LOCAL AREA COMPUTER NETWORKS
NETWORK PROGRAMMING USING JAVA SOCKETS

LABORATORY WORK NO. 8
Network Programming Using Java sockets
1. Objectives
The objectives of this laboratory are the familiarization with the specific mechanisms and classes (their constructors and methods) used for network communication existing in the Java language (various socket categories, URLs) and the design of simple client-server applications.

2. Theoretical considerations
2.1 Introduction
The theoretical concepts necessary for network communication using Unix sockets are also found in the case of network programming using the Java language. For the design of the network applications the package java.net is used, which offers system independent support for the implementation of the client-server type communication model. This package contains classes, interfaces and exceptions which implement in object oriented form the usual communication concepts.

Thus, a Java client, for obtaining a certain service from a remote server, uses the server address for soliciting the connection, and the server listens to the network and waits for requests from the clients. Because a computer has a single physical connection to the network, connection used by all the applications that ask for networking, for the identification of the application to which a packet is intended for, ports are used. Establishing the connection implies the usage of the IP address and the port address as communicating hosts identifiers.

The java.net and java.io packages contain the classes and methods necessary for network programming. Their classes and methods, necessary for the implementation of programming with sockets in Java will be described in what follows. A not at all exhaustive list of these contains the following classes: DatagramPacket, DatagramSocket, MulticastSocket, InetAddress, ServerSocket, Socket, URL, URLConnection, URLEncoder, etc.

The instruments of the Java environment used in programming and program debugging are:

· java – Java interpreter;
· javac – Java compiler;
· appletviewer – Java applets viewer;
· javadoc – API documentation files generator;
· javap – disassembler for class files

· jdb – Java debugger;
· javah – C files generator of header and stub type.
2.2 Fundamental Elements in programming with sockets. The InetAddress class, URL

In order to allow the work with symbolic identifiers of name type but also with IP addresses of the network hosts, the InetAddress class is defined in Java, which provides the necessary abstractions for accessing the hosts.

The static methods of the class are:

· public static InetAddress getByName (String host) throws UnknownHostException – returns the name of the local host for which the IP address is known;
· public static InetAddress getLocalHost() throws UnknownHostException – determines the IP address of the local host;
· public static InetAddress getAllByName (String host) – returns in an array the IP addresses of the current host;
· public byte [] getAdress() – returns the IP address of the current object in array form;
· public String getHostName() – returns the name of the computer to which the InetAddress object corresponds ;
· public string getHostAddress() – returns the IP address of the computer to which the InedAddress object corresponds.

Example 1

The program illustrates the functionality of this class, the address of the local machine is printed and then in a loop host names are accepted and verified.

import java.net.*;

import java.io.*;

public class InetExample {

public static void main(String [] args) {

printLocalAddress();

Reader kbd = new FileReader (FileDescriptor.in);

BufferedReader bufferedkbd = new BufferedReader (kbd);

try {

String name;

do {

System.out.print(“host name or IP address: “);

System.out.flush();

name = bufferedkbd.readLine();

if(name!=null)

printRemoteAddress (name);

} while (name!=null);

System.out.println(“exit”);

}

catch(IOException ex) {

System.out.println(“Input error: “);

ex.printStackTrace();

}

}

//static void printLocalAddress()...

//static void printRemoteAddress(String name)...,

with the procedures

static void printLocalAddress() {

try {

InetAddress myself = InetAddress.getLocalHost ();

System.out.println(“name: “+myself.getHostName());

System.out.println(“IP: “+myself.getHostAddress());

System.out.println(“class: “+ipClass(myself.getAddress());

} catch (UnknownHostException ex) {

System.out.println(“I cannot find myself...”);

ex.printStackTrace();

}

}

static char ipClass (byte [] ip) {

int highByte=0xff&ip[0];

return int (highByte<128) ? ’A’: (highByte<192) ? ’B’ : (highByte<224) ? ’C’ : (highByte<240) ? ’D’ : ’E’;

}

static void printRemoteAddress(String name) {

try {

System.out.println(“search “+name+”...”);

InetAddress machine = InetAddress.getByName (name);

System.out.println(“name: “+machine.getHostName());

System.out.println(“IP: “+machine.getHostAddress());

System.out.println(“class: “+ipClass(machine.getAddress()));

} catch (UnknownHostException ex) {

System.out.println(“I cannot find the host ”+name);

}

}

The URL class offers facilities necessary for the manipulation of universal resource locators URL. The complete form of such a locator is:

Protocol://computer_name:port/path_name#ref
The computer name may be in symbolic format or Internet address, the port is to be specified if the standard one is not used and ref is not part of the URL, but refers a part of the document specified depending of the type of the resource.

