuation Semantics for Asynchronous Concurrency 33

(ii) or α′′ 6= α and α′′ ≥ α′ · 1 and (α, k) ∼= (α, [k \ {α′′} | α′ · 1 7→ k(α′′)]),

(iii) or α′′ 6= α and α′′ ≥ α′ · 2 and (α, k) ∼= (α, [k \ {α′′} | α′ · 2 7→ k(α′′)]).10

(c) If (α, k) ∈ CRes, ν(α, k), |id(k)| ≥ 1 and par(α′, α′′, {α} ∪ id(k)) then:

(i) either α′ = α and (α, k) ∼= (α′ · 1, [k \ {α′′} | α′ · 2 7→ k(α′′)])

(ii) or α′′ = α and (α, k) ∼= (α′′ · 1, [k \ {α′} | α′′ · 2 7→ k(α′)])

(iii) or α′ 6= α and α′′ 6= α and

(α, k) ∼= (α, [k \ {α′, α′′} | α′ · 1 7→ k(α′) | α′ · 2 7→ k(α′′)])

10α′′ 6= α implies α′ 6= α, because ν(α, k) and α′ < α′′.


