
The files

 pollingsystem.prism and

 pollingsystem.props

contain the PRISM model generated for the LPEP example program given in section II.C of the paper

“An Approach to Performance Evaluation Programming”

Author: Eneia Nicolae Todoran (SYNASC 2017 submission 68)

Remark: The paper contains some typos:

 Page 7 bottom (paragraph starting with “We only present two simple…”, and the following):

o s1, s and a are the PRISM counterparts… → vs1, vs and va are the PRISM counterparts…

o S=? [s1=1 & !(s=1 & a=1)] → S=? [vs1=1 & !(vs=1 & va=1)]

o Fig III presents → Fig 1 presents

 Page 8 (par. 3):

o In the experiment given in III we … → In the experiment given in Figure 2 we …

Using the PRISM probabilistic model checker (www.prismmodelchecker.org) we have performed

various experiments, including the ones presented in the paper (section III), which we reproduce below.

The following experiment (presented below, and also in Figure 1, section III) shows the probability that in

the long run station 1 is awaiting service:

S=? [vs1=1 & !(vs=1 & va=1)]

In this experiment:

 N ranges from 1 to 20 with step 4

 sched ranges from 10 to 50 with step 20

Figure 1. Probability that in the long run station 1 is awaiting service

http://www.prismmodelchecker.org/

For the experiment given below (and also in Figure 2, section III) we defined a rewards structure:

rewards "served" // expected number of times Station1 is served

 [serve1] true : 1;

endrewards

We compute the expected reward (number of times station 1 is served) accumulated by time T as follows:

R{"served"}=?[C<=T]

In this experiment

 we fixed sched=10

 N ranges from 1 to 20 with step 4

 T ranges from 1 to 15 with step 3

Figure 2. Number of times station 1 is served

Remark: In the file pollingsystem.prism we did not generate PRISM code to monitor the variables

vIndex1 (module Station1) and vIndex2 (module Station2), which are used in receive statements

?vIndex1 (rendezvous on action serve1) and ?vIndex2 (rendezvous on action serve2), respectively. The

values for vIndex1 and vIndex2 are computed by the function findex in corresponding send activities. For

example, assuming that vVal1=1, wfile=cons[Z] 3 (nil[Z]) which is encoded as 4 (see section III), and

vmax=3, the send statement (!(((findex vVal1) 1) vmax) wfile) executed by the LPEP command

[serve1] (vs=1)&(va=1) -> !(((findex vVal1) 1) vmax) wfile : (va:=2)&(vVal1Cp:=vVal1);

yields 2, representing the index of (vVal1=1) in (cons[Z] 3 (cons[Z] 1 (nil[Z]))), which will be the value

of wfile after the corresponding call to finsert. The following code is generated in the PRISM file for this

command (the function ((((findex vVal1) 1) vmax) wfile) is evaluated in 23 basic or elementary steps):

[serve1] (vs=1)&(va=1)&(vVal1=1)&(wfile=4) -> 1/(23 + updsched) : (va'=2)&(vVal1Cp'=vVal1);

If we want to monitor the behavior of vIndex1 (and vIndex2) in the PRISM file in module Station1 we

could generate the following command (which has a passive rate)

[serve1] (vs1=1) & (vVal1=1) & (wfile=4) -> 1 : (vIndex1’=2) & (vs1'=0) & (vVal1'=vVal1+1);

This value (namely 2) is computed by ((((findex vVal1) 1) vmax) wfile), transmitted to module Station1

and assigned to vIndex1.

In this case we should generate a different receive command (which synchronizes with a corresponding

send command executed by module Server) for each different combination of values for vs1 and vVal1,

(and similarly for vIndex2, vs2 and vVal2, which are used in synchronizations upon the action serve2).

This option is explored in the (sub) folder furtherExperiments. We can study the behavior of the variables

vIndex1 and vIndex2 in the long run but we do not get interesting results, because after a while both

vIndex1 and vIndex2 will remain constant. For example, starting from an initial state where wfile=

cons[Z] 3 (nil[Z]) (recall that cons[Z] 3 (nil[Z]) is encoded as 4), wfile will evolve as follows:

wfile= cons[Z] 3 (nil[Z])

wfile= cons[Z] 3 (cons[Z] 1 (nil[Z]))

wfile= cons[Z] 3 (cons[Z] 1 (cons[Z] 2 (nil[Z])))

wfile= cons[Z] 3 (cons[Z] 1 (cons[Z] 2 (nil[Z])))

wfile= cons[Z] 3 (cons[Z] 1 (cons[Z] 2 (nil[Z])))

…

Correspondingly, vVal1 will take the following values: 1,2,3,4,4,4,…, and vIndex1 will take the

following values: 2,3,1,0,0,0…. We recall that if vVal1 is not found in the list wfile then the server

returns constantly 0 (see section II.C in the paper). Hence if we study the behavior of vIndex1 in the long

run we get:

S=? [vIndex1=0] = 1

S=? [vIndex1=1] = 0

S=? [vIndex1=2] = 0

S=? [vIndex1=3] = 0

We can get more interesting results if we replace the LPEP command

[serve1] (vs1=1) & (vVal1>=4) -> ?vIndex1' : (vs1:=0) & (vVal1:=vVal1);

with

[serve1] (vs1=1) & (vVal1>=4) -> ?vIndex1' : (vs1:=0) & (vVal1:=1);

In this case vVal1 evolves as follows: 1,2,3,4,1,2,3,4,1,2,3,4,…, and the behavior of vIndex1 in the long

run is more interesting. This option is explored in the (sub) folder furtherExperiments.