The constructors of the class are:

· public URL (String protocol, String host, int port,Stringfile) throws MalformedURLException – creates a URL object;
· public URL (String protocol, String host, String file) throws MalformedURLException – creates a new absolute URL object for which the standard port is used;
· public URL (URL context, String spec) throws MalformedURLException – creates a URL based on the interpretation of the specification spec corresponding to the given context; if the context argument is null, and if spec is only a partial specification the missing components will be taken from the context
· public URL (String spec) throws MalformedURLException – creates a URL object from the given string specification.

2.3 TCP Sockets

2.3.1 The Class Socket
The class Socket (from the package java.net) offers the possibility of the communication using sockets, and the class ServerSocket implements a socket used in servers for waiting for connections from clients.

A socket in Java is the representation of a TCP connection; using this class a client can create communication channels of data streams type. After establishing the connection, the local and respectively remote hosts can communicate using a full-duplex type connection.

The most used constructors of this class are:

· protected Socket() - creates an unconnected socket, which can be subsequently attached to a connection;
· Socket (String host, int port) throws UnknownHostException, IOException – creates a TCP socket and tries the connection to the port of the host specified by name;
· Socket (InetAddress address, int port) throws IOException – creates a TCP socket ad connects it to he specified port of the host identified by address;
· Socket (String host, int port, InetAddress localAddr, int localPort) throws IOException) – creates the TCP socket, links it to the host (address) and local port and connects to the remote host. This is the constructor which allows the manual choice of the interface which will be connected.

The methods of the class allow the identification of the remote host, of the ports and the retrieval of the streams used in the bi-directional communication. The communication using sockets in Java implies creating a socket and then using the methods getInputStream() and getOutputStream() in order to obtain the streams needed for the communication. Other methods defined in this class are: getInetAddress(), getPort(), toString().
The exceptions are those caused by the impossibility of connecting to the local or remote host, the denial of a connection due to the absence of the server to listen on a certain port or the impossibility of reaching the remote host.

Example 2: Web pages download using sockets

The program contains a waiting loop of a URL for which an object is created, which waits for the connection to the web server for downloading and displaying the requested page. Note that the same result is obtained making use of an implementation using the class URL.

import java.net.*;

import java.io.*;

public class GrabPage {

// public grabPage(String textURL) throws IOException...

//public void grab() throws IOException...

//public static void main (String args[]) throws IOException...

public GrabPage(String textURL) throws IOException {

dissect(textURL);

}

//protected void dissect (String textURL) throws //MalformedURLException...

...

protected String host, file;

protected int port;

protected void dissect (String textURL) throws MalformedURLException {

URL url = new URL(textURL);

host = url.getHost();

port = url.gtPort();

if(port == -1)

port = 80;

file = url.getFile();

}

public void grab() throws IOException {

connect();

try {

fetch();

}

finally {

disconnect ();

}

}

//protected void connect () throws IOException...

//protected void fetch() throws IOException..

//protected void disconnect () throws IOException...

protected Writer writer;

protected BufferedReader reader;

protected void connect () throws IOException {

Socket socket = new Socket (host, port);

OutputStream out = socket.getOutputStream();

writer = new OutputStreamWriter (out, “latin1”);

InputStream in = socket.getInputStream();

Reader reader = new InputStreamReader(in,”latin1”);

this.reader = new BufferedReader(reader);

protected void fetch() throws IOException {

writer.write(“GET”+file+”HTTP/1.0”\r\n\n);

writer.flush();

PrintWriter console = new PrintWriter(System.out);

String input;

while ((input = reader.readLine())!=null)

consloe.println(input);

console.flush();

}

protected void disconnect() throws IOException {

reader.close();

and also the client which waits for the processing of a URL, at EOF the loop will be left using break.

public static void main (String [] args) throws IOException {

Reader kbd = new FileReader (FileDescriptor.in);

BufferedReader bufferedKbd = new BufferedReader (kbd);

while(true) {

String textURL;

System.out.print(“Introduce URL: “);

System.out.flush();

if ((textURL = bufferedKbd.readLine()) == null)

break;

try {

GrabPage grabPage = new GrabPage(textURL);

grabPage.grab();

}

catch(IOException ex) {

ex.printStackTrace();

continue;

}

System.out.println(“OK”);

}

System.out.println(“exit”);

}

2.3.2 The class ServerSocket

This class offers the functionality of the mechanism by which a server accepts connections form clients; it allows the creation of a socket connection for each client, then the server will manage these connections extracting input and output streams for communicating with the client; after a connection of this type has been created, a socket might be used for transferring data.

