LOCAL AREA COMPUTER NETWORKS
NETWORK PROGRAMMING USING SOCKETS

LABORATORY WORK NR. 7

NETWORK PROGRAMMING USING SOCKETS
1. Objectives

The objectives of this laboratory are: getting familiar with the client-server communication model, learning the most important library functions (the Unix and Internet sockets) used for the design of the client-server applications, designing simple client or server applications for stream or datagram communication.
2. Theoretical considerations
2.1 Sockets programming. Concepts.

There are different types of sockets. What makes the difference between them is the topology of the communication and the types of addresses used. There are three types of addresses: the first one is represented by the Internet addresses (the corresponding sockets are called Internet sockets), paths to the local nodes for communicating between processes from the same station (Unix sockets) or addresses of the X.25 type (X.25 sockets, least used).

Socket – it represents an end of the communication, defining a form of the Inter Process Communication, for processes found on the same station, or on different stations of the same network. A pair of connected sockets represents a communication interface between two processes, an interface similar to the pipe interface in Unix.

Association – it defines in a unique way the connection established between two ends of communication, as being a set of parameters like (local_protocol, local_address, local_ port, remote_address, remote_port). The source_port and destination_port notions allow a unique definition of the communication between pairs of sockets and make a unique identification of a SAP (Service access point) of the transport level.

Socket descriptor – it is a file descriptor; the argument used in the library functions.

Binding – it is the operation that associates a socket address to a socket, so the socket can be accessed.

Port – it is an identifier used for making the difference between sockets found at the same address. There can be used addresses between 1024 – 49151 (registered ports) and addresses between 49152 – 65535, named also dynamic or ephemeral ports; the addresses between 1 – 1023 are reserved for the system (see the file etc/services in Unix).

The family of addresses – it represents the format of the addresses used for identifying the addresses used in sockets (usually the Internet and Unix addresses).

The socket address – it depends on the family of addresses used (for the domain of the family of Internet addresses, the socket address is made up by the Internet address and by the port address used at the host).

The Internet address – it is a 4-byte-long address, which identifies a node (host or router) inside a network.

2.2 The client – server model

Any operation inside a network can be seen as a client process that communicates with a server process. The server process creates a socket, associates to the socket an address and launches a mechanism for listening for the connection requests of the clients. The client process creates a socket and asks for a connection to the server. After accepting the request by the server and after the connection has been established, a communication between the sockets can be established.

This classical model can vary with the nature of the designed application; it can be symmetric or asymmetric, based on simplex or duplex communication. Using this client – server model, different applications have been made, such as: telnet (for the connection of a remote host using the port 23) for which there is a program at that host, program called telnetd, that will respond, ftp/ftpd or bootp/bootpd.

The usual functions from the socket library are:

· socket() – creates a new socket descriptor;
· bind() – makes the binding of an address and of the corresponding port to the socket;
· connect() – allows the establishment of a connection with a remote server;
· listen() – listens for the connection requests; this function is used in a passive socket;
· accept() – allows the creation of a new socket, corresponding to a connection request;
· send(), recv(), sendto(), recvfrom() – transmits/ receives streams or datagrams;
· close(), shutdown() – closes a connection;
· getpeername() – determines the name of the peer host from the connection;
· getsocketname() – determines the name of the socket used;
· gethostbyname(), gethostbyaddr() – determines the name pr the address from the specified host.
The communication between the client processes and the server is based on the call of the socket() function, call that returns a socket descriptor. This descriptor is used in the calls of different functions specialized in the data transmission (as send() and recv()). Details concerning the syntax of these functions can be found in the Appendix 1.

2.3 Stream sockets vs. datagram sockets
The communication between client and server programs is made using the level protocols TCP (“Transmission Control Protocols”), which is a connection-oriented transport protocol or UDP (“User Datagram Protocol”), which is a connectionless-oriented transport protocol.

The stream sockets are secure communication flows (with no errors), full duplex, based on the TCP protocol, which provides a sequential, errorless data transmission.

The datagram sockets, also known under the name of connectionless sockets, use the IP addresses for routing, but the transport level protocol is the UDP. These sockets do not maintain an open connection during the communication, but they make the transfer packet by packet (the tftp - Trivial File Transfer Protocol, the bootp applications use the datagram sockets).

