This folder contains the PRISM model described in the paper

"Quantitative Programming and Continuous-Time Markov Chains"

Author: Eneia Nicolae Todoran (SYNASC 2023 submission 26)

• PRISM is a widely used probabilitic model checking tool

www.prismmodelchecker.org

- This file describes two experiments are based on
 - The PRISM model contained in file epollingsystem2-ctmc.prism
 - The PRISM properties contained in file epollingsystem2-ctmc.props
- In the experiments presented below vs1 is the PRISM counterpart of $\overline{\mathcal{L}}_{QP}$ variable v_{s1} (declared in module S1), and aserve1 is the PRISM counterpart of action label a_{serve1} , from the $\overline{\mathcal{L}}_{QP}$ example program presented in Section III (further explanations regarding the meaning of PRISM variable names employed below are provided in the paper).
 - The experiments presented below were performed using the following options (available from the PRISM GUI): "linear equations method" = Gauss-Seidel (Jacobi, the default method, does not converge for some experiments), and "Termination max. iterations" = 100000 (the default limit is 10000).
- Due to space limitations, the experiments presented below are not presented in the paper.

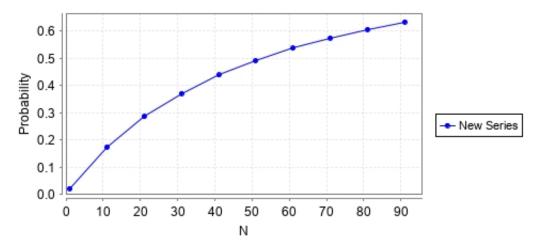


Figure 1: The probability that in the long run station S1 is idle

- In the PRISM experiments presented below we put $\nu = 25$.
- We use the following constants:

```
const int nmax = 25;
const int N;
const int T;
```

The execution rate of the statement $\langle w_1 := \text{delay}(20, \text{rand}(\nu)), z_{delay1} \rangle$ is calculated as the inverse of the duration expression z_{delay1} .¹ The duration expression z_{delay1} and the corresponding execution rate are fixed (they do not depend upon the current state). The $\overline{\lambda}_{QP}$ primitive $\text{delay}(20, \cdots)$ delays the execution of $\text{rand}(\nu)$ by exactly 20 time units (20 elementary evaluation steps) and the evaluation of primitive $\text{rand}(\nu)$ is also fixed, requiring 4 time units (in total 24 time units).² Hence, in the PRISM experiments presented in the paper the corresponding CTMC rate is defined as follows: formula zdelay1 = (1/24). In the PRISM model contained in file epollingsystem2-ctmc.prism it is considered a different rate zdelay1 that corresponds to the $\overline{\mathcal{L}}_{QP}$ statement $\langle w_1 := \text{delay}(20 * N, \text{rand}(\nu)), z_{delay1} \rangle$, namely:

formula zdelay1 = 1/((20*N)+4)

1. Using the PRISM property specification language, we can specify the probability that in the long run station S1 is idle as follows:

S=? [vs1=0]

Figure 1 presents a PRISM experiment for this property. In this experiment N ranges from 1 to 100 with step 10.

¹This statement is in the module S1 presented in Section III of the paper.

 $^{{}^{2}\}overline{\lambda}_{QP}$ is the functional sub-language of the language $\overline{\mathcal{L}}_{QP}$ presented in the paper.

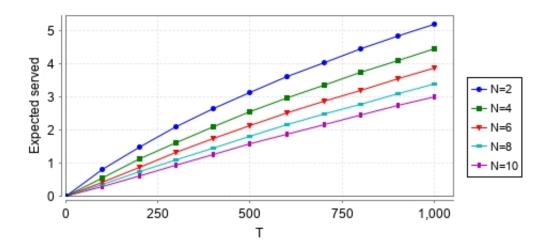


Figure 2: Expected number of times station S1 is served

2. For the next experiment we define a rewards structure "served"

```
rewards "served"
 [aserve1] true : 1;
endrewards
```

We can compute the expected reward (number of times station S1 is served) accumulated by time T as follows:

 $R{"served"}=? [C<=T]$

In the experiment presented in Figure 2, N ranges from 2 to 10 with step 2, and T ranges from 0 to 1000 with step 100.