The life cycle of a classical server contains the following stages: creating a new server socket which will listen to connections using the accept() method (the method which will return an object of type socket), carrying out of stream transfers (in, out or in and out), the client and the server will continue the interaction observing a certain protocol, then the connection will be closed by one of the communicating end points, and finally a new connection will be waited for.

The design of a complex server implies the usage of threads such that the server is capable to process as soon as possible any new connection.

The constructors of the class for creating new sockets are:

· ServerSocket(int port) throws IOException, BindException – creates a socket at the specified port, the zero value signifies any available port;
· ServerSocket(int port, int backlog) throws IOException, BindException – creates a socket at the specified port and with the number of connection requests which can be kept in wait state (before refusing other requests, by default 50 requests);
· ServerSocket (int port, int backlog, InetAddress bindAddr) throws IOException – the created socket binds to the specified IP address. It is useful for the systems with more IP addresses, allowing to choose it.
Complementarily there are constructors defined which can be used for creating custom sockets implementations, possibly using proxy servers or various security protocols.

The methods of the class are:
· accept() throws IOException – the method is used for accepting a connection. It is the blocking communication solution because the server will be stopped until the client connects;
· getInetAddress() – returns the address used by the server (of the local host; for multihomed systems the returned address cannot be foreseen);
· getLocalPort() – allows listening to an unspecified port; this method allows this port to be found out.

Many of the protocols use the assumption that these sockets close by themselves after a certain number of message exchanges because for certain programs that can run for ever it is necessary that the sockets are closed.

close() throws IOException – frees the port for other programs that can use it, by closing the connection.

After closing a socket, the port number and the local address are still accessible using the methods getInetAddress(), getLocalPort(), getPort().
(set)getSoTimeout(int timeout) – are used in complex protocols which require multiple connections between the client and the server (the default value is 0; usually setting the parameter implies specifying before the accept() method of the timeout value). Other parameters which is necessary to be set in case of complex protocols are TCP_Nodelay – ensures the transmission of the packets as soon as possible or SO_Linger – specifies the way of treating the datagrams sent after closing a socket.

Example 3: Implementing an echo server – which accepts connections and then retransmits in echo what it has received.

import java.net.*;

import java.io.*;

public class STServer {

public static void main (String [] args) throws IOException {

if (args.length!=1)

throw new IllegalArgumentException(“exception”);

Socket client = accept(Integer.parseInt(args[0]));

try {

InputStream in = client.getInputStream();

OutputStream out = client.getOutputStream();

out.write(“you are connected to the server\r\n”.getBytes(“latin1”));

int x;

while((x=in.read())>-1)

out.write(x);

}

finally {

System.out.println(“Close”);

client.close();

}

}

//static Socket accept (int port) throws IOException...

static Socket accept (int port) throws IOException {

System.out.println(“start at port “+port);

ServerSocket server = new ServerSocket(port);

System.out.println(“wait”);

Socket client = server.accept();

System.out.println(“accept from ...” + client.getInetAddress());

server.close();

return client;

}

}

The testing of the server can be carried out using the loopback address 127.0.0.1

Example 4. Multithread server which contains a thread that will accept the connections and another thread which will service the existing connections.

import java.net.*;

import java.io.*;

public class MTServer extends Thread {

//MTEchoServer (Socket socket)....

///public void run()...

//public static void main (String [] args) throws IOException...

protected Socket socket;

MTEchoServer(Socket socket) {

this.socket=socket;

}

public void run() {

try {

InputStream in = socket.getInputStream();

OutputStream out = socket.getOutputStream();

out.write (“you are connected to multithread server\r\n”.getBytes(“latin1”));

byte [] buffer = new byte [1024];

int read;

while((read = in.read(buffer))>=0)

out.write(buffer,0,read);

}

catch(IOException ex) {

ex.printStackTrace;

}

finally {

try {

socket.close();

}

catch(IOException ignored) {

}

}

}

public static void main (String [] args) throws IOException {

if(args.length!=1)

throw new IllegalArgumentException(“MTEchoServer<>”);

System.out.println(“Start at port ”+args[0]);

ServerSocket server = new ServerSocket(Integer.parseInt(args[0]));

while(true) {

Socket client = server.accept();