2.4 Data types used by the socket interface

The next structure stores the socket address for different types of sockets:

struct sockaddr
{
unsigned short sa_family; /* the family of addresses, FA_xxx */

char
sa_data[14]; /* 14 bytes - the protocol address */

};

In order to be able to use in programs the structure struct sockaddr, a parallel structure struct sockaddr_in has been designed:

struct sockaddr_in{

short int sin_family;

/* the family of addresses */

unsigned short int sin_port;
/* the port number */

struct in_addr sin_addr;
/* the Internet address */

char sin_zero[8];

/*unsed*/

};

and

/* the Internet address */

struct in_addr{

unsigned long s_addr;

};

This structure allows a simple reference to the elements of a socket address. Sin_zero will be set to 0, using bzero() or memset() functions. The pointer to the struct sockaddr_in maps the pointer to the structure struct sockaddr. We must highlight that sin_family corresponds to sa_family in the structure struct sockaddr, and it will be set to “AF_INET”, value used for the TCP/IP protocol family.

2.5 The conversion functions

Due to the fact that in data transmission, in order to design portable applications it is necessary to convert the transmitted data between the hosts that use the little_endian or the big_endian representation, and also due to the fact that the data representation at the network level is unique (the protocols of the TCP/IP family use the representation at the network level called NetWork Byte Order), some functions are needed to make these conversions.

Some of the most-used conversion functions in the socket programming are:

· htons() - “Host to Network Short”, host conversion to a short network;
· htonl() – “Host to Long Network”, host conversion at a long network;
· ntohs() – “Network to Host Short”, network conversion to a short host;
· ntohl() – “Network to Host Long”, network conversion to a long host.

Being known the fact that sin_addr and sin_port are put in the IP packet, respectively in the UDP-TCP, they have to be in the Network_byte_order, and the sin_family field, used by the kernel of the operating system (to find out what type of address the structure contains), in the Host Byte Order, it is necessary to use the conversion functions.

Supposing that we analyze the structure struct sockaddr_in ina, and an IP address “xxx.yyy.z.uu” that we want to store in the structure. The function that we use, inet_addr(), converts an IP address from the known format (the numbers-and-dots notation) in an unsigned integer:

Ina.sin_addr.s_addr = inet_addr(“xxx.yyy.z.uu”)

Ine_addr() returns the address in the Network Byte Order. For printing an address in the dot-notation, it is necessary to use the inet_ntoa() function (“ntoa” represents “network to ascii”), as we can see in the next example:

printf(“%s”, inet_ntoa(ina.sin_addr));

char *a1, *a2;

.

.

a1 = inet_ntoa(ina1.sin_addr);

a2 = inet_ntoa(ina2.sin_addr);

printf(“address 1: %s\n”, a1);

printf(“address 2: %s\n”, a2);
3. Lab activity
3.1. Run the program listener on a machine, then talker on another, and follow the way that the communication is done. The program talker calls the
function connect() and specifies the address of the listener for transmitting and receiving. The source code for the test programs can be found at the end of the work. Modify it in such a manner that the communication may take place in the situation when both programs run on the same machine and on different machines.

3.2. Design 3 test programs: client1.c, client2.c and server.c connected through a logic pipeline, such that: the client program client1.c transfers a character message to the server.c process; the server process receives the character, makes some changes and it transmits it to the client2.c process, which prints the result. Modify the programs such that the value transferred through the pipeline to be an integer, and then a structure containing integer and character type values.

3.3. Modify the programs designed previously, such that it can also work on the Internet domain. If the architectures of the machines in the domain are different, so the structures of the messages have different lengths, design an algorithm to be able to transmit the structure.

3.4. Design a simple server (of multiplexer type) that allows to a system formed by three clients connected in a star topology to communicate between them. The server program accepts the connection of every client and it will establish socket connections with each client. The server will print the received message and then it will transmit it to the destination client. The transmission of the message (its length is of 40 characters) will be made after the introduction of the CR character. The message will contain the identifiers of the source and the destination clients (ID), and the client that will receive the message will write it in its own file of messages. For each client, you should design a menu to allow the selection of one of the options: choosing the client to communicate with, printing and deleting the current messages found in the file of messages of the client, closing the session and deleting the client-node from the network.

3.5. Design a timeserver. The server must be able to respond to concurrent solicitations of many clients, by consulting a database that contains the date and the exact time of the requested zone.

3.6. Design a client-server system that allows the transfer of a file from the server machine on the client machine.

Notes
100
99