MTEchoServer echo = new MTEchoServer(client);

echo.start();

}

}

}

Example 5. Implementing a non-blocking server NB.
import java.net.*;

import java.io.*;

public class NBServer{

//public static void main(String [] args) throws IOException...

static InputStream in0, in1;

static OutputStream out0,out1;

public static void main(String [] args) throws IOException {

if(args.length!=1)

throw new IllegalArgumentException(“Server: port”);

try {

accept(Integer.parseInt(args[0]));

int x0,x1;

while (((x0=readNB(in0))!=-1)&&((x1=readNB(in1))!=-1)){

if (x0>=0)

out1.write(x0);

if (x1>=0)

out0.write(x1);

}

}

finally {

System.out.println(“close”);

close(out0);

close(out1);

}

}

static void close(OutputStream out) {

if (out!=null) {

try {

out.close();

}

catch (IOException ignores {

}

}

}

//static void accept (int port) throws IOException...

//static int readNB (InputStream in)...

static void accept(int port) throws IOException {

System.out.println(“Start at port “+port);

ServerSocket server = new ServerSocket (port);

try {

System.out.println(“wait”);

Socket client0 = server.accept();

System.out.println(“from client ”+client0.getInetAddress());

in0 = client0.getInputStream();

out0 = client0.getOutputStream();

out0.write(“hello, please wait\r\n”.getBytes(“latin1”));

System.out.println(“wait...”);

Socket client1 = server.accept();

System.out.println(“accept from “+client1.getInetAddress());

in1 = client1.getInputStream();

out1 = client1.getOutputStream();

out1.write(“hello\r\n”.getBytes(“latin1”));

out1.write(“start\r\n”.getBytes(“latin1”));

}

finally {

server.close();

}

}

static int readNB(inputStream in) throws IOException {

if(in.available()>0)

return in.read();

else

return –2;

}

}

2.4 Datagram sockets

In the java.net package there are the classes DatagramSockets, DatagramPacket and MulticastSocket which offer support for data transmission programming using datagrams. Each datagram contains a header and a data area. The header contains the addressing information (source and destination port and address) and other information related with ensuring the transmission. Datagrams have fixed length and from this reason sometimes they have to be divided into packets and restored at the destination. The datagrams transmission is carried out without prior establishment of a connection, the transmitted packets do not have to be received in the same order and also a datagram socket may receive data from more different hosts.

2.4.1 The DatagramPacket class
The DatagramPacket class organises data in UDP packets. The constructors of the DatagramPacket class are:

· DatagramPacket (byte buffer [], int length) – where buffer represents an array which memorizes the packet, and length represents the maximum number of bytes that can be read in buffer;
· DatagramPacket (byte buffer [], int length, InetAddress address, int port) – the packet will be delivered at the specified host address and port. It is necessary that at the other end of the communication a UDP server exists, which listens to connections. The data volume which can be placed in a packet depends on the type of the protocol and on the type of the technology used.

The methods of this class are:

· getAddress() – returns the InetAddress object representing the remote host addres;
· getPort() – returns the datagram port on the remote machine;
· getLength() – returns the length of the datagram (number of bytes);
· getData() – returns an array which contains the data transferred using datagrams

2.4.1 The DatagramSocket class
This class allows datagram transmission and reception. The constructors of the class are:

· DatagramSocket() throws SocketException – creates a datagram socket at a port (anonymous) chosen randomly;
· DatagramSocket (int port) throws SocketException – creates a socket which listens to a specified port;
· DatagramSocket (int port, InetAddress local) throws SocketException – the created socket is also bound to a local address.

After creating a DatagramPacket and constructing a DatagramSocket this packet will be transferred using the send() method, respectively received using the receive() method.
send(DatagramPacket dp) throws IOException

receive(DatagramPacket dp) throws IOException

The following sequence represents the usage of Java datagrams for receiving a data packet. A socket of type DatagramScket is created at a specified port.

DatagramSocket socket = new DatagramSocket(....);

...

byte [] buffer = new byte [65508];

DatagramPacket packet = new DatagramPacket (buffer, buffer.length);

socket.receive(packet);

....

socket.close()

...

InetAddress address = packet.getAddress();

int fromPort = packet.getPort();

int length = packet.getLength();

byte [] data = packet.getData();

When constructing a datagram packet the destination IP address and port have to be specified in order for this to be transmitted. The following example illustrates this aspect as follows:

DatagramSocket socket = new DatagramSocket();

DatagramPacket packet = new DatagramPacket(data, data.length, InetAddress.getByName(“www.utcluj.ro”),1728);

socket.send(packet);

socket.close();

2.4.2 Multicast sockets. The MulticastSocket class

The multicast transmission (reception) offers a set of advantages not at all negligible among which the simplification of the design and reduction of bandwidth consumption for a set of applications whose topology requires spanning trees (from the domain of massive parallel processing, name services, distributed directory services, databases replication mechanisms, etc). For receiving multicast data from a remote host, after creating a multicast socket the association to a multicast group is necessary and the connection will be able to be associated for transmitting and receiving data. The association to a group announces the routers on the path to the server which offers the service to send the data in multicast mode, the host being responsible with the addressing of the packets in multicast mode. The attachment to a group determines the communication similar to the one used in the datagrams transfer; the fact has to be noticed that for only transmitting in multicast mode the attachment to a multicast group is not necessary. What differentiates however the multicast communication from the unicast one is specifying and managing the TTL (Time to live) field, field which allows avoiding the routing loops for complex tree topologies.

The multicast addresses are D class addresses in the address range 224.0.0.0 – 239.255.255.255, a domain structured on various types of reserved or unreserved multicast addresses.

The constructors of the MulticastSocket class used in multicast datagram processing are:
· MulticastSocket() throws SocketException – creates a socket bound to the anonymous port (any port assigned by the system) and useful for the clients that do not require specifying a port;
· MulticastSocket (int port) throws SocketException

The methods of the class necessary for the communication with a multicast group are:

· joinGroup(InetAddress mcastaddr) throws SocketException

· leaveGroup(InetAddress mcastaddr) throws SocketException

· send(DatagramPacket dp, byte ttl) throws IOException, SocketException

· set(get)Interface (InetAddress interface) throws SocketException – for choosing the interface used for multicast transmission in multihomed hosts.

For receiving multicast packets the method receive of the DatagramSocket class can be used.

The following example aims to illustrate the way of using the multicast packets in reception, respectively transmission, due to the fact that there are many similarities with the datagram transmission. Transmitting a packet to a multicast group implies specifying the value of a special TTL field (Time to live, whose default value is 255; other usual values: localhost – 0; sub-network - -1, other LAN:16) in the contents of the datagram, with the purpose of preventing infinite routing loops of datagrams in the network, thus controlling how far the packets are transferred.

Transmission:

//byte [] data

//InetAddress multicastGroup

//int multicastPort

MulticastSocket socket = new MulticastSocket();

DatagramPacket packet = new DatagramPacket (data, data.length, multicastGroup, multicastPort);

socket.send(paket, (byte)64);

socket.close();

Correspondingly, the sequence for the reception of a packet in multicast mode is:

//InetAddress multicastGroup

//int multicastPort

MulticastSocket socket = new MulticastSocket (multicastPort);

socket.joinGroup(multicastGroup);

byte [] buffer = new byte [65508];

DatagramPacke packet = new DatagramPacket();

int fromPort = packet.getPort();

int length = packet.getLength();

byte [] data = packet.getData();

.....

socket.leaveGroup(multicastGroup);

socket.close();

3. Lab activity
3.1 Design a Java application which implements the finger command. The client connects to the server at port 79 and transmits a line with a terminal interrogation with the pair CR_LF to which the server responds.

3.2 Design an application which implements the communication between a client and a server observing the specifications: the server program listens to the network and waits for the reception of a request from a client. If the request is received without conflicts, the server processes the request and closes the connection. The client uses an address for asking for a connection from a computer in the network (usually asks for a service from a server), then disconnects from the network.

3.3 Propose a solution of a non-blocking server which uses timeout values. Design a concurrent server which generates for each accepted connection a new thread of execution.

3.4 Design a server program that asks for a password for the authentication of a client and then sends over the network a file to the client program. The client program will connect to the server, will send the required password, will ask for a file and then will save the desired file.

3.5 Implement an application which carries out the communication between two applets from the same Web page. Each applet will contain two buttons one for updating the applet in which the button is located, and the second one for updating the other applet.

3.6 Write a program which sends a one byte message to a server machine. Compute the average time (round trip time) necessary for the transfer of the message, considering repeating the process for a sufficient number of times such that an average estimation is possible. Modify the dimension of the message (1 kb, 2kb, 4 kb, 8 kb) and compute the debit for each message dimension. Establish a relationship among the latency, bandwidth and requirements of a certain application.

Notes

116
117

